
Tour of tools used by GDAL CI, 
testing and documentation

Even Rouault

September 11th 2023



(Very) short introduction to GDAL

● GDAL? Geospatial Data Abstraction Library. The Swiss Army 
knife for geospatial

● 25 years of history
● C++ code, with Python, Java and CSharp (official) bindings
● Large…

○ ~ 250 raster & vector file formats
○ ~ 70 potential third-party dependencies
○ ~ 1.5 MLoC of C/C++ code for the library
○ ~ 350 kLoC for Python test suite



Developer tools

● CMake build system
● Pre-commit hooks for automated code formatting:

○ flake8, isort, black for Python
○ clang-format for C/C++ code

Testing framework
● GoogleTest for C/C++ code
● pytest for Python code… and C/C++ code (through Python 

bindings)
● Integrated with CMake’s ctest



Continuous Integration: overview

● 29 checks, mostly on GitHub Actions workflows
● Builders for Linux (Ubuntu, Alpine, Fedora), Windows (native 

and mingw64) and Mac
● Mix of stable and rolling distributions to get variety of versions 

of third-party dependencies
● Mix of quick & extensive (slow) builds
● Using Docker for most Linux setups (helps local reproduction)
● Cross-compilation for Android
● Conda-Forge builds (using recipe-clobber to build dev version), 

and publication of artifacts of master in a dedicated channel
● 2 Travis-CI jobs for s390x (big endian) and ARM64

⇒ Everything MIT licensed: https://github.com/OSGeo/gdal/tree/master/.github/workflows 

https://github.com/OSGeo/gdal/tree/master/.github/workflows


Continuous Integration: code checks / analysis 

Compilers:
● Rather pedantic gcc/clang warning levels (but not -pedantic !), with 

warning-as-errors (on CI)

Static analyzers:
● CLang Static Analyzer
● Cppcheck
● Coverity Scan (proprietary, free plan for O.S. projects): weekly runs
⇒ useful but significant rate of false positives

Dynamic analyzers:
● Address & undefined sanitizers enabled builds (gcc/clang -fsanitize= flags)



Continuous Integration: code checks / analysis 

Custom checks:
● custom scripts to detect some bad practices not detected by compilers (self 

assignment, missing includes, etc.)
● check-jsonschema for .json resources
● xmllint --validate for .xml resources

Code Coverage:
● For C/C++ code only. Using gcov, lcov
● Integrated with Coveralls.io online service
● Manually publication of lcov HTML in a github repo for nice HTML browsing



Continuous Integration: security testing 

● GDAL integrated with OSSFuzz: nightly builds, run on 
OSSFuzz infrastructure

● CI-Fuzz continuous integration (GitHub Actions workflow)

Documentation

● Integrated in main repository
● Sphinx-based (.rst):

○ Breathe to import Doxygen output for C/C++ code
○ Sphinx automodule for Python API
○ Integration (copying of) javadoc HTML output for Java API


