o NUMFOCUS
GDA‘I_' PROJECT SUMMIT 2023

Tour of tools used by GDAL Cl,
testing and documentation

Even Rouault



(Very) short introduction to GDAL

e GDAL? Geospatial Data Abstraction Library. The Swiss Army
knife for geospatial

e 25 years of history

e C++ code, with Python, Java and CSharp (official) bindings

e Large...

~ 250 raster & vector file formats

~ 70 potential third-party dependencies

~ 1.5 MLoC of C/C++ code for the library

~ 350 kLoC for Python test suite

O O O O



Developer tools

e CMake build system

e Pre-commit hooks for automated code formatting:
o flake8, isort, black for Python
o clang-format for C/C++ code

Testing framework

e GoogleTest for C/C++ code

e pytest for Python code... and C/C++ code (through Python
bindings)

e Integrated with CMake’s ctest



Continuous Integration: overview

29 checks, mostly on GitHub Actions workflows

Builders for Linux (Ubuntu, Alpine, Fedora), Windows (native
and mingw64) and Mac

Mix of stable and rolling distributions to get variety of versions
of third-party dependencies

Mix of quick & extensive (slow) builds

Using Docker for most Linux setups (helps local reproduction)
Cross-compilation for Android

Conda-Forge builds (using recipe-clobber to build dev version),
and publication of artifacts of master in a dedicated channel

2 Travis-Cl jobs for s390x (big endian) and ARM64

= Everything MIT licensed: https://github.com/OSGeo/gdal/tree/master/.qgithub/workflows



https://github.com/OSGeo/gdal/tree/master/.github/workflows

Continuous Integration: code checks / analysis

Compilers:
e Rather pedantic gcc/clang warning levels (but not -pedantic !), with
warning-as-errors (on Cl)

Static analyzers:

e ClLang Static Analyzer
e Cppcheck
e Coverity Scan (proprietary, free plan for O.S. projects): weekly runs

= useful but significant rate of false positives

Dynamic analyzers:
e Address & undefined sanitizers enabled builds (gcc/clang -fsanitize= flags)



Continuous Integration: code checks / analysis

Custom checks:

e custom scripts to detect some bad practices not detected by compilers (self
assignment, missing includes, etc.)

e check-jsonschema for .json resources

e xmllint --validate for .xml resources

Code Coverage:

e For C/C++ code only. Using gcov, Icov
e Integrated with Coveralls.io online service
e Manually publication of lcov HTML in a github repo for nice HTML browsing



Continuous Integration: security testing

e GDAL integrated with OSSFuzz: nightly builds, run on
OSSFuzz infrastructure
e CIl-Fuzz continuous integration (GitHub Actions workflow)

Documentation

e Integrated in main repository
e Sphinx-based (.rst):
o Breathe to import Doxygen output for C/C++ code
o Sphinx automodule for Python API
o Integration (copying of) javadoc HTML output for Java API



