

State of GDAL GDAL 3.6 & 3.7

Even Rouault SPATIALYS

GDAL/OGR: Introduction

- GDAL? Geospatial Data Abstraction Library. The swiss army knife for geospatial.
- Read and write Raster (GDAL) and Vector (OGR) datasets
- 250 (mainly) geospatial formats and protocols.
- Widely used

(> 100 http://trac.osgeo.org/gdal/wiki/SoftwareUsingGdal)

MIT Open Source license (permissive)

A CMake build system

- In GDAL 3.5, CMake as a new build system
- to replace long time existing autotools-based and Visual Studio's nmake ones
- Since GDAL 3.6, CMake is now only the build system supported
- Many integrations available with build systems such as vcpkg or conda-forge
- Extensive documentation of all the options at <u>https://gdal.org/development/building_from_source.html</u>

(Open)FileGeodatabase enhancements

- Creation of new datasets
- Addition/deletion of vector layers
- Addition/update/deletion of attributes
- Addition/update/deletion of features
- Creation and update of spatial index
- Creation and update of attribute index
- Creation/management of field domains
- Creation and management of layer relationships
- Database compaction

OpenFileGDB integration in QGIS 3.28

(Open)FileGeodatabase enhancements

- Prior O.S. effort: ArcRaster Rescue (R. Barnes)
- Read support for FileGeodatabase v10 raster datasets, in core GDAL 3.7
 - Read CRS and georeferencing information
 - Tile-based reading
 - Expose overviews/pyramids
 - Compression methods: uncompressed,
 LZ77 (Deflate), JPEG and JPEG2000
 - Value attribute tables
- Read support for FileGDB v9 for GDAL 3.8

Columnar formats:

- Parquet
- Arrow
- TileDB

Column-oriented = information for a given attribute is grouped by many rows

	object_id	date	geometry
Row 1	1234	2023-06-12	POINT(2 49)
Row 2	1235	2023-06-11	POINT(3 49)
Row 3	1247	2023-06-13	POINT(2 50)
Row 4	3126	2023-06-15	POINT(3 50)

Row 1	1234	
	2023-06-12	
	POINT(2 49)	
Row 2	1235	
	2023-06-11	
	POINT(3 49)	
Row 3	1247	
	2023-06-13	
	POINT(2 50)	
Row 4	3126	
	2023-06-15	
	POINT(3 50)	

object_id	12340		
	1235		
	1247		
	3126		
date	2023-06-12		
	2023-06-11		
	2023-06-13		
	2023-06-15		
geoometry	POINT(2 49)		
	POINT(3 49)		
	POINT(2 50)		
	POINT(3 50)		

- https://gdal.org/development/rfc/rfc86 column oriented api.html
- OGRLayer::GetArrowStream() → ArrowStream
- Arrow Stream C interface:
 - get schema(stream) → ArrowSchema
 - o get_next(stream) → ArrowArray
- ds = ogr.Open("my.gpkg")
 - Iyr = ds.GetLayer(0)
 - for batch in lyr.GetArrowStreamAsPyArrow():
 - ... do something with batch ...
 - for batch in lyr.GetArrowStreamAsNumPy():
 - ... do something with batch ...

- Generic implementation for all other OGR drivers
 - uses feature-based iteration underneath (GetNextFeature())
 - of course adds some overhead
- Efficient implementation in drivers:
 - (Geo)Parquet/(GeoArrow)
 - TileDB (vector side added in GDAL 3.7)
 - GeoPackage
 - FlatGeoBuf

 Benchmarks to load a 3.2 million rows (footprint polygons) of 13 attributes each

	GeoParquet	TileDB	GeoPackage	FlatGeoBuf	Shapefile
File size	0.43 GB	1.1 GB	1.67 GB	1.8 GB	2.92 GB
Feature-based iteration	6.2 s	6.0 s	6.6 s	5.0 s	10.3 s
Arrow/Column ar (1 thread)	1.6 s (x 3.9 speedup)		2.2 s (x 3 speedup)	3.0 s (x 1.7)	16.8 s (generic impl.) (x 0.61)
Arrow/Column ar (4 threads)	1.0 s (x 6.2 speedup)	1.3 s (x 4.6)	0.7 s (x 9.4)		

New drivers (GDAL 3.6)

- BASISU and KTX2 read/write raster drivers:
 - Basis Universal Textures: GPU-optimized
 - Khronos Texture Container 2.0
 - Require (forked) basisu open source library
- JPEG-XL standalone read/write driver:
 - JPEG-XL: competitor to AVIF/HEIF/WEBP
 - Lossless and lossy profiles
 - Already available as a GeoTIFF codec
 - Requires open source libjxl library

New drivers (GDAL 3.7)

- NSIDCbin raster read-only driver:
 - NSIDC=National Snow and Ice Data Centre
 - Sea Ice Concentrations
 - Raw binary format
 - Daily and monthly maps in the north and south hemispheres
- GTFS vector read-only driver:
 - General Transit Feed Specification
 - Common format for public transportation schedules and associated geographic information
 - Expose text tables augmented with geometries

ogrinfo: API

- Available through the GDALVectorInfo() C API call
- gdal.VectorInfo(dataset / filename) in Python

ogrinfo: ... and JSON output!

```
$ ogrinfo -json poly.shp
 "layers":[
     "name": "poly",
     "metadata":{
      "geometryFields":[
           "name":"".
           "type": "Polygon",
           "nullable":true.
           "extent":[
                 478315.53125.
                 4762880.5,
                 481645.3125.
                 4765610.5
           "coordinateSystem":{
           [...]
```

```
"featureCount":10,
"fields":[
      "name":"AREA",
      "type":"Real",
      "width":12,
      "precision":3,
      "nullable":true.
      "uniqueConstraint":false
},
      "name":"EAS ID",
      "type":"Integer64",
      "width":11,
      "nullable":true,
      "uniqueConstraint":false
},
      "name":"PRFEDEA",
      "type": "String",
      "width":16,
      "nullable":true,
      "uniqueConstraint":false
```

Miscellaneous

- ogr_layer_algebra.py: promoted as a supported utility
- OGRLayer::UpsertFeature() and UpdateFeature()
- PNG decompression: 1.7 to 2.0 times faster when building GDAL against libdeflate
- Direct access to compressed raster data: extraction of JPEG/JPEGXL/WEBP/etc. Tiles:
 - Implemented in GeoTIFF, VRT, JPEG, JPEGXL and WEBP drivers
 - https://gdal.org/development/rfc/rfc90_read_compressed_data.html

GeoTIFF multi-threaded decompression

- Enabled if GDAL_NUM_THREADS configuration option/env. variable is set
- 3-band Byte tiled 10,000 x 5,000 large file:

Compression	Time (ms) single-threaded	Time (ms) 12 threads	Speed-up factor	File size (MB)
None	210	112	1.9	157
Deflate	310	137	2.3	11
JPEG (lossy)	312	138	2.3	1.1
LZW	390	142	2.7	12
WebP lossy	411	148	2.8	0.5
WebP lossless	558	157	3.6	7.7
JPEG-XL lossy	1415	368	3.8	0.7
JPEG-XL lossless	6810	1368	5.0	8.6

• 11977 x 8745 x 8 bands UInt16 tiled deflate compressed file

Deflate	5700	1109	5.1	990
---------	------	------	-----	-----

SOZIP: Seek-optimized ZIP format

Open-specification on top of venerable .zip format

 Random access in large compressed files directly from a .zip file without prior decompression

- Fully backwards compatible
- Use cases: GeoPackage, FlatGeoBuf, Shapefile, ...
- Available in GDAL 3.7 / "sozip" command line utility
- ⇒ More at 4h30 today at "SOZip: using directly (geospatial) large compressed files in a ZIP archive!" session

GDAL 3.8 preview

- New vector driver to read and write the OGC Feature and Geometries JSON (JSON-FG) candidate standard
- New vector driver to read and write PMTiles dataset with vector tile. PMTiles: cloud-friendly tile container
- Multi-dimensional API in TileDB driver

Thanks to GDAL sponsors!

· Gold level:

· Silver level:

· Bronze level:

Supporter level:

Questions?

Links:

http://gdal.org/

Contact: even.rouault@spatialys.com

