
MapFish Workshop Documentation
Release 0.1

Éric Lemoine, Cédric Moullet, Claude Philipona

November 02, 2009

CONTENTS

1 Module 1 - Getting Started 3
1.1 Getting workshop material . 3
1.2 Installing MapFish . 3
1.3 Installing FireFox extensions . 4

2 Module 2 - Creating Application 5
2.1 Generating the application . 5
2.2 Studying the application . 7

3 Module 3 - Customizing the Application 11
3.1 Adding layers . 11
3.2 Adding tools . 12

4 Module 4 - Building JavaScript 15
4.1 Installation . 15
4.2 Creating Build Profile . 15
4.3 Building . 16

5 Module 5 - Creating Web Services 19
5.1 Installing data . 19
5.2 Connecting to the database . 20
5.3 Creating web service . 20
5.4 Studying the web service code . 21

6 Module 6 - Adding search functionality 23

7 Module 7 - Customizing the web service 25
7.1 Simple customization . 25
7.2 Advanced customization . 25

8 Warranty disclaimer and license 27

i

ii

MapFish Workshop Documentation, Release 0.1

Contents:

CONTENTS 1

MapFish Workshop Documentation, Release 0.1

2 CONTENTS

CHAPTER

ONE

MODULE 1 - GETTING STARTED

Start by creating a folder named MapFish in the C:\ folder, this will be your working folder for this workshop.

1.1 Getting workshop material

Get the Workshop material by checking out http://www.mapfish.org/svn/mapfish/sandbox/camptocamp/mapfish_workshop
with Turtoise SVN. For this open the explorer, go into C:\MapFish, right-click in the explorer window, choose SVN
Checkout..., enter the above URL, check that the Checkout directory is C:\MapFish\mapfish_workshop,
and click OK.

Export the mapfish_workshop folder to your Apache document root, for example by copying it in Apache’s
htdocs directory. You should be able to load http://localhost/mapfish_workshop/printing in your web browser.

1.2 Installing MapFish

To install MapFish, first make sure you’ve installed “Python for Windows extensions”. If not, you can get it here:
http://sourceforge.net/projects/pywin32/

Open a terminal command and follow these steps:

C:\>cd C:\MapFish
C:\MapFish>C:\Python25\python.exe mapfish_workshop\software\go-mapfish-framework-1.2.py env

This command creates a virtual Python environment named env and installs MapFish and its dependencies into it.

Now activate the virtual environment with:

C:\MapFish>env\Scripts\activate.bat

You command prompt should now look like this:

<env> C:\MapFish>

To check that MapFish is correctly installed, enter:

<env> C:\MapFish>paster create --list-templates

and check that the output is:

3

http://www.mapfish.org/svn/mapfish/sandbox/camptocamp/mapfish_workshop
http://localhost/mapfish_workshop/printing
http://sourceforge.net/projects/pywin32/

MapFish Workshop Documentation, Release 0.1

Available templates:
basic_package: A basic setuptools-enabled package
mapfish: MapFish application template
mapfish_client: MapFish client plugin template
paste_deploy: A web application deployed through paste.deploy
pylons: Pylons application template
pylons_minimal: Pylons minimal application template

1.3 Installing FireFox extensions

It is recommended that you use FireFox and install Firebug 1. Firebug is an add-on for Firefox that allows you to
debug JavaScript in any web page. Firebug requires Firefox and cannot be used with any other web browser. Installing
the JSONView extension is also recommented, it will be used for viewing JSON responses in FireFox.

1 http://getfirebug.com/

4 Chapter 1. Module 1 - Getting Started

http://getfirebug.com/
https://addons.mozilla.org/en-US/firefox/addon/10869
http://getfirebug.com/

CHAPTER

TWO

MODULE 2 - CREATING APPLICATION

In this module you will learn how to create a MapFish application. You will study the structure of a MapFish applica-
tion, and the code the MapFish framework generates for you when creating a MapFish application.

2.1 Generating the application

2.1.1 Generating the base

To create a MapFish application use:

<env> C:\MapFish> paster create -t mapfish MapFishApp

MapFishApp is the name of the MapFish application you’re creating, you can pick any name of your choice. We’ll
assume that you choose MapFishApp in the rest of the document.

When asked what template engine to use answer mako, which is the default. When asked if SQLAlchemy 0.5 con-
figuration is to be included, answer True, as your MapFish application will include web services relying on database
tables.

You should now have a folder named MapFishApp. This folder contains your application files, at this point mainly
Python files.

Now is the time to check that your MapFish application works. For this go into the MapFishApp folder and start the
application:

<env> C:\MapFish>cd MapFishApp
<env> C:\MapFish\MapFishApp>paster serve development.ini

This command starts your application in the Paster web server, which is a pure-Python web server, commonly used
during development.

Open http://localhost:5000 in your web browser, you should get the default page:

5

http://localhost:5000

MapFish Workshop Documentation, Release 0.1

2.1.2 Installing the MapFish JavaScript toolbox

You are now going to install the MapFish JavaScript toolbox in your application. This toolbox includes:

• the Ext, OpenLayers, GeoExt and MapFish Client JavaScript libraries,

• a sample JavaScript application based on those libraries,

• a build profile for minifying the JavaScript code of this sample application,

• a JavaScript testing framework, with a test example

Enter Ctrl+C to stop the Paster server and proceed with these commands:

<env> C:\MapFish\MapFishApp>cd ..
<env> C:\MapFish> paster create -t mapfish_client MapFishApp

When asked whether to overwrite index.html answer y. This will overwrite the index.html page you saw in
the last section by the one provided by the mapfish_client template.

Start the application again:

<env> C:\MapFish>cd MapFishApp
<env> C:\MapFish\MapFishApp>paster serve --reload development.ini

Note: Note the use of the --reload switch. This switch makes the Paste server monitor all Python modules used
by the MapFishApp application and reload itself automatically if any of them is modified or if new modules are
created. This is especially useful during development.

Open or reload http://localhost:5000 in your web browser, you should now get the default user interface:

6 Chapter 2. Module 2 - Creating Application

http://localhost:5000

MapFish Workshop Documentation, Release 0.1

This default user interface is composed of: a map, a toolbar above the map with tools acting on the map, and a layer
tree for controlling the visibility of layers. The map itself is composed of two OpenStreetMap base layers (Mapnik
and Tiles@Home).

The default user interface is provided to the application developer as an example. The application developer is free to
build on it, or delete it to write his own if he wants.

As mentioned at the begining of this section, the JavaScript toolbox installed in the MapFish application comes with
a JavaScript testing framework. We clearly see one of the goals of MapFish here: freeing the Application developer
from tedious tasks and making him more productive in the development of high-quality, tested code. A test example
is provided, to execute it load http://localhost:5000/tests in your browser.

2.2 Studying the application

The following sub-sections give you a quick tour through the folders and files of your MapFish application. Take some
time to browse those folders and files, so you get a sense of how the application is structured.

2.2.1 Global structure

The application’s main folder, MapFishApp, contains:

development.ini This is the application’s configuration file. This file includes things like the IP address and
TCP port the server should listen on, the database connection string, etc.

layers.ini This is where the application developer gives information about web services to be generated by the
framework. We’ll get back to this file in the Creating Web Services module later in the document.

2.2. Studying the application 7

http://openstreetmap.org
mailto:Tiles@Home
http://localhost:5000/tests

MapFish Workshop Documentation, Release 0.1

jsbuild This folder contains the JavaScript build profile for the default user interface. We’ll come back to that in
the Building JavaScript module later in the document.

setup.cfg and setup.py These files control various aspects of how the MapFish application is packaged when
you distribute it.

mapfishapp

This is the main application folder, its name depends on the application name given as the argument to the
paster create command. The main sub-folders of this folder are: controllers, model, lib,
config, tests, templates, and public.

controllers The controllers folder contains the application controllers. The controllers are the
components that handle HTTP requests and send HTTP responses. They often interact with the
model and templates code.

model The model folder is where the database model is configured. This is basically where tables and
relations are defined.

lib The lib folder includes Python code shared by different controllers, and third-party code.

config The config folder includes Python code generated by the framework and exposed to the
application for customization.

tests The tests folder is where you can add Python automated tests for the application.

templates The templates folder is where view templates are stored. Note that we won’t write
templates as part of this workshop, as the HTML rendering will mostly be done client side.

public

The public folder includes the application’s static files, i.e. HTML, CSS, JavaScript files,
etc. Most of this folder was populated when you installed the JavaScript toolbox with
paster create -t mapfish_client. The main files and folders inside this folder
are: index.html, mfbase, app, and tests.

index.html The index.html file is the user interface’s HTML page. This is where the
JavaScript code is loaded.

mfbase The mfbase folder contains the MapFish JavaScript toolbox librairies, namely Ext,
OpenLayers, GeoExt and MapFish Client.

app The app folder contains application-specific files. It js sub-folder includes the
JavaScript code of the default user interface.

tests The tests folder is where the application developer can put its JavaScript tests. The
folder includes the JavaScript testing framework, Test.AnotherWay 1, and a test example.

2.2.2 User interface

Let’s now review the various files that make up the default user interface (i.e. the web page with the OSM layers).

Edit the index.html file and look up these lines:

<script type="text/javascript" src="mfbase/ext/adapter/ext/ext-base.js"></script>
<script type="text/javascript" src="mfbase/ext/ext-all-debug.js"></script>
<script type="text/javascript" src="mfbase/openlayers/lib/OpenLayers.js"></script>
<script type="text/javascript" src="mfbase/geoext/lib/GeoExt.js"></script>
<script type="text/javascript" src="mfbase/mapfish/MapFish.js"></script>

1 http://www.openjsan.org/doc/a/ar/artemkhodush/

8 Chapter 2. Module 2 - Creating Application

http://www.openjsan.org/doc/a/ar/artemkhodush/
http://www.openjsan.org/doc/a/ar/artemkhodush/

MapFish Workshop Documentation, Release 0.1

These <script> tags make the ExtJS, OpenLayers, GeoExt and MapFish JavaScript libraries be loaded when the
web page is openned in the browser. These are the versions of the libraries where the JavaScript code is not minified.
Again, we’ll talk about JavaScript minification in the Building JavaScript module.

The lines:

<script type="text/javascript" src="app/js/mapfishapp_layout.js"></script>
<script type="text/javascript" src="app/js/mapfishapp_init.js"></script>

in the index.html take care of loading the application-specific JavaScript code. As you have noticed the JavaScript
code of the default user interface is composed of two files. The application developer is free to add more files if
needed.

The mapfishapp_init.js file represents the entry point.

/*
* @include mapfishapp_layout.js

*/

Ext.namespace("mapfishapp");

(function() {
// run mapfishapp.layout.init() when the page
// is ready
Ext.onReady(function() {

mapfishapp.layout.init()
});

})();

This file just creates the application namespace, and registers a callback to be run when the entire HTML page and its
components are loaded. The callback is registered using the Ext.onReady function; we infer from the namespace of
the function that the function is provided by the Ext library. Using Ext.onReady is typical in Ext-based applications.

The mapfishapp_layout.js file is where the page layout is defined. This file contains private functions, i.e.
functions that cannot be called from outside the mapfishapp.layout module, and the init public function,
which is the function that was passed to the Ext.onReady function.

Let’s review what the mapfish.layout module’s functions do.

createMap This function creates the map, which is an instance of OpenLayers.Map. See the OpenLayers.Map
doc 2.

createLayers This function creates the OSM layers and return them.

createLayerStore This function creates a GeoExt.data.LayerStore object with the map and layers
passed as arguments. A GeoExt.data.LayerStore is necessary for creating a map panel. See the
GeoExt.data.LayerStore doc 3.

createTbarItems This function create and return toolbar items. Here the toolbar items are GeoExt.Action
objects. We’ll go back to GeoExt.Action in the Customize the Application module.

init

This function starts by calling the createMap, createLayers, and createLayerStore functions
to actually create the map, layers, and layer store.

2 http://dev.openlayers.org/apidocs/files/OpenLayers/Map-js.html
3 http://www.geoext.org/lib/GeoExt/data/LayerStore.html

2.2. Studying the application 9

http://dev.openlayers.org/apidocs/files/OpenLayers/Map-js.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Map-js.html
http://www.geoext.org/lib/GeoExt/data/LayerStore.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Map-js.html
http://www.geoext.org/lib/GeoExt/data/LayerStore.html

MapFish Workshop Documentation, Release 0.1

It then creates an Ext.Viewport, which is a graphical component representing the entire browser
viewport. The viewport contains other grahical components: its items. The viewport here contains two
items, a map panel and a layer tree panel. See the Ext.Viewport doc 4.

The map panel, which is a GeoExt object, is configured with the map and the layer store objects. The map
panel is also a container, with one item: the zoom slider. The map panel has a top toolbar, whose items
are returned by the createTbarItems function. See the GeoExt.MapPanel doc 5.

The layer tree is a regular Ext.tree.TreePanel with a GeoExt.tree.LayerContainer as its
root node. See the Ext.tree.TreePanel doc 6, and the GeoExt.tree.LayerContainer doc 7.

4 http://www.extjs.com/deploy/ext-2.2.1/docs/?class=Ext.Viewport
5 http://www.geoext.org/lib/GeoExt/widgets/MapPanel.html
6 http://www.extjs.com/deploy/ext-2.2.1/docs/?class=Ext.tree.TreePanel
7 http://www.geoext.org/lib/GeoExt/widgets/tree/LayerContainer.html

10 Chapter 2. Module 2 - Creating Application

http://www.extjs.com/deploy/ext-2.2.1/docs/?class=Ext.Viewport
http://www.geoext.org/lib/GeoExt/widgets/MapPanel.html
http://www.extjs.com/deploy/ext-2.2.1/docs/?class=Ext.tree.TreePanel
http://www.geoext.org/lib/GeoExt/widgets/tree/LayerContainer.html
http://www.extjs.com/deploy/ext-2.2.1/docs/?class=Ext.Viewport
http://www.geoext.org/lib/GeoExt/widgets/MapPanel.html
http://www.extjs.com/deploy/ext-2.2.1/docs/?class=Ext.tree.TreePanel
http://www.geoext.org/lib/GeoExt/widgets/tree/LayerContainer.html

CHAPTER

THREE

MODULE 3 - CUSTOMIZING THE
APPLICATION

In this section you’re going to customize the default user interface. More specifically you’re going to add layers and
tools to the map. These tasks will involve adding JavaScript code in the mapfish_layout.js file.

3.1 Adding layers

You’re going to add a WMS layer to the map.

Programming task

Edit the mapfishapp_layout.js file and add a OpenLayers.Layer.WMS object to the array of layers re-
turned by the createLayers function. Here’s the code for creating the OpenLayers.Layer.WMS object:

new OpenLayers.Layer.WMS(
"c2c.org",
"http://www.camptocamp.org/cgi-bin/mapserv_c2corg",
{

layers: ’summits,routes,huts,parkings,sites’,
format: ’png’,
transparent: true

}, {
singleTile: true

}
)

The OpenLayers.Layer.WMS object is given a name, a URL to the WMS, WMS parameters, and options. The
singleTile option indicates that the layer is to be displayed with a single image as opposed to a grid of image tiles.
See the OpenLayers.Layer.WMS doc 1 to know more about the OpenLayers.Layers.WMS class.

Note: The WMS service used here is provided by the camptocamp.org 2 non-profit organization.

After reloading the application in the browser you should get this:

1 http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/WMS-js.html
2 http://www.camptocamp.org

11

http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/WMS-js.html
http://www.camptocamp.org
http://dev.openlayers.org/apidocs/files/OpenLayers/Layer/WMS-js.html
http://www.camptocamp.org

MapFish Workshop Documentation, Release 0.1

Please contribute to http://www.camptocamp.org if you want to see more summits, routes, huts, parkings and climbing
sites added to your Australia map :-)

The code you added here makes use of the OpenLayers library only, you haven’t written any GeoExt and MapFish
code at this point.

[Correction here]

Bonus task

Add a Google Maps layer to the map. You can look at http://www.openlayers.org/dev/examples/spherical-
mercator.html as an example.

3.2 Adding tools

Here you’re going to add a Zoom - tool next to the Zoom + tool in the map’s toolbar.

Programming task

Edit the mapfishapp_layout.js file again, look up the createTbarItems function, and add a new
GeoExt.Action object to the actions array returned by the function. Here’s the code for creating the
GeoExt.Action object:

actions.push(new GeoExt.Action({
iconCls: "zoomout",
map: map,
toggleGroup: "tools",
allowDepress: false,
tooltip: "Zoom out",
control: new OpenLayers.Control.ZoomBox({

12 Chapter 3. Module 3 - Customizing the Application

http://www.camptocamp.org
http://www.openlayers.org/dev/examples/spherical-mercator.html
http://www.openlayers.org/dev/examples/spherical-mercator.html

MapFish Workshop Documentation, Release 0.1

out: true
})

}));

This code creates a GeoExt.Action object configured with an OpenLayers.Control.ZoomBox instance.
This code looks like that for the Zoom - tool, the main difference being the out control option set to false for Zoom
+ and to true for Zoom -. See the GeoExt.Action doc 3 and the OpenLayers.Control.ZoomBox doc 4 (no, actually
don’t look at the later, it’s rather empty!).

After reloading the application in the browser you should get this:

In this section you have learned how to use GeoExt.Action objects together with OpenLayers.Control ob-
jects to add map tools in a tool bar.

[Correction there]

Bonus task

Add zoom to max extent and draw polygons tools to the toolbar. Adding a draw polygons tool would require adding
an OpenLayers.Layer.Vector to the list of layers returned by the createLayers function. Taking a look at
the GeoExt toolbar.html example 5 may help.

3 http://www.geoext.org/lib/GeoExt/widgets/Action.html
4 http://dev.openlayers.org/apidocs/files/OpenLayers/Control/ZoomBox-js.html
5 http://dev.geoext.org/trunk/geoext/examples/toolbar.html

3.2. Adding tools 13

http://www.geoext.org/lib/GeoExt/widgets/Action.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Control/ZoomBox-js.html
http://dev.geoext.org/trunk/geoext/examples/toolbar.html
http://www.geoext.org/lib/GeoExt/widgets/Action.html
http://dev.openlayers.org/apidocs/files/OpenLayers/Control/ZoomBox-js.html
http://dev.geoext.org/trunk/geoext/examples/toolbar.html

MapFish Workshop Documentation, Release 0.1

14 Chapter 3. Module 3 - Customizing the Application

CHAPTER

FOUR

MODULE 4 - BUILDING JAVASCRIPT

In this module you’re going to learn how to use the jsbuild tool to minify the JavaScript of your application.
Minifying the JavaScript code is important if you care about performance, as it drastically reduces the time to load the
JavaScript code.

4.1 Installation

The jsbuild tool is included in the JSTools Python package. The MapFish framework package depends on
JSTools, so JSTools was installed in the virtual Python environment as part of the framework installation.

You can check that jsbuild is properly installed by running this command:

(env) C:\MapFish>C:\MapFish\env\Scripts\jsbuild.exe --help

It should produce this output:

Usage: jsbuild-script.py [options] filename1.cfg [filename2.cfg...]

Options:
-h, --help show this help message and exit
-u, --uncompress Don’t compresses aggregated javascript
-v, --verbose print more info
-o OUTPUT_DIR, --output=OUTPUT_DIR

Output directory
-r RESOURCE_DIR, --resource=RESOURCE_DIR

resource base directory (for interpolation)
-j SINGLE_FILE, --just=SINGLE_FILE

Only create file for this section
-s CONCAT, --single-file-build=CONCAT

Create a single file of all of possible output
-c COMPRESSOR, --compressor=COMPRESSOR

Compressor plugin to use in form
{specifier}:{’arguments_string’}

4.2 Creating Build Profile

To be able to minify your application JavaScript code you must first create a build profile. A build profile holds the
build configuration: paths to JavaScript folders, etc.

A build profile for the default user interface is provided in jsbuild/app.cfg. It looks like this:

15

MapFish Workshop Documentation, Release 0.1

[MapFish.js]
root =

../mapfishapp/public/mfbase/openlayers/lib

../mapfishapp/public/mfbase/mapfish

../mapfishapp/public/mfbase/geoext/lib

../mapfishapp/public/app/js
first =

OpenLayers/SingleFile.js
OpenLayers.js
OpenLayers/Util.js
OpenLayers/Lang.js
OpenLayers/Lang/en.js
OpenLayers/Console.js
OpenLayers/BaseTypes.js
OpenLayers/BaseTypes/Class.js
OpenLayers/BaseTypes/Pixel.js
OpenLayers/BaseTypes/Bounds.js
OpenLayers/BaseTypes/LonLat.js
OpenLayers/BaseTypes/Element.js
OpenLayers/BaseTypes/Size.js
Rico/Corner.js
SingleFile.js
MapFish.js
core/Util.js

include =
mapfishapp_init.js

exclude =
GeoExt.js
GeoExt/SingleFile.js

[MapFish.js] MapFish.js will be the name of the resulting build file.

root The root property provides the paths to the folders containing JavaScript code. It is to be noted that, with
the above build profile, the JavaScript code for OpenLayers, GeoExt, MapFish Client, and the application is
minified and merged in a single build file, MapFish.js.

first The first property provides the list of JavaScript files that must be first in the resulting build file.

include The include property provides the list of files that should be included in the build file. You’ll note that
only one file is specified here: the entry point app file. The other JavaScript files to be included in the build file
are specified using @include directives in the JavaScript application files themselves.

exclude The exclude property provides the list of files that should not be included in the build file.

4.3 Building

Before actually building the JavaScript code you need to create the folder where the build file will be placed. In the
public folder create a folder named build with two sub-folders, mapfish and openlayers.

You can now launch the build command:

(env) C:\MapFish>cd MapFishApp/jsbuild
(env) C:\MapFish\MapFishApp\jsbuild>C:\MapFish\env\Scripts\jsbuild.exe -o ..\mapfishapp\public\build\mapfish app.cfg

After a small while, the output should be:

16 Chapter 4. Module 4 - Building JavaScript

MapFish Workshop Documentation, Release 0.1

Done:
..\mapfishapp\public\build\mapfish\MapFish.js

The last thing that you need to do is copy resource files. Copy the MapFish img folder in
the public/build/mapfish folder, and copy the OpenLayers img and theme folders in the
public/build/openlayers folder. Look at the README.txt file in the jsbuild folder to know where
the MapFish img, the OpenLayers img and the OpenLayers theme folders are. Note that you need to do this copy
operations only once.

You can now edit public/index.html to use the built version of the JavaScript code. For that comment the debug
mode section and uncomment the non debug mode section. Like this:

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf8" />
<meta name="content-language" content="en" />
<title>Application</title>

<link rel="stylesheet" type="text/css" href="mfbase/ext/resources/css/ext-all.css"></link>
<link rel="stylesheet" type="text/css" href="mfbase/ext/resources/css/xtheme-gray.css"></link>
<link rel="stylesheet" type="text/css" href="mfbase/mapfish/mapfish.css"></link>

<script type="text/javascript" src="mfbase/ext/adapter/ext/ext-base.js"></script>

<!-- debug mode (begin) -->
<!--
<script type="text/javascript">

// Because of a bug in Firefox 2 we need to specify the MapFish base path.
// See https://bugzilla.mozilla.org/show_bug.cgi?id=351282
var gMfLocation = "mfbase/mapfish/";

</script>
<script type="text/javascript" src="mfbase/ext/ext-all-debug.js"></script>
<script type="text/javascript" src="mfbase/openlayers/lib/OpenLayers.js"></script>
<script type="text/javascript" src="mfbase/geoext/lib/GeoExt.js"></script>
<script type="text/javascript" src="mfbase/mapfish/MapFish.js"></script>
<script type="text/javascript" src="app/js/mapfishapp_layout.js"></script>
<script type="text/javascript" src="app/js/mapfishapp_init.js"></script>
-->
<!-- debug mode (end) -->

<!-- non debug mode (begin) -->
<script type="text/javascript" src="mfbase/ext/ext-all.js"></script>
<script type="text/javascript" src="build/mapfish/MapFish.js"></script>
<!-- non debug mode (end) -->

</head>
<body>
</body>
<html>

You can now reload http://localhost:5000 in your browser.

You should get JavaScript errors in the FireBug console, this is because you added functionality in the previous
modules of this workshop without adding proper @include directives in the mapfishapp_layout.js. You
should be able to fix that by adding the missing @include directives, for instance:

4.3. Building 17

http://localhost:5000

MapFish Workshop Documentation, Release 0.1

@include OpenLayers/Layer/Google.js
@include OpenLayers/Layer/WMS.js
@include OpenLayers/Request/XMLHttpRequest.js
@include core/Searcher/Map.js
@include core/Protocol/MapFish.js
@include core/Protocol/TriggerEventDecorator.js
@include core/Protocol/MergeFilterDecorator.js

18 Chapter 4. Module 4 - Building JavaScript

CHAPTER

FIVE

MODULE 5 - CREATING WEB
SERVICES

In this module you are going to learn how to use the framework to create MapFish web services in your application.

MapFish web services are web services for creating, reading, updating and deleting geographic objects (features)
through the MapFish Protocol.

The MapFish Protocol is a collection of HTTP APIs. It is highly recommended to take some time to go through the
description of these APIs 1 before moving on with the rest of this module.

5.1 Installing data

A MapFish web service relies on a spatial data source.

Note: Only PostgreSQL/PostGIS tables are currently supported by MapFish. There’s currently work being done to
support SQLite/Spatialite and MySQL. Stay tuned.

Before creating the web service we need to create a PostGIS table with some data into it. You’re going to create a
PostGIS table from a Shapefile of countries.

First, create a PostGIS-enabled database and name it mapfish_workshop. For that you can launch an SQL Shell
and enter:

CREATE DATABASE mapfish_workshop TEMPLATE=template_postgis;

Then, open the explorer, go into the C:\MapFish\mapfish_workshop\data folder and extract the
countries.zip file. And enter the following commands to import the countries Shapefile as a table named
countries in the mapfish_workshop database:

C:\MapFish>cd mapfish_workshop\data
C:\MapFish\mapfish_workshop\data>"C:\Program Files\PostgreSQL\8.3\bin\shp2pgsql.exe" -s 4326 -I countries.shp countries | "C:\Program Files\PostgreSQL\8.3\bin\psql.exe" -d mapfish_workshop -U postgres

You can start pgAdmin and connect to the mapfish_workshop database to check that the countries table is
present and non-empty.

1 http://www.mapfish.org/doc/1.2/protocol.html

19

http://www.mapfish.org/doc/1.2/protocol.html
http://www.mapfish.org/doc/1.2/protocol.html

MapFish Workshop Documentation, Release 0.1

5.2 Connecting to the database

You now need to setup the connection to the mapfish_workshop database from MapFishApp. This is done in
the development.ini file.

Edit development.ini and replace the line

sqlalchemy.url = sqlite:///%(here)s/development.db

by this one:

sqlalchemy.url = postgres://postgres:postgres@localhost:5432/mapfish_workshop

The connection string specifies that the postgres driver must be used, the database system listens on localhost
and on port 5432, and the name of the database is mapfish_workshop.

5.3 Creating web service

Now that the table is created and the connection to the database is set up, you’re ready to create the web service.

Creating a web service is done in three steps:

1. create a layer configuration in the layers.ini file, in our case:

[countries]
singular=country
plural=countries
table=countries
epsg=4326
geomcolumn=the_geom

singular provides a singular name for the layer. plural provides a plural name for the layer. Both
are used by the code generator when substituting variables. table provides the name of the database. epsg
provides the coordinate system of the table data. geomcolumn provides the name of the geometry column.

2. generate the web service code with the mf-layer command:

<env> C:\MapFish\MapFishApp>paster mf-layer countries

3. configure a route to the countries controller, this is done by adding the following statement after the “CUS-
TOM ROUTES HERE” comment in the mapfishapp/config/routing.py file:

map.resource("country", "countries")

Watch the indentation! 4 spaces are needed here.

If you killed paster serve or if you did not add the --reload switch, restart MapFishApp with:

<env> C:\MapFish\MapFishApp>paster serve --reload development.ini

You can now open http://localhost:5000/countries?limit=1 in your browser, you should see a GeoJSON representation
of the first object in the countries table:

20 Chapter 5. Module 5 - Creating Web Services

http://localhost:5000/countries?limit=1
http://geojson.org

MapFish Workshop Documentation, Release 0.1

Bonus task

Open the MapFish Protocol description again and write the URLs for the following queries:

• get the country whose identifier is 1

• get the country which contains the point (5, 45)

• get the country which contains the point (5, 45) but don’t receive its geometry

• get the country which contains the point (5, 45) and receive only the attributes pays and population

5.4 Studying the web service code

The paster mf-layer countries command created three Python files:

mapfishapp/controllers/countries.py This file includes the controller code of the countries web
service. This is the core of the web service.

class CountriesController(BaseController):
readonly = False # if set to True, only GET is supported

def __init__(self):
self.protocol = Protocol(Session, Country, self.readonly)

def index(self, format=’json’):
"""GET /: return all features."""
return self.protocol.index(request, response, format=format)

def show(self, id, format=’json’):

5.4. Studying the web service code 21

http://www.mapfish.org/doc/1.2/protocol.html

MapFish Workshop Documentation, Release 0.1

"""GET /id: Show a specific feature."""
return self.protocol.show(request, response, id, format=format)

def create(self):
"""POST /: Create a new feature."""
return self.protocol.create(request, response)

def update(self, id):
"""PUT /id: Update an existing feature."""
return self.protocol.update(request, response, id)

def delete(self, id):
"""DELETE /id: Delete an existing feature."""
return self.protocol.delete(request, response, id)

The controller has methods for each protocol operation: get features (index), get a feature (show), create
features (create), update a feature (update), and delete a feature (delete). These methods all rely on
Protocol object, this protocol object includes all the logic of the MapFish Protocol as defined in the descrip-
tion.

mapfishapp/model/countries.py This file includes the model code of the countries web service. The
model defines the countries table object, the Country class representing a table record, and the mapping
between the two.

countries_table = Table(
’countries’, metadata,
Column(’the_geom’, Geometry(4326)),
autoload=True, autoload_with=engine)

class Country(GeometryTableMixIn):
for GeometryTableMixIn to do its job the __table__ property
must be set here
__table__ = countries_table

mapper(Country, countries_table)

tests/functional/test_countries.py This file is where the application developer can put functional
tests for the countries web service. This is an empty shell.

The code generated by the paster mf-layer command belongs to the application developer. The developer is
free to modify it, based on his needs.

22 Chapter 5. Module 5 - Creating Web Services

CHAPTER

SIX

MODULE 6 - ADDING SEARCH
FUNCTIONALITY

In this module you’re going to add a search functionality to the user interface. This search functionality will rely on
the countries web service that you created in the previous module.

With this search functionality users will be able to click on the map and get a popup giving information about the
clicked country.

The MapFish Client library provides the mapfish.Searcher.Map class for enabling that. See the map-
fish.Searcher.Map doc 1. A mapfish.Searcher.Map object is an OpenLayers control so it can be wrapped in
a GeoExt.Action just like the Zoom + and Zoom - controls that we saw earlier in the workshop.

Progamming task

Edit the mapfishapp_layout.js file and add a new GeoExt.Action to the actions array returned by the
addTbarItems function. This GeoExt.Action will be configured with a mapfish.Searcher.Map as its
control. The mapfish.Searcher.Map object must be configured so it

• relies on the countries MapFish web service (url option)

• triggers search requests on clicks (mode option)

• displays a popup with the country name and the population (displayDefaultPopup option)

When clicking on a country you should get a popup looking like this:

1 http://www.mapfish.org/apidoc/trunk/files/mapfish/core/Searcher/Map-js.html

23

http://www.mapfish.org/apidoc/1.2/files/mapfish/core/Searcher/Map-js.html
http://www.mapfish.org/apidoc/1.2/files/mapfish/core/Searcher/Map-js.html
http://www.mapfish.org/apidoc/trunk/files/mapfish/core/Searcher/Map-js.html

MapFish Workshop Documentation, Release 0.1

[Correction here]

Note that the AJAX responses may show that the database complains about EPSG:900913 code not being known. In
that case, you may run the following INSERT statement in your database:

INSERT INTO spatial_ref_sys (srid,auth_name,auth_srid,srtext,proj4text) VALUES
(900913,’EPSG’,900913,’PROJCS["Google Mercator", GEOGCS["WGS 84",DATUM["World Geodetic System 1984", SPHEROID["WGS 84", 6378137.0, 298.257223563, AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]], UNIT["degree", 0.017453292519943295], AXIS["Geodetic latitude", NORTH], AXIS["Geodetic longitude", EAST], AUTHORITY["EPSG","4326"]], PROJECTION["Mercator (1SP)", AUTHORITY["EPSG","9804"]], PARAMETER["semi_major", 6378137.0], PARAMETER["semi_minor", 6378137.0], PARAMETER["latitude_of_origin", 0.0], PARAMETER["central_meridian", 0.0], PARAMETER["scale_factor", 1.0], PARAMETER["false_easting", 0.0], PARAMETER["false_northing", 0.0], UNIT["m", 1.0], AXIS["Easting", EAST], AXIS["Northing", NORTH], AUTHORITY["EPSG","900913"]]’,’+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs’);

Bonus tasks

1. Change the mapfish.Searcher.Map configuration so it sends requests as the user pauses on the map.

2. Make the search results be displayed in a GeoExt.Popup. For that you’ll need to create a searchcomplete
listener on the searcher and have this listener create the GeoExt.Popup. Look at the GeoExt.Popup documentation
2 to know how to use it.

2 http://geoext.org/lib/GeoExt/widgets/Popup.html

24 Chapter 6. Module 6 - Adding search functionality

http://geoext.org/lib/GeoExt/widgets/Popup.html
http://geoext.org/lib/GeoExt/widgets/Popup.html

CHAPTER

SEVEN

MODULE 7 - CUSTOMIZING THE WEB
SERVICE

This module will demonstrate two examples of web service customization. The first example is based on MapFish-
provides APIs. The second example involves knowledge in the powerful SQLAlchemy database toolkit.

7.1 Simple customization

You’re going to customize the countries web service so it includes only countries of the Oceana continent in its
GeoJSON responses.

Programming task

This is done by adding code to the index action (function) of the CountriesController. The code to be added
involves creating a Comparison filter and combining it with the default MapFish filter:

def index(self, format=’json’):
"""GET /: return all features."""
default_filter = create_default_filter(request, Country)
compare_filter = comparison.Comparison(

comparison.Comparison.EQUAL_TO,
Country.continent,
value="Oceana"

)
filter = logical.Logical(logical.Logical.AND, [default_filter, compare_filter])
return self.protocol.index(request, response, format=format, filter=filter)

MapFish provides several filter classes that the application developer can use to customize his web services. See the
filters reference API 1.

[Correction here (controller/countries.py)]

7.2 Advanced customization

You’re now going to customize the countries web sercice so it sends simplified geometries in its GeoJSON re-
sponses.

Programming task
1 http://www.mapfish.org/doc/1.2/reference/filters.html

25

http://www.mapfish.org/doc/1.2/reference/filters.html
http://www.mapfish.org/doc/1.2/reference/filters.html

MapFish Workshop Documentation, Release 0.1

This is done by modifying the countries model so that SQL queries of type SELECT simplify(the_geom,
2) ... are executed by the database. This modification requires knowledge in the SQLAlchemy ORM. Here it is:

countries_table = Table(
’countries’, metadata,
Column(’the_geom’, Geometry(4326)),
autoload=True, autoload_with=engine)

class Country(GeometryTableMixIn):
for GeometryTableMixIn to do its job the __table__ property
must be set here
__table__ = countries_table

def toFeature(self):
overload toFeature to replace the geometry value with the
simplified geometry value
self.the_geom = wkb.loads(self.the_geom_simple.decode("hex"))
return GeometryTableMixIn.toFeature(self)

mapper(Country, countries_table, properties={
"the_geom_simple": column_property(

func.simplify(countries_table.c.the_geom, 2).label("the_geom")
)

})

[Correction here (model/countries.py)]

Bonus task

Modify the configuration of the mapfish.Searcher.Map object so that, in addition to displaying the popup, it
also draws the geometry in a vector layer of the map. This is done by listening to searchcomplete events and
adding the received feature to a vector layer.

26 Chapter 7. Module 7 - Customizing the web service

CHAPTER

EIGHT

WARRANTY DISCLAIMER AND
LICENSE

Camptocamp and authors provide these documents “AS IS,” without warranty of any kind either expressed or implied.

Documents under Creative Common License Attribution-Share Alike 2.5 Generic.

Authors: Éric Lemoine, François Van Der Biest

27

http://www.camptocamp.com
http://creativecommons.org/licenses/by-sa/2.5/

	Module 1 - Getting Started
	Getting workshop material
	Installing MapFish
	Installing FireFox extensions

	Module 2 - Creating Application
	Generating the application
	Studying the application

	Module 3 - Customizing the Application
	Adding layers
	Adding tools

	Module 4 - Building JavaScript
	Installation
	Creating Build Profile
	Building

	Module 5 - Creating Web Services
	Installing data
	Connecting to the database
	Creating web service
	Studying the web service code

	Module 6 - Adding search functionality
	Module 7 - Customizing the web service
	Simple customization
	Advanced customization

	Warranty disclaimer and license

