Building Custom GIS Applications using Open-Source Toolkits – A Case Study

Daniel B. Koch, Ph.D.
Senior R&D Staff
Oak Ridge National Lab
Oak Ridge, TN, USA

kochdb@ornl.gov http://www.ornl.gov/~ko5

- Talk deals with how to get started with a custom development effort
- Motivation for creating your own GIS application
- Decisions to make along the way
- Examples and lessons learned from developing the ORNL Geospatial Viewer (OGV)

- Several projects needed a simple GIS application for use by non-GIS professionals
- Commercial offerings deemed too complicated and/or costly by sponsor
- Browser-based offerings had restrictive terms of use and/or copyrighted data
- Needed the ability to customize the code for each project

Requirements

- Simple to learn (avoid jargon, feature bloat)
- Allow custom map making and data capture
- Support hardware devices (GPS receiver)
- Run on a laptop for mobile operations
- Liberal license terms
- No per-copy cost

- Network connection not always available in the field
- Laptop must carry the data it needs

- User may need to store unstructured or unanticipated data (photos, reports, scanned maps, floor plans, etc.)
- Operation on Windows, Mac, and Linux

- Available applications and toolkits
 - "Desktop GIS" by Gary Sherman
 - http://desktopgisbook.com
- Ideas for use cases
 - "Mapping Hacks" by Erle, Gibson, & Walsh
 - http://www.mappinghacks.com
- Data sources (region dependent)
- Development help (tool dependent)

Application Elements

- Graphical user interface (GUI)
- Geospatial database for spatial queries
- Access to web repositories prior to use in the field
- Hardware drivers

Development Language

Geographic Information Science and Technology

Python

- Can be used for OS scripting, procedural programming, or object-oriented programming
- Cross-platform, already installed in many cases
- Minimalist approach to language elements

Resources

- http://python.org
- "Learning Python" by Mark Lutz
- "Python in a Nutshell" by Alex Martelli
- http://oreilly.com/python

wxPython

- wxWidgets C++ library with Python bindings
- Cross-platform, preserves native OS look and feel
- Active development and user community
- Liberal license for personal and commercial use

Resources

- http://www.wxpython.org
- "wxPython in Action" by Rappin & Dunn

PostgreSQL

- Cross-platform, supports spatial queries natively
- Many extensions (PostGIS)

Resources

- http://www.postgresql.org
- "PostgreSQL" by Douglas & Douglas

PsycoPG2

- Provides Python DBAPI interface
- http://www.initd.org/pub/software/psycopg

- On-board laptop
 - GNIS (http://geonames.usgs.gov)
 - National Atlas (http://www.nationalatlas.gov)
 - LandScan (http://www.ornl.gov/sci/landscan)
 - TIGER (http://www.census.gov/geo/www/tiger)
- Internet access
 - WMS
 - GeoRSS

Hardware Support

Geographic Information Science and Technology

GPS receiver

- Real-time tracking
- Downloading waypoints
- Source of satellite information

PySerial

- Cross-platform* Python access to serial port
- http://sourceforge.net/projects/pyserial
- * Windows requires Mark Hammond's Python extensions (http://www.python.net/crew/mhammond)

Architecture

Geographic Information Science and Technology

Graphical User Interface

Control Executive

Database Internet Access

Hardware Drivers

Operating System

Elements of model-view-controller (MVC) used throughout

Graphical User Interface (Linux)

Geographic Information Science and Technology

Database layers pane can be shown or hidden

Button bar

Mouse controls pan (drag) and zoom (wheel)

Cursor lat/lon/elev

Icon set by Mark James - http://www.famfamfam.com/lab/icons/silk

Mac OS GUI

Windows Vista GUI

Menu Operations

Feature Operations

Properties

Geographic Information Science and Technology

Dynamic tabs based on input coordinate system

User notes and URL

Wizard

Geographic Information Science and Technology

Lat: 34.255371 °

Lon: -73.784180 °

Elev: -

- Emergency response planning
- Satellite tracking
- GeoRSS

Emergency Response Planning

Geographic Information Science and Technology

Population updated as circle expands

Vehicle moves along path

Animation showing a hazardous release

Satellite Tracking

Geographic Information Science and Technology

One period of orbit - shown

Current position of satellite

Real-time tracking animation using satellite ephemeris

GeoRSS

Lessons Learned

- Make sure you really need a custom solution
- Clearly define a minimum set of functions and data types to support at first
- Pick a language/toolkit you enjoy using
- Allow your code to be organic but constantly refactor into stable bits of functionality
- Avoid feature-creep and excessive options
- Great vehicle for learning GIS concepts

Future Efforts

- GUI improvements
- More simulation capabilities
- 3D viewing via PyOpenGL
- Hardware drivers for other devices
- Animation scripting by end-user

