FOSS4G 2009 - Sydney

The Time Series Toolbox

Thomas Bleier, Arndt Bonitz, Bojan Božić, Thomas Ponweiser

Copyright © SANY Consortium, AIT
The Time Series Toolbox

- A set of API’s and software components
- For building services and applications
- That work with time series data (record, process, store, publish, etc.)
Design Goals

- Modular architecture
 use components as you like, not “all-or-nothing”

- Standards-based
 e.g. OGC Sensor Observation Service

- Flexible design
 From single float values to complex data structures

- Extensible
 Well-defined interfaces allow easy extension
Environment / Requirements

- **Main language**: Java 1.6

- **One component written in Python** (→ Jython)

- **Can be used in all types of applications**:
 - Webservices (J2EE, etc)
 - Command-line applications
 - Desktop GUI applications
Layered Architecture

- Data connector components
- Core processing components
- Frontend components

<table>
<thead>
<tr>
<th>SOS Frontend</th>
<th>Universal Data Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Series API</td>
<td></td>
</tr>
<tr>
<td>Formula 3</td>
<td>Caching</td>
</tr>
<tr>
<td>Time Series API</td>
<td></td>
</tr>
<tr>
<td>SOS DataSource</td>
<td>CSV DataSource</td>
</tr>
<tr>
<td></td>
<td>RRD Datasource</td>
</tr>
<tr>
<td></td>
<td>AnySen Datasource</td>
</tr>
</tbody>
</table>

5
Data connector: SOS DataStore

- Accessing Sensor Observation Services
- Read: Observations, SensorML, Features
- Write: Observations, RegisterSensor
- Flexible parser (e.g. SOS 1.0 / 0.31)
Data connector: CSV DataStore

- Access Comma Separated Value Files
- Read and write access
- Flexible configuration
 - Separators
 - Formats
 - Values

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Temp.</th>
<th>WindVel</th>
<th>WindDir</th>
</tr>
</thead>
<tbody>
<tr>
<td>090925</td>
<td>12:15</td>
<td>24.3°</td>
<td>8.2 m/s</td>
<td>46.0°</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Timestamp

CSV File
Data connector: RRD DataSource

- Round Robin Database (http://oss.oetiker.ch/rrdtool/)
- Currently read-only access to data
- Integration of existing RRD files (e.g. from system monitoring applications)
Data connector: AnySen DataSource

- Data acquisition directly from a sensor
- Designed for serial streaming sensors
- Flexible configuration of parser
- Plug & measure – get config from repository
public interface DataStore {

 // connection
 public void connect(String connectString);
 public void connect(Map<String, String> properties);
 public void disconnect();

 // configuration
 public Object getDataStoreProperty(String key);
 public void setDataStoreProperty(String key, Object value);

 // time series
 public List<String> getTimeSeriesIds();
 public List<String> findTimeSeriesIds(Map<String, Object> timeSeriesProperties);

 ...
}

Layered Architecture

- **Data connector components**
- **Core processing components**
- **Frontend components**

<table>
<thead>
<tr>
<th>SOS Frontend</th>
<th>Universal Data Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Series API</td>
<td>Caching</td>
</tr>
<tr>
<td>Formula 3</td>
<td></td>
</tr>
<tr>
<td>Time Series API</td>
<td></td>
</tr>
<tr>
<td>SOS DataSource</td>
<td>CSV DataSource</td>
</tr>
</tbody>
</table>
Formula 3

“Time Series Processor”

Read time series data from connectors via TSAPI

Process data:

- \(< [n] \times 2 >\)
- \(< [n-2 .. n].\text{sum} >\)
- \(< (t-3 \text{ hours} .. t).\text{mean} > \) every 30 mins

Output time series data via TSAPI
Formula 3

🌟 Functionality
- Calculation (arithmetic)
- Parameters for formulas
- Time patterns, slot/range selection
- Conditions
- Predefined functions, user defined functions

🌟 Example use cases
- Aggregation, Mean values, etc.
- Filtering, Classification
Formula 3 - implementation

- Design goal: usable as a „standalone“ library on major platforms (Java, DotNET, „native“)
- Implemented in Python
- TS Toolbox contains Formula 3 running on Jython
Caching

- Store time series data in local database
- Temporary storage
- Use cases: caching, prefetching, local storage, etc.
- Currently implements configurable prefetching
Layered Architecture

- Data connector components
- Core processing components
- Frontend components

<table>
<thead>
<tr>
<th>SOS Frontend</th>
<th>Universal Data Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Series API</td>
<td>Caching</td>
</tr>
<tr>
<td>Formula 3</td>
<td></td>
</tr>
<tr>
<td>Time Series API</td>
<td></td>
</tr>
<tr>
<td>SOS DataSource</td>
<td>CSV DataSource</td>
</tr>
</tbody>
</table>
SOS Frontend

- Sensor Observation Service Frontend to TSAPI
- Serve data from multiple data connectors
- On-the-fly processing using Formula 3
- Local caching/prefetching of data
- Based on 52°North SOS
- SensorML generation/ transformation with XSLT
SOS Frontend: application schema

Sensor Observation Service

- SOS 1.0 Frontend
- Formula 3
- Caching
- Formula 3
- Caching
- XSLT

- SOS DataSource
- CSV DataSource
- ...
SOS Frontend: use cases

- SOS Interface to DataSource (CSV, Legacy, etc.)
- SOS with on-the-fly processing
- Cascading SOS: custom views, transformations, caching, etc.
- Data preparation for reporting
- ...
Universal Data Pump

- Read data from a DataSource
- Write to one or more DataSink(s)
- Configurable (config file and commandline)
- Batch Processing
- CSV → SOS, SOS → CSV, Legacy → SOS, AnySen → CSV, AnySen → SOS, etc.
Export data from SOS into a CSV file

- e.g. for legacy modeling application
Example config file - structure

```xml
<?xml version="1.0" encoding="UTF-8"?>
<DatapumpConfiguration xmlns="http://enviro.ait.ac.at/datapump/configuration">

  <General>
    <ErrorHandling>
      ...
    </ErrorHandling>
  </General>

  <DataSource>
    <Connection>
      ...
    </Connection>
    <Filter>
      ...
    </Filter>
  </DataSource>

  <DataSink>
    <Connection>
      ...
    </Connection>
  </DataSink>

</DatapumpConfiguration>
```
Example config file - datasource

```xml
<?xml version="1.0" encoding="UTF-8"?>
<DatapumpConfiguration xmlns="http://enviro.ait.ac.at/datapump/configuration">
...
<DataSource>
  <Connection>
    <Parameter key="ds:protocol" value="SOS"/>
    <Parameter key="ds:connect_string"
      value="http://enviro5.arcs.ac.at/SOSuwedat10/sos"/>
  </Connection>

  <!-- Query time interval -->
  <Parameter key="time:start" value="2007-05-01T00:00:00+0200"/>
  <Parameter key="time:end" value="2007-05-24T01:59:59+0200"/>

</DataSource>
...
</DatapumpConfiguration>
```
Example config file - datasink

```xml
<?xml version="1.0" encoding="UTF-8"?>
<DatapumpConfiguration xmlns="http://enviro.ait.ac.at/datapump/configuration">
  ...
  <DataSink>
    <Connection>
      <Parameter key="ds:protocol" value="CSV"/>
      <Parameter key="ds:connect_string" value="-"/>

      <!-- Column labels -->
      <Parameter key="csv:labels" value="Time|Value|Unit"/>

      <!-- Which properties to put in which column -->
      <Parameter key="csv:fields" value="time|slot:value:value|ts:ts:unit"/>

      <!-- Dateformat for time stamps -->
      <Parameter key="csv:format:dateformat" value="yyyy-MM-dd HH:mm"/>
    </Connection>
  </DataSink>
</DatapumpConfiguration>
```
Running the following command:

```
$ java -jar datapump.jar config.xml
```

Generates a file with the following content:

<table>
<thead>
<tr>
<th>Time</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-05-01 00:00</td>
<td>1.2346</td>
<td>m/s</td>
</tr>
<tr>
<td>2007-05-01 00:30</td>
<td>0.73287</td>
<td>m/s</td>
</tr>
<tr>
<td>2007-05-01 01:00</td>
<td>1.0861</td>
<td>m/s</td>
</tr>
<tr>
<td>2007-05-01 01:30</td>
<td>0.98261</td>
<td>m/s</td>
</tr>
<tr>
<td>2007-05-01 02:00</td>
<td>0.95999</td>
<td>m/s</td>
</tr>
<tr>
<td>2007-05-01 02:30</td>
<td>1.1562</td>
<td>m/s</td>
</tr>
<tr>
<td>2007-05-01 03:00</td>
<td>1.0709</td>
<td>m/s</td>
</tr>
<tr>
<td>2007-05-01 03:30</td>
<td>0.64072</td>
<td>m/s</td>
</tr>
</tbody>
</table>
...
Time Series Toolbox Availability

- Developed by AIT within the SANY project
- Available under dual license: open source (GPL) and commercial license
- Next version currently being released at: http://sourceforge.net/projects/time seri estool/
- For more info contact: thomas.bleier@ait.ac.at
Future developments

- API cleanup / refactoring
- More dataconnectors
- More applications

- <insert your requirements here>
SANY – Sensors Anywhere

SANY is an Integrated Project (contract number 0033564) co-funded by the Information Society and Media DG of the European Commission within the RTD activities of the Thematic Priority Information Society Technologies”
SANY Consortium

Project acronym	SANY
Project reference | IST-2006-033564
Project type | Integrated Project
Start date | 01/09/2006
Duration | 36 months
Budget | 11,2 M€
EC contribution | 7,0 M€
Thank you!

Questions?