
M a k i n g M a p s P r e t t y

T h e a r t o f S L D a n d t r i c k s f o r g r e a t l o o k i n g m a p s

N o v 2 , 2 0 0 9

Incubating Project

page intentionally left blank

Making Maps Pretty 2/65

Table of Contents

0 About the Authors...4

1 Introducing Cartography..5

1.1Setting Goals...6

1.2Clarity...9

1.3Misrepresentation...19

2 Map Elements..21

2.1Polygon..21

2.2Point...22

2.3Line / Polygon Edge..23

2.4Raster...23

2.5Text..25

2.6Colours...27

3 Using Styles..30

3.1Introduction to SLD Concepts..31

3.2Rules – What Gets Styled...33

3.3Filters...34

3.4Symbolizers...37

3.5SLD Software...43

4 Hands On...47

4.1OpenLayers..47

4.2uDig..47

4.3GeoServer..49

4.4GeoExt Styler...50

5 Advanced styling..51

5.1Thematic maps with a twist...51

5.2Stacking multiple symbolizers...52

5.3Working with scale dependencies...55

5.4Advanced labeling..58

5.5Thematic mapping with hatch density...62

6 Performance Considerations...64

6.1Draw Less..64

6.2Swap between Layers for the Same Information...................................65

6.3Avoid Expensive Styling Options...65

6.4Are you Tile Caching?...66

Making Maps Pretty 3/65

0 About the Authors

Jim Groffen is a Senior Software Engineer at LISAsoft. Working in IT since

1998, Jim has been with LISAsoft since 2005 working on various Spatial

projects. Jim participated in OGC projects such as CGDI-IP and OWS-6. As

part of OWS-6 Jim will be contributing updated WMTS support to the

TileCache open source project. Other relevant areas of interest include

spatial catalogues and registries, OpenLS and all things Python.

Andrea Aime is Geospatial Solutions Engineer at OpenGeo, a Open source

enthusiast and a long time Java developer. Personal interest range from

high performance software development, huge data volume management,

software testing and correctness, spatial data analysis algorithms. Andrea

Aime’s Specialties: Java development, Hibernate, Spring, GeoTools,

GeoServer, J2EE in general, GIS theory and practice knowledge.

The authors would also like to acknowledge Jody Garnett who contributed

various information, diagrams and review feedback. Paul Ramsey and

Adrian Custer also provided useful information.

Except where otherwise noted, this document is licensed under a

Creative Commons Attribution-Share Alike 2.5 Australia License.

Making Maps Pretty 4/65

1 Introducing Cartography

When we talk about the style of maps we mean how maps are visually

portrayed. What represents a road or a lake. In map making this is called

Cartography. Cartography has long been considered a junction of science

and aesthetics, the challenge is to make a map accurate, useful for a

specific purpose and visually appealing.

Assuming the technical challenge of making a map correct, lets consider

the other two goals. Both are tied to map styling. Consider the following

map:

An isometric city scape looks great but it useful for vehicle navigation?

This map may work as a navigational aid but hopefully we are all in

agreement that it's not the most aesthetically appealing map.

Making Maps Pretty 5/65

1.1 Setting Goals

Before starting work on styling maps lets first set some goals. What are

these maps going to be used for? If we have a clear idea of what we are

trying to get from out maps we can more easily make decisions between

styling options. Lets break these goals down into a few questions:

1.1.1Who is the target audience?

• Who will be using these maps?

• What is their knowledge / skill level in relation to these maps and

cartography in general?

An example of the kinds of decisions made easier by having a clear

understanding of your target audience includes which set of symbol to use.

Below is a comparison of a MIL2525B symbol and a common internet

convention.

In this scenario both symbol sets are relevant, it is the target audience

that determines which is appropriate.

Making Maps Pretty 6/65

MIL2525B has

ten kinds of

information to

communicate

in a single

symbol!

9 _

T_10_2
Surface and Hostile
Planned
-=Reduced
North Direction
East Direction
Velocity = Red
Task Force – No
Quantity – 9
Nuclear - Yes

Happy

1.1.2What is the target medium?

Are the maps going to be viewed electronically or printed on big glossy

sheets with any number of colours available? Target medium questions

include:

• What is the device used? Desktop computers? Laptops? PDA's?

Mobiles?

• What is the viewing area available to the map? Number of pixels

wide and high for electronic display or some measurements for print

mediums.

• How many colours will be available? Are the maps to be presented in

black and white? This is relevant to printed maps and devices with

limited display capabilities, and is also a performance consideration.

• If displaying on a portable device, what kind of bandwidth is

available? Can the bandwidth handle large images with many

colours?

• Will the printed maps be folded? In what way?

1.1.3What is the purpose of the maps?

• What will the target audience be using the maps for?

• What do we want the maps to convey to the target audience?

• Are they “You are here” maps? Are they “how to get here” maps?

• Are the maps meant to point out similarities between things? Are

they meant to highlight the differences between things?

Maps for Navigation

Pretty much everyone has experienced using a map for navigation. There

are a variety of navigation map types. A directory showing what is near

the current location. Various modes of transportation have different needs

from the map. Consider a road map for driving, sailing or walking.

Making Maps Pretty 7/65

Spatial Distribution

When data has a spatial element it is often useful to be able to see the

distribution of spatial data. For example say we are the Bureau of

Meteorology and we have a data set of rainfall reading stations including

their location. If we look at these stations on a map we could ask questions

like; Are there are gaps in our rainfall reading locations; are there stations

too close together? Mapping the spatial distribution lets us look for

clusters and gaps.

Below is an example of a spatial distribution map that looks at the density

of youth crime on the Island of Montréal, 2001.

Following the legend we can see that large schools are included on the

map. This is an example of comparing two distributions; youth crime and

large schools. Showing both distributions allows us to find contrasts or

correlations between the data sets. Is youth crime more likely near large

schools? Is there a correlation between youth crime and the public

transport system? These kinds of questions can be considered when

looking at this map.

Making Maps Pretty 8/65

1.2 Clarity

Knowing what the maps are for, who is going to use them and how they

will be used means we can focus our efforts on ensuring all style decisions

made target these goals. Maps can convey so many things, if we don't

focus our styling efforts on our goals our maps will loose their clarity of

purpose.

The goal of map styling should be: make your map as clear and easy to

use for the purpose it has been created for.

Lets look at some choices that may come up during our efforts.

1.2.1Information Density

Out of the following two maps, Which map is better?

From http://www.mauifractionals.com/images/walking_map_large.jpg

Making Maps Pretty 9/65

From http://www.grizzlycreekranch.org/gfx/gcr_driving_map.gif

First of all we haven't set any goals yet so our decision at this point would

be purely aesthetic. Lets look at these maps with particular goals in mind:

• Which map lets me find my way from A to B easier?

• Which map gives a better indication of what is nearby?

• If I'm navigating using this map, is one of them more useful if I'm in

a car? What about if I'm walking?

Information density affects the clarity of the map by obscuring information

the user needs with information the user doesn't need.

The directions map has the minimum amount of information needed to get

to Grizzly Creek Ranch from various places. It is clear and simple to use.

When driving you want to spend as little time as possible interpreting the

map. The walking map on the other hand has a broader purpose so more

information is relevant to the user.

Making Maps Pretty 10/65

1.2.2Labels

This time we'll look at two maps and try to come up with situations where

one map is superior to the other.

These maps both have labels with halos and without halos. A common

reason to add halos to labels is to add definition – ensuring whats under

the map can't interact with the label text. What are some reasons to use

halos? What are reasons to avoid them?

Making Maps Pretty 11/65

1.2.3Line Styling

This time we are looking at adding edging to some lines on the map:

This map uses colors to provide differentiation between the road types.

Adjusting the line thickness emphasizes the differences between the road

types.

Making Maps Pretty 12/65

In this example we have added line casing to the major road types. In this

example we make the interior road colour pale with a dark edge.

This map uses line casing on the major roads as well, but in this case we

have used a 50% transparent edge to soften the edges of the major roads.

Compare this image to the thickness image to evaluate this effect.

Making Maps Pretty 13/65

1.2.4Colour Scheme

The colour scheme of the map is not only important aesthetically but is

also a tool for conveying the nature of the data. To illustrate, we'll look at

some example spatial distributions.

Sequential

This first image represents country population levels. The gradient of

colour from light to dark intuitively represents smaller to higher population

values. A sequential colour scheme suits this purpose well.

Making Maps Pretty 14/65

Diverging

Next is a map that represents what percentage of voters voted Democrat

(blue) vs Republican (red) in the 2004 election. The image was taken from

http://www.princeton.edu/~rvdb/JAVA/election2004/purple_america_2004_s

mall.gif

As you can see there is lots of purple in this map, indicating regions where

the vote was more evenly split. Divergent colour schemes normally have

two dark, contrasting colours representing the divergent extremes with a

light colour as the balance point to emphasize balanced regions.

Making Maps Pretty 15/65

http://www.princeton.edu/~rvdb/JAVA/election2004/purple_america_2004_small.gif
http://www.princeton.edu/~rvdb/JAVA/election2004/purple_america_2004_small.gif

Qualitative

The map of Japan to the right is

an example of a qualitative

colour schema. This map

differentiates the regions of

japan by colour. The Kantō
region is in green and the

Ky sh region is in gray. As theū ū

data represented is categorical,

the different colours in the

schema have no relation to each

other. Regions are not official

administrative boundaries but a

traditional grouping of the 47

official prefectures of Japan. These regions are used instead of the

prefectures in many contexts such as weather reporting. This map shows

what prefectures are in what region.

Looking at the alphabetical list of prefectures on Wikipedia

(http://en.wikipedia.org/wiki/Prefectures_of_Japan) lists each prefecture

with details such as population, area, density and so on. Various uses of

this data set would benefit from one of the colour schemas described

above based on what you are trying to communicate.

Making Maps Pretty 16/65

http://en.wikipedia.org/wiki/Prefectures_of_Japan

1.2.5Raster and Imagery

Satellite imagery can convey a great deal of useful information in a map.

Other imagery used in raster maps include hillshade and topography.

This is a satellite image of the 2009 dust

storm that swept across the eastern states

of Australia in September. The dust storm is

plainly visible from the satellite. If you look

very closely you will see me (Jim Groffen)

sitting in Coolangatta airport waiting for a

flight back to Adelaide that never came.

To the right is an example of hillshading.

Hillshading generates the optical illusion of

depth by applying relief shading to

elevation information. It assumes the angle

of a light source, darkening elevations that

incline towards the light source and

lightening elevations that incline away from the light.

Topography is the representation of

the surface shape and features of an

area. Hiillshading above is one way

to convey topographic information.

Contour lines depicted left is a

hillshaded map with contour lines.

Making Maps Pretty 17/65

1.3 Misrepresentation

There are known issues

when conveying

information in a map

that you should be aware

of when considering

style.

1.3.1The Atomic
Fallacy

The 'Atomic' fallacy

arises when you treat a

geographic element, say

a country, as a single,

homogeneous whole

element (an atom)

ignoring the internal

spatial variations within it. For example, if you consider France as a single

homogeneous element you will miss the fact that in the South of France

people drink much more wine than beer, whereas in the north-east of

France, the relation is opposite.

1.3.2The Ecological Fallacy

This fallacy is caused by an error in the interpretation of statistical data in

an ecological study. This would arise if you considered all cities in France

to drink the same average per-capita amount of beer and wine.

1.3.3The Modifiable Areal Unit Problem

Tied closely to the ecological fallacy, a common cause for this error is that

methods of collection of the statistical data may be driven by

administrative boundaries or convenience and not reflect boundaries that

are appropriate to the data collected.

Consider that drinking habits of information aggregated by voting district

could be drastically different from information aggregated by postcode

even if the two grouping methods have similar granularity.

Making Maps Pretty 18/65

For an example lets look at our map of the 2004 presidential election.

This map looks like a competition between Red and Purple, not Red and

Blue. This is because there are many large counties with low populations

that vote republican. One method for solving this problem is using a

cartogram. Below is an example of the same election but the land areas

have been adjusted to represent population.

For more information, see:

• http://en.wikipedia.org/wiki/Spatial_analysis#Common_errors_in_spat

ial_analysis

• http://en.wikipedia.org/wiki/Ecological_fallacy .

Making Maps Pretty 19/65

http://en.wikipedia.org/wiki/Ecological_fallacy
http://en.wikipedia.org/wiki/Spatial_analysis#Common_errors_in_spatial_analysis
http://en.wikipedia.org/wiki/Spatial_analysis#Common_errors_in_spatial_analysis

2 Map Elements

Maps are visual representation of data that has a spatial component. The

variety of data formats is staggering, especially in the spatial domain.

Thankfully there is a standard terminology used when discussing spatial

data that is used. This section discusses the common spatial types; what

they are used for and how they can be styled.

2.1 Polygon

Polygons represent an area. Polygons are usually

described by a list of straight line segments that

chain together, bounding an area. Some

polygons are conceptual only – such as

administrative subdivisions. Other polygons

represent an actual spatial feature such as the coastline of Tasmania.

Polygons are really two different stylable components in one – the line and

fill. The fill of a polygon can be a solid colour, semi-transparent or

something more complicated like a repeating pattern or gradient.

The border or edge of a polygon can be styled just as a line geometry can.

The section on lines below pertains to a polygon edge.

Assigning colours to polygons based on measurements is known as

theming or thematic mapping. How you theme is based on what attribute

you are trying to communicate. An example would be colouring countries

based on population density.

Polygons are also used to represent spatial features that make up parts of

the map. In this case colours are defined according to what is represented

(water = blue; land = green; city = gray).

Making Maps Pretty 20/65

2.2 Point

I would forgive you if you didn't realize the

image to the right represents Hobart, the capital

of Tasmania. Without any context a point on a

map is not very useful.

Points represent entities on a map that have a

position but no dimensions. This may be because

they are too small to have any relevant dimensions on the map.

Points on a map are represented by symbols or graphics. A common issue

when selecting symbols is balancing the size and detail of the symbol.

Larger symbols can be more detailed and convey a more complex topic,

but they take up more map real estate. Smaller symbols must be simple to

retain clarity.

Symbols should be easily discernible from other map elements. As a

symbol is a graphic, a common technique is to incorporate a halo into the

graphic.

Instead of different graphical symbols, a color code can be used to

categorize the points. A combination of both graphical shape and colour is

often employed with good results.

Perhaps various sizes of the same image is more appropriate for the

concept you are trying to convey. For example, cities, towns and villages

could all use the same symbol at different sizes. This can more intuitively

convey the concept in some cases. Point size is used in thematic mapping

as well. For instance a map of fixed speed camera locations could indicate

how many speeders are caught at that camera by the size of the point.

The symbols to the left highlight another issue to do with

using a graphic to represent a spatial location. A point at most map scales

is just a single dot on a map. The graphic representing the point shows

where the point is but because the graphic is going to be larger than one

little dot on the map it needs to be clear from the graphic where that dot

is. In the example the first one would put that dot right in the middle of

the graphic where the arrow is at the bottom left point. This is known as

the hot-spot of the graphic.

Making Maps Pretty 21/65

2.3 Line / Polygon Edge

Lines can represent actual landscape features.

Examples are roads, walking tracks and rivers.

Lines can also represent a conceptual feature

but such as isolines or to represent traffic

congestion on roads.

Line styling needs to consider the need to differentiate the line from the

background of the map.

Roads are a good example of what can be done with line styling. The lines

can be different widths or colours to represent road category – from thin

pale minor roads to think, dark major roads.

Walking paths and tracks are often represented as a dashed line.

The image to the left is an example of a repeating graphic

included in the drawing of a line. These graphics can turn

with the line, rotating to follow the contour of the line.

An example of a more complicated concept when line

drawing is train tracks. One way to achieve this is to use a

single bar as a repeating graphic with a double line style.

2.4 Raster

Points, lines and polygons are considered vector data. In the world of maps

there is another category of spatial data – raster. In computer graphics,

raster is a term for a data structure used to represent a grid of pixels or

points of colour. In GIS, raster is also a grid of points, and while the points

can be colour values (such as satellite imagery) the point values can also

be some other useful value such as elevation, temperatures or rainfall.

Visualizing raster data onto a map can seem pretty straightforward – you

would expect that satellite imagery doesn't involve many styling options

on it's own. Satellite imagery may not be of RGB imagery that is in the

visible spectrum. Sensors used to collect the data may return 7 or more

bands that need to be selected, and sometimes combined with a simple

expression, to provide images that can be viewed. Sometimes a single

Making Maps Pretty 22/65

band will be selected and depicted with a color map as if it was an

elevation model.

Dealing with satellite imagery in combination with overlay vector data

involves ensuring contrast between the satellite imagery and the “drawn”

geometries.

The image to the right is a visualization of

raster data. The point values in the raster

grid have been grouped into colours. What

could the point values represent? In this

case the raster is of a digital elevation

model, green being low elevations and

orange to black being higher elevations.

I've played with the styling used for this image to show what would happen

if the oceans rose by 1200 meters for the above terrain. As you can see

I've styled all terrain below the raised water level to be solid blue. I've

included a second alternative on the right that shows the gradient of

terrain below the new sea level.

The image below shows rainfall levels for the world. Blue is high rainfall,

green to white being average to low rainfall and red being low to no

rainfall. From this image I can tell that the equator gets a high

concentration of rainfall while Antarctica gets almost no rainfall.

Making Maps Pretty 23/65

The image to the right is an example of relief shading or

hill shading. This image shows the elevation of the

western coast of South America. The mountain range

that separates Chile from Argentina is especially

prominent, as it is a point of high elevation. Relief

shading attempts to infer depth as a third dimension by

having high elevations be dark on one side and light on

the other to simulate a light source over a terrain.

When rendering raster information contrast

enhancement is often used. Contrast enhancement will

make the light colours lighter and the dark colours

darker so that variations in the raster data is more

pronounced visually.

Further Reading:

http://en.wikipedia.org/wiki/False-color

http://docs.codehaus.org/display/GEOTOOLS/Raster+Symbolizer+support

2.5 Text

Text often appears on maps as feature labels,

values or used as graphical symbols. Lets discuss

some of the considerations of text in maps.

The map to the right is a small sample of the

tiger-ny layer provided as an example with

GeoServer. This layer shows road labels for some

of the streets in Manhattan, New York.

If we change the fill colour of the text to

something less contrasting with the background

we can see that the readability of the text is

reduced.

Making Maps Pretty 24/65

http://docs.codehaus.org/display/GEOTOOLS/Raster+Symbolizer+support
http://en.wikipedia.org/wiki/False-color

This time we have turned off label halos. When

the fill colour of the text has a good contrast with

the general map background. In the example here

it is clear that a halo is required.

In this example we have switched to Arial font.

Using fonts with no serifs (the dangly bits at the

ends of the strokes of letters) often improve

clarity of the map with minimal impact on

aesthetics. A Sans-serif font means “no serifs”.

Turning off bold reduces the footprint of the font

but clarity of the map is impacted.

This example from Open Street Map shows labels

that follow the curve of the street. Labels that

follow the curve of the line they are on is

aesthetically pleasing but computationally

expensive.

There is also a polygon representing a church

building in this image. The cross symbol is

incorporated to convey the church concept, and a label has also been

applied to identify the building. This highlights the need to consider label

positioning which In this case is underneath the cross symbol that is

centered on the polygon.

Making Maps Pretty 25/65

2.6 Colours

Section 1.2.4 discussed colour schemes used to represent a data series on

our map. There are other considerations for selecting colours.

Use of colour helps make a map as easy to interpret as possible by

presenting the data in a colour scheme that matches the concept.

Temperatures are blue for cold and red for hot. Mountains are brown,

forests are green and swamps are an icky black/green colour with little

pictures of reeds. Fire is red, flood is blue and money is green. Picking a

colour that deviates from what culturally represents the colour requires

people to think a little bit more than they would otherwise have to.

The choice between colour schemes for spatial distribution maps is usually

an intuitive decision. Navigation maps also make use of many different

colour schemes with less standards:

• Roads – styled and colour coded based on road type. As roads go

from small to large in classification, a sequential colour scheme is

often used for this.

• Map Feature Polygons – including parks, water features, airports,

hospitals and so on. Green for parks, blue for water features and so

on. This is a quantitative colour scheme that matches the concepts.

• Points of Interest – parking stations, petrol stations, restaurants,

museums and monuments. A combination of symbol and colour can

improve differentiation of the types of points of interest, again

favoring a quantitative colour scheme.

It's best to pick colours that will render natively on your target medium.

Devices may have a limited number of colours. How a colour scheme will

look can vary between display devices. The device used to develop the

colour scheme can often have a difficult time representing the colours as

they will appear on the final medium. This is especially true for print.

Limiting the number of colours on a map improves both the file size and

encoding time for image formats that benefit from a limited palette.

Making Maps Pretty 26/65

2.6.1Exercise

Assuming you are on a laptop with internet access, lets have a look at the

colour brewer application. http://colorbrewer2.org/ - a useful tool for

selecting colour schemes for maps.

This web application explains itself very well throughout the “how to use”

and “learn more >” links. Through these links, the functionality of the

application as well as the colour scheme decision making process is

explained. Read these links as we progress through the application.

As we step through the web application, keep a particular data set in mind

and apply settings based on that data set. First click and read the “how to

use” link above the map area.

set a number of classes on the right. Not

all combinations of settings support

many classes.

Set a nature – sequential, diverging or

quantitative.

Making Maps Pretty 27/65

http://colorbrewer2.org/

Select a colour scheme that you like.

The colour schemes presented are

based on what nature you selected.

You can also restrict the presented

colour schemes based on; colorblind

safe, print friendly, photocopy-able.

Doing this is likely to reduce the number

of available colour schemes to zero

quickly though.

Next, picking a colour system. The most

common computer readable colour

codes are supported – RGB, CMYK and

HEX – HEX is useful for SLD as well as

HTML and CSS but RGB and CMYK are

also often used.

The map context and background

controls let you adjust the sample map

so you can check how you colour

scheme is going to work with other map

elements.

The scorecard shows how the current colour scheme scores

against various usability considerations. The icons from top to

bottom are:

• Photocopy-able

• Laptop (LCD) friendly

• Colourblind safe

• Colour printing friendly

Finally we can export the colour scheme. For manually

crafting your SLD you will want to cut and paste HEX

values.

Making Maps Pretty 28/65

3 Using Styles

So how should we handle map styling? First of all we don't want the styling

controls for the map embedded in the map data. This would be very

difficult to maintain. We would also like to be able to take the styles we

have developed and apply them to different data. Lets take a look at a few

analogous solutions to this problem.

HTML: To avoid having style information embedded throughout the HTML

document itself CSS was developed. CSS stands for Cascading Style Sheet.

A CSS file separates the styling information from the HTML file and can be

applied to many different HTML files allowing a website of many pages to

have on cohesive style applied to it.

MVC: MVC is a design pattern for software development. It stands for

Model View Controller. The idea is to separate these three roles of an

application. The Model is the information. The View is a representation of a

model. Controllers perform actions on models and decide on a view to use

to display models. This is another example of separation of the data from

the styling or in this case the view.

In the world of geospatial standards there is a standardized method of

presenting map styling information separate to the map data. This is an

OGC standard called SLD or Styled Layer Descriptor.

SLD lets us define a style separate to the data. Because support for SLD is

available in most spatial software today we can take our styles and reuse

them in other applications.

Making Maps Pretty 29/65

3.1 Introduction to SLD Concepts

The diagram below shows an example implementation of SLD rendering (in

this case GeoTools). From left to right we have:

1. The content to style.

2. Linking styles to features with FeatureTypeStyle elements. The

example below has two feature types that are going to be styled,

roads and cities.

3. Rule elements control what features of a feature type get styled and

when it is appropriate to apply that style.

4. Symbolizers contain the actual style information.

5. Composition is the task of layering the rendered features onto one

map.

FeatureTypeStyle, Rule and Symbolizers are parts of an SLD document.

Making Maps Pretty 30/65

Features

Raster

FeatureTypeStyle

type=Road

constraint

FeatureTypeStyle

type=City

constraint

Content Style

surface=hiway

Rule

max scale: 50k

Rule

Pop > 500000
max scale: 50k

Rule

Other

Rule

Portrayal (ie Drawing) Composition

capital=true
Rule

line symbolizer

line symbolizer

point symbolizer

text symbolizer
NAME

point symbolizer

text symbolizer
NAME

point symbolizer

Queanbeyan

Canberra

3.1.1NamedLayer, UserLayer, NamedStyle and UserStyle

An SLD is designed to be an almost full definition of a map.

NamedLayer is the name of a layer in the server. NamedStyle is the name

of a styler registered in the server. UserLayer is an inline definition of the

data in a layer using GML. UserStyle is an inline definition of a style using

the SLD syntax itself.

When we just concentrate on defining a style, all we care about is defining

UserStyle elements

The other elements still have a meaning that is useful. For instance they

are used when making dynamic WMS calls in which the definition of the

map is provided via a full fledged SLD document.

For the purpose of defining SLD that contain style information only we will

follow a basic structure of an SLD document, here is a template to use:

<StyledLayerDescriptor … >
<NamedLayer>

<Name>name for style layer</Name>
<UserStyle>

<Title>Title for style layer</Title>
<FeatureTypeStyle>

…
</FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

NamedLayer and UserStyle can have Name, Title and Abstract elements.

3.1.2FeatureTypeStyle

Every type of feature to be styled needs to be mentioned in the SLD. This

is done with the FeatureTypeStyle element. This element contains one or

more Rules that are processed to render the features.

How this rendering process occurs is not completely defined in the SLD

specification, so there can be variation between implementations. What

GeoServer and uDig assume is that each Rule is processed sequentially for

each feature, whilst each FeatureTypeStyle are applied to all features

before moving to the next. Some pseudo code that explains this:

for fts in FeatureTypeStyle
for feature in data

for rule in fts.rules
apply rule to feature

Making Maps Pretty 31/65

This separation allows the user to control inner layering and keep on using

the more efficient approach for rules (since one does not need to rescan

all data for each rule).

FeatureTypeStyle can also have the metadata elements Name, Title and

Abstract. Other elements include FeatureTypeName: The name of the

feature type to style. It is safer to omit this, allowing the software to make

assumptions about what feature types the style applies to based on what

symbolizers are specified.

3.2 Rules – What Gets Styled

Rules group rendering instructions (symbolizers) by a set of conditions

that the features must meet for the rule to apply. Rules also let you

specify some metadata as well- such as a machine friendly name, a title

and an abstract that describes the rule.

Rules can also specify a LegendGraphic to use to specify a symbol to use

to represent the rule in a map legend.

A rule is limited to describe only one feature type such as points. You can

have more than one rule per FeatureTypeStyle though.

You can limit rules to apply to data only at certain scales using

MinScaleDenominator and MaxScaleDenominator. Setting both limits the

rule to apply to a specific range of scales, but you can specify only one of

these if you want.

Scale in this context set what spatial area is represented by one pixel.

<MinScaleDenominator>400000</MinScaleDenominator>

In the example above we have set the minimum scale denominator to 1

pixel = 400 kilometers. Larger scales (that is, scales with smaller

denominators) will not apply the rule.

<MaxScaleDenominator>1e6</MaxScaleDenominator>

This time we have set the maximum scale denominator to 1 pixel = 1

million metres, or 1000 kilometers. This is a smaller scale (1 / 1,000,000 is

smaller than 1 / 400,000). Notice that larger scale denominators make for

smaller scale maps.

OGC use a standardized rendering pixel size, defined to be 0.28mm ×

0.28mm (millimeters). This is done because the true pixel size of the final

Making Maps Pretty 32/65

rendering device is often unknown. Knowing the physical pixel size of the

rendering device allows for a true scale to be calculated.

Another way to limit what data the rule applies to is by using a filter.

3.3 Filters

Filters allow you to control styling of features based on the geometry of

the feature and feature attributes.

3.3.1Spatial Filter

A spatial filter allows you to limit the features styled to ones that meet

certain spatial criteria. The example below shows a filter that will only

select features that intersect a certain point.

<Intersects>
<PropertyName>GEOMETRY</PropertyName>
<Literal>

<gml:Point>
<gml:coordinates>1 1</gml:coordinates>

</gml:Point>
</Literal>

</Intersects>

The Filter Encoding Specification lists many spatial filters including: BBOX,

Beyond, Contains, Crosses, Disjoint, Distance, Equals, Intersects, Overlaps,

Touches, Within and DWithin. Not all of these filters are supported by all

software products.

3.3.2Attribute Filter

Most spatial data is a more traditional table with rows of information where

one column of this information is a geospatial type. This leaves all the

other rows that we can use for filtering. Given the example Roads table:

name Text

type Text

oneway Boolean – 0 or 1

maxspeed Integer

Making Maps Pretty 33/65

We could apply the following complex filter that will select all roads that

are not oneway, have a maximum speed limit of more than 60km/h and

does interact (not disjoint) with a specified envelope:

<ogc:Filter>
<ogc:PropertyIsGreaterThanOrEqualTo>

<ogc:PropertyName>maxspeed<ogc:PropertyName>
<ogc:Literal>80</ogc:Literal>

</ogc:PropertyIsGreaterThanOrEqualTo>
</ogc:Filter>

Attribute filters defined in the Filter Encoding Specification include:

• PropertyIsEqualTo

• PropertyIsNotEqualTo

• PropertyIsLessThan

• PropertyIsLessThanOrEqualTo

• PropertyIsGreatherThan

• PropertyIsGreatherThanOrEqualTo

• PropertyIsBetween.

• PropertyIsLike

• PropertyIsNull

Use of attribute filters allows for some great styling capabilities, but has

the drawback of tying the style definition to the data definition – as it is

unlikely that two data sets will have matching attribute definitions or

comparable values.

Again, not all property filters are supported by all software packages.

There is generally less support for PropertyIsLike and PropertyIsNull.

3.3.3Logical Operators

Filters can be grouped under a logical operator. These are:

• And: All grouped filters must be true

• Or: Any one of the grouped filters must be true

Making Maps Pretty 34/65

• Not: All grouped filters must be false

You can't specify more than one filter without a logical operator to give

context to how the two filters logically work together.

To continue on from our previous example. We could apply the following

complex filter that will select all roads that are not oneway, have a

maximum speed limit of more than 60km/h and interacts with (is not

disjoint from) a specified envelope:

<ogc:Filter>
<ogc:And>

<ogc:PropertyIsEqualTo>
<ogc:PropertyName>oneway</ogc:PropertyName>
<ogc:Literal>0</ogc:Literal>

</ogc:PropertyIsEqualTo>
<ogc:PropertyIsGreaterThan>

<ogc:PropertyName>maxspeed</ogc:PropertyName>
<ogc:Literal>60</ogc:Literal>

</ogc:PropertyIsGreaterThan>
<ogc:Not>

<ogc:Disjoint>
<ogc:PropertyName>Geometry</ogc:PropertyName>
<gml:Envelope srsName="urn:x-ogc:def:crs:EPSG:6.3:4326">

<gml:lowerCorner>138.0 -35.5</gml:lowerCorner>
<gml:upperCorner>139.0 -34.5</gml:upperCorner>

</gml:Envelope>
</ogc:Disjoint>

</ogc:Not>
</ogc:And>

</ogc:Filter>

3.3.4Else Filter

A rule that applies an else filter will select all features that previous rules

for this FeatureTypeStyle did not select.

<ogc:ElseFilter />

Using an ElseFilter anywhere except in the last rule of a FeatureTypeStyle

with multiple rules is going to have unexpected behavior, or cause an

error.

3.3.5Other Capabilities of Filtering

There are lots of other capabilities defined in the Filter Encoding

specification – with limited levels of implementation in various spatial

software packages. Have a look at

http://www.opengeospatial.org/standards/filter for the official specification

and check the documentation of your software package for support level.

GeoServer support of filter encoding is documented at:

Making Maps Pretty 35/65

http://www.opengeospatial.org/standards/filter

http://docs.geoserver.org/1.7.x/en/user/styling/sld-reference/filters.html

or for version 2.0:

http://docs.geoserver.org/trunk/en/user/styling/sld-reference/filters.html

3.4 Symbolizers

Each SLD rule can specify multiple Symbolizers. Symbolizers state how to

render the feature. There are different symbolizers for different feature

types.

Only a brief summary is provided here. For a complete breakdown of the

Symbolizers I would recommend our quick reference card or the GeoServer

documentation:

http://docs.geoserver.org/1.7.x/en/user/styling/sld-reference/index.html

http://docs.geoserver.org/trunk/en/user/styling/sld-reference/index.html

Making Maps Pretty 36/65

http://docs.geoserver.org/trunk/en/user/styling/sld-reference/index.html
http://docs.geoserver.org/1.7.x/en/user/styling/sld-reference/index.html
http://docs.geoserver.org/trunk/en/user/styling/sld-reference/filters.html
http://docs.geoserver.org/1.7.x/en/user/styling/sld-reference/filters.html

3.4.1Point Symbolizer

Below is a simple point symbolizer with some example output.

<PointSymbolizer>
 <Graphic>
 <Mark>
 <WellKnownName>square</WellKnownName>
 <Fill>
 <CssParameter name="fill">
 #FF0000
 </CssParameter>
 </Fill>
 </Mark>
 <Size>6</Size>
 </Graphic>
</PointSymbolizer>

Point symbolizers always have a Graphic element. Graphic elements

describe how to graphically represent the point.

In the example above the Mark element lets you specify a common shape

to use as the symbolizer. With mark we can also control fill and stroke.

Instead of Mark we can use ExternalGraphic. This lets you point to an

image as a URL resource or a file resource with a path relative to the SLD.

<PointSymbolizer>
 <Graphic>
 <ExternalGraphic>
 <!-- avoid hot linking, this is just a sample -->
 <OnlineResource xlink:type="simple"
 xlink:href="http://www.google.com/mapfiles/marker.png" />
 <Format>image/png</Format>
 </ExternalGraphic>
 </Graphic>
</PointSymbolizer>

Other attributes you can specify for a graphic is Opacity, Size and

Rotation.

Making Maps Pretty 37/65

3.4.2Line Symbolizer

Line symbolizer is little more than a Stroke element. Stroke elements

support repeating graphics as outlined in 2.3 with GraphicFill and

GraphicStroke elements. These elements use a Graphic element as per the

Point symbolizer.

<LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#0000FF</CssParameter>
 <CssParameter name="stroke-width">6</CssParameter>
 <CssParameter name="stroke-linejoin">round</CssParameter>
 <CssParameter name="stroke-linecap">round</CssParameter>
 </Stroke>
</LineSymbolizer>

<LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">
 #000000
 </CssParameter>
 <CssParameter name="stroke-dasharray">
 10 5 1 5
 </CssParameter>
 </Stroke>
</LineSymbolizer>

Making Maps Pretty 38/65

3.4.3Polygon Symbolizer

Styling a polygon is a combination of styling the fill and the polygon edge

as a stroke.

<PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill">
 #AAAAAA
 </CssParameter>
 </Fill>
 <Stroke>
 <CssParameter name="stroke">
 #000000
 </CssParameter>
 <CssParameter name="stroke-width">1</CssParameter>
 </Stroke>
</PolygonSymbolizer>

Polygons can have a GraphicFill element as part of it's Fill element.

<PolygonSymbolizer>
 <Fill>
 <GraphicFill>
 <Graphic>
 <ExternalGraphic>
 <OnlineResource xlink:type="simple"
 xlink:href="grass_fill.png" />
 <Format>image/png</Format>
 </ExternalGraphic>
 </Graphic>
 </GraphicFill>
 </Fill>
 <Stroke />
</PolygonSymbolizer>

Making Maps Pretty 39/65

3.4.4Text Symbolizer

Text symbolizers are applied in the same rule as other symbolizers

because they apply text from an attribute of a feature to a map based on

the location of the feature. The attribute to use for the text is specified

using the Label element. Positioning of the text is controlled by the

LabelPlacement element and an outline to the text can be applied using

the Halo element. Here is an example:

<TextSymbolizer>
 <Label>
 <ogc:PropertyName>NAME</ogc:PropertyName>
 </Label>

 <CssParameter name="font-family">Arial</CssParameter>
 <CssParameter name="font-weight">Bold</CssParameter>
 <CssParameter name="font-size">14</CssParameter>

 <LabelPlacement>
 <PointPlacement>
 <AnchorPoint>
 <AnchorPointX>0.5</AnchorPointX>
 <AnchorPointY>0.5</AnchorPointY>
 </AnchorPoint>
 <Displacement>
 <DisplacementX>0</DisplacementX>
 <DisplacementY>-15</DisplacementY>
 </Displacement>
 </PointPlacement>
 </LabelPlacement>
 <Halo>
 <Radius>
 <ogc:Literal>2</ogc:Literal>
 </Radius>
 <Fill>
 <CssParameter name="fill">#FFFFFF</CssParameter>
 </Fill>
 </Halo>
 <Fill>
 <CssParameter name="fill">#000000</CssParameter>
 </Fill>
</TextSymbolizer>

Anchor points are represented as a ratio of the width and height of the

text. The legend below is a guide to using the AnchorPoint element.

Displacement is in pixels from the spatial element labelled. In the example

we displace on the Y axis by -15 pixels.

Making Maps Pretty 40/65

ABCDEFG
0,0 1,0

1,10,1 0.5,1
0.5,0

3.4.5Raster Symbolizer

There are extensive options when visualizing raster data. Lets start with

an example of a colour map:

<RasterSymbolizer>
 <Opacity>1.0</Opacity>
 <ColorMap>
 <ColorMapEntry color="#AAFFAA" quantity="0" label="values" />
 <ColorMapEntry color="#00FF00" quantity="1000" label="values"/>
 <ColorMapEntry color="#FFFF00" quantity="1200" label="values" />
 <ColorMapEntry color="#FF7F00" quantity="1400" label="values" />
 <ColorMapEntry color="#BF7F3F" quantity="1600" label="values" />
 <ColorMapEntry color="#000000" quantity="2000" label="values" />
 </ColorMap>
</RasterSymbolizer>

The raster symbolizer uses a colour map to scale elevation values to a

series of colours. The colour map will gradient between the colours based

on the colour value.

Another raster element is ChannelSelection. Some raster data sets contain

channel colour information. With ChannelSelection we can control the

mapping of the channels to red, green, blue or gray channels. We can also

use ChannelSelection in combination with ColorMap to recolour an RGB

image using the extended attribute.

The ContrastEnhancement element allows you to adjust relative brightness

of the data in a colour channel using one of three enhancement methods;

Normalize, Histogram and GammaValue.

<RasterSymbolizer>
 <ChannelSelection>
 <GrayChannel>
 <SourceChannelName>1</SourceChannelName>
 <ContrastEnhancement>
 <Histogram/>
 </ContrastEnhancement>
 </GrayChannel>
 </ChannelSelection>
 <ContrastEnhancement>
 <GammaValue>1</GammaValue>
 </ContrastEnhancement>
</RasterSymbolizer>

Making Maps Pretty 41/65

Less supported raster symbolization elements include:

• ShadedRelief to apply hill shading.

• OverlapBehavior to control how multiple raster layers interact in

spatial regions where they overlap on the same map.

• ImageOutline to allow each raster layer in a composite of multiple

raster layers to have an outline highlighting the bounds of the raster

data.

3.4.6Common Symbolizer Elements

Many of the SLD Elements that control rendering are reused for many

symbolizers. Fill, Graphic and Stroke are the best examples of this.

Fill: on a polygon controls rendering of the interior area of a polygon. In a

Mark element it controls the primary colour of the mark. On a text

symbolizer fill controls the colour of the text. It is also used to style a halo.

Graphic: can be applied to a stroke for a repeating graphic in the fill of

the stroke to give the stroke a pattern, or to repeat on top of the stroke.

They can be applied to a polygon as a repeating graphic in the fill area of

a polygon.

Stroke: used for line symbolizers and in polygon symbolizers as the

polygon border. Stroke is also used for the Mark element of a Graphic.

3.5 SLD Software

We will take a look at the SLD support available in various open source GIS

software packages.

3.5.1OpenLayers

OpenLayers is a JavaScript library that makes it easy to put a dynamic map

in any web page. OpenLayers currently supports a limited subset of the

SLD specification. OpenLayers does this by providing support for SLD

format files, allowing OpenLayers to read SLD documents into a JavaScript

object model. This object model can then be used to interact with other

OpenLayers objects.

Making Maps Pretty 42/65

3.5.2GeoServer

GeoServer supports WMS and WFS implementation profiles of SLD.

GeoServer manages a list of styles that can be applied to layers by default

or when a map request is made. GeoServer also supports applying an SLD

to a map as part of the GetMap request.

http://docs.geoserver.org/1.7.x/en/user/styling/index.html

http://docs.geoserver.org/trunk/en/user/styling/index.html

3.5.3GeoServer GeoExt SLD Editor Plugin

GeoExt Styler is a plugin for GeoServer that provides a graphical user

interface for managing the styles of layers in GeoServer. GeoExt uses

OpenLayers and GeoExt

The following link covers installation of the GeoExt Styler plugin:

http://docs.geoserver.org/trunk/en/user/extensions/styler.html

GeoExt builds on OpenLayers using Ext JS to provide desktop GIS style UI

in a browser. For more information on GeoExt:

http://www.geoext.org/

3.5.4MapServer

MapServer is an Open Source OGC standards based spatial web publishing

platform. MapServer supports a configuration file for controlling map and

style configuration called a .map file. MapServer provides extensive tools

for working with .map files, converting SLD to a map file and generating

SLD from a map file, applying a supplied SLD with a getmap request,

serving style information via the map service as SLD.

For a comprehensive list of the support level of SLD in MapServer including

a breakdown of symbolizer support, take a look at:

http://mapserver.org/ogc/sld.html

Also check out the MapServer site:

http://mapserver.org/

Making Maps Pretty 43/65

http://mapserver.org/
http://mapserver.org/ogc/sld.html
http://www.opensource.org/
http://www.geoext.org/
http://extjs.com/
http://openlayers.org/
http://docs.geoserver.org/trunk/en/user/extensions/styler.html
http://docs.geoserver.org/trunk/en/user/styling/index.html
http://docs.geoserver.org/1.7.x/en/user/styling/index.html

3.5.5OpenJump

OpenJump is a Java based desktop GIS application. OpenJump manages

styling of spatial data in it's own way but supports SLD by importing SLD

files. The following link has extensive details on the OpenJump SLD

support: http://www.openjump.org/wiki/show/Import-Export+Layer+Style .

3.5.6uDig

uDig offers import and export of SLD documents as well as SLD editing

capabilities via the Style Editor Dialog and the Style view.

http://udig.refractions.net/confluence/display/EN/Style+Layer+Descriptor

http://udig.refractions.net/confluence/display/EN/Style+Editor+Dialog

From the Style Editor Dialog we can import and export SLD. To get to it,

right click on a layer in the Layers view and select “Change style...”, or

select “Change style...” from the layer menu with a layer selected.

uDig has provided colorbrewer style functionality in the Style Editor

Dialog. To try this out, select “Theme” from the list on the left.

Making Maps Pretty 44/65

http://udig.refractions.net/confluence/display/EN/Style+Editor+Dialog
http://udig.refractions.net/confluence/display/EN/Style+Layer+Descriptor
http://www.openjump.org/wiki/show/Import-Export+Layer+Style

4 Hands On

4.1 OpenLayers

There are two live examples of OpenLayers SLD capabilities.

Example 1: Live SLD Switching

http://openlayers.org/dev/examples/sld.html

In this example an SLD with numerous named user styles are loaded from

this link: http://openlayers.org/dev/examples/tasmania/sld-tasmania.xml .

The test page then allows the user to dynamically switch between the user

styles. If you are familiar with JavaScript, look at the source and see how

the options set the style applied to the layer.

Example 2: WMS POST with SLD Included

http://openlayers.org/dev/examples/WMSPost.html

This example makes use of the ability of a WMS service to be sent an SLD

along with the request. This SLD can then be used by the WMS service to

render the requested layers.

4.2 uDig

Lets use uDig to make a style. This hands-on assumes you are running

from the LiveDVD but if you aren't you should be able to follow along with

your own uDig installation and some of your own test data.

1. Open uDig using the shortcut on the desktop.

2. From the “Layer” menu select “Add...”

3. Select “Files” and press “Next >”.

Making Maps Pretty 45/65

http://openlayers.org/dev/examples/WMSPost.html
http://openlayers.org/dev/examples/tasmania/sld-tasmania.xml
http://openlayers.org/dev/examples/sld.html

4. You should be looking at your user folder. If not select user from the

“Places” list. Then select the “data” folder. Scroll down and select

“udig-data”.

5. Find a file called “usa_counties.shp” and double click it. It may take

a while but the shape file will be loaded as a layer of uDig.

6. Right click on the layer in the layers list on the left and select

“Change Style...”. The Style Editor Dialog will appear.

7. The dialog will show you style options for a polygon symbolizer. We

can have a play with these for a while.

8. Now we will try a theme. Show the Theme dialog by ensuring

“Theme” is selected in the style editor dialog.

9. Change the first option “Attribute” to “HOUSEHOLDS”.

10. Change “Classes” to “6”.

11. Select a Palette. Pick any palette you prefer.

12. Notice the “Break” option. This sets whether to break the

colour bands by equal intervals or to balance the quantity of

features that fall into each band. Notice how the “Values” list

changes when you change this.

13. Lets try what we have set so far. Hit “Apply” and move the

dialog out of the way so we can see what we have done. Try

applying a few different palettes. I found that increasing Opacity to

100% looked better than leaving it at 50%.

14. Given our discussion on types of colour schemes you should

know that we probably want a sequential colour scheme. Set the

Palette box to only show sequential colour schemes.

15. I found that the outline setting was being ignored. Lets have a

look at the XML and see why. On the left select “XML”.

16. It looks like the stroke symbolizer is repeated for each

colourband. We want that rule to apply to all styles. If you are

uncomfortable with XML editing then you may want to skip this step.

Making Maps Pretty 46/65

Add a new rule to the FeatureTypeStyle that has no filter conditions

to apply a stroke to all features. Change this rule to draw a gray

stroke with a hex colour value of #888888. You will then need to

remove all other stroke elements.

17. We can now cut and paste the XML into our own file or hit the

“Export” button. Save this in your user folder as “counties.sld” This

should be the default location.

4.3 GeoServer

Lets try taking both the data and style into GeoServer.

1. Run the “Admin GeoServer” shortcut on the desktop.

2. Click the Config link. You will be asked to log in. Use

“admin/geoserver”.

3. Create the style. Click on “Data” and then “Style”. Then click “New”.

4. Set a style ID of “county_poly” and click “New”.

5. Click the “Browse” button. You will see a dialog appear showing your

user folder. Select the SLD we saved earlier from uDig and click

“Open”. Then click “Upload”. Click “Submit”

6. Next create the layer. Click the “Data” link. Then click “DataStores”.

7. Click “New”. Select “Shapefile” and then type “counties” as the

“Feature Data Set ID”.

8. In the “url:” field type:

“file:/home/user/data/udig-data/usa_counties.shp”

9. Leave all the other options as default / blank and click Submit.

10. The usa_counties FeatureType will automatically be found by

GeoServer. Change the “Style: “ to “county_poly”. This tells

GeoServer to apply the “county_poly” style to this layer by default.

Making Maps Pretty 47/65

11. Find the “Generate” button next to the text “Bounding Box”

and click it. The bounding box coordinates should pop up pretty

quickly.

12. Scroll to the very bottom of the page and click “Submit”.

13. To apply these changes to GeoServer, click the “Apply” button

on the far left and then click the “Save” button.

14. Check that this all worked by clicking on the “Welcome” link

then “Demo”, then “Map Preview”. Find “topp:usa_counties” and

click “OpenLayers”. We can now see the same style being used by

GeoServer.

4.4 GeoExt Styler

If there is time, browse to:

http://localhost:8082/geoserver/www/styler/index.html

Use the Layers selector on the left to select the usa_counties_Type. Have a

play with the GeoExt styler by:

• Interacting with the map.

• Left clicking on features to inspect them.

• Left clicking on items in the legend to look at the style editor dialog.

• Try turning on labels.

• Look at other GeoServer layers to see what other symbolizer options

are supported by GeoExt.

Making Maps Pretty 48/65

http://localhost:8082/geoserver/www/styler/index.html

5 Advanced styling

5.1 Thematic maps with a twist

Making thematic maps is an exercise in classification. Usually the thematic

map is based on numeric value intervals or uses a one to one match

between a string class and colors.

However in some cases the classification one needs to achieve is based on

just too many classes. The CFCC class attribute in the old Tiger shapefiles

can assume tens of values, sometimes the classification required is just

too coarse for the fine grained nature of the attribute.

While pre-processing the data and get a better classification is certainly a

path worth considering, if the dataset is not too big using creative means

of classification can be useful.

Let's assume we want to classify the landmarks polygon file in just three

classes, green areas, water and urban. Some inspection reveals all green

areas are classified between D81 and D89, all water related areas start

with H and the urban areas are those that remain once green and water

areas are removed.

In this case the following classification, based on three simple rules, works

out nicely (poly_landmarks1.sld):

 <FeatureTypeStyle>
 <!-- park and green spaces -->
 <Rule>
 <ogc:Filter>
 <!-- D84, D85, D86, ... -->
 <ogc:PropertyIsLike wildCard="%" singleChar="_" escape="\">
 <ogc:PropertyName>CFCC</ogc:PropertyName>
 <ogc:Literal>D8%</ogc:Literal>
 </ogc:PropertyIsLike>
 </ogc:Filter>
 <PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill">#B4DFB4</CssParameter>
 </Fill>
 <Stroke>
 <CssParameter name="stroke">#88B588</CssParameter>
 </Stroke>
 </PolygonSymbolizer>
 </Rule>

 <!-- water -->
 <Rule>
 <ogc:Filter>

Making Maps Pretty 49/65

 <ogc:PropertyIsLike wildCard="%" singleChar="_" escape="\">
 <ogc:PropertyName>CFCC</ogc:PropertyName>
 <ogc:Literal>H%</ogc:Literal>
 </ogc:PropertyIsLike>
 </ogc:Filter>

 <PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill">#8AA9D1</CssParameter>
 </Fill>
 <Stroke>
 <CssParameter name="stroke">#436C91</CssParameter>
 </Stroke>
 </PolygonSymbolizer>
 </Rule>

 <!-- urban -->
 <Rule>
 <ElseFilter />

 <PolygonSymbolizer>
 <Fill>
 <CssParameter name="fill">#A5A5A5</CssParameter>
 </Fill>
 <Stroke>
 <CssParameter name="stroke">#6E6E6E</CssParameter>
 </Stroke>
 </PolygonSymbolizer>
 </Rule>
 </FeatureTypeStyle>

The first two classes are classified using a like filter, the first catches

whatever starts by “D8”, the second all classes starting by “H”. The third

rule uses an ElseFilter, which will activate any time one of the previous

rules did not capture the polygon to be drawn.

5.2 Stacking multiple symbolizers

Quite a few common styles require the user to stack multiple symbolizers

one on top of the other to get interesting visual effects. A simple example,

demonstrated by the GeoServer poi (points of interest) style is to have a

Making Maps Pretty 50/65

composite symbol, made out of two superimposed marks, a red circle and

a yellow smaller circle (poi1.sld):

<FeatureTypeStyle>
 <Rule>
 <PointSymbolizer>
 <Graphic>
 <Mark>
 <WellKnownName>circle</WellKnownName>
 <Fill>
 <CssParameter name="fill">#FF0000</CssParameter>
 </Fill>
 </Mark>
 <Size>11</Size>
 </Graphic>
 </PointSymbolizer>
 <PointSymbolizer>
 <Graphic>
 <Mark>
 <WellKnownName>circle</WellKnownName>
 <Fill>
 <CssParameter name="fill">#EDE513</CssParameter>
 </Fill>
 </Mark>
 <Size>7</Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 </FeatureTypeStyle>

A similar effect is often desired for road networks, where one wants to

generate highway like symbols by stacking two lines of different widths

and colors one on top of the other. Here is an example based on the

Tasmania roads layer (highway1.sld):

 <FeatureTypeStyle>
 <Rule>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#F5B800</CssParameter>
 <CssParameter name="stroke-width">8</CssParameter>
 <CssParameter name="stroke-linejoin">round</CssParameter>
 <CssParameter name="stroke-linecap">round</CssParameter>
 </Stroke>
 </LineSymbolizer>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#FFFF00</CssParameter>
 <CssParameter name="stroke-width">4</CssParameter>
 <CssParameter name="stroke-linejoin">round</CssParameter>
 <CssParameter name="stroke-linecap">round</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>

As you can see from the sample output there is a problem when lines do

join. This is happening because each line is painted first with the first

symbolizer, and then the second, and then the next line is started.

Making Maps Pretty 51/65

A way to ensure all thick lines are painted before the thin ones is to put

the rules into two separate FeatureTypeStyle blocks, as FeatureTypeStyle

work as inner layers1 (highway2.sld):

 <FeatureTypeStyle>
 <Rule>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#F5B800</CssParameter>
 <CssParameter name="stroke-width">8</CssParameter>
 <CssParameter name="stroke-linejoin">round</CssParameter>
 <CssParameter name="stroke-linecap">round</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>

 </FeatureTypeStyle>
 <FeatureTypeStyle>
 <Rule>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#FFFF00</CssParameter>
 <CssParameter name="stroke-width">4</CssParameter>
 <CssParameter name="stroke-linejoin">round</CssParameter>
 <CssParameter name="stroke-linecap">round</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>

With a similar approach, and using dash arrays, it's possible to produce a

simple railroad symbol (railroad.sld):

<FeatureTypeStyle>
 <Rule>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#000000</CssParameter>

 <CssParameter name="stroke-width">6</CssParameter>
 <CssParameter name="stroke-linejoin">round</CssParameter>
 <CssParameter name="stroke-linecap">round</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 <FeatureTypeStyle>
 <Rule>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#FFFFFF</CssParameter>
 <CssParameter name="stroke-width">3</CssParameter>
 <CssParameter name="stroke-linejoin">round</CssParameter>
 <CssParameter name="stroke-dasharray">7 7</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>

1The SLD specification does not give clear guidance on how to approach multi-

rule or multi symbolizer stacking, different software might implement it in a

different way. So, with some software you could get proper stacking even with

the first sample SLD.

Making Maps Pretty 52/65

5.3 Working with scale dependencies

As discussed in previous sections a crowded map is an unreadable one.

There is also an obvious performance problem, as drawing too much data

takes time. SLD provides ways to enable certain rules only in given scale

ranges, that is useful in various cases:

– showing only a few features when fairly zoomed out

– reserve alternate, better looking, but heavier styling to detailed

maps

– enabling labels only when fairly zoomed in to avoid getting an overly

crowded map

5.3.1 Adding labels in a scale range

Let's have a look at a fist example. Using the same Point Of Interest layer

provided in the previous examples we want to show a label, but only when

fairly zoomed in, when the various points are represented far apart enough

on the map (poi_2.sld):

<FeatureTypeStyle>
 <Rule>
 <PointSymbolizer>
 <Graphic>
 <Mark>
 <WellKnownName>circle</WellKnownName>
 <Fill>
 <CssParameter name="fill">#FF0000</CssParameter>
 </Fill>
 </Mark>
 <Size>11</Size>
 </Graphic>
 </PointSymbolizer>
 <PointSymbolizer>
 <Graphic>
 <Mark>
 <WellKnownName>circle</WellKnownName>
 <Fill>
 <CssParameter name="fill">#EDE513</CssParameter>
 </Fill>
 </Mark>
 <Size>7</Size>
 </Graphic>
 </PointSymbolizer>
 </Rule>
 <Rule>
 <MaxScaleDenominator>32000</MaxScaleDenominator>
 <TextSymbolizer>
 <Label>
 <ogc:PropertyName>NAME</ogc:PropertyName>
 </Label>

 <CssParameter name="font-family">Arial</CssParameter>
 <CssParameter name="font-weight">Bold</CssParameter>
 <CssParameter name="font-size">14</CssParameter>

 <LabelPlacement>
 <PointPlacement>

Making Maps Pretty 53/65

 <AnchorPoint>
 <AnchorPointX>0.5</AnchorPointX>
 <AnchorPointY>0.5</AnchorPointY>
 </AnchorPoint>
 <Displacement>
 <DisplacementX>0</DisplacementX>
 <DisplacementY>-15</DisplacementY>
 </Displacement>
 </PointPlacement>
 </LabelPlacement>
 <Halo>
 <Radius>
 <ogc:Literal>2</ogc:Literal>
 </Radius>
 <Fill>
 <CssParameter name="fill">#FFFFFF</CssParameter>
 </Fill>
 </Halo>
 <Fill>
 <CssParameter name="fill">#000000</CssParameter>
 </Fill>
 </TextSymbolizer>
 </Rule>
 </FeatureTypeStyle>

The style builds on top of poi1.sld, but adds a new Rule that will display

only when the scale denominator is below 32000. The label is also using

various standard TextSymbolizer features:

• it's centered relative to the point (the default would be to show it on

the left of it) using AnchorPoint

• it's displaced vertically so that it does not overlap with the two

circles using Displacement

• uses an Halo to make the label read over a busy background

5.3.2Alternate styling based on the zoom level

As a second example let's see how it's possible to have alternate styling

based on the scale. We want to show a road network with thin line when

Making Maps Pretty 54/65

zoomed out (below 1:32000), and with a cased line, gray outside, white

inside, when zoomed in (above 1:32000). The following SLD does the trick

by mixing scale dependencies and multilayer symbol stacking (road1.sld):

 <FeatureTypeStyle>
 <Rule> <!-- thin line only at lower scales -->
 <MinScaleDenominator>32000</MinScaleDenominator>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#666666</CssParameter>
 <CssParameter name="stroke-width">0.5</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 <Rule> <!-- thick line drawn first-->
 <MaxScaleDenominator>32000</MaxScaleDenominator>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#666666</CssParameter>
 <CssParameter name="stroke-width">7</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>
 <FeatureTypeStyle>
 <FeatureTypeName>Feature</FeatureTypeName>
 <Rule> <!-- thin line drawn second -->
 <MaxScaleDenominator>32000</MaxScaleDenominator>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#FFFFFF</CssParameter>
 <CssParameter name="stroke-width">4</CssParameter>
 </Stroke>
 </LineSymbolizer>
 </Rule>
 </FeatureTypeStyle>

The two images show the same layer at 1:38000 scale (first image) and at

a 1:19000 scale (second image). As you can see the second image is setup

so that it's possible to add also labels inside the road area.

Making Maps Pretty 55/65

5.4 Advanced labeling

SLD misses a few features that are necessary for good map labeling. In

particular:

• While it's possible to align a label along with a road using

LinePlacement, the spec does not say if the label should be curved

or straight

• If multiple segments do have the same label they will be labeled

separately, It's also not possible to specify whether to repeat labels

over long lines.

• There is no way to specify the maximum width of a label, or how to

auto-wrap it in case that is desirable.

GeoServer and uDig can use an extended, non standard SLD syntax to deal

with the above problems, among others.

5.4.1 Curved labels, grouping and repetitions

To deal with curved labels and label repetition let's add labels to the

Manhattan road layer we worked on before. The second FeatureTypeStyle

now will contain a TextSymbolizer (roads2.sld):

 <FeatureTypeStyle>
 ... <!-- First feature type style, skipped for brevity -->
 </FeatureTypeStyle>
 <FeatureTypeStyle>
 <FeatureTypeName>Feature</FeatureTypeName>
 <Rule> <!-- thin line drawn second -->
 <MaxScaleDenominator>32000</MaxScaleDenominator>
 <LineSymbolizer>
 <Stroke>
 <CssParameter name="stroke">#FFFFFF</CssParameter>
 <CssParameter name="stroke-width">4</CssParameter>
 </Stroke>
 </LineSymbolizer>
 <TextSymbolizer>
 <Label><ogc:PropertyName>NAME</ogc:PropertyName></Label>

 <CssParameter name="font-family">Times New Roman</CssParameter>
 <CssParameter name="font-style">Normal</CssParameter>
 <CssParameter name="font-size">14</CssParameter>
 <CssParameter name="font-weight">bold</CssParameter>

 <LabelPlacement>
 <LinePlacement>
 </LinePlacement>
 </LabelPlacement>
 <Halo>
 <Radius>
 <ogc:Literal>2</ogc:Literal>
 </Radius>
 <Fill>
 <CssParameter name="fill">#FFFFFF</CssParameter>
 </Fill>

Making Maps Pretty 56/65

 </Halo>
 </TextSymbolizer>
 </Rule>
 </FeatureTypeStyle>

The result is labeled, but has issues with some labels along curved streets,

and it's easy to notice the avenues are labeled too often whilst the streets

crossing them not enough:

Some vendor parameters can be added to the TextSymbolizer to enable

curved labels, to group lines with the same labels into a single, longer line,

and to control label repetition (roads3):

 <TextSymbolizer>
 <Label><ogc:PropertyName>NAME</ogc:PropertyName></Label>

 <CssParameter name="font-family">Times New Roman</CssParameter>
 <CssParameter name="font-style">Normal</CssParameter>
 <CssParameter name="font-size">14</CssParameter>
 <CssParameter name="font-weight">bold</CssParameter>

 <LabelPlacement>
 <LinePlacement>
 </LinePlacement>
 </LabelPlacement>
 <Halo>
 <Radius>
 <ogc:Literal>2</ogc:Literal>
 </Radius>
 <Fill>
 <CssParameter name="fill">#FFFFFF</CssParameter>
 </Fill>
 </Halo>
 <VendorOption name="followLine">true</VendorOption>
 <VendorOption name="group">true</VendorOption>
 <VendorOption name="repeat">200</VendorOption>
 <VendorOption name="maxDisplacement">50</VendorOption>
 </TextSymbolizer>

Making Maps Pretty 57/65

5.4.2 Auto wrapping labels

The landmarks layer used in the thematic map has attributes that can be

used for labeling. GeoServer will automatically avoid labeling the feature is

the label is too big compared the the polygon being labeled, but still, a

significant number of those labels are too long: a way to wrap them is

needed.

One way to approach this problem is to pre-process the data and insert

hard newlines into the data. Alternatively, recent versions of GeoServer

have a vendor parameter that can auto-wrap labels whose length is

excessive. The following style snipped, built on top of landmarks1.sld, add

a text symbolizer with such option (landmarks2.sld):

 <FeatureTypeStyle>
 <Rule>
 <TextSymbolizer>
 <Label>
 <ogc:PropertyName>LANAME</ogc:PropertyName>
 </Label>

 <CssParameter name="font-family">Times New Roman
 </CssParameter>
 <CssParameter name="font-style">Normal</CssParameter>
 <CssParameter name="font-size">14</CssParameter>
 <CssParameter name="font-weight">bold</CssParameter>

 <LabelPlacement>
 <PointPlacement>
 <AnchorPoint>

Making Maps Pretty 58/65

 <AnchorPointX>0.5</AnchorPointX>
 <AnchorPointY>0.5</AnchorPointY>
 </AnchorPoint>
 </PointPlacement>
 </LabelPlacement>
 <Halo>
 <Radius>
 <ogc:Literal>2</ogc:Literal>
 </Radius>
 <Fill>
 <CssParameter name="fill">#FDE5A5</CssParameter>
 <CssParameter name="fill-opacity">0.75</CssParameter>
 </Fill>
 </Halo>
 <Fill>
 <CssParameter name="fill">#000000</CssParameter>
 </Fill>
 <VendorOption name="group">true</VendorOption>
 <VendorOption name="autoWrap">100</VendorOption>
 </TextSymbolizer>
 </Rule>
 </FeatureTypeStyle>

The style makes GeoServer wrap labels at 100 pixels width automatically.

It also makes it group the polygons so that a block of them with the same

label will be labeled just once:

Making Maps Pretty 59/65

5.5 Thematic mapping with hatch density

Thematic mapping is usually performed using color hues or shades. Yet,

it's also possible to communicate numerical progression by graphical

density, from looser to thicker, using hatches.

Hatches are not a first level citizen in SLD, they can be produced by

creating an external graphic that tiles nicely. In GeoServer and recent

version of uDig it's also possible to use a custom Mark name,

shape://slash. The advantage in using a Mark is that one can control

pattern density, stroke thickness and color without the need to create

many image samples.

 <FeatureTypeStyle>
 <Rule>
 <Title>< 2M</Title>
 <ogc:Filter>
 <ogc:PropertyIsLessThan>
 <ogc:PropertyName>PERSONS</ogc:PropertyName>
 <ogc:Literal>2000000</ogc:Literal>
 </ogc:PropertyIsLessThan>
 </ogc:Filter>
 <PolygonSymbolizer>
 <Fill>
 <GraphicFill>
 <Graphic>
 <Mark>
 <WellKnownName>shape://slash</WellKnownName>
 <Stroke>
 <CssParameter name="stroke">0xAAAAAA</CssParameter>
 </Stroke>
 </Mark>
 <Size>16</Size>
 </Graphic>
 </GraphicFill>
 </Fill>
 </PolygonSymbolizer>
 </Rule>
 <Rule>
 <Title>2M - 4M</Title>
 <ogc:Filter>
 <ogc:PropertyIsBetween>
 <ogc:PropertyName>PERSONS</ogc:PropertyName>
 <ogc:LowerBoundary>
 <ogc:Literal>2000000</ogc:Literal>
 </ogc:LowerBoundary>
 <ogc:UpperBoundary>
 <ogc:Literal>4000000</ogc:Literal>
 </ogc:UpperBoundary>
 </ogc:PropertyIsBetween>
 </ogc:Filter>
 <PolygonSymbolizer>
 <Fill>
 <GraphicFill>
 <Graphic>
 <Mark>
 <WellKnownName>shape://slash</WellKnownName>
 <Stroke>
 <CssParameter name="stroke">0xAAAAAA</CssParameter>
 </Stroke>
 </Mark>
 <Size>8</Size>
 </Graphic>
 </GraphicFill>
 </Fill>
 </PolygonSymbolizer>

Making Maps Pretty 60/65

 </Rule>
 <Rule>
 <Title>> 4M</Title>
 <!-- like a linesymbolizer but with a fill too -->
 <ogc:Filter>
 <ogc:PropertyIsGreaterThan>
 <ogc:PropertyName>PERSONS</ogc:PropertyName>
 <ogc:Literal>4000000</ogc:Literal>
 </ogc:PropertyIsGreaterThan>
 </ogc:Filter>
 <PolygonSymbolizer>
 <Fill>
 <GraphicFill>
 <Graphic>
 <Mark>
 <WellKnownName>shape://slash</WellKnownName>
 <Stroke>
 <CssParameter name="stroke">0xAAAAAA</CssParameter>
 </Stroke>
 </Mark>
 <Size>4</Size>
 </Graphic>
 </GraphicFill>
 </Fill>
 </PolygonSymbolizer>
 </Rule>
 <Rule>
 <Title>Boundary</Title>
 <LineSymbolizer>
 <Stroke />
 </LineSymbolizer>
 <TextSymbolizer>
 <Label>
 <ogc:PropertyName>STATE_ABBR</ogc:PropertyName>
 </Label>

 <CssParameter name="font-family">Times New Roman
 </CssParameter>
 <CssParameter name="font-style">Normal</CssParameter>
 <CssParameter name="font-size">14</CssParameter>

 <LabelPlacement>
 <PointPlacement>
 <AnchorPoint>
 <AnchorPointX>0.5</AnchorPointX>
 <AnchorPointY>0.5</AnchorPointY>
 </AnchorPoint>
 </PointPlacement>
 </LabelPlacement>
 <Halo>
 <Radius>2</Radius>
 <Fill>
 <CssParameter name="fill">0xFFFFFF</CssParameter>
 </Fill>
 </Halo>
 </TextSymbolizer>
 </Rule>
 </FeatureTypeStyle>

Making Maps Pretty 61/65

6 Performance Considerations

6.1 Draw Less

One of the things that often slows down rendering is simply drawing more

information then is needed. Taking the road dataset and drawing all the

roads does not make a lot of sense when zoomed really far out (there is

more detail then is useful). Additionally, small polygons may actually not

be visible at all.

You ca reduce this to only show the main “trunk” roads using a small bit of

Style Layer Descriptor syntax; adding a “filter” to the Rule used to display

roads.

 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>highway</ogc:PropertyName>
 <ogc:Literal>trunk</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>

Another thing you can do is choose what zoom level a Rule will use; in the

example above we can have the “trunk” roads draw when the user is zoom

in to 1:10,000,000 level.

 <sld:MaxScaleDenominator>1.0E7</sld:MaxScaleDenominator>

Making Maps Pretty 62/65

6.2 Swap between Layers for the Same Information

You can combine the above two techniques; declare two layers against the

same dataset:

• One layer with a Style that draws at a lower level of detail when

zoomed out

• Another layer with a Style that draws everything when zoomed in

You can also group these two layers and present them as a single WMS

layer. This results in a seamless user experience while still letting you

manage information at different levels of details.

Alternative; create a Style with two rules.

6.3 Avoid Expensive Styling Options

The amount of control provided by the Style Layer Descriptor format is

staggering allowing you to accomplish many amazing effects. Some of

these styling options are more expensive in performance terms than

others.

• Transparency: Working with any transparency at all will basically
double your rendering time.

Make sure that each symbolizer you use has opacity set to 1.

If you are only looking to “lighten” your colors; rather than see
through filled shapes to see other layers consider changing the
saturation on a feature by feature basis.

If you are looking to see line work or outlines of polygons under the
current one – consider drawing just the outlines using one Rule, and
the various Fill symbolizers in another.

• Labels are Really Expensive: Generating labels is a really
expensive proposition; For example GeoServer has to collect all the
possible labels and then shuffle them into position (depending on the
priorities you set).

There is no real alternative to text – so we will need to focus on
minimizing the time it takes to shuffle labels into position. If possible
try and use the Rule techniques to limit the number of features you
generate labels for; and make use of label priority settings to assist
in the selection process.

• Halo is Very Expensive: Rendering these labels is even more
expensive if you add a Halo.

Making Maps Pretty 63/65

6.4 Are you Tile Caching?

The need to consider the end-users of your maps was discussed earlier,

including what the viewing area of the maps is going to be. A small

viewable area (say 200x300 pixels) impacts how the maps should be

styled. If you plan to cache the maps you are styling in a tile cache like

GeoWebCache, it is more than likely that the cache will build lots of small

tiles, usually 256 by 256.

Even though these tiles may be used in a

larger viewing area than the tiles, rending

small tiles affects the map in some subtle

ways. The most prominent of which is that

labels won't be added to the map that cross

the edge of a rendered map. For this reason

most map tiling software support whats called

metatiling. The tile cache will request a large

map and chop it up into smaller tiles. This

incurs a performance benefit as well as solving the styling problem.

In short, as long as you are aware of metatiling, you shouldn't have to do

anything in your SLD's to cater for TileCache.

A concise discussion of the benefits and drawbacks of metatiling can be

found at http://geowebcache.org/trac/wiki/metatiles .

Making Maps Pretty 64/65

http://geowebcache.org/trac/wiki/metatiles

F u r t h e r R e a d i n g

SLD Cook Book

The SLD Cook Book, available from GeoServer is a collection of SLD

“recepies” for creating various types of map styles. This page offers

examples of various symbolizer techniques.

http://docs.geoserver.org/trunk/en/user/styling/sld-

cookbook/index.html#sld-cook-book

Making Maps Pretty 65/65

http://docs.geoserver.org/trunk/en/user/styling/sld-cookbook/index.html#sld-cook-book
http://docs.geoserver.org/trunk/en/user/styling/sld-cookbook/index.html#sld-cook-book

	0 About the Authors
	1 Introducing Cartography
	1.1 Setting Goals
	1.1.1 Who is the target audience?
	1.1.2 What is the target medium?
	1.1.3 What is the purpose of the maps?

	1.2 Clarity
	1.2.1 Information Density
	1.2.2 Labels
	1.2.3 Line Styling
	1.2.4 Colour Scheme
	1.2.5 Raster and Imagery

	1.3 Misrepresentation
	1.3.1 The Atomic Fallacy
	1.3.2 The Ecological Fallacy
	1.3.3 The Modifiable Areal Unit Problem

	2 Map Elements
	2.1 Polygon
	2.2 Point
	2.3 Line / Polygon Edge
	2.4 Raster
	2.5 Text
	2.6 Colours
	2.6.1 Exercise

	3 Using Styles
	3.1 Introduction to SLD Concepts
	3.1.1 NamedLayer, UserLayer, NamedStyle and UserStyle
	3.1.2 FeatureTypeStyle

	3.2 Rules – What Gets Styled
	3.3 Filters
	3.3.1 Spatial Filter
	3.3.2 Attribute Filter
	3.3.3 Logical Operators
	3.3.4 Else Filter
	3.3.5 Other Capabilities of Filtering

	3.4 Symbolizers
	3.4.1 Point Symbolizer
	3.4.2 Line Symbolizer
	3.4.3 Polygon Symbolizer
	3.4.4 Text Symbolizer
	3.4.5 Raster Symbolizer
	3.4.6 Common Symbolizer Elements

	3.5 SLD Software
	3.5.1 OpenLayers
	3.5.2 GeoServer
	3.5.3 GeoServer GeoExt SLD Editor Plugin
	3.5.4 MapServer
	3.5.5 OpenJump
	3.5.6 uDig

	4 Hands On
	4.1 OpenLayers
	4.2 uDig
	4.3 GeoServer
	4.4 GeoExt Styler

	5 Advanced styling
	5.1 Thematic maps with a twist
	5.2 Stacking multiple symbolizers
	5.3 Working with scale dependencies
	5.3.1 Adding labels in a scale range
	5.3.2 Alternate styling based on the zoom level

	5.4 Advanced labeling
	5.4.1 Curved labels, grouping and repetitions
	5.4.2 Auto wrapping labels

	5.5 Thematic mapping with hatch density

	6 Performance Considerations
	6.1 Draw Less
	6.2 Swap between Layers for the Same Information
	6.3 Avoid Expensive Styling Options
	6.4 Are you Tile Caching?

