
G e o s p a t i a l f o r J a v a
F O S S 4 G 2 0 0 9 E c l i p s e Q u i c k s t a r t

2 3 O c t o b e r 2 0 0 9

J o d y G a r n e t t

M i c h a e l B e d w a r d

page intentionally left blank

Geospatial for Java 2/22

Table of Contents

1 Welcome Eclipse Developers...4

2 Java Install...5

3 Eclipse..6

3.1Maven Eclipse Plugin.. 9

3.2 Adding Jars to your Project .. 14

4 Quickstart.. 18

5 Things to Try... 21

Geospatial for Java 3/22

1 Welcome Eclipse Developers

Welcome to Geospatial for Java -this workbook is aimed at Java developers

who are new to geospatial and would like to get started.

We are going to start out carefully with the steps needed to set up your

IDE and are pleased this year to cover both NetBeans and Eclipse. If you

are comfortable with the build tool Maven, it is our preferred option for

downloading and managing jars but we will also document how to set up

things by hand.

Extra care has been taken to make this year's tutorial visually oriented

right from the get go. While these examples will make use of Swing, please

be assured that that this is only an aid in making the examples easy and

fun to use.

These sessions are applicable to both server side and client side

development.

Geospatial for Java 4/22

2 Java Install

We are going to be making use of Java – so if you don't have a Java

Development Kit installed now is the time to do so. Even if you have Java

installed already check out the optional Java Advanced Imaging and Java

Image IO section.

1. Download the latest JDK from the the java.sun.com website:
http://java.sun.com/javase/downloads/index.jsp

2. At the time of writing the latest JDK was:
jdk-6u16-windows-i586.exe

3. Click through the installer you will need to set an acceptance a license
agreement and so forth. By default this will install to:
C:\Program Files\Java\jdk1.6.0_16/

4. Optional – Java Advanced Imaging is used by GeoTools for raster
support. If you install JAI 1.1.3 performance will be improved:
https://jai.dev.java.net/binary-builds.html
Both a JDK and JRE installer are available:
jai-1_1_3-lib-windows-i586-jdk.exe
jai-1_1_3-lib-windows-i586-jre.exe

5. Optional – ImageIO Is used to read and write raster fles. GeoTools uses
version 1_1 of the ImageIO library:
https://jai-imageio.dev.java.net/binary-builds.html
Both a JDK and JRE installer are available:
jai_imageio-1_1-lib-windows-i586-jdk.exe
jai_imageio-1_1-lib-windows-i586-jre.exe

Geospatial for Java 5/22

If you are

following this

workbook in a

lab setting

you will fnd

installer on

the DVD.

http://java.sun.com/javase/downloads/index.jsp
https://jai-imageio.dev.java.net/binary-builds.html
https://jai.dev.java.net/binary-builds.html

3 Eclipse

Eclipse is a popular integrated development environment most often used

for all kinds of Java development. For this tutorial we are doing straight up

Java programming using the smallest download available - if you already

have an Eclipse download please go ahead and use it and switch to the

“Java Perspective”.

1. Visit the Eclipse download page (http://www.eclipse.org/downloads/)
and download “Eclipse IDE for Java developers”.

These instructions were written with the Eclipse Galileo 3.5.1 release.

2. Hopefully by now your eclipse download has fnished and we can begin
to installation.

3. Eclipse does not provide an installer; just a directory to unzip and run.

4. To start out with create the folder C:\java to keep all our java
development in one spot.

5. Unzip the downloaded eclipse-java-galileo-SR1-win32.zip fle to
your C:\java directory – the folder C:\java\eclipse will be created.

6. Navigate to C:\java\eclipse and right-click on the eclipse.exe fle and
select Send To->Desktop (create shortcut).

Geospatial for Java 6/22

Choose a local

mirror – or

give up and

use Amazon

Web Services

if you are not

sure.

If you need a

good program

to unzip

archive fles

try:

www.7-zip.org

http://www.7-zip.org/
file:///Users/java
http://www.eclipse.org/downloads/

7. Open up the desktop short cut properties and change the Target:
C:\java\eclipse\eclipse.exe -vmargs -Xmx756m

If you have plenty of memory to burn on development you may wish to
provide yourself some more memory.

8. Double click on your desktop short cut to start up eclipse.

9. When you start up eclipse for the frst time it will prompt you for a
workspace. To keep our java work in one spot you can type in:
C:\java\workspace

Geospatial for Java 7/22

If you are on a

linux or mac

osx machine

you may want

to modify the

“eclipse.ini”

fle to specify

additional

command line

options.

10. On the Welcome view press Workbench along the right hand side.

11. We are now ready with an interesting choice...

There are two paths ahead – if you don't decide you will be eaten by a

grue.

• Maven Eclipse Plugin

The Maven tool is intended to describe a project; rather then simply list
the steps to build it. Part of that description is a list of the jars the
project will use and a repository on the internet where the jars can be
downloaded from.

The maven command line tool download exactly what we need and set
up our project for us.

• Adding Jars to your Project

The GeoTools project provides a single download with all the needed jars.
We can download this rather large fle and unzip it into our project.

We recommend the use of maven; the single download is 40 megs in size
and contains way more functionality then is needed.

Geospatial for Java 8/22

A “grue” is

from the early

text game

Zork. Trust

us, you don't

want to be

eaten by a

grue.

3.1 Maven Eclipse Plugin

We are going to use maven as a command line tool (there is an IDE Plugin

called M2Eclipse but I could not get it to work).

1. Download Maven from http://maven.apache.org/download.html

The last version we tested with was: Maven 2.2.1

2. Unzip the fle apache-maven-2.2.1-bin.zip to C:\java\apache-maven-
2.2.1

3. You need to have a couple of environmental variables set for maven to
work. Use Control Panel > System > Advanced > Environmental
Variables to set the following:

JAVA_HOME=C:\Program Files\Java\jdk1.6.0_16/
M2_HOME=C:\java\apache-maven-2.2.1
PATH=%JAVA_HOME%\bin;%M2_HOME%\bin

4. Open up a commands prompt Accessories > Command Prompt

5. Type the following command to confrm you are set up correctly:

C:java> mvn -version

Geospatial for Java 9/22

http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-2.2.1-bin.zip
http://maven.apache.org/download.html

6. This should produce the following output

7. We can now create our project with:

C:>cd C:\java
C:java> mvn archetype:create -DgroupId=org.geotools.demo -DartifactId=example

8. And ask for our project to be set up for eclipse:

C:java> cd example
C:java\example> mvn eclipse:eclipse

9. You can now give Eclipse the background information it needs to talk to
your “maven repository” (maven downloaded something like 30 jars for
you)

10. Return to Eclipse

11. Use the Windows > Preferences menu to open the Preference Dialog.
Using the tree on the left navigate to the Java > Build path > Classpath
Variables preference Page.

Geospatial for Java 10/22

12. Add an M2_REPO classpath variable pointing to your “local repository”

• Windows XP: C:\Documents and Settings\Jody\.m2\repository

• Windows Vista: C:\Users\Jody\.m2\repository

• Linux and Mac: ~/.m2/repository

13. We can now import your new project into eclipse using File > Import

14. Choose Existing Projects into Workspace from the list, and press Next

15. Select the project you created: C:\java\example.

16. Press Finish to import your project

Geospatial for Java 11/22

17. Navigate to the pom.xml fle and double click to open it up.

We are going to start by defning the version number of GeoTools we
wish to use. This workbook was written for 2.6-RC you may wish to try a
newer version – or make use of a nightly build by using 2.6-SNAPSHOT.

Please add in the sections marked in bold below. You may fnd cutting
and pasting from the PDF easier then typing. Please be careful to cut
and paste the sections in bold to the correct location.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <properties>
 <geotools.version>2.6.0</geotools.version>
 </properties>
 <groupId>org.geotools</groupId>
 <artifactId>example</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>example</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.geotools</groupId>
 <artifactId>gt-shapefile</artifactId>
 <version>${geotools.version}</version>
 </dependency>
 <dependency>
 <groupId>org.geotools</groupId>
 <artifactId>gt-swing</artifactId>
 <version>${geotools.version}</version>
 <exclusions>
 <exclusion>
 <groupId>org.apache.xmlgraphics</groupId>
 <artifactId>batik-transcoder</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 </dependencies>
 <repositories>
 <repository>
 <id>maven2-repository.dev.java.net</id>
 <name>Java.net repository</name>
 <url>http://download.java.net/maven/2</url>
 </repository>
 <repository>
 <id>osgeo</id>
 <name>Open Source Geospatial Foundation Repository</name>
 <url>http://download.osgeo.org/webdav/geotools/</url>
 </repository>
 <repository>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <id>opengeo</id>
 <name>OpenGeo Maven Repository</name>
 <url>http://repo.opengeo.org</url>
 </repository>
 </repositories>
</project>

And easy way to pick up typing mistakes with tags is to Eclipse to
format the xml fle.

Geospatial for Java 12/22

The pom.xml

fle describes

your project

repositories

to download

jars from.

18. Return to the command line and maven to download the required jars
and tell eclipse about it

C:\java\example> mvn eclipse:eclipse

19. Return to eclipse and select the project folder. Use F5 to refresh the
project – if you open up referenced libraries you will see the required
jars listed.

20. You can now skip to 4 Quickstart to try this stuf out.

Geospatial for Java 13/22

3.2 Adding Jars to your Project

We can also download the GeoTools project bundle from source forge and

set up our project to use them. Please follow these steps carefully as not

all the GeoTools jars can be used at the same time.

1. Download the GeoTools binrary release from
http://sourceforge.net/projects/geotools/fles

2. We are now going to make a project for the required jars. By placing the
jars into their own project is is easier to upgrade GeoTools.

Select File > New > Java Project to open the New Java Project wizard

3. Type in “GeoTools Download” as the name of the project and press
Finish.

4. Choose File > Import to open the Import Wizard.

5. Select General >Archive File and press Next

Geospatial for Java 14/22

http://sourceforge.net/projects/geotools/files

6. Navigate to the geotools-bin.zip download and import the contents into
your project.

7. GeoTools includes a copy of the “EPSG” database; but also allows you to
hook up your own copy of the EPSG database as an option..

However only one copy can be used at a time so we will need to remove
the following jars from the Library Manager:

gt-epsg-h2
gt-epsg-oracle
gt-epsg-postgresql
gt-epsg-wkt

8. GeoTools allows you to work with many diferent databases; however to
make them work you will need to download jdbc drivers from the
manufacturer.

For now remove the follow plugins from your Library Manager defnition:

gt-arcsde
gt-arcsde-common
gt-db2
gt-jdbc-db2
gt-oracle-spatial
gt-jdbc-oracle

9. Next we update our java build path to include the remaining jars.
Choose Project > Properties from the menu bar

10. Select Java Build Path property page; and switch to the library tab.

Geospatial for Java 15/22

11. Press Add JARs button and add all the jars

12. Switch to the Order and Export tab and press Select All

13. We can now create a new Example project to get going on our
Quickstart.

14. Use Project > Properties on your new Example project to open up the
Java Build Path page.

Geospatial for Java 16/22

15. Switch to the Projects tab and use the Add.. button to add GeoTools
Downloads to the build path.

16. Our example project can now use all the GeoTools jars.

17. Please proceed to the Quickstart.

Geospatial for Java 17/22

4 Quickstart

Now that your environment is setup we can put together a simple

Quickstart. This example will display a shapef le on screen.

1. Create the org.geotools.demo.Quickstart class using your IDE.

Geospatial for Java 18/22

2. Fill in the following code

package org.geotools.demo;

import java.io.File;

import org.geotools.data.FeatureSource;
import org.geotools.data.FileDataStore;
import org.geotools.data.FileDataStoreFinder;
import org.geotools.map.DefaultMapContext;
import org.geotools.map.MapContext;
import org.geotools.swing.JMapFrame;
import org.geotools.swing.data.JFileDataStoreChooser;

/**
 * GeoTools Quickstart demo application. Prompts the user for a shapefile
 * and displays its contents on the screen in a map frame
 */
public class Quickstart {

 /**
 * GeoTools Quickstart demo application. Prompts the user for a shapefile
 * and displays its contents on the screen in a map frame
 */
 public static void main(String[] args) throws Exception {
 // display a data store file chooser dialog for shapefiles
 File file = JFileDataStoreChooser.showOpenFile("shp", null);
 if (file == null) {
 return;
 }

 FileDataStore store = FileDataStoreFinder.getDataStore(file);
 FeatureSource featureSource = store.getFeatureSource();

 // Create a map context and add our shapefile to it
 MapContext map = new DefaultMapContext();
 map.addLayer(featureSource, null);

 // Now display the map
 JMapFrame.showMap(map);
 }
}

3. We need to download some sample data to work with. We are going to
use some sample data provided with the uDig project (which is written
with GeoTools).

http://udig.refractions.net/docs/data-v1_2.zip

Please unzip this data directory to a location you can fnd easily like
your desktop.

4. Run the application to open up a fle chooser. Please choose a shapefle
from the example data set.

Geospatial for Java 19/22

If you need a

good program

to unzip

archive fles

try:

www.7-zip.org

http://udig.refractions.net/docs/data-v1_2.zip
http://www.7-zip.org/

5. The application will connect to your shapef le, produce a map context
and display the shapef le.

|

6. A couple of things to note about the code example:

• The shapef le is not loaded into memory – instead it is read from disk
each and every time it is needed

• This approach allows you to work with data sets larger then available
memory

Geospatial for Java 20/22

5 Things to Try

Here are some additional challenges for you to try:

• Try out the diferent sample data sets

• You can zoom in, zoom out and show the full extents

• Use the select tool to examine individual countries in the sample
countries.shp fle

• Download the largest shapef le you can fnd and see how quickly it can
be rendered. You should fnd that the very frst time it will take a while
as a spatial index is generated. After that performance should be very
good when zoomed in.

• Try and sort out what all the diferent “side car” fles are – and what they
are for. The sample data set includes “shp”, “dbf” and “shx”. How many
other side car fles are there?

• The use of FileDataStoreFinder allows us to work easily with fles. The
other way to do things is with a map of connection parameters. This
techniques gives us a little more control over how we work with a
shapef le and also allows us to connect to databases and web feature
servers.

 File file = JFileDataStoreChooser.showOpenFile("shp", null);

 Map<String,Object> params = new HashMap<String,Object>();
 params.put(ShapefileDataStoreFactory.URLP.key, file.toURI().toURL());
 params.put(ShapefileDataStoreFactory.CREATE_SPATIAL_INDEX.key, false);
 params.put(ShapefileDataStoreFactory.MEMORY_MAPPED.key, false);
 params.put(ShapefileDataStoreFactory.DBFCHARSET.key, "ISO-8859-1");

 DataStore store = DataStoreFinder.getDataStore(params);
 FeatureSource featureSource = store.getFeatureSource(store.getTypeNames()[0]);

• GeoTools is an active open source project – you can quickly use maven to
try out the latest nightly build by changing your pom.xml fle to use a
“SNAPSHOT” release.

At the time of writing 2.6-SNAPSHOT under active development.

 <properties>
 <geotools.version>2.6-SNAPSHOT</geotools.version>
 </properties>

Geospatial for Java 21/22

• If you duck out to the command line you can ask maven to show you a
list of all the required jars as a dependency tree.

C:\java\example> mvn dependency:tree

For me this produced the following tree with 2.6-SNAPSHOT

org.geotools:example:jar:1.0-SNAPSHOT
+- junit:junit:jar:3.8.1:test
+- org.geotools:gt-shapefile:jar:2.6-SNAPSHOT:compile
| +- org.geotools:gt-main:jar:2.6-SNAPSHOT:compile
| | +- org.geotools:gt-api:jar:2.6-SNAPSHOT:compile
| | +- com.vividsolutions:jts:jar:1.10:compile
| | \- commons-beanutils:commons-beanutils:jar:1.7.0:compile
| | \- commons-logging:commons-logging:jar:1.0.3:compile
| +- org.geotools:gt-referencing:jar:2.6-SNAPSHOT:compile
| | +- java3d:vecmath:jar:1.3.2:compile
| | +- commons-pool:commons-pool:jar:1.3:compile
| | \- org.geotools:gt-metadata:jar:2.6-SNAPSHOT:compile
| | +- org.opengis:geoapi:jar:2.3-M1:compile
| | +- org.opengis:geoapi-pending:jar:2.3-M1:compile
| | \- net.java.dev.jsr-275:jsr-275:jar:1.0-beta-2:compile
| \- jdom:jdom:jar:1.0:compile
\- org.geotools:gt-swing:jar:2.6-SNAPSHOT:compile
 +- org.geotools:gt-render:jar:2.6-SNAPSHOT:compile
 | +- org.geotools:gt-coverage:jar:2.6-SNAPSHOT:compile
 | \- org.geotools:gt-cql:jar:2.6-SNAPSHOT:compile
 \- com.miglayout:miglayout:jar:swing:3.7:compile

Geospatial for Java 22/22

	1 Welcome Eclipse Developers
	2 Java Install
	3 Eclipse
	3.1 Maven Eclipse Plugin
	3.2 Adding Jars to your Project

	4 Quickstart
	5 Things to Try

