
F e a t u r e W o r k b o o k
F O S S 4 G 2 0 0 9 G e o s p a t i a l f o r J a v a T u t o r i a l s

27 September 2009

J o d y G a r n e t t

M i c h a e l B e d w a r d

Table of Contents

1 Welcome.. 3

2 CSV2SHP.. 4

2.1Running the Application... 8

2.2FeatureTypeBuilder... 9

3 Things to Try... 10

4 Feature...11

4.1Feature Class... 12

4.2Geometry... 13

4.3DataStore...14

Feature Workbook 2/15

1 Welcome

Welcome to Geospatial for Java -this workbook is aimed at Java developers

who are new to geospatial and would like to get started.

You should of completed either the GeoTools NetBeans Quickstart or the

GeoTools Eclipse Quickstart prior to running through this workbench. We

need to be sure that you have an environment to work in with GeoTools

jars and all their dependencies. For those using maven we will start of

each section with the dependencies required.

This workbook features a new “code frst” approach – we have made every

efort to make these examples both visual and code centered. We have

included some background materials explaining the concepts and ideas in

case you are interested.

This workbook is part of the FOSS4G 2009 conference proceedings.

Jody Garnett

Jody Garnett is the lead architect for the uDig project; and on the steering

committee for GeoTools; GeoServer and uDig. Taking the roll of geospatial

consultant a bit too literally Jody has presented workshops and training

courses in every continent (except Antarctica). Jody Garnett is an

employee of LISAsoft.

Michael Bedward

Michael Bedward is a researcher with the NSW Department of Environment

and Climate Change and an active contributor to the GeoTools users' list.

He has a particularly wide grasp of all the possible mistakes one can make

using GeoTools.

Feature Workbook 3/15

Welcome to

FOSS4G!

Please grab a

buddy to go

through this

workbook.

2 CSV2SHP

We are trying a new track for introducing features this year; rather then

reading through a shapef le and ripping things apart in an artifcial

exercise, we are going to start by building a shapef le from scratch so you

get to see every last thing that goes into creating features.

The tutorial covers the following:

• Creating a FeatureType, FeatureCollection and Features

• Using a GeometryFactory to build Points

• Writing out a Shapefle

• Forcing a Projection

At the end of the tutorial you will be able to create your own custom

shapefles!

1. To start with you will need a CSV fle. Create a text fle location.csv
and copy and paste the following locations into it:

"Longitude", "Latitude", "Name"
-33.84, 151.26, Sydney
0, 52, London
-123.31, 48.4, Victoria

Feel free to add other locations to the fle.

2. Please ensure your pom.xml includes the following:

<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.geotools</groupId>
 <artifactId>gt-shapefile</artifactId>
 <version>${geotools.version}</version>
 </dependency>
 <dependency>
 <groupId>org.geotools</groupId>
 <artifactId>gt-epsg-hsql</artifactId>
 <version>${geotools.version}</version>
 </dependency>
 <dependency>
 <groupId>org.geotools</groupId>
 <artifactId>gt-swing</artifactId>
 <version>${geotools.version}</version>
 </dependency>
</dependencies>

Note that the jars mentioned above will pull in a host of other
dependencies (such as the hsql database driver).

Feature Workbook 4/15

3. Create Csv2Shape.java and copy and paste in the following code in
order to get started.

package org.geotools.demo;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.Serializable;
import java.util.HashMap;
import java.util.Map;

import org.geotools.data.DataStoreFactorySpi;
import org.geotools.data.DataUtilities;
import org.geotools.data.DefaultTransaction;
import org.geotools.data.FeatureStore;
import org.geotools.data.Transaction;
import org.geotools.data.shapefile.ShapefileDataStore;
import org.geotools.data.shapefile.ShapefileDataStoreFactory;
import org.geotools.feature.FeatureCollection;
import org.geotools.feature.FeatureCollections;
import org.geotools.feature.simple.SimpleFeatureBuilder;
import org.geotools.feature.simple.SimpleFeatureTypeBuilder;
import org.geotools.geometry.jts.JTSFactoryFinder;
import org.geotools.referencing.crs.DefaultGeographicCRS;
import org.geotools.swing.data.JFileDataStoreChooser;
import org.opengis.feature.simple.SimpleFeature;
import org.opengis.feature.simple.SimpleFeatureType;

import com.vividsolutions.jts.geom.Coordinate;
import com.vividsolutions.jts.geom.GeometryFactory;
import com.vividsolutions.jts.geom.Point;

/**
 * This example reads data for point locations and associated attributes from
 * a comma separated text (CSV) file and exports them as a new shapefile. It
 * illustrates how to build a feature type.
 * <p>
 * Note: to keep things simple in the code below the input file should not have
 * additional spaces or tabs between fields.
 */
public class Csv2Shape {

}

4. We can now create our main method – to start with we will ask the user
to provide a CSV fle.

public static void main(String[] args) throws Exception {

 File file = JFileDataStoreChooser.showOpenFile("csv", null);
 if (file == null) {
 return;
 }
 // insert step 5.
}

Now we look at the rest of the main method in sections...

5. We create a FeatureType to describe the data the we are importing from
the CSV fle. Here we use the DataUtilities convenience class:

 /*
 * We use the DataUtilities class to create a FeatureType that
 * will describe the data in our shapefile.
 *
 * See also the createFeatureType method below for another,
 * more flexible approach.
 */
 final SimpleFeatureType TYPE = DataUtilities.createType(
 "Location", // <- the name for our feature type
 "location:Point:srid=4326," + // <- the geometry attribute: Point type
 "name:String" // <- a String attribute
);

Feature Workbook 5/15

6. We can now read the CSV File into a FeatureCollection; please note the
following:

• Use of FeatureCollections.newCollection() to create a FeatureCollection

• Use of GeometryFactory to create new Points

• Creation of features (SimpleFeature objects) using SimpleFeatureBuilder

 /*
 * We create a FeatureCollection into which we will put
 * each Feature created from a record in the input csv data file
 */
 FeatureCollection<SimpleFeatureType, SimpleFeature> collection =
 FeatureCollections.newCollection();

 /*
 * GeometryFactory will be used to create the geometry attribute
 * of each feature (a Point object for the location)
 */
 GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory(null);

 SimpleFeatureBuilder featureBuilder = new SimpleFeatureBuilder(TYPE);

 BufferedReader reader = new BufferedReader(new FileReader(file));
 try {
 /* First line of the data file is the header */
 String line = reader.readLine();
 System.out.println("Header: " + line);

 for (line = reader.readLine(); line != null; line = reader.readLine()) {
 String tokens[] = line.split("\\,");

 double longitude = Double.parseDouble(tokens[0]);
 double latitude = Double.parseDouble(tokens[1]);
 String name = tokens[2].trim();

 /* Longitude (= x coord) first ! */
 Point point = geometryFactory.createPoint(new Coordinate(longitude, latitude));

 featureBuilder.add(point);
 featureBuilder.add(name);
 SimpleFeature feature = featureBuilder.buildFeature(null);
 collection.add(feature);
 }

 } finally {
 reader.close();
 }

Feature Workbook 6/15

7. Next we are going to create a new shapef le to hold the features that
we've just built. Things to note:

• Use of DataStoreFactory with a parameter to indicate that we want a
spatial index

• The createSchema(SimpleFeatureType) method to set up the shapefle

• Our SimpleFeatureType did not include a map projection (coordinate
reference system) which is needed to make a .prj fle, so we call the
forceSchemaCRS method to do this

 /*
 * Get an output file name and create the new shapefile
 */
 File newFile = getNewShapeFile(file);

 DataStoreFactorySpi dataStoreFactory = new ShapefileDataStoreFactory();

 Map<String, Serializable> params = new HashMap<String, Serializable>();
 params.put("url", newFile.toURI().toURL());
 params.put("create spatial index", Boolean.TRUE);

 ShapefileDataStore newDataStore = (ShapefileDataStore) dataStoreFactory.createNewDataStore(params);
 newDataStore.createSchema(TYPE);
 newDataStore.forceSchemaCRS(DefaultGeographicCRS.WGS84);

8. Here we use a Transaction to safely add the FeatureCollection to the
shapef le in one go:

 /*
 * Write the features to the shapefile
 */
 Transaction transaction = new DefaultTransaction("create");

 String typeName = newDataStore.getTypeNames()[0];
 FeatureStore<SimpleFeatureType, SimpleFeature> featureStore =
 (FeatureStore<SimpleFeatureType, SimpleFeature>) newDataStore.getFeatureSource(typeName);

 featureStore.setTransaction(transaction);
 try {
 featureStore.addFeatures(collection);
 transaction.commit();

 } catch (Exception problem) {
 problem.printStackTrace();
 transaction.rollback();

 } finally {
 transaction.close();
 }

 System.exit(0);
}

This completes the main method; we have one more method to go.

Feature Workbook 7/15

9. This method prompts the user for a name for the output shapef le. The
original CSV fle is used to determine a good default name.

private static File getNewShapeFile(File csvFile) {
 String path = csvFile.getAbsolutePath();
 String newPath = path.substring(0, path.length() - 4) + ".shp";

 JFileDataStoreChooser chooser = new JFileDataStoreChooser("shp");
 chooser.setDialogTitle("Save shapefile");
 chooser.setSelectedFile(new File(newPath));

 int returnVal = chooser.showSaveDialog(null);

 if (returnVal != JFileDataStoreChooser.APPROVE_OPTION) {
 // the user cancelled the dialog
 System.exit(0);
 }

 File newFile = chooser.getSelectedFile();
 if (newFile.equals(csvFile)) {
 System.out.println("Error: cannot replace " + csvFile);
 System.exit(0);
 }

 return newFile;
}

10.That's it – the only thing left to do is run the application.

2.1 Running the Application

Run the application using your IDE:

1. When you run this application it will prompt you for the location of a
CSV fle to read.

2. And then the name of a shapef le to create.

You can use the Quickstart you made in earlier workbook to display the
shapef le that you just created. You could also try modifying the Quickstart
to show your cities on top of another layer such as countries.

Feature Workbook 8/15

You might like

to see if you

can view the

new shapefle

using the

Quickstart

application !

2.2 FeatureTypeBuilder

The DataUtilities class used above provided a quick and easy method to

build a SimpleFeatureType, for most applications you will want to take

advantage of the more fexible SimpleFeatureTypeBuilder.

1. Here is how to use SimpleFeatureTypeBuilder to accomplish the same
result:

 /**
 * Here is how you can use a SimpleFeatureType builder to create the schema
 * for your shapefile dynamically.
 * <p>
 * This method is an improvement on the code used in the main method above
 * (where we used DataUtilities.createFeatureType) because we can set a
 * Coordinate Reference System for the FeatureType and a a maximum field
 * length for the 'name' field
 * dddd
 */
 private static SimpleFeatureType createFeatureType() {

 SimpleFeatureTypeBuilder builder = new SimpleFeatureTypeBuilder();
 builder.setName("Location");
 builder.setCRS(DefaultGeographicCRS.WGS84); // <- Coordinate reference system

 // add attributes in order
 builder.add("Location", Point.class);
 builder.length(15).add("Name", String.class); // <- 15 chars width for name field

 // build the type
 final SimpleFeatureType LOCATION = builder.buildFeatureType();

 return LOCATION;
 }

Now our SimpleFeatureType contains a CoordinateReferenceSystem so

there’s no need to call forceSchemaCRS to generate the “.prj” fle. Also,

we are now limiting the Name feld to 15 characters.

Feature Workbook 9/15

3 Things to Try

Here are a couple ideas to try out:

• Modify the CSV2SHP code to read the feature attribute names from the
data fle header rather than hard-coding them in the application.

"Longitude", "Latitude", "Name"

You should be able to use SimpleFeatureTypeBuilder.

• Use the Geometry “bufer” method to create circles based on the
population size of the each city.

• It is easy to write a quick CSVReader as we have done here; but harder
to write a good one that can handle quotation marks correctly. JavaCSV is
an open source library to read CSV fles with a variety of options.

• To quickly fnd dependencies you can use the website
http://mvnrepository.com/ .

Sites like this will directly provide you a maven dependency that you can
cut and paste into your pom.xml.

<dependency>
 <groupId>net.sourceforge.javacsv</groupId>
 <artifactId>javacsv</artifactId>
 <version>2.0</version>
</dependency>

For a working example of how to use this library visit the
http://www.csvreader.com/ website.

• The earth has just passed through a meteor storm – generate 100 circles
of diferent sizes across the globe. Was your town hit?

Generating a shapef le from a model or analysis is a common use.

• Read up about the other Geometry classes supported by shapefles:
MultiLineString for linear features and MultiPolygon for areal features
and modify this example to work with these.

Feature Workbook 10/15

http://mvnrepository.com/
http://www.csvreader.com/

4 Feature

A feature is quite simply something that can be drawn on a map. The strict

defnition is that a feature is something in the real world – a feature of the

landscape - Mt Everest, the Eifel Tower, or even your great aunt Alice.

Explaining the concept to Java developers is easy - a feature is an Object.

Like a java object features can contain some information about the real

world thing that they represent. This information is organized into

attributes just as in Java information is slotted into felds.

Occasionally you have two features that have a lot in common. You may

have the LAX airport in Los Angeles and the SYD airport in Sydney.

Because these two features have a couple of things in common it is nice to

group them together - in Java we would create a Class called Airport. On a

map we will create a Feature Type called Airport.

Although it is not a capability supported by Java early programming

languages made use of a prototype system (rather than a class system)

that supported lots of “one of” Objects. You will fnd this situation is fairly

common when making maps – since how many Eifel towers are there? You

Feature Workbook 11/15

You can also

draw ideas

like urban

growth or

predicted rain

fall.

You can see

the “feature

types” for a

map listed in

the map key.

will also occasionally fnd the same real world thing represented a couple

of diferent ways (the Eifel tower can be a landmark or a tower depending

on what you are talking about).

Here is a handy cheat sheet:

Java Geospatial

Object Feature

Class FeatureType

Field Attribute

Method Operation

The Feature model is actually a little bit more crazy then us Java

programmers are used to since it considers both attribute and operation to

be “properties” of a Feature. Perhaps when Java gets closures we can

catch up.

The really interesting thing for me is that map makers were sorting out all

this stuf back in the 1400s and got every bit as geeky as programmers do

now. So although we would love to teach them about object oriented

programing they already have a rich set of ideas to describe the world. On

the bright side, map makers are starting to use UML diagrams.

4.1 Feature Class

In GeoTools we have an interface for Feature, FeatureType and Attribute

provided by the GeoAPI project. In general GeoAPI provides a very strict

interface and GeoTools will provide a class.

Feature Workbook 12/15

It is very common for a Feature to have only simple Attributes (String,

Integer, Date and so on) rather then references to other Features, or data

structures such as List<Date>. Features that meet this requirement are so

common we have broken out a sub-class to represent them called

SimpleFeature.

At the Java level the Feature API provided by GeoTools is similar to how

java.util.Map is used – it is simply a data structure used to hold

information. You can look up attribute values by key; and the list of keys is

provided by the FeatureType.

4.2 Geometry

The other diference between an Object and a Feature is that a Feature has

some form of location information (if not we would not be able to draw it

on a map). The location information is going to be captured by a

“Geometry” (or shape) that is stored in an attribute.

Feature Workbook 13/15

We make use of the JTS Topology Suite (JTS) to represent Geometry. The

JTS library provides an excellent implementation of Geometry – and gets

geeky points for having a recursive acronym ! JTS is an amazing library

and does all the hard graph theory to let you work with geometry in a

productive fashion.

Here is an example of creating a Point using the Well-Known-Text (WKT)

format.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory(null);

WKTReader reader = new WKTReader(geometryFactory);
Point point = (Point) reader.read("POINT (1 1)");

You can also create a Point by hand using the GeometryFactory directly.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory(null);

Coordinate coord = new Coordinate(1, 1);
Point point = geometryFactory.createPoint(coord);

4.3 DataStore

We ran into DataStore already in our Quickstart. The DataStore api is used

to represent a File, Database or Service that has spatial data in it. The API

has a couple of moving parts as shown below.

Feature Workbook 14/15

hole

Point LineString Polygon

start

end

star
t

end

otter ring

The FeatureSource is used to read features, the subclass FeatureStore is

used for read/write access.

The way to tell if a File can be written to in GeoTools is to use an

instanceof check.

String typeNames = dataStore.getTypeNames()[0];
FeatureSource source = store.getfeatureSource(typeName);
if(source instanceof FeatureStore){
 FeatureStore store = (FeatureStore) source; // write access!
 store.addFeatures(featureCollection);
 store.removeFeatures(filter); // filter is like SQL WHERE
 store.modifyFeature(attribute, value, filter);
}

We decided to handle write access as a sub-class (rather then an

isWritable method) in order to keep methods out of the way unless they

could be used.

Feature Workbook 15/15

	1 Welcome
	2 CSV2SHP
	2.1 Running the Application
	2.2 FeatureTypeBuilder

	3 Things to Try
	4 Feature
	4.1 Feature Class
	4.2 Geometry
	4.3 DataStore

