
G e o m e t r y a n d C R S W o r k b o o k
F O S S 4 G 2 0 0 9 G e o s p a t i a l f o r J a v a T u t o r i a l s

27 September 2009

J o d y G a r n e t t

M i c h a e l B e d w a r d

Table of Contents

1 Welcome.. 3

2 CRS Lab..4

2.1Running the Application... 5

3 Reproject a Shapef le... 8

3.1Things to Try.. 9

4 Geometry...11

5 Coordinate Reference System... 13

Geometry and CRS Workbook 2/15

1 Welcome

Welcome to Geospatial for Java -this workbook is aimed at Java developers

who are new to geospatial and would like to get started. Please set up your

development environment prior to starting this tutorial. We will list the

maven dependencies required at the start of the workbook.

This work book covers the dirty raw underbelly of the GIS world; yes I am

afraid we are talking about… math. However please do not be afraid – all

the math amounts to is shapes drawn on the earth.

This workbook is constructed in a code frst manner; allowing you to work

through the code example and read on if you have any questions.

This workbook is part of the FOSS4G 2009 conference proceedings.

Jody Garnett

Jody Garnett is the lead architect for the uDig project; and on the steering

committee for GeoTools; GeoServer and uDig. Taking the roll of geospatial

consultant a bit too literally Jody has presented workshops and training

courses in every continent (except Antarctica). Jody Garnett is an

employee of LISAsoft.

Michael Bedward

Michael Bedward is a researcher with the NSW Department of Environment

and Climate Change and an active contributor to the GeoTools users' list.

He has a particularly wide grasp of all the possible mistakes one can make

using GeoTools.

Geometry and CRS Workbook 3/15

2 CRS Lab

This example is an updated version of Quickstart. It adds a dialog allowing

you to change the projection that the map is drawn in. The data will be

“reprojected” into the correct coordinate reference system for display.

1. Please ensure your pom.xml includes the following:

<dependencies>
 <dependency>
 <groupId>org.geotools</groupId>
 <artifactId>gt-swing</artifactId>
 <version>${geotools.version}</version>
 <!-- For this module we explicitly exclude some of its own -->
 <!-- dependencies from being downloaded because they are -->
 <!-- big and we don't need them -->
 <exclusions>
 <exclusion>
 <groupId>org.apache.xmlgraphics</groupId>
 <artifactId>batik-transcoder</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.geotools</groupId>
 <artifactId>gt-shapefile</artifactId>
 <version>${geotools.version}</version>
 </dependency>
 <dependency>
 <groupId>org.geotools</groupId>
 <artifactId>gt-epsg-hsql</artifactId>
 <version>${geotools.version}</version>
 </dependency>
</dependencies>

2. Create the CRSLab.java fle and copy and paste the following code.

package org.geotools.demo;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.File;
import javax.swing.JButton;
import javax.swing.JToolBar;
import org.geotools.data.FeatureSource;
import org.geotools.data.FileDataStore;
import org.geotools.data.FileDataStoreFinder;
import org.geotools.map.DefaultMapContext;
import org.geotools.map.MapContext;
import org.geotools.swing.JCRSChooser;
import org.geotools.swing.JMapFrame;
import org.geotools.swing.data.JFileDataStoreChooser;
import org.opengis.referencing.crs.CoordinateReferenceSystem;

/**
 * This is a visual example of changing the coordinate reference
 * system of a feature layer.
 */
public class CRSLab {

}

Geometry and CRS Workbook 4/15

3. We can now create a main method that connects to a shapef le and
uses a JMapFrame to display it.

This should look familiar to you from the Quickstart example.

 public static void main(String[] args) throws Exception {
 File file = JFileDataStoreChooser.showOpenFile("shp", null);
 if (file == null) {
 return;
 }

 FileDataStore store = FileDataStoreFinder.getDataStore(file);
 FeatureSource featureSource = store.getFeatureSource();

 // Create a map context and add our shapefile to it
 final MapContext map = new DefaultMapContext();
 map.addLayer(featureSource, null);

 JMapFrame mapFrame = new JMapFrame(map);
 mapFrame.enableTool(JMapFrame.Tool.NONE);
 mapFrame.enableStatusBar(true);

 JToolBar toolbar = mapFrame.getToolBar();
 JButton btn = new JButton("Change CRS");
 toolbar.add(new AbstractAction("Change CRS") {
 public void actionPerformed(ActionEvent arg0) {
 try {
 CoordinateReferenceSystem crs = JCRSChooser.showDialog(
 null, "Coordinate Reference System", "Choose a new projection:", null);
 if(crs != null){
 map.setCoordinateReferenceSystem(crs);
 }

 } catch (Exception ex) {
 System.out.println("Could not use crs " + ex);
 }
 }
 });
 mapFrame.setSize(800, 600);
 mapFrame.setVisible(true);
 }

4. Here is how we have customized the map frame

• Firstly, mapFrame.enableTool(JMapFrame.Tool.NONE) requests that an
empty toolbar be created

• Next we create a JButton and add it to the toolbar

• Finally we set an action for the button so that when it is clicked a
chooser dialog will be displayed to select a coordinate reference system
which will be set as the new CRS of the map.

2.1 Running the Application

1. Grab the sample data from the Quickstart.

http://udig.refractions.net/docs/data-v1_2.zip

Please unzip this data directory to a location you can fnd easily like
your desktop.

Geometry and CRS Workbook 5/15

http://udig.refractions.net/docs/data-v1_2.zip

2. Run the application and choose the bc_border shapef le.

3. Now click the ‘Change CRS’ button and select the EPSG:3005 BC Albers
projection. Hint: you can type 3005 rather than scrolling through the
very long list.

Geometry and CRS Workbook 6/15

4. When you click OK the map will be re-displayed in this new map
projection. As well as the change in shape of the border, notice that the
units in the status bar have changed from degrees to meters.

5. If you want to return to the original map projection, choose EPSG:4326.

Geometry and CRS Workbook 7/15

3 Reproject a Shapefle

We can now put what we know together into a utility that will read in a

shapef le and write out a shapef le in a diferent coordinate reference

system.

One important thing to pick up from this lab is how easy it is to create a

MathTransform between two CoordinateReferenceSystems.

You can use the MathTransform to transform points one at a time; or use

the JTS utility class to create a copy of a Geometry with the points

modifed.

Let us use these two ideas to write out a new shapef le in a new projection.

1. Start by adding an export button.

 toolbar.add(new SafeAction("Export") {
 public void action(ActionEvent e) throws Throwable {
 export(featureSource, map.getCoordinateReferenceSystem(), file);
 }
 });

2. We will now create an export method to prompt the user for a flename.

 static void export(FeatureSource featureSource,
 CoordinateReferenceSystem crs, File origional) throws Exception {
 SimpleFeatureType schema = featureSource.getSchema();
 JFileDataStoreChooser chooser = new JFileDataStoreChooser("shp");
 chooser.setDialogTitle("Save reprojected shapefile");
 chooser.setSaveFile(sourceFile);
 int returnVal = chooser.showSaveDialog(null);
 if (returnVal != JFileDataStoreChooser.APPROVE_OPTION) {
 return;
 }
 File file = chooser.getSelectedFile();
 if (file.equals(sourceFile)) {
 JOptionPane.showMessageDialog(
 null, "Cannot replace " + file,
 "File warning", JOptionPane.WARNING_MESSAGE);
 return;
 }

3. We can now set up the MathTransform between the two coordinate
reference systems.

 CoordinateReferenceSystem dataCRS = schema.getCoordinateReferenceSystem();
 CoordinateReferenceSystem worldCRS = map.getCoordinateReferenceSystem();
 boolean lenient = true; // allow for some error due to different datums
 MathTransform transform = CRS.findMathTransform(dataCRS, worldCRS, lenient);

4. And then grab all the features.

 FeatureCollection<SimpleFeatureType, SimpleFeature> featureCollection = featureSource.getFeatures();

5. To create a new shapef le we will need to produce a FeatureType that is
similar to our original – the only diference will be the
CoordinateReferenceSystem of the geometry descriptor.

Geometry and CRS Workbook 8/15

 DataStoreFactorySpi factory = new ShapefileDataStoreFactory();
 Map<String, Serializable> create = new HashMap<String, Serializable>();
 create.put("url", file.toURI().toURL());
 create.put("create spatial index", Boolean.TRUE);
 DataStore newDataStore = factory.createNewDataStore(create);
 SimpleFeatureType featureType = SimpleFeatureTypeBuilder.retype(schema, worldCRS);
 newDataStore.createSchema(featureType);

6. We can now carefully open an iterator to go through the contents, and a
writer to write out the new Shapefle.

// carefully open an iterator and writer to process the results
 Transaction transaction = new DefaultTransaction("Reproject");
 FeatureWriter<SimpleFeatureType, SimpleFeature>
 writer = newDataStore.getFeatureWriterAppend(featureType.getTypeName(), transaction);
 FeatureIterator<SimpleFeature> iterator = featureCollection.features();
 try {
 while(iterator.hasNext()){
 // copy the contents of each feature and transform the geometry
 SimpleFeature feature = iterator.next();
 SimpleFeature copy = writer.next();
 copy.setAttributes(feature.getAttributes());

 Geometry geometry = (Geometry) feature.getDefaultGeometry();
 Geometry geometry2 = JTS.transform(geometry, transform);

 copy.setDefaultGeometry(geometry2);
 writer.write();
 }
 transaction.commit();
 JOptionPane.showMessageDialog(
 null, "Export complete", "Export", JOptionPane.INFORMATION_MESSAGE);

 } catch (Exception problem) {
 problem.printStackTrace();
 transaction.rollback();
 JOptionPane.showMessageDialog(null, "Export to shapefile failed", "Export",
JOptionPane.ERROR_MESSAGE);
 } finally {
 writer.close();
 iterator.close();
 transaction.close();
 }

3.1 Things to Try

Here are a couple things to try with the above application.

• Have a look at the coordinates displayed at the bottom of the screen in
EPSG:4326 and in EPSG:3005. You should be able to see that one is
measured in degrees and the other measured in meters.

• Make a button to print out the map coordinate reference system as
human readable “Well Known Text”. This is the same text format used by
a shapef le's “prj” side car fle!

• Visit the JTS website and look up how to simplify geometry. Modify the
example to simplify the geometry before writing it out - there are
several techniques to try (the TopologyPreservingSimplifer and
DouglasPeuckerSimplifer classes are recommended).

This exercise is a common form of data preparation.

• One thing that can be dangerous about geometry – especially ones you
make yourself – is that they can be invalid. The geoemtry.isValid()
method allows you to test for invalid geometry – such as a polygon that
forms a fgure eight; or a LineString with only one point. Add code to test
for invalid geometry.

Geometry and CRS Workbook 9/15

• There are many tricks to fxing an invalid geometry. An easy place to
start is to use geometry.bufer(0). Use this tip to build your own shapef le
cleaner.

Geometry and CRS Workbook 10/15

4 Geometry

Geometry is literally the shape of GIS.

Usually there is one geometry for a feature; and the attributes provide

further description or measurement. It is sometimes hard to think of the

geometry as being another attribute. It helps if you consider situations

where there are several representations of the same thing.

We can represent the city of Sydney:

• as a single location, ie. a point

• as the city limits (so you can tell when you are inside Sydney), ie. a
polygon

Point

Here is an example of creating a point using the Well-Known-Text (WKT)

format.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory(null);

WKTReader reader = new WKTReader(geometryFactory);
Point point = (Point) reader.read("POINT (1 1)");

You can also create a Point by hand using the GeometryFactory directly.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory(null);

Coordinate coord = new Coordinate(1, 1);
Point point = geometryFactory.createPoint(coord);

Line

Here is an example of a WKT LineString.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory(null);

WKTReader reader = new WKTReader(geometryFactory);
LineString line = (LineString) reader.read("LINESTRING(0 2, 2 0, 8 6)");

A LineString is a sequence of segments in the same manner as a java

String is a sequence of characters.

Here is an example using the Geometry Factory.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory(null);

Coordinate[] coords =

Geometry and CRS Workbook 11/15

 new Coordinate[] {new Coordinate(0, 2), new Coordinate(2, 0), new Coordinate(8, 6) };

LineString line = geometryFactory.createLineString(coordinates);

Polygon

A polygon is formed in WKT by constructing an outer ring, and then a

series of holes.

GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory(null);

WKTReader reader = new WKTReader(geometryFactory);
Polygon polygon = (Polygon) reader.read("POLYGON((20 10, 30 0, 40 10, 30 20, 20 10))");

Why not use Java Shape!

Java Shape is actually very useful and covers ideas mentioned above – it is

however very focused on drawing.

Geometry allows us to handle the “information” part of Geographic

Information System – we can use it to create new geometry and test the

relationships between geometries.

 // Create Geometry using other Geometry
 Geometry smoke = fire.buffer(10);
 Geometry evacuate = cities.intersection(smoke);

 // test important relationships
 boolean onFire = me.intersects(fire);
 boolean thatIntoYou = me.disjoint(you);
 boolean run = you.isWithinDistance(fire, 2);

 // relationships actually captured as a fancy
 // String called an intersection matrix
 //
 IntersectionMatrix matrix = he.relate(you);
 thatIntoYou = matrix.isDisjoint();

 // it really is a fancy string; you can do
 // pattern matching to sort out what the geometries
 // being compared are up to
 boolean disjoint = matrix.matches("FF*FF****");

You are encouraged to read the javadocs for JTS which contains helpful

defnitions.

The disjoint predicate has the following equivalent defnitions:

• The two geometries have no point in common

• The DE-9IM Intersection Matrix for the two geometries is FF*FF****

• !g.intersects(this) (disjoint is the inverse of intersects)

Geometry and CRS Workbook 12/15

5 Coordinate Reference System

Earlier we talked about the JTS library which provides our data model for

Geometry. This is the real rocket science for map making – the idea of a

shape and enough math to do something fun with it.

But there is one question we have not answered yet – what does a

geometry mean?

You may think I am joking but the question is serious. A Geometry is just a

bunch of math (a set of points in the mathematical sense). They have no

meaning on their own.

An easier example is the number 3. The number 3 has no meaning on its

own. It is only when you attach a “unit” that the number 3 can represent a

concept. 3 metres. 3 feet. 3 score years.

In order to provide a Geometry with meaning we need to know what those

individual points mean. We need to know where they are located – and the

data structure that tells us this is called the Coordinate Reference System.

The Coordinate Reference System defnes a couple of concepts for us:

• It defnes the axis used – along with the units of measure.

So you can have lat measured in degrees , and lon measured in degrees
from the equator.

Or you can have x measured in metres, and y measured in metres which
is very handy for calculating distances or areas.

• It defnes the shape of the world. No really it does – not all coordinate
reference systems imagine the same shape of the world. The CRS used
by Google pretends the world is a perfect sphere, while the CRS used by
“EPSG:4326” has a diferent shape in mind – so if you mix them up your
data will be drawn in the wrong place (by up to 20 km).

As a programmer I view the coordinate reference system idea as a neat

hack. Everyone is really talking about points in 3D space here – and rather

than having to record x,y,z all the time we are cheating and only recording

two points (lat,lon) and using a model of the shape of the earth in order to

calculate z.

Geometry and CRS Workbook 13/15

5.1.1 EPSG Codes

The frst group that cared about this stuf enough to write it down in

database form was the European Petroleum Standards Group (EPSG). The

database is distributed in Microsoft Access and is ported into all kinds of

other forms including the gt-hsql jar included with GeoTools.

EPSG:4326

EPSG Projection 4326 - WGS 84

This is the big one – information measured by

lat/lon using decimal degrees.

CRS.decode(“EPSG:4326”);

DefaultGeographicCRS.WGS84;

EPSG: 3785

Popular Visualisation CRS / Mercator

The of cial code for the “Google map”

projection used by a lot of web mapping

applications. It is nice to pretend the world is a

sphere (it makes your math very fast) – but it

looks really odd if you draw a square in Oslo.

CRS.decode(“EPSG:3785”);

EPSG:3005

NAD83 / BC Albers

Example of an “equal area” projection for the

west coast of Canada. The axes are measured

in metres which is handy for calculating

distance or area.

CRS.decode(“EPSG:3005”);

Note that both EPSG:4326 and EPSG:3785 are using lat/lon – but arrive at a

very diferent shape for their map.

Geometry and CRS Workbook 14/15

The pictures

here were

provided by

the Spatial

Reference

Website

http://spatialreference.org/ref/epsg/3005/
http://spatialreference.org/
http://spatialreference.org/
http://spatialreference.org/
http://spatialreference.org/ref/epsg/3785/
http://spatialreference.org/ref/epsg/4326/

5.1.2 Axis Order

This is also where I need to make a public

apology. As computer scientists we occasionally

get fed up when we work in a domain where “they

are doing it wrong”. Map making is an example of

this. When we arrived on the scene maps were

always recording position in latitude, followed by

longitude; that is, with the north-south axis frst

and the east-west access second. When you draw

that on the screen quickly it looks like the world is

sideways as the coordinates are in”y/x” to my

way of thinking and you need to swap them

before drawing.

We are so used to working in x/y order that we

would end up assuming it was supposed to be this

way – and have been fghting with map makers

ever since.

So if you see some data in “EPSG:4326” you have no idea if it is in x/y

order or in y/x order.

We have fnally sorted out an alternative; rather then EPSG:4326 we are

supposed to use “urn:ogc:def:crs:EPSG:6.6:4326“. If you ever see that you

can be sure that a) someone really knows what they are doing and b) the

data is recorded in exactly the order defned by the EPSG database.

Geometry and CRS Workbook 15/15

When

navigating by

stars you can

fgure out

latitude by

the angle to

the north star

– but you

need to guess

for longitude

based on how

many days

you have

been

traveling.

Hence y/x

order.

	1 Welcome
	2 CRS Lab
	2.1 Running the Application

	3 Reproject a Shapefile
	3.1 Things to Try

	4 Geometry
	5 Coordinate Reference System
	5.1.1 EPSG Codes
	5.1.2 Axis Order

