
Name
ST_PixelHeight — Returns the pixel height in geometric units of the spatial reference system.

Synopsis
	double precision fsfuncST_PixelHeight(rast);	

raster rast;

Description
Returns the height of a pixel in geometric units of the spatial reference system. In the common case where
				there is no skew, the pixel height is just the scale ratio between geometric coordinates and raster pixels.
Refer to ST_PixelWidth for a diagrammatic visualization of the relationship.

Examples: Rasters with no skew
SELECT ST_Height(rast) As rastheight, ST_PixelHeight(rast) As pixheight,
 ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
 ST_SkewY(rast) As skewy
FROM dummy_rast;

 rastheight | pixheight | scalex | scaley | skewx | skewy
------------+-----------+--------+--------+-------+----------
 20 | 3 | 2 | 3 | 0 | 0
 5 | 0.05 | 0.05 | -0.05 | 0 | 0
			

Examples: Rasters with skew different than 0
SELECT ST_Height(rast) As rastheight, ST_PixelHeight(rast) As pixheight,
 ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
 ST_SkewY(rast) As skewy
FROM (SELECT ST_SetSKew(rast,0.5,0.5) As rast
 FROM dummy_rast) As skewed;

rastheight | pixheight | scalex | scaley | skewx | skewy
-----------+-------------------+--------+--------+-------+----------
 20 | 3.04138126514911 | 2 | 3 | 0.5 | 0.5
 5 | 0.502493781056044 | 0.05 | -0.05 | 0.5 | 0.5
			

See Also

				ST_PixelWidth,
				ST_ScaleX,
				ST_ScaleY,
				ST_SkewX,
				ST_SkewY
			

Name
ST_OffsetCurve —
Return an offset line at a given distance and side from an input line. Useful for computing parallel lines about a center line
			

Synopsis
	geometry fsfuncST_OffsetCurve(line, 	
	 	signed_distance, 	
	 	style_parameters='');	

geometry line;
float signed_distance;
text style_parameters='';

Description

Return an offset line at a given distance and side from an input line.
All points of the returned geometries are not further than the given
distance from the input geometry.
				

For positive distance the offset will be at the left side of the input line
and retain the same direction. For a negative distance it'll be at the right
side and in the opposite direction.
				

Availability: 2.0 - requires GEOS >= 3.2, improved with GEOS >= 3.3
				

The optional third parameter allows specifying a list of blank-separated
key=value pairs to tweak operations as follows:

	'quad_segs=#' : number of segments used to approximate a quarter circle (defaults to 8).

	'join=round|mitre|bevel' : join style (defaults to "round"). 'miter' is also accepted as a synonym for 'mitre'.

	'mitre_limit=#.#' : mitre ratio limit (only affects mitred join style). 'miter_limit' is also accepted as a synonym for 'mitre_limit'.

				

Units of distance are measured in units of the spatial reference system.
				
The inputs can only be LINESTRINGS.
Performed by the GEOS module.
Note

This function ignores the third dimension (z) and will always give a
2-d result even when presented with a 3d-geometry.

Examples
Compute an open buffer around roads

SELECT ST_Union(
 ST_OffsetCurve(f.the_geom, f.width/2, 'quad_segs=4 join=round'),
 ST_OffsetCurve(f.the_geom, -f.width/2, 'quad_segs=4 join=round')
) as track
FROM someroadstable;

				
	[image: Examples]15, 'quad_segs=4 join=round' original line
and its offset 15 units.

				

SELECT ST_AsText(ST_OffsetCurve(ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
	44 16,24 16,20 16,18 16,17 17,
	16 18,16 20,16 40,16 60,16 80,16 100,
	16 120,16 140,16 160,16 180,16 195)'),
	15, 'quad_segs=4 join=round'));
--output --
LINESTRING(164 1,18 1,12.2597485145237 2.1418070123307,
	7.39339828220179 5.39339828220179,
	5.39339828220179 7.39339828220179,
	2.14180701233067 12.2597485145237,1 18,1 195)
				

						
	[image: Examples]-15, 'quad_segs=4 join=round' original line
								and its offset -15 units

				

SELECT ST_AsText(ST_OffsetCurve(geom,
	-15, 'quad_segs=4 join=round')) As notsocurvy
	FROM ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
	44 16,24 16,20 16,18 16,17 17,
	16 18,16 20,16 40,16 60,16 80,16 100,
	16 120,16 140,16 160,16 180,16 195)') As geom;
-- notsocurvy --
LINESTRING(31 195,31 31,164 31)
				

						

	[image: Examples]double-offset to get more curvy, note the first reverses direction, so -30 + 15 = -15

				

SELECT ST_AsText(ST_OffsetCurve(ST_OffsetCurve(geom,
	-30, 'quad_segs=4 join=round'), -15, 'quad_segs=4 join=round')) As morecurvy
	FROM ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
	44 16,24 16,20 16,18 16,17 17,
	16 18,16 20,16 40,16 60,16 80,16 100,
	16 120,16 140,16 160,16 180,16 195)') As geom;
-- morecurvy --
LINESTRING(164 31,46 31,40.2597485145236 32.1418070123307,
35.3933982822018 35.3933982822018,
32.1418070123307 40.2597485145237,31 46,31 195)
				

						
	[image: Examples]double-offset to get more curvy,combined with regular offset 15 to get parallel lines. Overlaid with original.

				
SELECT ST_AsText(ST_Collect(
	ST_OffsetCurve(geom, 15, 'quad_segs=4 join=round'),
	ST_OffsetCurve(ST_OffsetCurve(geom,
	-30, 'quad_segs=4 join=round'), -15, 'quad_segs=4 join=round')
)
) As parallel_curves
	FROM ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
	44 16,24 16,20 16,18 16,17 17,
	16 18,16 20,16 40,16 60,16 80,16 100,
	16 120,16 140,16 160,16 180,16 195)') As geom;
-- parallel curves --
MULTILINESTRING((164 1,18 1,12.2597485145237 2.1418070123307,
7.39339828220179 5.39339828220179,5.39339828220179 7.39339828220179,
2.14180701233067 12.2597485145237,1 18,1 195),
(164 31,46 31,40.2597485145236 32.1418070123307,35.3933982822018 35.3933982822018,
32.1418070123307 40.2597485145237,31 46,31 195))
				

						

	[image: Examples]15, 'quad_segs=4 join=bevel' shown with original line

				

SELECT ST_AsText(ST_OffsetCurve(ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
	44 16,24 16,20 16,18 16,17 17,
	16 18,16 20,16 40,16 60,16 80,16 100,
	16 120,16 140,16 160,16 180,16 195)'),
		15, 'quad_segs=4 join=bevel'));
-- output --
LINESTRING(164 1,18 1,7.39339828220179 5.39339828220179,
	5.39339828220179 7.39339828220179,1 18,1 195)
				

						
	[image: Examples]15,-15 collected, join=mitre mitre_limit=2.1

				

SELECT ST_AsText(ST_Collect(
	ST_OffsetCurve(geom, 15, 'quad_segs=4 join=mitre mitre_limit=2.2'),
	ST_OffsetCurve(geom, -15, 'quad_segs=4 join=mitre mitre_limit=2.2')
))
	FROM ST_GeomFromText(
'LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,
	44 16,24 16,20 16,18 16,17 17,
	16 18,16 20,16 40,16 60,16 80,16 100,
	16 120,16 140,16 160,16 180,16 195)') As geom;
-- output --
MULTILINESTRING((164 1,11.7867965644036 1,1 11.7867965644036,1 195),
	(31 195,31 31,164 31))
				

						

See Also
ST_Buffer

Name
PostGIS_Raster_Lib_Build_Date — Reports full raster library build date.

Synopsis
	text fsfuncPostGIS_Raster_Lib_Build_Date();	

;

Description
Reports raster build date

Examples
SELECT PostGIS_Raster_Lib_Build_Date();
postgis_raster_lib_build_date

2010-04-28 21:15:10

See Also
 PostGIS_Raster_Lib_Version

Name
DropTopology — Use with caution: Drops a topology schema and deletes its reference from topology.topology table and references to tables in that schema from the geometry_columns table.

Synopsis
	integer fsfuncDropTopology(topology_schema_name);	

varchar topology_schema_name;

Description
Drops a topology schema and deletes its reference from topology.topology table and references to tables in that schema from the geometry_columns table.
 This function should be USED WITH CAUTION, as it could destroy data you care about. If the schema does not exist, it just removes reference entries the named schema.
Availability: 1.?

Examples
Cascade drops the ma_topo schema and removes all references to it in topology.topology and geometry_columns.
SELECT topology.DropTopology('ma_topo');

See Also

Name
ST_SetPoint — Replace point of a linestring with a given point.

Synopsis
	geometry fsfuncST_SetPoint(linestring, 	
	 	zerobasedposition, 	
	 	point);	

geometry linestring;
integer zerobasedposition;
geometry point;

Description
Replace point N of linestring with given point. Index is
			0-based.Negative index are counted backwards, so that -1 is last point.
				This is especially useful in triggers when trying to maintain relationship of joints when one vertex moves.
Availability: 1.1.0
Updated 2.3.0 : negative indexing
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

--Change first point in line string from -1 3 to -1 1
SELECT ST_AsText(ST_SetPoint('LINESTRING(-1 2,-1 3)', 0, 'POINT(-1 1)'));
	 st_astext

 LINESTRING(-1 1,-1 3)

---Change last point in a line string (lets play with 3d linestring this time)
SELECT ST_AsEWKT(ST_SetPoint(foo.the_geom, ST_NumPoints(foo.the_geom) - 1, ST_GeomFromEWKT('POINT(-1 1 3)')))
FROM (SELECT ST_GeomFromEWKT('LINESTRING(-1 2 3,-1 3 4, 5 6 7)') As the_geom) As foo;
	 st_asewkt

LINESTRING(-1 2 3,-1 3 4,-1 1 3)

SELECT ST_AsText(ST_SetPoint(g, -3, p))
FROM ST_GEomFromText('LINESTRING(0 0, 1 1, 2 2, 3 3, 4 4)') AS g
	, ST_PointN(g,1) as p;
	 st_astext

LINESTRING(0 0,1 1,0 0,3 3,4 4)

			

See Also
ST_AddPoint, ST_NPoints, ST_NumPoints, ST_PointN, ST_RemovePoint

PostGIS 2.3.0beta1 Manual
Table of Contents
	1. Introduction
		Project Steering Committee
	Core Contributors Present
	Core Contributors Past
	Other Contributors
	More Information

	2. PostGIS Installation
		Short Version
	Install Requirements
	Getting the Source
	Compiling and Install from Source: Detailed
		Configuration
	Building
	Building PostGIS Extensions and Deploying them
	Testing
	Installation

	Creating a spatial database using EXTENSIONS
	Create a spatially-enabled database without using extensions
	Installing and Using the address standardizer
		Installing Regex::Assemble

	Installing, Upgrading Tiger Geocoder and loading data
		Tiger Geocoder Enabling your PostGIS database: Using Extension
	Tiger Geocoder Enabling your PostGIS database: Not Using Extensions
	Using Address Standardizer Extension with Tiger geocoder
	Loading Tiger Data
	Upgrading your Tiger Geocoder Install

	Create a spatially-enabled database from a template
	Upgrading
		Soft upgrade
	Hard upgrade

	Common Problems during installation
	Loader/Dumper

	3. PostGIS Frequently Asked Questions
	4. Using PostGIS: Data Management and Queries
		GIS Objects
		OpenGIS WKB and WKT
	PostGIS EWKB, EWKT and Canonical Forms
	SQL-MM Part 3

	PostGIS Geography Type
		Geography Basics
	When to use Geography Data type over Geometry data type
	Geography Advanced FAQ

	Using OpenGIS Standards
		The SPATIAL_REF_SYS Table and Spatial Reference Systems
	The GEOMETRY_COLUMNS VIEW
	Creating a Spatial Table
	Manually Registering Geometry Columns in geometry_columns
	Ensuring OpenGIS compliancy of geometries
	Dimensionally Extended 9 Intersection Model (DE-9IM)

	Loading GIS (Vector) Data
		Loading Data Using SQL
	shp2pgsql: Using the ESRI Shapefile Loader

	Retrieving GIS Data
		Using SQL to Retrieve Data
	Using the Dumper

	Building Indexes
		GiST Indexes
	BRIN Indexes
	Using Indexes

	Complex Queries
		Taking Advantage of Indexes
	Examples of Spatial SQL

	5. Raster Data Management, Queries, and Applications
		Loading and Creating Rasters
		Using raster2pgsql to load rasters
	Creating rasters using PostGIS raster functions

	Raster Catalogs
		Raster Columns Catalog
	Raster Overviews

	Building Custom Applications with PostGIS Raster
		PHP Example Outputting using ST_AsPNG in concert with other raster functions
	ASP.NET C# Example Outputting using ST_AsPNG in concert with other raster functions
	Java console app that outputs raster query as Image file
	Use PLPython to dump out images via SQL
	Outputting Rasters with PSQL

	6. Using PostGIS Geometry: Building Applications
		Using MapServer
		Basic Usage
	Frequently Asked Questions
	Advanced Usage
	Examples

	Java Clients (JDBC)
	C Clients (libpq)
		Text Cursors
	Binary Cursors

	7. Performance tips
		Small tables of large geometries
		Problem description
	Workarounds

	CLUSTERing on geometry indices
	Avoiding dimension conversion
	Tuning your configuration
		Startup
	Runtime

	8. PostGIS Reference
		PostgreSQL PostGIS Geometry/Geography/Box Types
	PostGIS Grand Unified Custom Variables (GUCs)
	Management Functions
	Geometry Constructors
	Geometry Accessors
	Geometry Editors
	Geometry Outputs
	Operators
	Spatial Relationships and Measurements
	SFCGAL Functions
	Geometry Processing
	Linear Referencing
	Temporal Support
	Long Transactions Support
	Miscellaneous Functions
	Exceptional Functions

	9. Raster Reference
		Raster Support Data types
	Raster Management
	Raster Constructors
	Raster Accessors
	Raster Band Accessors
	Raster Pixel Accessors and Setters
	Raster Editors
	Raster Band Editors
	Raster Band Statistics and Analytics
	Raster Outputs
	Raster Processing
		Map Algebra
	Built-in Map Algebra Callback Functions
	DEM (Elevation)
	Raster to Geometry

	Raster Operators
	Raster and Raster Band Spatial Relationships

	10. PostGIS Raster Frequently Asked Questions
	11. Topology
		Topology Types
	Topology Domains
	Topology and TopoGeometry Management
	Topology Constructors
	Topology Editors
	Topology Accessors
	Topology Processing
	TopoGeometry Constructors
	TopoGeometry Editors
	TopoGeometry Accessors
	TopoGeometry Outputs
	Topology Spatial Relationships

	12. Address Standardizer
		How the Parser Works
	Address Standardizer Types
	Address Standardizer Tables
	Address Standardizer Functions

	13. PostGIS Extras
		Tiger Geocoder

	14. PostGIS Special Functions Index
		PostGIS Aggregate Functions
	PostGIS Window Functions
	PostGIS SQL-MM Compliant Functions
	PostGIS Geography Support Functions
	PostGIS Raster Support Functions
	PostGIS Geometry / Geography / Raster Dump Functions
	PostGIS Box Functions
	PostGIS Functions that support 3D
	PostGIS Curved Geometry Support Functions
	PostGIS Polyhedral Surface Support Functions
	PostGIS Function Support Matrix
	New, Enhanced or changed PostGIS Functions
		PostGIS Functions new or enhanced in 2.3
	PostGIS Functions new or enhanced in 2.2
	PostGIS functions breaking changes in 2.2
	PostGIS Functions new or enhanced in 2.1
	PostGIS functions breaking changes in 2.1
	PostGIS Functions new, behavior changed, or enhanced in 2.0
	PostGIS Functions changed behavior in 2.0
	PostGIS Functions new, behavior changed, or enhanced in 1.5
	PostGIS Functions new, behavior changed, or enhanced in 1.4
	PostGIS Functions new in 1.3

	15. Reporting Problems
		Reporting Software Bugs
	Reporting Documentation Issues

	A. Appendix
		Release 2.2.1
	Release 2.2.0
	Release 2.1.8
	Release 2.1.7
	Release 2.1.6
	Release 2.1.5
	Release 2.1.4
	Release 2.1.3
	Release 2.1.2
	Release 2.1.1
	Release 2.1.0
	Release 2.0.5
	Release 2.0.4
	Release 2.0.3
	Release 2.0.2
	Release 2.0.1
	Release 2.0.0
	Release 1.5.4
	Release 1.5.3
	Release 1.5.2
	Release 1.5.1
	Release 1.5.0
	Release 1.4.0
	Release 1.3.6
	Release 1.3.5
	Release 1.3.4
	Release 1.3.3
	Release 1.3.2
	Release 1.3.1
	Release 1.3.0
	Release 1.2.1
	Release 1.2.0
	Release 1.1.6
	Release 1.1.5
	Release 1.1.4
	Release 1.1.3
	Release 1.1.2
	Release 1.1.1
	Release 1.1.0
	Release 1.0.6
	Release 1.0.5
	Release 1.0.4
	Release 1.0.3
	Release 1.0.2
	Release 1.0.1
	Release 1.0.0
	Release 1.0.0RC6
	Release 1.0.0RC5
	Release 1.0.0RC4
	Release 1.0.0RC3
	Release 1.0.0RC2
	Release 1.0.0RC1

Name
ST_Relate — Returns true if this Geometry is spatially related to
					anotherGeometry, by testing for intersections between the
					Interior, Boundary and Exterior of the two geometries as specified
					by the values in the intersectionMatrixPattern. If no intersectionMatrixPattern
					is passed in, then returns the maximum intersectionMatrixPattern that relates the 2 geometries.

Synopsis
	boolean fsfuncST_Relate(geomA, 	
	 	geomB, 	
	 	intersectionMatrixPattern);	

geometry geomA;
geometry geomB;
text intersectionMatrixPattern;

	text fsfuncST_Relate(geomA, 	
	 	geomB);	

geometry geomA;
geometry geomB;

	text fsfuncST_Relate(geomA, 	
	 	geomB, 	
	 	BoundaryNodeRule);	

geometry geomA;
geometry geomB;
integer BoundaryNodeRule;

Description
Version 1: Takes geomA, geomB, intersectionMatrix and Returns 1 (TRUE) if this Geometry is spatially related to
					anotherGeometry, by testing for intersections between the
					Interior, Boundary and Exterior of the two geometries as specified
					by the values in the DE-9IM matrix pattern.
This is especially useful for testing compound checks of intersection, crosses, etc in one step.
Do not call with a GeometryCollection as an argument
Note
This is the "allowable" version that returns a
			boolean, not an integer. This is defined in OGC spec

Note
This DOES NOT automagically include an index call. The reason for that
				is some relationships are anti e.g. Disjoint. If you are
				using a relationship pattern that requires intersection, then include the &&
				index call.

Version 2: Takes geomA and geomB and returns the the section called “Dimensionally Extended 9 Intersection Model (DE-9IM)”
Version 3: same as version 2, but allows to specify a boundary node rule (1:OGC/MOD2, 2:Endpoint, 3:MultivalentEndpoint, 4:MonovalentEndpoint)
Note
Do not call with a GeometryCollection as an argument

not in OGC spec, but implied. see s2.1.13.2
Performed by the GEOS module
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.25
Enhanced: 2.0.0 - added support for specifying boundary node rule (requires GEOS >= 3.0).

Examples

--Find all compounds that intersect and not touch a poly (interior intersects)
SELECT l.* , b.name As poly_name
	FROM polys As b
INNER JOIN compounds As l
ON (p.the_geom && b.the_geom
AND ST_Relate(l.the_geom, b.the_geom,'T********'));

SELECT ST_Relate(ST_GeometryFromText('POINT(1 2)'), ST_Buffer(ST_GeometryFromText('POINT(1 2)'),2));
st_relate

0FFFFF212

SELECT ST_Relate(ST_GeometryFromText('LINESTRING(1 2, 3 4)'), ST_GeometryFromText('LINESTRING(5 6, 7 8)'));
st_relate

FF1FF0102

SELECT ST_Relate(ST_GeometryFromText('POINT(1 2)'), ST_Buffer(ST_GeometryFromText('POINT(1 2)'),2), '0FFFFF212');
st_relate

t

SELECT ST_Relate(ST_GeometryFromText('POINT(1 2)'), ST_Buffer(ST_GeometryFromText('POINT(1 2)'),2), '*FF*FF212');
st_relate

t
		

See Also
ST_Crosses, the section called “Dimensionally Extended 9 Intersection Model (DE-9IM)”, ST_Disjoint, ST_Intersects, ST_Touches

Name
Get_Geocode_Setting — Returns value of specific setting stored in tiger.geocode_settings table.

Synopsis
	text fsfuncGet_Geocode_Setting(setting_name);	

text setting_name;

Description
Returns value of specific setting stored in tiger.geocode_settings table. Settings allow you to toggle debugging of functions. Later plans will be to control rating with settings. Current list of settings are as follows:
 name | setting | unit | category | short_desc
--------------------------------+---------+---------+-----------+--
 debug_geocode_address | false | boolean | debug | outputs debug information in notice log such as queries when geocode_address is called if true
 debug_geocode_intersection | false | boolean | debug | outputs debug information in notice log such as queries when geocode_intersection is called if true
 debug_normalize_address | false | boolean | debug | outputs debug information in notice log such as queries and intermediate expressions when normalize_address is called if true
 debug_reverse_geocode | false | boolean | debug | if true, outputs debug information in notice log such as queries and intermediate expressions when reverse_geocode
 reverse_geocode_numbered_roads | 0 | integer | rating | For state and county highways, 0 - no preference in name,
 1 - prefer the numbered highway name, 2 - prefer local state/county name
 use_pagc_address_parser | false | boolean | normalize | If set to true, will try to use the address_standardizer extension (via pagc_normalize_address)
 instead of tiger normalize_address built one
Changed: 2.2.0 : default settings are now kept in a table called geocode_settings_default. Use customized settingsa are in geocode_settings and only contain those that have been set by user.
Availability: 2.1.0

Example return debugging setting
SELECT get_geocode_setting('debug_geocode_address) As result;
result

false

See Also
Set_Geocode_Setting

Name
ST_RotateZ — Rotate a geometry rotRadians about the Z axis.

Synopsis
	geometry fsfuncST_RotateZ(geomA, 	
	 	rotRadians);	

geometry geomA;
float rotRadians;

Description
Rotate a geometry geomA - rotRadians about the Z axis.
Note
This is a synonym for ST_Rotate

Note
ST_RotateZ(geomA, rotRadians)
			is short-hand for SELECT ST_Affine(geomA, cos(rotRadians), -sin(rotRadians), 0, sin(rotRadians), cos(rotRadians), 0, 0, 0, 1, 0, 0, 0).

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.1.2. Name changed from RotateZ to ST_RotateZ in 1.2.2
Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

--Rotate a line 90 degrees along z-axis
SELECT ST_AsEWKT(ST_RotateZ(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), pi()/2));
		 st_asewkt

 LINESTRING(-2 1 3,-1 1 1)

 --Rotate a curved circle around z-axis
SELECT ST_AsEWKT(ST_RotateZ(the_geom, pi()/2))
FROM (SELECT ST_LineToCurve(ST_Buffer(ST_GeomFromText('POINT(234 567)'), 3)) As the_geom) As foo;

													 st_asewkt
--
 CURVEPOLYGON(CIRCULARSTRING(-567 237,-564.87867965644 236.12132034356,-564 234,-569.12132034356 231.87867965644,-567 237))

See Also
ST_Affine, ST_RotateX, ST_RotateY

Name
ST_WrapX — Wrap a geometry around an X value.

Synopsis
	geometry fsfuncST_WrapX(geom, 	
	 	wrap, 	
	 	move);	

geometry geom;
float8 wrap;
float8 move;

Description

This function splits the input geometries and then moves every resulting
component falling on the right (for negative 'move') or on the left (for
positive 'move') of given 'wrap' line in the direction specified by the
'move' parameter, finally re-unioning the pieces togheter.

Note

This is useful to "recenter" long-lat input to have features
of interest not spawned from one side to the other.

Availability: 2.3.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

-- Move all components of the given geometries whose bounding box
-- falls completely on the left of x=0 to +360
select ST_WrapX(the_geom, 0, 360);

-- Move all components of the given geometries whose bounding box
-- falls completely on the left of x=-30 to +360
select ST_WrapX(the_geom, -30, 360);
		

See Also
ST_ShiftLongitude

Name
ST_Crosses — Returns TRUE if the supplied geometries have some, but not all,
	 interior points in common.

Synopsis
	boolean fsfuncST_Crosses(g1, 	
	 	g2);	

geometry g1;
geometry g2;

Description
ST_Crosses takes two geometry objects and
	 returns TRUE if their intersection "spatially cross", that is, the
	 geometries have some, but not all interior points in common. The
	 intersection of the interiors of the geometries must not be the empty
	 set and must have a dimensionality less than the maximum dimension
	 of the two input geometries. Additionally, the intersection of the two
	 geometries must not equal either of the source geometries. Otherwise, it
	 returns FALSE.
In mathematical terms, this is expressed as:
TODO: Insert appropriate MathML markup here or use a gif.
	 Simple HTML markup does not work well in both IE and Firefox.
[image: Description]

The DE-9IM Intersection Matrix for the two geometries is:
	T*T****** (for Point/Line, Point/Area, and
		 Line/Area situations)

	T*****T** (for Line/Point, Area/Point, and
		 Area/Line situations)

	0******** (for Line/Line situations)

For any other combination of dimensions this predicate returns
	 false.
The OpenGIS Simple Features Specification defines this predicate
		only for Point/Line, Point/Area, Line/Line, and Line/Area situations.
		JTS / GEOS extends the definition to apply to Line/Point, Area/Point and
		Area/Line situations as well. This makes the relation
		symmetric.
Important
Do not call with a GEOMETRYCOLLECTION as an argument

Note
This function call will automatically include a bounding box
	 comparison that will make use of any indexes that are available on the
	 geometries.

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.13.3
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.29

Examples
The following illustrations all return TRUE.
	[image: Examples]MULTIPOINT / LINESTRING

	[image: Examples]MULTIPOINT / POLYGON

	[image: Examples]LINESTRING / POLYGON

	[image: Examples]LINESTRING / LINESTRING

Consider a situation where a user has two tables: a table of roads
	 and a table of highways.
	
CREATE TABLE roads (
 id serial NOT NULL,
 the_geom geometry,
 CONSTRAINT roads_pkey PRIMARY KEY (road_id)
);

	
CREATE TABLE highways (
 id serial NOT NULL,
 the_gem geometry,
 CONSTRAINT roads_pkey PRIMARY KEY (road_id)
);

To determine a list of roads that cross a highway, use a query
	 similiar to:
SELECT roads.id
FROM roads, highways
WHERE ST_Crosses(roads.the_geom, highways.the_geom);

Release 1.0.0RC6

Release date: 2005/03/30
Sixth release candidate for 1.0.0. Contains a few bug fixes and
 cleanups.
Upgrading

You need a dump/reload to upgrade from precedent releases. See
 the upgrading chapter for more
 informations.

Library changes

BUGFIX in multi()
early return [when noop] from multi()

Scripts changes

dropped {x,y}{min,max}(box2d) functions

Other changes

BUGFIX in postgis_restore.pl scrip
BUGFIX in dumper's 64bit support

Release 1.2.1

Release date: 2007/01/11
This release provides bug fixes in PostgreSQL 8.2 support and some
 small performance enhancements.
Changes

Fixed point-in-polygon shortcut bug in Within().
Fixed PostgreSQL 8.2 NULL handling for indexes.
Updated RPM spec files.
Added short-circuit for Transform() in no-op case.
JDBC: Fixed JTS handling for multi-dimensional geometries
 (thanks to Thomas Marti for hint and partial patch). Additionally, now
 JavaDoc is compiled and packaged. Fixed classpath problems with GCJ.
 Fixed pgjdbc 8.2 compatibility, losing support for jdk 1.3 and
 older.

Release 1.1.2

Release date: 2006/03/30
This is an bugfix release including some new functions and
 portability enhancements. Upgrade is
 encouraged.
Upgrading

If you are upgrading from release 1.0.3 or later follow the
 soft upgrade procedure.
If you are upgrading from a release between 1.0.0RC6
 and 1.0.2 (inclusive) and really want a live upgrade read
 the upgrade section of the
 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

Bug fixes

BUGFIX in SnapToGrid() computation of output bounding box
BUGFIX in EnforceRHR()
jdbc2 SRID handling fixes in JTS code
Fixed support for 64bit archs

New functionalities

Regress tests can now be run *before* postgis
 installation
New affine() matrix transformation functions
New rotate{,X,Y,Z}() function
Old translating and scaling functions now use affine()
 internally
Embedded access control in estimated_extent() for builds against
 pgsql >= 8.0.0

Other changes

More portable ./configure script
Changed ./run_test script to have more sane default
 behaviour

Name
ST_MPolyFromText — Makes a MultiPolygon Geometry from WKT with the given SRID. If SRID is
			not give, it defaults to 0.

Synopsis
	geometry fsfuncST_MPolyFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

	geometry fsfuncST_MPolyFromText(WKT);	

text WKT;

Description
Makes a MultiPolygon from WKT with the given SRID. If SRID is
			not give, it defaults to 0.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Throws an error if the WKT is not a MULTIPOLYGON
Note
If you are absolutely sure all your WKT geometries are multipolygons, don't use this function.
				It is slower than ST_GeomFromText since it adds an additional validation step.
			

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 9.6.4

Examples
SELECT ST_MPolyFromText('MULTIPOLYGON(((0 0 1,20 0 1,20 20 1,0 20 1,0 0 1),(5 5 3,5 7 3,7 7 3,7 5 3,5 5 3)))');
SELECt ST_MPolyFromText('MULTIPOLYGON(((-70.916 42.1002,-70.9468 42.0946,-70.9765 42.0872,-70.9754 42.0875,-70.9749 42.0879,-70.9752 42.0881,-70.9754 42.0891,-70.9758 42.0894,-70.9759 42.0897,-70.9759 42.0899,-70.9754 42.0902,-70.9756 42.0906,-70.9753 42.0907,-70.9753 42.0917,-70.9757 42.0924,-70.9755 42.0928,-70.9755 42.0942,-70.9751 42.0948,-70.9755 42.0953,-70.9751 42.0958,-70.9751 42.0962,-70.9759 42.0983,-70.9767 42.0987,-70.9768 42.0991,-70.9771 42.0997,-70.9771 42.1003,-70.9768 42.1005,-70.977 42.1011,-70.9766 42.1019,-70.9768 42.1026,-70.9769 42.1033,-70.9775 42.1042,-70.9773 42.1043,-70.9776 42.1043,-70.9778 42.1048,-70.9773 42.1058,-70.9774 42.1061,-70.9779 42.1065,-70.9782 42.1078,-70.9788 42.1085,-70.9798 42.1087,-70.9806 42.109,-70.9807 42.1093,-70.9806 42.1099,-70.9809 42.1109,-70.9808 42.1112,-70.9798 42.1116,-70.9792 42.1127,-70.979 42.1129,-70.9787 42.1134,-70.979 42.1139,-70.9791 42.1141,-70.9987 42.1116,-71.0022 42.1273,
	-70.9408 42.1513,-70.9315 42.1165,-70.916 42.1002)))',4326);

See Also
ST_GeomFromText, ST_SRID

Name
ST_Contains — Returns true if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies in the interior of A.

Synopsis
	boolean fsfuncST_Contains(geomA, 	
	 	geomB);	

geometry
			geomA;
geometry
			geomB;

Description
Geometry A contains Geometry B if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies in the interior of A.
		An important subtlety of this definition is that A does not contain its boundary, but A does contain itself. Contrast that to ST_ContainsProperly where geometry
		A does not Contain Properly itself.
Returns TRUE if geometry B is completely inside geometry A. For this function to make
		sense, the source geometries must both be of the same coordinate projection,
		having the same SRID. ST_Contains is the inverse of ST_Within. So ST_Contains(A,B) implies ST_Within(B,A) except in the case of
		invalid geometries where the result is always false regardless or not defined.
Performed by the GEOS module
Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.
Important
Do not call with a GEOMETRYCOLLECTION as an argument

Important
Do not use this function with invalid geometries. You will get unexpected results.

This function call will automatically include a bounding box
			comparison that will make use of any indexes that are available on
			the geometries. To avoid index use, use the function
			_ST_Contains.
NOTE: this is the "allowable" version that returns a
			boolean, not an integer.
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3
		- same as within(geometry B, geometry A)
[image: Description] This method implements the SQL/MM specification.	SQL-MM 3: 5.1.31
There are certain subtleties to ST_Contains and ST_Within that are not intuitively obvious.
			For details check out Subtleties of OGC Covers, Contains, Within

Examples
The ST_Contains predicate returns TRUE in all the following illustrations.
	[image: Examples]LINESTRING / MULTIPOINT

	[image: Examples]POLYGON / POINT

	[image: Examples]POLYGON / LINESTRING

	[image: Examples]POLYGON / POLYGON

The ST_Contains predicate returns FALSE in all the following illustrations.
	[image: Examples]POLYGON / MULTIPOINT

	[image: Examples]POLYGON / LINESTRING

-- A circle within a circle
SELECT ST_Contains(smallc, bigc) As smallcontainsbig,
	 ST_Contains(bigc,smallc) As bigcontainssmall,
	 ST_Contains(bigc, ST_Union(smallc, bigc)) as bigcontainsunion,
	 ST_Equals(bigc, ST_Union(smallc, bigc)) as bigisunion,
	 ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
	 ST_Contains(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
			 ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;

-- Result
 smallcontainsbig | bigcontainssmall | bigcontainsunion | bigisunion | bigcoversexterior | bigcontainsexterior
------------------+------------------+------------------+------------+-------------------+---------------------
 f | t | t | t | t | f

-- Example demonstrating difference between contains and contains properly
SELECT ST_GeometryType(geomA) As geomtype, ST_Contains(geomA,geomA) AS acontainsa, ST_ContainsProperly(geomA, geomA) AS acontainspropa,
 ST_Contains(geomA, ST_Boundary(geomA)) As acontainsba, ST_ContainsProperly(geomA, ST_Boundary(geomA)) As acontainspropba
FROM (VALUES (ST_Buffer(ST_Point(1,1), 5,1)),
			 (ST_MakeLine(ST_Point(1,1), ST_Point(-1,-1))),
			 (ST_Point(1,1))
) As foo(geomA);

 geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
--------------+------------+----------------+-------------+-----------------
ST_Polygon | t | f | f | f
ST_LineString | t | f | f | f
ST_Point | t | t | f | f

See Also
ST_Boundary, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Equals, ST_Within

Name
ST_PixelAsPolygons — Returns the polygon geometry that bounds every pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel.

Synopsis
	setof record fsfuncST_PixelAsPolygons(rast, 	
	 	band=1, 	
	 	exclude_nodata_value=TRUE);	

raster rast;
integer band=1;
boolean exclude_nodata_value=TRUE;

Description
Returns the polygon geometry that bounds every pixel of a raster band along with the value (double precision), the X and the Y raster coordinates (integers) of each pixel.
Note

						ST_PixelAsPolygons returns one polygon geometry for every pixel. This is different than ST_DumpAsPolygons where each geometry represents one or more pixels with the same pixel value.
					

Note

						When exclude_nodata_value = TRUE, only those pixels whose values are not NODATA are returned as polygons.
					

Availability: 2.0.0
Enhanced: 2.1.0 exclude_nodata_value optional argument was added.
Changed: 2.1.1 Changed behavior of exclude_nodata_value.

Examples

-- get raster pixel polygon
SELECT (gv).x, (gv).y, (gv).val, ST_AsText((gv).geom) geom
FROM (SELECT ST_PixelAsPolygons(
 ST_SetValue(ST_SetValue(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 0.001, -0.001, 0.001, 0.001, 4269),
 '8BUI'::text, 1, 0),
 2, 2, 10),
 1, 1, NULL)
) gv
) foo;

 x | y | val | geom
---+---+---
 1 | 1 | | POLYGON((0 0,0.001 0.001,0.002 0,0.001 -0.001,0 0))
 1 | 2 | 1 | POLYGON((0.001 -0.001,0.002 0,0.003 -0.001,0.002 -0.002,0.001 -0.001))
 2 | 1 | 1 | POLYGON((0.001 0.001,0.002 0.002,0.003 0.001,0.002 0,0.001 0.001))
 2 | 2 | 10 | POLYGON((0.002 0,0.003 0.001,0.004 0,0.003 -0.001,0.002 0))

See Also

					ST_DumpAsPolygons,
					ST_PixelAsPolygon,
					ST_PixelAsPoint,
					ST_PixelAsPoints,
					ST_PixelAsCentroid,
					ST_PixelAsCentroids,
					ST_AsText
				

Name
ST_MemSize — Returns the amount of space (in bytes) the geometry takes.

Synopsis
	integer fsfuncST_MemSize(geomA);	

geometry geomA;

Description
Returns the amount of space (in bytes) the geometry takes.
This is a nice compliment to PostgreSQL built in functions pg_column_size, pg_size_pretty, pg_relation_size, pg_total_relation_size.
Note
pg_relation_size which gives the byte size of a table may return byte size lower than ST_MemSize. This is because
		pg_relation_size does not add toasted table contribution and large geometries are stored in TOAST tables.
pg_total_relation_size - includes, the table, the toasted tables, and the indexes.
pg_column_size returns how much space a geometry would take in a column considering compression, so may be lower than ST_MemSize

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Changed: 2.2.0 name changed to ST_MemSize to follow naming convention. In prior versions this function was called ST_Mem_Size, old name deprecated though still available.

Examples

--Return how much byte space Boston takes up in our Mass data set
SELECT pg_size_pretty(SUM(ST_MemSize(the_geom))) as totgeomsum,
pg_size_pretty(SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize(the_geom) ELSE 0 END)) As bossum,
CAST(SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize(the_geom) ELSE 0 END)*1.00 /
		SUM(ST_MemSize(the_geom))*100 As numeric(10,2)) As perbos
FROM towns;

totgeomsum	bossum	perbos
----------	------	------
1522 kB		30 kB	1.99

SELECT ST_MemSize(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)'));

73

--What percentage of our table is taken up by just the geometry
SELECT pg_total_relation_size('public.neighborhoods') As fulltable_size, sum(ST_MemSize(the_geom)) As geomsize,
sum(ST_MemSize(the_geom))*1.00/pg_total_relation_size('public.neighborhoods')*100 As pergeom
FROM neighborhoods;
fulltable_size geomsize pergeom
--
262144 96238	 36.71188354492187500000
	

See Also

Name
EnableLongTransactions — Enable long transaction support. This function creates the
			required metadata tables, needs to be called once before using the
			other functions in this section. Calling it twice is
			harmless.

Synopsis
	text fsfuncEnableLongTransactions();	

;

Description
Enable long transaction support. This function creates the
			required metadata tables, needs to be called once before using the
			other functions in this section. Calling it twice is
			harmless.
Creates a meta table called authorization_table and a view called authorized_tables
Availability: 1.1.3

Examples
SELECT EnableLongTransactions();
--result--
Long transactions support enabled
		

See Also
DisableLongTransactions

Name
GetTopologyName — Returns the name of a topology (schema) given the id of the topology.

Synopsis
	varchar fsfuncGetTopologyName(topology_id);	

integer topology_id;

Description
Returns the topology name (schema) of a topology from the topology.topology table given the topology id of the topology.
Availability: 1.?

Examples
SELECT topology.GetTopologyName(1) As topo_name;
 topo_name

 ma_topo

See Also

	CreateTopology,
	DropTopology,
	GetTopologyID,
	GetTopologySRID
				

Retrieving GIS Data

Data can be extracted from the database using either SQL or the
	Shape file loader/dumper. In the section on SQL we will discuss some of
	the operators available to do comparisons and queries on spatial
	tables.
Using SQL to Retrieve Data

The most straightforward means of pulling data out of the
 database is to use a SQL select query to reduce the number of RECORDS and COLUMNS returned
 and dump the resulting columns
 into a parsable text file:
db=# SELECT road_id, ST_AsText(road_geom) AS geom, road_name FROM roads;

road_id | geom | road_name
--------+---+-----------
	 1 | LINESTRING(191232 243118,191108 243242) | Jeff Rd
	 2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd
	 3 | LINESTRING(192783 228138,192612 229814) | Paul St
	 4 | LINESTRING(189412 252431,189631 259122) | Graeme Ave
	 5 | LINESTRING(190131 224148,190871 228134) | Phil Tce
	 6 | LINESTRING(198231 263418,198213 268322) | Dave Cres
	 7 | LINESTRING(218421 284121,224123 241231) | Chris Way
(6 rows)
However, there will be times when some kind of restriction is
	 necessary to cut down the number of fields returned. In the case of
	 attribute-based restrictions, just use the same SQL syntax as normal
	 with a non-spatial table. In the case of spatial restrictions, the
	 following operators are available/useful:
	&&
	This operator tells whether the bounding box of one geometry
			intersects the bounding box of another.

	ST_OrderingEquals
	This tests whether two geometries are
			geometrically identical. For example, if 'POLYGON((0 0,1 1,1 0,0
			0))' is the same as 'POLYGON((0 0,1 1,1 0,0 0))' (it is).

	=
	This operator is a little more naive, it only tests whether
			the bounding boxes of two geometries are the same.

Next, you can use these operators in queries. Note that when
	 specifying geometries and boxes on the SQL command line, you must
	 explicitly turn the string representations into geometries by using the
	 "ST_GeomFromText()" function. The 312 is a fictitious spatial reference system that matches our data.
	 So, for example:
SELECT road_id, road_name
 FROM roads
 WHERE ST_OrderingEquals(roads_geom , ST_GeomFromText('LINESTRING(191232 243118,191108 243242)',312)) ;
The above query would return the single record from the
	 "ROADS_GEOM" table in which the geometry was equal to that value.
When using the "&&" operator, you can specify either a
	 BOX3D as the comparison feature or a GEOMETRY. When you specify a
	 GEOMETRY, however, its bounding box will be used for the
	 comparison.
SELECT road_id, road_name
FROM roads
WHERE roads_geom && ST_GeomFromText('POLYGON((...))',312);
The above query will use the bounding box of the polygon for
	 comparison purposes.
The most common spatial query will probably be a "frame-based"
	 query, used by client software, like data browsers and web mappers, to
	 grab a "map frame" worth of data for display. Using a "BOX3D" object for
	 the frame, such a query looks like this:
SELECT ST_AsText(roads_geom) AS geom
FROM roads
WHERE
 roads_geom && ST_MakeEnvelope(191232, 243117,191232, 243119,312);
Note the use of the SRID 312, to specify the projection of the envelope.

Using the Dumper

The pgsql2shp table dumper connects directly
	 to the database and converts a table (possibly defined by a query) into
	 a shape file. The basic syntax is:
pgsql2shp [<options>] <database> [<schema>.]<table>
pgsql2shp [<options>] <database> <query>
The commandline options are:
	-f <filename>
	Write the output to a particular filename.

	-h <host>
	The database host to connect to.

	-p <port>
	The port to connect to on the database host.

	-P <password>
	The password to use when connecting to the database.

	-u <user>
	The username to use when connecting to the database.

	-g <geometry column>
	In the case of tables with multiple geometry columns, the
			geometry column to use when writing the shape file.

	-b
	Use a binary cursor. This will make the operation faster,
			but will not work if any NON-geometry attribute in the table lacks
			a cast to text.

	-r
	Raw mode. Do not drop the gid field, or
			escape column names.

	-d
	For backward compatibility: write a 3-dimensional shape file
			when dumping from old (pre-1.0.0) postgis databases (the default
			is to write a 2-dimensional shape file in that case). Starting
			from postgis-1.0.0+, dimensions are fully encoded.

	-m filename
	 Remap identifiers to ten character names.
			The content of the file is lines of two symbols separated by
			a single white space and no trailing or leading space:
			VERYLONGSYMBOL SHORTONE
			ANOTHERVERYLONGSYMBOL SHORTER
			etc.

Name
ST_NumBands — Returns the number of bands in the raster object.

Synopsis
	integer fsfuncST_NumBands(rast);	

raster rast;

Description
Returns the number of bands in the raster object.

Examples
SELECT rid, ST_NumBands(rast) As numbands
FROM dummy_rast;

rid | numbands
----+----------
 1 | 0
 2 | 3
				

See Also
ST_Value

Release 1.5.2

Release date: 2010/09/27
This is a bug fix release, addressing issues that have been filed since the 1.5.1 release. If you are running PostGIS 1.3+, a soft upgrade is sufficient
	otherwise a hard upgrade is recommended.
Bug Fixes

Loader: fix handling of empty (0-verticed) geometries in shapefiles. (Sandro Santilli)
#536, Geography ST_Intersects, ST_Covers, ST_CoveredBy and Geometry ST_Equals not using spatial index (Regina Obe, Nicklas Aven)
#573, Improvement to ST_Contains geography (Paul Ramsey)
Loader: Add support for command-q shutdown in Mac GTK build (Paul Ramsey)
#393, Loader: Add temporary patch for large DBF files (Maxime Guillaud, Paul Ramsey)
#507, Fix wrong OGC URN in GeoJSON and GML output (Olivier Courtin)
spatial_ref_sys.sql Add datum conversion for projection SRID 3021 (Paul Ramsey)
Geography - remove crash for case when all geographies are out of the estimate (Paul Ramsey)
#469, Fix for array_aggregation error (Greg Stark, Paul Ramsey)
#532, Temporary geography tables showing up in other user sessions (Paul Ramsey)
#562, ST_Dwithin errors for large geographies (Paul Ramsey)
#513, shape loading GUI tries to make spatial index when loading DBF only mode (Paul Ramsey)
#527, shape loading GUI should always append log messages (Mark Cave-Ayland)
#504, shp2pgsql should rename xmin/xmax fields (Sandro Santilli)
#458, postgis_comments being installed in contrib instead of version folder (Mark Cave-Ayland)
#474, Analyzing a table with geography column crashes server (Paul Ramsey)
#581, LWGEOM-expand produces inconsistent results (Mark Cave-Ayland)
#513, Add dbf filter to shp2pgsql-gui and allow uploading dbf only (Paul Ramsey)
Fix further build issues against PostgreSQL 9.0 (Mark Cave-Ayland)
#572, Password whitespace for Shape File (Mark Cave-Ayland)
#603, shp2pgsql: "-w" produces invalid WKT for MULTI* objects. (Mark Cave-Ayland)

Name
Get_Tract — Returns census tract or field from tract table of where the geometry is located. Default to returning short name of tract.

Synopsis
	text fsfuncget_tract(loc_geom, 	
	 	 output_field=name);	

geometry loc_geom;
text output_field=name;

Description
Given a geometry will return the census tract location of that geometry. NAD 83 long lat is assumed if no spatial ref sys is specified.
Availability: 2.0.0

Examples: Basic
SELECT get_tract(ST_Point(-71.101375, 42.31376)) As tract_name;
tract_name

1203.01

--this one returns the tiger geoid
SELECT get_tract(ST_Point(-71.101375, 42.31376), 'tract_id') As tract_id;
tract_id

25025120301

See Also
Geocode>

Release 2.2.0

Release date: 2015/10/07
This is a new feature release, with new functions, improved performance, and other goodies.
New Features

Topology API in liblwgeom (Sandro Santilli / Regione Toscana - SITA)
New lwgeom_unaryunion method in liblwgeom
New lwgeom_linemerge method in liblwgeom
New lwgeom_is_simple method in liblwgeom
#3169, Add SFCGAL 1.1 support: add ST_3DDifference, ST_3DUnion, ST_Volume, ST_MakeSolid, ST_IsSolid (Vincent Mora / Oslandia)
#3169, ST_ApproximateMedialAxis (Sandro Santilli)
ST_CPAWithin (Sandro Santilli / Boundless)
Add |=| operator with CPA semantic and KNN support with PgSQL 9.5+ (Sandro Santilli / Boundless)
#3131, KNN support for the geography type (Paul Ramsey / CartoDB)
#3023, ST_ClusterIntersecting / ST_ClusterWithin (Dan Baston)
#2703, Exact KNN results for all geometry types, aka "KNN re-check" (Paul Ramsey / CartoDB)
#1137, Allow a tolerance value in ST_RemoveRepeatedPoints (Paul Ramsey / CartoDB)
#3062, Allow passing M factor to ST_Scale (Sandro Santilli / Boundless)
#3139, ST_BoundingDiagonal (Sandro Santilli / Boundless)
#3129, ST_IsValidTrajectory (Sandro Santilli / Boundless)
#3128, ST_ClosestPointOfApproach (Sandro Santilli / Boundless)
#3152, ST_DistanceCPA (Sandro Santilli / Boundless)
Canonical output for index key types
ST_SwapOrdinates (Sandro Santilli / Boundless)
#2918, Use GeographicLib functions for geodetics (Mike Toews)
#3074, ST_Subdivide to break up large geometry (Paul Ramsey / CartoDB)
#3040, KNN GiST index based centroid (<<->>) n-D distance operators (Sandro Santilli / Boundless)
Interruptibility API for liblwgeom (Sandro Santilli / CartoDB)
#2939, ST_ClipByBox2D (Sandro Santilli / CartoDB)
#2247, ST_Retile and ST_CreateOverview: in-db raster overviews creation (Sandro Santilli / Vizzuality)
#899, -m shp2pgsql attribute names mapping -m switch (Regina Obe / Sandro Santilli)
#1678, Added GUC postgis.gdal_datapath to specify GDAL config variable GDAL_DATA
#2843, Support reprojection on raster import (Sandro Santilli / Vizzuality)
#2349, Support for encoded_polyline input/output (Kashif Rasul)
#2159, report libjson version from postgis_full_version()
#2770, ST_MemSize(raster)
Add postgis_noop(raster)
Added missing variants of ST_TPI(), ST_TRI() and ST_Roughness()
Added GUC postgis.gdal_enabled_drivers to specify GDAL config variable GDAL_SKIP
Added GUC postgis.enable_outdb_rasters to enable access to rasters with out-db bands
#2387, address_standardizer extension as part of PostGIS (Stephen Woodbridge / imaptools.com, Walter Sinclair, Regina Obe)
#2816, address_standardizer_data_us extension provides reference lex,gaz,rules for address_standardizer (Stephen Woodbridge / imaptools.com, Walter Sinclair, Regina Obe)
#2341, New mask parameter for ST_MapAlgebra
#2397, read encoding info automatically in shapefile loader
#2430, ST_ForceCurve
#2565, ST_SummaryStatsAgg()
#2567, ST_CountAgg()
#2632, ST_AsGML() support for curved features
#2652, Add --upgrade-path switch to run_test.pl
#2754, sfcgal wrapped as an extension
#2227, Simplification with Visvalingam-Whyatt algorithm ST_SimplifyVW, ST_SetEffectiveArea (Nicklas Avén)
Functions to encode and decode TWKB ST_AsTWKB, ST_GeomFromTWKB (Paul Ramsey / Nicklas Avén / CartoDB)

Enhancements

#3223, Add memcmp short-circuit to ST_Equals (Daniel Baston)
#3227, Tiger geocoder upgraded to support Tiger 2015 census
#2278, Make liblwgeom compatible between minor releases
#897, ST_AsX3D support for GeoCoordinates and systems "GD" "WE" ability to flip x/y axis (use option = 2, 3)
ST_Split: allow splitting lines by multilines, multipoints and (multi)polygon boundaries
#3070, Simplify geometry type constraint
#2839, Implement selectivity estimator for functional indexes, speeding up spatial queries on raster tables. (Sandro Santilli / Vizzuality)
#2361, Added spatial_index column to raster_columns view
#2390, Testsuite for pgsql2shp
#2527, Added -k flag to raster2pgsql to skip checking that band is NODATA
#2616, Reduce text casts during topology building and export
#2717, support startpoint, endpoint, pointn, numpoints for compoundcurve
#2747, Add support for GDAL 2.0
#2754, SFCGAL can now be installed with CREATE EXTENSION (Vincent Mora @ Oslandia)
#2828, Convert ST_Envelope(raster) from SQL to C
#2829, Shortcut ST_Clip(raster) if geometry fully contains the raster and no NODATA specified
#2906, Update tiger geocoder to handle tiger 2014 data
#3048, Speed up geometry simplification (J.Santana @ CartoDB)
#3092, Slow performance of geometry_columns with many tables

Name
Equals — Returns true if two topogeometries are composed of the same topology primitives.

Synopsis
	boolean fsfuncEquals(tg1, 	
	 	tg2);	

topogeometry tg1;
topogeometry tg2;

Description
Returns true if two topogeometries are composed of the same topology primitives: faces, edges, nodes.
Note
This function not supported for topogeometries that are geometry collections. It also can not compare topogeometries from different topologies.

Availability: 1.1.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

See Also
GetTopoGeomElements, ST_Equals

Name
DropGeometryTable — Drops a table and all its references in
		geometry_columns.

Synopsis
	boolean fsfuncDropGeometryTable(table_name);	

varchar
			table_name;

	boolean fsfuncDropGeometryTable(schema_name, 	
	 	table_name);	

varchar
			schema_name;
varchar
			table_name;

	boolean fsfuncDropGeometryTable(catalog_name, 	
	 	schema_name, 	
	 	table_name);	

varchar
			catalog_name;
varchar
			schema_name;
varchar
			table_name;

Description
Drops a table and all its references in geometry_columns. Note:
		uses current_schema() on schema-aware pgsql installations if schema is
		not provided.
Note
Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs,
			 you can drop a table with geometry columns like any other table using DROP TABLE

Examples
SELECT DropGeometryTable ('my_schema','my_spatial_table');
----RESULT output ---
my_schema.my_spatial_table dropped.

-- The above is now equivalent to --
DROP TABLE my_schema.my_spatial_table;
		

See Also
AddGeometryColumn, DropGeometryColumn, the section called “The GEOMETRY_COLUMNS VIEW”

Name
ST_DFullyWithin — Returns true if all of the geometries are within the specified
		distance of one another

Synopsis
	boolean fsfuncST_DFullyWithin(g1, 	
	 	g2, 	
	 	distance);	

geometry
			g1;
geometry
			g2;
double precision
			distance;

Description
Returns true if the geometries is fully within the specified distance
		of one another. The distance is specified in units defined by the
		spatial reference system of the geometries. For this function to make
		sense, the source geometries must both be of the same coordinate projection,
		having the same SRID.
Note
This function call will automatically include a bounding box
		 comparison that will make use of any indexes that are available on
		 the geometries.

Availability: 1.5.0

Examples
postgis=# SELECT ST_DFullyWithin(geom_a, geom_b, 10) as DFullyWithin10, ST_DWithin(geom_a, geom_b, 10) as DWithin10, ST_DFullyWithin(geom_a, geom_b, 20) as DFullyWithin20 from
		(select ST_GeomFromText('POINT(1 1)') as geom_a,ST_GeomFromText('LINESTRING(1 5, 2 7, 1 9, 14 12)') as geom_b) t1;

 DFullyWithin10 | DWithin10 | DFullyWithin20 |
---------------+----------+---------------+
 f | t | t |

See Also
ST_MaxDistance, ST_DWithin

Name
~= — Returns TRUE if A's bounding box is the same as B's.

Synopsis
	boolean fsfunc~=(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The ~= operator returns TRUE if the bounding box of geometry/geography A
			is the same as the bounding box of geometry/geography B.
Note
This operand will make use of any indexes that may be available on the
			 geometries.

Availability: 1.5.0 changed behavior
[image: Description]
 This function supports Polyhedral surfaces.
Warning
This operator has changed behavior in PostGIS 1.5
			 from testing for actual geometric equality to only
			 checking for bounding box equality. To complicate things
			 it also depends on if you have done a hard or soft upgrade
			 which behavior your database has. To find out which behavior
			 your database has you can run the query below.
				To check for true equality use ST_OrderingEquals or ST_Equals and to check for bounding box equality =;
			 operator is a safer option.

Examples

select 'LINESTRING(0 0, 1 1)'::geometry ~= 'LINESTRING(0 1, 1 0)'::geometry as equality;
 equality |
-----------------+
 t |
			
The above can be used to test if you have the new or old behavior of ~= operator.

See Also
ST_Equals, ST_OrderingEquals, =

Name
ST_LineLocatePoint — Returns a float between 0 and 1 representing the location of
			the closest point on LineString to the given Point, as a fraction
			of total 2d line length.

Synopsis
	float8 fsfuncST_LineLocatePoint(a_linestring, 	
	 	a_point);	

geometry a_linestring;
geometry a_point;

Description
Returns a float between 0 and 1 representing the location of
			the closest point on LineString to the given Point, as a fraction
			of total 2d line length.
You can use the returned location to extract a Point (ST_LineInterpolatePoint) or
			a substring (ST_LineSubstring).
This is useful for approximating numbers of addresses
Availability: 1.1.0
Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Locate_Point.

Examples

--Rough approximation of finding the street number of a point along the street
--Note the whole foo thing is just to generate dummy data that looks
--like house centroids and street
--We use ST_DWithin to exclude
--houses too far away from the street to be considered on the street
SELECT ST_AsText(house_loc) As as_text_house_loc,
	startstreet_num +
		CAST((endstreet_num - startstreet_num)
			* ST_LineLocatePoint(street_line, house_loc) As integer) As street_num
FROM
(SELECT ST_GeomFromText('LINESTRING(1 2, 3 4)') As street_line,
	ST_MakePoint(x*1.01,y*1.03) As house_loc, 10 As startstreet_num,
		20 As endstreet_num
FROM generate_series(1,3) x CROSS JOIN generate_series(2,4) As y)
As foo
WHERE ST_DWithin(street_line, house_loc, 0.2);

 as_text_house_loc | street_num
-------------------+------------
 POINT(1.01 2.06) | 10
 POINT(2.02 3.09) | 15
 POINT(3.03 4.12) | 20

 --find closest point on a line to a point or other geometry
 SELECT ST_AsText(ST_LineInterpolatePoint(foo.the_line, ST_LineLocatePoint(foo.the_line, ST_GeomFromText('POINT(4 3)'))))
FROM (SELECT ST_GeomFromText('LINESTRING(1 2, 4 5, 6 7)') As the_line) As foo;
 st_astext

 POINT(3 4)

See Also
ST_DWithin, ST_Length2D, ST_LineInterpolatePoint, ST_LineSubstring

Name
ST_AsTWKB — Returns the geometry as TWKB, aka "Tiny Well-Known Binary"

Synopsis
	bytea fsfuncST_AsTWKB(g1, 	
	 	decimaldigits_xy=0, 	
	 	decimaldigits_z=0, 	
	 	decimaldigits_m=0, 	
	 	include_sizes=false, 	
	 	include_bounding boxes=false);	

geometry g1;
integer decimaldigits_xy=0;
integer decimaldigits_z=0;
integer decimaldigits_m=0;
boolean include_sizes=false;
boolean include_bounding boxes=false;

	bytea fsfuncST_AsTWKB(geometries, 	
	 	unique_ids, 	
	 	decimaldigits_xy=0, 	
	 	decimaldigits_z=0, 	
	 	decimaldigits_m=0, 	
	 	include_sizes=false, 	
	 	include_bounding_boxes=false);	

geometry[] geometries;
bigint[] unique_ids;
integer decimaldigits_xy=0;
integer decimaldigits_z=0;
integer decimaldigits_m=0;
boolean include_sizes=false;
boolean include_bounding_boxes=false;

Description
Returns the geometry in TWKB (Tiny Well-Known Binary) format. TWKB is a compressed binary format with a focus on minimizing the size of the output.
The decimal digits parameters control how much precision is stored in the output. By default, values are rounded to the nearest unit before encoding. If you want to transfer more precision, increase the number. For example, a value of 1 implies that the first digit to the right of the decimal point will be preserved.
The sizes and bounding boxes parameters control whether optional information about the encoded length of the object and the bounds of the object are included in the output. By default they are not. Do not turn them on unless your client software has a use for them, as they just use up space (and saving space is the point of TWKB).
The array-input form of the function is used to convert a collection of geometries and unique identifiers into a TWKB collection that preserves the identifiers. This is useful for clients that expect to unpack a collection and then access further information about the objects inside. You can create the arrays using the array_agg function. The other parameters operate the same as for the simple form of the function.
Note
The format specification is available online at https://github.com/TWKB/Specification, and code for building a JavaScript client can be found at https://github.com/TWKB/twkb.js.

Availability: 2.2.0

Examples

SELECT ST_AsTWKB('LINESTRING(1 1,5 5)'::geometry);
 st_astwkb
--
\x02000202020808

To create an aggregate TWKB object including identifiers aggregate the desired geometries and objects first, using "array_agg()", then call the appropriate TWKB function.

SELECT ST_AsTWKB(array_agg(geom), array_agg(gid)) FROM mytable;
 st_astwkb
--
\x040402020400000202

See Also
ST_AsBinary, ST_AsEWKB, ST_AsEWKT, ST_GeomFromText

Name
clearTopoGeom — Clears the content of a topo geometry

Synopsis
	topogeometry fsfuncclearTopoGeom(topogeom);	

topogeometry topogeom;

Description

Clears the content a TopoGeometry
turning it into an empty one. Mostly useful in conjunction with toTopoGeom to replace the shape of existing
objects and any dependent object in higher hierarchical levels.

Availability: 2.1

Examples

-- Shrink all TopoGeometry polygons by 10 meters
UPDATE nei_topo SET topo = ST_Buffer(clearTopoGeom(topo), -10);
				

See Also

toTopoGeom

Name
ST_GeomCollFromText — Makes a collection Geometry from collection WKT with the given SRID. If SRID is
			not give, it defaults to 0.

Synopsis
	geometry fsfuncST_GeomCollFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

	geometry fsfuncST_GeomCollFromText(WKT);	

text WKT;

Description
Makes a collection Geometry from the Well-Known-Text (WKT) representation with the given SRID. If SRID is
			not give, it defaults to 0.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Returns null if the WKT is not a GEOMETRYCOLLECTION
Note
If you are absolutely sure all your WKT geometries are collections, don't use this function.
				It is slower than ST_GeomFromText since it adds an additional validation step.
			

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2
[image: Description] This method implements the SQL/MM specification.

Examples
SELECT ST_GeomCollFromText('GEOMETRYCOLLECTION(POINT(1 2),LINESTRING(1 2, 3 4))');

See Also
ST_GeomFromText, ST_SRID

Name
ST_GeomFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT).

Synopsis
	geometry fsfuncST_GeomFromText(WKT);	

text WKT;

	geometry fsfuncST_GeomFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

Description
Constructs a PostGIS ST_Geometry object from the OGC Well-Known text representation.
Note
There are two variants of ST_GeomFromText function. The first takes no SRID and returns a geometry
					with no defined spatial reference system (SRID=0). The second takes a SRID as the second argument
					and returns a geometry that includes this SRID as part of its metadata.
				

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2 - option SRID is from the conformance suite.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.40
[image: Description]
 This method supports Circular Strings and Curves
Warning
Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards. This should now be
			 written as ST_GeomFromText('GEOMETRYCOLLECTION EMPTY')

Examples
SELECT ST_GeomFromText('LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932)');
SELECT ST_GeomFromText('LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932)',4269);

SELECT ST_GeomFromText('MULTILINESTRING((-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932))');

SELECT ST_GeomFromText('POINT(-71.064544 42.28787)');

SELECT ST_GeomFromText('POLYGON((-71.1776585052917 42.3902909739571,-71.1776820268866 42.3903701743239,
-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 42.3902909739571))');

SELECT ST_GeomFromText('MULTIPOLYGON(((-71.1031880899493 42.3152774590236,
-71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307,
-71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248,
-71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797,
-71.103113945163 42.3142739188902,-71.10324876416 42.31402489987,
-71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772,
-71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029,
-71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058,
-71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118,
-71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681,
-71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055,
-71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936,
-71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569,
-71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809,
-71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048,
-71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859,
-71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338,
-71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985,
-71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544,
-71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219,
-71.1031880899493 42.3152774590236)),
((-71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857,
-71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 42.315113108546)))',4326);

SELECT ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)');
	

See Also
ST_GeomFromEWKT, ST_GeomFromWKB, ST_SRID

Name
ST_Simplify — Returns a "simplified" version of the given geometry using
				the Douglas-Peucker algorithm.

Synopsis
	geometry fsfuncST_Simplify(geomA, 	
	 	tolerance, 	
	 	preserveCollapsed);	

geometry geomA;
float tolerance;
boolean preserveCollapsed;

Description
Returns a "simplified" version of the given geometry using
				the Douglas-Peucker algorithm. Will actually do something only with
				(multi)lines and (multi)polygons but you can safely call it with
				any kind of geometry. Since simplification occurs on a
				object-by-object basis you can also feed a GeometryCollection to
				this function.
The "preserve collapsed" flag will retain objects that would otherwise
 be too small given the tolerance. For example, a 1m long line simplified with a 10m
 tolerance. If the preserve flag is given, the line will not disappear. This flag
 is useful for rendering engines, to avoid having large numbers of very
 small objects disappear from a map leaving surprising gaps.
Note
Note that returned geometry might lose its
				simplicity (see ST_IsSimple)

Note
Note topology may not be preserved and may result in invalid geometries. Use (see ST_SimplifyPreserveTopology) to preserve topology.

Availability: 1.2.2

Examples
A circle simplified too much becomes a triangle, medium an octagon,

SELECT ST_Npoints(the_geom) As np_before, ST_NPoints(ST_Simplify(the_geom,0.1)) As np01_notbadcircle, ST_NPoints(ST_Simplify(the_geom,0.5)) As np05_notquitecircle,
ST_NPoints(ST_Simplify(the_geom,1)) As np1_octagon, ST_NPoints(ST_Simplify(the_geom,10)) As np10_triangle,
(ST_Simplify(the_geom,100) is null) As np100_geometrygoesaway
FROM (SELECT ST_Buffer('POINT(1 3)', 10,12) As the_geom) As foo;
-result
 np_before | np01_notbadcircle | np05_notquitecircle | np1_octagon | np10_triangle | np100_geometrygoesaway
-----------+-------------------+---------------------+-------------+---------------+------------------------
		49 | 33 | 17 | 9 | 4 | t

				

See Also
ST_IsSimple, ST_SimplifyPreserveTopology, Topology ST_Simplify

Name
AddAuth — Add an authorization token to be used in current transaction.

Synopsis
	boolean fsfuncAddAuth(auth_token);	

text auth_token;

Description
Add an authorization token to be used in current transaction.
Creates/adds to a temp table called temp_lock_have_table the current transaction identifier
			and authorization token key.
Availability: 1.1.3

Examples

		SELECT LockRow('towns', '353', 'priscilla');
		BEGIN TRANSACTION;
			SELECT AddAuth('joey');
			UPDATE towns SET the_geom = ST_Translate(the_geom,2,2) WHERE gid = 353;
		COMMIT;

		---Error--
		ERROR: UPDATE where "gid" = '353' requires authorization 'priscilla'
		

See Also
LockRow

Name
ST_IsPlanar — Check if a surface is or not planar

Synopsis
	boolean fsfuncST_IsPlanar(geom);	

geometry geom;

Description
Availability: 2.2.0: This was documented in 2.1.0 but got accidentally left out in 2.1 release.
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Name
ST_ZMax — Returns Z minima of a bounding box 2d or 3d or a geometry.

Synopsis
	float fsfuncST_ZMax(aGeomorBox2DorBox3D);	

box3d aGeomorBox2DorBox3D;

Description
Returns Z maxima of a bounding box 2d or 3d or a geometry.
Note
Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
			defined for geometries and box2d. However you can not feed it a geometry or box2d text representation, since that will not auto-cast.

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_ZMax('BOX3D(1 2 3, 4 5 6)');
st_zmax

6

SELECT ST_ZMax(ST_GeomFromEWKT('LINESTRING(1 3 4, 5 6 7)'));
st_zmax

7

SELECT ST_ZMax('BOX3D(-3 2 1, 3 4 1)');
st_zmax

1
--Observe THIS DOES NOT WORK because it will try to autocast the string representation to a BOX3D
SELECT ST_ZMax('LINESTRING(1 3 4, 5 6 7)');

--ERROR: BOX3D parser - doesn't start with BOX3D(

SELECT ST_ZMax(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
st_zmax

3
		

See Also
ST_GeomFromEWKT, ST_XMin, ST_XMax, ST_YMax, ST_YMin, ST_ZMax

Release 1.3.4

Release date: 2008/11/24
This release adds support for GeoJSON output, building
 with PostgreSQL 8.4, improves documentation quality and
 output aesthetics, adds function-level SQL documentation,
 and improves performance for some spatial predicates
 (point-in-polygon tests).
Bug fixes include removal of crashers in handling
 circular strings for many functions, some memory leaks
 removed, a linear referencing failure for measures on vertices,
 and more. See the NEWS file for details.

Name
postgis_sfcgal_version — Returns the version of SFCGAL in use

Synopsis
	text fsfuncpostgis_sfcgal_version();	

Description
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Chapter 3. PostGIS Frequently Asked Questions

	3.1.
	Where can I find tutorials, guides and workshops on working with PostGIS

		OpenGeo has a step by step tutorial guide workshop Introduction to PostGIS. It includes packaged data as well as intro to working with OpenGeo Suite. It is probably the best tutorial on PostGIS.
BostonGIS also has a PostGIS almost idiot's guide on getting started. That one is more focused on the windows user.

	3.2.
	My applications and desktop tools worked with PostGIS 1.5,but they don't work with PostGIS 2.0. How do I fix this?

		A lot of deprecated functions were removed from the PostGIS code base in PostGIS 2.0. This has affected applications in addition to third-party tools such as
 Geoserver, MapServer, QuantumGIS, and OpenJump to name a few. There are a couple of ways to resolve this. For the third-party apps, you can try to upgrade to the latest versions
 of these which have many of these issues fixed. For your own code, you can change your code to not use the functions removed. Most of these functions are non ST_ aliases of ST_Union, ST_Length etc.
 and as a last resort, install the whole of legacy.sql or just the
 portions of legacy.sql you need.
The legacy.sql file is located in the same folder as postgis.sql. You can install this file after you have installed postgis.sql and spatial_ref_sys.sql
 to get back all the 200 some-odd old functions we removed.

	3.3.
	When I load OpenStreetMap data with osm2pgsql, I'm getting an error
 failed: ERROR: operator class "gist_geometry_ops" does not exist for access method "gist" Error occurred. This worked fine in PostGIS 1.5.

		In PostGIS 2, the default geometry operator class gist_geometry_ops was changed to gist_geometry_ops_2d and the gist_geometry_ops was completely removed. This was done because PostGIS 2 also introduced Nd spatial indexes for 3D support and the old name was deemed confusing and a misnomer.
Some older applications that as part of the process create tables and indexes, explicitly referenced the operator class name. This was unnecessary if you want the default 2D index. So if you manage said good, change index creation from:
BAD:
CREATE INDEX idx_my_table_geom ON my_table USING gist(geom gist_geometry_ops);
To GOOD:
CREATE INDEX idx_my_table_geom ON my_table USING gist(geom);
The only case where you WILL need to specify the operator class is if you want a 3D spatial index as follows:
CREATE INDEX idx_my_super3d_geom ON my_super3d USING gist(geom gist_geometry_ops_nd);
If you are unfortunate to be stuck with compiled code you can't change that has the old gist_geometry_ops hard-coded, then you can create the old class using the legacy_gist.sql packaged in PostGIS 2.0.2+. However if you use this fix, you are advised to at a later point drop the index and recreate it without the operator class. This will save you grief in the future when you need to upgrade again.

	3.4.
	I'm running PostgreSQL 9.0 and I can no longer read/view geometries in OpenJump, Safe FME, and some other tools?

		In PostgreSQL 9.0+, the default encoding for bytea data has been changed to hex and older JDBC drivers still assume escape format. This has affected some applications
 such as Java applications using older JDBC drivers or .NET applications that use the older npgsql driver
	that expect the old behavior of ST_AsBinary. There are two approaches to getting this to work again.
You can upgrade your JDBC driver to the latest PostgreSQL 9.0 version which you can get from
 http://jdbc.postgresql.org/download.html
If you are running a .NET app, you can use Npgsql 2.0.11 or higher which you can download from
	http://pgfoundry.org/frs/?group_id=1000140 and
 as described on Francisco Figueiredo's NpgSQL 2.0.11 released blog entry
If upgrading your PostgreSQL driver is not an option, then you can set the default back to the old behavior with the following change:
ALTER DATABASE mypostgisdb SET bytea_output='escape';

	3.5.
	I tried to use PgAdmin to view my geometry column and it is blank, what gives?

		PgAdmin doesn't show anything for large geometries. The best ways to verify you do have data in your geometry columns are?
-- this should return no records if all your geom fields are filled in
SELECT somefield FROM mytable WHERE geom IS NULL;
-- To tell just how large your geometry is do a query of the form
--which will tell you the most number of points you have in any of your geometry columns
SELECT MAX(ST_NPoints(geom)) FROM sometable;

	3.6.
	What kind of geometric objects can I store?

		You can store Point, LineString, Polygon, MultiPoint, MultiLineString,
 MultiPolygon, and GeometryCollection geometries. In PostGIS 2.0 and above you can also store TINS and Polyhedral Surfaces in the basic geometry type.
 These are specified in the Open
 GIS Well Known Text Format (with Z, M, and ZM extensions). There are three data types currently supported.
		The standard OGC geometry data type which uses a planar coordinate system for measurement, the
		geography data type which uses a geodetic coordinate system, with calculations on either a sphere or spheroid.
		The newest family member of the PostGIS spatial type family is raster for storing and analyzing raster data. Raster has its very own FAQ. Refer to Chapter 10, PostGIS Raster Frequently Asked Questions
		and Chapter 9, Raster Reference for more details.

	3.7.
	I'm all confused. Which data store should I use geometry or geography?

		Short Answer: geography is a newer data type that supports long range distances measurements, but most computations on it are
 slower than they are on geometry. If
		 you use geography, you don't need to learn much about planar coordinate systems. Geography is generally best
		 if all you care about is measuring distances and lengths and you have data from all over the world.
		 Geometry data type is an older data type that has many more functions supporting it, enjoys greater support from third party tools,
		 and operations on it are generally faster -- sometimes as much as 10 fold faster for larger geometries.
		 Geometry is best if you are pretty comfortable with spatial reference systems or you are dealing with localized data
		 where all your data fits in a single spatial reference system (SRID), or you need to do a lot of spatial processing.
		 Note: It is fairly easy to do one-off conversions between the two types to gain the benefits of each.
		 Refer to the section called “PostGIS Function Support Matrix” to see what is currently supported and what is not.
		

			Long Answer: Refer to our more lengthy discussion in the the section called “When to use Geography Data type over Geometry data type” and function type matrix.
		

	3.8.
	I have more intense questions about geography, such as how big of a geographic region can I stuff in a geography column and
			still get reasonable answers. Are there limitations such as poles, everything in the field must fit in a hemisphere (like SQL Server 2008 has), speed etc?

		Your questions are too deep and complex to be adequately answered in this section. Please refer to our
			the section called “Geography Advanced FAQ”.

	3.9.
	How do I insert a GIS object into the database?

		First, you need to create a table with a column of type
 "geometry" or "geography" to hold your GIS data.
		Storing geography type data is a little different than storing geometry. Refer
		to the section called “Geography Basics” for details on storing geography.

		For geometry: Connect to your database with
 psql and try the following SQL:
CREATE TABLE gtest (gid serial primary key, name varchar(20)
 , geom geometry(LINESTRING));
If the geometry column definition fails, you probably have not
 loaded the PostGIS functions and objects into this database or are using a pre-2.0 version of PostGIS. See the
 the section called “Compiling and Install from Source: Detailed”.
Then, you can insert a geometry into the table using a SQL
 insert statement. The GIS object itself is formatted using the OpenGIS
 Consortium "well-known text" format:
INSERT INTO gtest (ID, NAME, GEOM)
VALUES (
 1,
 'First Geometry',
 ST_GeomFromText('LINESTRING(2 3,4 5,6 5,7 8)')
);
For more information about other GIS objects, see the object reference.
To view your GIS data in the table:
SELECT id, name, ST_AsText(geom) AS geom FROM gtest;
The return value should look something like this:
 id | name | geom
----+----------------+-----------------------------
 1 | First Geometry | LINESTRING(2 3,4 5,6 5,7 8)
(1 row)

	3.10.
	How do I construct a spatial query?

		The same way you construct any other database query, as an SQL
 combination of return values, functions, and boolean tests.
For spatial queries, there are two issues that are important to
 keep in mind while constructing your query: is there a spatial index
 you can make use of; and, are you doing expensive calculations on a
 large number of geometries.
In general, you will want to use the "intersects operator"
 (&&) which tests whether the bounding boxes of features
 intersect. The reason the && operator is useful is because if
 a spatial index is available to speed up the test, the &&
 operator will make use of this. This can make queries much much
 faster.
You will also make use of spatial functions, such as Distance(),
 ST_Intersects(), ST_Contains() and ST_Within(), among others, to
 narrow down the results of your search. Most spatial queries include
 both an indexed test and a spatial function test. The index test
 serves to limit the number of return tuples to only tuples that
 might meet the condition of interest. The spatial
 functions are then use to test the condition exactly.
SELECT id, the_geom
FROM thetable
WHERE
 ST_Contains(the_geom,'POLYGON((0 0, 0 10, 10 10, 10 0, 0 0))');

	3.11.
	How do I speed up spatial queries on large tables?

		Fast queries on large tables is the raison
 d'etre of spatial databases (along with transaction
 support) so having a good index is important.
To build a spatial index on a table with a
 geometry column, use the "CREATE INDEX" function as
 follows:
CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]);
The "USING GIST" option tells the server to use a GiST
 (Generalized Search Tree) index.
Note
GiST indexes are assumed to be lossy. Lossy indexes uses a
 proxy object (in the spatial case, a bounding box) for building the
 index.

You should also ensure that the PostgreSQL query planner has
 enough information about your index to make rational decisions about
 when to use it. To do this, you have to "gather statistics" on your
 geometry tables.
For PostgreSQL 8.0.x and greater, just run the VACUUM
 ANALYZE command.
For PostgreSQL 7.4.x and below, run the SELECT
 UPDATE_GEOMETRY_STATS() command.

	3.12.
	Why aren't PostgreSQL R-Tree indexes supported?

		Early versions of PostGIS used the PostgreSQL R-Tree indexes.
 However, PostgreSQL R-Trees have been completely discarded since
 version 0.6, and spatial indexing is provided with an R-Tree-over-GiST
 scheme.
Our tests have shown search speed for native R-Tree and GiST to
 be comparable. Native PostgreSQL R-Trees have two limitations which
 make them undesirable for use with GIS features (note that these
 limitations are due to the current PostgreSQL native R-Tree
 implementation, not the R-Tree concept in general):
	R-Tree indexes in PostgreSQL cannot handle features which
 are larger than 8K in size. GiST indexes can, using the "lossy"
 trick of substituting the bounding box for the feature
 itself.

	R-Tree indexes in PostgreSQL are not "null safe", so
 building an index on a geometry column which contains null
 geometries will fail.

	3.13.
	Why should I use the AddGeometryColumn()
 function and all the other OpenGIS stuff?

		If you do not want to use the OpenGIS support functions, you do
 not have to. Simply create tables as in older versions, defining your
 geometry columns in the CREATE statement. All your geometries will
 have SRIDs of -1, and the OpenGIS meta-data tables will
 not be filled in properly. However, this will
 cause most applications based on PostGIS to fail, and it is generally
 suggested that you do use AddGeometryColumn() to
 create geometry tables.
MapServer is one application which makes use of the
 geometry_columns meta-data. Specifically, MapServer
 can use the SRID of the geometry column to do on-the-fly reprojection
 of features into the correct map projection.

	3.14.
	What is the best way to find all objects within a radius of
 another object?

		To use the database most efficiently, it is best to do radius
 queries which combine the radius test with a bounding box test: the
 bounding box test uses the spatial index, giving fast access to a
 subset of data which the radius test is then applied to.
The ST_DWithin(geometry, geometry, distance)
 function is a handy way of performing an indexed distance search. It
 works by creating a search rectangle large enough to enclose the
 distance radius, then performing an exact distance search on the
 indexed subset of results.
For example, to find all objects with 100 meters of POINT(1000
 1000) the following query would work well:
SELECT * FROM geotable
WHERE ST_DWithin(geocolumn, 'POINT(1000 1000)', 100.0);

	3.15.
	How do I perform a coordinate reprojection as part of a
 query?

		To perform a reprojection, both the source and destination
 coordinate systems must be defined in the SPATIAL_REF_SYS table, and
 the geometries being reprojected must already have an SRID set on
 them. Once that is done, a reprojection is as simple as referring to
 the desired destination SRID. The below projects a geometry to NAD 83 long lat.
		The below will only work if the srid of the_geom is not -1 (not undefined spatial ref)
SELECT ST_Transform(the_geom,4269) FROM geotable;

	3.16.
	I did an ST_AsEWKT and ST_AsText on my rather large geometry and it returned blank field. What gives?

		You are probably using PgAdmin or some other tool that doesn't output large text. If your geometry is big
			enough, it will appear blank in these tools. Use PSQL if you really need to see it or output it in WKT.

				--To check number of geometries are really blank
				SELECT count(gid) FROM geotable WHERE the_geom IS NULL;

	3.17.
	When I do an ST_Intersects, it says my two geometries don't intersect when I KNOW THEY DO. What gives?

		This generally happens in two common cases. Your geometry is invalid -- check ST_IsValid
			or you are assuming they intersect because ST_AsText truncates the numbers and you have lots of decimals after
				it is not showing you.

	3.18.
	I am releasing software that uses PostGIS, does that mean my software has to be licensed using the GPL like PostGIS? Will I have to publish all my code if I use PostGIS?

		Almost certainly not. As an example, consider Oracle database running on Linux. Linux is GPL, Oracle is not, does Oracle running on Linux have to be distributed using the GPL? No. So your software can use a PostgreSQL/PostGIS database as much as it wants and be under any license you like.
The only exception would be if you made changes to the PostGIS source code, and distributed your changed version of PostGIS. In that case you would have to share the code of your changed PostGIS (but not the code of applications running on top of it). Even in this limited case, you would still only have to distribute source code to people you distributed binaries to. The GPL does not require that you publish your source code, only that you share it with people you give binaries to.

Release 1.5.1

Release date: 2010/03/11
This is a bug fix release, addressing issues that have been filed since the 1.4.1 release. If you are running PostGIS 1.3+, a soft upgrade is sufficient
	otherwise a hard upgrade is recommended.
Bug Fixes

#410, update embedded bbox when applying ST_SetPoint, ST_AddPoint ST_RemovePoint to a linestring (Paul Ramsey)
#411, allow dumping tables with invalid geometries (Sandro Santilli, for Regione Toscana-SIGTA)
#414, include geography_columns view when running upgrade scripts (Paul Ramsey)
#419, allow support for multilinestring in ST_Line_Substring (Paul Ramsey, for Lidwala Consulting Engineers)
#421, fix computed string length in ST_AsGML() (Olivier Courtin)
#441, fix GML generation with heterogeneous collections (Olivier Courtin)
#443, incorrect coordinate reversal in GML 3 generation (Olivier Courtin)
#450, #451, wrong area calculation for geography features that cross the date line (Paul Ramsey)
Ensure support for upcoming 9.0 PgSQL release (Paul Ramsey)

Name
ST_Normalize — Return the geometry in its canonical form.

Synopsis
	geometry fsfuncST_Normalize(geom);	

geometry geom;

Description

 Returns the geometry in its normalized/canonical form.
 May reorder vertices in polygon rings, rings in a polygon,
 elements in a multi-geometry complex.

 Mostly only useful for testing purposes (comparing expected
 and obtained results).

Examples

SELECT ST_AsText(ST_Normalize(ST_GeomFromText(
 'GEOMETRYCOLLECTION(
 POINT(2 3),
 MULTILINESTRING((0 0, 1 1),(2 2, 3 3)),
 POLYGON(
 (0 10,0 0,10 0,10 10,0 10),
 (4 2,2 2,2 4,4 4,4 2),
 (6 8,8 8,8 6,6 6,6 8)
)
)'
)));
 st_astext
--
 GEOMETRYCOLLECTION(POLYGON((0 0,0 10,10 10,10 0,0 0),(6 6,8 6,8 8,6 8,6 6),(2 2,4 2,4 4,2 4,2 2)),MULTILINESTRING((2 2,3 3),(0 0,1 1)),POINT(2 3))
(1 row)
			

See Also

 ST_Equals,

Long Transactions Support

This module and associated pl/pgsql functions have been
	 implemented to provide long locking support required by Web Feature Service specification.
Note
Users must use serializable
		transaction level otherwise locking mechanism would
		break.

Name
ST_Summary —
Returns a text summary of the contents of the geometry.
		

Synopsis
	text fsfuncST_Summary(g);	

geometry g;

	text fsfuncST_Summary(g);	

geography g;

Description
Returns a text summary of the contents of the geometry.

 Flags shown square brackets after the geometry type
 have the following meaning:

	M: has M ordinate

	Z: has Z ordinate

	B: has a cached bounding box

	G: is geodetic (geography)

	S: has spatial reference system

[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Availability: 1.2.2
Enhanced: 2.0.0 added support for geography
Enhanced: 2.1.0 S flag to denote if has a known spatial reference system
Enhanced: 2.2.0 Added support for TIN and Curves

Examples

=# SELECT ST_Summary(ST_GeomFromText('LINESTRING(0 0, 1 1)')) as geom,
 ST_Summary(ST_GeogFromText('POLYGON((0 0, 1 1, 1 2, 1 1, 0 0))')) geog;
 geom | geog
-----------------------------+--------------------------
 LineString[B] with 2 points | Polygon[BGS] with 1 rings
 | ring 0 has 5 points
 :
(1 row)

=# SELECT ST_Summary(ST_GeogFromText('LINESTRING(0 0 1, 1 1 1)')) As geog_line,
 ST_Summary(ST_GeomFromText('SRID=4326;POLYGON((0 0 1, 1 1 2, 1 2 3, 1 1 1, 0 0 1))')) As geom_poly;
;
 geog_line | geom_poly
-------------------------------- +--------------------------
 LineString[ZBGS] with 2 points | Polygon[ZBS] with 1 rings
 : ring 0 has 5 points
 :
(1 row)

See Also

PostGIS_DropBBox,
PostGIS_AddBBox,
ST_Force3DM,
ST_Force3DZ,
ST_Force2D,
geography
		

ST_IsValid,
ST_IsValid,
ST_IsValidReason,
ST_IsValidDetail
		

Name
>> — Returns TRUE if A's bounding box is strictly to the right of B's.

Synopsis
	boolean fsfunc>>(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The >> operator returns TRUE if the bounding box of geometry A
			is strictly to the right of the bounding box of geometry B.
Note
This operand will make use of any indexes that may be available on the
				geometries.

Examples
SELECT tbl1.column1, tbl2.column1, tbl1.column2 >> tbl2.column2 AS right
FROM
 (VALUES
	(1, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl1,
 (VALUES
	(2, 'LINESTRING (1 4, 1 7)'::geometry),
	(3, 'LINESTRING (6 1, 6 5)'::geometry),
	(4, 'LINESTRING (0 0, 4 3)'::geometry)) AS tbl2;

 column1 | column1 | right
---------+---------+-------
	 1 | 2 | t
	 1 | 3 | f
	 1 | 4 | f
(3 rows)

See Also
<<, |>>, <<|

Name
GeometryType — Returns the type of the geometry as a string. Eg:
			'LINESTRING', 'POLYGON', 'MULTIPOINT', etc.

Synopsis
	text fsfuncGeometryType(geomA);	

geometry geomA;

Description
Returns the type of the geometry as a string. Eg:
		'LINESTRING', 'POLYGON', 'MULTIPOINT', etc.
OGC SPEC s2.1.1.1 - Returns the name of the instantiable
		subtype of Geometry of which this Geometry instance is a member.
		The name of the instantiable subtype of Geometry is returned as a
		string.
Note
This function also indicates if the geometry is measured,
		 by returning a string of the form 'POINTM'.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT GeometryType(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
 geometrytype

 LINESTRING

SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
		((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
		((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
		((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'));
			--result
			POLYHEDRALSURFACE
			
SELECT GeometryType(geom) as result
 FROM
 (SELECT
 ST_GeomFromEWKT('TIN (((
 0 0 0,
 0 0 1,
 0 1 0,
 0 0 0
)), ((
 0 0 0,
 0 1 0,
 1 1 0,
 0 0 0
))
)') AS geom
) AS g;
 result

 TIN

See Also
ST_GeometryType

Chapter 9. Raster Reference

The functions given below are the ones which a user of PostGIS Raster is
 likely to need and which are currently available in PostGIS Raster. There are other functions which are required support
 functions to the raster objects which are not of use to a general
 user.
raster is a new PostGIS type for storing and analyzing raster data.
For loading rasters from raster files please refer to the section called “Loading and Creating Rasters”
For the examples in this reference we will be using a raster table of dummy rasters - Formed with the following code
CREATE TABLE dummy_rast(rid integer, rast raster);
INSERT INTO dummy_rast(rid, rast)
VALUES (1,
('01' -- little endian (uint8 ndr)
||
'0000' -- version (uint16 0)
||
'0000' -- nBands (uint16 0)
||
'0000000000000040' -- scaleX (float64 2)
||
'0000000000000840' -- scaleY (float64 3)
||
'000000000000E03F' -- ipX (float64 0.5)
||
'000000000000E03F' -- ipY (float64 0.5)
||
'0000000000000000' -- skewX (float64 0)
||
'0000000000000000' -- skewY (float64 0)
||
'00000000' -- SRID (int32 0)
||
'0A00' -- width (uint16 10)
||
'1400' -- height (uint16 20)
)::raster
),
-- Raster: 5 x 5 pixels, 3 bands, PT_8BUI pixel type, NODATA = 0
(2, ('01000003009A9999999999A93F9A9999999999A9BF000000E02B274A' ||
'41000000007719564100000000000000000000000000000000FFFFFFFF050005000400FDFEFDFEFEFDFEFEFDF9FAFEF' ||
'EFCF9FBFDFEFEFDFCFAFEFEFE04004E627AADD16076B4F9FE6370A9F5FE59637AB0E54F58617087040046566487A1506CA2E3FA5A6CAFFBFE4D566DA4CB3E454C5665')::raster);
Raster Support Data types

Abstract
This section lists the PostgreSQL data types specifically created to support raster functionality.

Release 1.0.0RC5

Release date: 2005/03/25
Fifth release candidate for 1.0.0. Contains a few bug fixes and a
 improvements.
Upgrading

If you are upgrading from release 1.0.0RC4 you DO
 NOT need a dump/reload.
Upgrading from any other precedent release requires a
 dump/reload. See the upgrading
 chapter for more informations.

Library changes

BUGFIX (segfaulting) in box3d computation (yes,
 another!).
BUGFIX (segfaulting) in estimated_extent().

Other changes

Small build scripts and utilities refinements.
Additional performance tips documented.

Name
ST_Contains —
				Return true if no points of raster rastB lie in the exterior of raster rastA and at least one point of the interior of rastB lies in the interior of rastA.
			

Synopsis
	boolean fsfuncST_Contains(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB);	

						raster
						rastA
					;

						integer
						nbandA
					;

						raster
						rastB
					;

						integer
						nbandB
					;

	boolean fsfuncST_Contains(rastA, 	
	 	rastB);	

						raster
						rastA
					;

						raster
						rastB
					;

Description

				Raster rastA contains rastB if and only if no points of rastB lie in the exterior of rastA and at least one point of the interior of rastB lies in the interior of rastA. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.
			
Note

					This function will make use of any indexes that may be available on the rasters.
				

Note

					To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Contains(ST_Polygon(raster), geometry) or ST_Contains(geometry, ST_Polygon(raster)).
				

Note

					ST_Contains() is the inverse of ST_Within(). So, ST_Contains(rastA, rastB) implies ST_Within(rastB, rastA).
				

Availability: 2.1.0

Examples

-- specified band numbers
SELECT r1.rid, r2.rid, ST_Contains(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 1;

NOTICE: The first raster provided has no bands
 rid | rid | st_contains
-----+-----+-------------
 1 | 1 |
 1 | 2 | f
			

-- no band numbers specified
SELECT r1.rid, r2.rid, ST_Contains(r1.rast, r2.rast) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 1;
 rid | rid | st_contains
-----+-----+-------------
 1 | 1 | t
 1 | 2 | f
			

See Also

				ST_Intersects,
				ST_Within
			

Name
PostGIS_Version — Returns PostGIS version number and compile-time
		options.

Synopsis
	text fsfuncPostGIS_Version();	

;

Description
Returns PostGIS version number and compile-time options.

Examples
SELECT PostGIS_Version();
			postgis_version

 1.3 USE_GEOS=1 USE_PROJ=1 USE_STATS=1
(1 row)

See Also
PostGIS_Full_Version, PostGIS_GEOS_Version, PostGIS_Lib_Version, PostGIS_LibXML_Version, PostGIS_PROJ_Version

Name
ST_ScaleY — Returns the Y component of the pixel height in units of coordinate reference system.

Synopsis
	float8 fsfuncST_ScaleY(rast);	

raster rast;

Description
Returns the Y component of the pixel height in units of coordinate reference system. May be negative. Refer to World File
				for more details.
Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeY.

Examples
SELECT rid, ST_ScaleY(rast) As rastpixheight
FROM dummy_rast;

 rid | rastpixheight
-----+---------------
 1 | 3
 2 | -0.05
				

See Also
ST_Height

Name
ST_SRID — Returns the spatial reference identifier of the raster as defined in spatial_ref_sys table.

Synopsis
	integer fsfuncST_SRID(rast);	

raster rast;

Description
Returns the spatial reference identifier of the raster object as defined in the spatial_ref_sys table.
Note
From PostGIS 2.0+ the srid of a non-georeferenced raster/geometry is 0 instead of the prior -1.

Examples
SELECT ST_SRID(rast) As srid
FROM dummy_rast WHERE rid=1;

srid

0
				

See Also
the section called “The SPATIAL_REF_SYS Table and Spatial Reference Systems”, ST_SRID

Name
ST_CreateOverview —
Create an reduced resolution version of a given raster coverage.
				

Synopsis
	regclass fsfuncST_CreateOverview(tab, 	
	 	col, 	
	 	factor, 	
	 	algo='NearestNeighbor');	

regclass tab;
name col;
int factor;
text algo='NearestNeighbor';

Description

Create an overview table with resampled tiles from the source table.
Output tiles will have the same size of input tiles and cover the same
spatial extent with a lower resolution (pixel size will be
1/factor of the original in both directions).
				

The overview table will be made available in the
raster_overviews catalog and will have raster
constraints enforced.
				
Algorithm options are: 'NearestNeighbor', 'Bilinear', 'Cubic', 'CubicSpline', and 'Lanczos'. Refer to: GDAL Warp resampling methods for more details.
Availability: 2.2.0

See Also

 ST_Retile,
 AddOverviewConstraints,
 AddRasterConstraints,
 the section called “Raster Overviews”

Name
ST_Intersects — Return true if raster rastA spatially intersects raster rastB.

Synopsis
	boolean fsfuncST_Intersects(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB);	

						raster
						rastA
					;

						integer
						nbandA
					;

						raster
						rastB
					;

						integer
						nbandB
					;

	boolean fsfuncST_Intersects(rastA, 	
	 	rastB);	

						raster
						rastA
					;

						raster
						rastB
					;

	boolean fsfuncST_Intersects(rast, 	
	 	nband, 	
	 	geommin);	

						raster
						rast
					;

						integer
						nband
					;

						geometry
						geommin
					;

	boolean fsfuncST_Intersects(rast, 	
	 	geommin, 	
	 	nband=NULL);	

						raster
						rast
					;

						geometry
						geommin
					;

						integer
						nband=NULL
					;

	boolean fsfuncST_Intersects(geommin, 	
	 	rast, 	
	 	nband=NULL);	

						geometry
						geommin
					;

						raster
						rast
					;

						integer
						nband=NULL
					;

Description

				Return true if raster rastA spatially intersects raster rastB. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.
			
Note

					This function will make use of any indexes that may be available on the rasters.
				

				Enhanced: 2.0.0 support raster/raster intersects was introduced.
			
Warning

					Changed: 2.1.0 The behavior of the ST_Intersects(raster, geometry) variants changed to match that of ST_Intersects(geometry, raster).
				

Examples

-- different bands of same raster
SELECT ST_Intersects(rast, 2, rast, 3) FROM dummy_rast WHERE rid = 2;

 st_intersects

 t
			

See Also

				ST_Intersection,
				ST_Disjoint
			

Raster Processing

Map Algebra

Built-in Map Algebra Callback Functions

DEM (Elevation)

Raster to Geometry

Chapter 15. Reporting Problems

Reporting Software Bugs

Reporting bugs effectively is a fundamental way to help PostGIS
 development. The most effective bug report is that enabling PostGIS
 developers to reproduce it, so it would ideally contain a script
 triggering it and every information regarding the environment in which it
 was detected. Good enough info can be extracted running SELECT
 postgis_full_version() [for postgis] and SELECT
 version() [for postgresql].
If you aren't using the latest release, it's worth taking a look at
 its release
 changelog first, to find out if your bug has already been
 fixed.
Using the PostGIS bug
 tracker will ensure your reports are not discarded, and will keep
 you informed on its handling process. Before reporting a new bug please
 query the database to see if it is a known one, and if it is please add
 any new information you have about it.
You might want to read Simon Tatham's paper about How to Report
 Bugs Effectively before filing a new report.

Name
parse_address — Takes a 1 line address and breaks into parts

Synopsis
	record fsfuncparse_address(address);	

text address;

Description
Returns takes as input an address, and returns a record output consisting of fields num, street, street2,
			address1, city, state, zip, zipplus, country.
Availability: 2.2.0
[image: Description] This method needs address_standardizer extension.

Examples
Single Addresss
SELECT num, street, city, zip, zipplus
	FROM parse_address('1 Devonshire Place, Boston, MA 02109-1234') AS a;

 num | street | city | zip | zipplus
-----+------------------+--------+-------+---------
 1 | Devonshire Place | Boston | 02109 | 1234		
Table of addresses
-- basic table
CREATE TABLE places(addid serial PRIMARY KEY, address text);

INSERT INTO places(address)
VALUES ('529 Main Street, Boston MA, 02129'),
 ('77 Massachusetts Avenue, Cambridge, MA 02139'),
 ('25 Wizard of Oz, Walaford, KS 99912323'),
 ('26 Capen Street, Medford, MA'),
 ('124 Mount Auburn St, Cambridge, Massachusetts 02138'),
 ('950 Main Street, Worcester, MA 01610');

 -- parse the addresses
 -- if you want all fields you can use (a).*
SELECT addid, (a).num, (a).street, (a).city, (a).state, (a).zip, (a).zipplus
FROM (SELECT addid, parse_address(address) As a
 FROM places) AS p;
 addid | num | street | city | state | zip | zipplus
-------+-----+----------------------+-----------+-------+-------+---------
 1 | 529 | Main Street | Boston | MA | 02129 |
 2 | 77 | Massachusetts Avenue | Cambridge | MA | 02139 |
 3 | 25 | Wizard of Oz | Walaford | KS | 99912 | 323
 4 | 26 | Capen Street | Medford | MA | |
 5 | 124 | Mount Auburn St | Cambridge | MA | 02138 |
 6 | 950 | Main Street | Worcester | MA | 01610 |
(6 rows)

See Also

TopoGeometry Outputs

Name
ST_MinimumBoundingRadius — Returns the center point and radius of the smallest circle that can fully contain a geometry.

Synopsis
	(geometry, double precision) fsfuncST_MinimumBoundingRadius(geom);	

geometry geom;

Description
Returns a record containing the center point and radius of the smallest circle that can fully contain a geometry.
Can be used in conjunction with ST_Collect to get the minimum bounding circle of a set of geometries.
Availability - 2.3.0

See Also
ST_Collect, ST_MinimumBoundingCircle

Examples
SELECT ST_AsText(center), radius FROM ST_MinimumBoundingRadius('POLYGON((26426 65078,26531 65242,26075 65136,26096 65427,26426 65078))');

 st_astext | radius
--+------------------
 POINT(26284.8418027133 65267.1145090825) | 247.436045591407

Topology Editors

Abstract
This section covers topology functions for adding, moving, deleting, and splitting edges, faces, and nodes. All of these functions are defined by ISO SQL/MM.

Name
ST_XMin — Returns X minima of a bounding box 2d or 3d or a geometry.

Synopsis
	float fsfuncST_XMin(aGeomorBox2DorBox3D);	

box3d aGeomorBox2DorBox3D;

Description
Returns X minima of a bounding box 2d or 3d or a geometry.
Note
Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
			defined for geometries and box2d. However you can not feed it a geometry or box2d text representation, since that will not auto-cast.

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_XMin('BOX3D(1 2 3, 4 5 6)');
st_xmin

1

SELECT ST_XMin(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'));
st_xmin

1

SELECT ST_XMin(CAST('BOX(-3 2, 3 4)' As box2d));
st_xmin

-3
--Observe THIS DOES NOT WORK because it will try to autocast the string representation to a BOX3D
SELECT ST_XMin('LINESTRING(1 3, 5 6)');

--ERROR: BOX3D parser - doesn't start with BOX3D(

SELECT ST_XMin(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
st_xmin

220186.995121892
		

See Also
ST_XMax, ST_YMax, ST_YMin, ST_ZMax, ST_ZMin

Name
ST_Perimeter2D — Returns the 2-dimensional perimeter of the geometry, if it
			is a polygon or multi-polygon. This is currently an alias for ST_Perimeter.

Synopsis
	float fsfuncST_Perimeter2D(geomA);	

geometry geomA;

Description
Returns the 2-dimensional perimeter of the geometry, if it
			is a polygon or multi-polygon.
Note
 This is currently an alias for ST_Perimeter. In future versions ST_Perimeter may return the highest dimension perimeter for a geometry. This is still under consideration

See Also
ST_Perimeter

Create a spatially-enabled database from a template

	 Some packaged distributions of PostGIS (in particular the Win32 installers
	 for PostGIS >= 1.1.5) load the PostGIS functions into a template
	 database called template_postgis. If the
	 template_postgis database exists in your PostgreSQL
	 installation then it is possible for users and/or applications to create
	 spatially-enabled databases using a single command. Note that in both
	 cases, the database user must have been granted the privilege to create
	 new databases.
	

	 From the shell:
	
createdb -T template_postgis my_spatial_db

	 From SQL:
	
postgres=# CREATE DATABASE my_spatial_db TEMPLATE=template_postgis

Name
PostGIS_LibXML_Version — Returns the version number of the libxml2
		library.

Synopsis
	text fsfuncPostGIS_LibXML_Version();	

;

Description
Returns the version number of the LibXML2 library.
Availability: 1.5

Examples
SELECT PostGIS_LibXML_Version();
 postgis_libxml_version

 2.7.6
(1 row)

See Also
PostGIS_Full_Version, PostGIS_Lib_Version, PostGIS_PROJ_Version, PostGIS_GEOS_Version, PostGIS_Version

Name
ST_DWithin — Returns true if the geometries are within the specified
		distance of one another. For geometry units are in those of spatial reference and For geography units are in meters and measurement is
		defaulted to use_spheroid=true (measure around spheroid), for faster check, use_spheroid=false to measure along sphere.

Synopsis
	boolean fsfuncST_DWithin(g1, 	
	 	g2, 	
	 	distance_of_srid);	

geometry
				g1;
geometry
				g2;
double precision
				distance_of_srid;

	boolean fsfuncST_DWithin(gg1, 	
	 	gg2, 	
	 	distance_meters);	

geography
				gg1;
geography
				gg2;
double precision
				distance_meters;

	boolean fsfuncST_DWithin(gg1, 	
	 	gg2, 	
	 	distance_meters, 	
	 	use_spheroid);	

geography
				gg1;
geography
				gg2;
double precision
				distance_meters;
boolean
				use_spheroid;

Description
Returns true if the geometries are within the specified distance
		of one another.
For Geometries: The distance is specified in units defined by the
		spatial reference system of the geometries. For this function to make
		sense, the source geometries must both be of the same coordinate projection,
		having the same SRID.
For geography units are in meters and measurement is
		defaulted to use_spheroid=true, for faster check, use_spheroid=false to measure along sphere.
		
Note
This function call will automatically include a bounding box
		 comparison that will make use of any indexes that are available on
		 the geometries.

Note
Prior to 1.3, ST_Expand was commonly used in conjunction with && and ST_Distance to
		 achieve the same effect and in pre-1.3.4 this function was basically short-hand for that construct.
		 From 1.3.4, ST_DWithin uses a more short-circuit distance function which should make it more efficient
		 than prior versions for larger buffer regions.

Note
Use ST_3DDWithin if you have 3D geometries.

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
Availability: 1.5.0 support for geography was introduced
Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.
Enhanced: 2.1.0 support for curved geometries was introduced.

Examples

--Find the nearest hospital to each school
--that is within 3000 units of the school.
-- We do an ST_DWithin search to utilize indexes to limit our search list
-- that the non-indexable ST_Distance needs to process
--If the units of the spatial reference is meters then units would be meters
SELECT DISTINCT ON (s.gid) s.gid, s.school_name, s.the_geom, h.hospital_name
	FROM schools s
		LEFT JOIN hospitals h ON ST_DWithin(s.the_geom, h.the_geom, 3000)
	ORDER BY s.gid, ST_Distance(s.the_geom, h.the_geom);

--The schools with no close hospitals
--Find all schools with no hospital within 3000 units
--away from the school. Units is in units of spatial ref (e.g. meters, feet, degrees)
SELECT s.gid, s.school_name
	FROM schools s
		LEFT JOIN hospitals h ON ST_DWithin(s.the_geom, h.the_geom, 3000)
	WHERE h.gid IS NULL;
			

See Also
ST_Distance, ST_Expand

Name
~(box2df,geometry) — Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry's 2D bonding box.

Synopsis
	boolean fsfunc~(A, 	
	 	B);	

				 box2df

				 A
				;

				 geometry

				 B
				;

Description
The ~ operator returns TRUE if the 2D bounding box A contains the B geometry's bounding box, using float precision. This means that if A is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)
Note
This operand is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(5,5)) ~ ST_Buffer(ST_GeomFromText('POINT(2 2)'), 1) AS contains;

 contains

 t
(1 row)

See Also

				&&(geometry,box2df),
				&&(box2df,geometry),
				&&(box2df,box2df),
				~(geometry,box2df),
				~(box2df,box2df),
				@(geometry,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

Name
ST_Simplify — Returns a "simplified" geometry version of the given TopoGeometry using
				the Douglas-Peucker algorithm.

Synopsis
	geometry fsfuncST_Simplify(geomA, 	
	 	tolerance);	

TopoGeometry geomA;
float tolerance;

Description
Returns a "simplified" geometry version of the given TopoGeometry using
				the Douglas-Peucker algorithm on each component edge.
Note
The returned geometry may be non-simple or non-valid.
Splitting component edges may help retaining simplicity/validity.

Performed by the GEOS module.
Availability: 2.1.0

See Also
Geometry ST_Simplify, ST_IsSimple, ST_IsValid, ST_ModEdgeSplit

Name
ST_DFullyWithin —
				Return true if rasters rastA and rastB are fully within the specified distance of each other.
			

Synopsis
	boolean fsfuncST_DFullyWithin(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB, 	
	 	distance_of_srid);	

						raster
						rastA
					;

						integer
						nbandA
					;

						raster
						rastB
					;

						integer
						nbandB
					;

						double precision
						distance_of_srid
					;

	boolean fsfuncST_DFullyWithin(rastA, 	
	 	rastB, 	
	 	distance_of_srid);	

						raster
						rastA
					;

						raster
						rastB
					;

						double precision
						distance_of_srid
					;

Description

				Return true if rasters rastA and rastB are fully within the specified distance of each other. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.
			

				The distance is specified in units defined by the spatial reference system of the rasters. For this function to make sense, the source rasters must both be of the same coordinate projection, having the same SRID.
			
Note

					This operand will make use of any indexes that may be available on the rasters.
				

Note

					To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_DFullyWithin(ST_Polygon(raster), geometry).
				

Availability: 2.1.0

Examples

SELECT r1.rid, r2.rid, ST_DFullyWithin(r1.rast, 1, r2.rast, 1, 3.14) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_dfullywithin
-----+-----+-----------------
 2 | 1 | f
 2 | 2 | t
			

See Also

				ST_Within,
				ST_DWithin
			

Name
Loader_Generate_Census_Script — Generates a shell script for the specified platform for the specified states that will download Tiger census state tract, bg, and tabblocks data tables, stage and load into tiger_data schema. Each state script is returned as a separate record.

Synopsis
	setof text fsfuncloader_generate_census_script(param_states, 	
	 	os);	

text[] param_states;
text os;

Description
Generates a shell script for the specified platform for the specified states that will download Tiger data census state tract, block groups bg, and tabblocks data tables, stage and load into tiger_data schema. Each state script is returned as a separate record.
It uses unzip on Linux (7-zip on Windows by default) and wget to do the downloading. It uses the section called “shp2pgsql: Using the ESRI Shapefile Loader” to load in the data. Note the smallest unit it does is a whole state. It will only
 process the files in the staging and temp folders.
It uses the following control tables to control the process and different OS shell syntax variations.
	loader_variables keeps track of various variables such as census site, year, data and staging schemas

	loader_platform profiles of various platforms and where the various executables are located. Comes with windows and linux. More can be added.

	loader_lookuptables each record defines a kind of table (state, county), whether to process records in it and how to load them in. Defines the steps to import data, stage data, add, removes columns, indexes, and constraints for each. Each table is prefixed with the state and inherits from a table in the tiger schema. e.g. creates tiger_data.ma_faces which inherits from tiger.faces

Availability: 2.0.0
Note
Loader_Generate_Script includes this logic, but if you installed tiger geocoder prior to PostGIS 2.0.0 alpha5, you'll need to run this on the states you have already done
 to get these additional tables.

Examples
Generate script to load up data for select states in Windows shell script format.
SELECT loader_generate_census_script(ARRAY['MA'], 'windows');
-- result --
set STATEDIR="\gisdata\www2.census.gov\geo\pvs\tiger2010st\25_Massachusetts"
set TMPDIR=\gisdata\temp\
set UNZIPTOOL="C:\Program Files\7-Zip\7z.exe"
set WGETTOOL="C:\wget\wget.exe"
set PGBIN=C:\projects\pg\pg91win\bin\
set PGPORT=5432
set PGHOST=localhost
set PGUSER=postgres
set PGPASSWORD=yourpasswordhere
set PGDATABASE=tiger_postgis20
set PSQL="%PGBIN%psql"
set SHP2PGSQL="%PGBIN%shp2pgsql"
cd \gisdata

%WGETTOOL% http://www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts/25/ --no-parent --relative --accept=*bg10.zip,*tract10.zip,*tabblock10.zip --mirror --reject=html
del %TMPDIR%*.* /Q
%PSQL% -c "DROP SCHEMA tiger_staging CASCADE;"
%PSQL% -c "CREATE SCHEMA tiger_staging;"
cd %STATEDIR%
for /r %%z in (*.zip) do %UNZIPTOOL% e %%z -o%TMPDIR%
cd %TMPDIR%
%PSQL% -c "CREATE TABLE tiger_data.MA_tract(CONSTRAINT pk_MA_tract PRIMARY KEY (tract_id)) INHERITS(tiger.tract); "
%SHP2PGSQL% -c -s 4269 -g the_geom -W "latin1" tl_2010_25_tract10.dbf tiger_staging.ma_tract10 | %PSQL%
%PSQL% -c "ALTER TABLE tiger_staging.MA_tract10 RENAME geoid10 TO tract_id; SELECT loader_load_staged_data(lower('MA_tract10'), lower('MA_tract')); "
%PSQL% -c "CREATE INDEX tiger_data_MA_tract_the_geom_gist ON tiger_data.MA_tract USING gist(the_geom);"
%PSQL% -c "VACUUM ANALYZE tiger_data.MA_tract;"
%PSQL% -c "ALTER TABLE tiger_data.MA_tract ADD CONSTRAINT chk_statefp CHECK (statefp = '25');"
:
Generate sh script
STATEDIR="/gisdata/www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts"
TMPDIR="/gisdata/temp/"
UNZIPTOOL=unzip
WGETTOOL="/usr/bin/wget"
export PGBIN=/usr/pgsql-9.0/bin
export PGPORT=5432
export PGHOST=localhost
export PGUSER=postgres
export PGPASSWORD=yourpasswordhere
export PGDATABASE=geocoder
PSQL=${PGBIN}/psql
SHP2PGSQL=${PGBIN}/shp2pgsql
cd /gisdata

wget http://www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts/25/ --no-parent --relative --accept=*bg10.zip,*tract10.zip,*tabblock10.zip --mirror --reject=html
rm -f ${TMPDIR}/*.*
${PSQL} -c "DROP SCHEMA tiger_staging CASCADE;"
${PSQL} -c "CREATE SCHEMA tiger_staging;"
cd $STATEDIR
for z in *.zip; do $UNZIPTOOL -o -d $TMPDIR $z; done
:
:

See Also
Loader_Generate_Script

Getting the Source

	 Retrieve the PostGIS source archive from the downloads website
	
		http://download.osgeo.org/postgis/source/postgis-2.3.0beta1.tar.gz
	
	
wget http://download.osgeo.org/postgis/source/postgis-2.3.0beta1.tar.gz
tar -xvzf postgis-2.3.0beta1.tar.gz

	 This will create a directory called
	 postgis-2.3.0beta1 in the current working
	 directory.
	

	 Alternatively, checkout the source from the
	
		svn
	
	 repository
	
		http://svn.osgeo.org/postgis/trunk/
	
	 .
	
svn checkout http://svn.osgeo.org/postgis/trunk/ postgis-2.3.0beta1

	 Change into the newly created
	 postgis-2.3.0beta1 directory to continue
	 the installation.
	

Name
ST_Range4ma — Raster processing function that calculates the range of pixel values in a neighborhood.

Synopsis
	float8 fsfuncST_Range4ma(matrix, 	
	 	nodatamode, 	
	 	VARIADIC args);	

float8[][] matrix;
text nodatamode;
text[] VARIADIC args;

	double precision fsfuncST_Range4ma(value, 	
	 	pos, 	
	 	VARIADIC userargs);	

double precision[][][] value;
integer[][] pos;
text[] VARIADIC userargs;

Description
Calculate the range of pixel values in a neighborhood of pixels.

					For Variant 2, a substitution value for NODATA pixels can be specified by passing that value to userargs.
				
Note
Variant 1 is a specialized callback function for use as a callback parameter to ST_MapAlgebraFctNgb.

Note

						Variant 2 is a specialized callback function for use as a callback parameter to ST_MapAlgebra.
					

Warning

						Use of Variant 1 is discouraged since ST_MapAlgebraFctNgb has been deprecated as of 2.1.0.
					

Availability: 2.0.0
Enhanced: 2.1.0 Addition of Variant 2

Examples
SELECT
 rid,
 st_value(
 st_mapalgebrafctngb(rast, 1, NULL, 1, 1, 'st_range4ma(float[][],text,text[])'::regprocedure, 'ignore', NULL), 2, 2
)
FROM dummy_rast
WHERE rid = 2;
 rid | st_value
-----+----------
 2 | 4
(1 row)
				

See Also

					ST_MapAlgebraFctNgb,
					ST_MapAlgebra,
					ST_Min4ma,
					ST_Max4ma,
					ST_Sum4ma,
					ST_Mean4ma,
					ST_Distinct4ma,
					ST_StdDev4ma
				

Name
&&(geometry,box2df) — Returns TRUE if a geometry's (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).

Synopsis
	boolean fsfunc&&(A, 	
	 	B);	

				 geometry

				 A
				;

				 box2df

				 B
				;

Description
The && operator returns TRUE if the cached 2D bounding box of geometry A intersects the 2D bounding box B, using float precision. This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)
Note
This operand is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_MakePoint(1,1) && ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(2,2)) AS overlaps;

 overlaps

 t
(1 row)

See Also

				&&(box2df,geometry),
				&&(box2df,box2df),
				~(geometry,box2df),
				~(box2df,geometry),
				~(box2df,box2df),
				@(geometry,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

Name
ST_AsHEXEWKB — Returns a Geometry in HEXEWKB format (as text) using either
			little-endian (NDR) or big-endian (XDR) encoding.

Synopsis
	text fsfuncST_AsHEXEWKB(g1, 	
	 	NDRorXDR);	

geometry g1;
text NDRorXDR;

	text fsfuncST_AsHEXEWKB(g1);	

geometry g1;

Description
Returns a Geometry in HEXEWKB format (as text) using either
			little-endian (NDR) or big-endian (XDR) encoding. If no encoding is specified, then NDR is used.
Note
Availability: 1.2.2

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_AsHEXEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));
		which gives same answer as

		SELECT ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326)::text;

		st_ashexewkb

		0103000020E6100000010000000500
		00000000000000000000000000000000
		00000000000000000000000000000000F03F
		000000000000F03F000000000000F03F000000000000F03
		F00

Name
<<#>> —
Returns the n-D distance between A and B bounding boxes.
			

Synopsis
	double precision fsfunc<<#>>(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The <<#>> operator returns distance between two floating point bounding boxes, possibly reading them from a spatial index (PostgreSQL 9.1+ required). Useful for doing nearest neighbor approximate distance ordering.
Note
This operand will make use of any indexes that may be available on the
			 geometries. It is different from other operators that use spatial indexes in that the spatial index is only used when the operator
			 is in the ORDER BY clause.

Note

Index only kicks in if one of the geometries is a constant e.g. ORDER BY
(ST_GeomFromText('POINT(1 2)') <<#>> geom) instead of g1.geom
<<#>>.

Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+

See Also

<<->>,
<#>

Name
ST_RasterToWorldCoord — Returns the raster's upper left corner as geometric X and Y (longitude and latitude) given a column and row. Column and row starts at 1.

Synopsis
	record fsfuncST_RasterToWorldCoord(rast, 	
	 	xcolumn, 	
	 	yrow);	

raster rast;
integer xcolumn;
integer yrow;

Description

					Returns the upper left corner as geometric X and Y (longitude and latitude) given a column and row. Returned X and Y are in geometric units of the georeferenced raster.
					Numbering of column and row starts at 1 but if either parameter is passed a zero, a negative number or a number greater than the respective dimension of the raster, it will return coordinates outside of the raster assuming the raster's grid is applicable outside the raster's bounds.
				
Availability: 2.1.0

Examples

-- non-skewed raster
SELECT
	rid,
	(ST_RasterToWorldCoord(rast,1, 1)).*,
	(ST_RasterToWorldCoord(rast,2, 2)).*
FROM dummy_rast

 rid | longitude | latitude | longitude | latitude
-----+------------+----------+-----------+------------
 1 | 0.5 | 0.5 | 2.5 | 3.5
 2 | 3427927.75 | 5793244 | 3427927.8 | 5793243.95
				

-- skewed raster
SELECT
	rid,
	(ST_RasterToWorldCoord(rast, 1, 1)).*,
	(ST_RasterToWorldCoord(rast, 2, 3)).*
FROM (
	SELECT
		rid,
		ST_SetSkew(rast, 100.5, 0) As rast
	FROM dummy_rast
) As foo

 rid | longitude | latitude | longitude | latitude
-----+------------+----------+-----------+-----------
 1 | 0.5 | 0.5 | 203.5 | 6.5
 2 | 3427927.75 | 5793244 | 3428128.8 | 5793243.9
				

See Also

					ST_RasterToWorldCoordX,
					ST_RasterToWorldCoordY,
					ST_SetSkew
				

Name
Pagc_Normalize_Address — Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This function
 will work with just the lookup data packaged with the tiger_geocoder (no need for tiger census data). Requires address_standardizer extension.

Synopsis
	norm_addy fsfuncpagc_normalize_address(in_address);	

varchar in_address;

Description
Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This is the first step in the geocoding process to
 get all addresses into normalized postal form. No other data is required aside from what is packaged with the geocoder.
This function just uses the various pagc_* lookup tables preloaded with the tiger_geocoder and located in the tiger schema, so it doesn't need you to download tiger census data or any other additional data to make use of it.
 You may find the need to add more abbreviations or alternative namings to the various lookup tables in the tiger schema.
It uses various control lookup tables located in tiger schema to normalize the input address.
Fields in the norm_addy type object returned by this function in this order where () indicates a field required by the geocoder, [] indicates an optional field:
There are slight variations in casing and formatting over the Normalize_Address.
Availability: 2.1.0
[image: Description] This method needs address_standardizer extension.
(address) [predirAbbrev] (streetName) [streetTypeAbbrev] [postdirAbbrev] [internal] [location] [stateAbbrev] [zip]
The native standardaddr of address_standardizer extension is at this time a bit richer than norm_addy since its designed to support international addresses (including country). standardaddr equivalent fields are:
house_num,predir, name, suftype, sufdir, unit, city, state, postcode
	address is an integer: The street number

	predirAbbrev is varchar: Directional prefix of road such as N, S, E, W etc. These are controlled using the direction_lookup table.

	streetName varchar

	streetTypeAbbrev varchar abbreviated version of street type: e.g. St, Ave, Cir. These are controlled using the street_type_lookup table.

	postdirAbbrev varchar abbreviated directional suffice of road N, S, E, W etc. These are controlled using the direction_lookup table.

	internal varchar internal address such as an apartment or suite number.

	location varchar usually a city or governing province.

	stateAbbrev varchar two character US State. e.g MA, NY, MI. These are controlled by the state_lookup table.

	zip varchar 5-digit zipcode. e.g. 02109.

	parsed boolean - denotes if addess was formed from normalize process. The normalize_address function sets this to true before returning the address.

Examples
Single call example

SELECT addy.*
FROM pagc_normalize_address('9000 E ROO ST STE 999, Springfield, CO') AS addy;

 address | predirabbrev | streetname | streettypeabbrev | postdirabbrev | internal | location | stateabbrev | zip | parsed
---------+--------------+------------+------------------+---------------+-----------+-------------+-------------+-----+--------
 9000 | E | ROO | ST | | SUITE 999 | SPRINGFIELD | CO | | t
Batch call. There are currently speed issues with the way postgis_tiger_geocoder wraps the address_standardizer. These will hopefully
be resolved in later editions. To work around them, if you need speed for batch geocoding to call generate a normaddy in batch mode, you are encouraged
to directly call the address_standardizer standardize_address function as shown below which is similar exercise to what we did in Normalize_Address that uses data created in Geocode.
WITH g AS (SELECT address, ROW((sa).house_num, (sa).predir, (sa).name
 , (sa).suftype, (sa).sufdir, (sa).unit , (sa).city, (sa).state, (sa).postcode, true)::norm_addy As na
 FROM (SELECT address, standardize_address('tiger.pagc_lex'
 , 'tiger.pagc_gaz'
 , 'tiger.pagc_rules', address) As sa
 FROM addresses_to_geocode) As g)
SELECT address As orig, (g.na).streetname, (g.na).streettypeabbrev
 FROM g;

 orig | streetname | streettypeabbrev
---+---------------+------------------
 529 Main Street, Boston MA, 02129 | MAIN | ST
 77 Massachusetts Avenue, Cambridge, MA 02139 | MASSACHUSETTS | AVE
 25 Wizard of Oz, Walaford, KS 99912323 | WIZARD OF |
 26 Capen Street, Medford, MA | CAPEN | ST
 124 Mount Auburn St, Cambridge, Massachusetts 02138 | MOUNT AUBURN | ST
 950 Main Street, Worcester, MA 01610 | MAIN | ST

See Also
Normalize_Address, Geocode

Name
ST_MemUnion — Same as ST_Union, only memory-friendly (uses less memory
			and more processor time).

Synopsis
	geometry fsfuncST_MemUnion(geomfield);	

geometry set geomfield;

Description
Some useful description here.
Note
Same as ST_Union, only memory-friendly (uses less memory
			and more processor time). This aggregate function works by unioning the geometries one at a time to previous result as opposed to
			ST_Union aggregate which first creates an array and then unions

[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
See ST_Union

See Also
ST_Union

Name
ST_IsClosed — Returns TRUE if the
		LINESTRING's start and end points are coincident. For Polyhedral surface is closed (volumetric).
		

Synopsis
	boolean fsfuncST_IsClosed(g);	

geometry g;

Description
Returns TRUE if the LINESTRING's
		start and end points are coincident. For Polyhedral Surfaces, it tells you if the surface is areal (open) or volumetric (closed).
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.1.5, 9.3.3
Note
SQL-MM defines the result of
		 ST_IsClosed(NULL) to be 0, while
		 PostGIS returns NULL.

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
[image: Description]
 This function supports Polyhedral surfaces.

Line String and Point Examples
postgis=# SELECT ST_IsClosed('LINESTRING(0 0, 1 1)'::geometry);
 st_isclosed

 f
(1 row)

postgis=# SELECT ST_IsClosed('LINESTRING(0 0, 0 1, 1 1, 0 0)'::geometry);
 st_isclosed

 t
(1 row)

postgis=# SELECT ST_IsClosed('MULTILINESTRING((0 0, 0 1, 1 1, 0 0),(0 0, 1 1))'::geometry);
 st_isclosed

 f
(1 row)

postgis=# SELECT ST_IsClosed('POINT(0 0)'::geometry);
 st_isclosed

 t
(1 row)

postgis=# SELECT ST_IsClosed('MULTIPOINT((0 0), (1 1))'::geometry);
 st_isclosed

 t
(1 row)

Polyhedral Surface Examples

		-- A cube --
		SELECT ST_IsClosed(ST_GeomFromEWKT('POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
		((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
		((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
		((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'));

 st_isclosed

 t

 -- Same as cube but missing a side --
 SELECT ST_IsClosed(ST_GeomFromEWKT('POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
		((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
		((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
		((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)))'));

 st_isclosed

 f

See Also
ST_IsRing

PostGIS Window Functions

The functions given below are spatial window functions provided with PostGIS that can be used just like any other sql window function such as row_numer(), lead(), lag(). All these require an SQL OVER() clause.
	ST_ClusterDBSCAN - Windowing function that returns integer id for the cluster each input geometry is in based on 2D implementation of Density-based spatial clustering of applications with noise (DBSCAN) algorithm.
	ST_ClusterKMeans - Windowing function that returns integer id for the cluster each input geometry is in.

Name
ST_IsCollection — Returns TRUE if the argument is a
 collection (MULTI*, GEOMETRYCOLLECTION, ...)

Synopsis
	boolean fsfuncST_IsCollection(g);	

geometry g;

Description
Returns TRUE if the geometry type of
 the argument is either:

	GEOMETRYCOLLECTION

	MULTI{POINT,POLYGON,LINESTRING,CURVE,SURFACE}

	COMPOUNDCURVE

Note

 This function analyzes the type of the geometry. This means
 that it will return TRUE on collections
 that are empty or that contain a single element.

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
postgis=# SELECT ST_IsCollection('LINESTRING(0 0, 1 1)'::geometry);
 st_iscollection

 f
(1 row)

postgis=# SELECT ST_IsCollection('MULTIPOINT EMPTY'::geometry);
 st_iscollection

 t
(1 row)

postgis=# SELECT ST_IsCollection('MULTIPOINT((0 0))'::geometry);
 st_iscollection

 t
(1 row)

postgis=# SELECT ST_IsCollection('MULTIPOINT((0 0), (42 42))'::geometry);
 st_iscollection

 t
(1 row)

postgis=# SELECT ST_IsCollection('GEOMETRYCOLLECTION(POINT(0 0))'::geometry);
 st_iscollection

 t
(1 row)

See Also
ST_NumGeometries

Building Indexes

Indexes are what make using a spatial database for large data sets
	possible. Without indexing, any search for a feature would require a
	"sequential scan" of every record in the database. Indexing speeds up
	searching by organizing the data into a search tree which can be quickly
	traversed to find a particular record. PostgreSQL supports three kinds of
	indexes by default: B-Tree indexes, R-Tree indexes, and GiST
	indexes.
	B-Trees are used for data which can be sorted along one axis;
		for example, numbers, letters, dates. GIS data cannot be rationally
		sorted along one axis (which is greater, (0,0) or (0,1) or (1,0)?) so
		B-Tree indexing is of no use for us.

	R-Trees break up data into rectangles, and sub-rectangles, and
		sub-sub rectangles, etc. R-Trees are used by some spatial databases to
		index GIS data, but the PostgreSQL R-Tree implementation is not as
		robust as the GiST implementation.

	GiST (Generalized Search Trees) indexes break up data into
		"things to one side", "things which overlap", "things which are
		inside" and can be used on a wide range of data-types, including GIS
		data. PostGIS uses an R-Tree index implemented on top of GiST to index
		GIS data.

GiST Indexes

GiST stands for "Generalized Search Tree" and is a generic form of
	 indexing. In addition to GIS indexing, GiST is used to speed up searches
	 on all kinds of irregular data structures (integer arrays, spectral
	 data, etc) which are not amenable to normal B-Tree indexing.
Once a GIS data table exceeds a few thousand rows, you will want
	 to build an index to speed up spatial searches of the data (unless all
	 your searches are based on attributes, in which case you'll want to
	 build a normal index on the attribute fields).
The syntax for building a GiST index on a "geometry" column is as
	 follows:
CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield]);
The above syntax will always build a 2D-index. To get the an n-dimensional index supported in PostGIS 2.0+ for the geometry type, you can create one using this syntax
CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield] gist_geometry_ops_nd);
Building a spatial index is a computationally intensive exercise:
	 on tables of around 1 million rows, on a 300MHz Solaris machine, we have
	 found building a GiST index takes about 1 hour. After building an index,
	 it is important to force PostgreSQL to collect table statistics, which
	 are used to optimize query plans:
VACUUM ANALYZE [table_name] [(column_name)];
-- This is only needed for PostgreSQL 7.4 installations and below
SELECT UPDATE_GEOMETRY_STATS([table_name], [column_name]);
GiST indexes have two advantages over R-Tree indexes in
	 PostgreSQL. Firstly, GiST indexes are "null safe", meaning they can
	 index columns which include null values. Secondly, GiST indexes support
	 the concept of "lossiness" which is important when dealing with GIS
	 objects larger than the PostgreSQL 8K page size. Lossiness allows
	 PostgreSQL to store only the "important" part of an object in an index
	 -- in the case of GIS objects, just the bounding box. GIS objects larger
	 than 8K will cause R-Tree indexes to fail in the process of being
	 built.

BRIN Indexes

BRIN stands for "Block Range Index" and is a generic form of
	 indexing that has been introduced in PostgreSQL 9.5. BRIN is a lossy kind
	 of index, and its main usage is to provide a compromise for both read and
	 write performance. It's primary goal is to handle very large tables for
	 which some of the columns have some natural correlation with their
	 physical location within the table. In addition to GIS indexing, BRIN is
	 used to speed up searches on various kinds of regular or irregular data
	 structures (integer, arrays etc).
Once a GIS data table exceeds a few thousand rows, you will want
	 to build an index to speed up spatial searches of the data (unless all
	 your searches are based on attributes, in which case you'll want to
 build a normal index on the attribute fields). GiST indexes are really
 performant as long as their size doesn't exceed the amount of RAM
 available for the database, and as long as you can afford the storage
 size, and the penalty in write workload. Otherwise, BRIN index can be
 considered as an alternative.
The idea of a BRIN index is to store only the bouding box englobing
 all the geometries contained in all the rows in a set of table blocks,
 called a range. Obviously, this indexing method will only be efficient
 if the data is physically ordered in a way where the resulting bouding
 boxes for block ranges will be mutually exclusive. The resulting index
 will be really small, but will be less efficient than a GiST index in
 many cases.
Building a BRIN index is way less intensive than building a GiST
	 index. It's quite common to build a BRIN index in more than ten time less
	 than a GiST index would have required. As a BRIN index only store one
	 bouding box for one to many table blocks, it's pretty common to consume
	 up to a thousand time less disk space for this kind of indexes.
You can choose the number of blocks to summarize in a range. If you
 decrease this number, the index will be bigger but will probably help to
 get better performance.
The syntax for building a BRIN index on a "geometry" column is as
	 follows:
CREATE INDEX [indexname] ON [tablename] USING BRIN ([geometryfield]);
The above syntax will always build a 2D-index. To get the 3d-dimensional index supported in PostGIS 2.0+ for the geometry type, you can create one using this syntax
CREATE INDEX [indexname] ON [tablename] USING BRIN ([geometryfield] brin_geometry_inclusion_ops_3d);
These above syntaxes will use the default number or block in a range, which is 128. To specify the number of blocks you want to summarise in a range, you can create one using this syntax
CREATE INDEX [indexname] ON [tablename] USING BRIN ([geometryfield]) WITH (pages_per_range = [number]);
Also the "geography" datatype is supported for BRIN indexing. The
 syntax for building a BRIN index on a "geometry" column is as follows:
CREATE INDEX [indexname] ON [tablename] USING BRIN ([geographyfield]);
The above syntax will always build a 2D-index for geospatial objetcs on the spheroid.
Currently, just the "inclusion support" is considered here, meaning
 that just &&, ~ and
 @ operators can be used for the 2D cases (both for
 "geometry" and for "geography"), and just the &&&
 operator can be used for the 3D geometries. There is no support
 for kNN searches at the moment.
VACUUM ANALYZE [table_name] [(column_name)];
-- This is only needed for PostgreSQL 7.4 installations and below
SELECT UPDATE_GEOMETRY_STATS([table_name], [column_name]);

Using Indexes

Ordinarily, indexes invisibly speed up data access: once the index
	 is built, the query planner transparently decides when to use index
	 information to speed up a query plan. Unfortunately, the PostgreSQL
	 query planner does not optimize the use of GiST indexes well, so
	 sometimes searches which should use a spatial index instead default to a
	 sequence scan of the whole table.
If you find your spatial indexes are not being used (or your
	 attribute indexes, for that matter) there are a couple things you can
	 do:
	Firstly, make sure statistics are gathered about the number
		 and distributions of values in a table, to provide the query planner
		 with better information to make decisions around index usage. For
		 PostgreSQL 7.4 installations and below this is done by running
		 update_geometry_stats([table_name, column_name])
		 (compute distribution) and VACUUM ANALYZE [table_name]
		 [column_name] (compute number of values). Starting with
		 PostgreSQL 8.0 running VACUUM ANALYZE will do
		 both operations. You should regularly vacuum your databases anyways
		 -- many PostgreSQL DBAs have VACUUM run as an
		 off-peak cron job on a regular basis.

	If vacuuming does not work, you can force the planner to use
		 the index information by using the SET
		 ENABLE_SEQSCAN=OFF command. You should only use this
		 command sparingly, and only on spatially indexed queries: generally
		 speaking, the planner knows better than you do about when to use
		 normal B-Tree indexes. Once you have run your query, you should
		 consider setting ENABLE_SEQSCAN back on, so that
		 other queries will utilize the planner as normal.
Note
As of version 0.6, it should not be necessary to force the
			planner to use the index with
			ENABLE_SEQSCAN.

	If you find the planner wrong about the cost of sequential vs
		 index scans try reducing the value of random_page_cost in
		 postgresql.conf or using SET random_page_cost=#. Default value for
		 the parameter is 4, try setting it to 1 or 2. Decrementing the value
		 makes the planner more inclined of using Index scans.

Release 1.1.4

Release date: 2006/09/27
This is an bugfix release including some improvements in the Java
 interface. Upgrade is encouraged.
Upgrading

If you are upgrading from release 1.0.3 or later follow the
 soft upgrade procedure.
If you are upgrading from a release between 1.0.0RC6
 and 1.0.2 (inclusive) and really want a live upgrade read
 the upgrade section of the
 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

Bug fixes

Fixed support for PostgreSQL 8.2
Fixed bug in collect() function discarding SRID of input
Added SRID match check in MakeBox2d and MakeBox3d
Fixed regress tests to pass with GEOS-3.0.0
Improved pgsql2shp run concurrency.

Java changes

reworked JTS support to reflect new upstream JTS developers'
 attitude to SRID handling. Simplifies code and drops build depend on
 GNU trove.
Added EJB2 support generously donated by the "Geodetix s.r.l. Company"
Added EJB3 tutorial / examples donated by Norman Barker
 <nbarker@ittvis.com>
Reorganized java directory layout a little.

Name
ST_AsPNG — Return the raster tile selected bands as a single portable network graphics (PNG) image (byte array). If 1, 3, or 4 bands in raster and no bands are specified, then all bands are used. If more 2 or more than 4 bands and no bands specified, then only band 1 is used. Bands are mapped to RGB or RGBA space.

Synopsis
	bytea fsfuncST_AsPNG(rast, 	
	 	options=NULL);	

raster rast;
text[] options=NULL;

	bytea fsfuncST_AsPNG(rast, 	
	 	nband, 	
	 	compression);	

raster rast;
integer nband;
integer compression;

	bytea fsfuncST_AsPNG(rast, 	
	 	nband, 	
	 	options=NULL);	

raster rast;
integer nband;
text[] options=NULL;

	bytea fsfuncST_AsPNG(rast, 	
	 	nbands, 	
	 	compression);	

raster rast;
integer[] nbands;
integer compression;

	bytea fsfuncST_AsPNG(rast, 	
	 	nbands, 	
	 	options=NULL);	

raster rast;
integer[] nbands;
text[] options=NULL;

Description
Returns the selected bands of the raster as a single Portable Network Graphics Image (PNG). Use ST_AsGDALRaster if you need to export as less common raster types. If no band is specified, then the first 3 bands are exported. There are many variants of the function with many options. If no srid is specified then then srid of the raster is used. These are itemized below:
	
 nband is for single band exports.

	
 nbands is an array of bands to export (note that max is 4 for PNG) and the order of the bands is RGBA. e.g ARRAY[3,2,1] means map band 3 to Red, band 2 to green and band 1 to blue

	
 compression number from 1 to 9. The higher the number the greater the compression.

	
 options text Array of GDAL
 options as defined for PNG (look at create_options
 for PNG of ST_GDALDrivers). For PNG valid one is only ZLEVEL (amount
 of time to spend on compression -- default 6)
 e.g. ARRAY['ZLEVEL=9'].
 WORLDFILE is not allowed since the function
 would have to output two outputs. Refer to GDAL
 Raster format options for more details.

Availability: 2.0.0 - requires GDAL >= 1.6.0.

Examples
SELECT ST_AsPNG(rast) As rastpng
FROM dummy_rast WHERE rid=2;

-- export the first 3 bands and map band 3 to Red, band 1 to Green, band 2 to blue
SELECT ST_AsPNG(rast, ARRAY[3,1,2]) As rastpng
FROM dummy_rast WHERE rid=2;
				

See Also
ST_AsGDALRaster, ST_ColorMap, ST_GDALDrivers, the section called “Building Custom Applications with PostGIS Raster”

Name
gaz table — A gaz table is used to standardize place names and associate that input with (a) input tokens (See the section called “Input Tokens”) and (b) standardized representations.

Description
A gaz (short for gazeteer) table is used to classify place names and associate that input with the section called “Input Tokens” and (b) standardized representations. For example if you are in US, you may load these with State Names and associated abbreviations.
A gaz table has at least the following columns in the table. You may add more columns if you wish for your own purposes.
	id
	Primary key of table

	seq
	integer: definition number? - identifer used for that instance of the word

	word
	text: the input word

	stdword
	text: the standardized replacement word

	token
	integer: the kind of word it is. Only if it is used in this context will it be replaced. Refer to PAGC Tokens.

Name
ST_Rotation — Returns the rotation of the raster in radian.

Synopsis
	float8 fsfuncST_Rotation(rast);	

raster rast;

Description
Returns the uniform rotation of the raster in radian. If a raster does not have uniform rotation, NaN is returned.
 Refer to World File for more details.

Examples
SELECT rid, ST_Rotation(ST_SetScale(ST_SetSkew(rast, sqrt(2)), sqrt(2))) as rot FROM dummy_rast;

 rid | rot
-----+-------------------
 1 | 0.785398163397448
 2 | 0.785398163397448

See Also
ST_SetRotation, ST_SetScale, ST_SetSkew

Creating a spatial database using EXTENSIONS

	 If you are using PostgreSQL 9.1+ and have compiled and installed the extensions/ postgis modules, you
	 can create a spatial database the new way.
	

	 createdb [yourdatabase]
	

	 The core postgis extension installs PostGIS geometry, geography, raster, spatial_ref_sys and all the functions and comments with a simple:
	
CREATE EXTENSION postgis;
 command.
	

	 psql -d [yourdatabase] -c "CREATE EXTENSION postgis;"
	

	 Topology is packaged as a separate extension and installable with command:
	

	 psql -d [yourdatabase] -c "CREATE EXTENSION postgis_topology;"
	
If you plan to restore an old backup from prior versions in this new db, run:
psql -d [yourdatabase] -f legacy.sql
You can later run uninstall_legacy.sql to get rid of the deprecated functions after you are done with restoring and cleanup.

Name
ST_LongestLine — Returns the 2-dimensional longest line points of two geometries.
		The function will only return the first longest line if more than one, that the function finds.
		The line returned will always start in g1 and end in g2.
		The length of the line this function returns will always be the same as st_maxdistance returns for g1 and g2.

Synopsis
	geometry fsfuncST_LongestLine(g1, 	
	 	g2);	

geometry
			g1;
geometry
			g2;

Description
Returns the 2-dimensional longest line between the points of two geometries.
		
Availability: 1.5.0

Examples
	[image: Examples]Longest line between point and line

				

SELECT ST_AsText(
	ST_LongestLine('POINT(100 100)'::geometry,
		'LINESTRING (20 80, 98 190, 110 180, 50 75)'::geometry)
) As lline;

 lline

LINESTRING(100 100,98 190)
				

						
	[image: Examples]longest line between polygon and polygon

				

SELECT ST_AsText(
	ST_LongestLine(
		ST_GeomFromText('POLYGON((175 150, 20 40,
			50 60, 125 100, 175 150))'),
		ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
)
) As llinewkt;

 lline

LINESTRING(20 40,121.111404660392 186.629392246051)
				

						

	[image: Examples]longest straight distance to travel from one part of an elegant city to the other
								Note the max distance = to the length of the line.

				

SELECT ST_AsText(ST_LongestLine(c.the_geom, c.the_geom)) As llinewkt,
	ST_MaxDistance(c.the_geom,c.the_geom) As max_dist,
	ST_Length(ST_LongestLine(c.the_geom, c.the_geom)) As lenll
FROM (SELECT ST_BuildArea(ST_Collect(the_geom)) As the_geom
	FROM (SELECT ST_Translate(ST_SnapToGrid(ST_Buffer(ST_Point(50 ,generate_series(50,190, 50)
),40, 'quad_segs=2'),1), x, 0) As the_geom
			FROM generate_series(1,100,50) As x) AS foo
) As c;

 llinewkt | max_dist | lenll
---------------------------+------------------+------------------
 LINESTRING(23 22,129 178) | 188.605408193933 | 188.605408193933
				

						

See Also
ST_MaxDistance, ST_ShortestLine, ST_LongestLine

Name
ST_PointInsideCircle — Is the point geometry insert circle defined by center_x, center_y, radius

Synopsis
	boolean fsfuncST_PointInsideCircle(a_point, 	
	 	center_x, 	
	 	center_y, 	
	 	radius);	

geometry a_point;
float center_x;
float center_y;
float radius;

Description
The syntax for this functions is
			ST_PointInsideCircle(<geometry>,<circle_center_x>,<circle_center_y>,<radius>).
			Returns the true if the geometry is a point and is inside the
			circle. Returns false otherwise.
Note
This only works for points as the name suggests

Availability: 1.2
Changed: 2.2.0 In prior versions this used to be called ST_Point_Inside_Circle

Examples
SELECT ST_PointInsideCircle(ST_Point(1,2), 0.5, 2, 3);
 st_pointinsidecircle

 t

See Also
ST_DWithin

Name
ST_Union — Returns a geometry that represents the point set union of
		the Geometries.

Synopsis
	geometry fsfuncST_Union(g1field);	

geometry set g1field;

	geometry fsfuncST_Union(g1, 	
	 	g2);	

geometry g1;
geometry g2;

	geometry fsfuncST_Union(g1_array);	

geometry[] g1_array;

Description
 Output type can be a MULTI*, single geometry, or Geometry Collection. Comes in 2 variants. Variant 1 unions 2 geometries resulting in a new geometry with no intersecting regions.
		Variant 2 is an aggregate function that takes a set of geometries and unions
		them into a single ST_Geometry resulting in no intersecting regions.
Aggregate version: This function returns a MULTI geometry or NON-MULTI geometry
		from a set of geometries. The ST_Union() function is an "aggregate"
		function in the terminology of PostgreSQL. That means that it
		operates on rows of data, in the same way the SUM() and AVG()
		functions do and like most aggregates, it also ignores NULL geometries.
Non-Aggregate version: This function returns a geometry being a union of two
		input geometries. Output type can be a MULTI*, NON-MULTI or
		GEOMETRYCOLLECTION. If any are NULL, then NULL is returned.
Note
ST_Collect and ST_Union are often interchangeable.
		ST_Union is in general orders of magnitude slower than ST_Collect
		because it tries to dissolve boundaries and reorder geometries to ensure that a constructed Multi* doesn't
		have intersecting regions.

Performed by the GEOS module.
NOTE: this function was formerly called GeomUnion(), which
		was renamed from "Union" because UNION is an SQL reserved
		word.
Availability: 1.4.0 - ST_Union was enhanced. ST_Union(geomarray) was introduced and also faster aggregate collection in PostgreSQL. If you are using GEOS 3.1.0+
		ST_Union will use the faster Cascaded Union algorithm described in
		http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.3
Note
Aggregate version is not explicitly defined in OGC SPEC.

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.19
		the z-index (elevation) when polygons are involved.

Examples
Aggregate example

SELECT stusps,
	 ST_Multi(ST_Union(f.the_geom)) as singlegeom
	 FROM sometable As f
GROUP BY stusps
			
Non-Aggregate example

SELECT ST_AsText(ST_Union(ST_GeomFromText('POINT(1 2)'),
	ST_GeomFromText('POINT(-2 3)')))

st_astext

MULTIPOINT(-2 3,1 2)

SELECT ST_AsText(ST_Union(ST_GeomFromText('POINT(1 2)'),
		ST_GeomFromText('POINT(1 2)')));
st_astext

POINT(1 2)

--3d example - sort of supports 3d (and with mixed dimensions!)
SELECT ST_AsEWKT(st_union(the_geom))
FROM
(SELECT ST_GeomFromEWKT('POLYGON((-7 4.2,-7.1 4.2,-7.1 4.3,
-7 4.2))') as the_geom
UNION ALL
SELECT ST_GeomFromEWKT('POINT(5 5 5)') as the_geom
UNION ALL
	SELECT ST_GeomFromEWKT('POINT(-2 3 1)') as the_geom
UNION ALL
SELECT ST_GeomFromEWKT('LINESTRING(5 5 5, 10 10 10)') as the_geom) as foo;

st_asewkt

GEOMETRYCOLLECTION(POINT(-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 5,-7.1 4.2 5,-7.1 4.3 5,-7 4.2 5)));

--3d example not mixing dimensions
SELECT ST_AsEWKT(st_union(the_geom))
FROM
(SELECT ST_GeomFromEWKT('POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2,
-7 4.2 2))') as the_geom
UNION ALL
SELECT ST_GeomFromEWKT('POINT(5 5 5)') as the_geom
UNION ALL
	SELECT ST_GeomFromEWKT('POINT(-2 3 1)') as the_geom
UNION ALL
SELECT ST_GeomFromEWKT('LINESTRING(5 5 5, 10 10 10)') as the_geom) as foo;

st_asewkt

GEOMETRYCOLLECTION(POINT(-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2,-7 4.2 2)))

--Examples using new Array construct
SELECT ST_Union(ARRAY(SELECT the_geom FROM sometable));

SELECT ST_AsText(ST_Union(ARRAY[ST_GeomFromText('LINESTRING(1 2, 3 4)'),
			ST_GeomFromText('LINESTRING(3 4, 4 5)')])) As wktunion;

--wktunion---
MULTILINESTRING((3 4,4 5),(1 2,3 4))

			

See Also

			ST_Collect
			ST_UnaryUnion
		

Name
ST_Touches — Returns TRUE if the geometries have at least one point in common,
		but their interiors do not intersect.

Synopsis
	boolean fsfuncST_Touches(g1, 	
	 	g2);	

geometry
			g1;
geometry
			g2;

Description
Returns TRUE if the only points in common between
		g1 and g2 lie in the union of the
		boundaries of g1 and g2.
		The ST_Touches relation applies
		to all Area/Area, Line/Line, Line/Area, Point/Area and Point/Line pairs of relationships,
		but not to the Point/Point pair.
In mathematical terms, this predicate is expressed as:
[image: Description]

The allowable DE-9IM Intersection Matrices for the two geometries are:
	FT*******

	F**T*****

	F***T****

Important
Do not call with a GEOMETRYCOLLECTION as an argument

Note
This function call will automatically include a bounding box
		 comparison that will make use of any indexes that are available on
		 the geometries. To avoid using an index, use _ST_Touches instead.

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.28

Examples
The ST_Touches predicate returns TRUE in all the following illustrations.
	[image: Examples]POLYGON / POLYGON

	[image: Examples]POLYGON / POLYGON

	[image: Examples]POLYGON / LINESTRING

	[image: Examples]LINESTRING / LINESTRING

	[image: Examples]LINESTRING / LINESTRING

	[image: Examples]POLYGON / POINT

SELECT ST_Touches('LINESTRING(0 0, 1 1, 0 2)'::geometry, 'POINT(1 1)'::geometry);
 st_touches

 f
(1 row)

SELECT ST_Touches('LINESTRING(0 0, 1 1, 0 2)'::geometry, 'POINT(0 2)'::geometry);
 st_touches

 t
(1 row)

Name
ST_PolygonFromText — Makes a Geometry from WKT with the given SRID. If SRID is
			not give, it defaults to 0.

Synopsis
	geometry fsfuncST_PolygonFromText(WKT);	

text WKT;

	geometry fsfuncST_PolygonFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

Description
Makes a Geometry from WKT with the given SRID. If SRID is
			not give, it defaults to 0. Returns null if WKT is not a polygon.
OGC SPEC 3.2.6.2 - option SRID is from the conformance
			suite
Note
If you are absolutely sure all your WKT geometries are polygons, don't use this function.
					It is slower than ST_GeomFromText since it adds an additional validation step.

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.3.6

Examples
SELECT ST_PolygonFromText('POLYGON((-71.1776585052917 42.3902909739571,-71.1776820268866 42.3903701743239,
-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 42.3902909739571))');
st_polygonfromtext

010300000001000000050000006...

SELECT ST_PolygonFromText('POINT(1 2)') IS NULL as point_is_notpoly;

point_is_not_poly

t

See Also
ST_GeomFromText

Name
geomval — A spatial datatype with two fields - geom (holding a geometry object)
 and val (holding a double precision pixel value from a raster band).

Description
geomval is a compound data type consisting of a geometry object referenced by the .geom field
 and val, a double precision value that represents the pixel value at a particular geometric location in a raster band.
 It is used by the ST_DumpAsPolygon and Raster intersection family of functions as an output type to explode a raster band into
 geometry polygons.

See Also
the section called “PostGIS Geometry / Geography / Raster Dump Functions”

Name
TopoGeometry — A composite type representing a topologically defined geometry

Description
A composite type that refers to a topology geometry in a specific topology layer, having a specific type and a specific id. The elements of a TopoGeometry are the properties: topology_id, layer_id, id integer, type integer.
	topology_id is an integer: Refers to a topology defined in the topology.topology table which defines the topology schema and srid.

	layer_id is an integer: The layer_id in the layers table that the TopoGeometry belongs to. The combination of topology_id, layer_id provides a unique reference in the topology.layers table.

	id is an integer: The id is the autogenerated sequence number that uniquely defines the topogeometry in the respective topology layer.

	type integer between 1 - 4 that defines the geometry type: 1:[multi]point, 2:[multi]line, 3:[multi]poly, 4:collection

Casting Behavior
This section lists the automatic as well as explicit casts allowed for this data type
	Cast To	Behavior
	geometry	automatic

See Also
CreateTopoGeom

Name
ST_AddIsoEdge — Adds an isolated edge defined by geometry alinestring to a topology connecting two existing isolated nodes anode and anothernode and returns the edge id of the new edge.

Synopsis
	integer fsfuncST_AddIsoEdge(atopology, 	
	 	anode, 	
	 	anothernode, 	
	 	alinestring);	

varchar atopology;
integer anode;
integer anothernode;
geometry alinestring;

Description
Adds an isolated edge defined by geometry alinestring to a topology connecting two existing isolated nodes anode and anothernode and returns the edge id of the new edge.
If the spatial reference system (srid) of the alinestring geometry is not the same as the topology, any of the input arguments are null, or the nodes are contained in more than one face, or the nodes are start or end nodes of an existing edge,
 then an exception is thrown.
If the alinestring is not within the face of the face the anode and anothernode belong to, then an exception is thrown.
If the anode and anothernode are not the start and end points of the alinestring then an exception is thrown.
Availability: 1.?
[image: Description] This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.4

Examples

See Also
ST_AddIsoNode, ST_IsSimple, ST_Within

Release 1.1.3

Release date: 2006/06/30
This is an bugfix release including also some new functionalities
 (most notably long transaction support) and portability enhancements.
 Upgrade is encouraged.
Upgrading

If you are upgrading from release 1.0.3 or later follow the
 soft upgrade procedure.
If you are upgrading from a release between 1.0.0RC6
 and 1.0.2 (inclusive) and really want a live upgrade read
 the upgrade section of the
 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

Bug fixes / correctness

BUGFIX in distance(poly,poly) giving wrong results.
BUGFIX in pgsql2shp successful return code.
BUGFIX in shp2pgsql handling of MultiLine WKT.
BUGFIX in affine() failing to update bounding box.
WKT parser: forbidden construction of multigeometries with EMPTY
 elements (still supported for GEOMETRYCOLLECTION).

New functionalities

NEW Long Transactions support.
NEW DumpRings() function.
NEW AsHEXEWKB(geom, XDR|NDR) function.

JDBC changes

Improved regression tests: MultiPoint and scientific
 ordinates
Fixed some minor bugs in jdbc code
Added proper accessor functions for all fields in preparation of
 making those fields private later

Other changes

NEW regress test support for loader/dumper.
Added --with-proj-libdir and --with-geos-libdir configure
 switches.
Support for build Tru64 build.
Use Jade for generating documentation.
Don't link pgsql2shp to more libs then required.
Initial support for PostgreSQL 8.2.

Name
ST_GeoHash — Return a GeoHash representation of the geometry.

Synopsis
	text fsfuncST_GeoHash(geom, 	
	 	maxchars=full_precision_of_point);	

geometry geom;
integer maxchars=full_precision_of_point;

Description
Return a GeoHash representation (http://en.wikipedia.org/wiki/Geohash) of the geometry. A GeoHash encodes a point into a text form that is sortable and searchable based on prefixing. A shorter GeoHash is a less precise representation of a point. It can also be thought of as a box, that contains the actual point.
If no maxchars is specified ST_GeoHash returns a GeoHash based on full precision of the input geometry type. Points return a GeoHash with 20 characters of precision (about enough to hold the full double precision of the input). Other types return a GeoHash with a variable amount of precision, based on the size of the feature. Larger features are represented with less precision, smaller features with more precision. The idea is that the box implied by the GeoHash will always contain the input feature.
If maxchars is specified ST_GeoHash returns a GeoHash with at most that many characters so a possibly lower precision representation of the input geometry. For non-points, the starting point of the calculation is the center of the bounding box of the geometry.
Availability: 1.4.0
Note
ST_GeoHash will not work with geometries that are not in geographic (lon/lat) coordinates.

[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_GeoHash(ST_SetSRID(ST_MakePoint(-126,48),4326));

	 st_geohash

 c0w3hf1s70w3hf1s70w3

SELECT ST_GeoHash(ST_SetSRID(ST_MakePoint(-126,48),4326),5);

 st_geohash

 c0w3h
		
		

See Also
ST_GeomFromGeoHash

Release 1.3.6

Release date: 2009/05/04
If you are running PostGIS 1.1+, a soft upgrade is sufficient
	otherwise a hard upgrade is recommended. This release adds support for PostgreSQL 8.4, exporting
 prj files from the database with shape data, some crash fixes for shp2pgsql, and several small
 bug fixes in the handling of "curve" types, logical error importing dbf only files, improved error handling of AddGeometryColumns.

Release 1.4.0

Release date: 2009/07/24
This release provides performance enhancements, improved internal structures and testing, new features, and upgraded documentation.
 If you are running PostGIS 1.1+, a soft upgrade is sufficient
	otherwise a hard upgrade is recommended.
API Stability

As of the 1.4 release series, the public API of PostGIS will not change during minor releases.

Compatibility

The versions below are the *minimum* requirements for PostGIS 1.4
PostgreSQL 8.2 and higher on all platforms
GEOS 3.0 and higher only
PROJ4 4.5 and higher only

New Features

ST_Union() uses high-speed cascaded union when compiled against
 GEOS 3.1+ (Paul Ramsey)
ST_ContainsProperly() requires GEOS 3.1+
ST_Intersects(), ST_Contains(), ST_Within() use high-speed cached prepared geometry against GEOS 3.1+ (Paul Ramsey / funded by Zonar Systems)
Vastly improved documentation and reference manual (Regina Obe & Kevin Neufeld)
Figures and diagram examples in the reference manual (Kevin Neufeld)
ST_IsValidReason() returns readable explanations for validity failures (Paul Ramsey)
ST_GeoHash() returns a geohash.org signature for geometries (Paul Ramsey)
GTK+ multi-platform GUI for shape file loading (Paul Ramsey)
ST_LineCrossingDirection() returns crossing directions (Paul Ramsey)
ST_LocateBetweenElevations() returns sub-string based on Z-ordinate. (Paul Ramsey)
Geometry parser returns explicit error message about location of syntax errors (Mark Cave-Ayland)
ST_AsGeoJSON() return JSON formatted geometry (Olivier Courtin)
Populate_Geometry_Columns() -- automatically add records to geometry_columns for TABLES and VIEWS (Kevin Neufeld)
ST_MinimumBoundingCircle() -- returns the smallest circle polygon that can encompass a geometry (Bruce Rindahl)

Enhancements

Core geometry system moved into independent library, liblwgeom. (Mark Cave-Ayland)
New build system uses PostgreSQL "pgxs" build bootstrapper. (Mark Cave-Ayland)
Debugging framework formalized and simplified. (Mark Cave-Ayland)
All build-time #defines generated at configure time and placed in headers for easier cross-platform support (Mark Cave-Ayland)
Logging framework formalized and simplified (Mark Cave-Ayland)
Expanded and more stable support for CIRCULARSTRING, COMPOUNDCURVE and CURVEPOLYGON, better parsing, wider support in functions (Mark Leslie & Mark Cave-Ayland)
Improved support for OpenSolaris builds (Paul Ramsey)
Improved support for MSVC builds (Mateusz Loskot)
Updated KML support (Olivier Courtin)
Unit testing framework for liblwgeom (Paul Ramsey)
New testing framework to comprehensively exercise every PostGIS function (Regine Obe)
Performance improvements to all geometry aggregate functions (Paul Ramsey)
Support for the upcoming PostgreSQL 8.4 (Mark Cave-Ayland, Talha Bin Rizwan)
Shp2pgsql and pgsql2shp re-worked to depend on the common parsing/unparsing code in liblwgeom (Mark Cave-Ayland)
Use of PDF DbLatex to build PDF docs and preliminary instructions for build (Jean David Techer)
Automated User documentation build (PDF and HTML) and Developer Doxygen Documentation (Kevin Neufeld)
Automated build of document images using ImageMagick from WKT geometry text files (Kevin Neufeld)
More attractive CSS for HTML documentation (Dane Springmeyer)

Bug fixes

http://trac.osgeo.org/postgis/query?status=closed&milestone=PostGIS+1.4.0&order=priority

Name
ST_3DMaxDistance — For geometry type Returns the 3-dimensional cartesian maximum distance (based on spatial ref) between two geometries in
		projected units.

Synopsis
	float fsfuncST_3DMaxDistance(g1, 	
	 	g2);	

geometry
			g1;
geometry
			g2;

Description
For geometry type returns the 3-dimensional maximum cartesian distance between two geometries in
		projected units (spatial ref units).
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
Availability: 2.0.0
Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

Examples

-- Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point and line compared 2D point and line)
-- Note: currently no vertical datum support so Z is not transformed and assumed to be same units as final.
SELECT ST_3DMaxDistance(
			ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 10000)'),2163),
			ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
) As dist_3d,
		ST_MaxDistance(
			ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 10000)'),2163),
			ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
) As dist_2d;

 dist_3d | dist_2d
------------------+------------------
 24383.7467488441 | 22247.8472107251

See Also
ST_Distance, ST_3DDWithin, ST_3DMaxDistance, ST_Transform

Name
ST_NumInteriorRing — Return the number of interior rings of a polygon in
			the geometry. Synonym for ST_NumInteriorRings.

Synopsis
	integer fsfuncST_NumInteriorRing(a_polygon);	

geometry a_polygon;

See Also
ST_NumInteriorRings

Name
unionarg — A composite type used as input into the ST_Union function defining the bands to be processed and behavior of the UNION operation.

Description

					A composite type used as input into the ST_Union function defining the bands to be processed and behavior of the UNION operation.

					
	
								nband
								integer
							
	
									1-based value indicating the band of each input raster to be processed.
								

	
								uniontype
								text
							
	
					Type of UNION operation. One of defined types as described in ST_Union.
								

				

See Also

					ST_Union
				

Name
ST_InitTopoGeo — Creates a new topology schema and registers this new schema in the topology.topology table and details summary of process.

Synopsis
	text fsfuncST_InitTopoGeo(topology_schema_name);	

varchar topology_schema_name;

Description
This is an SQL-MM equivalent of CreateTopology but lacks the spatial reference and tolerance options of CreateTopology and outputs a text description of creation instead of topology id.
Availability: 1.?
[image: Description] This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.17

Examples
SELECT topology.ST_InitTopoGeo('topo_schema_to_create') AS topocreation;
 astopocreation
--
 Topology-Geometry 'topo_schema_to_create' (id:7) created.
				

See Also
CreateTopology

Name
ST_Min4ma —
					Raster processing function that calculates the minimum pixel value in a neighborhood.
				

Synopsis
	float8 fsfuncST_Min4ma(matrix, 	
	 	nodatamode, 	
	 	VARIADIC args);	

float8[][] matrix;
text nodatamode;
text[] VARIADIC args;

	double precision fsfuncST_Min4ma(value, 	
	 	pos, 	
	 	VARIADIC userargs);	

double precision[][][] value;
integer[][] pos;
text[] VARIADIC userargs;

Description

					Calculate the minimum pixel value in a neighborhood of pixels.
				

					For Variant 2, a substitution value for NODATA pixels can be specified by passing that value to userargs.
				
Note

						Variant 1 is a specialized callback function for use as a callback parameter to ST_MapAlgebraFctNgb.
					

Note

						Variant 2 is a specialized callback function for use as a callback parameter to ST_MapAlgebra.
					

Warning

						Use of Variant 1 is discouraged since ST_MapAlgebraFctNgb has been deprecated as of 2.1.0.
					

Availability: 2.0.0
Enhanced: 2.1.0 Addition of Variant 2

Examples

SELECT
 rid,
 st_value(
 st_mapalgebrafctngb(rast, 1, NULL, 1, 1, 'st_min4ma(float[][],text,text[])'::regprocedure, 'ignore', NULL), 2, 2
)
FROM dummy_rast
WHERE rid = 2;
 rid | st_value
-----+----------
 2 | 250
(1 row)
				

See Also

					ST_MapAlgebraFctNgb,
					ST_MapAlgebra,
					ST_Max4ma,
					ST_Sum4ma,
					ST_Mean4ma,
					ST_Range4ma,
					ST_Distinct4ma,
					ST_StdDev4ma
				

Release 2.1.3

Release date: 2014/05/13
This is a bug fix and security release.
Important changes

			Starting with this version offline raster access and use of GDAL drivers
			are disabled by default.
			

			An environment variable is introduced to allow for enabling
			specific GDAL drivers: POSTGIS_GDAL_ENABLED_DRIVERS.
			By default, all GDAL drivers are disabled
			

			An environment variable is introduced to allow for enabling
			out-db raster bands: POSTGIS_ENABLE_OUTDB_RASTERS.
			By default, out-db raster bands are disabled
			

			The environment variables must be set for the PostgreSQL process,
			and determines the behavior of the whole cluster.
			

Bug Fixes

#2697, invalid GeoJSON Polygon input crashes server process
#2700, Fix dumping of higher-dimension datasets with null rows
#2706, ST_DumpPoints of EMPTY geometries crashes server

Name
ST_Y — Return the Y coordinate of the point, or NULL if not
			available. Input must be a point.

Synopsis
	float fsfuncST_Y(a_point);	

geometry a_point;

Description
Return the Y coordinate of the point, or NULL if not
			available. Input must be a point.
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 6.1.4
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_Y(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_y

	2
(1 row)

SELECT ST_Y(ST_Centroid(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)')));
 st_y

 1.5
(1 row)

		

See Also
ST_Centroid, ST_GeomFromEWKT, ST_M, ST_X, ST_YMax, ST_YMin, ST_Z

Name
<#> —
Returns the 2D distance between A and B bounding boxes.
			

Synopsis
	double precision fsfunc<#>(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The <#> operator returns distance between two floating point bounding boxes, possibly reading them from a spatial index (PostgreSQL 9.1+ required). Useful for doing nearest neighbor approximate distance ordering.
Note
This operand will make use of any indexes that may be available on the
			 geometries. It is different from other operators that use spatial indexes in that the spatial index is only used when the operator
			 is in the ORDER BY clause.

Note
Index only kicks in if one of the geometries is a constant e.g. ORDER BY (ST_GeomFromText('POINT(1 2)') <#> geom) instead of g1.geom <#>.

Availability: 2.0.0 -- KNN only available for PostgreSQL 9.1+

Examples
SELECT *
FROM (
SELECT b.tlid, b.mtfcc,
	b.geom <#> ST_GeomFromText('LINESTRING(746149 2948672,745954 2948576,
		745787 2948499,745740 2948468,745712 2948438,
		745690 2948384,745677 2948319)',2249) As b_dist,
		ST_Distance(b.geom, ST_GeomFromText('LINESTRING(746149 2948672,745954 2948576,
		745787 2948499,745740 2948468,745712 2948438,
		745690 2948384,745677 2948319)',2249)) As act_dist
 FROM bos_roads As b
 ORDER BY b_dist, b.tlid
 LIMIT 100) As foo
 ORDER BY act_dist, tlid LIMIT 10;

 tlid | mtfcc | b_dist | act_dist
-----------+-------+------------------+------------------
 85732027 | S1400 | 0 | 0
 85732029 | S1400 | 0 | 0
 85732031 | S1400 | 0 | 0
 85734335 | S1400 | 0 | 0
 85736037 | S1400 | 0 | 0
 624683742 | S1400 | 0 | 128.528874268666
 85719343 | S1400 | 260.839270432962 | 260.839270432962
 85741826 | S1400 | 164.759294123275 | 260.839270432962
 85732032 | S1400 | 277.75 | 311.830282365264
 85735592 | S1400 | 222.25 | 311.830282365264
(10 rows)

See Also
ST_DWithin, ST_Distance, <->

Name
ST_EndPoint — Returns the last point of a LINESTRING or CIRCULARLINESTRING
		geometry as a POINT.

Synopsis
	boolean fsfuncST_EndPoint(g);	

geometry g;

Description
Returns the last point of a LINESTRING geometry
		as a POINT or NULL if the input
		parameter is not a LINESTRING.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.1.4
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
Note
Changed: 2.0.0 no longer works with single geometry multilinestrings. In older
	 versions of PostGIS -- a single line multilinestring would work happily with this
	 function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring.
	 The older behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING
	 may experience these returning NULL in 2.0 now.

Examples
postgis=# SELECT ST_AsText(ST_EndPoint('LINESTRING(1 1, 2 2, 3 3)'::geometry));
 st_astext

 POINT(3 3)
(1 row)

postgis=# SELECT ST_EndPoint('POINT(1 1)'::geometry) IS NULL AS is_null;
 is_null

 t
(1 row)

--3d endpoint
SELECT ST_AsEWKT(ST_EndPoint('LINESTRING(1 1 2, 1 2 3, 0 0 5)'));
 st_asewkt

 POINT(0 0 5)
(1 row)

See Also
ST_PointN, ST_StartPoint

Name
ST_WorldToRasterCoord — 	Returns the upper left corner as column and row given geometric X and Y (longitude and latitude) or a point geometry expressed in the spatial reference coordinate system of the raster.

Synopsis
	record fsfuncST_WorldToRasterCoord(rast, 	
	 	pt);	

raster rast;
geometry pt;

	record fsfuncST_WorldToRasterCoord(rast, 	
	 	longitude, 	
	 	latitude);	

raster rast;
double precision longitude;
double precision latitude;

Description

					Returns the upper left corner as column and row given geometric X and Y (longitude and latitude) or a point geometry.
					This function works regardless of whether or not the geometric X and Y or point geometry is outside the extent of the raster.
					Geometric X and Y must be expressed in the spatial reference coordinate system of the raster.
				
Availability: 2.1.0

Examples

SELECT
	rid,
	(ST_WorldToRasterCoord(rast,3427927.8,20.5)).*,
	(ST_WorldToRasterCoord(rast,ST_GeomFromText('POINT(3427927.8 20.5)',ST_SRID(rast)))).*
FROM dummy_rast;

 rid | columnx | rowy | columnx | rowy
-----+---------+-----------+---------+-----------
 1 | 1713964 | 7 | 1713964 | 7
 2 | 2 | 115864471 | 2 | 115864471
				

See Also

					ST_WorldToRasterCoordX,
					ST_WorldToRasterCoordY,
					ST_RasterToWorldCoordX,
					ST_RasterToWorldCoordY,
					ST_SRID
				

Name
ST_PointFromWKB — Makes a geometry from WKB with the given SRID

Synopsis
	geometry fsfuncST_GeomFromWKB(geom);	

bytea geom;

	geometry fsfuncST_GeomFromWKB(geom, 	
	 	srid);	

bytea geom;
integer srid;

Description
The ST_PointFromWKB function, takes a well-known binary
			representation of geometry and a Spatial Reference System ID (SRID)
			and creates an instance of the appropriate geometry type - in this case, a
			POINT geometry. This function plays the role of the Geometry
			Factory in SQL.
If an SRID is not specified, it defaults to 0. NULL is
		returned if the input bytea does not represent a
		POINT geometry.
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s3.2.7.2
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 6.1.9
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT
 ST_AsText(
	ST_PointFromWKB(
	 ST_AsEWKB('POINT(2 5)'::geometry)
)
);
 st_astext

 POINT(2 5)
(1 row)

SELECT
 ST_AsText(
	ST_PointFromWKB(
	 ST_AsEWKB('LINESTRING(2 5, 2 6)'::geometry)
)
);
 st_astext

(1 row)

See Also
ST_GeomFromWKB, ST_LineFromWKB

Operators

Name
ST_IsEmpty — Returns true if this Geometry is an empty geometrycollection, polygon, point etc.

Synopsis
	boolean fsfuncST_IsEmpty(geomA);	

geometry geomA;

Description
Returns true if this Geometry is an empty geometry. If
				true, then this Geometry represents an empty geometry collection, polygon, point etc.
Note
SQL-MM defines the result of ST_IsEmpty(NULL) to be 0, while
			PostGIS returns NULL.

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.7
[image: Description]
 This method supports Circular Strings and Curves
Warning
Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards

Examples

SELECT ST_IsEmpty(ST_GeomFromText('GEOMETRYCOLLECTION EMPTY'));
 st_isempty

 t
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('POLYGON EMPTY'));
 st_isempty

 t
(1 row)

SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))'));

 st_isempty

 f
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))')) = false;
 ?column?

 t
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('CIRCULARSTRING EMPTY'));
 st_isempty

 t
(1 row)

		

Name
ST_SetRotation — Set the rotation of the raster in radian.

Synopsis
	float8 fsfuncST_SetRotation(rast, 	
	 	rotation);	

raster rast;
float8 rotation;

Description
Uniformly rotate the raster. Rotation is in radian. Refer to World File for more details.

Examples
SELECT
 ST_ScaleX(rast1), ST_ScaleY(rast1), ST_SkewX(rast1), ST_SkewY(rast1),
 ST_ScaleX(rast2), ST_ScaleY(rast2), ST_SkewX(rast2), ST_SkewY(rast2)
FROM (
 SELECT ST_SetRotation(rast, 15) AS rast1, rast as rast2 FROM dummy_rast
) AS foo;
 st_scalex | st_scaley | st_skewx | st_skewy | st_scalex | st_scaley | st_skewx | st_skewy
---------------------+---------------------+--------------------+--------------------+-----------+-----------+----------+----------
 -1.51937582571764 | -2.27906373857646 | 1.95086352047135 | 1.30057568031423 | 2 | 3 | 0 | 0
 -0.0379843956429411 | -0.0379843956429411 | 0.0325143920078558 | 0.0325143920078558 | 0.05 | -0.05 | 0 | 0

See Also
ST_Rotation, ST_ScaleX, ST_ScaleY, ST_SkewX, ST_SkewY

Name
ST_LineFromMultiPoint — Creates a LineString from a MultiPoint geometry.

Synopsis
	geometry fsfuncST_LineFromMultiPoint(aMultiPoint);	

geometry aMultiPoint;

Description
Creates a LineString from a MultiPoint geometry.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

--Create a 3d line string from a 3d multipoint
SELECT ST_AsEWKT(ST_LineFromMultiPoint(ST_GeomFromEWKT('MULTIPOINT(1 2 3, 4 5 6, 7 8 9)')));
--result--
LINESTRING(1 2 3,4 5 6,7 8 9)
		

See Also
ST_AsEWKT, ST_Collect, ST_MakeLine

Name
ST_Overlaps — Returns TRUE if the Geometries share space, are of the same dimension, but are not completely contained by each other.

Synopsis
	boolean fsfuncST_Overlaps(A, 	
	 	B);	

geometry A;
geometry B;

Description
Returns TRUE if the Geometries "spatially
			overlap". By that we mean they intersect, but one does not completely contain another.
Performed by the GEOS module
Note
Do not call with a GeometryCollection as an argument

This function call will automatically include a bounding box
		comparison that will make use of any indexes that are available on
		the geometries. To avoid index use, use the function
		_ST_Overlaps.
NOTE: this is the "allowable" version that returns a
			boolean, not an integer.
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.32

Examples
The following illustrations all return TRUE.
	[image: Examples]MULTIPOINT / MULTIPOINT

	[image: Examples]LINESTRING / LINESTRING

	[image: Examples]POLYGON / POLYGON

--a point on a line is contained by the line and is of a lower dimension, and therefore does not overlap the line
			nor crosses

SELECT ST_Overlaps(a,b) As a_overlap_b,
	ST_Crosses(a,b) As a_crosses_b,
		ST_Intersects(a, b) As a_intersects_b, ST_Contains(b,a) As b_contains_a
FROM (SELECT ST_GeomFromText('POINT(1 0.5)') As a, ST_GeomFromText('LINESTRING(1 0, 1 1, 3 5)') As b)
	As foo

a_overlap_b | a_crosses_b | a_intersects_b | b_contains_a
------------+-------------+----------------+--------------
f | f | t | t

--a line that is partly contained by circle, but not fully is defined as intersecting and crossing,
-- but since of different dimension it does not overlap
SELECT ST_Overlaps(a,b) As a_overlap_b, ST_Crosses(a,b) As a_crosses_b,
	ST_Intersects(a, b) As a_intersects_b,
	ST_Contains(a,b) As a_contains_b
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 0.5)'), 3) As a, ST_GeomFromText('LINESTRING(1 0, 1 1, 3 5)') As b)
	As foo;

 a_overlap_b | a_crosses_b | a_intersects_b | a_contains_b
-------------+-------------+----------------+--------------
 f | t | t | f

 -- a 2-dimensional bent hot dog (aka buffered line string) that intersects a circle,
 --	but is not fully contained by the circle is defined as overlapping since they are of the same dimension,
--	but it does not cross, because the intersection of the 2 is of the same dimension
--	as the maximum dimension of the 2

SELECT ST_Overlaps(a,b) As a_overlap_b, ST_Crosses(a,b) As a_crosses_b, ST_Intersects(a, b) As a_intersects_b,
ST_Contains(b,a) As b_contains_a,
ST_Dimension(a) As dim_a, ST_Dimension(b) as dim_b, ST_Dimension(ST_Intersection(a,b)) As dima_intersection_b
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 0.5)'), 3) As a,
	ST_Buffer(ST_GeomFromText('LINESTRING(1 0, 1 1, 3 5)'),0.5) As b)
	As foo;

 a_overlap_b | a_crosses_b | a_intersects_b | b_contains_a | dim_a | dim_b | dima_intersection_b
-------------+-------------+----------------+--------------+-------+-------+---------------------
 t | f | t | f | 2 | 2 | 2

See Also
ST_Contains, ST_Crosses, ST_Dimension, ST_Intersects

New, Enhanced or changed PostGIS Functions

Note
PostGIS 2.3.0: PostgreSQL 9.6+ support for parallel queries.

Note
PostGIS 2.3.0: PostgreSQL 9.4+ support for BRIN indexes. Refer to the section called “BRIN Indexes”.

Note
PostGIS 2.3.0: Tiger Geocoder upgraded to work with TIGER 2016 data.

PostGIS Functions new or enhanced in 2.3

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 2.3
	
			 ST_GeometricMedian
		 - Availability: 2.3.0 Returns the geometric median of a MultiPoint.
	&&&(geometry,gidx) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry's (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).
	&&&(gidx,geometry) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry's (cached) n-D bounding box.
	&&&(gidx,gidx) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.
	&&(box2df,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.
	&&(box2df,geometry) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry's (cached) 2D bounding box.
	&&(geometry,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry's (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).
	@(box2df,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision bounding box.
	@(box2df,geometry) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry's 2D bounding box.
	@(geometry,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry's 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).
	ST_ClusterDBSCAN - Availability: 2.3.0 - requires GEOS Windowing function that returns integer id for the cluster each input geometry is in based on 2D implementation of Density-based spatial clustering of applications with noise (DBSCAN) algorithm.
	ST_ClusterKMeans - Availability: 2.3.0 - requires GEOS Windowing function that returns integer id for the cluster each input geometry is in.
	ST_GeneratePoints - Availability: 2.3.0 Converts a polygon or multi-polygon into a multi-point composed of randomly location points within the original areas.
	ST_MakeLine - Availability: 2.3.0 - Support for multipoint input elements was introduced Creates a Linestring from point, multipoint, or line geometries.
	ST_MinimumClearance - Availability: 2.3.0 - requires GEOS >= 3.6.0 Returns the minimum clearance of a geometry, a measure of a geometry's robustness.
	ST_MinimumClearanceLine - Availability: 2.3.0 - requires GEOS >= 3.6.0 Returns the two-point LineString spanning a geometry's minimum clearance.
	ST_Points - Availability: 2.3.0 Returns a MultiPoint containing all of the coordinates of a geometry.
	ST_VoronoiLines - Availability: 2.3.0 - requires GEOS >= 3.5.0. Returns the boundaries between the cells of the Voronoi diagram constructed from the vertices of a geometry.
	ST_VoronoiPolygons - Availability: 2.3.0 - requires GEOS >= 3.5.0. Returns the cells of the Voronoi diagram constructed from the vertices of a geometry.
	ST_WrapX - Availability: 2.3.0 Wrap a geometry around an X value.
	TopoGeom_addElement - Availability: 2.3 Add an element to the definition of a TopoGeometry
	TopoGeom_remElement - Availability: 2.3 Remove an element from the definition of a TopoGeometry
	~(box2df,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).
	~(box2df,geometry) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry's 2D bonding box.
	~(geometry,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry's 2D bonding box contains a 2D float precision bounding box (GIDX).

The functions given below are PostGIS functions that are enhanced in PostGIS 2.3.
	ST_Contains - Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.
	ST_Covers - Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon.
	ST_Expand - Enhanced: 2.3.0 support was added to expand a box by different amounts in different dimensions.
	ST_Intersects - Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.
	ST_Segmentize - Enhanced: 2.3.0 Segmentize geography now uses equal length segments
	ST_Transform - Enhanced: 2.3.0 support for direct PROJ.4 text was introduced.
	ST_Within - Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon.

PostGIS Functions new or enhanced in 2.2

The functions given below are PostGIS functions that were added or enhanced.
Note
postgis_sfcgal now can be installed as an extension using CREATE EXTENSION postgis_sfcgal;

Note
PostGIS 2.2.0: Tiger Geocoder upgraded to work with TIGER 2015 data.

Note
address_standardizer, address_standardizer_data_us extensions for standardizing address data refer to Chapter 12, Address Standardizer for details.

Note
Many functions in topology rewritten as C functions for increased performance.

Functions new in PostGIS 2.2
	<<#>> - Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+ Returns the n-D distance between A and B bounding boxes.
	<<->> - Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+ Returns the n-D distance between the centroids of A and B boundingboxes.
	ST_3DDifference - Availability: 2.2.0 Perform 3D difference
	ST_3DUnion - Availability: 2.2.0 Perform 3D union
	ST_ApproximateMedialAxis - Availability: 2.2.0 Compute the approximate medial axis of an areal geometry.
	ST_AsEncodedPolyline - Availability: 2.2.0 Returns an Encoded Polyline from a LineString geometry.
	ST_AsTWKB - Availability: 2.2.0 Returns the geometry as TWKB, aka "Tiny Well-Known Binary"
	ST_BoundingDiagonal - Availability: 2.2.0 Returns the diagonal of the supplied geometry's bounding box.
	ST_CPAWithin - Availability: 2.2.0 Returns true if the trajectories' closest points of approachare within the specified distance.
	ST_ClipByBox2D - Availability: 2.2.0 - requires GEOS >= 3.5.0. Returns the portion of a geometry falling within a rectangle.
	ST_ClosestPointOfApproach - Availability: 2.2.0 Returns the measure at which points interpolated along two lines are closest.
	ST_ClusterIntersecting - Availability: 2.2.0 - requires GEOS Aggregate. Returns an array with the connected components of a set of geometries
	ST_ClusterWithin - Availability: 2.2.0 - requires GEOS Aggregate. Returns an array of GeometryCollections, where each GeometryCollection represents a set of geometries separated by no more than the specified distance.
	ST_CountAgg - Availability: 2.2.0 Aggregate. Returns the number of pixels in a given band of a set of rasters. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the NODATA value.
	ST_CreateOverview - Availability: 2.2.0 Create an reduced resolution version of a given raster coverage.
	ST_DistanceCPA - Availability: 2.2.0 Returns the distance between closest points of approach in two trajectories.
	ST_ForceCurve - Availability: 2.2.0 Upcast a geometry into its curved type, if applicable.
	ST_IsPlanar - Availability: 2.2.0: This was documented in 2.1.0 but got accidentally left out in 2.1 release. Check if a surface is or not planar
	ST_IsSolid - Availability: 2.2.0 Test if the geometry is a solid. No validity check is performed.
	ST_IsValidTrajectory - Availability: 2.2.0 Returns true if the geometry is a valid trajectory.
	ST_LineFromEncodedPolyline - Availability: 2.2.0 Creates a LineString from an Encoded Polyline.
	ST_MakeSolid - Availability: 2.2.0 Cast the geometry into a solid. No check is performed. To obtain a valid solid, the input geometry must be a closed Polyhedral Surface or a closed TIN.
	ST_MapAlgebra - Availability: 2.2.0: Ability to add a mask Callback function version - Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.
	ST_MemSize - Availability: 2.2.0 Returns the amount of space (in bytes) the raster takes.
	ST_RemoveRepeatedPoints - Availability: 2.2.0 Returns a version of the given geometry with duplicated points removed.
	ST_Retile - Availability: 2.2.0 Return a set of configured tiles from an arbitrarily tiled raster coverage.
	ST_SetEffectiveArea - Availability: 2.2.0 Sets the effective area for each vertex, storing the value in the M ordinate. A simplified geometry can then be generated by filtering on the M ordinate.
	ST_SimplifyVW - Availability: 2.2.0 Returns a "simplified" version of the given geometry using the Visvalingam-Whyatt algorithm
	ST_Subdivide - Availability: 2.2.0 requires GEOS >= 3.5.0. Returns a set of geometry where no geometry in the set has more than the specified number of vertices.
	ST_SummaryStatsAgg - Availability: 2.2.0 Aggregate. Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a set of raster. Band 1 is assumed is no band is specified.
	ST_SwapOrdinates - Availability: 2.2.0 Returns a version of the given geometry with given ordinate values swapped.
	ST_Volume - Availability: 2.2.0 Computes the volume of a 3D solid. If applied to surface (even closed) geometries will return 0.
	parse_address - Availability: 2.2.0 Takes a 1 line address and breaks into parts
	postgis.enable_outdb_rasters - Availability: 2.2.0 A boolean configuration option to enable access to out-db raster bands.
	postgis.gdal_datapath - Availability: 2.2.0 A configuration option to assign the value of GDAL's GDAL_DATA option. If not set, the environmentally set GDAL_DATA variable is used.
	postgis.gdal_enabled_drivers - Availability: 2.2.0 A configuration option to set the enabled GDAL drivers in the PostGIS environment. Affects the GDAL configuration variable GDAL_SKIP.
	standardize_address - Availability: 2.2.0 Returns an stdaddr form of an input address utilizing lex, gaz, and rule tables.
	|=| - Availability: 2.2.0. Index-supported only available for PostgreSQL 9.5+ Returns the distance between A and B trajectories at their closest point of approach.

The functions given below are PostGIS functions that are enhanced in PostGIS 2.2.
	AsTopoJSON - Enhanced: 2.2.1 added support for puntal inputs
	ST_Area - Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires Proj >= 4.9.0 to take advantage of the new feature.
	ST_AsX3D - Enhanced: 2.2.0: Support for GeoCoordinates and axis (x/y, long/lat) flipping. Look at options for details.
	ST_Azimuth - Enhanced: 2.2.0 measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires Proj >= 4.9.0 to take advantage of the new feature.
	ST_Distance - Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires Proj >= 4.9.0 to take advantage of the new feature.
	ST_Scale - Enhanced: 2.2.0 support for scaling all dimension (geometry parameter) was introduced.
	ST_Summary - Enhanced: 2.2.0 Added support for TIN and Curves
	<-> - Enhanced: 2.2.0 -- True KNN ("K nearest neighbor") behavior for geometry and geography for PostgreSQL 9.5+. Note for geography KNN is based on sphere rather than spheroid. For PostgreSQL 9.4 and below, geography support is new but only supports centroid box.

PostGIS functions breaking changes in 2.2

The functions given below are PostGIS functions that have possibly breaking changes in PostGIS 2.2. If you use any of these, you may need to check your existing code.
	Get_Geocode_Setting - Changed: 2.2.0 : default settings are now kept in a table called geocode_settings_default. Use customized settingsa are in geocode_settings and only contain those that have been set by user.
	ST_3DClosestPoint - Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.
	ST_3DDistance - Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.
	ST_3DLongestLine - Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.
	ST_3DMaxDistance - Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.
	ST_3DShortestLine - Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.
	ST_DistanceSphere - Changed: 2.2.0 In prior versions this used to be called ST_Distance_Sphere
	ST_DistanceSpheroid - Changed: 2.2.0 In prior versions this used to be called ST_Distance_Spheroid
	ST_LengthSpheroid - Changed: 2.2.0 In prior versions this used to be called ST_Length_Spheroid and used to have a ST_3DLength_Spheroid alias
	ST_MemSize - Changed: 2.2.0 name changed to ST_MemSize to follow naming convention. In prior versions this function was called ST_Mem_Size, old name deprecated though still available.
	ST_PointInsideCircle - Changed: 2.2.0 In prior versions this used to be called ST_Point_Inside_Circle
	ST_Split - Changed: 2.2.0 support for splitting a line by a multiline, a multipoint or (multi)polygon boundary was introduced.
	ValidateTopology - Changed: 2.2.0 values for id1 and id2 were swapped for 'edge crosses node' to be consistent with error description.
	<-> - Changed: 2.2.0 -- For PostgreSQL 9.5 users, old Hybrid syntax may be slower, so you'll want to get rid of that hack if you are running your code only on PostGIS 2.2+ 9.5+. See examples below.

PostGIS Functions new or enhanced in 2.1

The functions given below are PostGIS functions that were added or enhanced.
Note
More Topology performance Improvements. Please refer to Chapter 11, Topology for more details.

Note
Bug fixes (particularly with handling of out-of-band rasters), many new functions (often shortening code you have to write to accomplish a common task) and massive speed improvements to raster functionality. Refer to Chapter 9, Raster Reference for more details.

Note
PostGIS 2.1.0: Tiger Geocoder upgraded to work with TIGER 2012 census data. geocode_settings added for debugging and tweaking rating preferences, loader made less greedy, now only downloads tables to be loaded. PostGIS 2.1.1: Tiger Geocoder upgraded to work with TIGER 2013 data.
					Please refer to the section called “Tiger Geocoder” for more details.

Functions new in PostGIS 2.1
	AsTopoJSON - Availability: 2.1.0 Returns the TopoJSON representation of a topogeometry.
	Drop_Nation_Tables_Generate_Script - Availability: 2.1.0 Generates a script that drops all tables in the specified schema that start with county_all, state_all or state code followed by county or state.
	Get_Geocode_Setting - Availability: 2.1.0 Returns value of specific setting stored in tiger.geocode_settings table.
	Loader_Generate_Nation_Script - Availability: 2.1.0 Generates a shell script for the specified platform that loads in the county and state lookup tables.
	Pagc_Normalize_Address - Availability: 2.1.0 Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This function will work with just the lookup data packaged with the tiger_geocoder (no need for tiger census data). Requires address_standardizer extension.
	ST_3DArea - Availability: 2.1.0 Computes area of 3D surface geometries. Will return 0 for solids.
	ST_3DIntersection - Availability: 2.1.0 Perform 3D intersection
	ST_Box2dFromGeoHash - Availability: 2.1.0 Return a BOX2D from a GeoHash string.
	ST_ColorMap - Availability: 2.1.0 Creates a new raster of up to four 8BUI bands (grayscale, RGB, RGBA) from the source raster and a specified band. Band 1 is assumed if not specified.
	ST_Contains - Availability: 2.1.0 Return true if no points of raster rastB lie in the exterior of raster rastA and at least one point of the interior of rastB lies in the interior of rastA.
	ST_ContainsProperly - Availability: 2.1.0 Return true if rastB intersects the interior of rastA but not the boundary or exterior of rastA.
	ST_CoveredBy - Availability: 2.1.0 Return true if no points of raster rastA lie outside raster rastB.
	ST_Covers - Availability: 2.1.0 Return true if no points of raster rastB lie outside raster rastA.
	ST_DFullyWithin - Availability: 2.1.0 Return true if rasters rastA and rastB are fully within the specified distance of each other.
	ST_DWithin - Availability: 2.1.0 Return true if rasters rastA and rastB are within the specified distance of each other.
	ST_DelaunayTriangles - Availability: 2.1.0 - requires GEOS >= 3.4.0. Return a Delaunay triangulation around the given input points.
	ST_Disjoint - Availability: 2.1.0 Return true if raster rastA does not spatially intersect rastB.
	ST_DumpValues - Availability: 2.1.0 Get the values of the specified band as a 2-dimension array.
	ST_Extrude - Availability: 2.1.0 Extrude a surface to a related volume
	ST_ForceLHR - Availability: 2.1.0 Force LHR orientation
	ST_FromGDALRaster - Availability: 2.1.0 Returns a raster from a supported GDAL raster file.
	ST_GeomFromGeoHash - Availability: 2.1.0 Return a geometry from a GeoHash string.
	ST_InvDistWeight4ma - Availability: 2.1.0 Raster processing function that interpolates a pixel's value from the pixel's neighborhood.
	ST_MapAlgebra - Availability: 2.1.0 Callback function version - Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.
	ST_MapAlgebra - Availability: 2.1.0 Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.
	ST_MinConvexHull - Availability: 2.1.0 Return the convex hull geometry of the raster excluding NODATA pixels.
	ST_MinDist4ma - Availability: 2.1.0 Raster processing function that returns the minimum distance (in number of pixels) between the pixel of interest and a neighboring pixel with value.
	ST_MinkowskiSum - Availability: 2.1.0 Performs Minkowski sum
	ST_NearestValue - Availability: 2.1.0 Returns the nearest non-NODATA value of a given band's pixel specified by a columnx and rowy or a geometric point expressed in the same spatial reference coordinate system as the raster.
	ST_Neighborhood - Availability: 2.1.0 Returns a 2-D double precision array of the non-NODATA values around a given band's pixel specified by either a columnX and rowY or a geometric point expressed in the same spatial reference coordinate system as the raster.
	ST_NotSameAlignmentReason - Availability: 2.1.0 Returns text stating if rasters are aligned and if not aligned, a reason why.
	ST_Orientation - Availability: 2.1.0 Determine surface orientation
	ST_Overlaps - Availability: 2.1.0 Return true if raster rastA and rastB intersect but one does not completely contain the other.
	ST_PixelAsCentroid - Availability: 2.1.0 Returns the centroid (point geometry) of the area represented by a pixel.
	ST_PixelAsCentroids - Availability: 2.1.0 Returns the centroid (point geometry) for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The point geometry is the centroid of the area represented by a pixel.
	ST_PixelAsPoint - Availability: 2.1.0 Returns a point geometry of the pixel's upper-left corner.
	ST_PixelAsPoints - Availability: 2.1.0 Returns a point geometry for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The coordinates of the point geometry are of the pixel's upper-left corner.
	ST_PixelOfValue - Availability: 2.1.0 Get the columnx, rowy coordinates of the pixel whose value equals the search value.
	ST_PointFromGeoHash - Availability: 2.1.0 Return a point from a GeoHash string.
	ST_RasterToWorldCoord - Availability: 2.1.0 Returns the raster's upper left corner as geometric X and Y (longitude and latitude) given a column and row. Column and row starts at 1.
	ST_Resize - Availability: 2.1.0 Requires GDAL 1.6.1+ Resize a raster to a new width/height
	ST_Roughness - Availability: 2.1.0 Returns a raster with the calculated "roughness" of a DEM.
	ST_SetValues - Availability: 2.1.0 Returns modified raster resulting from setting the values of a given band.
	ST_Simplify - Availability: 2.1.0 Returns a "simplified" geometry version of the given TopoGeometry using the Douglas-Peucker algorithm.
	ST_StraightSkeleton - Availability: 2.1.0 Compute a straight skeleton from a geometry
	ST_Summary - Availability: 2.1.0 Returns a text summary of the contents of the raster.
	ST_TPI - Availability: 2.1.0 Returns a raster with the calculated Topographic Position Index.
	ST_TRI - Availability: 2.1.0 Returns a raster with the calculated Terrain Ruggedness Index.
	ST_Tesselate - Availability: 2.1.0 Perform surface Tesselation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS
	ST_Tile - Availability: 2.1.0 Returns a set of rasters resulting from the split of the input raster based upon the desired dimensions of the output rasters.
	ST_Touches - Availability: 2.1.0 Return true if raster rastA and rastB have at least one point in common but their interiors do not intersect.
	ST_Union - Availability: 2.1.0 ST_Union(rast, unionarg) variant was introduced. Returns the union of a set of raster tiles into a single raster composed of 1 or more bands.
	ST_Within - Availability: 2.1.0 Return true if no points of raster rastA lie in the exterior of raster rastB and at least one point of the interior of rastA lies in the interior of rastB.
	ST_WorldToRasterCoord - Availability: 2.1.0 Returns the upper left corner as column and row given geometric X and Y (longitude and latitude) or a point geometry expressed in the spatial reference coordinate system of the raster.
	Set_Geocode_Setting - Availability: 2.1.0 Sets a setting that affects behavior of geocoder functions.
	UpdateRasterSRID - Availability: 2.1.0 Change the SRID of all rasters in the user-specified column and table.
	clearTopoGeom - Availability: 2.1 Clears the content of a topo geometry
	postgis.backend - Availability: 2.1.0 The backend to service a function where GEOS and SFCGAL overlap. Options: geos or sfcgal. Defaults to geos.
	postgis_sfcgal_version - Availability: 2.1.0 Returns the version of SFCGAL in use

The functions given below are PostGIS functions that are enhanced in PostGIS 2.1.
	ST_AddBand - Enhanced: 2.1.0 support for addbandarg added.
	ST_AddBand - Enhanced: 2.1.0 support for new out-db bands added.
	ST_AsBinary - Enhanced: 2.1.0 Addition of outasin
	ST_Aspect - Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional interpolate_nodata function parameter
	ST_Clip - Enhanced: 2.1.0 Rewritten in C
	ST_Distinct4ma - Enhanced: 2.1.0 Addition of Variant 2
	ST_HillShade - Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional interpolate_nodata function parameter
	ST_Max4ma - Enhanced: 2.1.0 Addition of Variant 2
	ST_Mean4ma - Enhanced: 2.1.0 Addition of Variant 2
	ST_Min4ma - Enhanced: 2.1.0 Addition of Variant 2
	ST_PixelAsPolygons - Enhanced: 2.1.0 exclude_nodata_value optional argument was added.
	ST_Polygon - Enhanced: 2.1.0 Improved Speed (fully C-Based) and the returning multipolygon is ensured to be valid.
	ST_Range4ma - Enhanced: 2.1.0 Addition of Variant 2
	ST_SameAlignment - Enhanced: 2.1.0 addition of Aggegrate variant
	ST_SetGeoReference - Enhanced: 2.1.0 Addition of ST_SetGeoReference(raster, double precision, ...) variant
	ST_SetValue - Enhanced: 2.1.0 Geometry variant of ST_SetValue() now supports any geometry type, not just point. The geometry variant is a wrapper around the geomval[] variant of ST_SetValues()
	ST_Slope - Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional units, scale, interpolate_nodata function parameters
	ST_StdDev4ma - Enhanced: 2.1.0 Addition of Variant 2
	ST_Sum4ma - Enhanced: 2.1.0 Addition of Variant 2
	ST_Transform - Enhanced: 2.1.0 Addition of ST_Transform(rast, alignto) variant
	ST_Union - Enhanced: 2.1.0 Improved Speed (fully C-Based).
	ST_Union - Enhanced: 2.1.0 ST_Union(rast) (variant 1) unions all bands of all input rasters. Prior versions of PostGIS assumed the first band.
	ST_Union - Enhanced: 2.1.0 ST_Union(rast, uniontype) (variant 4) unions all bands of all input rasters.
	ST_AsGML - Enhanced: 2.1.0 id support was introduced, for GML 3.
	ST_Boundary - Enhanced: 2.1.0 support for Triangle was introduced
	ST_DWithin - Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.
	ST_DWithin - Enhanced: 2.1.0 support for curved geometries was introduced.
	ST_Distance - Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.
	ST_Distance - Enhanced: 2.1.0 - support for curved geometries was introduced.
	ST_DumpPoints - Enhanced: 2.1.0 Faster speed. Reimplemented as native-C.
	ST_MakeValid - Enhanced: 2.1.0 added support for GEOMETRYCOLLECTION and MULTIPOINT.
	ST_Segmentize - Enhanced: 2.1.0 support for geography was introduced.
	ST_Summary - Enhanced: 2.1.0 S flag to denote if has a known spatial reference system
	toTopoGeom - Enhanced: 2.1.0 adds the version taking an existing TopoGeometry.

PostGIS functions breaking changes in 2.1

The functions given below are PostGIS functions that have possibly breaking changes in PostGIS 2.1. If you use any of these, you may need to check your existing code.
	ST_Aspect - Changed: 2.1.0 In prior versions, return values were in radians. Now, return values default to degrees
	ST_HillShade - Changed: 2.1.0 In prior versions, azimuth and altitude were expressed in radians. Now, azimuth and altitude are expressed in degrees
	ST_Intersects -
					Changed: 2.1.0 The behavior of the ST_Intersects(raster, geometry) variants changed to match that of ST_Intersects(geometry, raster).
				
	ST_PixelAsCentroids - Changed: 2.1.1 Changed behavior of exclude_nodata_value.
	ST_PixelAsPoints - Changed: 2.1.1 Changed behavior of exclude_nodata_value.
	ST_PixelAsPolygons - Changed: 2.1.1 Changed behavior of exclude_nodata_value.
	ST_Polygon - Changed: 2.1.0 In prior versions would sometimes return a polygon, changed to always return multipolygon.
	ST_RasterToWorldCoordX - Changed: 2.1.0 In prior versions, this was called ST_Raster2WorldCoordX
	ST_RasterToWorldCoordY - Changed: 2.1.0 In prior versions, this was called ST_Raster2WorldCoordY
	ST_Resample - Changed: 2.1.0 Parameter srid removed. Variants with a reference raster no longer applies the reference raster's SRID. Use ST_Transform() to reproject raster. Works on rasters with no SRID.
	ST_Rescale - Changed: 2.1.0 Works on rasters with no SRID
	ST_Reskew - Changed: 2.1.0 Works on rasters with no SRID
	ST_Slope - Changed: 2.1.0 In prior versions, return values were in radians. Now, return values default to degrees
	ST_SnapToGrid - Changed: 2.1.0 Works on rasters with no SRID
	ST_WorldToRasterCoordX - Changed: 2.1.0 In prior versions, this was called ST_World2RasterCoordX
	ST_WorldToRasterCoordY - Changed: 2.1.0 In prior versions, this was called ST_World2RasterCoordY
	ST_EstimatedExtent - Changed: 2.1.0. Up to 2.0.x this was called ST_Estimated_Extent.
	ST_Force2D - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_2D.
	ST_Force3D - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3D.
	ST_Force3DM - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DM.
	ST_Force3DZ - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DZ.
	ST_Force4D - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_4D.
	ST_ForceCollection - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_Collection.
	ST_LineInterpolatePoint - Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Interpolate_Point.
	ST_LineLocatePoint - Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Locate_Point.
	ST_LineSubstring - Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Substring.
	ST_Segmentize - Changed: 2.1.0 As a result of the introduction of geography support: The construct SELECT ST_Segmentize('LINESTRING(1 2, 3 4)',0.5); will result in ambiguous function error. You need to have properly typed object e.g. a geometry/geography column, use ST_GeomFromText, ST_GeogFromText or
				SELECT ST_Segmentize('LINESTRING(1 2, 3 4)'::geometry,0.5);

PostGIS Functions new, behavior changed, or enhanced in 2.0

The functions given below are PostGIS functions that were added, enhanced, or have the section called “PostGIS Functions changed behavior in 2.0” breaking changes in 2.0 releases.
New geometry types: TIN and Polyhedral surfaces was introduced in 2.0
Note
Greatly improved support for Topology. Please refer to Chapter 11, Topology for more details.

Note
In PostGIS 2.0, raster type and raster functionality has been integrated. There are way too many new raster functions to list here and all are new so
					please refer to Chapter 9, Raster Reference for more details of the raster functions available. Earlier pre-2.0 versions had raster_columns/raster_overviews as real tables. These were changed to views before release. Functions such as ST_AddRasterColumn were removed and replaced with AddRasterConstraints, DropRasterConstraints as a result some apps that created raster tables may need changing.

Note
Tiger Geocoder upgraded to work with TIGER 2010 census data and now included in the core PostGIS documentation. A reverse geocoder function was also added.
					Please refer to the section called “Tiger Geocoder” for more details.

	&& - Availability: 2.0.0 Returns TRUE if A's bounding box intersects B's bounding box.
	&&& - Availability: 2.0.0 Returns TRUE if A's n-D bounding box intersects B's n-D bounding box.
	<#> - Availability: 2.0.0 -- KNN only available for PostgreSQL 9.1+ Returns the 2D distance between A and B bounding boxes.
	<-> - Availability: 2.0.0 -- Weak KNN provides nearest neighbors based on geometry centroid distances instead of true distances. Exact results for points, inexact for all other types. Available for PostgreSQL 9.1+ Returns the 2D distance between A and B.
	AddEdge - Availability: 2.0.0 requires GEOS >= 3.3.0. Adds a linestring edge to the edge table and associated start and end points to the point nodes table of the specified topology schema using the specified linestring geometry and returns the edgeid of the new (or existing) edge.
	AddFace - Availability: 2.0.0 Registers a face primitive to a topology and gets its identifier.
	AddNode - Availability: 2.0.0 Adds a point node to the node table in the specified topology schema and returns the nodeid of new node. If point already exists as node, the existing nodeid is returned.
	AddOverviewConstraints - Availability: 2.0.0 Tag a raster column as being an overview of another.
	AddRasterConstraints - Availability: 2.0.0 Adds raster constraints to a loaded raster table for a specific column that constrains spatial ref, scaling, blocksize, alignment, bands, band type and a flag to denote if raster column is regularly blocked. The table must be loaded with data for the constraints to be inferred. Returns true of the constraint setting was accomplished and if issues a notice.
	AsGML - Availability: 2.0.0 Returns the GML representation of a topogeometry.
	CopyTopology - Availability: 2.0.0 Makes a copy of a topology structure (nodes, edges, faces, layers and TopoGeometries).
	DropOverviewConstraints - Availability: 2.0.0 Untag a raster column from being an overview of another.
	DropRasterConstraints - Availability: 2.0.0 Drops PostGIS raster constraints that refer to a raster table column. Useful if you need to reload data or update your raster column data.
	Drop_Indexes_Generate_Script - Availability: 2.0.0 Generates a script that drops all non-primary key and non-unique indexes on tiger schema and user specified schema. Defaults schema to tiger_data if no schema is specified.
	Drop_State_Tables_Generate_Script - Availability: 2.0.0 Generates a script that drops all tables in the specified schema that are prefixed with the state abbreviation. Defaults schema to tiger_data if no schema is specified.
	Geocode_Intersection - Availability: 2.0.0 Takes in 2 streets that intersect and a state, city, zip, and outputs a set of possible locations on the first cross street that is at the intersection, also includes a geomout as the point location in NAD 83 long lat, a normalized_address (addy) for each location, and the rating. The lower the rating the more likely the match. Results are sorted by lowest rating first. Can optionally pass in maximum results, defaults to 10. Uses Tiger data (edges, faces, addr), PostgreSQL fuzzy string matching (soundex, levenshtein).
	GetEdgeByPoint - Availability: 2.0.0 - requires GEOS >= 3.3.0. Find the edge-id of an edge that intersects a given point
	GetFaceByPoint - Availability: 2.0.0 - requires GEOS >= 3.3.0. Find the face-id of a face that intersects a given point
	GetNodeByPoint - Availability: 2.0.0 - requires GEOS >= 3.3.0. Find the id of a node at a point location
	GetNodeEdges - Availability: 2.0 Returns an ordered set of edges incident to the given node.
	GetRingEdges - Availability: 2.0.0 Returns the ordered set of signed edge identifiers met by walking on ana given edge side.
	GetTopoGeomElements - Availability: 2.0.0 Returns a set of topoelement objects containing the topological element_id,element_type of the given TopoGeometry (primitive elements)
	GetTopologySRID - Availability: 2.0.0 Returns the SRID of a topology in the topology.topology table given the name of the topology.
	Get_Tract - Availability: 2.0.0 Returns census tract or field from tract table of where the geometry is located. Default to returning short name of tract.
	Install_Missing_Indexes - Availability: 2.0.0 Finds all tables with key columns used in geocoder joins and filter conditions that are missing used indexes on those columns and will add them.
	Loader_Generate_Census_Script - Availability: 2.0.0 Generates a shell script for the specified platform for the specified states that will download Tiger census state tract, bg, and tabblocks data tables, stage and load into tiger_data schema. Each state script is returned as a separate record.
	Loader_Generate_Script - Availability: 2.0.0 to support Tiger 2010 structured data and load census tract (tract), block groups (bg), and blocks (tabblocks) tables . Generates a shell script for the specified platform for the specified states that will download Tiger data, stage and load into tiger_data schema. Each state script is returned as a separate record. Latest version supports Tiger 2010 structural changes and also loads census tract, block groups, and blocks tables.
	Missing_Indexes_Generate_Script - Availability: 2.0.0 Finds all tables with key columns used in geocoder joins that are missing indexes on those columns and will output the SQL DDL to define the index for those tables.
	Polygonize - Availability: 2.0.0 Find and register all faces defined by topology edges
	Reverse_Geocode - Availability: 2.0.0 Takes a geometry point in a known spatial ref sys and returns a record containing an array of theoretically possible addresses and an array of cross streets. If include_strnum_range = true, includes the street range in the cross streets.
	ST_3DClosestPoint - Availability: 2.0.0 Returns the 3-dimensional point on g1 that is closest to g2. This is the first point of the 3D shortest line.
	ST_3DDFullyWithin - Availability: 2.0.0 Returns true if all of the 3D geometries are within the specified distance of one another.
	ST_3DDWithin - Availability: 2.0.0 For 3d (z) geometry type Returns true if two geometries 3d distance is within number of units.
	ST_3DDistance - Availability: 2.0.0 For geometry type Returns the 3-dimensional cartesian minimum distance (based on spatial ref) between two geometries in projected units.
	ST_3DIntersects - Availability: 2.0.0 Returns TRUE if the Geometries "spatially intersect" in 3d - only for points, linestrings, polygons, polyhedral surface (area). With SFCGAL backend enabled also supports TINS
	ST_3DLongestLine - Availability: 2.0.0 Returns the 3-dimensional longest line between two geometries
	ST_3DMaxDistance - Availability: 2.0.0 For geometry type Returns the 3-dimensional cartesian maximum distance (based on spatial ref) between two geometries in projected units.
	ST_3DShortestLine - Availability: 2.0.0 Returns the 3-dimensional shortest line between two geometries
	ST_AddEdgeModFace - Availability: 2.0 Add a new edge and, if in doing so it splits a face, modify the original face and add a new face.
	ST_AddEdgeNewFaces - Availability: 2.0 Add a new edge and, if in doing so it splits a face, delete the original face and replace it with two new faces.
	ST_AsGDALRaster - Availability: 2.0.0 - requires GDAL >= 1.6.0. Return the raster tile in the designated GDAL Raster format. Raster formats are one of those supported by your compiled library. Use ST_GDALRasters() to get a list of formats supported by your library.
	ST_AsJPEG - Availability: 2.0.0 - requires GDAL >= 1.6.0. Return the raster tile selected bands as a single Joint Photographic Exports Group (JPEG) image (byte array). If no band is specified and 1 or more than 3 bands, then only the first band is used. If only 3 bands then all 3 bands are used and mapped to RGB.
	ST_AsLatLonText - Availability: 2.0 Return the Degrees, Minutes, Seconds representation of the given point.
	ST_AsPNG - Availability: 2.0.0 - requires GDAL >= 1.6.0. Return the raster tile selected bands as a single portable network graphics (PNG) image (byte array). If 1, 3, or 4 bands in raster and no bands are specified, then all bands are used. If more 2 or more than 4 bands and no bands specified, then only band 1 is used. Bands are mapped to RGB or RGBA space.
	ST_AsRaster - Availability: 2.0.0 - requires GDAL >= 1.6.0. Converts a PostGIS geometry to a PostGIS raster.
	ST_AsTIFF - Availability: 2.0.0 - requires GDAL >= 1.6.0. Return the raster selected bands as a single TIFF image (byte array). If no band is specified, then will try to use all bands.
	ST_AsX3D - Availability: 2.0.0: ISO-IEC-19776-1.2-X3DEncodings-XML Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML
	ST_Aspect - Availability: 2.0.0 Returns the aspect (in degrees by default) of an elevation raster band. Useful for analyzing terrain.
	ST_Band - Availability: 2.0.0 Returns one or more bands of an existing raster as a new raster. Useful for building new rasters from existing rasters.
	ST_BandIsNoData - Availability: 2.0.0 Returns true if the band is filled with only nodata values.
	ST_Clip - Availability: 2.0.0 Returns the raster clipped by the input geometry. If band number not is specified, all bands are processed. If crop is not specified or TRUE, the output raster is cropped.
	ST_CollectionHomogenize - Availability: 2.0.0 Given a geometry collection, return the "simplest" representation of the contents.
	ST_ConcaveHull - Availability: 2.0.0 The concave hull of a geometry represents a possibly concave geometry that encloses all geometries within the set. You can think of it as shrink wrapping.
	ST_Count - Availability: 2.0.0 Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the nodata value.
	ST_CreateTopoGeo - Availability: 2.0 Adds a collection of geometries to a given empty topology and returns a message detailing success.
	ST_Distinct4ma - Availability: 2.0.0 Raster processing function that calculates the number of unique pixel values in a neighborhood.
	ST_FlipCoordinates - Availability: 2.0.0 Returns a version of the given geometry with X and Y axis flipped. Useful for people who have built latitude/longitude features and need to fix them.
	ST_GDALDrivers - Availability: 2.0.0 - requires GDAL >= 1.6.0. Returns a list of raster formats supported by your lib gdal. These are the formats you can output your raster using ST_AsGDALRaster.
	ST_GeomFromGeoJSON - Availability: 2.0.0 requires - JSON-C >= 0.9 Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object
	ST_GetFaceEdges - Availability: 2.0 Returns a set of ordered edges that bound aface.
	ST_HasNoBand - Availability: 2.0.0 Returns true if there is no band with given band number. If no band number is specified, then band number 1 is assumed.
	ST_HillShade - Availability: 2.0.0 Returns the hypothetical illumination of an elevation raster band using provided azimuth, altitude, brightness and scale inputs.
	ST_Histogram - Availability: 2.0.0 Returns a set of record summarizing a raster or raster coverage data distribution separate bin ranges. Number of bins are autocomputed if not specified.
	ST_InterpolatePoint - Availability: 2.0.0 Return the value of the measure dimension of a geometry at the point closed to the provided point.
	ST_IsEmpty - Availability: 2.0.0 Returns true if the raster is empty (width = 0 and height = 0). Otherwise, returns false.
	ST_IsValidDetail - Availability: 2.0.0 - requires GEOS >= 3.3.0. Returns a valid_detail (valid,reason,location) row stating if a geometry is valid or not and if not valid, a reason why and a location where.
	ST_IsValidReason - Availability: 2.0 - requires GEOS >= 3.3.0 for the version taking flags. Returns text stating if a geometry is valid or not and if not valid, a reason why.
	ST_MakeLine - Availability: 2.0.0 - Support for linestring input elements was introduced Creates a Linestring from point, multipoint, or line geometries.
	ST_MakeValid - Availability: 2.0.0, requires GEOS-3.3.0 Attempts to make an invalid geometry valid without losing vertices.
	ST_MapAlgebraExpr - Availability: 2.0.0 1 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the input raster band and of pixeltype provided. Band 1 is assumed if no band is specified.
	ST_MapAlgebraExpr - Availability: 2.0.0 2 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the two input raster bands and of pixeltype provided. band 1 of each raster is assumed if no band numbers are specified. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster and have its extent defined by the "extenttype" parameter. Values for "extenttype" can be: INTERSECTION, UNION, FIRST, SECOND.
	ST_MapAlgebraFct - Availability: 2.0.0 1 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the input raster band and of pixeltype prodived. Band 1 is assumed if no band is specified.
	ST_MapAlgebraFct - Availability: 2.0.0 2 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the 2 input raster bands and of pixeltype prodived. Band 1 is assumed if no band is specified. Extent type defaults to INTERSECTION if not specified.
	ST_MapAlgebraFctNgb - Availability: 2.0.0 1-band version: Map Algebra Nearest Neighbor using user-defined PostgreSQL function. Return a raster which values are the result of a PLPGSQL user function involving a neighborhood of values from the input raster band.
	ST_Max4ma - Availability: 2.0.0 Raster processing function that calculates the maximum pixel value in a neighborhood.
	ST_Mean4ma - Availability: 2.0.0 Raster processing function that calculates the mean pixel value in a neighborhood.
	ST_Min4ma - Availability: 2.0.0 Raster processing function that calculates the minimum pixel value in a neighborhood.
	ST_ModEdgeHeal - Availability: 2.0 Heal two edges by deleting the node connecting them, modifying the first edgeand deleting the second edge. Returns the id of the deleted node.
	ST_NewEdgeHeal - Availability: 2.0 Heal two edges by deleting the node connecting them, deleting both edges,and replacing them with an edge whose direction is the same as the firstedge provided.
	ST_Node - Availability: 2.0.0 - requires GEOS >= 3.3.0. Node a set of linestrings.
	ST_NumPatches - Availability: 2.0.0 Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.
	ST_OffsetCurve -
Availability: 2.0 - requires GEOS >= 3.2, improved with GEOS >= 3.3
				 Return an offset line at a given distance and side from an input line. Useful for computing parallel lines about a center line
	ST_PatchN - Availability: 2.0.0 Return the 1-based Nth geometry (face) if the geometry is a POLYHEDRALSURFACE, POLYHEDRALSURFACEM. Otherwise, return NULL.
	ST_PixelAsPolygon - Availability: 2.0.0 Returns the polygon geometry that bounds the pixel for a particular row and column.
	ST_PixelAsPolygons - Availability: 2.0.0 Returns the polygon geometry that bounds every pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel.
	ST_Project - Availability: 2.0.0 Returns a POINT projected from a start point using a distance in meters and bearing (azimuth) in radians.
	ST_Quantile - Availability: 2.0.0 Compute quantiles for a raster or raster table coverage in the context of the sample or population. Thus, a value could be examined to be at the raster's 25%, 50%, 75% percentile.
	ST_Range4ma - Availability: 2.0.0 Raster processing function that calculates the range of pixel values in a neighborhood.
	ST_Reclass - Availability: 2.0.0 Creates a new raster composed of band types reclassified from original. The nband is the band to be changed. If nband is not specified assumed to be 1. All other bands are returned unchanged. Use case: convert a 16BUI band to a 8BUI and so forth for simpler rendering as viewable formats.
	ST_RelateMatch - Availability: 2.0.0 - requires GEOS >= 3.3.0. Returns true if intersectionMattrixPattern1 implies intersectionMatrixPattern2
	ST_RemEdgeModFace - Availability: 2.0 Removes an edge and, if the removed edge separated two faces,delete one of the them and modify the other to take the space of both.
	ST_RemEdgeNewFace - Availability: 2.0 Removes an edge and, if the removed edge separated two faces,delete the original faces and replace them with a new face.
	ST_Resample - Availability: 2.0.0 Requires GDAL 1.6.1+ Resample a raster using a specified resampling algorithm, new dimensions, an arbitrary grid corner and a set of raster georeferencing attributes defined or borrowed from another raster.
	ST_Rescale - Availability: 2.0.0 Requires GDAL 1.6.1+ Resample a raster by adjusting only its scale (or pixel size). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.
	ST_Reskew - Availability: 2.0.0 Requires GDAL 1.6.1+ Resample a raster by adjusting only its skew (or rotation parameters). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.
	ST_SameAlignment - Availability: 2.0.0 Returns true if rasters have same skew, scale, spatial ref, and offset (pixels can be put on same grid without cutting into pixels) and false if they don't with notice detailing issue.
	ST_SetBandIsNoData - Availability: 2.0.0 Sets the isnodata flag of the band to TRUE.
	ST_SharedPaths - Availability: 2.0.0 requires GEOS >= 3.3.0. Returns a collection containing paths shared by the two input linestrings/multilinestrings.
	ST_Slope - Availability: 2.0.0 Returns the slope (in degrees by default) of an elevation raster band. Useful for analyzing terrain.
	ST_Snap - Availability: 2.0.0 requires GEOS >= 3.3.0. Snap segments and vertices of input geometry to vertices of a reference geometry.
	ST_SnapToGrid - Availability: 2.0.0 Requires GDAL 1.6.1+ Resample a raster by snapping it to a grid. New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.
	ST_Split - Availability: 2.0.0 Returns a collection of geometries resulting by splitting a geometry.
	ST_StdDev4ma - Availability: 2.0.0 Raster processing function that calculates the standard deviation of pixel values in a neighborhood.
	ST_Sum4ma - Availability: 2.0.0 Raster processing function that calculates the sum of all pixel values in a neighborhood.
	ST_SummaryStats - Availability: 2.0.0 Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. Band 1 is assumed is no band is specified.
	ST_Transform - Availability: 2.0.0 Requires GDAL 1.6.1+ Reprojects a raster in a known spatial reference system to another known spatial reference system using specified resampling algorithm. Options are NearestNeighbor, Bilinear, Cubic, CubicSpline, Lanczos defaulting to NearestNeighbor.
	ST_UnaryUnion - Availability: 2.0.0 - requires GEOS >= 3.3.0. Like ST_Union, but working at the geometry component level.
	ST_Union - Availability: 2.0.0 Returns the union of a set of raster tiles into a single raster composed of 1 or more bands.
	ST_ValueCount - Availability: 2.0.0 Returns a set of records containing a pixel band value and count of the number of pixels in a given band of a raster (or a raster coverage) that have a given set of values. If no band is specified defaults to band 1. By default nodata value pixels are not counted. and all other values in the pixel are output and pixel band values are rounded to the nearest integer.
	TopoElementArray_Agg - Availability: 2.0.0 Returns a topoelementarray for a set of element_id, type arrays (topoelements)
	TopoGeo_AddLineString - Availability: 2.0.0 Adds a linestring to an existing topology using a tolerance and possibly splitting existing edges/faces. Returns edge identifiers
	TopoGeo_AddPoint - Availability: 2.0.0 Adds a point to an existing topology using a tolerance and possibly splitting an existing edge.
	TopoGeo_AddPolygon - Availability: 2.0.0 Adds a polygon to an existing topology using a tolerance and possibly splitting existing edges/faces.
	TopologySummary - Availability: 2.0.0 Takes a topology name and provides summary totals of types of objects in topology
	Topology_Load_Tiger - Availability: 2.0.0 Loads a defined region of tiger data into a PostGIS Topology and transforming the tiger data to spatial reference of the topology and snapping to the precision tolerance of the topology.
	toTopoGeom - Availability: 2.0 Converts a simple Geometry into a topo geometry
	~= - Availability: 2.0.0 Returns TRUE if A's bounding box is the same as B's.

The functions given below are PostGIS functions that are enhanced in PostGIS 2.0.
	AddGeometryColumn - Enhanced: 2.0.0 use_typmod argument introduced. Defaults to creating typmod geometry column instead of constraint-based.
	Box2D - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	Box3D - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	Geocode - Enhanced: 2.0.0 to support Tiger 2010 structured data and revised some logic to improve speed, accuracy of geocoding, and to offset point from centerline to side of street address is located on. The new parameter max_results useful for specifying number of best results or just returning the best result.
	GeometryType - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	Populate_Geometry_Columns - Enhanced: 2.0.0 use_typmod optional argument was introduced that allows controlling if columns are created with typmodifiers or with check constraints.
	ST_Intersection -
						Enhanced: 2.0.0 - Intersection in the raster space was introduced. In earlier pre-2.0.0 versions, only intersection performed in vector space were supported.
					
	ST_Intersects -
				Enhanced: 2.0.0 support raster/raster intersects was introduced.
			
	ST_Value - Enhanced: 2.0.0 exclude_nodata_value optional argument was added.
	ST_3DExtent - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Accum - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Affine - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Area - Enhanced: 2.0.0 - support for 2D polyhedral surfaces was introduced.
	ST_AsBinary - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_AsBinary - Enhanced: 2.0.0 support for higher coordinate dimensions was introduced.
	ST_AsBinary - Enhanced: 2.0.0 support for specifying endian with geography was introduced.
	ST_AsEWKB - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_AsEWKT - Enhanced: 2.0.0 support for Geography, Polyhedral surfaces, Triangles and TIN was introduced.
	ST_AsGML - Enhanced: 2.0.0 prefix support was introduced. Option 4 for GML3 was introduced to allow using LineString instead of Curve tag for lines. GML3 Support for Polyhedral surfaces and TINS was introduced. Option 32 was introduced to output the box.
	ST_AsKML - Enhanced: 2.0.0 - Add prefix namespace. Default is no prefix
	ST_Azimuth - Enhanced: 2.0.0 support for geography was introduced.
	ST_ChangeEdgeGeom -
	Enhanced: 2.0.0 adds topological consistency enforcement
		
	ST_Dimension - Enhanced: 2.0.0 support for Polyhedral surfaces and TINs was introduced. No longer throws an exception if given empty geometry.
	ST_Dump - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_DumpPoints - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Expand - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Extent - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Force2D - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_ForceRHR - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_Force3D - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_Force3DZ - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_ForceCollection - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_GMLToSQL - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
	ST_GMLToSQL - Enhanced: 2.0.0 default srid optional parameter added.
	ST_GeomFromEWKB - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
	ST_GeomFromEWKT - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
	ST_GeomFromGML - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
	ST_GeomFromGML - Enhanced: 2.0.0 default srid optional parameter added.
	ST_GeometryN - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_GeometryType - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_IsClosed - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_MakeEnvelope - Enhanced: 2.0: Ability to specify an envelope without specifying an SRID was introduced.
	ST_MakeValid - Enhanced: 2.0.1, speed improvements requires GEOS-3.3.4
	ST_NPoints - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_NumGeometries - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Relate - Enhanced: 2.0.0 - added support for specifying boundary node rule (requires GEOS >= 3.0).
	ST_Rotate - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Rotate - Enhanced: 2.0.0 additional parameters for specifying the origin of rotation were added.
	ST_RotateX - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_RotateY - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_RotateZ - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Scale - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_ShiftLongitude - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
	ST_Summary - Enhanced: 2.0.0 added support for geography
	ST_Transform - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ValidateTopology - Enhanced: 2.0.0 more efficient edge crossing detection and fixes for false positives that were existent in prior versions.
	&& - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

PostGIS Functions changed behavior in 2.0

The functions given below are PostGIS functions that have changed behavior in PostGIS 2.0 and may require application changes.
Note
Most deprecated functions have been removed. These are functions that haven't been documented since 1.2
 or some internal functions that were never documented. If you are using a function that you don't see documented,
 it's probably deprecated, about to be deprecated, or internal and should be avoided. If you have applications or tools
 that rely on deprecated functions, please refer to Q: 3.2 for more details.

Note
Bounding boxes of geometries have been changed from float4 to double precision (float8). This has an impact
 	on answers you get using bounding box operators and casting of bounding boxes to geometries. E.g ST_SetSRID(abbox) will
 	often return a different more accurate answer in PostGIS 2.0+ than it did in prior versions which may very well slightly
 	change answers to view port queries.

Note
The arguments hasnodata was replaced with exclude_nodata_value which has the same meaning as the older hasnodata but clearer in purpose.

	AddGeometryColumn - Changed: 2.0.0 This function no longer updates geometry_columns since geometry_columns is a view that reads from system catalogs. It by default
			also does not create constraints, but instead uses the built in type modifier behavior of PostgreSQL. So for example building a wgs84 POINT column with this function is now
			equivalent to: ALTER TABLE some_table ADD COLUMN geom geometry(Point,4326);
	AddGeometryColumn - Changed: 2.0.0 If you require the old behavior of constraints use the default use_typmod, but set it to false.
	AddGeometryColumn - Changed: 2.0.0 Views can no longer be manually registered in geometry_columns, however views built against geometry typmod tables geometries and used without wrapper functions will register themselves correctly
		 because they inherit the typmod behavior of their parent table column.
		 Views that use geometry functions that output other geometries will need to be cast to typmod geometries for these view geometry columns to be registered correctly
		 in geometry_columns. Refer to .
			
	DropGeometryColumn - Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs,
			 you can drop a geometry column like any other table column using ALTER TABLE
	DropGeometryTable - Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs,
			 you can drop a table with geometry columns like any other table using DROP TABLE
	Populate_Geometry_Columns - Changed: 2.0.0 By default, now uses type modifiers instead of check constraints to constrain geometry types. You can still use check
		 constraint behavior instead by using the new use_typmod and setting it to false.
	Box3D - Changed: 2.0.0 In pre-2.0 versions, there used to be a box2d instead of box3d. Since box2d is a deprecated type, this was changed to box3d.
	ST_GDALDrivers - Changed: 2.0.6, 2.1.3 - by default no drivers are enabled, unless GUC or Environment variable gdal_enabled_drivers is set.
	ST_ScaleX - Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeX.
	ST_ScaleY - Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeY.
	ST_SetScale - Changed: 2.0.0 In WKTRaster versions this was called ST_SetPixelSize. This was changed in 2.0.0.
	ST_3DExtent - Changed: 2.0.0 In prior versions this used to be called ST_Extent3D
	ST_3DLength - Changed: 2.0.0 In prior versions this used to be called ST_Length3D
	ST_3DMakeBox - Changed: 2.0.0 In prior versions this used to be called ST_MakeBox3D
	ST_3DPerimeter - Changed: 2.0.0 In prior versions this used to be called ST_Perimeter3D
	ST_AsBinary - Changed: 2.0.0 Inputs to this function can not be unknown -- must be geometry. Constructs such as ST_AsBinary('POINT(1 2)') are no longer valid and you will get an n st_asbinary(unknown) is not unique error. Code like that
			needs to be changed to ST_AsBinary('POINT(1 2)'::geometry);. If that is not possible, then install legacy.sql.
	ST_AsGML - Changed: 2.0.0 use default named args
	ST_AsGeoJSON - Changed: 2.0.0 support default args and named args.
	ST_AsKML - Changed: 2.0.0 - uses default args and supports named args
	ST_AsSVG - Changed: 2.0.0 to use default args and support named args
	ST_EndPoint - Changed: 2.0.0 no longer works with single geometry multilinestrings. In older
	 versions of PostGIS -- a single line multilinestring would work happily with this
	 function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring.
	 The older behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING
	 may experience these returning NULL in 2.0 now.
	ST_GeomFromText - Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards. This should now be
			 written as ST_GeomFromText('GEOMETRYCOLLECTION EMPTY')
	ST_GeometryN - Changed: 2.0.0 Prior versions would return NULL for singular geometries. This was changed to return the geometry for ST_GeometryN(..,1) case.
	ST_IsEmpty - Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards
	ST_Length - Changed: 2.0.0 Breaking change -- in prior versions applying this to a MULTI/POLYGON of type geography would give you the perimeter of the POLYGON/MULTIPOLYGON. In 2.0.0
			this was changed to return 0 to be in line with geometry behavior. Please use ST_Perimeter if you want the perimeter of a polygon
	ST_LocateAlong - Changed: 2.0.0 in prior versions this used to be called ST_Locate_Along_Measure. The old name has been deprecated and will be removed in the future but is still available.
	ST_LocateBetween - Changed: 2.0.0 - in prior versions this used to be called ST_Locate_Between_Measures. The old name has been deprecated and will be removed in the future but is still available for backward compatibility.
	ST_ModEdgeSplit - Changed: 2.0 - In prior versions, this was misnamed ST_ModEdgesSplit
	ST_NumGeometries - Changed: 2.0.0 In prior versions this would return NULL if the geometry was not a collection/MULTI type.
				2.0.0+ now returns 1 for single geometries e.g POLYGON, LINESTRING, POINT.
	ST_NumInteriorRings - Changed: 2.0.0 - in prior versions it would allow passing a MULTIPOLYGON, returning the number of interior rings of first POLYGON.
	ST_PointN - Changed: 2.0.0 no longer works with single geometry multilinestrings. In older
	 versions of PostGIS -- a single line multilinestring would work happily with this
	 function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring.
	ST_StartPoint - Changed: 2.0.0 no longer works with single geometry multilinestrings. In older
	 versions of PostGIS -- a single line multilinestring would work happily with this
	 function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring.
	 The older behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING
	 may experience these returning NULL in 2.0 now.

PostGIS Functions new, behavior changed, or enhanced in 1.5

The functions given below are PostGIS functions that were introduced or enhanced in this minor release.
	PostGIS_LibXML_Version - Availability: 1.5 Returns the version number of the libxml2 library.
	ST_AddMeasure - Availability: 1.5.0 Return a derived geometry with measure elements linearly interpolated between the start and end points.
	ST_AsBinary - Availability: 1.5.0 geography support was introduced. Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsGML - Availability: 1.5.0 geography support was introduced. Return the geometry as a GML version 2 or 3 element.
	ST_AsGeoJSON - Availability: 1.5.0 geography support was introduced. Return the geometry as a GeoJSON element.
	ST_AsText - Availability: 1.5 - support for geography was introduced. Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
	ST_Buffer - Availability: 1.5 - ST_Buffer was enhanced to support different endcaps and join types. These are useful for example to convert road linestrings
					into polygon roads with flat or square edges instead of rounded edges. Thin wrapper for geography was added. - requires GEOS >= 3.2 to take advantage of advanced geometry functionality.
				 (T)Returns a geometry covering all points within a given distancefrom the input geometry.
	ST_ClosestPoint - Availability: 1.5.0 Returns the 2-dimensional point on g1 that is closest to g2. This is the first point of the shortest line.
	ST_CollectionExtract - Availability: 1.5.0 Given a (multi)geometry, return a (multi)geometry consisting only of elements of the specified type.
	ST_Covers - Availability: 1.5 - support for geography was introduced. Returns 1 (TRUE) if no point in Geometry B is outside Geometry A
	ST_DFullyWithin - Availability: 1.5.0 Returns true if all of the geometries are within the specified distance of one another
	ST_DWithin - Availability: 1.5.0 support for geography was introduced Returns true if the geometries are within the specified distance of one another. For geometry units are in those of spatial reference and For geography units are in meters and measurement is defaulted to use_spheroid=true (measure around spheroid), for faster check, use_spheroid=false to measure along sphere.
	ST_Distance - Availability: 1.5.0 geography support was introduced in 1.5. Speed improvements for planar to better handle large or many vertex geometries For geometry type Returns the 2D Cartesian distance between two geometries in projected units (based on spatial ref). For geography type defaults to return minimum geodesic distance between two geographies in meters.
	ST_DistanceSphere - Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points. Returns minimum distance in meters between two lon/lat geometries. Uses a spherical earth and radius derived from the spheroid defined by the SRID. Faster than ST_DistanceSpheroid , but less accurate. PostGIS versions prior to 1.5 only implemented for points.
	ST_DistanceSpheroid - Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points. Returns the minimum distance between two lon/lat geometries given a particular spheroid. PostGIS versions prior to 1.5 only support points.
	ST_DumpPoints - Availability: 1.5.0 Returns a set of geometry_dump (geom,path) rows of all points that make up a geometry.
	ST_Envelope - Availability: 1.5.0 behavior changed to output double precision instead of float4 Returns a geometry representing the double precision (float8) bounding box of the supplied geometry.
	ST_GMLToSQL - Availability: 1.5, requires libxml2 1.6+ Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML
	ST_GeomFromGML - Availability: 1.5, requires libxml2 1.6+ Takes as input GML representation of geometry and outputs a PostGIS geometry object
	ST_GeomFromKML - Availability: 1.5,libxml2 2.6+ Takes as input KML representation of geometry and outputs a PostGIS geometry object
	~= - Availability: 1.5.0 changed behavior Returns TRUE if A's bounding box is the same as B's.
	ST_HausdorffDistance - Availability: 1.5.0 - requires GEOS >= 3.2.0 Returns the Hausdorff distance between two geometries. Basically a measure of how similar or dissimilar 2 geometries are. Units are in the units of the spatial reference system of the geometries.
	ST_Intersection - Availability: 1.5 support for geography data type was introduced. (T)Returns a geometry that represents the shared portion of geomA and geomB.
	ST_Intersects - Availability: 1.5 support for geography was introduced. Returns TRUE if the Geometries/Geography "spatially intersect in 2D" - (share any portion of space) and FALSE if they don't (they are Disjoint). For geography -- tolerance is 0.00001 meters (so any points that close are considered to intersect)
	ST_Length - Availability: 1.5.0 geography support was introduced in 1.5. Returns the 2D length of the geometry if it is a LineString or MultiLineString. geometry are in units of spatial reference and geography are in meters (default spheroid)
	ST_LongestLine - Availability: 1.5.0 Returns the 2-dimensional longest line points of two geometries. The function will only return the first longest line if more than one, that the function finds. The line returned will always start in g1 and end in g2. The length of the line this function returns will always be the same as st_maxdistance returns for g1 and g2.
	ST_MakeEnvelope - Availability: 1.5 Creates a rectangular Polygon formed from the given minimums and maximums. Input values must be in SRS specified by the SRID.
	ST_MaxDistance - Availability: 1.5.0 Returns the 2-dimensional largest distance between two geometries in projected units.
	ST_ShortestLine - Availability: 1.5.0 Returns the 2-dimensional shortest line between two geometries
	&& - Availability: 1.5.0 support for geography was introduced. Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.

PostGIS Functions new, behavior changed, or enhanced in 1.4

The functions given below are PostGIS functions that were introduced or enhanced in the 1.4 release.
	Populate_Geometry_Columns - Ensures geometry columns are defined with type modifiers or have appropriate spatial constraints This ensures they will be registered correctly in geometry_columns view. By default will convert all geometry columns with no type modifier to ones with type modifiers. To get old behavior set use_typmod=false Availability: 1.4.0
	ST_AsSVG - Returns a Geometry in SVG path data given a geometry or geography object.
		 Availability: 1.2.2. Availability: 1.4.0 Changed in PostGIS 1.4.0 to include L command in absolute path to conform to http://www.w3.org/TR/SVG/paths.html#PathDataBNF
		
	ST_Collect - Return a specified ST_Geometry value from a collection of other geometries. Availability: 1.4.0 - ST_Collect(geomarray) was introduced. ST_Collect was enhanced to handle more geometries faster.
	ST_ContainsProperly - Returns true if B intersects the interior of A but not the boundary (or exterior). A does not contain properly itself, but does contain itself. Availability: 1.4.0 - requires GEOS >= 3.1.0.
	ST_Extent - an aggregate function that returns the bounding box that bounds rows of geometries.
		 Availability: 1.4.0
		
	ST_GeoHash - Return a GeoHash representation of the geometry. Availability: 1.4.0
	ST_IsValidReason - Returns text stating if a geometry is valid or not and if not valid, a reason why. Availability: 1.4 - requires GEOS >= 3.1.0.
	ST_LineCrossingDirection - Given 2 linestrings, returns a number between -3 and 3 denoting what kind of crossing behavior. 0 is no crossing. Availability: 1.4
	ST_LocateBetweenElevations - Return a derived geometry (collection) value with elements that intersect the specified range of elevations inclusively. Only 3D, 4D LINESTRINGS and MULTILINESTRINGS are supported. Availability: 1.4.0
	ST_MakeLine - Creates a Linestring from point, multipoint, or line geometries. Availability: 1.4.0 - ST_MakeLine(geomarray) was introduced. ST_MakeLine aggregate functions was enhanced to handle more points faster.
	ST_MinimumBoundingCircle - Returns the smallest circle polygon that can fully contain a geometry. Default uses 48 segments per quarter circle. Availability: 1.4.0 - requires GEOS
	ST_Union - Returns a geometry that represents the point set union of the Geometries. Availability: 1.4.0 - ST_Union was enhanced. ST_Union(geomarray) was introduced and also faster aggregate collection in PostgreSQL. If you are using GEOS 3.1.0+
		ST_Union will use the faster Cascaded Union algorithm described in
		http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html

PostGIS Functions new in 1.3

The functions given below are PostGIS functions that were introduced in the 1.3 release.
	ST_AsGML - Return the geometry as a GML version 2 or 3 element. Availability: 1.3.2
	ST_AsGeoJSON - Return the geometry as a GeoJSON element. Availability: 1.3.4
	ST_SimplifyPreserveTopology - Returns a "simplified" version of the given geometry using the Douglas-Peucker algorithm. Will avoid creating derived geometries (polygons in particular) that are invalid. Availability: 1.3.3

Raster Pixel Accessors and Setters

Name
ST_SetBandIsNoData — Sets the isnodata flag of the band to TRUE.

Synopsis
	raster fsfuncST_SetBandIsNoData(rast, 	
	 	band=1);	

raster rast;
integer band=1;

Description
Sets the isnodata flag for the band to true. Band 1 is
 assumed if not specified. This function should be called only
 when the flag is considered dirty. That is, when the result
 calling ST_BandIsNoData is different using
 TRUE as last argument and without using it
Availability: 2.0.0

Examples

-- Create dummy table with one raster column
create table dummy_rast (rid integer, rast raster);

-- Add raster with two bands, one pixel/band. In the first band, nodatavalue = pixel value = 3.
-- In the second band, nodatavalue = 13, pixel value = 4
insert into dummy_rast values(1,
(
'01' -- little endian (uint8 ndr)
||
'0000' -- version (uint16 0)
||
'0200' -- nBands (uint16 0)
||
'17263529ED684A3F' -- scaleX (float64 0.000805965234044584)
||
'F9253529ED684ABF' -- scaleY (float64 -0.00080596523404458)
||
'1C9F33CE69E352C0' -- ipX (float64 -75.5533328537098)
||
'718F0E9A27A44840' -- ipY (float64 49.2824585505576)
||
'ED50EB853EC32B3F' -- skewX (float64 0.000211812383858707)
||
'7550EB853EC32B3F' -- skewY (float64 0.000211812383858704)
||
'E6100000' -- SRID (int32 4326)
||
'0100' -- width (uint16 1)
||
'0100' -- height (uint16 1)
||
'4' -- hasnodatavalue set to true, isnodata value set to false (when it should be true)
||
'2' -- first band type (4BUI)
||
'03' -- novalue==3
||
'03' -- pixel(0,0)==3 (same that nodata)
||
'0' -- hasnodatavalue set to false
||
'5' -- second band type (16BSI)
||
'0D00' -- novalue==13
||
'0400' -- pixel(0,0)==4
)::raster
);

select st_bandisnodata(rast, 1) from dummy_rast where rid = 1; -- Expected false
select st_bandisnodata(rast, 1, TRUE) from dummy_rast where rid = 1; -- Expected true

-- The isnodata flag is dirty. We are going to set it to true
update dummy_rast set rast = st_setbandisnodata(rast, 1) where rid = 1;

select st_bandisnodata(rast, 1) from dummy_rast where rid = 1; -- Expected true

See Also
ST_BandNoDataValue, ST_NumBands, ST_SetBandNoDataValue, ST_BandIsNoData

Name
ST_3DIntersects — Returns TRUE if the Geometries "spatially
			intersect" in 3d - only for points, linestrings, polygons, polyhedral surface (area). With SFCGAL backend enabled also supports TINS
			

Synopsis
	boolean fsfuncST_3DIntersects(geomA, 	
	 	geomB);	

						geometry
						geomA
					;

						geometry
						geomB
					;

Description
Overlaps, Touches, Within all imply spatial intersection. If any of the aforementioned
				returns true, then the geometries also spatially intersect.
				Disjoint implies false for spatial intersection.
Availability: 2.0.0
Note
This function call will automatically include a bounding box
			 comparison that will make use of any indexes that are available on the
			 geometries.

Note
In order to take advantage of support for TINS, you need to enable the SFCGAL backend. This can be done at session time with: set postgis.backend = sfcgal; or at the database or system level. Database level can be done with ALTER DATABASE gisdb SET postgis.backend = sfcgal;.

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description] This method is also provided by SFCGAL backend.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: ?

Geometry Examples
SELECT ST_3DIntersects(pt, line), ST_Intersects(pt,line)
	FROM (SELECT 'POINT(0 0 2)'::geometry As pt,
		'LINESTRING (0 0 1, 0 2 3)'::geometry As line) As foo;
 st_3dintersects | st_intersects
-----------------+---------------
 f | t
(1 row)
		

TIN Examples
set postgis.backend = sfcgal;
SELECT ST_3DIntersects('TIN(((0 0,1 0,0 1,0 0)))'::geometry, 'POINT(.1 .1)'::geometry);
 st_3dintersects

 t

See Also
ST_Intersects

Name
DropGeometryColumn — Removes a geometry column from a spatial
		table.

Synopsis
	text fsfuncDropGeometryColumn(table_name, 	
	 	column_name);	

varchar
			table_name;
varchar
			column_name;

	text fsfuncDropGeometryColumn(schema_name, 	
	 	table_name, 	
	 	column_name);	

varchar
			schema_name;
varchar
			table_name;
varchar
			column_name;

	text fsfuncDropGeometryColumn(catalog_name, 	
	 	schema_name, 	
	 	table_name, 	
	 	column_name);	

varchar
			catalog_name;
varchar
			schema_name;
varchar
			table_name;
varchar
			column_name;

Description
Removes a geometry column from a spatial table. Note that
		schema_name will need to match the f_table_schema field of the table's
		row in the geometry_columns table.
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
Note
Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs,
			 you can drop a geometry column like any other table column using ALTER TABLE

Examples

			SELECT DropGeometryColumn ('my_schema','my_spatial_table','geom');
			----RESULT output ---
			 dropgeometrycolumn
--
 my_schema.my_spatial_table.geom effectively removed.

-- In PostGIS 2.0+ the above is also equivalent to the standard
-- the standard alter table. Both will deregister from geometry_columns
ALTER TABLE my_schema.my_spatial_table DROP column geom;
		

See Also
AddGeometryColumn, DropGeometryTable, the section called “The GEOMETRY_COLUMNS VIEW”

Name
ST_AddPoint — Add a point to a LineString.

Synopsis
	geometry fsfuncST_AddPoint(linestring, 	
	 	point);	

geometry linestring;
geometry point;

	geometry fsfuncST_AddPoint(linestring, 	
	 	point, 	
	 	position);	

geometry linestring;
geometry point;
integer position;

Description
Adds a point to a LineString before point <position>
				(0-based index). Third parameter can be omitted or set to -1 for
				appending.
Availability: 1.1.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

		--guarantee all linestrings in a table are closed
		--by adding the start point of each linestring to the end of the line string
		--only for those that are not closed
		UPDATE sometable
		SET the_geom = ST_AddPoint(the_geom, ST_StartPoint(the_geom))
		FROM sometable
		WHERE ST_IsClosed(the_geom) = false;

		--Adding point to a 3-d line
		SELECT ST_AsEWKT(ST_AddPoint(ST_GeomFromEWKT('LINESTRING(0 0 1, 1 1 1)'), ST_MakePoint(1, 2, 3)));

		--result
		st_asewkt

		LINESTRING(0 0 1,1 1 1,1 2 3)
			

See Also
ST_RemovePoint, ST_SetPoint

Name
&&&(gidx,geometry) — Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry's (cached) n-D bounding box.

Synopsis
	boolean fsfunc&&&(A, 	
	 	B);	

				 gidx

				 A
				;

				 geometry

				 B
				;

Description
The &&& operator returns TRUE if the n-D bounding box A intersects the cached n-D bounding box of geometry B, using float precision. This means that if A is a (double precision) box3d, it will be internally converted to a float precision 3D bounding box (GIDX)
Note
This operator is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) &&& ST_MakePoint(1,1,1) AS overlaps;

 overlaps

 t
(1 row)

See Also

				&&&(geometry,gidx),
				&&&(gidx,gidx)

Name
~(box2df,box2df) — Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).

Synopsis
	boolean fsfunc~(A, 	
	 	B);	

				 box2df

				 A
				;

				 box2df

				 B
				;

Description
The ~ operator returns TRUE if the 2D bounding box A contains the 2D bounding box B, using float precision. This means that if A is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)
Note
This operand is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(5,5)) ~ ST_MakeBox2D(ST_MakePoint(2,2), ST_MakePoint(3,3)) AS contains;

 contains

 t
(1 row)

See Also

				&&(geometry,box2df),
				&&(box2df,geometry),
				&&(box2df,box2df),
				~(geometry,box2df),
				~(box2df,geometry),
				@(geometry,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

Name
ST_ClusterDBSCAN — Windowing function that returns integer id for the cluster each input geometry is in based on 2D implementation of Density-based spatial clustering of applications with noise (DBSCAN) algorithm.

Synopsis
	integer fsfuncST_ClusterDBSCAN(geom, 	
	 	eps, 	
	 	minpoints);	

geometry winset
			geom;
float8
			eps;
integer
			minpoints;

Description

		 Returns cluster number for each input geometry, based on a 2D implementation of the
 Density-based spatial clustering of applications with noise (DBSCAN)
		 algorithm. Unlike ST_ClusterKMeans, it does not require the number of clusters to be specified, but instead
		 uses the desired distance (eps) and density(minpoints) parameters to construct each cluster.
	

		 An input geometry will be added to a cluster if it is either:
		
	
 A "core" geometry, that is within eps distance of at least minpoints other input geometries, or

	
 A "border" geometry, that is within eps distance of a core geometry.

		

		 Note that border geometries may be within eps distance of core geometries in more than one cluster; in this
		 case, either assignment would be correct, and the border geometry will be arbitrarily asssigned to one of the available clusters.
		 In these cases, it is possible for a correct cluster to be generated with fewer than minpoints geometries.
		 When assignment of a border geometry is ambiguous, repeated calls to ST_ClusterDBSCAN will produce identical results if an ORDER BY
		 clause is included in the window definition, but cluster assignments may differ from other implementations of the same algorithm.
	
Note

		 Input geometries that do not meet the criteria to join any other cluster will be assigned a cluster number of NULL.
	

Availability: 2.3.0 - requires GEOS

Examples

 Assigning a cluster number to each parcel point:

SELECT parcel_id, ST_ClusterDBSCAN(geom, eps := 0.5, minpoints := 5) over () AS cid
FROM parcels;

 Combining parcels with the same cluster number into a single geometry. This uses named argument calling

SELECT cid, ST_Collect(geom) AS cluster_geom, array_agg(parcel_id) AS ids_in_cluster FROM (
 SELECT parcel_id, ST_ClusterDBSCAN(geom, eps := 0.5, minpoints := 5) over () AS cid, geom
 FROM parcels) sq
GROUP BY cid;

See Also

 ST_ClusterKMeans,
 ST_ClusterIntersecting,
 ST_ClusterWithin

Name
ST_M — Return the M coordinate of the point, or NULL if not
			available. Input must be a point.

Synopsis
	float fsfuncST_M(a_point);	

geometry a_point;

Description
Return the M coordinate of the point, or NULL if not
			available. Input must be a point.
Note
This is not (yet) part of the OGC spec, but is listed here
			 to complete the point coordinate extractor function list.

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_M(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_m

	4
(1 row)

		

See Also
ST_GeomFromEWKT, ST_X, ST_Y, ST_Z

Name
toTopoGeom — Adds a geometry shape to an existing topo geometry

Description

Refer to toTopoGeom

Name
ST_Polygonize — Aggregate. Creates a GeometryCollection containing possible
			polygons formed from the constituent linework of a set of
			geometries.

Synopsis
	geometry fsfuncST_Polygonize(geomfield);	

geometry set geomfield;

	geometry fsfuncST_Polygonize(geom_array);	

geometry[] geom_array;

Description
Creates a GeometryCollection containing possible
			polygons formed from the constituent linework of a set of
			geometries.
Note
Geometry Collections are often difficult to deal with with third party tools, so use ST_Polygonize in conjunction with ST_Dump to dump the polygons
				out into individual polygons.

Note
Input linework must be correctly noded for this function to work properly

Availability: 1.0.0RC1 - requires GEOS >= 2.1.0.

Examples: Polygonizing single linestrings

SELECT ST_AsEWKT(ST_Polygonize(the_geom_4269)) As geomtextrep
FROM (SELECT the_geom_4269 FROM ma.suffolk_edges ORDER BY tlid LIMIT 45) As foo;

geomtextrep

 SRID=4269;GEOMETRYCOLLECTION(POLYGON((-71.040878 42.285678,-71.040943 42.2856,-71.04096 42.285752,-71.040878 42.285678)),
 POLYGON((-71.17166 42.353675,-71.172026 42.354044,-71.17239 42.354358,-71.171794 42.354971,-71.170511 42.354855,
 -71.17112 42.354238,-71.17166 42.353675)))
(1 row)

--Use ST_Dump to dump out the polygonize geoms into individual polygons
SELECT ST_AsEWKT((ST_Dump(foofoo.polycoll)).geom) As geomtextrep
FROM (SELECT ST_Polygonize(the_geom_4269) As polycoll
	FROM (SELECT the_geom_4269 FROM ma.suffolk_edges
		ORDER BY tlid LIMIT 45) As foo) As foofoo;

geomtextrep

 SRID=4269;POLYGON((-71.040878 42.285678,-71.040943 42.2856,-71.04096 42.285752,
-71.040878 42.285678))
 SRID=4269;POLYGON((-71.17166 42.353675,-71.172026 42.354044,-71.17239 42.354358
,-71.171794 42.354971,-71.170511 42.354855,-71.17112 42.354238,-71.17166 42.353675))
(2 rows)

			

See Also

			ST_Node,
			ST_Dump
			

Name
ST_ClipByBox2D — Returns the portion of a geometry falling within a rectangle.

Synopsis
	geometry fsfuncST_ClipByBox2D(geom, 	
	 	box);	

geometry geom;
box2d box;

Description

Clips a geometry by a 2D box in a fast but possibly dirty way. The output
geometry is not guaranteed to be valid (self-intersections for a polygon
may be introduced). Topologically invalid input geometries do not result
in exceptions being thrown.

Performed by the GEOS module.
Note
Requires GEOS 3.5.0+

Availability: 2.2.0 - requires GEOS >= 3.5.0.

Examples

-- Rely on implicit cast from geometry to box2d for the second parameter
SELECT ST_ClipByBox2D(the_geom, ST_MakeEnvelope(0,0,10,10)) FROM mytab;

See Also

ST_Intersection,
ST_MakeBox2D,
ST_MakeEnvelope

PostGIS Geography Support Functions

The functions and operators given below are PostGIS functions/operators that take as input or return as output a geography data type object.
Note
Functions with a (T) are not native geodetic functions, and use a ST_Transform call to and from geometry to do the operation. As a result, they may not behave as expected when going over dateline, poles,
				and for large geometries or geometry pairs that cover more than one UTM zone. Basic transform - (favoring UTM, Lambert Azimuthal (North/South), and falling back on mercator in worst case scenario)

	ST_Area - Returns the area of the surface if it is a Polygon or MultiPolygon. For geometry, a 2D Cartesian area is determined with units specified by the SRID. For geography, area is determined on a curved surface with units in square meters.
	ST_AsBinary - Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsEWKT - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
	ST_AsGML - Return the geometry as a GML version 2 or 3 element.
	ST_AsGeoJSON - Return the geometry as a GeoJSON element.
	ST_AsKML - Return the geometry as a KML element. Several variants. Default version=2, default precision=15
	ST_AsSVG - Returns a Geometry in SVG path data given a geometry or geography object.
	ST_AsText - Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
	ST_Azimuth - Returns the north-based azimuth as the angle in radians measured clockwise from the vertical on pointA to pointB.
	ST_Buffer - (T)Returns a geometry covering all points within a given distancefrom the input geometry.
	ST_CoveredBy - Returns 1 (TRUE) if no point in Geometry/Geography A is outside Geometry/Geography B
	ST_Covers - Returns 1 (TRUE) if no point in Geometry B is outside Geometry A
	ST_DWithin - Returns true if the geometries are within the specified distance of one another. For geometry units are in those of spatial reference and For geography units are in meters and measurement is defaulted to use_spheroid=true (measure around spheroid), for faster check, use_spheroid=false to measure along sphere.
	ST_Distance - For geometry type Returns the 2D Cartesian distance between two geometries in projected units (based on spatial ref). For geography type defaults to return minimum geodesic distance between two geographies in meters.
	ST_GeogFromText - Return a specified geography value from Well-Known Text representation or extended (WKT).
	ST_GeogFromWKB - Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended Well Known Binary (EWKB).
	ST_GeographyFromText - Return a specified geography value from Well-Known Text representation or extended (WKT).
	= - Returns TRUE if A's bounding box is the same as B's. Uses double precision bounding box.
	ST_Intersection - (T)Returns a geometry that represents the shared portion of geomA and geomB.
	ST_Intersects - Returns TRUE if the Geometries/Geography "spatially intersect in 2D" - (share any portion of space) and FALSE if they don't (they are Disjoint). For geography -- tolerance is 0.00001 meters (so any points that close are considered to intersect)
	ST_Length - Returns the 2D length of the geometry if it is a LineString or MultiLineString. geometry are in units of spatial reference and geography are in meters (default spheroid)
	ST_Perimeter - Return the length measurement of the boundary of an ST_Surface or ST_MultiSurface geometry or geography. (Polygon, MultiPolygon). geometry measurement is in units of spatial reference and geography is in meters.
	ST_Project - Returns a POINT projected from a start point using a distance in meters and bearing (azimuth) in radians.
	ST_Segmentize - Return a modified geometry/geography having no segment longer than the given distance.
	ST_Summary - Returns a text summary of the contents of the geometry.
	<-> - Returns the 2D distance between A and B.
	&& - Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.

Name
ST_TPI — Returns a raster with the calculated Topographic Position Index.

Synopsis
	raster fsfuncST_TPI(rast, 	
	 	nband, 	
	 	customextent, 	
	 	pixeltype="32BF", 	
	 	 interpolate_nodata=FALSE);	

raster rast;
integer nband;
raster customextent;
text pixeltype="32BF" ;
boolean interpolate_nodata=FALSE ;

Description
Calculates the Topographic Position Index, which is defined as the folcal mean with radius of one minus the center cell.
Note
This function only supports a focalmean radius of one.

Availability: 2.1.0

Examples

-- needs examples
					

See Also

						ST_MapAlgebra,
						ST_TRI,
						ST_Roughness,
						ST_Slope,
						ST_HillShade,
						ST_Aspect
					

Name
ST_VoronoiLines — Returns the boundaries between the cells of the Voronoi diagram constructed from the vertices of a geometry.

Synopsis
	geometry fsfuncST_VoronoiLines(g1, 	
	 	tolerance, 	
	 	extend_to);	

				g1
				geometry
			;

				tolerance
				float8
			;

				extend_to
				geometry
			;

Description

			ST_VoronoiLines computes a two-dimensional Voronoi diagram from the vertices of
 the supplied geometry and returns the boundaries between cells in that diagram as a MultiLineString.

			Optional parameters:
		
	 'tolerance' : The distance within which vertices will be considered equivalent. Robustness of the algorithm can be improved by supplying a nonzero tolerance distance. (default = 0.0)

	'extend_to' : If a geometry is supplied as the "extend_to" parameter, the diagram will be extended to cover the
					envelope of the "extend_to" geometry, unless that envelope is smaller than the default envelope.
					(default = NULL)

		
Availability: 2.3.0 - requires GEOS >= 3.5.0.

Examples
	[image: Examples]Voronoi lines with tolerance of 30 units

					
SELECT ST_VoronoiLines(geom, 30) As geom
FROM (SELECT 'MULTIPOINT (50 30, 60 30, 100 100,10 150, 110 120)'::geometry As geom) As g

 -- ST_AsText output
MULTILINESTRING((135.555555555556 270,36.8181818181818 92.2727272727273),(36.8181818181818 92.2727272727273,-110 43.3333333333333),(230 -45.7142857142858,36.8181818181818 92.2727272727273))

				

See Also

			ST_DelaunayTriangles,
			ST_VoronoiPolygons,
			ST_Collect
		

Name
Find_SRID — The syntax is find_srid(a_db_schema, a_table,
			a_column) and the function returns the integer SRID of the
			specified column by searching through the GEOMETRY_COLUMNS table.

Synopsis
	integer fsfuncFind_SRID(a_schema_name, 	
	 	a_table_name, 	
	 	a_geomfield_name);	

varchar a_schema_name;
varchar a_table_name;
varchar a_geomfield_name;

Description
The syntax is find_srid(<db/schema>, <table>,
			<column>) and the function returns the integer SRID of the
			specified column by searching through the GEOMETRY_COLUMNS table.
			If the geometry column has not been properly added with the
			AddGeometryColumns() function, this function will not work
			either.

Examples
 SELECT Find_SRID('public', 'tiger_us_state_2007', 'the_geom_4269');
find_srid

4269

See Also
ST_SRID

Name
ST_OrderingEquals — Returns true if the given geometries represent the same geometry
		and points are in the same directional order.

Synopsis
	boolean fsfuncST_OrderingEquals(A, 	
	 	B);	

geometry A;
geometry B;

Description
ST_OrderingEquals compares two geometries and returns t (TRUE) if the
		 geometries are equal and the coordinates are in the same order;
		 otherwise it returns f (FALSE).
Note
This function is implemented as per the ArcSDE SQL
		specification rather than SQL-MM.
		http://edndoc.esri.com/arcsde/9.1/sql_api/sqlapi3.htm#ST_OrderingEquals

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.43

Examples
SELECT ST_OrderingEquals(ST_GeomFromText('LINESTRING(0 0, 10 10)'),
		ST_GeomFromText('LINESTRING(0 0, 5 5, 10 10)'));
 st_orderingequals

 f
(1 row)

SELECT ST_OrderingEquals(ST_GeomFromText('LINESTRING(0 0, 10 10)'),
		ST_GeomFromText('LINESTRING(0 0, 0 0, 10 10)'));
 st_orderingequals

 t
(1 row)

SELECT ST_OrderingEquals(ST_Reverse(ST_GeomFromText('LINESTRING(0 0, 10 10)')),
		ST_GeomFromText('LINESTRING(0 0, 0 0, 10 10)'));
 st_orderingequals

 f
(1 row)

See Also
ST_Equals, ST_Reverse

Name
ST_3DPerimeter — Returns the 3-dimensional perimeter of the geometry, if it
			is a polygon or multi-polygon.

Synopsis
	float fsfuncST_3DPerimeter(geomA);	

geometry geomA;

Description
Returns the 3-dimensional perimeter of the geometry, if it
			is a polygon or multi-polygon. If the geometry is 2-dimensional, then the 2-dimensional perimeter is returned.
[image: Description]
 This function supports 3d and will not drop the z-index.
Changed: 2.0.0 In prior versions this used to be called ST_Perimeter3D

Examples
Perimeter of a slightly elevated polygon in the air in Massachusetts state plane feet
SELECT ST_3DPerimeter(the_geom), ST_Perimeter2d(the_geom), ST_Perimeter(the_geom) FROM
			(SELECT ST_GeomFromEWKT('SRID=2249;POLYGON((743238 2967416 2,743238 2967450 1,
743265.625 2967416 1,743238 2967416 2))') As the_geom) As foo;

 ST_3DPerimeter | st_perimeter2d | st_perimeter
------------------+------------------+------------------
 105.465793597674 | 105.432997272188 | 105.432997272188

See Also
ST_GeomFromEWKT, ST_Perimeter, ST_Perimeter2D

Name
ST_Transform — Reprojects a raster in a known spatial reference system to another known spatial reference system using specified resampling algorithm. Options are NearestNeighbor, Bilinear, Cubic, CubicSpline, Lanczos defaulting to NearestNeighbor.

Synopsis
	raster fsfuncST_Transform(rast, 	
	 	srid, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125, 	
	 	scalex, 	
	 	scaley);	

raster rast;
integer srid;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;
double precision scalex;
double precision scaley;

	raster fsfuncST_Transform(rast, 	
	 	srid, 	
	 	scalex, 	
	 	scaley, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
integer srid;
double precision scalex;
double precision scaley;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

	raster fsfuncST_Transform(rast, 	
	 	alignto, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
raster alignto;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

Description
Reprojects a raster in a known spatial reference system to another known spatial reference system using specified pixel warping algorithm.
				 Uses 'NearestNeighbor' if no algorithm is specified and maxerror percent of 0.125 if no maxerr is specified.
Algorithm options are: 'NearestNeighbor', 'Bilinear', 'Cubic', 'CubicSpline', and 'Lanczos'. Refer to: GDAL Warp resampling methods for more details.

					ST_Transform is often confused with ST_SetSRID(). ST_Transform actually changes the coordinates of a raster (and resamples the pixel values) from one spatial reference system to another, while ST_SetSRID() simply changes the SRID identifier of the raster.
				

					Unlike the other variants, Variant 3 requires a reference raster as alignto. The transformed raster will be transformed to the spatial reference system (SRID) of the reference raster and be aligned (ST_SameAlignment = TRUE) to the reference raster.
				
Note

						If you find your transformation support is not working right, you may need to set the environment variable PROJSO to the .so or .dll projection library your PostGIS is using. This just needs to have the name of the file. So for example on windows, you would in Control Panel -> System -> Environment Variables add a system variable called PROJSO and set it to libproj.dll (if you are using proj 4.6.1). You'll have to restart your PostgreSQL service/daemon after this change.
					

Availability: 2.0.0 Requires GDAL 1.6.1+
Enhanced: 2.1.0 Addition of ST_Transform(rast, alignto) variant

Examples
SELECT ST_Width(mass_stm) As w_before, ST_Width(wgs_84) As w_after,
 ST_Height(mass_stm) As h_before, ST_Height(wgs_84) As h_after
	FROM
	(SELECT rast As mass_stm, ST_Transform(rast,4326) As wgs_84
 , ST_Transform(rast,4326, 'Bilinear') AS wgs_84_bilin
		FROM aerials.o_2_boston
			WHERE ST_Intersects(rast,
				ST_Transform(ST_MakeEnvelope(-71.128, 42.2392,-71.1277, 42.2397, 4326),26986))
		LIMIT 1) As foo;

 w_before | w_after | h_before | h_after
----------+---------+----------+---------
 200 | 228 | 200 | 170
					
	[image: Examples]original mass state plane meters (mass_stm)

		 	[image: Examples]After transform to wgs 84 long lat (wgs_84)

		 	[image: Examples]After transform to wgs 84 long lat with bilinear algorithm instead of NN default (wgs_84_bilin)

		

Examples: Variant 3
The following shows the difference between using ST_Transform(raster, srid) and ST_Transform(raster, alignto)

WITH foo AS (
	SELECT 0 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 1, 0) AS rast UNION ALL
	SELECT 1, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 2, 0) AS rast UNION ALL
	SELECT 2, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 3, 0) AS rast UNION ALL

	SELECT 3, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 10, 0) AS rast UNION ALL
	SELECT 4, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 20, 0) AS rast UNION ALL
	SELECT 5, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 30, 0) AS rast UNION ALL

	SELECT 6, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 100, 0) AS rast UNION ALL
	SELECT 7, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 200, 0) AS rast UNION ALL
	SELECT 8, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 300, 0) AS rast
), bar AS (
	SELECT
		ST_Transform(rast, 4269) AS alignto
	FROM foo
	LIMIT 1
), baz AS (
	SELECT
		rid,
		rast,
		ST_Transform(rast, 4269) AS not_aligned,
		ST_Transform(rast, alignto) AS aligned
	FROM foo
	CROSS JOIN bar
)
SELECT
	ST_SameAlignment(rast) AS rast,
	ST_SameAlignment(not_aligned) AS not_aligned,
	ST_SameAlignment(aligned) AS aligned
FROM baz

 rast | not_aligned | aligned
------+-------------+---------
 t | f | t
				

See Also
ST_Transform, ST_SetSRID

Name
ST_AddMeasure — Return a derived geometry with measure elements linearly interpolated between the start and end points.

Synopsis
	geometry fsfuncST_AddMeasure(geom_mline, 	
	 	measure_start, 	
	 	measure_end);	

geometry geom_mline;
float8 measure_start;
float8 measure_end;

Description
Return a derived geometry with measure elements linearly interpolated between the start and end points. If the geometry has no measure dimension, one is added. If the geometry has a measure dimension, it is over-written with new values. Only LINESTRINGS and MULTILINESTRINGS are supported.
Availability: 1.5.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('LINESTRING(1 0, 2 0, 4 0)'),1,4)) As ewelev;
 ewelev

 LINESTRINGM(1 0 1,2 0 2,4 0 4)

SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('LINESTRING(1 0 4, 2 0 4, 4 0 4)'),10,40)) As ewelev;
 ewelev
--
 LINESTRING(1 0 4 10,2 0 4 20,4 0 4 40)

SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('LINESTRINGM(1 0 4, 2 0 4, 4 0 4)'),10,40)) As ewelev;
 ewelev
--
 LINESTRINGM(1 0 10,2 0 20,4 0 40)

SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('MULTILINESTRINGM((1 0 4, 2 0 4, 4 0 4),(1 0 4, 2 0 4, 4 0 4))'),10,70)) As ewelev;
 ewelev

 MULTILINESTRINGM((1 0 10,2 0 20,4 0 40),(1 0 40,2 0 50,4 0 70))

Name
AddTopoGeometryColumn — Adds a topogeometry column to an existing table, registers this new column as a layer in topology.layer and returns the new layer_id.

Synopsis
	integer fsfuncAddTopoGeometryColumn(topology_name, 	
	 	schema_name, 	
	 	table_name, 	
	 	column_name, 	
	 	feature_type);	

varchar
 topology_name;
varchar
 schema_name;
varchar
 table_name;
varchar
 column_name;
varchar
 feature_type;

	integer fsfuncAddTopoGeometryColumn(topology_name, 	
	 	schema_name, 	
	 	table_name, 	
	 	column_name, 	
	 	feature_type, 	
	 	child_layer);	

varchar
 topology_name;
varchar
 schema_name;
varchar
 table_name;
varchar
 column_name;
varchar
 feature_type;
integer
 child_layer;

Description
Each TopoGeometry object belongs to a specific Layer of a specific Topology. Before creating a TopoGeometry object you need to create its TopologyLayer.
 A Topology Layer is an association of a feature-table with the topology. It also contain type and hierarchy information. We create a layer using the AddTopoGeometryColumn() function:
This function will both add the requested column to the table and add a record to the topology.layer table with all the given info.
If you don't specify [child_layer] (or set it to NULL) this layer would contain Basic TopoGeometries (composed by primitive topology elements).
 Otherwise this layer will contain hierarchical TopoGeometries (composed by TopoGeometries from the child_layer).
Once the layer is created (its id is returned by the AddTopoGeometryColumn function) you're ready to construct TopoGeometry objects in it
Valid feature_types are: POINT, LINE, POLYGON, COLLECTION
Availability: 1.?

Examples
-- Note for this example we created our new table in the ma_topo schema
-- though we could have created it in a different schema -- in which case topology_name and schema_name would be different
CREATE SCHEMA ma;
CREATE TABLE ma.parcels(gid serial, parcel_id varchar(20) PRIMARY KEY, address text);
SELECT topology.AddTopoGeometryColumn('ma_topo', 'ma', 'parcels', 'topo', 'POLYGON');

CREATE SCHEMA ri;
CREATE TABLE ri.roads(gid serial PRIMARY KEY, road_name text);
SELECT topology.AddTopoGeometryColumn('ri_topo', 'ri', 'roads', 'topo', 'LINE');

See Also
CreateTopology, CreateTopoGeom

Name
stdaddr — A composite type that consists of the elements of an address. This is the return type for standardize_address function.

Description
A composite type that consists of elements of an address. This is the return type for standardize_address function. Some descriptions for elements are borrowed from PAGC Postal Attributes.
The token numbers denote the output reference number in the rules table.
[image: Description] This method needs address_standardizer extension.
	building
	 is text (token number 0): Refers to building number or name. Unparsed building identifiers and types. Generally blank for most addresses.

	house_num
	is a text (token number 1): This is the street number on a street. Example 75 in 75 State Street.

	predir
	 is text (token number 2): STREET NAME PRE-DIRECTIONAL such as North, South, East, West etc.

	qual
	is text (token number 3): STREET NAME PRE-MODIFIER Example OLD in 3715 OLD HIGHWAY 99.

	pretype
	 is text (token number 4): STREET PREFIX TYPE

	name
	is text (token number 5): STREET NAME

	suftype
	is text (token number 6): STREET POST TYPE e.g. St, Ave, Cir. A street type following the root street name. Example STREET in 75 State Street.

	sufdir
	is text (token number 7): STREET POST-DIRECTIONAL A directional modifier that follows the street name.. Example WEST in 3715 TENTH AVENUE WEST.

	ruralroute
	is text (token number 8): RURAL ROUTE . Example 8 in RR 7.

	extra
	is text: Extra information like Floor number.

	city
	is text (token number 10): Example Boston.

	state
	is text (token number 11): Example MASSACHUSETTS

	country
	is text (token number 12): Example USA

	postcode
	is text POSTAL CODE (ZIP CODE) (token number 13): Example 02109

	box
	is text POSTAL BOX NUMBER (token number 14 and 15): Example 02109

	unit
	is text Apartment number or Suite Number (token number 17): Example 3B in APT 3B.

Release 1.3.0

Release date: 2007/08/09
This release provides performance enhancements to the relational
 functions, adds new relational functions and begins the migration of our
 function names to the SQL-MM convention, using the spatial type (SP)
 prefix.
Added Functionality

JDBC: Added Hibernate Dialect (thanks to Norman Barker)
Added ST_Covers and ST_CoveredBy relational functions.
 Description and justification of these functions can be found at
 http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html
Added ST_DWithin relational function.

Performance Enhancements

Added cached and indexed point-in-polygon short-circuits for the
 functions ST_Contains, ST_Intersects, ST_Within and ST_Disjoint
Added inline index support for relational functions (except
 ST_Disjoint)

Other Changes

Extended curved geometry support into the geometry accessor and
 some processing functions
Began migration of functions to the SQL-MM naming convention;
 using a spatial type (ST) prefix.
Added initial support for PostgreSQL 8.3

Name
ST_Mean4ma — Raster processing function that calculates the mean pixel value in a neighborhood.

Synopsis
	float8 fsfuncST_Mean4ma(matrix, 	
	 	nodatamode, 	
	 	VARIADIC args);	

float8[][] matrix;
text nodatamode;
text[] VARIADIC args;

	double precision fsfuncST_Mean4ma(value, 	
	 	pos, 	
	 	VARIADIC userargs);	

double precision[][][] value;
integer[][] pos;
text[] VARIADIC userargs;

Description
Calculate the mean pixel value in a neighborhood of pixels.

					For Variant 2, a substitution value for NODATA pixels can be specified by passing that value to userargs.
				
Note
Variant 1 is a specialized callback function for use as a callback parameter to ST_MapAlgebraFctNgb.

Note

						Variant 2 is a specialized callback function for use as a callback parameter to ST_MapAlgebra.
					

Warning

						Use of Variant 1 is discouraged since ST_MapAlgebraFctNgb has been deprecated as of 2.1.0.
					

Availability: 2.0.0
Enhanced: 2.1.0 Addition of Variant 2

Examples: Variant 1
SELECT
 rid,
 st_value(
 st_mapalgebrafctngb(rast, 1, '32BF', 1, 1, 'st_mean4ma(float[][],text,text[])'::regprocedure, 'ignore', NULL), 2, 2
)
FROM dummy_rast
WHERE rid = 2;
 rid | st_value
-----+------------------
 2 | 253.222229003906
(1 row)
				

Examples: Variant 2
SELECT
 rid,
 st_value(
 ST_MapAlgebra(rast, 1, 'st_mean4ma(double precision[][][], integer[][], text[])'::regprocedure,'32BF', 'FIRST', NULL, 1, 1)
 , 2, 2)
 FROM dummy_rast
 WHERE rid = 2;
 rid | st_value
-----+------------------
 2 | 253.222229003906
(1 row)

See Also

					ST_MapAlgebraFctNgb,
					ST_MapAlgebra,
					ST_Min4ma,
					ST_Max4ma,
					ST_Sum4ma,
					ST_Range4ma,
					ST_StdDev4ma
				

Name
ST_SnapToGrid —
		Snap all points of the input geometry to a regular grid.
		

Synopsis
	geometry fsfuncST_SnapToGrid(geomA, 	
	 	originX, 	
	 	originY, 	
	 	sizeX, 	
	 	sizeY);	

geometry geomA;
float originX;
float originY;
float sizeX;
float sizeY;

	geometry fsfuncST_SnapToGrid(geomA, 	
	 	sizeX, 	
	 	sizeY);	

geometry geomA;
float sizeX;
float sizeY;

	geometry fsfuncST_SnapToGrid(geomA, 	
	 	size);	

geometry geomA;
float size;

	geometry fsfuncST_SnapToGrid(geomA, 	
	 	pointOrigin, 	
	 	sizeX, 	
	 	sizeY, 	
	 	sizeZ, 	
	 	sizeM);	

geometry geomA;
geometry pointOrigin;
float sizeX;
float sizeY;
float sizeZ;
float sizeM;

Description
Variant 1,2,3: Snap all points of the input geometry to the grid defined by
			its origin and cell size. Remove consecutive points falling on the
			same cell, eventually returning NULL if output points are not
			enough to define a geometry of the given type. Collapsed
			geometries in a collection are stripped from it.
			Useful for reducing precision.
		
Variant 4: Introduced 1.1.0 - Snap all points of the input geometry to the grid defined by
			its origin (the second argument, must be a point) and cell sizes.
			Specify 0 as size for any dimension you don't want to snap to a
			grid.
Note
The returned geometry might lose its simplicity (see
		 ST_IsSimple).

Note
Before release 1.1.0 this function always returned a 2d
		 geometry. Starting at 1.1.0 the returned geometry will have same
		 dimensionality as the input one with higher dimension values
		 untouched. Use the version taking a second geometry argument to
		 define all grid dimensions.

Availability: 1.0.0RC1
Availability: 1.1.0 - Z and M support
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

--Snap your geometries to a precision grid of 10^-3
UPDATE mytable
 SET the_geom = ST_SnapToGrid(the_geom, 0.001);

SELECT ST_AsText(ST_SnapToGrid(
			ST_GeomFromText('LINESTRING(1.1115678 2.123, 4.111111 3.2374897, 4.11112 3.23748667)'),
			0.001)
);
			 st_astext

 LINESTRING(1.112 2.123,4.111 3.237)
 --Snap a 4d geometry
SELECT ST_AsEWKT(ST_SnapToGrid(
	ST_GeomFromEWKT('LINESTRING(-1.1115678 2.123 2.3456 1.11111,
		4.111111 3.2374897 3.1234 1.1111, -1.11111112 2.123 2.3456 1.1111112)'),
 ST_GeomFromEWKT('POINT(1.12 2.22 3.2 4.4444)'),
 0.1, 0.1, 0.1, 0.01));
								 st_asewkt
--
 LINESTRING(-1.08 2.12 2.3 1.1144,4.12 3.22 3.1 1.1144,-1.08 2.12 2.3 1.1144)

--With a 4d geometry - the ST_SnapToGrid(geom,size) only touches x and y coords but keeps m and z the same
SELECT ST_AsEWKT(ST_SnapToGrid(ST_GeomFromEWKT('LINESTRING(-1.1115678 2.123 3 2.3456,
		4.111111 3.2374897 3.1234 1.1111)'),
	 0.01));
						st_asewkt

 LINESTRING(-1.11 2.12 3 2.3456,4.11 3.24 3.1234 1.1111)

		

See Also

		ST_Snap,
		ST_AsEWKT,
		ST_AsText,
		ST_GeomFromText,
		ST_GeomFromEWKT,
		ST_Simplify
		

Name
ST_IsEmpty — Returns true if the raster is empty (width = 0 and height = 0). Otherwise, returns false.

Synopsis
	boolean fsfuncST_IsEmpty(rast);	

raster rast;

Description
Returns true if the raster is empty (width = 0 and height = 0). Otherwise, returns false.
Availability: 2.0.0

Examples
SELECT ST_IsEmpty(ST_MakeEmptyRaster(100, 100, 0, 0, 0, 0, 0, 0))
st_isempty |
-----------+
f |

SELECT ST_IsEmpty(ST_MakeEmptyRaster(0, 0, 0, 0, 0, 0, 0, 0))
st_isempty |
-----------+
t |

See Also
ST_HasNoBand

Name
UnlockRows — Remove all locks held by specified authorization id. Returns
			the number of locks released.

Synopsis
	integer fsfuncUnlockRows(auth_token);	

text auth_token;

Description
Remove all locks held by specified authorization id. Returns
			the number of locks released.
Availability: 1.1.3

Examples

		SELECT LockRow('towns', '353', 'priscilla');
		SELECT LockRow('towns', '2', 'priscilla');
		SELECT UnLockRows('priscilla');
		UnLockRows

		2
		

See Also
LockRow

Name
Topology_Load_Tiger — Loads a defined region of tiger data into a PostGIS Topology and transforming the tiger data to spatial reference of the topology
 and snapping to the precision tolerance of the topology.

Synopsis
	text fsfuncTopology_Load_Tiger(topo_name, 	
	 	region_type, 	
	 	region_id);	

varchar topo_name;
varchar region_type;
varchar region_id;

Description
Loads a defined region of tiger data into a PostGIS Topology. The faces, nodes and edges are transformed to the spatial reference system of the target topology and points are snapped to the tolerance of the target topology. The created faces, nodes, edges maintain the same ids as the original Tiger data faces, nodes, edges
 so that datasets can be in the future be more easily reconciled with tiger data. Returns summary details about the process.
This would be useful for example for redistricting data where you require the newly formed polygons to follow the center lines of streets and for the resulting polygons not to overlap.
Note
This function relies on Tiger data as well as the installation of the PostGIS topology module. For more information, refer to Chapter 11, Topology and the section called “Configuration”. If you have not loaded data covering the region of interest, then no topology records will be created. This function will also fail if you have not created a topology using the topology functions.

Note
Most topology validation errors are a result of tolerance issues where after transformation the edges points don't quite line up or overlap.
 To remedy the situation you may want to increase or lower the precision if you get topology validation failures.

 Required arguments:
	topo_name The name of an existing PostGIS topology to load data into.

	region_type The type of bounding region. Currently only place and county are supported. Plan is to have several more. This is the table to look into to define the region bounds. e.g tiger.place, tiger.county

	region_id This is what TIGER calls the geoid. It is the unique identifier of the region in the table. For place it is the plcidfp column in tiger.place. For county it is the cntyidfp column in tiger.county

Availability: 2.0.0

Example: Boston, Massachusetts Topology
Create a topology for Boston, Massachusetts in Mass State Plane Feet (2249)
 with tolerance 0.25 feet and then load in Boston city tiger faces, edges, nodes.
SELECT topology.CreateTopology('topo_boston', 2249, 0.25);
createtopology

 15
-- 60,902 ms ~ 1 minute on windows 7 desktop running 9.1 (with 5 states tiger data loaded)
SELECT tiger.topology_load_tiger('topo_boston', 'place', '2507000');
-- topology_loader_tiger --
29722 edges holding in temporary. 11108 faces added. 1875 edges of faces added. 20576 nodes added.
19962 nodes contained in a face. 0 edge start end corrected. 31597 edges added.

-- 41 ms --
SELECT topology.TopologySummary('topo_boston');
 -- topologysummary--
Topology topo_boston (15), SRID 2249, precision 0.25
20576 nodes, 31597 edges, 11109 faces, 0 topogeoms in 0 layers

-- 28,797 ms to validate yeh returned no errors --
SELECT * FROM
 topology.ValidateTopology('topo_boston');

 error | id1 | id2
-------------------+----------+-----------

Example: Suffolk, Massachusetts Topology
Create a topology for Suffolk, Massachusetts in Mass State Plane Meters (26986)
 with tolerance 0.25 meters and then load in Suffolk county tiger faces, edges, nodes.
SELECT topology.CreateTopology('topo_suffolk', 26986, 0.25);
-- this took 56,275 ms ~ 1 minute on Windows 7 32-bit with 5 states of tiger loaded
-- must have been warmed up after loading boston
SELECT tiger.topology_load_tiger('topo_suffolk', 'county', '25025');
-- topology_loader_tiger --
 36003 edges holding in temporary. 13518 faces added. 2172 edges of faces added.
 24761 nodes added. 24075 nodes contained in a face. 0 edge start end corrected. 38175 edges added.
-- 31 ms --
SELECT topology.TopologySummary('topo_suffolk');
 -- topologysummary--
 Topology topo_suffolk (14), SRID 26986, precision 0.25
24761 nodes, 38175 edges, 13519 faces, 0 topogeoms in 0 layers

-- 33,606 ms to validate --
SELECT * FROM
 topology.ValidateTopology('topo_suffolk');

 error | id1 | id2
-------------------+----------+-----------
 coincident nodes | 81045651 | 81064553
 edge crosses node | 81045651 | 85737793
 edge crosses node | 81045651 | 85742215
 edge crosses node | 81045651 | 620628939
 edge crosses node | 81064553 | 85697815
 edge crosses node | 81064553 | 85728168
 edge crosses node | 81064553 | 85733413

See Also
CreateTopology, CreateTopoGeom, TopologySummary, ValidateTopology

Appendix A. Appendix

Release Notes

Release 2.2.1

Release date: 2016/01/06
This is a bug fix and performance improvement release.
New Features

#2232, avoid accumulated error in SVG rounding
#3321, Fix performance regression in topology loading
#3329, Fix robustness regression in TopoGeo_addPoint
#3349, Fix installation path of postgis_topology scripts
#3351, set endnodes isolation on ST_RemoveIsoEdge
					 (and lwt_RemIsoEdge)
#3355, geography ST_Segmentize has geometry bbox
#3359, Fix toTopoGeom loss of low-id primitives from
					 TopoGeometry definition
#3360, _raster_constraint_info_scale invalid input syntax
#3375, crash in repeated point removal for collection(point)
#3378, Fix handling of hierarchical TopoGeometries
					 in presence of multiple topologies
#3380, #3402, Decimate lines on topology load
#3388, #3410, Fix missing end-points in ST_Removepoints
#3389, Buffer overflow in lwgeom_to_geojson
#3390, Compilation under Alpine Linux 3.2
						gives an error when compiling the postgis and postgis_topology extension
#3393, ST_Area NaN for some polygons
#3401, Improve ST_Split robustness on 32bit systems
#3404, ST_ClusterWithin crashes backend
#3407, Fix crash on splitting a face or an edge
					 defining multiple TopoGeometry objects
#3411, Clustering functions not using spatial index
#3412, Improve robustness of snapping step in TopoGeo_addLinestring
#3415, Fix OSX 10.9 build under pkgsrc
Fix memory leak in lwt_ChangeEdgeGeom [liblwgeom]

Name
PostGIS_PROJ_Version — Returns the version number of the PROJ4
		library.

Synopsis
	text fsfuncPostGIS_PROJ_Version();	

;

Description
Returns the version number of the PROJ4 library, or
		NULL if PROJ4 support is not enabled.

Examples
SELECT PostGIS_PROJ_Version();
 postgis_proj_version

 Rel. 4.4.9, 29 Oct 2004
(1 row)

See Also
PostGIS_Full_Version, PostGIS_GEOS_Version, PostGIS_Lib_Version, PostGIS_LibXML_Version, PostGIS_Version

Name
Set_Geocode_Setting — Sets a setting that affects behavior of geocoder functions.

Synopsis
	text fsfuncSet_Geocode_Setting(setting_name, 	
	 	 setting_value);	

text setting_name;
text setting_value;

Description
Sets value of specific setting stored in tiger.geocode_settings table. Settings allow you to toggle debugging of functions. Later plans will be to control rating with settings. Current list of settings are listed in Get_Geocode_Setting.
Availability: 2.1.0

Example return debugging setting
If you run Geocode when this function is true, the NOTICE log will output timing and queries.
SELECT set_geocode_setting('debug_geocode_address', 'true') As result;
result

true

See Also
Get_Geocode_Setting

Name
Drop_State_Tables_Generate_Script — Generates a script that drops all tables in the specified schema that are prefixed with the state abbreviation. Defaults schema to tiger_data if no schema is specified.

Synopsis
	text fsfuncDrop_State_Tables_Generate_Script(param_state, 	
	 	param_schema=tiger_data);	

text param_state;
text param_schema=tiger_data;

Description
Generates a script that drops all tables in the specified schema that are prefixed with the state abbreviation. Defaults schema to tiger_data if no schema is specified.
 This function is useful for dropping tables of a state just before you reload a state in case something went wrong during your previous load.
Availability: 2.0.0

Examples
SELECT drop_state_tables_generate_script('PA');
DROP TABLE tiger_data.pa_addr;
DROP TABLE tiger_data.pa_county;
DROP TABLE tiger_data.pa_county_lookup;
DROP TABLE tiger_data.pa_cousub;
DROP TABLE tiger_data.pa_edges;
DROP TABLE tiger_data.pa_faces;
DROP TABLE tiger_data.pa_featnames;
DROP TABLE tiger_data.pa_place;
DROP TABLE tiger_data.pa_state;
DROP TABLE tiger_data.pa_zip_lookup_base;
DROP TABLE tiger_data.pa_zip_state;
DROP TABLE tiger_data.pa_zip_state_loc;

See Also
Loader_Generate_Script

Name
ST_AsRaster — Converts a PostGIS geometry to a PostGIS raster.

Synopsis
	raster fsfuncST_AsRaster(geom, 	
	 	ref, 	
	 	pixeltype, 	
	 	value=1, 	
	 	nodataval=0, 	
	 	touched=false);	

geometry geom;
raster ref;
text pixeltype;
double precision value=1;
double precision nodataval=0;
boolean touched=false;

	raster fsfuncST_AsRaster(geom, 	
	 	ref, 	
	 	pixeltype=ARRAY['8BUI'], 	
	 	value=ARRAY[1], 	
	 	nodataval=ARRAY[0], 	
	 	touched=false);	

geometry geom;
raster ref;
text[] pixeltype=ARRAY['8BUI'];
double precision[] value=ARRAY[1];
double precision[] nodataval=ARRAY[0];
boolean touched=false;

	raster fsfuncST_AsRaster(geom, 	
	 	scalex, 	
	 	scaley, 	
	 	gridx, 	
	 	gridy, 	
	 	pixeltype, 	
	 	value=1, 	
	 	nodataval=0, 	
	 	skewx=0, 	
	 	skewy=0, 	
	 	touched=false);	

geometry geom;
double precision scalex;
double precision scaley;
double precision gridx;
double precision gridy;
text pixeltype;
double precision value=1;
double precision nodataval=0;
double precision skewx=0;
double precision skewy=0;
boolean touched=false;

	raster fsfuncST_AsRaster(geom, 	
	 	scalex, 	
	 	scaley, 	
	 	gridx=NULL, 	
	 	gridy=NULL, 	
	 	pixeltype=ARRAY['8BUI'], 	
	 	value=ARRAY[1], 	
	 	nodataval=ARRAY[0], 	
	 	skewx=0, 	
	 	skewy=0, 	
	 	touched=false);	

geometry geom;
double precision scalex;
double precision scaley;
double precision gridx=NULL;
double precision gridy=NULL;
text[] pixeltype=ARRAY['8BUI'];
double precision[] value=ARRAY[1];
double precision[] nodataval=ARRAY[0];
double precision skewx=0;
double precision skewy=0;
boolean touched=false;

	raster fsfuncST_AsRaster(geom, 	
	 	scalex, 	
	 	scaley, 	
	 	pixeltype, 	
	 	value=1, 	
	 	nodataval=0, 	
	 	upperleftx=NULL, 	
	 	upperlefty=NULL, 	
	 	skewx=0, 	
	 	skewy=0, 	
	 	touched=false);	

geometry geom;
double precision scalex;
double precision scaley;
text pixeltype;
double precision value=1;
double precision nodataval=0;
double precision upperleftx=NULL;
double precision upperlefty=NULL;
double precision skewx=0;
double precision skewy=0;
boolean touched=false;

	raster fsfuncST_AsRaster(geom, 	
	 	scalex, 	
	 	scaley, 	
	 	pixeltype, 	
	 	value=ARRAY[1], 	
	 	nodataval=ARRAY[0], 	
	 	upperleftx=NULL, 	
	 	upperlefty=NULL, 	
	 	skewx=0, 	
	 	skewy=0, 	
	 	touched=false);	

geometry geom;
double precision scalex;
double precision scaley;
text[] pixeltype;
double precision[] value=ARRAY[1];
double precision[] nodataval=ARRAY[0];
double precision upperleftx=NULL;
double precision upperlefty=NULL;
double precision skewx=0;
double precision skewy=0;
boolean touched=false;

	raster fsfuncST_AsRaster(geom, 	
	 	width, 	
	 	height, 	
	 	gridx, 	
	 	gridy, 	
	 	pixeltype, 	
	 	value=1, 	
	 	nodataval=0, 	
	 	skewx=0, 	
	 	skewy=0, 	
	 	touched=false);	

geometry geom;
integer width;
integer height;
double precision gridx;
double precision gridy;
text pixeltype;
double precision value=1;
double precision nodataval=0;
double precision skewx=0;
double precision skewy=0;
boolean touched=false;

	raster fsfuncST_AsRaster(geom, 	
	 	width, 	
	 	height, 	
	 	gridx=NULL, 	
	 	gridy=NULL, 	
	 	pixeltype=ARRAY['8BUI'], 	
	 	value=ARRAY[1], 	
	 	nodataval=ARRAY[0], 	
	 	skewx=0, 	
	 	skewy=0, 	
	 	touched=false);	

geometry geom;
integer width;
integer height;
double precision gridx=NULL;
double precision gridy=NULL;
text[] pixeltype=ARRAY['8BUI'];
double precision[] value=ARRAY[1];
double precision[] nodataval=ARRAY[0];
double precision skewx=0;
double precision skewy=0;
boolean touched=false;

	raster fsfuncST_AsRaster(geom, 	
	 	width, 	
	 	height, 	
	 	pixeltype, 	
	 	value=1, 	
	 	nodataval=0, 	
	 	upperleftx=NULL, 	
	 	upperlefty=NULL, 	
	 	skewx=0, 	
	 	skewy=0, 	
	 	touched=false);	

geometry geom;
integer width;
integer height;
text pixeltype;
double precision value=1;
double precision nodataval=0;
double precision upperleftx=NULL;
double precision upperlefty=NULL;
double precision skewx=0;
double precision skewy=0;
boolean touched=false;

	raster fsfuncST_AsRaster(geom, 	
	 	width, 	
	 	height, 	
	 	pixeltype, 	
	 	value=ARRAY[1], 	
	 	nodataval=ARRAY[0], 	
	 	upperleftx=NULL, 	
	 	upperlefty=NULL, 	
	 	skewx=0, 	
	 	skewy=0, 	
	 	touched=false);	

geometry geom;
integer width;
integer height;
text[] pixeltype;
double precision[] value=ARRAY[1];
double precision[] nodataval=ARRAY[0];
double precision upperleftx=NULL;
double precision upperlefty=NULL;
double precision skewx=0;
double precision skewy=0;
boolean touched=false;

Description
Converts a PostGIS geometry to a PostGIS raster. The many variants offers three groups of possibilities for setting the alignment and pixelsize of the resulting raster.
The first group, composed of the two first variants, produce a raster having the same alignment (scalex, scaley, gridx and gridy), pixel type and nodata value as the provided reference raster. You generally pass this reference raster by joining the table containing the geometry with the table containing the reference raster.
The second group, composed of four variants, let you set the dimensions of the raster by providing the parameters of a pixel size (scalex & scaley and skewx & skewy). The width & height of the resulting raster will be adjusted to fit the extent of the geometry. In most cases, you must cast integer scalex & scaley arguments to double precision so that PostgreSQL choose the right variant.
The third group, composed of four variants, let you fix the dimensions of the raster by providing the dimensions of the raster (width & height). The parameters of the pixel size (scalex & scaley and skewx & skewy) of the resulting raster will be adjusted to fit the extent of the geometry.
The two first variants of each of those two last groups let you specify the alignment with an arbitrary corner of the alignment grid (gridx & gridy) and the two last variants takes the upper left corner (upperleftx & upperlefty).
Each group of variant allows producing a one band raster or a multiple bands raster. To produce a multiple bands raster, you must provide an array of pixel types (pixeltype[]), an array of initial values (value) and an array of nodata values (nodataval). If not provided pixeltyped defaults to 8BUI, values to 1 and nodataval to 0.
The output raster will be in the same spatial reference as the source geometry. The only exception is for variants with a reference raster. In this case the resulting raster will get the same SRID as the reference raster.
The optional touched parameter defaults to false and maps to the GDAL ALL_TOUCHED rasterization option, which determines if pixels touched by lines or polygons will be burned. Not just those on the line render path, or whose center point is within the polygon.
This is particularly useful for rendering jpegs and pngs of geometries directly from the database when using in combination
 with ST_AsPNG and other ST_AsGDALRaster family of functions.
Availability: 2.0.0 - requires GDAL >= 1.6.0.
Note
Not yet capable of rendering complex geometry types such as curves, TINS, and PolyhedralSurfaces, but should be
 able too once GDAL can.

Examples: Output geometries as PNG files
[image: Examples: Output geometries as PNG files]black circle

-- this will output a black circle taking up 150 x 150 pixels --
SELECT ST_AsPNG(ST_AsRaster(ST_Buffer(ST_Point(1,5),10),150, 150, '2BUI'));
[image: Examples: Output geometries as PNG files]example from buffer rendered with just PostGIS

-- the bands map to RGB bands - the value (118,154,118) - teal --
SELECT ST_AsPNG(
	ST_AsRaster(
		ST_Buffer(
			ST_GeomFromText('LINESTRING(50 50,150 150,150 50)'), 10,'join=bevel'),
			200,200,ARRAY['8BUI', '8BUI', '8BUI'], ARRAY[118,154,118], ARRAY[0,0,0]));

See Also
ST_BandPixelType, ST_Buffer, ST_GDALDrivers, ST_AsGDALRaster, ST_AsPNG, ST_AsJPEG, ST_SRID

Name
ST_Equals — Returns true if the given geometries represent the same geometry. Directionality
			is ignored.

Synopsis
	boolean fsfuncST_Equals(A, 	
	 	B);	

geometry A;
geometry B;

Description
Returns TRUE if the given Geometries are "spatially
			equal". Use this for a 'better' answer than '='.
			Note by spatially equal we mean ST_Within(A,B) = true and ST_Within(B,A) = true and
			also mean ordering of points can be different but
			represent the same geometry structure. To verify the order of points is consistent, use
			ST_OrderingEquals (it must be noted ST_OrderingEquals is a little more stringent than simply verifying order of
			points are the same).
Important
This function will return false if either geometry is invalid even if they are binary equal.

Important
Do not call with a GEOMETRYCOLLECTION as an argument.

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.2
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.24

Examples
SELECT ST_Equals(ST_GeomFromText('LINESTRING(0 0, 10 10)'),
		ST_GeomFromText('LINESTRING(0 0, 5 5, 10 10)'));
 st_equals

 t
(1 row)

SELECT ST_Equals(ST_Reverse(ST_GeomFromText('LINESTRING(0 0, 10 10)')),
		ST_GeomFromText('LINESTRING(0 0, 5 5, 10 10)'));
 st_equals

 t
(1 row)

See Also
ST_IsValid, ST_OrderingEquals, ST_Reverse, ST_Within

Name
ST_PixelWidth — Returns the pixel width in geometric units of the spatial reference system.

Synopsis
	double precision fsfuncST_PixelWidth(rast);	

raster rast;

Description
Returns the width of a pixel in geometric units of the spatial reference system. In the common case where
			there is no skew, the pixel width is just the scale ratio between geometric coordinates and raster pixels.
The following diagram demonstrates the relationship:

			
[image: Description]Pixel Width: Pixel size in the i direction
Pixel Height: Pixel size in the j direction

			

Examples: Rasters with no skew
SELECT ST_Width(rast) As rastwidth, ST_PixelWidth(rast) As pixwidth,
	ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
	ST_SkewY(rast) As skewy
	FROM dummy_rast;

	rastwidth | pixwidth | scalex | scaley | skewx | skewy
	-----------+----------+--------+--------+-------+----------
	10 | 2 | 2 | 3 | 0 | 0
	 5 | 0.05 | 0.05 | -0.05 | 0 | 0
		

Examples: Rasters with skew different than 0
SELECT ST_Width(rast) As rastwidth, ST_PixelWidth(rast) As pixwidth,
	ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
	ST_SkewY(rast) As skewy
	FROM (SELECT ST_SetSkew(rast,0.5,0.5) As rast
	FROM dummy_rast) As skewed;

	rastwidth | pixwidth | scalex | scaley | skewx | skewy
	-----------+-------------------+--------+--------+-------+----------
	10 | 2.06155281280883 | 2 | 3 | 0.5 | 0.5
	 5 | 0.502493781056044 | 0.05 | -0.05 | 0.5 | 0.5
		

See Also
ST_PixelHeight, ST_ScaleX, ST_ScaleY, ST_SkewX, ST_SkewY

PostGIS Raster Support Functions

The functions and operators given below are PostGIS functions/operators that take as input or return as output a raster data type object. Listed
			in alphabetical order.
	Box3D - Returns the box 3d representation of the enclosing box of the raster.
	@ - Returns TRUE if A's bounding box is contained by B's. Uses double precision bounding box.
	~ - Returns TRUE if A's bounding box is contains B's. Uses double precision bounding box.
	= - Returns TRUE if A's bounding box is the same as B's. Uses double precision bounding box.
	&& - Returns TRUE if A's bounding box intersects B's bounding box.
	&< - Returns TRUE if A's bounding box is to the left of B's.
	&> - Returns TRUE if A's bounding box is to the right of B's.
	~= - Returns TRUE if A's bounding box is the same as B's.
	ST_Retile - Return a set of configured tiles from an arbitrarily tiled raster coverage.
	ST_AddBand - Returns a raster with the new band(s) of given type added with given initial value in the given index location. If no index is specified, the band is added to the end.
	ST_AsBinary - Return the Well-Known Binary (WKB) representation of the raster without SRID meta data.
	ST_AsGDALRaster - Return the raster tile in the designated GDAL Raster format. Raster formats are one of those supported by your compiled library. Use ST_GDALRasters() to get a list of formats supported by your library.
	ST_AsJPEG - Return the raster tile selected bands as a single Joint Photographic Exports Group (JPEG) image (byte array). If no band is specified and 1 or more than 3 bands, then only the first band is used. If only 3 bands then all 3 bands are used and mapped to RGB.
	ST_AsPNG - Return the raster tile selected bands as a single portable network graphics (PNG) image (byte array). If 1, 3, or 4 bands in raster and no bands are specified, then all bands are used. If more 2 or more than 4 bands and no bands specified, then only band 1 is used. Bands are mapped to RGB or RGBA space.
	ST_AsRaster - Converts a PostGIS geometry to a PostGIS raster.
	ST_AsTIFF - Return the raster selected bands as a single TIFF image (byte array). If no band is specified, then will try to use all bands.
	ST_Aspect - Returns the aspect (in degrees by default) of an elevation raster band. Useful for analyzing terrain.
	ST_Band - Returns one or more bands of an existing raster as a new raster. Useful for building new rasters from existing rasters.
	ST_BandIsNoData - Returns true if the band is filled with only nodata values.
	ST_BandMetaData - Returns basic meta data for a specific raster band. band num 1 is assumed if none-specified.
	ST_BandNoDataValue - Returns the value in a given band that represents no data. If no band num 1 is assumed.
	ST_BandPath - Returns system file path to a band stored in file system. If no bandnum specified, 1 is assumed.
	ST_BandPixelType - Returns the type of pixel for given band. If no bandnum specified, 1 is assumed.
	ST_Clip - Returns the raster clipped by the input geometry. If band number not is specified, all bands are processed. If crop is not specified or TRUE, the output raster is cropped.
	ST_ColorMap - Creates a new raster of up to four 8BUI bands (grayscale, RGB, RGBA) from the source raster and a specified band. Band 1 is assumed if not specified.
	ST_Contains - Return true if no points of raster rastB lie in the exterior of raster rastA and at least one point of the interior of rastB lies in the interior of rastA.
	ST_ContainsProperly - Return true if rastB intersects the interior of rastA but not the boundary or exterior of rastA.
	ST_ConvexHull - Return the convex hull geometry of the raster including pixel values equal to BandNoDataValue. For regular shaped and non-skewed rasters, this gives the same result as ST_Envelope so only useful for irregularly shaped or skewed rasters.
	ST_Count - Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the nodata value.
	ST_CountAgg - Aggregate. Returns the number of pixels in a given band of a set of rasters. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the NODATA value.
	ST_CoveredBy - Return true if no points of raster rastA lie outside raster rastB.
	ST_Covers - Return true if no points of raster rastB lie outside raster rastA.
	ST_DFullyWithin - Return true if rasters rastA and rastB are fully within the specified distance of each other.
	ST_DWithin - Return true if rasters rastA and rastB are within the specified distance of each other.
	ST_Disjoint - Return true if raster rastA does not spatially intersect rastB.
	ST_DumpAsPolygons - Returns a set of geomval (geom,val) rows, from a given raster band. If no band number is specified, band num defaults to 1.
	ST_DumpValues - Get the values of the specified band as a 2-dimension array.
	ST_Envelope - Returns the polygon representation of the extent of the raster.
	ST_FromGDALRaster - Returns a raster from a supported GDAL raster file.
	ST_GeoReference - Returns the georeference meta data in GDAL or ESRI format as commonly seen in a world file. Default is GDAL.
	ST_HasNoBand - Returns true if there is no band with given band number. If no band number is specified, then band number 1 is assumed.
	ST_Height - Returns the height of the raster in pixels.
	ST_HillShade - Returns the hypothetical illumination of an elevation raster band using provided azimuth, altitude, brightness and scale inputs.
	ST_Histogram - Returns a set of record summarizing a raster or raster coverage data distribution separate bin ranges. Number of bins are autocomputed if not specified.
	ST_Intersection - Returns a raster or a set of geometry-pixelvalue pairs representing the shared portion of two rasters or the geometrical intersection of a vectorization of the raster and a geometry.
	ST_Intersects - Return true if raster rastA spatially intersects raster rastB.
	ST_IsEmpty - Returns true if the raster is empty (width = 0 and height = 0). Otherwise, returns false.
	ST_MakeEmptyRaster - Returns an empty raster (having no bands) of given dimensions (width & height), upperleft X and Y, pixel size and rotation (scalex, scaley, skewx & skewy) and reference system (srid). If a raster is passed in, returns a new raster with the same size, alignment and SRID. If srid is left out, the spatial ref is set to unknown (0).
	ST_MapAlgebra - Callback function version - Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.
	ST_MapAlgebraExpr - 1 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the input raster band and of pixeltype provided. Band 1 is assumed if no band is specified.
	ST_MapAlgebraExpr - 2 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the two input raster bands and of pixeltype provided. band 1 of each raster is assumed if no band numbers are specified. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster and have its extent defined by the "extenttype" parameter. Values for "extenttype" can be: INTERSECTION, UNION, FIRST, SECOND.
	ST_MapAlgebraFct - 1 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the input raster band and of pixeltype prodived. Band 1 is assumed if no band is specified.
	ST_MapAlgebraFct - 2 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the 2 input raster bands and of pixeltype prodived. Band 1 is assumed if no band is specified. Extent type defaults to INTERSECTION if not specified.
	ST_MapAlgebraFctNgb - 1-band version: Map Algebra Nearest Neighbor using user-defined PostgreSQL function. Return a raster which values are the result of a PLPGSQL user function involving a neighborhood of values from the input raster band.
	ST_MapAlgebra - Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.
	ST_MemSize - Returns the amount of space (in bytes) the raster takes.
	ST_MetaData - Returns basic meta data about a raster object such as pixel size, rotation (skew), upper, lower left, etc.
	ST_MinConvexHull - Return the convex hull geometry of the raster excluding NODATA pixels.
	ST_NearestValue - Returns the nearest non-NODATA value of a given band's pixel specified by a columnx and rowy or a geometric point expressed in the same spatial reference coordinate system as the raster.
	ST_Neighborhood - Returns a 2-D double precision array of the non-NODATA values around a given band's pixel specified by either a columnX and rowY or a geometric point expressed in the same spatial reference coordinate system as the raster.
	ST_NotSameAlignmentReason - Returns text stating if rasters are aligned and if not aligned, a reason why.
	ST_NumBands - Returns the number of bands in the raster object.
	ST_Overlaps - Return true if raster rastA and rastB intersect but one does not completely contain the other.
	ST_PixelAsCentroid - Returns the centroid (point geometry) of the area represented by a pixel.
	ST_PixelAsCentroids - Returns the centroid (point geometry) for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The point geometry is the centroid of the area represented by a pixel.
	ST_PixelAsPoint - Returns a point geometry of the pixel's upper-left corner.
	ST_PixelAsPoints - Returns a point geometry for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The coordinates of the point geometry are of the pixel's upper-left corner.
	ST_PixelAsPolygon - Returns the polygon geometry that bounds the pixel for a particular row and column.
	ST_PixelAsPolygons - Returns the polygon geometry that bounds every pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel.
	ST_PixelHeight - Returns the pixel height in geometric units of the spatial reference system.
	ST_PixelOfValue - Get the columnx, rowy coordinates of the pixel whose value equals the search value.
	ST_PixelWidth - Returns the pixel width in geometric units of the spatial reference system.
	ST_Polygon - Returns a multipolygon geometry formed by the union of pixels that have a pixel value that is not no data value. If no band number is specified, band num defaults to 1.
	ST_Quantile - Compute quantiles for a raster or raster table coverage in the context of the sample or population. Thus, a value could be examined to be at the raster's 25%, 50%, 75% percentile.
	ST_RasterToWorldCoord - Returns the raster's upper left corner as geometric X and Y (longitude and latitude) given a column and row. Column and row starts at 1.
	ST_RasterToWorldCoordX - Returns the geometric X coordinate upper left of a raster, column and row. Numbering of columns and rows starts at 1.
	ST_RasterToWorldCoordY - Returns the geometric Y coordinate upper left corner of a raster, column and row. Numbering of columns and rows starts at 1.
	ST_Reclass - Creates a new raster composed of band types reclassified from original. The nband is the band to be changed. If nband is not specified assumed to be 1. All other bands are returned unchanged. Use case: convert a 16BUI band to a 8BUI and so forth for simpler rendering as viewable formats.
	ST_Resample - Resample a raster using a specified resampling algorithm, new dimensions, an arbitrary grid corner and a set of raster georeferencing attributes defined or borrowed from another raster.
	ST_Rescale - Resample a raster by adjusting only its scale (or pixel size). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.
	ST_Resize - Resize a raster to a new width/height
	ST_Reskew - Resample a raster by adjusting only its skew (or rotation parameters). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.
	ST_Rotation - Returns the rotation of the raster in radian.
	ST_Roughness - Returns a raster with the calculated "roughness" of a DEM.
	ST_SRID - Returns the spatial reference identifier of the raster as defined in spatial_ref_sys table.
	ST_SameAlignment - Returns true if rasters have same skew, scale, spatial ref, and offset (pixels can be put on same grid without cutting into pixels) and false if they don't with notice detailing issue.
	ST_ScaleX - Returns the X component of the pixel width in units of coordinate reference system.
	ST_ScaleY - Returns the Y component of the pixel height in units of coordinate reference system.
	ST_SetBandIsNoData - Sets the isnodata flag of the band to TRUE.
	ST_SetBandNoDataValue - Sets the value for the given band that represents no data. Band 1 is assumed if no band is specified. To mark a band as having no nodata value, set the nodata value = NULL.
	ST_SetGeoReference - Set Georeference 6 georeference parameters in a single call. Numbers should be separated by white space. Accepts inputs in GDAL or ESRI format. Default is GDAL.
	ST_SetRotation - Set the rotation of the raster in radian.
	ST_SetSRID - Sets the SRID of a raster to a particular integer srid defined in the spatial_ref_sys table.
	ST_SetScale - Sets the X and Y size of pixels in units of coordinate reference system. Number units/pixel width/height.
	ST_SetSkew - Sets the georeference X and Y skew (or rotation parameter). If only one is passed in, sets X and Y to the same value.
	ST_SetUpperLeft - Sets the value of the upper left corner of the pixel to projected X and Y coordinates.
	ST_SetValue - Returns modified raster resulting from setting the value of a given band in a given columnx, rowy pixel or the pixels that intersect a particular geometry. Band numbers start at 1 and assumed to be 1 if not specified.
	ST_SetValues - Returns modified raster resulting from setting the values of a given band.
	ST_SkewX - Returns the georeference X skew (or rotation parameter).
	ST_SkewY - Returns the georeference Y skew (or rotation parameter).
	ST_Slope - Returns the slope (in degrees by default) of an elevation raster band. Useful for analyzing terrain.
	ST_SnapToGrid - Resample a raster by snapping it to a grid. New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.
	ST_Summary - Returns a text summary of the contents of the raster.
	ST_SummaryStats - Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. Band 1 is assumed is no band is specified.
	ST_SummaryStatsAgg - Aggregate. Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a set of raster. Band 1 is assumed is no band is specified.
	ST_TPI - Returns a raster with the calculated Topographic Position Index.
	ST_TRI - Returns a raster with the calculated Terrain Ruggedness Index.
	ST_Tile - Returns a set of rasters resulting from the split of the input raster based upon the desired dimensions of the output rasters.
	ST_Touches - Return true if raster rastA and rastB have at least one point in common but their interiors do not intersect.
	ST_Transform - Reprojects a raster in a known spatial reference system to another known spatial reference system using specified resampling algorithm. Options are NearestNeighbor, Bilinear, Cubic, CubicSpline, Lanczos defaulting to NearestNeighbor.
	ST_Union - Returns the union of a set of raster tiles into a single raster composed of 1 or more bands.
	ST_UpperLeftX - Returns the upper left X coordinate of raster in projected spatial ref.
	ST_UpperLeftY - Returns the upper left Y coordinate of raster in projected spatial ref.
	ST_Value - Returns the value of a given band in a given columnx, rowy pixel or at a particular geometric point. Band numbers start at 1 and assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include nodata pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.
	ST_ValueCount - Returns a set of records containing a pixel band value and count of the number of pixels in a given band of a raster (or a raster coverage) that have a given set of values. If no band is specified defaults to band 1. By default nodata value pixels are not counted. and all other values in the pixel are output and pixel band values are rounded to the nearest integer.
	ST_Width - Returns the width of the raster in pixels.
	ST_Within - Return true if no points of raster rastA lie in the exterior of raster rastB and at least one point of the interior of rastA lies in the interior of rastB.
	ST_WorldToRasterCoord - Returns the upper left corner as column and row given geometric X and Y (longitude and latitude) or a point geometry expressed in the spatial reference coordinate system of the raster.
	ST_WorldToRasterCoordX - Returns the column in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw) represented in world spatial reference system of raster.
	ST_WorldToRasterCoordY - Returns the row in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw) represented in world spatial reference system of raster.
	UpdateRasterSRID - Change the SRID of all rasters in the user-specified column and table.

Name
TopoElementArray — An array of TopoElement objects

Description
An array of 1 or more TopoElement objects, generally used to pass around components of TopoGeometry objects.

Examples
SELECT '{{1,2},{4,3}}'::topology.topoelementarray As tea;
 tea

{{1,2},{4,3}}

-- more verbose equivalent --
SELECT ARRAY[ARRAY[1,2], ARRAY[4,3]]::topology.topoelementarray As tea;

 tea

{{1,2},{4,3}}

--using the array agg function packaged with topology --
SELECT topology.TopoElementArray_Agg(ARRAY[e,t]) As tea
 FROM generate_series(1,4) As e CROSS JOIN generate_series(1,3) As t;
 tea
--
{{1,1},{1,2},{1,3},{2,1},{2,2},{2,3},{3,1},{3,2},{3,3},{4,1},{4,2},{4,3}}

SELECT '{{1,2,4},{3,4,5}}'::topology.topoelementarray As tea;
ERROR: value for domain topology.topoelementarray violates check constraint "dimensions"

See Also

TopoElement,
GetTopoGeomElementArray,
TopoElementArray_Agg

Name
ST_GeoReference — Returns the georeference meta data in GDAL or ESRI format as commonly seen in a world file. Default is GDAL.

Synopsis
	text fsfuncST_GeoReference(rast, 	
	 	format=GDAL);	

raster rast;
text format=GDAL;

Description
Returns the georeference meta data including carriage return in GDAL or ESRI format as commonly seen in a world file. Default is GDAL if no type specified. type is string 'GDAL' or 'ESRI'.
					
Difference between format representations is as follows:
GDAL:

scalex
skewy
skewx
scaley
upperleftx
upperlefty
ESRI:

scalex
skewy
skewx
scaley
upperleftx + scalex*0.5
upperlefty + scaley*0.5

Examples
SELECT ST_GeoReference(rast, 'ESRI') As esri_ref, ST_GeoReference(rast, 'GDAL') As gdal_ref
 FROM dummy_rast WHERE rid=1;

 esri_ref | gdal_ref
--------------+--------------
 2.0000000000 | 2.0000000000
 0.0000000000 : 0.0000000000
 0.0000000000 : 0.0000000000
 3.0000000000 : 3.0000000000
 1.5000000000 : 0.5000000000
 2.0000000000 : 0.5000000000
				

See Also
ST_SetGeoReference, ST_ScaleX, ST_ScaleY

Name
ST_MPointFromText — Makes a Geometry from WKT with the given SRID. If SRID is
			not give, it defaults to 0.

Synopsis
	geometry fsfuncST_MPointFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

	geometry fsfuncST_MPointFromText(WKT);	

text WKT;

Description
Makes a Geometry from WKT with the given SRID. If SRID is
			not give, it defaults to 0.
OGC SPEC 3.2.6.2 - option SRID is from the conformance
			suite
Returns null if the WKT is not a MULTIPOINT
Note
If you are absolutely sure all your WKT geometries are points, don't use this function.
				It is slower than ST_GeomFromText since it adds an additional validation step.
			

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. 3.2.6.2
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 9.2.4

Examples
SELECT ST_MPointFromText('MULTIPOINT(1 2, 3 4)');
SELECT ST_MPointFromText('MULTIPOINT(-70.9590 42.1180, -70.9611 42.1223)', 4326);

See Also
ST_GeomFromText

Name
ST_MinimumClearance — Returns the minimum clearance of a geometry, a measure of a geometry's robustness.

Synopsis
	float fsfuncST_MinimumClearance(g);	

geometry g;

Description

			It is not uncommon to have a geometry that, while meeting the criteria for validity according to ST_IsValid (polygons)
			or ST_IsSimple (lines), would become invalid if one of the vertices moved by a slight distance, as can happen during
			conversion to text-based formats (such as WKT, KML, GML GeoJSON), or binary formats that do not use double-precision
			floating point coordinates (MapInfo TAB).
		

			A geometry's "minimum clearance" is the smallest distance by which a vertex of the geometry could be moved to produce
			an invalid geometry. It can be thought of as a quantitative measure of a geometry's robustness, where increasing values
			of minimum clearance indicate increasing robustness.
		

			If a geometry has a minimum clearance of e, it can be said that:
			
	
						No two distinct vertices in the geometry are separated by less than e.
					

	
						No vertex is closer than e to a line segement of which it is not an endpoint.
					

		

			If no minimum clearance exists for a geometry (for example, a single point, or a multipoint whose points are identical), then
			ST_MinimumClearance will return Infinity.
		
Availability: 2.3.0 - requires GEOS >= 3.6.0

Examples

SELECT ST_MinimumClearance('POLYGON ((0 0, 1 0, 1 1, 0.5 3.2e-4, 0 0))');
 st_minimumclearance

 0.00032

See Also

			ST_MinimumClearanceLine
		

Name
ST_Covers — Returns 1 (TRUE) if no point in Geometry B is outside
			Geometry A

Synopsis
	boolean fsfuncST_Covers(geomA, 	
	 	geomB);	

geometry
			geomA;
geometry
			geomB;

	boolean fsfuncST_Covers(geogpolyA, 	
	 	geogpointB);	

geography
			geogpolyA;
geography
			geogpointB;

Description
Returns 1 (TRUE) if no point in Geometry/Geography B is outside
			Geometry/Geography A
Performed by the GEOS module
Important
Do not call with a GEOMETRYCOLLECTION as an argument

Important
For geography only Polygon covers point is supported.

Important
Do not use this function with invalid geometries. You will get unexpected results.

This function call will automatically include a bounding box
			comparison that will make use of any indexes that are available on
			the geometries. To avoid index use, use the function
			_ST_Covers.
Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon.
Availability: 1.5 - support for geography was introduced.
Availability: 1.2.2 - requires GEOS >= 3.0
NOTE: this is the "allowable" version that returns a
			boolean, not an integer.
Not an OGC standard, but Oracle has it too.
There are certain subtleties to ST_Contains and ST_Within that are not intuitively obvious.
			For details check out Subtleties of OGC Covers, Contains, Within

Examples
 Geometry example

	--a circle covering a circle
SELECT ST_Covers(smallc,smallc) As smallinsmall,
	ST_Covers(smallc, bigc) As smallcoversbig,
	ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
	ST_Contains(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
	ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;
	--Result
 smallinsmall | smallcoversbig | bigcoversexterior | bigcontainsexterior
--------------+----------------+-------------------+---------------------
 t | f | t | f
(1 row)	
Geeography Example

-- a point with a 300 meter buffer compared to a point, a point and its 10 meter buffer
SELECT ST_Covers(geog_poly, geog_pt) As poly_covers_pt,
	ST_Covers(ST_Buffer(geog_pt,10), geog_pt) As buff_10m_covers_cent
	FROM (SELECT ST_Buffer(ST_GeogFromText('SRID=4326;POINT(-99.327 31.4821)'), 300) As geog_poly,
				ST_GeogFromText('SRID=4326;POINT(-99.33 31.483)') As geog_pt) As foo;

 poly_covers_pt | buff_10m_covers_cent
----------------+------------------
 f | t
		

See Also
ST_Contains, ST_CoveredBy, ST_Within

Name
ST_AsBinary — Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.

Synopsis
	bytea fsfuncST_AsBinary(g1);	

geometry g1;

	bytea fsfuncST_AsBinary(g1, 	
	 	NDR_or_XDR);	

geometry g1;
text NDR_or_XDR;

	bytea fsfuncST_AsBinary(g1);	

geography g1;

	bytea fsfuncST_AsBinary(g1, 	
	 	NDR_or_XDR);	

geography g1;
text NDR_or_XDR;

Description
Returns the Well-Known Binary representation of the geometry. There are 2 variants of the function. The first
			variant takes no endian encoding parameter and defaults to server machine endian. The second variant takes a second argument
			denoting the encoding - using little-endian ('NDR') or big-endian ('XDR') encoding.
This is useful in binary cursors to pull data out of the
			database without converting it to a string representation.
Note
The WKB spec does not include the SRID. To get the WKB with SRID format use ST_AsEWKB

Note
ST_AsBinary is the reverse of ST_GeomFromWKB for geometry. Use ST_GeomFromWKB to convert to a postgis geometry from ST_AsBinary representation.

Note
The default behavior in PostgreSQL 9.0 has been changed to output bytea in hex encoding. ST_AsBinary is the reverse of ST_GeomFromWKB for geometry. If your GUI tools
				require the old behavior, then SET bytea_output='escape' in your database.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.0.0 support for higher coordinate dimensions was introduced.
Enhanced: 2.0.0 support for specifying endian with geography was introduced.
Availability: 1.5.0 geography support was introduced.
Changed: 2.0.0 Inputs to this function can not be unknown -- must be geometry. Constructs such as ST_AsBinary('POINT(1 2)') are no longer valid and you will get an n st_asbinary(unknown) is not unique error. Code like that
			needs to be changed to ST_AsBinary('POINT(1 2)'::geometry);. If that is not possible, then install legacy.sql.
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.37
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_AsBinary(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

		 st_asbinary

\001\003\000\000\000\001\000\000\000\005
\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000
\000\000\000\360?\000\000\000\000\000\000
\360?\000\000\000\000\000\000\360?\000\000
\000\000\000\000\360?\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000
(1 row)
SELECT ST_AsBinary(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326), 'XDR');
		 st_asbinary

\000\000\000\000\003\000\000\000\001\000\000\000\005\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000
\000?\360\000\000\000\000\000\000?\360\000\000\000\000\000\000?\360\000\000
\000\000\000\000?\360\000\000\000\000\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000
(1 row)

See Also

ST_GeomFromWKB,
ST_AsEWKB,
ST_AsTWKB,
ST_AsText,
			

Name
ST_MaxDistance — Returns the 2-dimensional largest distance between two geometries in
		projected units.

Synopsis
	float fsfuncST_MaxDistance(g1, 	
	 	g2);	

geometry g1;
geometry g2;

Description
Note
Returns the 2-dimensional maximum distance between two geometries in
		projected units. If g1 and g2 is the same geometry the function will return the distance between
		the two vertices most far from each other in that geometry.

Availability: 1.5.0

Examples
Basic furthest distance the point is to any part of the line
postgis=# SELECT ST_MaxDistance('POINT(0 0)'::geometry, 'LINESTRING (2 0, 0 2)'::geometry);
 st_maxdistance

 2
(1 row)

postgis=# SELECT ST_MaxDistance('POINT(0 0)'::geometry, 'LINESTRING (2 2, 2 2)'::geometry);
 st_maxdistance

 2.82842712474619
(1 row)

See Also
ST_Distance, ST_LongestLine, ST_DFullyWithin

Name
&< — Returns TRUE if A's bounding box is to the left of B's.

Synopsis
	boolean fsfunc&<(A, 	
	 	B);	

				 raster

				 A
				;

				 raster

				 B
				;

Description
The &< operator returns TRUE if the bounding box of raster A
			overlaps or is to the left of the bounding box of raster B, or more accurately, overlaps or is NOT to the right
			of the bounding box of raster B.
Note
This operand will make use of any indexes that may be available on the rasters.

Examples
SELECT A.rid As a_rid, B.rid As b_rid, A.rast &< B.rast As overleft
 FROM dummy_rast AS A CROSS JOIN dummy_rast AS B;

a_rid | b_rid | overleft
------+-------+----------
 2 | 2 | t
 2 | 3 | f
 2 | 1 | f
 3 | 2 | t
 3 | 3 | t
 3 | 1 | f
 1 | 2 | t
 1 | 3 | t
 1 | 1 | t

Address Standardizer Types

Abstract
This section lists the PostgreSQL data types installed by Address Standardizer extension. Note we describe the casting behavior of these which is very
				important especially when designing your own functions.
			

Name
ST_IsValidReason — Returns text stating if a geometry is valid or not and if not valid, a reason why.

Synopsis
	text fsfuncST_IsValidReason(geomA);	

geometry geomA;

	text fsfuncST_IsValidReason(geomA, 	
	 	flags);	

geometry geomA;
integer flags;

Description
Returns text stating if a geometry is valid or not an if not valid, a reason why.
Useful in combination with ST_IsValid to generate a detailed report of invalid geometries and reasons.

Allowed flags are documented in ST_IsValidDetail.
		
Availability: 1.4 - requires GEOS >= 3.1.0.
Availability: 2.0 - requires GEOS >= 3.3.0 for the version taking flags.

Examples

--First 3 Rejects from a successful quintuplet experiment
SELECT gid, ST_IsValidReason(the_geom) as validity_info
FROM
(SELECT ST_MakePolygon(ST_ExteriorRing(e.buff), ST_Accum(f.line)) As the_geom, gid
FROM (SELECT ST_Buffer(ST_MakePoint(x1*10,y1), z1) As buff, x1*10 + y1*100 + z1*1000 As gid
	FROM generate_series(-4,6) x1
	CROSS JOIN generate_series(2,5) y1
	CROSS JOIN generate_series(1,8) z1
	WHERE x1 > y1*0.5 AND z1 < x1*y1) As e
	INNER JOIN (SELECT ST_Translate(ST_ExteriorRing(ST_Buffer(ST_MakePoint(x1*10,y1), z1)),y1*1, z1*2) As line
	FROM generate_series(-3,6) x1
	CROSS JOIN generate_series(2,5) y1
	CROSS JOIN generate_series(1,10) z1
	WHERE x1 > y1*0.75 AND z1 < x1*y1) As f
ON (ST_Area(e.buff) > 78 AND ST_Contains(e.buff, f.line))
GROUP BY gid, e.buff) As quintuplet_experiment
WHERE ST_IsValid(the_geom) = false
ORDER BY gid
LIMIT 3;

 gid | validity_info
------+--------------------------
 5330 | Self-intersection [32 5]
 5340 | Self-intersection [42 5]
 5350 | Self-intersection [52 5]

 --simple example
SELECT ST_IsValidReason('LINESTRING(220227 150406,2220227 150407,222020 150410)');

 st_isvalidreason

 Valid Geometry

		

See Also
ST_IsValid, ST_Summary

Name
ST_SimplifyPreserveTopology — Returns a "simplified" version of the given geometry using
			the Douglas-Peucker algorithm. Will avoid creating derived
			geometries (polygons in particular) that are invalid.

Synopsis
	geometry fsfuncST_SimplifyPreserveTopology(geomA, 	
	 	tolerance);	

geometry geomA;
float tolerance;

Description
Returns a "simplified" version of the given geometry using
			the Douglas-Peucker algorithm. Will avoid creating derived
			geometries (polygons in particular) that are invalid. Will actually do something only with
				(multi)lines and (multi)polygons but you can safely call it with
				any kind of geometry. Since simplification occurs on a
				object-by-object basis you can also feed a GeometryCollection to
				this function.
Performed by the GEOS module.
Note
Requires GEOS 3.0.0+

Availability: 1.3.3

Examples
Same example as Simplify, but we see Preserve Topology prevents oversimplification. The circle can at most become a square.

SELECT ST_Npoints(the_geom) As np_before, ST_NPoints(ST_SimplifyPreserveTopology(the_geom,0.1)) As np01_notbadcircle, ST_NPoints(ST_SimplifyPreserveTopology(the_geom,0.5)) As np05_notquitecircle,
ST_NPoints(ST_SimplifyPreserveTopology(the_geom,1)) As np1_octagon, ST_NPoints(ST_SimplifyPreserveTopology(the_geom,10)) As np10_square,
ST_NPoints(ST_SimplifyPreserveTopology(the_geom,100)) As np100_stillsquare
FROM (SELECT ST_Buffer('POINT(1 3)', 10,12) As the_geom) As foo;

--result--
 np_before | np01_notbadcircle | np05_notquitecircle | np1_octagon | np10_square | np100_stillsquare
-----------+-------------------+---------------------+-------------+---------------+-------------------
		49 | 33 | 17 | 9 | 5 | 5
				

See Also
ST_Simplify

Name
ST_HausdorffDistance — Returns the Hausdorff distance between two geometries. Basically a measure of how similar or dissimilar 2 geometries are. Units are in the units of the spatial
		reference system of the geometries.

Synopsis
	float fsfuncST_HausdorffDistance(g1, 	
	 	g2);	

geometry
			g1;
geometry
			g2;

	float fsfuncST_HausdorffDistance(g1, 	
	 	g2, 	
	 	densifyFrac);	

geometry
			g1;
geometry
			g2;
float
			densifyFrac;

Description
Implements algorithm for computing a distance metric which can be thought of as the "Discrete Hausdorff Distance".
This is the Hausdorff distance restricted to discrete points for one of the geometries. Wikipedia article on Hausdorff distance
	Martin Davis note on how Hausdorff Distance calculation was used to prove correctness of the CascadePolygonUnion approach.

When densifyFrac is specified, this function performs a segment densification before computing the discrete hausdorff distance. The densifyFrac parameter sets the fraction by which to densify each segment. Each segment will be split into a number of equal-length subsegments, whose fraction of the total length is closest to the given fraction.
		
Note

The current implementation supports only vertices as the discrete locations. This could be extended to allow an arbitrary density of points to be used.
			

Note

				This algorithm is NOT equivalent to the standard Hausdorff distance. However, it computes an approximation that is correct for a large subset of useful cases.
			One important part of this subset is Linestrings that are roughly parallel to each other, and roughly equal in length. This is a useful metric for line matching.
			

Availability: 1.5.0 - requires GEOS >= 3.2.0

Examples
For each building, find the parcel that best represents it. First we require the parcel intersect with the geometry.
	DISTINCT ON guarantees we get each building listed only once, the ORDER BY .. ST_HausdorffDistance gives us a preference of parcel that is most similar to the building.
SELECT DISTINCT ON(buildings.gid) buildings.gid, parcels.parcel_id
 FROM buildings INNER JOIN parcels ON ST_Intersects(buildings.geom,parcels.geom)
 ORDER BY buildings.gid, ST_HausdorffDistance(buildings.geom, parcels.geom);
postgis=# SELECT ST_HausdorffDistance(
				'LINESTRING (0 0, 2 0)'::geometry,
				'MULTIPOINT (0 1, 1 0, 2 1)'::geometry);
 st_hausdorffdistance

					 1
(1 row)
			
postgis=# SELECT st_hausdorffdistance('LINESTRING (130 0, 0 0, 0 150)'::geometry, 'LINESTRING (10 10, 10 150, 130 10)'::geometry, 0.5);
 st_hausdorffdistance

					70
(1 row)
			

Name
ST_Clip — Returns the raster clipped by the input geometry. If band number not is specified, all bands are processed. If crop is not specified or TRUE, the output raster is cropped.

Synopsis
	raster fsfuncST_Clip(rast, 	
	 	nband, 	
	 	geom, 	
	 	nodataval=NULL, 	
	 	crop=TRUE);	

raster rast;
integer[] nband;
geometry geom;
double precision[] nodataval=NULL;
boolean crop=TRUE;

	raster fsfuncST_Clip(rast, 	
	 	nband, 	
	 	geom, 	
	 	nodataval, 	
	 	crop=TRUE);	

raster rast;
integer nband;
geometry geom;
double precision nodataval;
boolean crop=TRUE;

	raster fsfuncST_Clip(rast, 	
	 	nband, 	
	 	geom, 	
	 	crop);	

raster rast;
integer nband;
geometry geom;
boolean crop;

	raster fsfuncST_Clip(rast, 	
	 	geom, 	
	 	nodataval=NULL, 	
	 	crop=TRUE);	

raster rast;
geometry geom;
double precision[] nodataval=NULL;
boolean crop=TRUE;

	raster fsfuncST_Clip(rast, 	
	 	geom, 	
	 	nodataval, 	
	 	crop=TRUE);	

raster rast;
geometry geom;
double precision nodataval;
boolean crop=TRUE;

	raster fsfuncST_Clip(rast, 	
	 	geom, 	
	 	crop);	

raster rast;
geometry geom;
boolean crop;

Description

						Returns a raster that is clipped by the input geometry geom. If band index is not specified, all bands are processed.
					

						Rasters resulting from ST_Clip must have a nodata value assigned for areas clipped, one for each band. If none are provided and the input raster do not have a nodata value defined, nodata values of the resulting raster are set to ST_MinPossibleValue(ST_BandPixelType(rast, band)). When the number of nodata value in the array is smaller than the number of band, the last one in the array is used for the remaining bands. If the number of nodata value is greater than the number of band, the extra nodata values are ignored. All variants accepting an array of nodata values also accept a single value which will be assigned to each band.
					

						If crop is not specified, true is assumed meaning the output raster is cropped to the intersection of the geomand rast extents. If crop is set to false, the new raster gets the same extent as rast.
					
Availability: 2.0.0
Enhanced: 2.1.0 Rewritten in C

						Examples here use Massachusetts aerial data available on MassGIS site MassGIS Aerial Orthos. Coordinates are in Massachusetts State Plane Meters.
					

Examples: 1 band clipping

-- Clip the first band of an aerial tile by a 20 meter buffer.
SELECT ST_Clip(rast, 1,
		ST_Buffer(ST_Centroid(ST_Envelope(rast)),20)
) from aerials.boston
WHERE rid = 4;
					

-- Demonstrate effect of crop on final dimensions of raster
-- Note how final extent is clipped to that of the geometry
-- if crop = true
SELECT ST_XMax(ST_Envelope(ST_Clip(rast, 1, clipper, true))) As xmax_w_trim,
	ST_XMax(clipper) As xmax_clipper,
	ST_XMax(ST_Envelope(ST_Clip(rast, 1, clipper, false))) As xmax_wo_trim,
	ST_XMax(ST_Envelope(rast)) As xmax_rast_orig
FROM (SELECT rast, ST_Buffer(ST_Centroid(ST_Envelope(rast)),6) As clipper
	FROM aerials.boston
WHERE rid = 6) As foo;

 xmax_w_trim | xmax_clipper | xmax_wo_trim | xmax_rast_orig
------------------+------------------+------------------+------------------
 230657.436173996 | 230657.436173996 | 230666.436173996 | 230666.436173996
					
	
										
											
[image: Examples: 1 band clipping]Full raster tile before clipping

										

										
										
											
[image: Examples: 1 band clipping]After Clipping

										

									

Examples: 1 band clipping with no crop and add back other bands unchanged

-- Same example as before, but we need to set crop to false to be able to use ST_AddBand
-- because ST_AddBand requires all bands be the same Width and height
SELECT ST_AddBand(ST_Clip(rast, 1,
		ST_Buffer(ST_Centroid(ST_Envelope(rast)),20),false
), ARRAY[ST_Band(rast,2),ST_Band(rast,3)]) from aerials.boston
WHERE rid = 6;
					
	
										
											
[image: Examples: 1 band clipping with no crop and add back other bands unchanged]Full raster tile before clipping

										

										
										
											
[image: Examples: 1 band clipping with no crop and add back other bands unchanged]After Clipping - surreal

										

									

Examples: Clip all bands

-- Clip all bands of an aerial tile by a 20 meter buffer.
-- Only difference is we don't specify a specific band to clip
-- so all bands are clipped
SELECT ST_Clip(rast,
	 ST_Buffer(ST_Centroid(ST_Envelope(rast)), 20),
	 false
) from aerials.boston
WHERE rid = 4;
					
	
										
											
[image: Examples: Clip all bands]Full raster tile before clipping

										

										
										
											
[image: Examples: Clip all bands]After Clipping

										

									

See Also

						ST_AddBand,
						ST_MapAlgebra,
						ST_Intersection
					

Name

			 ST_GeometricMedian
		 —
			Returns the geometric median of a MultiPoint.
		

Synopsis
	geometry
				fsfunc
					ST_GeometricMedian
				
			(
					g
				, 	
	 	
					tolerance
				, 	
	 	
					max_iter
				, 	
	 	
					fail_if_not_converged
);	

				
					geometry
				
				
					g
				
			;

				
					float8
				
				
					tolerance
				
			;

				
					int
				
				
					max_iter
				
			;

				
					boolean
				
				
					fail_if_not_converged
				
			;

Description

		 Computes the approximate geometric median of a MultiPoint geometry
		 using the Weiszfeld algorithm. The geometric median provides a
		 centrality measure that is less sensitive to outlier points than
		 the centroid.

		 The algorithm will iterate until the distance change between
		 successive iterations is less than the supplied tolerance
		 parameter. If this condition has not been met after max_iterations
		 iterations, the function will produce an error and exit, unless fail_if_not_converged
		 is set to false.

		 If a tolerance value is not provided, a default tolerance value
		 will be calculated based on the extent of the input geometry.
	
Availability: 2.3.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

		
[image: Examples]
						Comparison of the centroid (turquoise point) and geometric
						median (red point) of a four-point MultiPoint (yellow points).
						

	

WITH test AS (
SELECT 'MULTIPOINT((0 0), (1 1), (2 2), (200 200))'::geometry geom)
SELECT
 ST_AsText(ST_Centroid(geom)) centroid,
 ST_AsText(ST_GeometricMedian(geom)) median
FROM test;
 centroid | median
--------------------+--
 POINT(50.75 50.75) | POINT(1.9761550281255 1.9761550281255)
(1 row)
	

See Also
ST_Centroid

Name
ST_ContainsProperly — Returns true if B intersects the interior of A but not the boundary (or exterior). A does not contain properly itself, but does contain itself.

Synopsis
	boolean fsfuncST_ContainsProperly(geomA, 	
	 	geomB);	

geometry
			geomA;
geometry
			geomB;

Description
Returns true if B intersects the interior of A but not the boundary (or exterior).
A does not contain properly itself, but does contain itself.
Every point of the other geometry is a point of this geometry's interior. The DE-9IM Intersection Matrix for the two geometries matches
 [T**FF*FF*] used in ST_Relate
Note
From JTS docs slightly reworded: The advantage to using this predicate over ST_Contains and ST_Intersects is that it can be computed
	 efficiently, with no need to compute topology at individual points.

			 An example use case for this predicate is computing the intersections
	 of a set of geometries with a large polygonal geometry.
	Since intersection is a fairly slow operation, it can be more efficient
	 to use containsProperly to filter out test geometries which lie
	wholly inside the area. In these cases the intersection is
	known a priori to be exactly the original test geometry.
	

Availability: 1.4.0 - requires GEOS >= 3.1.0.
Important
Do not call with a GEOMETRYCOLLECTION as an argument

Important
Do not use this function with invalid geometries. You will get unexpected results.

This function call will automatically include a bounding box
			comparison that will make use of any indexes that are available on
			the geometries. To avoid index use, use the function
			_ST_ContainsProperly.

Examples

	--a circle within a circle
	SELECT ST_ContainsProperly(smallc, bigc) As smallcontainspropbig,
	ST_ContainsProperly(bigc,smallc) As bigcontainspropsmall,
	ST_ContainsProperly(bigc, ST_Union(smallc, bigc)) as bigcontainspropunion,
	ST_Equals(bigc, ST_Union(smallc, bigc)) as bigisunion,
	ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
	ST_ContainsProperly(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
	FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
	ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;
	--Result
 smallcontainspropbig | bigcontainspropsmall | bigcontainspropunion | bigisunion | bigcoversexterior | bigcontainsexterior
------------------+------------------+------------------+------------+-------------------+---------------------
 f | t | f | t | t | f

 --example demonstrating difference between contains and contains properly
 SELECT ST_GeometryType(geomA) As geomtype, ST_Contains(geomA,geomA) AS acontainsa, ST_ContainsProperly(geomA, geomA) AS acontainspropa,
 ST_Contains(geomA, ST_Boundary(geomA)) As acontainsba, ST_ContainsProperly(geomA, ST_Boundary(geomA)) As acontainspropba
 FROM (VALUES (ST_Buffer(ST_Point(1,1), 5,1)),
		 (ST_MakeLine(ST_Point(1,1), ST_Point(-1,-1))),
		 (ST_Point(1,1))
) As foo(geomA);

 geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
--------------+------------+----------------+-------------+-----------------
ST_Polygon | t | f | f | f
ST_LineString | t | f | f | f
ST_Point | t | t | f | f

See Also
ST_GeometryType, ST_Boundary, ST_Contains, ST_Covers, ST_CoveredBy, ST_Equals, ST_Relate, ST_Within

Name
ST_VoronoiPolygons — Returns the cells of the Voronoi diagram constructed from the vertices of a geometry.

Synopsis
	geometry fsfuncST_VoronoiPolygons(g1, 	
	 	tolerance, 	
	 	extend_to);	

				g1
				geometry
			;

				tolerance
				float8
			;

				extend_to
				geometry
			;

Description

			ST_VoronoiPolygons computes a two-dimensional Voronoi diagram from the vertices of
			the supplied geometry. The result is a GeometryCollection of Polygons that covers an envelope larger than the extent of the input vertices.
		

			Optional parameters:
		
	'tolerance' : The distance within which vertices will be considered equivalent. Robustness of the algorithm can be improved by supplying a nonzero tolerance distance. (default = 0.0)

	'extend_to' : If a geometry is supplied as the "extend_to" parameter, the diagram will be extended to cover the
					envelope of the "extend_to" geometry, unless that envelope is smaller than the default envelope.
					(default = NULL)

		
Availability: 2.3.0 - requires GEOS >= 3.5.0.

Examples
	
					[image: Examples]Points overlaid on top of Voronoi diagram

					
SELECT
	ST_VoronoiPolygons(geom) As geom
FROM (SELECT 'MULTIPOINT (50 30, 60 30, 100 100,10 150, 110 120)'::geometry As geom) As g;

 -- ST_AsText output
GEOMETRYCOLLECTION(POLYGON((-110 43.3333333333333,-110 270,100.5 270,59.3478260869565 132.826086956522,36.8181818181818 92.2727272727273,-110 43.3333333333333)),
POLYGON((55 -90,-110 -90,-110 43.3333333333333,36.8181818181818 92.2727272727273,55 79.2857142857143,55 -90)),
POLYGON((230 47.5,230 -20.7142857142857,55 79.2857142857143,36.8181818181818 92.2727272727273,59.3478260869565 132.826086956522,230 47.5)),POLYGON((230 -20.7142857142857,230 -90,55 -90,55 79.2857142857143,230 -20.7142857142857)),
POLYGON((100.5 270,230 270,230 47.5,59.3478260869565 132.826086956522,100.5 270)))

					

				
	[image: Examples]Voronoi with tolerance of 30 units

					
SELECT ST_VoronoiPolygons(geom, 30) As geom
FROM (SELECT 'MULTIPOINT (50 30, 60 30, 100 100,10 150, 110 120)'::geometry As geom) As g;

 -- ST_AsText output
GEOMETRYCOLLECTION(POLYGON((-110 43.3333333333333,-110 270,100.5 270,59.3478260869565 132.826086956522,36.8181818181818 92.2727272727273,-110 43.3333333333333)),
POLYGON((230 47.5,230 -45.7142857142858,36.8181818181818 92.2727272727273,59.3478260869565 132.826086956522,230 47.5)),POLYGON((230 -45.7142857142858,230 -90,-110 -90,-110 43.3333333333333,36.8181818181818 92.2727272727273,230 -45.7142857142858)),
POLYGON((100.5 270,230 270,230 47.5,59.3478260869565 132.826086956522,100.5 270)))

				

	[image: Examples]Voronoi with tolerance of 30 units as MultiLineString

					
SELECT ST_VoronoiLines(geom, 30) As geom
FROM (SELECT 'MULTIPOINT (50 30, 60 30, 100 100,10 150, 110 120)'::geometry As geom) As g

 -- ST_AsText output
MULTILINESTRING((135.555555555556 270,36.8181818181818 92.2727272727273),(36.8181818181818 92.2727272727273,-110 43.3333333333333),(230 -45.7142857142858,36.8181818181818 92.2727272727273))

				

See Also

			ST_DelaunayTriangles,
			ST_VoronoiLines,
			ST_Collect
		

Name
ST_MapAlgebra —
						Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.
					

Synopsis
	raster fsfuncST_MapAlgebra(rast, 	
	 	nband, 	
	 	pixeltype, 	
	 	expression, 	
	 	nodataval=NULL);	

raster rast;
integer nband;
text pixeltype;
text expression;
double precision nodataval=NULL;

	raster fsfuncST_MapAlgebra(rast, 	
	 	pixeltype, 	
	 	expression, 	
	 	nodataval=NULL);	

raster rast;
text pixeltype;
text expression;
double precision nodataval=NULL;

	raster fsfuncST_MapAlgebra(rast1, 	
	 	nband1, 	
	 	rast2, 	
	 	nband2, 	
	 	expression, 	
	 	pixeltype=NULL, 	
	 	extenttype=INTERSECTION, 	
	 	nodata1expr=NULL, 	
	 	nodata2expr=NULL, 	
	 	nodatanodataval=NULL);	

raster rast1;
integer nband1;
raster rast2;
integer nband2;
text expression;
text pixeltype=NULL;
text extenttype=INTERSECTION;
text nodata1expr=NULL;
text nodata2expr=NULL;
double precision nodatanodataval=NULL;

	raster fsfuncST_MapAlgebra(rast1, 	
	 	rast2, 	
	 	expression, 	
	 	pixeltype=NULL, 	
	 	extenttype=INTERSECTION, 	
	 	nodata1expr=NULL, 	
	 	nodata2expr=NULL, 	
	 	nodatanodataval=NULL);	

raster rast1;
raster rast2;
text expression;
text pixeltype=NULL;
text extenttype=INTERSECTION;
text nodata1expr=NULL;
text nodata2expr=NULL;
double precision nodatanodataval=NULL;

Description

						Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.
					
Availability: 2.1.0

Description: Variants 1 and 2 (one raster)

						Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation defined by the expression on the input raster (rast). If nband is not provided, band 1 is assumed. The new raster will have the same georeference, width, and height as the original raster but will only have one band.
					

						If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL, then the new raster band will have the same pixeltype as the input rast band.
					
	Keywords permitted for expression
	[rast] - Pixel value of the pixel of interest

	[rast.val] - Pixel value of the pixel of interest

	[rast.x] - 1-based pixel column of the pixel of interest

	[rast.y] - 1-based pixel row of the pixel of interest

Description: Variants 3 and 4 (two raster)

						Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation to the two bands defined by the expression on the two input raster bands rast1, (rast2). If no band1, band2 is specified band 1 is assumed. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster. The resulting raster will have the extent defined by the extenttype parameter.
					
	expression
	
									A PostgreSQL algebraic expression involving the two rasters and PostgreSQL defined functions/operators that will define the pixel value when pixels intersect. e.g. (([rast1] + [rast2])/2.0)::integer
								

	pixeltype
	
									The resulting pixel type of the output raster. Must be one listed in ST_BandPixelType, left out or set to NULL. If not passed in or set to NULL, will default to the pixeltype of the first raster.
								

	extenttype
	
									Controls the extent of resulting raster
								
	
											INTERSECTION - The extent of the new raster is the intersection of the two rasters. This is the default.
										

	
											UNION - The extent of the new raster is the union of the two rasters.
										

	
											FIRST - The extent of the new raster is the same as the one of the first raster.
										

	
											SECOND - The extent of the new raster is the same as the one of the second raster.
										

	nodata1expr
	
									An algebraic expression involving only rast2 or a constant that defines what to return when pixels of rast1 are nodata values and spatially corresponding rast2 pixels have values.
								

	nodata2expr
	
									An algebraic expression involving only rast1 or a constant that defines what to return when pixels of rast2 are nodata values and spatially corresponding rast1 pixels have values.
								

	nodatanodataval
	
									A numeric constant to return when spatially corresponding rast1 and rast2 pixels are both nodata values.
								

	Keywords permitted in expression, nodata1expr and nodata2expr
	[rast1] - Pixel value of the pixel of interest from rast1

	[rast1.val] - Pixel value of the pixel of interest from rast1

	[rast1.x] - 1-based pixel column of the pixel of interest from rast1

	[rast1.y] - 1-based pixel row of the pixel of interest from rast1

	[rast2] - Pixel value of the pixel of interest from rast2

	[rast2.val] - Pixel value of the pixel of interest from rast2

	[rast2.x] - 1-based pixel column of the pixel of interest from rast2

	[rast2.y] - 1-based pixel row of the pixel of interest from rast2

Examples: Variants 1 and 2

WITH foo AS (
	SELECT ST_AddBand(ST_MakeEmptyRaster(10, 10, 0, 0, 1, 1, 0, 0, 0), '32BF', 1, -1) AS rast
)
SELECT
	ST_MapAlgebra(rast, 1, NULL, 'ceil([rast]*[rast.x]/[rast.y]+[rast.val])')
FROM foo
					

Examples: Variant 3 and 4

WITH foo AS (
	SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast UNION ALL
	SELECT 2 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0), 2, '8BUI', 20, 0), 3, '32BUI', 300, 0) AS rast
)
SELECT
	ST_MapAlgebra(
		t1.rast, 2,
		t2.rast, 1,
		'([rast2] + [rast1.val]) / 2'
) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 1
	AND t2.rid = 2
					

See Also

						rastbandarg,
						ST_Union,
						ST_MapAlgebra
					

PostGIS Curved Geometry Support Functions

The functions given below are PostGIS functions that can use CIRCULARSTRING, CURVEPOLYGON, and other curved geometry types
	AddGeometryColumn - Adds a geometry column to an existing table of attributes. By default uses type modifier to define rather than constraints. Pass in false for use_typmod to get old check constraint based behavior
	Box2D - Returns a BOX2D representing the maximum extents of the geometry.
	Box3D - Returns a BOX3D representing the maximum extents of the geometry.
	DropGeometryColumn - Removes a geometry column from a spatial table.
	GeometryType - Returns the type of the geometry as a string. Eg: 'LINESTRING', 'POLYGON', 'MULTIPOINT', etc.
	PostGIS_AddBBox - Add bounding box to the geometry.
	PostGIS_DropBBox - Drop the bounding box cache from the geometry.
	PostGIS_HasBBox - Returns TRUE if the bbox of this geometry is cached, FALSE otherwise.
	ST_3DExtent - an aggregate function that returns the box3D bounding box that bounds rows of geometries.
	ST_Accum - Aggregate. Constructs an array of geometries.
	ST_Affine - Apply a 3d affine transformation to a geometry.
	ST_AsBinary - Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsEWKB - Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.
	ST_AsEWKT - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
	ST_AsHEXEWKB - Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR) encoding.
	ST_AsText - Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
	ST_Collect - Return a specified ST_Geometry value from a collection of other geometries.
	ST_CoordDim - Return the coordinate dimension of the ST_Geometry value.
	ST_CurveToLine - Converts a CIRCULARSTRING/CURVEPOLYGON to a LINESTRING/POLYGON
	ST_Distance - For geometry type Returns the 2D Cartesian distance between two geometries in projected units (based on spatial ref). For geography type defaults to return minimum geodesic distance between two geographies in meters.
	ST_Dump - Returns a set of geometry_dump (geom,path) rows, that make up a geometry g1.
	ST_DumpPoints - Returns a set of geometry_dump (geom,path) rows of all points that make up a geometry.
	ST_EndPoint - Returns the last point of a LINESTRING or CIRCULARLINESTRING geometry as a POINT.
	ST_EstimatedExtent - Return the 'estimated' extent of the given spatial table. The estimated is taken from the geometry column's statistics. The current schema will be used if not specified.
	ST_FlipCoordinates - Returns a version of the given geometry with X and Y axis flipped. Useful for people who have built latitude/longitude features and need to fix them.
	ST_Force2D - Force the geometries into a "2-dimensional mode".
	ST_ForceCurve - Upcast a geometry into its curved type, if applicable.
	ST_ForceSFS - Force the geometries to use SFS 1.1 geometry types only.
	ST_Force3D - Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.
	ST_Force3DM - Force the geometries into XYM mode.
	ST_Force3DZ - Force the geometries into XYZ mode.
	ST_Force4D - Force the geometries into XYZM mode.
	ST_ForceCollection - Convert the geometry into a GEOMETRYCOLLECTION.
	ST_GeoHash - Return a GeoHash representation of the geometry.
	ST_GeogFromWKB - Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended Well Known Binary (EWKB).
	ST_GeomFromEWKB - Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).
	ST_GeomFromEWKT - Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).
	ST_GeomFromText - Return a specified ST_Geometry value from Well-Known Text representation (WKT).
	ST_GeomFromWKB - Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional SRID.
	ST_GeometryN - Return the 1-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, (MULTI)POINT, (MULTI)LINESTRING, MULTICURVE or (MULTI)POLYGON, POLYHEDRALSURFACE Otherwise, return NULL.
	= - Returns TRUE if A's bounding box is the same as B's. Uses double precision bounding box.
	&<| - Returns TRUE if A's bounding box overlaps or is below B's.
	ST_HasArc - Returns true if a geometry or geometry collection contains a circular string
	ST_IsClosed - Returns TRUE if the LINESTRING's start and end points are coincident. For Polyhedral surface is closed (volumetric).
	ST_IsCollection - Returns TRUE if the argument is a collection (MULTI*, GEOMETRYCOLLECTION, ...)
	ST_IsEmpty - Returns true if this Geometry is an empty geometrycollection, polygon, point etc.
	ST_LineToCurve - Converts a LINESTRING/POLYGON to a CIRCULARSTRING, CURVEPOLYGON
	ST_MemSize - Returns the amount of space (in bytes) the geometry takes.
	ST_NPoints - Return the number of points (vertexes) in a geometry.
	ST_NRings - If the geometry is a polygon or multi-polygon returns the number of rings.
	ST_PointFromWKB - Makes a geometry from WKB with the given SRID
	ST_PointN - Return the Nth point in the first LineString or circular LineString in the geometry. Negative values are counted backwards from the end of the LineString. Returns NULL if there is no linestring in the geometry.
	ST_Points - Returns a MultiPoint containing all of the coordinates of a geometry.
	ST_Rotate - Rotate a geometry rotRadians counter-clockwise about an origin.
	ST_RotateZ - Rotate a geometry rotRadians about the Z axis.
	ST_SRID - Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table.
	ST_Scale - Scale a geometry by given factors.
	ST_SetSRID - Set the SRID on a geometry to a particular integer value.
	ST_StartPoint - Returns the first point of a LINESTRING geometry as a POINT.
	ST_Summary - Returns a text summary of the contents of the geometry.
	ST_SwapOrdinates - Returns a version of the given geometry with given ordinate values swapped.
	ST_TransScale - Translate a geometry by given factors and offsets.
	ST_Transform - Return a new geometry with its coordinates transformed to a different spatial reference.
	ST_Translate - Translate a geometry by given offsets.
	ST_XMax - Returns X maxima of a bounding box 2d or 3d or a geometry.
	ST_XMin - Returns X minima of a bounding box 2d or 3d or a geometry.
	ST_YMax - Returns Y maxima of a bounding box 2d or 3d or a geometry.
	ST_YMin - Returns Y minima of a bounding box 2d or 3d or a geometry.
	ST_ZMax - Returns Z minima of a bounding box 2d or 3d or a geometry.
	ST_ZMin - Returns Z minima of a bounding box 2d or 3d or a geometry.
	ST_Zmflag - Returns ZM (dimension semantic) flag of the geometries as a small int. Values are: 0=2d, 1=3dm, 2=3dz, 3=4d.
	UpdateGeometrySRID - Updates the SRID of all features in a geometry column, geometry_columns metadata and srid. If it was enforced with constraints, the constraints will be updated with new srid constraint. If the old was enforced by type definition, the type definition will be changed.
	~(box2df,box2df) - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).
	~(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry's 2D bonding box.
	~(geometry,box2df) - Returns TRUE if a geometry's 2D bonding box contains a 2D float precision bounding box (GIDX).
	&& - Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.
	&&& - Returns TRUE if A's n-D bounding box intersects B's n-D bounding box.
	@(box2df,box2df) - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision bounding box.
	@(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry's 2D bounding box.
	@(geometry,box2df) - Returns TRUE if a geometry's 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).
	&&(box2df,box2df) - Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.
	&&(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry's (cached) 2D bounding box.
	&&(geometry,box2df) - Returns TRUE if a geometry's (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).
	&&&(geometry,gidx) - Returns TRUE if a geometry's (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).
	&&&(gidx,geometry) - Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry's (cached) n-D bounding box.
	&&&(gidx,gidx) - Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.

Name
ST_ValueCount — Returns a set of records containing a pixel band value and count of the number of pixels in a given band of a raster (or a raster coverage) that have a given set of values. If no band is specified defaults to band 1. By default nodata value pixels are not counted.
				 and all other values in the pixel are output and pixel band values are rounded to the nearest integer.

Synopsis
	SETOF record fsfuncST_ValueCount(rast, 	
	 	nband=1, 	
	 	exclude_nodata_value=true, 	
	 	searchvalues=NULL, 	
	 	roundto=0, 	
	 	OUT value, 	
	 	OUT count);	

raster rast;
integer nband=1;
boolean exclude_nodata_value=true;
double precision[] searchvalues=NULL;
double precision roundto=0;
double precision OUT value;
integer OUT count;

	SETOF record fsfuncST_ValueCount(rast, 	
	 	nband, 	
	 	searchvalues, 	
	 	roundto=0, 	
	 	OUT value, 	
	 	OUT count);	

raster rast;
integer nband;
double precision[] searchvalues;
double precision roundto=0;
double precision OUT value;
integer OUT count;

	SETOF record fsfuncST_ValueCount(rast, 	
	 	searchvalues, 	
	 	roundto=0, 	
	 	OUT value, 	
	 	OUT count);	

raster rast;
double precision[] searchvalues;
double precision roundto=0;
double precision OUT value;
integer OUT count;

	bigint fsfuncST_ValueCount(rast, 	
	 	searchvalue, 	
	 	roundto=0);	

raster rast;
double precision searchvalue;
double precision roundto=0;

	bigint fsfuncST_ValueCount(rast, 	
	 	nband, 	
	 	exclude_nodata_value, 	
	 	searchvalue, 	
	 	roundto=0);	

raster rast;
integer nband;
boolean exclude_nodata_value;
double precision searchvalue;
double precision roundto=0;

	bigint fsfuncST_ValueCount(rast, 	
	 	nband, 	
	 	searchvalue, 	
	 	roundto=0);	

raster rast;
integer nband;
double precision searchvalue;
double precision roundto=0;

	SETOF record fsfuncST_ValueCount(rastertable, 	
	 	rastercolumn, 	
	 	nband=1, 	
	 	exclude_nodata_value=true, 	
	 	searchvalues=NULL, 	
	 	roundto=0, 	
	 	OUT value, 	
	 	OUT count);	

text rastertable;
text rastercolumn;
integer nband=1;
boolean exclude_nodata_value=true;
double precision[] searchvalues=NULL;
double precision roundto=0;
double precision OUT value;
integer OUT count;

	SETOF record fsfuncST_ValueCount(rastertable, 	
	 	rastercolumn, 	
	 	searchvalues, 	
	 	roundto=0, 	
	 	OUT value, 	
	 	OUT count);	

text rastertable;
text rastercolumn;
double precision[] searchvalues;
double precision roundto=0;
double precision OUT value;
integer OUT count;

	SETOF record fsfuncST_ValueCount(rastertable, 	
	 	rastercolumn, 	
	 	nband, 	
	 	searchvalues, 	
	 	roundto=0, 	
	 	OUT value, 	
	 	OUT count);	

text rastertable;
text rastercolumn;
integer nband;
double precision[] searchvalues;
double precision roundto=0;
double precision OUT value;
integer OUT count;

	bigintfsfuncST_ValueCount(rastertable, 	
	 	rastercolumn, 	
	 	nband, 	
	 	exclude_nodata_value, 	
	 	searchvalue, 	
	 	roundto=0);	

text rastertable;
text rastercolumn;
integer nband;
boolean exclude_nodata_value;
double precision searchvalue;
double precision roundto=0;

	bigint fsfuncST_ValueCount(rastertable, 	
	 	rastercolumn, 	
	 	searchvalue, 	
	 	roundto=0);	

text rastertable;
text rastercolumn;
double precision searchvalue;
double precision roundto=0;

	bigint fsfuncST_ValueCount(rastertable, 	
	 	rastercolumn, 	
	 	nband, 	
	 	searchvalue, 	
	 	roundto=0);	

text rastertable;
text rastercolumn;
integer nband;
double precision searchvalue;
double precision roundto=0;

Description
Returns a set of records with columns value count which contain the pixel band value and count of pixels in the raster tile or raster coverage of selected band.
If no band is specified nband defaults to 1. If no searchvalues are specified, will return all pixel values found in the raster or raster coverage. If one searchvalue is given, will return an integer instead of records denoting the count of pixels having that pixel band value
Note
If exclude_nodata_value is set to false, will also count pixels with no data.

Availability: 2.0.0

Examples

UPDATE dummy_rast SET rast = ST_SetBandNoDataValue(rast,249) WHERE rid=2;
--Example will count only pixels of band 1 that are not 249. --

SELECT (pvc).*
FROM (SELECT ST_ValueCount(rast) As pvc
 FROM dummy_rast WHERE rid=2) As foo
 ORDER BY (pvc).value;

 value | count
-------+-------
 250 | 2
 251 | 1
 252 | 2
 253 | 6
 254 | 12

-- Example will coount all pixels of band 1 including 249 --
SELECT (pvc).*
FROM (SELECT ST_ValueCount(rast,1,false) As pvc
 FROM dummy_rast WHERE rid=2) As foo
 ORDER BY (pvc).value;

 value | count
-------+-------
 249 | 2
 250 | 2
 251 | 1
 252 | 2
 253 | 6
 254 | 12

-- Example will count only non-nodata value pixels of band 2
SELECT (pvc).*
FROM (SELECT ST_ValueCount(rast,2) As pvc
 FROM dummy_rast WHERE rid=2) As foo
 ORDER BY (pvc).value;
 value | count
-------+-------
 78 | 1
 79 | 1
 88 | 1
 89 | 1
 96 | 1
 97 | 1
 98 | 1
 99 | 2
 112 | 2
:

				

--real live example. Count all the pixels in an aerial raster tile band 2 intersecting a geometry
-- and return only the pixel band values that have a count > 500
SELECT (pvc).value, SUM((pvc).count) As total
FROM (SELECT ST_ValueCount(rast,2) As pvc
 FROM o_4_boston
 WHERE ST_Intersects(rast,
 ST_GeomFromText('POLYGON((224486 892151,224486 892200,224706 892200,224706 892151,224486 892151))',26986)
)
) As foo
 GROUP BY (pvc).value
 HAVING SUM((pvc).count) > 500
 ORDER BY (pvc).value;

 value | total
-------+-----
 51 | 502
 54 | 521

-- Just return count of pixels in each raster tile that have value of 100 of tiles that intersect a specific geometry --
SELECT rid, ST_ValueCount(rast,2,100) As count
 FROM o_4_boston
 WHERE ST_Intersects(rast,
 ST_GeomFromText('POLYGON((224486 892151,224486 892200,224706 892200,224706 892151,224486 892151))',26986)
) ;

 rid | count
-----+-------
 1 | 56
 2 | 95
 14 | 37
 15 | 64

See Also
ST_Count, ST_SetBandNoDataValue

Name
ST_GeomFromKML — Takes as input KML representation of geometry and outputs a PostGIS geometry object

Synopsis
	geometry fsfuncST_GeomFromKML(geomkml);	

text geomkml;

Description
Constructs a PostGIS ST_Geometry object from the OGC KML representation.
ST_GeomFromKML works only for KML Geometry fragments. It throws an error if you try to use it on a whole KML document.

			OGC KML versions supported:
			
	KML 2.2.0 Namespace

			OGC KML standards, cf: http://www.opengeospatial.org/standards/kml:
		
Availability: 1.5,libxml2 2.6+
[image: Description]
 This function supports 3d and will not drop the z-index.
Note
ST_GeomFromKML function not support SQL/MM curves geometries.

Examples - A single geometry with srsName
SELECT ST_GeomFromKML('
		<LineString>
			<coordinates>-71.1663,42.2614
				-71.1667,42.2616</coordinates>
		</LineString>');
		

See Also
the section called “Configuration”, ST_AsKML

Name
ST_LineFromText — Makes a Geometry from WKT representation with the given SRID. If SRID is
				not given, it defaults to 0.

Synopsis
	geometry fsfuncST_LineFromText(WKT);	

text WKT;

	geometry fsfuncST_LineFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

Description
Makes a Geometry from WKT with the given SRID. If SRID is
				not give, it defaults to 0. If WKT passed in is not a LINESTRING, then null is returned.
Note
OGC SPEC 3.2.6.2 - option SRID is from the conformance
				suite.

Note
If you know all your geometries are LINESTRINGS, its more efficient to just use ST_GeomFromText.
			This just calls ST_GeomFromText and adds additional validation that it returns a linestring.

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.2.8

Examples
SELECT ST_LineFromText('LINESTRING(1 2, 3 4)') AS aline, ST_LineFromText('POINT(1 2)') AS null_return;
aline | null_return
--
010200000002000000000000000000F ... | t
		

See Also
ST_GeomFromText

Name
ST_ApproximateMedialAxis — Compute the approximate medial axis of an areal geometry.

Synopsis
	geometry fsfuncST_ApproximateMedialAxis(geom);	

geometry geom;

Description

Return an approximate medial axis for the areal input based on
its straight skeleton. Uses an SFCGAL specific API when built against
a capable version (1.2.0+). Otherwise the function is just a wrapper
around ST_StraightSkeleton (slower case).

Availability: 2.2.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_ApproximateMedialAxis(ST_GeomFromText('POLYGON ((190 190, 10 190, 10 10, 190 10, 190 20, 160 30, 60 30, 60 130, 190 140, 190 190))'));
	[image: Examples]A polygon and its approximate medial axis

					

See Also
ST_StraightSkeleton

Name
ST_AsKML — Return the geometry as a KML element. Several variants. Default version=2, default precision=15

Synopsis
	text fsfuncST_AsKML(geom, 	
	 	maxdecimaldigits=15);	

geometry geom;
integer maxdecimaldigits=15;

	text fsfuncST_AsKML(geog, 	
	 	maxdecimaldigits=15);	

geography geog;
integer maxdecimaldigits=15;

	text fsfuncST_AsKML(version, 	
	 	geom, 	
	 	maxdecimaldigits=15, 	
	 	nprefix=NULL);	

integer version;
geometry geom;
integer maxdecimaldigits=15;
text nprefix=NULL;

	text fsfuncST_AsKML(version, 	
	 	geog, 	
	 	maxdecimaldigits=15, 	
	 	nprefix=NULL);	

integer version;
geography geog;
integer maxdecimaldigits=15;
text nprefix=NULL;

Description
Return the geometry as a Keyhole Markup Language (KML) element. There are several variants of this function.
			maximum number of decimal places used in
			output (defaults to 15), version default to 2 and default namespace is no prefix.
Version 1: ST_AsKML(geom_or_geog, maxdecimaldigits) / version=2 / maxdecimaldigits=15
Version 2: ST_AsKML(version, geom_or_geog, maxdecimaldigits, nprefix) maxdecimaldigits=15 / nprefix=NULL
Note
Requires PostGIS be compiled with Proj support. Use PostGIS_Full_Version to confirm you have proj support compiled in.

Note
Availability: 1.2.2 - later variants that include version param came in 1.3.2

Note
Enhanced: 2.0.0 - Add prefix namespace. Default is no prefix

Note
Changed: 2.0.0 - uses default args and supports named args

Note
AsKML output will not work with geometries that do not have an SRID

[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_AsKML(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

		st_askml

		<Polygon><outerBoundaryIs><LinearRing><coordinates>0,0 0,1 1,1 1,0 0,0</coordinates></LinearRing></outerBoundaryIs></Polygon>

		--3d linestring
		SELECT ST_AsKML('SRID=4326;LINESTRING(1 2 3, 4 5 6)');
		<LineString><coordinates>1,2,3 4,5,6</coordinates></LineString>
		
		

See Also
ST_AsSVG, ST_AsGML

Name
GetTopologyID — Returns the id of a topology in the topology.topology table given the name of the topology.

Synopsis
	integer fsfuncGetTopologyID(toponame);	

varchar toponame;

Description
Returns the id of a topology in the topology.topology table given the name of the topology.
Availability: 1.?

Examples
SELECT topology.GetTopologyID('ma_topo') As topo_id;
 topo_id

 1

See Also

	CreateTopology,
	DropTopology,
	GetTopologyName,
	GetTopologySRID
				

Name
ST_Reskew — Resample a raster by adjusting only its skew (or rotation parameters). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.
				

Synopsis
	raster fsfuncST_Reskew(rast, 	
	 	skewxy, 	
	 	algorithm=NearestNeighbour, 	
	 	maxerr=0.125);	

raster rast;
double precision skewxy;
text algorithm=NearestNeighbour;
double precision maxerr=0.125;

	raster fsfuncST_Reskew(rast, 	
	 	skewx, 	
	 	skewy, 	
	 	algorithm=NearestNeighbour, 	
	 	maxerr=0.125);	

raster rast;
double precision skewx;
double precision skewy;
text algorithm=NearestNeighbour;
double precision maxerr=0.125;

Description
Resample a raster by adjusting only its skew (or rotation parameters). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. The default is NearestNeighbor which is the fastest but results in the worst interpolation.
skewx and skewy define the new skew.
The extent of the new raster will encompass the extent of the provided raster.
A maxerror percent of 0.125 if no maxerr is specified.
Note
Refer to: GDAL Warp resampling methods for more details.

Note
ST_Reskew is different from ST_SetSkew in that ST_SetSkew do not resample the raster to match the raster extent. ST_SetSkew only changes the metadata (or georeference) of the raster to correct an originally mis-specified skew. ST_Reskew results in a raster having different width and height computed to fit the geographic extent of the input raster. ST_SetSkew do not modify the width, nor the height of the raster.

Availability: 2.0.0 Requires GDAL 1.6.1+
Changed: 2.1.0 Works on rasters with no SRID

Examples
A simple example reskewing a raster from a skew of 0.0 to a skew of 0.0015.
-- the original raster pixel size
SELECT ST_Rotation(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0))

-- the rescaled raster raster pixel size
SELECT ST_Rotation(ST_Reskew(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0), 0.0015))

See Also
ST_Resample, ST_Rescale, ST_SetSkew, ST_SetRotation, ST_SkewX, ST_SkewY, ST_Transform

Name
TopoElement — An array of 2 integers generally used to identify a TopoGeometry component.

Description

An array of 2 integers used to represent one component of a simple or
hierarchical TopoGeometry.
			

In the case of a simple TopoGeometry the first element of the array
represents the identifier of a topological primitive and the second
element represents its type (1:node, 2:edge, 3:face). In the case of a
hierarchical TopoGeometry the first element of the array represents the
identifier of a child TopoGeometry and the second element represents
its layer identifier.
			
Note

For any given hierarchical TopoGeometry all child TopoGeometry
elements will come from the same child layer, as specified in
the topology.layer record for the layer of the TopoGeometry
being defined.

Examples

SELECT te[1] AS id, te[2] AS type FROM
(SELECT ARRAY[1,2]::topology.topoelement AS te) f;
 id | type
----+------
 1 | 2

SELECT ARRAY[1,2]::topology.topoelement;
 te

 {1,2}

--Example of what happens when you try to case a 3 element array to topoelement
-- NOTE: topoement has to be a 2 element array so fails dimension check
SELECT ARRAY[1,2,3]::topology.topoelement;
ERROR: value for domain topology.topoelement violates check constraint "dimensions"

See Also

 GetTopoGeomElements,
 TopoElementArray,
 TopoGeometry,
 TopoGeom_addElement,
 TopoGeom_remElement

Name
ST_SameAlignment — Returns true if rasters have same skew, scale, spatial ref, and offset (pixels can be put on same grid without cutting into pixels) and false if they don't with notice detailing issue.

Synopsis
	boolean fsfuncST_SameAlignment(rastA, 	
	 	rastB);	

				 raster
				 rastA
				;

				 raster
				 rastB
				;

	boolean fsfuncST_SameAlignment(ulx1, 	
	 	uly1, 	
	 	scalex1, 	
	 	scaley1, 	
	 	skewx1, 	
	 	skewy1, 	
	 	ulx2, 	
	 	uly2, 	
	 	scalex2, 	
	 	scaley2, 	
	 	skewx2, 	
	 	skewy2);	

				 double precision
				 ulx1
				;

				 double precision
				 uly1
				;

				 double precision
				 scalex1
				;

				 double precision
				 scaley1
				;

				 double precision
				 skewx1
				;

				 double precision
				 skewy1
				;

				 double precision
				 ulx2
				;

				 double precision
				 uly2
				;

				 double precision
				 scalex2
				;

				 double precision
				 scaley2
				;

				 double precision
				 skewx2
				;

				 double precision
				 skewy2
				;

	boolean fsfuncST_SameAlignment(rastfield);	

						raster set
						rastfield
					;

Description

				Non-Aggregate version (Variants 1 and 2): Returns true if the two rasters (either provided directly or made using the values for upperleft, scale, skew and srid) have the same scale, skew, srid and at least one of any of the four corners of any pixel of one raster falls on any corner of the grid of the other raster. Returns false if they don't and a NOTICE detailing the alignment issue.
			

				Aggregate version (Variant 3): From a set of rasters, returns true if all rasters in the set are aligned. The ST_SameAlignment() function is an "aggregate" function in the terminology of PostgreSQL. That means that it operates on rows of data, in the same way the SUM() and AVG() functions do.
			
Availability: 2.0.0
Enhanced: 2.1.0 addition of Aggegrate variant

Examples: Rasters
SELECT ST_SameAlignment(
	ST_MakeEmptyRaster(1, 1, 0, 0, 1, 1, 0, 0),
	ST_MakeEmptyRaster(1, 1, 0, 0, 1, 1, 0, 0)
) as sm;

sm

t

SELECT ST_SameAlignment(A.rast,b.rast)
 FROM dummy_rast AS A CROSS JOIN dummy_rast AS B;

 NOTICE: The two rasters provided have different SRIDs
NOTICE: The two rasters provided have different SRIDs
 st_samealignment

 t
 f
 f
 f

See Also

					the section called “Loading and Creating Rasters”,
					ST_NotSameAlignmentReason,
					ST_MakeEmptyRaster
				

Name
ST_Difference — Returns a geometry that represents that part of geometry A
			that does not intersect with geometry B.

Synopsis
	geometry fsfuncST_Difference(geomA, 	
	 	geomB);	

geometry geomA;
geometry geomB;

Description
Returns a geometry that represents that part of geometry A
			that does not intersect with geometry B. One can think of this as GeometryA - ST_Intersection(A,B). If A is completely contained in B
			then an empty geometry collection is returned.
Note
Note - order matters. B - A will always return a portion of B

Performed by the GEOS module
Note
Do not call with a GeometryCollection as an argument

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.3
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.20
[image: Description]
 This function supports 3d and will not drop the z-index. However it seems to only consider x y when
		 doing the difference and tacks back on the Z-Index

Examples
	
						
							
[image: Examples]The original linestrings shown together.

						

						
						[image: Examples]The difference of the two linestrings

					

				

--Safe for 2d. This is same geometries as what is shown for st_symdifference
SELECT ST_AsText(
	ST_Difference(
			ST_GeomFromText('LINESTRING(50 100, 50 200)'),
			ST_GeomFromText('LINESTRING(50 50, 50 150)')
)
);

st_astext

LINESTRING(50 150,50 200)

--When used in 3d doesn't quite do the right thing
SELECT ST_AsEWKT(ST_Difference(ST_GeomFromEWKT('MULTIPOINT(-118.58 38.38 5,-118.60 38.329 6,-118.614 38.281 7)'), ST_GeomFromEWKT('POINT(-118.614 38.281 5)')));
st_asewkt

MULTIPOINT(-118.6 38.329 6,-118.58 38.38 5)
		

See Also
ST_SymDifference

Name
ST_GeneratePoints — Converts a polygon or multi-polygon into a multi-point composed of randomly location points within the original areas.

Synopsis
	geometry fsfuncST_GeneratePoints(g, 	
	 	npoints);	

				g
				geometry
			;

				npoints
				numeric
			;

Description

			ST_GeneratePoints generates pseudo-random points until the requested number are
			found within the input area.
		
Availability: 2.3.0

Examples
	
						[image: Examples]Original Polygon

						

						[image: Examples]Generated 12 Points overlaid on top of original polygon

						
SELECT ST_GeneratePoints(
	ST_Buffer(
		ST_GeomFromText(
		'LINESTRING(50 50,150 150,150 50)'
), 10, 'endcap=round join=round'), 12);

					

PostGIS Grand Unified Custom Variables (GUCs)

Abstract
This section lists custom PostGIS Grand Unified Custom Variables(GUC). These can be set globally, by database, by session or by transaction. Best set at global or database level.

Name
ST_Azimuth — Returns the north-based azimuth as the angle in radians measured clockwise from the vertical on pointA to pointB.

Synopsis
	float fsfuncST_Azimuth(pointA, 	
	 	pointB);	

geometry pointA;
geometry pointB;

	float fsfuncST_Azimuth(pointA, 	
	 	pointB);	

geography pointA;
geography pointB;

Description
Returns the azimuth in radians of the segment defined by the given
			point geometries, or NULL if the two points are coincident. The azimuth is angle is referenced from north, and is positive clockwise: North = 0; East = π/2; South = π; West = 3π/2.
For the geography type, the forward azimuth is solved as part of the inverse geodesic problem.
The azimuth is mathematical concept defined as the angle between a reference plane and a point, with angular units in radians.
			Units can be converted to degrees using a built-in PostgreSQL function degrees(), as shown in the example.
Availability: 1.1.0
Enhanced: 2.0.0 support for geography was introduced.
Enhanced: 2.2.0 measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires Proj >= 4.9.0 to take advantage of the new feature.
Azimuth is especially useful in conjunction with ST_Translate for shifting an object along its perpendicular axis. See
				 upgis_lineshift Plpgsqlfunctions PostGIS wiki section for example of this.

Examples
Geometry Azimuth in degrees

SELECT degrees(ST_Azimuth(ST_Point(25, 45), ST_Point(75, 100))) AS degA_B,
	 degrees(ST_Azimuth(ST_Point(75, 100), ST_Point(25, 45))) AS degB_A;

 dega_b | degb_a
------------------+------------------
 42.2736890060937 | 222.273689006094

	[image: Examples]Green: the start Point(25,45) with its vertical. Yellow: degA_B as the path to travel (azimuth).

				
	[image: Examples]Green: the start Point(75,100) with its vertical. Yellow: degB_A as the path to travel (azimuth).

				

See Also
ST_Point, ST_Translate, ST_Project, PostgreSQL Math Functions

Name
ST_InterpolatePoint — Return the value of the measure dimension of a geometry at the point closed to the provided point.

Synopsis
	float8 fsfuncST_InterpolatePoint(line, 	
	 	point);	

geometry line;
geometry point;

Description
Return the value of the measure dimension of a geometry at the point closed to the provided point.
Availability: 2.0.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_InterpolatePoint('LINESTRING M (0 0 0, 10 0 20)', 'POINT(5 5)');
 st_interpolatepoint

			 10
	

See Also
ST_AddMeasure, ST_LocateAlong, ST_LocateBetween

Name
&& — Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.

Synopsis
	boolean fsfunc&&(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

	boolean fsfunc&&(A, 	
	 	B);	

				 geography

				 A
				;

				 geography

				 B
				;

Description
The && operator returns TRUE if the 2D bounding box of geometry A intersects the 2D bounding box of geometry B.
Note
This operand will make use of any indexes that may be available on the
				geometries.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Availability: 1.5.0 support for geography was introduced.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT tbl1.column1, tbl2.column1, tbl1.column2 && tbl2.column2 AS overlaps
FROM (VALUES
	(1, 'LINESTRING(0 0, 3 3)'::geometry),
	(2, 'LINESTRING(0 1, 0 5)'::geometry)) AS tbl1,
(VALUES
	(3, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl2;

 column1 | column1 | overlaps
---------+---------+----------
	 1 | 3 | t
	 2 | 3 | f
(2 rows)

See Also

				|&>,
				&>,
				&<|,
				&<,
				~,
				@

Name
PostGIS_Lib_Build_Date — Returns build date of the PostGIS library.

Synopsis
	text fsfuncPostGIS_Lib_Build_Date();	

;

Description
Returns build date of the PostGIS library.

Examples
SELECT PostGIS_Lib_Build_Date();
 postgis_lib_build_date

 2008-06-21 17:53:21
(1 row)

Name
ST_GeomFromGeoHash — Return a geometry from a GeoHash string.

Synopsis
	geometry fsfuncST_GeomFromGeoHash(geohash, 	
	 	precision=full_precision_of_geohash);	

text geohash;
integer precision=full_precision_of_geohash;

Description
Return a geometry from a GeoHash string. The geometry will be a polygon representing the GeoHash bounds.
If no precision is specified ST_GeomFromGeoHash returns a polygon based on full precision of the input GeoHash string.
If precision is specified ST_GeomFromGeoHash will use that many characters from the GeoHash to create the polygon.
Availability: 2.1.0

Examples
SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0'));
 st_astext
--
 POLYGON((-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646))

SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 4));
 st_astext
--
 POLYGON((-115.3125 36.03515625,-115.3125 36.2109375,-114.9609375 36.2109375,-114.9609375 36.03515625,-115.3125 36.03515625))

SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 10));
 st_astext
--
 POLYGON((-115.17282128334 36.1146408319473,-115.17282128334 36.1146461963654,-115.172810554504 36.1146461963654,-115.172810554504 36.1146408319473,-115.17282128334 36.1146408319473))
		
		

See Also
ST_GeoHash,ST_Box2dFromGeoHash, ST_PointFromGeoHash

Name
&&(box2df,box2df) — Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.

Synopsis
	boolean fsfunc&&(A, 	
	 	B);	

				 box2df

				 A
				;

				 box2df

				 B
				;

Description
The && operator returns TRUE if two 2D bounding boxes A and B intersect each other, using float precision. This means that if A (or B) is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)
Note
This operator is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(2,2)) && ST_MakeBox2D(ST_MakePoint(1,1), ST_MakePoint(3,3)) AS overlaps;

 overlaps

 t
(1 row)

See Also

				&&(geometry,box2df),
				&&(box2df,geometry),
				~(geometry,box2df),
				~(box2df,geometry),
				~(box2df,box2df),
				@(geometry,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

Name
TopoGeo_AddPoint —
Adds a point to an existing topology using a tolerance and possibly splitting an existing edge.
				

Synopsis
	integer fsfuncTopoGeo_AddPoint(toponame, 	
	 	apoint, 	
	 	tolerance);	

varchar toponame;
geometry apoint;
float8 tolerance;

Description

Adds a point to an existing topology and return its identifier.
The given point will snap to existing nodes or edges within given tolerance.
An existing edge may be split by the snapped point.

Availability: 2.0.0

See Also

TopoGeo_AddLineString,
TopoGeo_AddPolygon,
AddNode,
CreateTopology

Name
ST_ExteriorRing — Returns a line string representing the exterior ring of the POLYGON geometry. Return
				NULL if the geometry is not a polygon. Will not work with MULTIPOLYGON

Synopsis
	geometry fsfuncST_ExteriorRing(a_polygon);	

geometry a_polygon;

Description
Returns a line string representing the exterior ring of the POLYGON geometry. Return
				NULL if the geometry is not a polygon.
Note
Only works with POLYGON geometry types

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. 2.1.5.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.2.3, 8.3.3
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

--If you have a table of polygons
SELECT gid, ST_ExteriorRing(the_geom) AS ering
FROM sometable;

--If you have a table of MULTIPOLYGONs
--and want to return a MULTILINESTRING composed of the exterior rings of each polygon
SELECT gid, ST_Collect(ST_ExteriorRing(the_geom)) AS erings
	FROM (SELECT gid, (ST_Dump(the_geom)).geom As the_geom
			FROM sometable) As foo
GROUP BY gid;

--3d Example
SELECT ST_AsEWKT(
	ST_ExteriorRing(
	ST_GeomFromEWKT('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))')
)
);

st_asewkt

LINESTRING(0 0 1,1 1 1,1 2 1,1 1 1,0 0 1)

See Also

ST_InteriorRingN,
ST_Boundary,
ST_NumInteriorRings
		

Name
ST_ModEdgeHeal —
Heal two edges by deleting the node connecting them, modifying the first edge
and deleting the second edge. Returns the id of the deleted node.
				

Synopsis
	int fsfuncST_ModEdgeHeal(atopology, 	
	 	anedge, 	
	 	anotheredge);	

varchar atopology;
integer anedge;
integer anotheredge;

Description

Heal two edges by deleting the node connecting them, modifying the first edge
and deleting the second edge.
Returns the id of the deleted node.
Updates all existing joined edges and relationships accordingly.
		
Availability: 2.0
[image: Description] This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

See Also

				ST_ModEdgeSplit
				ST_NewEdgesSplit
				

Name
ST_Envelope — Returns the polygon representation of the extent of the raster.

Synopsis
	geometry fsfuncST_Envelope(rast);	

raster rast;

Description
Returns the polygon representation of the extent of the raster in spatial coordinate units defined by srid. It is a float8 minimum bounding box represented as a polygon.
The polygon is defined by the corner points of the bounding box
			((MINX, MINY),
			(MINX, MAXY),
			(MAXX, MAXY),
			(MAXX, MINY),
			(MINX, MINY))
					

Examples

SELECT rid, ST_AsText(ST_Envelope(rast)) As envgeomwkt
FROM dummy_rast;

 rid | envgeomwkt
-----+--
 1 | POLYGON((0 0,20 0,20 60,0 60,0 0))
 2 | POLYGON((3427927 5793243,3427928 5793243,
		3427928 5793244,3427927 5793244, 3427927 5793243))
					

See Also

						ST_Envelope,
						ST_AsText,
						ST_SRID
					

Raster Catalogs

There are two raster catalog views that come packaged with PostGIS. Both views utilize information embedded in the constraints of the raster tables. As a result
		the catalog views are always consistent with the raster data in the tables since the constraints are enforced.
	raster_columns this view catalogs all the raster table columns in your database.

	raster_overviews this view catalogs all the raster table columns in your database that serve as overviews for a finer grained table. Tables of this type are generated when you use the -l switch during load.

Raster Columns Catalog

The raster_columns is a catalog of all raster table columns in your database that are of type raster. It is a view utilizing the constraints on the tables
	so the information is always consistent even if you restore one raster table from a backup of another database. The following columns exist in the raster_columns catalog.
If you created your tables not with the loader or forgot to specify the -C flag during load, you can enforce the constraints after the
	fact using AddRasterConstraints so that the raster_columns catalog registers the common information about your raster tiles.
	r_table_catalog The database the table is in. This will always read the current database.

	r_table_schema The database schema the raster table belongs to.

	r_table_name raster table

	r_raster_column the column in the r_table_name table that is of type raster. There is nothing in PostGIS preventing you from having multiple raster columns per table so its possible to have a raster table listed multiple times with a different raster column for each.

	srid The spatial reference identifier of the raster. Should be an entry in the the section called “The SPATIAL_REF_SYS Table and Spatial Reference Systems”.

	scale_x The scaling between geometric spatial coordinates and pixel. This is only available if all tiles in the raster column have the same scale_x and this constraint is applied. Refer to ST_ScaleX for more details.

	scale_y The scaling between geometric spatial coordinates and pixel. This is only available if all tiles in the raster column have the same scale_y and the scale_y constraint is applied. Refer to ST_ScaleY for more details.

	blocksize_x The width (number of pixels across) of each raster tile . Refer to ST_Width for more details.

	blocksize_y The width (number of pixels down) of each raster tile . Refer to ST_Height for more details.

	same_alignment A boolean that is true if all the raster tiles have the same alignment . Refer to ST_SameAlignment for more details.

	regular_blocking If the raster column has the spatially unique and coverage tile constraints, the value with be TRUE. Otherwise, it will be FALSE.

	num_bands The number of bands in each tile of your raster set. This is the same information as what is provided by ST_NumBands

	pixel_types An array defining the pixel type for each band. You will have the same number of elements in this array as you have number of bands. The pixel_types are one of the following defined in ST_BandPixelType.

	nodata_values An array of double precision numbers denoting the nodata_value for each band. You will have the same number of elements in this array as you have number of bands. These numbers define the pixel value for each band that should be ignored for most operations. This is similar information provided by ST_BandNoDataValue.

	out_db An array of boolean flags indicating if the raster bands data is maintained outside the database. You will have the same number of elements in this array as you have number of bands.

	extent This is the extent of all the raster rows in your raster set. If you plan to load more data that will change the extent of the set, you'll want to run the DropRasterConstraints function before load and then reapply constraints with AddRasterConstraints after load.

	spatial_index A boolean that is true if raster column has a spatial index.

Raster Overviews

raster_overviews catalogs information about raster table columns used for overviews and additional information about them that is useful to know when utilizing overviews. Overview tables are cataloged in both raster_columns and raster_overviews because they are rasters in their own right but also serve an additional special purpose of being a lower resolution caricature of a higher resolution table. These are generated along-side the main raster table when you use the -l switch in raster loading or can be generated manually using AddOverviewConstraints.
Overview tables contain the same constraints as other raster tables as well as additional informational only constraints specific to overviews.
Note
The information in raster_overviews does not duplicate the information in raster_columns. If you need the information about an overview table present in raster_columns you can join the raster_overviews and raster_columns together to get the full set of information you need.

Two main reasons for overviews are:
	Low resolution representation of the core tables commonly used for fast mapping zoom-out.

	Computations are generally faster to do on them than their higher resolution parents because there are fewer records and each pixel covers more territory. Though the computations are not as accurate as the high-res tables they support, they can be sufficient in many rule-of-thumb computations.

The raster_overviews catalog contains the following columns of information.
	o_table_catalog The database the overview table is in. This will always read the current database.

	o_table_schema The database schema the overview raster table belongs to.

	o_table_name raster overview table name

	o_raster_column the raster column in the overview table.

	r_table_catalog The database the raster table that this overview services is in. This will always read the current database.

	r_table_schema The database schema the raster table that this overview services belongs to.

	r_table_name raster table that this overview services.

	r_raster_column the raster column that this overview column services.

	overview_factor - this is the pyramid level of the overview table. The higher the number the lower the resolution of the table.
					raster2pgsql if given a folder of images, will compute overview of each image file and load separately. Level 1 is assumed and always the original file. Level 2 is
					will have each tile represent 4 of the original. So for example if you have a folder of 5000x5000 pixel image files that you chose to chunk 125x125, for each image file your base table will
						have (5000*5000)/(125*125) records = 1600, your (l=2) o_2 table will have ceiling(1600/Power(2,2)) = 400 rows, your (l=3) o_3 will have ceiling(1600/Power(2,3)) = 200 rows.
						If your pixels aren't divisible by the size of your tiles, you'll get some scrap tiles (tiles not completely filled). Note that each overview tile generated by raster2pgsql has the same number of
						pixels as its parent, but is of a lower resolution where each pixel of it represents (Power(2,overview_factor) pixels of the original).

Name
UpdateGeometrySRID — Updates the SRID of all features in a geometry
		column, geometry_columns metadata and srid. If it was enforced with constraints, the constraints will be updated with new srid constraint.
		If the old was enforced by type definition, the type definition will be changed.

Synopsis
	text fsfuncUpdateGeometrySRID(table_name, 	
	 	column_name, 	
	 	srid);	

varchar
			table_name;
varchar
			column_name;
integer
			srid;

	text fsfuncUpdateGeometrySRID(schema_name, 	
	 	table_name, 	
	 	column_name, 	
	 	srid);	

varchar
			schema_name;
varchar
			table_name;
varchar
			column_name;
integer
			srid;

	text fsfuncUpdateGeometrySRID(catalog_name, 	
	 	schema_name, 	
	 	table_name, 	
	 	column_name, 	
	 	srid);	

varchar
			catalog_name;
varchar
			schema_name;
varchar
			table_name;
varchar
			column_name;
integer
			srid;

Description
Updates the SRID of all features in a geometry column, updating
		constraints and reference in geometry_columns. Note: uses
		current_schema() on schema-aware pgsql installations if schema is not
		provided.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
This will change the srid of the roads table to 4326 from whatever it was before
SELECT UpdateGeometrySRID('roads','geom',4326);
The prior example is equivalent to this DDL statement
ALTER TABLE roads
 ALTER COLUMN geom TYPE geometry(MULTILINESTRING, 4326)
 USING ST_SetSRID(geom,4326);
If you got the projection wrong (or brought it in as unknown) in load and you wanted to transform to web mercator all in one shot
		You can do this with
	DDL but there is no equivalent PostGIS management function to do so in one go.
ALTER TABLE roads
 ALTER COLUMN geom TYPE geometry(MULTILINESTRING, 3857) USING ST_Transform(ST_SetSRID(geom,4326),3857) ;

See Also

 UpdateRasterSRID,
 ST_SetSRID,
 ST_Transform
		

Name
Drop_Nation_Tables_Generate_Script — Generates a script that drops all tables in the specified schema that start with county_all, state_all or state code followed by county or state.

Synopsis
	text fsfuncDrop_Nation_Tables_Generate_Script(param_schema=tiger_data);	

text param_schema=tiger_data;

Description
Generates a script that drops all tables in the specified schema that start with county_all, state_all or stae code followed by county or state. This is needed if you are upgrading from tiger_2010 to tiger_2011 data.
Availability: 2.1.0

Examples
SELECT drop_nation_tables_generate_script();
DROP TABLE tiger_data.county_all;
DROP TABLE tiger_data.county_all_lookup;
DROP TABLE tiger_data.state_all;
DROP TABLE tiger_data.ma_county;
DROP TABLE tiger_data.ma_state;

See Also
Loader_Generate_Nation_Script

Name
ST_MapAlgebraExpr —
						2 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the two input raster bands and of pixeltype provided. band 1 of each raster is assumed if no band numbers are specified. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster and have its extent defined by the "extenttype" parameter. Values for "extenttype" can be: INTERSECTION, UNION, FIRST, SECOND.
					

Synopsis
	raster fsfuncST_MapAlgebraExpr(rast1, 	
	 	rast2, 	
	 	expression, 	
	 	pixeltype=same_as_rast1_band, 	
	 	extenttype=INTERSECTION, 	
	 	nodata1expr=NULL, 	
	 	nodata2expr=NULL, 	
	 	nodatanodataval=NULL);	

raster rast1;
raster rast2;
text expression;
text pixeltype=same_as_rast1_band;
text extenttype=INTERSECTION;
text nodata1expr=NULL;
text nodata2expr=NULL;
double precision nodatanodataval=NULL;

	raster fsfuncST_MapAlgebraExpr(rast1, 	
	 	band1, 	
	 	rast2, 	
	 	band2, 	
	 	expression, 	
	 	pixeltype=same_as_rast1_band, 	
	 	extenttype=INTERSECTION, 	
	 	nodata1expr=NULL, 	
	 	nodata2expr=NULL, 	
	 	nodatanodataval=NULL);	

raster rast1;
integer band1;
raster rast2;
integer band2;
text expression;
text pixeltype=same_as_rast1_band;
text extenttype=INTERSECTION;
text nodata1expr=NULL;
text nodata2expr=NULL;
double precision nodatanodataval=NULL;

Description
Warning

							ST_MapAlgebraExpr is deprecated as of 2.1.0. Use ST_MapAlgebra instead.
						

						Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation to the two bands defined by the expression on the two input raster bands rast1, (rast2). If no band1, band2 is specified band 1 is assumed. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster. The resulting raster will have the extent defined by the extenttype parameter.
					
	expression
	
									A PostgreSQL algebraic expression involving the two rasters and PostgreSQL defined functions/operators that will define the pixel value when pixels intersect. e.g. (([rast1] + [rast2])/2.0)::integer
								

	pixeltype
	
									The resulting pixel type of the output raster. Must be one listed in ST_BandPixelType, left out or set to NULL. If not passed in or set to NULL, will default to the pixeltype of the first raster.
								

	extenttype
	Controls the extent of resulting raster
	
											INTERSECTION - The extent of the new raster is the intersection of the two rasters. This is the default.
										

	
											UNION - The extent of the new raster is the union of the two rasters.
										

	
											FIRST - The extent of the new raster is the same as the one of the first raster.
										

	
											SECOND - The extent of the new raster is the same as the one of the second raster.
										

	nodata1expr
	
									An algebraic expression involving only rast2 or a constant that defines what to return when pixels of rast1 are nodata values and spatially corresponding rast2 pixels have values.
								

	nodata2expr
	
									An algebraic expression involving only rast1 or a constant that defines what to return when pixels of rast2 are nodata values and spatially corresponding rast1 pixels have values.
								

	nodatanodataval
	
									A numeric constant to return when spatially corresponding rast1 and rast2 pixels are both nodata values.
								

						If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL or no pixel type specified, then the new raster band will have the same pixeltype as the input rast1 band.
					

						Use the term [rast1.val] [rast2.val] to refer to the pixel value of the original raster bands and [rast1.x], [rast1.y] etc. to refer to the column / row positions of the pixels.
					
Availability: 2.0.0

Example: 2 Band Intersection and Union
Create a new 1 band raster from our original that is a function of modulo 2 of the original raster band.

--Create a cool set of rasters --
DROP TABLE IF EXISTS fun_shapes;
CREATE TABLE fun_shapes(rid serial PRIMARY KEY, fun_name text, rast raster);

-- Insert some cool shapes around Boston in Massachusetts state plane meters --
INSERT INTO fun_shapes(fun_name, rast)
VALUES ('ref', ST_AsRaster(ST_MakeEnvelope(235229, 899970, 237229, 901930,26986),200,200,'8BUI',0,0));

INSERT INTO fun_shapes(fun_name,rast)
WITH ref(rast) AS (SELECT rast FROM fun_shapes WHERE fun_name = 'ref')
SELECT 'area' AS fun_name, ST_AsRaster(ST_Buffer(ST_SetSRID(ST_Point(236229, 900930),26986), 1000),
			ref.rast,'8BUI', 10, 0) As rast
FROM ref
UNION ALL
SELECT 'rand bubbles',
			ST_AsRaster(
			(SELECT ST_Collect(geom)
	FROM (SELECT ST_Buffer(ST_SetSRID(ST_Point(236229 + i*random()*100, 900930 + j*random()*100),26986), random()*20) As geom
			FROM generate_series(1,10) As i, generate_series(1,10) As j
) As foo), ref.rast,'8BUI', 200, 0)
FROM ref;

--map them -
SELECT ST_MapAlgebraExpr(
		area.rast, bub.rast, '[rast2.val]', '8BUI', 'INTERSECTION', '[rast2.val]', '[rast1.val]') As interrast,
		ST_MapAlgebraExpr(
			area.rast, bub.rast, '[rast2.val]', '8BUI', 'UNION', '[rast2.val]', '[rast1.val]') As unionrast
FROM
 (SELECT rast FROM fun_shapes WHERE
 fun_name = 'area') As area
CROSS JOIN (SELECT rast
FROM fun_shapes WHERE
 fun_name = 'rand bubbles') As bub
					
	
										
											
[image: Example: 2 Band Intersection and Union]mapalgebra intersection

										

										
										
											
[image: Example: 2 Band Intersection and Union]map algebra union

										

									

Example: Overlaying rasters on a canvas as separate bands

-- we use ST_AsPNG to render the image so all single band ones look grey --
WITH mygeoms
 AS (SELECT 2 As bnum, ST_Buffer(ST_Point(1,5),10) As geom
 UNION ALL
 SELECT 3 AS bnum,
 ST_Buffer(ST_GeomFromText('LINESTRING(50 50,150 150,150 50)'), 10,'join=bevel') As geom
 UNION ALL
 SELECT 1 As bnum,
 ST_Buffer(ST_GeomFromText('LINESTRING(60 50,150 150,150 50)'), 5,'join=bevel') As geom
),
 -- define our canvas to be 1 to 1 pixel to geometry
 canvas
 AS (SELECT ST_AddBand(ST_MakeEmptyRaster(200,
 200,
 ST_XMin(e)::integer, ST_YMax(e)::integer, 1, -1, 0, 0) , '8BUI'::text,0) As rast
 FROM (SELECT ST_Extent(geom) As e,
 Max(ST_SRID(geom)) As srid
 from mygeoms
) As foo
),
 rbands AS (SELECT ARRAY(SELECT ST_MapAlgebraExpr(canvas.rast, ST_AsRaster(m.geom, canvas.rast, '8BUI', 100),
 '[rast2.val]', '8BUI', 'FIRST', '[rast2.val]', '[rast1.val]') As rast
 FROM mygeoms AS m CROSS JOIN canvas
 ORDER BY m.bnum) As rasts
)
 SELECT rasts[1] As rast1 , rasts[2] As rast2, rasts[3] As rast3, ST_AddBand(
 ST_AddBand(rasts[1],rasts[2]), rasts[3]) As final_rast
 FROM rbands;
					
	
										
											
[image: Example: Overlaying rasters on a canvas as separate bands]rast1

										

										
										
											
[image: Example: Overlaying rasters on a canvas as separate bands]rast2

										

									
	
										
											
[image: Example: Overlaying rasters on a canvas as separate bands]rast3

										

										
										
											
[image: Example: Overlaying rasters on a canvas as separate bands]final_rast

										

									

Example: Overlay 2 meter boundary of select parcels over an aerial imagery
-- Create new 3 band raster composed of first 2 clipped bands, and overlay of 3rd band with our geometry
-- This query took 3.6 seconds on PostGIS windows 64-bit install
WITH pr AS
-- Note the order of operation: we clip all the rasters to dimensions of our region
(SELECT ST_Clip(rast,ST_Expand(geom,50)) As rast, g.geom
	FROM aerials.o_2_boston AS r INNER JOIN
-- union our parcels of interest so they form a single geometry we can later intersect with
		(SELECT ST_Union(ST_Transform(the_geom,26986)) AS geom
		 FROM landparcels WHERE pid IN('0303890000', '0303900000')) As g
		ON ST_Intersects(rast::geometry, ST_Expand(g.geom,50))
),
-- we then union the raster shards together
-- ST_Union on raster is kinda of slow but much faster the smaller you can get the rasters
-- therefore we want to clip first and then union
prunion AS
(SELECT ST_AddBand(NULL, ARRAY[ST_Union(rast,1),ST_Union(rast,2),ST_Union(rast,3)]) As clipped,geom
FROM pr
GROUP BY geom)
-- return our final raster which is the unioned shard with
-- with the overlay of our parcel boundaries
-- add first 2 bands, then mapalgebra of 3rd band + geometry
SELECT ST_AddBand(ST_Band(clipped,ARRAY[1,2])
	, ST_MapAlgebraExpr(ST_Band(clipped,3), ST_AsRaster(ST_Buffer(ST_Boundary(geom),2),clipped, '8BUI',250),
	 '[rast2.val]', '8BUI', 'FIRST', '[rast2.val]', '[rast1.val]')) As rast
FROM prunion;
					
	
										
											
[image: Example: Overlay 2 meter boundary of select parcels over an aerial imagery]The blue lines are the boundaries of select parcels

										

									

See Also

						ST_MapAlgebraExpr,
						ST_AddBand,
						ST_AsPNG,
						ST_AsRaster,
						ST_MapAlgebraFct,
						ST_BandPixelType,
						ST_GeoReference,
						ST_Value,
						ST_Union,
						ST_Union
					

Name
ST_SkewX — Returns the georeference X skew (or rotation parameter).

Synopsis
	float8 fsfuncST_SkewX(rast);	

raster rast;

Description
Returns the georeference X skew (or rotation parameter). Refer to World File
				for more details.

Examples
SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
 ST_GeoReference(rast) as georef
FROM dummy_rast;

 rid | skewx | skewy | georef
-----+-------+-------+--------------------
 1 | 0 | 0 | 2.0000000000
 : 0.0000000000
 : 0.0000000000
 : 3.0000000000
 : 0.5000000000
 : 0.5000000000
 :
 2 | 0 | 0 | 0.0500000000
 : 0.0000000000
 : 0.0000000000
 : -0.0500000000
 : 3427927.7500000000
 : 5793244.0000000000
				

See Also
ST_GeoReference, ST_SkewY, ST_SetSkew

Name
ST_Intersects — Returns TRUE if the Geometries/Geography "spatially
			intersect in 2D" - (share any portion of space) and FALSE if they don't (they are Disjoint).
			For geography -- tolerance is 0.00001 meters (so any points that close are considered to intersect)
			

Synopsis
	boolean fsfuncST_Intersects(geomA, 	
	 	geomB);	

						geometry
						geomA
					;

						geometry
						geomB
					;

	boolean fsfuncST_Intersects(geogA, 	
	 	geogB);	

						geography
						geogA
					;

						geography
						geogB
					;

Description
If a geometry or geography shares any portion of space then they intersect.
			For geography -- tolerance is 0.00001 meters (so any points that are close are considered to intersect)
Overlaps, Touches, Within all imply spatial intersection. If any of the aforementioned
				returns true, then the geometries also spatially intersect.
				Disjoint implies false for spatial intersection.
Important
Do not call with a GEOMETRYCOLLECTION as an argument for geometry version. The geography
			version supports GEOMETRYCOLLECTION since its a thin wrapper around distance implementation.

Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.
Performed by the GEOS module (for geometry), geography is native
Availability: 1.5 support for geography was introduced.
Note
This function call will automatically include a bounding box
			 comparison that will make use of any indexes that are available on the
			 geometries.

Note
For geography, this function has a distance tolerance of about 0.00001 meters and uses the sphere rather
				than spheroid calculation.

Note
NOTE: this is the "allowable" version that returns a
			boolean, not an integer.

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3
			 - ST_Intersects(g1, g2) --> Not (ST_Disjoint(g1, g2))
			
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.27
[image: Description] This method is also provided by SFCGAL backend.

Geometry Examples
SELECT ST_Intersects('POINT(0 0)'::geometry, 'LINESTRING (2 0, 0 2)'::geometry);
 st_intersects

 f
(1 row)
SELECT ST_Intersects('POINT(0 0)'::geometry, 'LINESTRING (0 0, 0 2)'::geometry);
 st_intersects

 t
(1 row)
		

Geography Examples
SELECT ST_Intersects(
		ST_GeographyFromText('SRID=4326;LINESTRING(-43.23456 72.4567,-43.23456 72.4568)'),
		ST_GeographyFromText('SRID=4326;POINT(-43.23456 72.4567772)')
);

 st_intersects

t

See Also
 ST_3DIntersects, ST_Disjoint

Name
ST_GeomFromEWKB — Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).

Synopsis
	geometry fsfuncST_GeomFromEWKB(EWKB);	

bytea EWKB;

Description
Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known binary (EWKT) representation.
Note
The EWKB format is not an OGC standard, but a PostGIS specific format that includes the spatial reference system (SRID)
			identifier

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
line string binary rep 0f
		LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932) in NAD 83 long lat (4269).
Note
NOTE: Even though byte arrays are delimited with \ and may have ', we need to escape both out with \ and '' if standard_conforming_strings is off. So it does not
			look exactly like its AsEWKB representation.

SELECT ST_GeomFromEWKB(E'\\001\\002\\000\\000 \\255\\020\\000\\000\\003\\000\\000\\000\\344J=
\\013B\\312Q\\300n\\303(\\010\\036!E@''\\277E''K
\\312Q\\300\\366{b\\235*!E@\\225|\\354.P\\312Q
\\300p\\231\\323e1!E@');
Note
In PostgreSQL 9.1+ - standard_conforming_strings is set to on by default, where as in past versions it was set to on. You can change defaults as needed
		 for a single query or at the database or server level. Below is how you would do it with standard_conforming_strings = on. In this case we escape the ' with standard ansi ',
		 but slashes are not escaped

	 set standard_conforming_strings = on;
SELECT ST_GeomFromEWKB('\001\002\000\000 \255\020\000\000\003\000\000\000\344J=\012\013B
 \312Q\300n\303(\010\036!E@''\277E''K\012\312Q\300\366{b\235*!E@\225|\354.P\312Q\012\300p\231\323e1')

See Also
ST_AsBinary, ST_AsEWKB, ST_GeomFromWKB

Name
standardize_address — Returns an stdaddr form of an input address utilizing lex, gaz, and rule tables.

Synopsis
	stdaddr fsfuncstandardize_address(lextab, 	
	 	gaztab, 	
	 	rultab, 	
	 	address);	

text lextab;
text gaztab;
text rultab;
text address;

	stdaddr fsfuncstandardize_address(lextab, 	
	 	gaztab, 	
	 	rultab, 	
	 	micro, 	
	 	macro);	

text lextab;
text gaztab;
text rultab;
text micro;
text macro;

Description
Returns an stdaddr form of an input address utilizing lex table table name, gaz table, and rules table table names and an address.
Variant 1: Takes an address as a single line.
Variant 2: Takes an address as 2 parts. A micro consisting of standard first line of postal address e.g. house_num street, and a macro consisting of standard postal second line of an address e.g city, state postal_code country.
Availability: 2.2.0
[image: Description] This method needs address_standardizer extension.

Examples
Using address_standardizer_data_us extension
CREATE EXTENSION address_standardizer_data_us; -- only needs to be done once
Variant 1: Single line address. This doesn't work well with non-US addresses
SELECT house_num, name, suftype, city, country, state, unit FROM standardize_address('us_lex',
			 'us_gaz', 'us_rules', 'One Devonshire Place, PH 301, Boston, MA 02109');
house_num | name | suftype | city | country | state | unit
----------+------------+---------+--------+---------+---------------+-----------------
1 | DEVONSHIRE | PLACE | BOSTON | USA | MASSACHUSETTS | # PENTHOUSE 301
Using tables packaged with tiger geocoder. This example only works if you installed postgis_tiger_geocoder.
SELECT * FROM standardize_address('tiger.pagc_lex',
 'tiger.pagc_gaz', 'tiger.pagc_rules', 'One Devonshire Place, PH 301, Boston, MA 02109-1234');
Make easier to read we'll dump output using hstore extension CREATE EXTENSION hstore; you need to install
SELECT (each(hstore(p))).*
 FROM standardize_address('tiger.pagc_lex', 'tiger.pagc_gaz',
 'tiger.pagc_rules', 'One Devonshire Place, PH 301, Boston, MA 02109') As p;
 key | value
------------+-----------------
 box |
 city | BOSTON
 name | DEVONSHIRE
 qual |
 unit | # PENTHOUSE 301
 extra |
 state | MA
 predir |
 sufdir |
 country | USA
 pretype |
 suftype | PL
 building |
 postcode | 02109
 house_num | 1
 ruralroute |
(16 rows)
			
Variant 2: As a two part Address
SELECT (each(hstore(p))).*
 FROM standardize_address('tiger.pagc_lex', 'tiger.pagc_gaz',
 'tiger.pagc_rules', 'One Devonshire Place, PH 301', 'Boston, MA 02109, US') As p;
 key | value
------------+-----------------
 box |
 city | BOSTON
 name | DEVONSHIRE
 qual |
 unit | # PENTHOUSE 301
 extra |
 state | MA
 predir |
 sufdir |
 country | USA
 pretype |
 suftype | PL
 building |
 postcode | 02109
 house_num | 1
 ruralroute |
(16 rows)

See Also
stdaddr, rules table, lex table, gaz table, Pagc_Normalize_Address

Name
ST_Box2dFromGeoHash — Return a BOX2D from a GeoHash string.

Synopsis
	box2d fsfuncST_Box2dFromGeoHash(geohash, 	
	 	precision=full_precision_of_geohash);	

text geohash;
integer precision=full_precision_of_geohash;

Description
Return a BOX2D from a GeoHash string.
If no precision is specficified ST_Box2dFromGeoHash returns a BOX2D based on full precision of the input GeoHash string.
If precision is specified ST_Box2dFromGeoHash will use that many characters from the GeoHash to create the BOX2D. Lower precision values results in larger BOX2Ds and larger values increase the precision.
Availability: 2.1.0

Examples
SELECT ST_Box2dFromGeoHash('9qqj7nmxncgyy4d0dbxqz0');

 st_geomfromgeohash
--
 BOX(-115.172816 36.114646,-115.172816 36.114646)

SELECT ST_Box2dFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 0);

 st_box2dfromgeohash

 BOX(-180 -90,180 90)

 SELECT ST_Box2dFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 10);
 st_box2dfromgeohash

 BOX(-115.17282128334 36.1146408319473,-115.172810554504 36.1146461963654)
		
		

See Also
ST_GeoHash, ST_GeomFromGeoHash, ST_PointFromGeoHash

Name
ST_NPoints — Return the number of points (vertexes) in a geometry.

Synopsis
	integer fsfuncST_NPoints(g1);	

geometry g1;

Description
Return the number of points in a geometry. Works for all geometries.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_NPoints(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
--result
4

--Polygon in 3D space
SELECT ST_NPoints(ST_GeomFromEWKT('LINESTRING(77.29 29.07 1,77.42 29.26 0,77.27 29.31 -1,77.29 29.07 3)'))
--result
4

See Also
ST_NumPoints

Name
Drop_Indexes_Generate_Script — Generates a script that drops all non-primary key and non-unique indexes on tiger schema and user specified schema. Defaults schema to tiger_data if no schema is specified.

Synopsis
	text fsfuncDrop_Indexes_Generate_Script(param_schema=tiger_data);	

text param_schema=tiger_data;

Description
Generates a script that drops all non-primary key and non-unique indexes on tiger schema and user specified schema. Defaults schema to tiger_data if no schema is specified.
This is useful for minimizing index bloat that may confuse the query planner or take up unnecessary space. Use in combination with Install_Missing_Indexes to add just the indexes used by the geocoder.
Availability: 2.0.0

Examples
SELECT drop_indexes_generate_script() As actionsql;
actionsql

DROP INDEX tiger.idx_tiger_countysub_lookup_lower_name;
DROP INDEX tiger.idx_tiger_edges_countyfp;
DROP INDEX tiger.idx_tiger_faces_countyfp;
DROP INDEX tiger.tiger_place_the_geom_gist;
DROP INDEX tiger.tiger_edges_the_geom_gist;
DROP INDEX tiger.tiger_state_the_geom_gist;
DROP INDEX tiger.idx_tiger_addr_least_address;
DROP INDEX tiger.idx_tiger_addr_tlid;
DROP INDEX tiger.idx_tiger_addr_zip;
DROP INDEX tiger.idx_tiger_county_countyfp;
DROP INDEX tiger.idx_tiger_county_lookup_lower_name;
DROP INDEX tiger.idx_tiger_county_lookup_snd_name;
DROP INDEX tiger.idx_tiger_county_lower_name;
DROP INDEX tiger.idx_tiger_county_snd_name;
DROP INDEX tiger.idx_tiger_county_the_geom_gist;
DROP INDEX tiger.idx_tiger_countysub_lookup_snd_name;
DROP INDEX tiger.idx_tiger_cousub_countyfp;
DROP INDEX tiger.idx_tiger_cousub_cousubfp;
DROP INDEX tiger.idx_tiger_cousub_lower_name;
DROP INDEX tiger.idx_tiger_cousub_snd_name;
DROP INDEX tiger.idx_tiger_cousub_the_geom_gist;
DROP INDEX tiger_data.idx_tiger_data_ma_addr_least_address;
DROP INDEX tiger_data.idx_tiger_data_ma_addr_tlid;
DROP INDEX tiger_data.idx_tiger_data_ma_addr_zip;
DROP INDEX tiger_data.idx_tiger_data_ma_county_countyfp;
DROP INDEX tiger_data.idx_tiger_data_ma_county_lookup_lower_name;
DROP INDEX tiger_data.idx_tiger_data_ma_county_lookup_snd_name;
DROP INDEX tiger_data.idx_tiger_data_ma_county_lower_name;
DROP INDEX tiger_data.idx_tiger_data_ma_county_snd_name;
:
:

See Also
Install_Missing_Indexes, Missing_Indexes_Generate_Script

Name
ST_Neighborhood —
					Returns a 2-D double precision array of the non-NODATA values around a given band's pixel specified by either a columnX and rowY or a geometric point expressed in the same spatial reference coordinate system as the raster.
				

Synopsis
	double precision[][] fsfuncST_Neighborhood(rast, 	
	 	bandnum, 	
	 	columnX, 	
	 	rowY, 	
	 	distanceX, 	
	 	distanceY, 	
	 	exclude_nodata_value=true);	

raster rast;
integer bandnum;
integer columnX;
integer rowY;
integer distanceX;
integer distanceY;
boolean exclude_nodata_value=true;

	double precision[][] fsfuncST_Neighborhood(rast, 	
	 	columnX, 	
	 	rowY, 	
	 	distanceX, 	
	 	distanceY, 	
	 	exclude_nodata_value=true);	

raster rast;
integer columnX;
integer rowY;
integer distanceX;
integer distanceY;
boolean exclude_nodata_value=true;

	double precision[][] fsfuncST_Neighborhood(rast, 	
	 	bandnum, 	
	 	pt, 	
	 	distanceX, 	
	 	distanceY, 	
	 	exclude_nodata_value=true);	

raster rast;
integer bandnum;
geometry pt;
integer distanceX;
integer distanceY;
boolean exclude_nodata_value=true;

	double precision[][] fsfuncST_Neighborhood(rast, 	
	 	pt, 	
	 	distanceX, 	
	 	distanceY, 	
	 	exclude_nodata_value=true);	

raster rast;
geometry pt;
integer distanceX;
integer distanceY;
boolean exclude_nodata_value=true;

Description

					Returns a 2-D double precision array of the non-NODATA values around a given band's pixel specified by either a columnX and rowY or a geometric point expressed in the same spatial reference coordinate system as the raster. The distanceX and distanceY parameters define the number of pixels around the specified pixel in the X and Y axes, e.g. I want all values within 3 pixel distance along the X axis and 2 pixel distance along the Y axis around my pixel of interest. The center value of the 2-D array will be the value at the pixel specified by the columnX and rowY or the geometric point.
				

					Band numbers start at 1 and bandnum is assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include nodata pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.
				
Note

						The number of elements along each axis of the returning 2-D array is 2 * (distanceX|distanceY) + 1. So for a distanceX and distanceY of 1, the returning array will be 3x3.
					

Note

						The 2-D array output can be passed to any of the raster processing builtin functions, e.g. ST_Min4ma, ST_Sum4ma, ST_Mean4ma.
					

Availability: 2.1.0

Examples

-- pixel 2x2 has value
SELECT
	ST_Neighborhood(rast, 2, 2, 1, 1)
FROM (
	SELECT
		ST_SetValues(
			ST_AddBand(
				ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
				'8BUI'::text, 1, 0
),
			1, 1, 1, ARRAY[
				[0, 1, 1, 1, 1],
				[1, 1, 1, 0, 1],
				[1, 0, 1, 1, 1],
				[1, 1, 1, 1, 0],
				[1, 1, 0, 1, 1]
]::double precision[],
			1
) AS rast
) AS foo

 st_neighborhood

 {{NULL,1,1},{1,1,NULL},{1,1,1}}
				

-- pixel 2x3 is NODATA
SELECT
	ST_Neighborhood(rast, 2, 3, 1, 1)
FROM (
	SELECT
		ST_SetValues(
			ST_AddBand(
				ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
				'8BUI'::text, 1, 0
),
			1, 1, 1, ARRAY[
				[0, 1, 1, 1, 1],
				[1, 1, 1, 0, 1],
				[1, 0, 1, 1, 1],
				[1, 1, 1, 1, 0],
				[1, 1, 0, 1, 1]
]::double precision[],
			1
) AS rast
) AS foo

 st_neighborhood

 {{1,1,1},{1,NULL,1},{1,1,1}}
				

-- pixel 3x3 has value
-- exclude_nodata_value = FALSE
SELECT
	ST_Neighborhood(rast, 3, 3, 1, 1, false)
FROM (
		ST_SetValues(
			ST_AddBand(
				ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
				'8BUI'::text, 1, 0
),
			1, 1, 1, ARRAY[
				[0, 1, 1, 1, 1],
				[1, 1, 1, 0, 1],
				[1, 0, 1, 1, 1],
				[1, 1, 1, 1, 0],
				[1, 1, 0, 1, 1]
]::double precision[],
			1
) AS rast
) AS foo

 st_neighborhood

 {{1,0,1},{1,1,1},{0,1,1}}
				

See Also

					ST_NearestValue,
					ST_Min4ma,
					ST_Max4ma,
					ST_Sum4ma,
					ST_Mean4ma,
					ST_Range4ma,
					ST_Distinct4ma,
					ST_StdDev4ma
				

Name
ST_Centroid — Returns the geometric center of a geometry.

Synopsis
	geometry fsfuncST_Centroid(g1);	

geometry
		 g1;

Description
Computes the geometric center of a geometry, or equivalently,
	 the center of mass of the geometry as a POINT. For
	 [MULTI]POINTs, this is computed
	 as the arithmetic mean of the input coordinates. For
	 [MULTI]LINESTRINGs, this is
	 computed as the weighted length of each line segment. For
	 [MULTI]POLYGONs, "weight" is
	 thought in terms of area. If an empty geometry is supplied, an empty
	 GEOMETRYCOLLECTION is returned. If
	 NULL is supplied, NULL is
	 returned.
	 If CIRCULARSTRING or COMPOUNDCURVE
	 are supplied, they are converted to linestring wtih CurveToLine first,
	 then same than for LINESTRING
	
New in 2.3.0 : support CIRCULARSTRING and COMPOUNDCURVE (using CurveToLine)
The centroid is equal to the centroid of the set of component
	 Geometries of highest dimension (since the lower-dimension geometries
	 contribute zero "weight" to the centroid).
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.1.4, 9.5.5

Examples
In each of the following illustrations, the blue dot represents
	 the centroid of the source geometry.
	[image: Examples]Centroid of a
					MULTIPOINT

	[image: Examples]Centroid of a
					LINESTRING

	[image: Examples]Centroid of a
					POLYGON

	[image: Examples]Centroid of a
					GEOMETRYCOLLECTION

SELECT ST_AsText(ST_Centroid('MULTIPOINT (-1 0, -1 2, -1 3, -1 4, -1 7, 0 1, 0 3, 1 1, 2 0, 6 0, 7 8, 9 8, 10 6)'));
				st_astext
--
 POINT(2.30769230769231 3.30769230769231)
(1 row)

SELECT ST_AsText(ST_centroid(g))
FROM ST_GeomFromText('CIRCULARSTRING(0 2, -1 1,0 0, 0.5 0, 1 0, 2 1, 1 2, 0.5 2, 0 2)') AS g ;
--
POINT(0.5 1)

SELECT ST_AsText(ST_centroid(g))
FROM ST_GeomFromText('COMPOUNDCURVE(CIRCULARSTRING(0 2, -1 1,0 0),(0 0, 0.5 0, 1 0),CIRCULARSTRING(1 0, 2 1, 1 2),(1 2, 0.5 2, 0 2))') AS g;
--
POINT(0.5 1)

See Also
ST_PointOnSurface

Name
= — Returns TRUE if A's bounding box is the same as B's. Uses double precision bounding box.

Synopsis
	boolean fsfunc=(A, 	
	 	B);	

				 raster

				 A
				;

				 raster

				 B
				;

Description
The = operator returns TRUE if the bounding box of raster A
			is the same as the bounding box of raster B. PostgreSQL uses the =, <, and > operators defined for rasters to
			perform internal orderings and comparison of rasters (ie. in a GROUP BY or ORDER BY clause).
Caution
This operand will NOT make use of any indexes that may be available on the
				rasters. Use ~= instead. This operator exists mostly so one can group by the raster column.

Availability: 2.1.0

See Also
~=

Name
ST_SymDifference — Returns a geometry that represents the portions of A and B
			that do not intersect. It is called a symmetric difference because
			ST_SymDifference(A,B) = ST_SymDifference(B,A).

Synopsis
	geometry fsfuncST_SymDifference(geomA, 	
	 	geomB);	

geometry geomA;
geometry geomB;

Description
Returns a geometry that represents the portions of A and B
			that do not intersect. It is called a symmetric difference because
			ST_SymDifference(A,B) = ST_SymDifference(B,A). One can think of this as ST_Union(geomA,geomB) - ST_Intersection(A,B).
			
Performed by the GEOS module
Note
Do not call with a GeometryCollection as an argument

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.3
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.21
[image: Description]
 This function supports 3d and will not drop the z-index. However it seems to only consider x y when
		 doing the difference and tacks back on the Z-Index

Examples
	
						
							
[image: Examples]The original linestrings shown together

						

						
						[image: Examples]The symmetric difference of the two linestrings

					

				

--Safe for 2d - symmetric difference of 2 linestrings
SELECT ST_AsText(
	ST_SymDifference(
		ST_GeomFromText('LINESTRING(50 100, 50 200)'),
		ST_GeomFromText('LINESTRING(50 50, 50 150)')
)
);

st_astext

MULTILINESTRING((50 150,50 200),(50 50,50 100))

--When used in 3d doesn't quite do the right thing
SELECT ST_AsEWKT(ST_SymDifference(ST_GeomFromEWKT('LINESTRING(1 2 1, 1 4 2)'),
	ST_GeomFromEWKT('LINESTRING(1 1 3, 1 3 4)')))

st_astext

MULTILINESTRING((1 3 2.75,1 4 2),(1 1 3,1 2 2.25))
		

See Also
ST_Difference, ST_Intersection, ST_Union

Java Clients (JDBC)

Java clients can access PostGIS "geometry" objects in the PostgreSQL
 database either directly as text representations or using the JDBC
 extension objects bundled with PostGIS. In order to use the extension
 objects, the "postgis.jar" file must be in your CLASSPATH along with the
 "postgresql.jar" JDBC driver package.
import java.sql.*;
import java.util.*;
import java.lang.*;
import org.postgis.*;

public class JavaGIS {

public static void main(String[] args) {

 java.sql.Connection conn;

 try {
 /*
 * Load the JDBC driver and establish a connection.
 */
 Class.forName("org.postgresql.Driver");
 String url = "jdbc:postgresql://localhost:5432/database";
 conn = DriverManager.getConnection(url, "postgres", "");
 /*
 * Add the geometry types to the connection. Note that you
 * must cast the connection to the pgsql-specific connection
 * implementation before calling the addDataType() method.
 */
 ((org.postgresql.PGConnection)conn).addDataType("geometry",Class.forName("org.postgis.PGgeometry"));
 ((org.postgresql.PGConnection)conn).addDataType("box3d",Class.forName("org.postgis.PGbox3d"));
 /*
 * Create a statement and execute a select query.
 */
 Statement s = conn.createStatement();
 ResultSet r = s.executeQuery("select geom,id from geomtable");
 while(r.next()) {
 /*
 * Retrieve the geometry as an object then cast it to the geometry type.
 * Print things out.
 */
 PGgeometry geom = (PGgeometry)r.getObject(1);
 int id = r.getInt(2);
 System.out.println("Row " + id + ":");
 System.out.println(geom.toString());
 }
 s.close();
 conn.close();
 }
catch(Exception e) {
 e.printStackTrace();
 }
}
}
The "PGgeometry" object is a wrapper object which contains a
 specific topological geometry object (subclasses of the abstract class
 "Geometry") depending on the type: Point, LineString, Polygon, MultiPoint,
 MultiLineString, MultiPolygon.
PGgeometry geom = (PGgeometry)r.getObject(1);
if(geom.getType() == Geometry.POLYGON) {
 Polygon pl = (Polygon)geom.getGeometry();
 for(int r = 0; r < pl.numRings(); r++) {
 LinearRing rng = pl.getRing(r);
 System.out.println("Ring: " + r);
 for(int p = 0; p < rng.numPoints(); p++) {
 Point pt = rng.getPoint(p);
 System.out.println("Point: " + p);
 System.out.println(pt.toString());
 }
 }
}
The JavaDoc for the extension objects provides a reference for the
 various data accessor functions in the geometric objects.

Name
ST_HasNoBand — Returns true if there is no band with given band number. If no band number is specified, then band number 1 is assumed.

Synopsis
	boolean fsfuncST_HasNoBand(rast, 	
	 	bandnum=1);	

raster rast;
integer bandnum=1;

Description
Returns true if there is no band with given band number. If no band number is specified, then band number 1 is assumed.
Availability: 2.0.0

Examples
SELECT rid, ST_HasNoBand(rast) As hb1, ST_HasNoBand(rast,2) as hb2,
ST_HasNoBand(rast,4) as hb4, ST_NumBands(rast) As numbands
FROM dummy_rast;

rid | hb1 | hb2 | hb4 | numbands
-----+-----+-----+-----+----------
1 | t | t | t | 0
2 | f | f | t | 3
			

See Also
ST_NumBands

Geometry Outputs

Name
ST_Polygon — Returns a multipolygon geometry formed by the union of pixels that have a pixel value that is not no data value. If no band number is specified, band num defaults to 1.

Synopsis
	geometry fsfuncST_Polygon(rast, 	
	 	band_num=1);	

raster rast;
integer band_num=1;

Description
Availability: 0.1.6 Requires GDAL 1.7 or higher.
Enhanced: 2.1.0 Improved Speed (fully C-Based) and the returning multipolygon is ensured to be valid.
Changed: 2.1.0 In prior versions would sometimes return a polygon, changed to always return multipolygon.

Examples

-- by default no data band value is 0 or not set, so polygon will return a square polygon
SELECT ST_AsText(ST_Polygon(rast)) As geomwkt
FROM dummy_rast
WHERE rid = 2;

geomwkt
--
MULTIPOLYGON(((3427927.75 5793244,3427928 5793244,3427928 5793243.75,3427927.75 5793243.75,3427927.75 5793244)))

-- now we change the no data value of first band
UPDATE dummy_rast SET rast = ST_SetBandNoDataValue(rast,1,254)
WHERE rid = 2;
SELECt rid, ST_BandNoDataValue(rast)
from dummy_rast where rid = 2;

-- ST_Polygon excludes the pixel value 254 and returns a multipolygon
SELECT ST_AsText(ST_Polygon(rast)) As geomwkt
FROM dummy_rast
WHERE rid = 2;

geomwkt

MULTIPOLYGON(((3427927.9 5793243.95,3427927.85 5793243.95,3427927.85 5793244,3427927.9 5793244,3427927.9 5793243.95)),((3427928 5793243.85,3427928 5793243.8,3427927.95 5793243.8,3427927.95 5793243.85,3427927.9 5793243.85,3427927.9 5793243.9,3427927.9 5793243.95,3427927.95 5793243.95,3427928 5793243.95,3427928 5793243.85)),((3427927.8 5793243.75,3427927.75 5793243.75,3427927.75 5793243.8,3427927.75 5793243.85,3427927.75 5793243.9,3427927.75 5793244,3427927.8 5793244,3427927.8 5793243.9,3427927.8 5793243.85,3427927.85 5793243.85,3427927.85 5793243.8,3427927.85 5793243.75,3427927.8 5793243.75)))

-- Or if you want the no data value different for just one time

SELECT ST_AsText(
	ST_Polygon(
		ST_SetBandNoDataValue(rast,1,252)
)
) As geomwkt
FROM dummy_rast
WHERE rid =2;

geomwkt

MULTIPOLYGON(((3427928 5793243.85,3427928 5793243.8,3427928 5793243.75,3427927.85 5793243.75,3427927.8 5793243.75,3427927.8 5793243.8,3427927.75 5793243.8,3427927.75 5793243.85,3427927.75 5793243.9,3427927.75 5793244,3427927.8 5793244,3427927.85 5793244,3427927.9 5793244,3427928 5793244,3427928 5793243.95,3427928 5793243.85),(3427927.9 5793243.9,3427927.9 5793243.85,3427927.95 5793243.85,3427927.95 5793243.9,3427927.9 5793243.9)))
					

See Also

						ST_Value,
						ST_DumpAsPolygons
					

Name
ST_BandMetaData — Returns basic meta data for a specific raster band. band num 1 is assumed if none-specified.

Synopsis
	record fsfuncST_BandMetaData(rast, 	
	 	bandnum=1);	

raster rast;
integer bandnum=1;

Description
Returns basic meta data about a raster band. Columns returned
					 pixeltype | nodatavalue | isoutdb | path.
				
Note

					If raster contains no bands then an error is thrown.

Note

					If band has no NODATA value, nodatavalue will be NULL.

Examples
SELECT rid, (foo.md).*
 FROM (SELECT rid, ST_BandMetaData(rast,1) As md
FROM dummy_rast WHERE rid=2) As foo;

 rid | pixeltype | nodatavalue | isoutdb | path
-----+-----------+----------------+-------------+---------+------
 2 | 8BUI | 0 | f |
				

See Also
ST_MetaData, ST_BandPixelType

Release 1.0.0RC1

Release date: 2005/01/13
This is the first candidate of a major postgis release, with
 internal storage of postgis types redesigned to be smaller and faster on
 indexed queries.
Upgrading

You need a dump/reload to upgrade from precedent releases. See
 the upgrading chapter for more
 informations.

Changes

Faster canonical input parsing.
Lossless canonical output.
EWKB Canonical binary IO with PG>73.
Support for up to 4d coordinates, providing lossless
 shapefile->postgis->shapefile conversion.
New function: UpdateGeometrySRID(), AsGML(), SnapToGrid(),
 ForceRHR(), estimated_extent(), accum().
Vertical positioning indexed operators.
JOIN selectivity function.
More geometry constructors / editors.
PostGIS extension API.
UTF8 support in loader.

Name
ST_SetValues — Returns modified raster resulting from setting the values of a given band.

Synopsis
	raster fsfuncST_SetValues(rast, 	
	 	nband, 	
	 	columnx, 	
	 	rowy, 	
	 	newvalueset, 	
	 	noset=NULL, 	
	 	keepnodata=FALSE);	

raster rast;
integer nband;
integer columnx;
integer rowy;
double precision[][] newvalueset;
boolean[][] noset=NULL;
boolean keepnodata=FALSE;

	raster fsfuncST_SetValues(rast, 	
	 	nband, 	
	 	columnx, 	
	 	rowy, 	
	 	newvalueset, 	
	 	nosetvalue, 	
	 	keepnodata=FALSE);	

raster rast;
integer nband;
integer columnx;
integer rowy;
double precision[][] newvalueset;
double precision nosetvalue;
boolean keepnodata=FALSE;

	raster fsfuncST_SetValues(rast, 	
	 	nband, 	
	 	columnx, 	
	 	rowy, 	
	 	width, 	
	 	height, 	
	 	newvalue, 	
	 	keepnodata=FALSE);	

raster rast;
integer nband;
integer columnx;
integer rowy;
integer width;
integer height;
double precision newvalue;
boolean keepnodata=FALSE;

	raster fsfuncST_SetValues(rast, 	
	 	columnx, 	
	 	rowy, 	
	 	width, 	
	 	height, 	
	 	newvalue, 	
	 	keepnodata=FALSE);	

raster rast;
integer columnx;
integer rowy;
integer width;
integer height;
double precision newvalue;
boolean keepnodata=FALSE;

	raster fsfuncST_SetValues(rast, 	
	 	nband, 	
	 	geomvalset, 	
	 	keepnodata=FALSE);	

raster rast;
integer nband;
geomval[] geomvalset;
boolean keepnodata=FALSE;

Description

					Returns modified raster resulting from setting specified pixels to new value(s) for the designated band.
				

					If keepnodata is TRUE, those pixels whose values are NODATA will not be set with the corresponding value in newvalueset.
				

					For Variant 1, the specific pixels to be set are determined by the columnx, rowy pixel coordinates and the dimensions of the newvalueset array. noset can be used to prevent pixels with values present in newvalueset from being set (due to PostgreSQL not permitting ragged/jagged arrays). See example Variant 1.
				

					Variant 2 is like Variant 1 but with a simple double precision nosetvalue instead of a boolean noset array. Elements in newvalueset with the nosetvalue value with be skipped. See example Variant 2.
				

					For Variant 3, the specific pixels to be set are determined by the columnx, rowy pixel coordinates, width and height. See example Variant 3.
				

					Variant 4 is the same as Variant 3 with the exception that it assumes that the first band's pixels of rast will be set.
				

					For Variant 5, an array of geomval is used to determine the specific pixels to be set. If all the geometries in the array are of type POINT or MULTIPOINT, the function uses a shortcut where the longitude and latitude of each point is used to set a pixel directly. Otherwise, the geometries are converted to rasters and then iterated through in one pass. See example Variant 5.
				
Availability: 2.1.0

Examples: Variant 1

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
	(poly).x,
	(poly).y,
	(poly).val
FROM (
SELECT
	ST_PixelAsPolygons(
		ST_SetValues(
			ST_AddBand(
				ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
				1, '8BUI', 1, 0
),
			1, 2, 2, ARRAY[[9, 9], [9, 9]]::double precision[][]
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 | 9
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9
				

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 9 | | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
	(poly).x,
	(poly).y,
	(poly).val
FROM (
SELECT
	ST_PixelAsPolygons(
		ST_SetValues(
			ST_AddBand(
				ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
				1, '8BUI', 1, 0
),
			1, 1, 1, ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][]
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 9
 1 | 2 | 9
 1 | 3 | 9
 2 | 1 | 9
 2 | 2 |
 2 | 3 | 9
 3 | 1 | 9
 3 | 2 | 9
 3 | 3 | 9
				

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
	(poly).x,
	(poly).y,
	(poly).val
FROM (
SELECT
	ST_PixelAsPolygons(
		ST_SetValues(
			ST_AddBand(
				ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
				1, '8BUI', 1, 0
),
			1, 1, 1,
				ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][],
				ARRAY[[false], [true]]::boolean[][]
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 9
 1 | 2 | 1
 1 | 3 | 9
 2 | 1 | 9
 2 | 2 |
 2 | 3 | 9
 3 | 1 | 9
 3 | 2 | 9
 3 | 3 | 9
				

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| | 1 | 1 | | | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
	(poly).x,
	(poly).y,
	(poly).val
FROM (
SELECT
	ST_PixelAsPolygons(
		ST_SetValues(
			ST_SetValue(
				ST_AddBand(
					ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
					1, '8BUI', 1, 0
),
				1, 1, 1, NULL
),
			1, 1, 1,
				ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][],
				ARRAY[[false], [true]]::boolean[][],
				TRUE
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 |
 1 | 2 | 1
 1 | 3 | 9
 2 | 1 | 9
 2 | 2 |
 2 | 3 | 9
 3 | 1 | 9
 3 | 2 | 9
 3 | 3 | 9
				

Examples: Variant 2

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
	(poly).x,
	(poly).y,
	(poly).val
FROM (
SELECT
	ST_PixelAsPolygons(
		ST_SetValues(
			ST_AddBand(
				ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
				1, '8BUI', 1, 0
),
			1, 1, 1, ARRAY[[-1, -1, -1], [-1, 9, 9], [-1, 9, 9]]::double precision[][], -1
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 | 9
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9
				

/*
This example is like the previous one. Instead of nosetvalue = -1, nosetvalue = NULL

The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
	(poly).x,
	(poly).y,
	(poly).val
FROM (
SELECT
	ST_PixelAsPolygons(
		ST_SetValues(
			ST_AddBand(
				ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
				1, '8BUI', 1, 0
),
			1, 1, 1, ARRAY[[NULL, NULL, NULL], [NULL, 9, 9], [NULL, 9, 9]]::double precision[][], NULL::double precision
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 | 9
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9
				

Examples: Variant 3

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
	(poly).x,
	(poly).y,
	(poly).val
FROM (
SELECT
	ST_PixelAsPolygons(
		ST_SetValues(
			ST_AddBand(
				ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
				1, '8BUI', 1, 0
),
			1, 2, 2, 2, 2, 9
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 | 9
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9
				

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | | 1 | => | 1 | | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
	(poly).x,
	(poly).y,
	(poly).val
FROM (
SELECT
	ST_PixelAsPolygons(
		ST_SetValues(
			ST_SetValue(
				ST_AddBand(
					ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
					1, '8BUI', 1, 0
),
				1, 2, 2, NULL
),
			1, 2, 2, 2, 2, 9, TRUE
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 |
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9
				

Examples: Variant 5

WITH foo AS (
	SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0) AS rast
), bar AS (
	SELECT 1 AS gid, 'SRID=0;POINT(2.5 -2.5)'::geometry geom UNION ALL
	SELECT 2 AS gid, 'SRID=0;POLYGON((1 -1, 4 -1, 4 -4, 1 -4, 1 -1))'::geometry geom UNION ALL
	SELECT 3 AS gid, 'SRID=0;POLYGON((0 0, 5 0, 5 -1, 1 -1, 1 -4, 0 -4, 0 0))'::geometry geom UNION ALL
	SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0 0, 4 4, 4 -4)'::geometry
)
SELECT
	rid, gid, ST_DumpValues(ST_SetValue(rast, 1, geom, gid))
FROM foo t1
CROSS JOIN bar t2
ORDER BY rid, gid;

 rid | gid | st_dumpvalues
-----+-----+---
 1 | 1 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,1,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL}}")
 1 | 2 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,NULL,NULL,NULL,NULL}}")
 1 | 3 | (1,"{{3,3,3,3,3},{3,NULL,NULL,NULL,NULL},{3,NULL,NULL,NULL,NULL},{3,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL}}")
 1 | 4 | (1,"{{4,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,4}}")
(4 rows)
				
The following shows that geomvals later in the array can overwrite prior geomvals

WITH foo AS (
	SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0) AS rast
), bar AS (
	SELECT 1 AS gid, 'SRID=0;POINT(2.5 -2.5)'::geometry geom UNION ALL
	SELECT 2 AS gid, 'SRID=0;POLYGON((1 -1, 4 -1, 4 -4, 1 -4, 1 -1))'::geometry geom UNION ALL
	SELECT 3 AS gid, 'SRID=0;POLYGON((0 0, 5 0, 5 -1, 1 -1, 1 -4, 0 -4, 0 0))'::geometry geom UNION ALL
	SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0 0, 4 4, 4 -4)'::geometry
)
SELECT
	t1.rid, t2.gid, t3.gid, ST_DumpValues(ST_SetValues(rast, 1, ARRAY[ROW(t2.geom, t2.gid), ROW(t3.geom, t3.gid)]::geomval[]))
FROM foo t1
CROSS JOIN bar t2
CROSS JOIN bar t3
WHERE t2.gid = 1
	AND t3.gid = 2
ORDER BY t1.rid, t2.gid, t3.gid;

 rid | gid | gid | st_dumpvalues
-----+-----+-----+---
 1 | 1 | 2 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,NULL,NULL,NULL,NULL}}")
(1 row)
				
This example is the opposite of the prior example

WITH foo AS (
	SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0) AS rast
), bar AS (
	SELECT 1 AS gid, 'SRID=0;POINT(2.5 -2.5)'::geometry geom UNION ALL
	SELECT 2 AS gid, 'SRID=0;POLYGON((1 -1, 4 -1, 4 -4, 1 -4, 1 -1))'::geometry geom UNION ALL
	SELECT 3 AS gid, 'SRID=0;POLYGON((0 0, 5 0, 5 -1, 1 -1, 1 -4, 0 -4, 0 0))'::geometry geom UNION ALL
	SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0 0, 4 4, 4 -4)'::geometry
)
SELECT
	t1.rid, t2.gid, t3.gid, ST_DumpValues(ST_SetValues(rast, 1, ARRAY[ROW(t2.geom, t2.gid), ROW(t3.geom, t3.gid)]::geomval[]))
FROM foo t1
CROSS JOIN bar t2
CROSS JOIN bar t3
WHERE t2.gid = 2
	AND t3.gid = 1
ORDER BY t1.rid, t2.gid, t3.gid;

 rid | gid | gid | st_dumpvalues
-----+-----+-----+---
 1 | 2 | 1 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,2,2,2,NULL},{NULL,2,1,2,NULL},{NULL,2,2,2,NULL},{NULL,NULL,NULL,NULL,NULL}}")
(1 row)
				

See Also

					ST_Value,
					ST_SetValue,
					ST_PixelAsPolygons
				

Release 1.0.1

Release date: 2005/05/24
Contains a few bug fixes and some improvements.
Upgrading

If you are upgrading from release 1.0.0RC6 or up you
 DO NOT need a dump/reload.
Upgrading from older releases requires a dump/reload. See the
 upgrading chapter for more
 informations.

Library changes

BUGFIX in 3d computation of length_spheroid()
BUGFIX in join selectivity estimator

Other changes/additions

BUGFIX in shp2pgsql escape functions
better support for concurrent postgis in multiple schemas
documentation fixes
jdbc2: compile with "-target 1.2 -source 1.2" by default
NEW -k switch for pgsql2shp
NEW support for custom createdb options in
 postgis_restore.pl
BUGFIX in pgsql2shp attribute names unicity enforcement
BUGFIX in Paris projections definitions
postgis_restore.pl cleanups

Name
ST_SetSRID — Sets the SRID of a raster to a particular integer srid defined in the spatial_ref_sys table.

Synopsis
	raster fsfuncST_SetSRID(rast, 	
	 	srid);	

raster
				rast;
integer
				srid;

Description
Sets the SRID on a raster to a particular integer value.
Note
This function does not transform the raster in any way -
			 it simply sets meta data defining the spatial ref of the coordinate reference system that it's currently in.
			 Useful for transformations later.
			

See Also
the section called “The SPATIAL_REF_SYS Table and Spatial Reference Systems”, ST_SRID

Name
&&(box2df,geometry) — Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry's (cached) 2D bounding box.

Synopsis
	boolean fsfunc&&(A, 	
	 	B);	

				 box2df

				 A
				;

				 geometry

				 B
				;

Description
The && operator returns TRUE if the 2D bounding box A intersects the cached 2D bounding box of geometry B, using float precision. This means that if A is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)
Note
This operand is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(2,2)) && ST_MakePoint(1,1) AS overlaps;

 overlaps

 t
(1 row)

See Also

				&&(geometry,box2df),
				&&(box2df,box2df),
				~(geometry,box2df),
				~(box2df,geometry),
				~(box2df,box2df),
				@(geometry,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

Name
ST_Rescale — Resample a raster by adjusting only its scale (or pixel size). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.
				

Synopsis
	raster fsfuncST_Rescale(rast, 	
	 	scalexy, 	
	 	algorithm=NearestNeighbour, 	
	 	maxerr=0.125);	

raster rast;
double precision scalexy;
text algorithm=NearestNeighbour;
double precision maxerr=0.125;

	raster fsfuncST_Rescale(rast, 	
	 	scalex, 	
	 	scaley, 	
	 	algorithm=NearestNeighbour, 	
	 	maxerr=0.125);	

raster rast;
double precision scalex;
double precision scaley;
text algorithm=NearestNeighbour;
double precision maxerr=0.125;

Description
Resample a raster by adjusting only its scale (or pixel size). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. The default is NearestNeighbor which is the fastest but results in the worst interpolation.
scalex and scaley define the new pixel size. scaley must often be negative to get well oriented raster.
When the new scalex or scaley is not a divisor of the raster width or height, the extent of the resulting raster is expanded to encompass the extent of the provided raster. If you want to be sure to retain exact input extent see ST_Resize
A maxerror percent of 0.125 is used if no maxerr is specified.
Note
Refer to: GDAL Warp resampling methods for more details.

Note
ST_Rescale is different from ST_SetScale in that ST_SetScale do not resample the raster to match the raster extent. ST_SetScale only changes the metadata (or georeference) of the raster to correct an originally mis-specified scaling. ST_Rescale results in a raster having different width and height computed to fit the geographic extent of the input raster. ST_SetScale do not modify the width, nor the height of the raster.

Availability: 2.0.0 Requires GDAL 1.6.1+
Changed: 2.1.0 Works on rasters with no SRID

Examples
A simple example rescaling a raster from a pixel size of 0.001 degree to a pixel size of 0.0015 degree.
-- the original raster pixel size
SELECT ST_PixelWidth(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0)) width

 width

0.001

-- the rescaled raster raster pixel size
SELECT ST_PixelWidth(ST_Rescale(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0), 0.0015)) width

 width

0.0015

See Also

					ST_Resize,
					ST_Resample,
					ST_SetScale,
					ST_ScaleX,
					ST_ScaleY,
					ST_Transform
				

Name
ST_Extent — an aggregate function that returns the bounding box that bounds rows of geometries.

Synopsis
	box2d fsfuncST_Extent(geomfield);	

geometry set geomfield;

Description
ST_Extent returns a bounding box that encloses a set of geometries. The ST_Extent function is an "aggregate" function in the
			terminology of SQL. That means that it operates on lists
			of data, in the same way the SUM() and AVG() functions do.
Since it returns a bounding box, the spatial Units are in the units of the spatial reference system in use denoted by the SRID
ST_Extent is similar in concept to Oracle Spatial/Locator's SDO_AGGR_MBR
Note
Since ST_Extent returns a bounding box, the SRID meta-data is lost. Use ST_SetSRID to force it back into
			a geometry with SRID meta data. The coordinates are in the units of the spatial ref of the orginal geometries.

Note
ST_Extent will return boxes with only an x and y component even with (x,y,z) coordinate geometries. To maintain x,y,z use ST_3DExtent instead.

Note
Availability: 1.4.0

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
Note
Examples below use Massachusetts State Plane ft (SRID=2249)

SELECT ST_Extent(the_geom) as bextent FROM sometable;
					 st_bextent

BOX(739651.875 2908247.25,794875.8125 2970042.75)

--Return extent of each category of geometries
SELECT ST_Extent(the_geom) as bextent
FROM sometable
GROUP BY category ORDER BY category;

					 bextent | name
--+----------------
 BOX(778783.5625 2951741.25,794875.8125 2970042.75) | A
 BOX(751315.8125 2919164.75,765202.6875 2935417.25) | B
 BOX(739651.875 2917394.75,756688.375 2935866) | C

 --Force back into a geometry
 -- and render the extended text representation of that geometry
SELECT ST_SetSRID(ST_Extent(the_geom),2249) as bextent FROM sometable;

				bextent
--
 SRID=2249;POLYGON((739651.875 2908247.25,739651.875 2970042.75,794875.8125 2970042.75,
 794875.8125 2908247.25,739651.875 2908247.25))
		

See Also
ST_AsEWKT, ST_3DExtent, ST_SetSRID, ST_SRID

Name
ST_3DArea — Computes area of 3D surface geometries. Will return 0 for solids.

Synopsis
	floatfsfuncST_3DArea(geom1);	

geometry geom1;

Description
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
Note: By default a PolyhedralSurface built from WKT is a surface geometry, not solid. It therefore has surface area. Once converted to a solid, no area.
SELECT ST_3DArea(geom) As cube_surface_area,
	ST_3DArea(ST_MakeSolid(geom)) As solid_surface_area
 FROM (SELECT 'POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
 ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
 ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
 ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
 ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'::geometry) As f(geom);

 cube_surface_area | solid_surface_area
-------------------+--------------------
 6 | 0

See Also
ST_Area, ST_MakeSolid, ST_IsSolid, ST_Area

Release 1.1.1

Release date: 2006/01/23
This is an important Bugfix release, upgrade is highly
 recommended. Previous version contained a bug in
 postgis_restore.pl preventing hard
 upgrade procedure to complete and a bug in GEOS-2.2+ connector
 preventing GeometryCollection objects to be used in topological
 operations.
Upgrading

If you are upgrading from release 1.0.3 or later follow the
 soft upgrade procedure.
If you are upgrading from a release between 1.0.0RC6
 and 1.0.2 (inclusive) and really want a live upgrade read
 the upgrade section of the
 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

Bug fixes

Fixed a premature exit in postgis_restore.pl
BUGFIX in geometrycollection handling of GEOS-CAPI
 connector
Solaris 2.7 and MingW support improvements
BUGFIX in line_locate_point()
Fixed handling of postgresql paths
BUGFIX in line_substring()
Added support for localized cluster in regress tester

New functionalities

New Z and M interpolation in line_substring()
New Z and M interpolation in line_interpolate_point()
added NumInteriorRing() alias due to OpenGIS ambiguity

Release 2.0.2

Release date: 2012/12/03
This is a bug fix release, addressing issues that have been filed since the 2.0.1 release.
Bug Fixes

#1287, Drop of "gist_geometry_ops" broke a few clients
 package of legacy_gist.sql for these cases
#1391, Errors during upgrade from 1.5
#1828, Poor selectivity estimate on ST_DWithin
#1838, error importing tiger/line data
#1869, ST_AsBinary is not unique added to legacy_minor/legacy.sql scripts
#1885, Missing field from tabblock table in tiger2010 census_loader.sql
#1891, Use LDFLAGS environment when building liblwgeom
#1900, Fix pgsql2shp for big-endian systems
#1932, Fix raster2pgsql for invalid syntax for setting index tablespace
#1936, ST_GeomFromGML on CurvePolygon causes server crash
#1955, ST_ModEdgeHeal and ST_NewEdgeHeal for doubly connected edges
#1957, ST_Distance to a one-point LineString returns NULL
#1976, Geography point-in-ring code overhauled for more reliability
#1978, wrong answer calculating length of closed circular arc (circle)
#1981, Remove unused but set variables as found with gcc 4.6+
#1987, Restore 1.5.x behaviour of ST_Simplify
#1989, Preprocess input geometry to just intersection with raster
 to be clipped
#1991, geocode really slow on PostgreSQL 9.2
#1996, support POINT EMPTY in GeoJSON output
#1998, Fix ST_{Mod,New}EdgeHeal joining edges sharing both endpoints
#2001, ST_CurveToLine has no effect if the geometry doesn't actually contain an arc
#2015, ST_IsEmpty('POLYGON(EMPTY)') returns False
#2019, ST_FlipCoordinates does not update bbox
#2025, Fix side location conflict at TopoGeo_AddLineString
#2026, improve performance of distance calculations
#2033, Fix adding a splitting point into a 2.5d topology
#2051, Fix excess of precision in ST_AsGeoJSON output
#2052, Fix buffer overflow in lwgeom_to_geojson
#2056, Fixed lack of SRID check of raster and geometry in ST_SetValue()
#2057, Fixed linking issue for raster2psql to libpq
#2060, Fix "dimension" check violation by GetTopoGeomElementArray
#2072, Removed outdated checks preventing ST_Intersects(raster) from
 working on out-db bands
#2077, Fixed incorrect answers from ST_Hillshade(raster)
#2092, Namespace issue with ST_GeomFromKML,ST_GeomFromGML for libxml 2.8+
#2099, Fix double free on exception in ST_OffsetCurve
#2100, ST_AsRaster() may not return raster with specified pixel type
#2108, Ensure ST_Line_Interpolate_Point always returns POINT
#2109, Ensure ST_Centroid always returns POINT
#2117, Ensure ST_PointOnSurface always returns POINT
#2129, Fix SRID in ST_Homogenize output with collection input
#2130, Fix memory error in MultiPolygon GeoJson parsing
Update URL of Maven jar

Enhancements

#1581, ST_Clip(raster, ...) no longer imposes NODATA on a band if the
 corresponding band from the source raster did not have NODATA
#1928, Accept array properties in GML input multi-geom input
 (Kashif Rasul and Shoaib Burq / SpacialDB)
#2082, Add indices on start_node and end_node of topology edge tables
#2087, Speedup topology.GetRingEdges using a recursive CTE

Name
ST_ClusterWithin — Aggregate. Returns an array of GeometryCollections, where each GeometryCollection represents a set of geometries separated by no more than the specified distance.

Synopsis
	geometry[] fsfuncST_ClusterWithin(g, 	
	 	distance);	

geometry set g;
float8 distance;

Description
ST_ClusterWithin is an aggregate function that returns an array of GeometryCollections, where each GeometryCollection represents a set of geometries separated by no more than the specified distance.
Availability: 2.2.0 - requires GEOS

Examples

WITH testdata AS
 (SELECT unnest(ARRAY['LINESTRING (0 0, 1 1)'::geometry,
		 'LINESTRING (5 5, 4 4)'::geometry,
		 'LINESTRING (6 6, 7 7)'::geometry,
		 'LINESTRING (0 0, -1 -1)'::geometry,
		 'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))'::geometry]) AS geom)

SELECT ST_AsText(unnest(ST_ClusterWithin(geom, 1.4))) FROM testdata;

--result

st_astext

GEOMETRYCOLLECTION(LINESTRING(0 0,1 1),LINESTRING(5 5,4 4),LINESTRING(0 0,-1 -1),POLYGON((0 0,4 0,4 4,0 4,0 0)))
GEOMETRYCOLLECTION(LINESTRING(6 6,7 7))

See Also

 ST_ClusterDBSCAN,
 ST_ClusterKMeans,
 ST_ClusterIntersecting

Name
geometry — Planar spatial data type.

Description
geometry is a fundamental postgis spatial data type used to represent a feature in the Euclidean coordinate system.

Casting Behavior
This section lists the automatic as well as explicit casts allowed for this data type
	Cast To	Behavior
	box	automatic
	box2d	automatic
	box3d	automatic
	bytea	automatic
	geography	automatic
	text	automatic

See Also
the section called “GIS Objects”

Release 1.0.0RC3

Release date: 2005/02/24
Third release candidate for 1.0.0. Contains many bug fixes and
 improvements.
Upgrading

You need a dump/reload to upgrade from precedent releases. See
 the upgrading chapter for more
 informations.

Library changes

BUGFIX in transform(): missing SRID, better error
 handling.
BUGFIX in memory alignment handling
BUGFIX in force_collection() causing mapserver connector
 failures on simple (single) geometry types.
BUGFIX in GeometryFromText() missing to add a bbox cache.
reduced precision of box2d output.
prefixed DEBUG macros with PGIS_ to avoid clash with pgsql
 one
plugged a leak in GEOS2POSTGIS converter
Reduced memory usage by early releasing query-context palloced
 one.

Scripts changes

BUGFIX in 72 index bindings.
BUGFIX in probe_geometry_columns() to work with PG72 and support
 multiple geometry columns in a single table
NEW bool::text cast
Some functions made IMMUTABLE from STABLE, for performance
 improvement.

JDBC changes

jdbc2: small patches, box2d/3d tests, revised docs and
 license.
jdbc2: bug fix and testcase in for pgjdbc 8.0 type
 autoregistration
jdbc2: Removed use of jdk1.4 only features to enable build with
 older jdk releases.
jdbc2: Added support for building against pg72jdbc2.jar
jdbc2: updated and cleaned makefile
jdbc2: added BETA support for jts geometry classes
jdbc2: Skip known-to-fail tests against older PostGIS
 servers.
jdbc2: Fixed handling of measured geometries in EWKT.

Other changes

new performance tips chapter in manual
documentation updates: pgsql72 requirement, lwpostgis.sql
few changes in autoconf
BUILDDATE extraction made more portable
fixed spatial_ref_sys.sql to avoid vacuuming the whole
 database.
spatial_ref_sys: changed Paris entries to match the ones
 distributed with 0.x.

Name
ST_UpperLeftY — Returns the upper left Y coordinate of raster in projected spatial ref.

Synopsis
	float8 fsfuncST_UpperLeftY(rast);	

raster rast;

Description
Returns the upper left Y coordinate of raster in projected spatial ref.

Examples

SELECT rid, ST_UpperLeftY(rast) As uly
FROM dummy_rast;

 rid | uly
-----+---------
 1 | 0.5
 2 | 5793244
				

See Also
ST_UpperLeftX, ST_GeoReference, Box3D

Name
ST_NumPatches — Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.

Synopsis
	integer fsfuncST_NumPatches(g1);	

geometry g1;

Description
Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries. This is
		an alias for ST_NumGeometries to support MM naming. Faster to use ST_NumGeometries if you don't care about MM convention.
Availability: 2.0.0
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: ?
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_NumPatches(ST_GeomFromEWKT('POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
		((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
		((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
		((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'));
		--result
		6
		

See Also
ST_GeomFromEWKT, ST_NumGeometries

Name
ST_GetFaceEdges — Returns a set of ordered edges that bound aface.

Synopsis
	getfaceedges_returntype fsfuncST_GetFaceEdges(atopology, 	
	 	aface);	

varchar atopology;
integer aface;

Description
Returns a set of ordered edges that bound aface. Each output consists of a sequence and edgeid. Sequence numbers start with value 1.

Enumeration of each ring edges start from the edge with smallest identifier.
Order of edges follows a left-hand-rule (bound face is on the left of each directed edge).
		
Availability: 2.0
[image: Description] This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.5

Examples

-- Returns the edges bounding face 1
SELECT (topology.ST_GetFaceEdges('tt', 1)).*;
-- result --
 sequence | edge
----------+------
 1 | -4
 2 | 5
 3 | 7
 4 | -6
 5 | 1
 6 | 2
 7 | 3
(7 rows)

-- Returns the sequence, edge id
-- and geometry of the edges that bound face 1
-- If you just need geom and seq, can use ST_GetFaceGeometry
SELECT t.seq, t.edge, geom
FROM topology.ST_GetFaceEdges('tt',1) As t(seq,edge)
	INNER JOIN tt.edge AS e ON abs(t.edge) = e.edge_id;

See Also

GetRingEdges,
AddFace,
ST_GetFaceGeometry
				

TopoGeometry Constructors

Abstract
This section covers the topology functions for creating new topogeometries.

Release 1.5.4

Release date: 2012/05/07
This is a bug fix release, addressing issues that have been filed since the 1.5.3 release.
Bug Fixes

#547, ST_Contains memory problems (Sandro Santilli)
#621, Problem finding intersections with geography (Paul Ramsey)
#627, PostGIS/PostgreSQL process die on invalid geometry (Paul Ramsey)
#810, Increase accuracy of area calculation (Paul Ramsey)
#852, improve spatial predicates robustness (Sandro Santilli, Nicklas Avén)
#877, ST_Estimated_Extent returns NULL on empty tables (Sandro Santilli)
#1028, ST_AsSVG kills whole postgres server when fails (Paul Ramsey)
#1056, Fix boxes of arcs and circle stroking code (Paul Ramsey)
#1121, populate_geometry_columns using deprecated functions (Regin Obe, Paul Ramsey)
#1135, improve testsuite predictability (Andreas 'ads' Scherbaum)
#1146, images generator crashes (bronaugh)
#1170, North Pole intersection fails (Paul Ramsey)
#1179, ST_AsText crash with bad value (kjurka)
#1184, honour DESTDIR in documentation Makefile (Bryce L Nordgren)
#1227, server crash on invalid GML
#1252, SRID appearing in WKT (Paul Ramsey)
#1264, st_dwithin(g, g, 0) doesn't work (Paul Ramsey)
#1344, allow exporting tables with invalid geometries (Sandro Santilli)
#1389, wrong proj4text for SRID 31300 and 31370 (Paul Ramsey)
#1406, shp2pgsql crashes when loading into geography (Sandro Santilli)
#1595, fixed SRID redundancy in ST_Line_SubString (Sandro Santilli)
#1596, check SRID in UpdateGeometrySRID (Mike Toews, Sandro Santilli)
#1602, fix ST_Polygonize to retain Z (Sandro Santilli)
#1697, fix crash with EMPTY entries in GiST index (Paul Ramsey)
#1772, fix ST_Line_Locate_Point with collapsed input (Sandro Santilli)
#1799, Protect ST_Segmentize from max_length=0 (Sandro Santilli)
Alter parameter order in 900913 (Paul Ramsey)
Support builds with "gmake" (Greg Troxel)

Name
box2d — A box composed of x min, ymin, xmax, ymax. Often used to return the 2d enclosing box of a geometry.

Description
box2d is a spatial data type used to represent the enclosing box of a geometry or set of geometries. ST_Extent in earlier versions prior to PostGIS 1.4 would return a box2d.

Name
ST_AsGDALRaster — Return the raster tile in the designated GDAL Raster format. Raster formats are one of those supported by your compiled library. Use ST_GDALRasters() to get a list of formats supported by your library.

Synopsis
	bytea fsfuncST_AsGDALRaster(rast, 	
	 	format, 	
	 	options=NULL, 	
	 	srid=sameassource);	

raster rast;
text format;
text[] options=NULL;
integer srid=sameassource;

Description
Returns the raster tile in the designated format. Arguments are itemized below:
	
 format format to output. This is dependent on the drivers compiled in your libgdal library. Generally available are 'JPEG', 'GTIff', 'PNG'. Use ST_GDALDrivers to get a list of formats supported by your library.
			

	
			options text array of GDAL options. Valid options are dependent on the format. Refer to GDAL Raster format options for more details.
			

	
			srs The proj4text or srtext (from spatial_ref_sys) to embed in the image
			

Availability: 2.0.0 - requires GDAL >= 1.6.0.

JPEG Output Examples
SELECT ST_AsGDALRaster(rast, 'JPEG') As rastjpg
FROM dummy_rast WHERE rid=1;

SELECT ST_AsGDALRaster(rast, 'JPEG', ARRAY['QUALITY=50']) As rastjpg
FROM dummy_rast WHERE rid=2;
				

GTIFF Output Examples
SELECT ST_AsGDALRaster(rast, 'GTiff') As rastjpg
FROM dummy_rast WHERE rid=2;

-- Out GeoTiff with jpeg compression, 90% quality
SELECT ST_AsGDALRaster(rast, 'GTiff',
 ARRAY['COMPRESS=JPEG', 'JPEG_QUALITY=90'],
 4269) As rasttiff
FROM dummy_rast WHERE rid=2;
				

See Also
the section called “Building Custom Applications with PostGIS Raster”, ST_GDALDrivers, ST_SRID

Release 2.0.1

Release date: 2012/06/22
This is a bug fix release, addressing issues that have been filed since the 2.0.0 release.
Bug Fixes

#1264, fix st_dwithin(geog, geog, 0).
#1468 shp2pgsql-gui table column schema get shifted
#1694, fix building with clang. (vince)
#1708, improve restore of pre-PostGIS 2.0 backups.
#1714, more robust handling of high topology tolerance.
#1755, ST_GeographyFromText support for higher dimensions.
#1759, loading transformed shapefiles in raster enabled db.
#1761, handling of subdatasets in NetCDF, HDF4 and HDF5 in raster2pgsql.
#1763, topology.toTopoGeom use with custom search_path.
#1766, don't let ST_RemEdge* destroy peripheral TopoGeometry objects.
#1774, Clearer error on setting an edge geometry to an invalid one.
#1775, ST_ChangeEdgeGeom collision detection with 2-vertex target.
#1776, fix ST_SymDifference(empty, geom) to return geom.
#1779, install SQL comment files.
#1782, fix spatial reference string handling in raster.
#1789, fix false edge-node crossing report in ValidateTopology.
#1790, fix toTopoGeom handling of duplicated primitives.
#1791, fix ST_Azimuth with very close but distinct points.
#1797, fix (ValidateTopology(xxx)).* syntax calls.
#1805, put back the 900913 SRID entry.
#1813, Only show readable relations in metadata tables.
#1819, fix floating point issues with ST_World2RasterCoord and
					 ST_Raster2WorldCoord variants.
#1820 compilation on 9.2beta1.
#1822, topology load on PostgreSQL 9.2beta1.
#1825, fix prepared geometry cache lookup
#1829, fix uninitialized read in GeoJSON parser
#1834, revise postgis extension to only backup
					 user specified spatial_ref_sys
#1839, handling of subdatasets in GeoTIFF in raster2pgsql.
#1840, fix logic of when to compute # of tiles in raster2pgsql.
#1851, fix spatial_ref_system parameters for EPSG:3844
#1857, fix failure to detect endpoint mismatch in ST_AddEdge*Face*
#1865, data loss in postgis_restore.pl when data rows have leading
					 dashes.
#1867, catch invalid topology name passed to topogeo_add*
#1872, fix ST_ApproxSummarystats to prevent division by zero
#1873, fix ptarray_locate_point to return interpolated Z/M values for
			 on-the-line case
#1875, ST_SummaryStats returns NULL for all parameters except count
			 when count is zero
#1881, shp2pgsql-gui -- editing a field sometimes triggers
						 removing row
#1883, Geocoder install fails trying to run
 create_census_base_tables() (Brian Panulla)

Enhancements

More detailed exception message from topology editing functions.
#1786, improved build dependencies
#1806, speedup of ST_BuildArea, ST_MakeValid and ST_GetFaceGeometry.
#1812, Add lwgeom_normalize in LIBLWGEOM for more stable testing.

Name
ST_MetaData — Returns basic meta data about a raster object such as pixel size, rotation (skew), upper, lower left, etc.

Synopsis
	record fsfuncST_MetaData(rast);	

raster rast;

Description
Returns basic meta data about a raster object such as pixel size, rotation (skew), upper, lower left, etc. Columns returned:
					upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands

Examples
SELECT rid, (foo.md).*
 FROM (SELECT rid, ST_MetaData(rast) As md
FROM dummy_rast) As foo;

 rid | upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
 ----+------------+------------+-------+--------+--------+-----------+-------+-------+------+-------
 1 | 0.5 | 0.5 | 10 | 20 | 2 | 3 |		0 | 0 | 0 | 0
 2 | 3427927.75 | 5793244 | 5 | 5 | 0.05 | -0.05 |		0 | 0 | 0 | 3
				

See Also
ST_BandMetaData, ST_NumBands

Name
ST_StartPoint — Returns the first point of a LINESTRING
	 geometry as a POINT.

Synopsis
	geometry fsfuncST_StartPoint(geomA);	

geometry geomA;

Description
Returns the first point of a LINESTRING or CIRCULARLINESTRING geometry
	 as a POINT or NULL if the input
	 parameter is not a LINESTRING or CIRCULARLINESTRING.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.1.3
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
Note
Changed: 2.0.0 no longer works with single geometry multilinestrings. In older
	 versions of PostGIS -- a single line multilinestring would work happily with this
	 function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring.
	 The older behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING
	 may experience these returning NULL in 2.0 now.

Examples
SELECT ST_AsText(ST_StartPoint('LINESTRING(0 1, 0 2)'::geometry));
 st_astext

 POINT(0 1)
(1 row)

SELECT ST_StartPoint('POINT(0 1)'::geometry) IS NULL AS is_null;
 is_null

 t
(1 row)

--3d line
SELECT ST_AsEWKT(ST_StartPoint('LINESTRING(0 1 1, 0 2 2)'::geometry));
 st_asewkt

 POINT(0 1 1)
(1 row)

-- circular linestring --
SELECT ST_AsText(ST_StartPoint('CIRCULARSTRING(5 2,-3 1.999999, -2 1, -4 2, 5 2)'::geometry));
 st_astext

 POINT(5 2)

See Also
ST_EndPoint, ST_PointN

Name
ST_GeomFromEWKT — Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).

Synopsis
	geometry fsfuncST_GeomFromEWKT(EWKT);	

text EWKT;

Description
Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known text (EWKT) representation.
Note
The EWKT format is not an OGC standard, but an PostGIS specific format that includes the spatial reference system (SRID)
			identifier

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_GeomFromEWKT('SRID=4269;LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932)');
SELECT ST_GeomFromEWKT('SRID=4269;MULTILINESTRING((-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932))');

SELECT ST_GeomFromEWKT('SRID=4269;POINT(-71.064544 42.28787)');

SELECT ST_GeomFromEWKT('SRID=4269;POLYGON((-71.1776585052917 42.3902909739571,-71.1776820268866 42.3903701743239,
-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 42.3902909739571))');

SELECT ST_GeomFromEWKT('SRID=4269;MULTIPOLYGON(((-71.1031880899493 42.3152774590236,
-71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307,
-71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248,
-71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797,
-71.103113945163 42.3142739188902,-71.10324876416 42.31402489987,
-71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772,
-71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029,
-71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058,
-71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118,
-71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681,
-71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055,
-71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936,
-71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569,
-71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809,
-71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048,
-71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859,
-71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338,
-71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985,
-71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544,
-71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219,
-71.1031880899493 42.3152774590236)),
((-71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857,
-71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 42.315113108546)))');

--3d circular string
SELECT ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)');

--Polyhedral Surface example
SELECT ST_GeomFromEWKT('POLYHEDRALSURFACE(
	((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
	((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
	((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
	((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
	((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
	((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1))
)');

See Also
ST_AsEWKT, ST_GeomFromText, ST_GeomFromEWKT

Name
ST_ConvexHull — Return the convex hull geometry of the raster including pixel values equal to BandNoDataValue.
					For regular shaped and non-skewed
					rasters, this gives the same result as ST_Envelope so only useful for irregularly shaped or skewed rasters.

Synopsis
	geometry fsfuncST_ConvexHull(rast);	

raster rast;

Description
Return the convex hull geometry of the raster including the NoDataBandValue band pixels. For regular shaped and non-skewed
					rasters, this gives more or less the same result as ST_Envelope
					so only useful for irregularly shaped or skewed rasters.
Note
ST_Envelope floors the coordinates and hence add a little buffer around the raster so the answer is subtly
						different from ST_ConvexHull which does not floor.

Examples
Refer to PostGIS Raster Specification for a diagram of this.

-- Note envelope and convexhull are more or less the same
SELECT ST_AsText(ST_ConvexHull(rast)) As convhull,
	ST_AsText(ST_Envelope(rast)) As env
FROM dummy_rast WHERE rid=1;

 convhull | env
--+------------------------------------
 POLYGON((0.5 0.5,20.5 0.5,20.5 60.5,0.5 60.5,0.5 0.5)) | POLYGON((0 0,20 0,20 60,0 60,0 0))
				

-- now we skew the raster
-- note how the convex hull and envelope are now different
SELECT ST_AsText(ST_ConvexHull(rast)) As convhull,
	ST_AsText(ST_Envelope(rast)) As env
FROM (SELECT ST_SetRotation(rast, 0.1, 0.1) As rast
	FROM dummy_rast WHERE rid=1) As foo;

 convhull | env
--+------------------------------------
 POLYGON((0.5 0.5,20.5 1.5,22.5 61.5,2.5 60.5,0.5 0.5)) | POLYGON((0 0,22 0,22 61,0 61,0 0))
					

See Also

						ST_Envelope,
						ST_MinConvexHull,
						ST_ConvexHull,
						ST_AsText
					

Name
ST_AsEWKB — Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.

Synopsis
	bytea fsfuncST_AsEWKB(g1);	

geometry g1;

	bytea fsfuncST_AsEWKB(g1, 	
	 	NDR_or_XDR);	

geometry g1;
text NDR_or_XDR;

Description
Returns the Well-Known Binary representation of the geometry with SRID metadata. There are 2 variants of the function. The first
			variant takes no endian encoding parameter and defaults to little endian. The second variant takes a second argument
			denoting the encoding - using little-endian ('NDR') or big-endian ('XDR') encoding.
This is useful in binary cursors to pull data out of the
			database without converting it to a string representation.
Note
The WKB spec does not include the SRID. To get the OGC WKB format use ST_AsBinary

Note
ST_AsEWKB is the reverse of ST_GeomFromEWKB. Use ST_GeomFromEWKB to convert to a postgis geometry from ST_AsEWKB representation.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

		 st_asewkb

\001\003\000\000 \346\020\000\000\001\000
\000\000\005\000\000\000\000
\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000
\000\000\360?\000\000\000\000\000\000\360?
\000\000\000\000\000\000\360?\000\000\000\000\000
\000\360?\000\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000\000\000\000
(1 row)

			SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326), 'XDR');
		 st_asewkb

\000 \000\000\003\000\000\020\346\000\000\000\001\000\000\000\005\000\000\000\000\
000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000?
\360\000\000\000\000\000\000?\360\000\000\000\000\000\000?\360\000\000\000\000
\000\000?\360\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000\000\000\000\000
		

See Also
ST_AsBinary, ST_AsEWKT, ST_AsText, ST_GeomFromEWKT, ST_SRID

Name
ST_MapAlgebraFct — 1 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the input raster band and of pixeltype prodived. Band 1 is assumed if no band is specified.

Synopsis
	raster fsfuncST_MapAlgebraFct(rast, 	
	 	onerasteruserfunc);	

raster rast;
regprocedure onerasteruserfunc;

	raster fsfuncST_MapAlgebraFct(rast, 	
	 	onerasteruserfunc, 	
	 	VARIADIC args);	

raster rast;
regprocedure onerasteruserfunc;
text[] VARIADIC args;

	raster fsfuncST_MapAlgebraFct(rast, 	
	 	pixeltype, 	
	 	onerasteruserfunc);	

raster rast;
text pixeltype;
regprocedure onerasteruserfunc;

	raster fsfuncST_MapAlgebraFct(rast, 	
	 	pixeltype, 	
	 	onerasteruserfunc, 	
	 	VARIADIC args);	

raster rast;
text pixeltype;
regprocedure onerasteruserfunc;
text[] VARIADIC args;

	raster fsfuncST_MapAlgebraFct(rast, 	
	 	band, 	
	 	onerasteruserfunc);	

raster rast;
integer band;
regprocedure onerasteruserfunc;

	raster fsfuncST_MapAlgebraFct(rast, 	
	 	band, 	
	 	onerasteruserfunc, 	
	 	VARIADIC args);	

raster rast;
integer band;
regprocedure onerasteruserfunc;
text[] VARIADIC args;

	raster fsfuncST_MapAlgebraFct(rast, 	
	 	band, 	
	 	pixeltype, 	
	 	onerasteruserfunc);	

raster rast;
integer band;
text pixeltype;
regprocedure onerasteruserfunc;

	raster fsfuncST_MapAlgebraFct(rast, 	
	 	band, 	
	 	pixeltype, 	
	 	onerasteruserfunc, 	
	 	VARIADIC args);	

raster rast;
integer band;
text pixeltype;
regprocedure onerasteruserfunc;
text[] VARIADIC args;

Description
Warning

							ST_MapAlgebraFct is deprecated as of 2.1.0. Use ST_MapAlgebra instead.
						

Creates a new one band raster formed by applying a valid PostgreSQL function specified by the onerasteruserfunc on the input raster (rast). If no band is specified, band 1 is assumed. The new raster will have the same georeference, width, and height as the original raster but will only have one band.
If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL, then the new raster band will have the same pixeltype as the input rast band.
The onerasteruserfunc parameter must be the name and signature of a SQL or PL/pgSQL function, cast to a regprocedure. A very simple and quite useless PL/pgSQL function example is:

CREATE OR REPLACE FUNCTION simple_function(pixel FLOAT, pos INTEGER[], VARIADIC args TEXT[])
 RETURNS FLOAT
 AS $$ BEGIN
 RETURN 0.0;
 END; $$
 LANGUAGE 'plpgsql' IMMUTABLE;

 The userfunction may accept two or three arguments: a float value, an optional integer array, and a variadic text array. The first argument is the value of an individual raster cell (regardless of the raster datatype). The second argument is the position of the current processing cell in the form '{x,y}'. The third argument indicates that all remaining parameters to ST_MapAlgebraFct shall be passed through to the userfunction.
					

						Passing a regprodedure argument to a SQL function requires the full function signature to be passed, then cast to a regprocedure type. To pass the above example PL/pgSQL function as an argument, the SQL for the argument is:
'simple_function(float,integer[],text[])'::regprocedure
Note that the argument contains the name of the function, the types of the function arguments, quotes around the name and argument types, and a cast to a regprocedure.
					

						The third argument to the userfunction is a variadic text array. All trailing text arguments to any ST_MapAlgebraFct call are passed through to the specified userfunction, and are contained in the args argument.
					
Note
For more information about the VARIADIC keyword, please refer to the PostgreSQL documentation and the "SQL Functions with Variable Numbers of Arguments" section of Query Language (SQL) Functions.

Note
The text[] argument to the userfunction is required, regardless of whether you choose to pass any arguments to your user function for processing or not.

Availability: 2.0.0

Examples
Create a new 1 band raster from our original that is a function of modulo 2 of the original raster band.
ALTER TABLE dummy_rast ADD COLUMN map_rast raster;
CREATE FUNCTION mod_fct(pixel float, pos integer[], variadic args text[])
RETURNS float
AS $$
BEGIN
 RETURN pixel::integer % 2;
END;
$$
LANGUAGE 'plpgsql' IMMUTABLE;

UPDATE dummy_rast SET map_rast = ST_MapAlgebraFct(rast,NULL,'mod_fct(float,integer[],text[])'::regprocedure) WHERE rid = 2;

SELECT ST_Value(rast,1,i,j) As origval, ST_Value(map_rast, 1, i, j) As mapval
FROM dummy_rast CROSS JOIN generate_series(1, 3) AS i CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;

 origval | mapval
---------+--------
 253 | 1
 254 | 0
 253 | 1
 253 | 1
 254 | 0
 254 | 0
 250 | 0
 254 | 0
 254 | 0
					
Create a new 1 band raster of pixel-type 2BUI from our original that is reclassified and set the nodata value to a passed parameter to the user function (0).
ALTER TABLE dummy_rast ADD COLUMN map_rast2 raster;
CREATE FUNCTION classify_fct(pixel float, pos integer[], variadic args text[])
RETURNS float
AS
$$
DECLARE
 nodata float := 0;
BEGIN
 IF NOT args[1] IS NULL THEN
 nodata := args[1];
 END IF;
 IF pixel < 251 THEN
 RETURN 1;
 ELSIF pixel = 252 THEN
 RETURN 2;
 ELSIF pixel > 252 THEN
 RETURN 3;
 ELSE
 RETURN nodata;
 END IF;
END;
$$
LANGUAGE 'plpgsql';
UPDATE dummy_rast SET map_rast2 = ST_MapAlgebraFct(rast,'2BUI','classify_fct(float,integer[],text[])'::regprocedure, '0') WHERE rid = 2;

SELECT DISTINCT ST_Value(rast,1,i,j) As origval, ST_Value(map_rast2, 1, i, j) As mapval
FROM dummy_rast CROSS JOIN generate_series(1, 5) AS i CROSS JOIN generate_series(1,5) AS j
WHERE rid = 2;

 origval | mapval
---------+--------
 249 | 1
 250 | 1
 251 |
 252 | 2
 253 | 3
 254 | 3

SELECT ST_BandPixelType(map_rast2) As b1pixtyp
FROM dummy_rast WHERE rid = 2;

 b1pixtyp

 2BUI
					
	[image: Examples]original (column rast-view)

	[image: Examples]rast_view_ma

Create a new 3 band raster same pixel type from our original 3 band raster with first band altered by map algebra and remaining 2 bands unaltered.
CREATE FUNCTION rast_plus_tan(pixel float, pos integer[], variadic args text[])
RETURNS float
AS
$$
BEGIN
	RETURN tan(pixel) * pixel;
END;
$$
LANGUAGE 'plpgsql';

SELECT ST_AddBand(
	ST_AddBand(
		ST_AddBand(
			ST_MakeEmptyRaster(rast_view),
			ST_MapAlgebraFct(rast_view,1,NULL,'rast_plus_tan(float,integer[],text[])'::regprocedure)
),
		ST_Band(rast_view,2)
),
	ST_Band(rast_view, 3) As rast_view_ma
)
FROM wind
WHERE rid=167;
					

See Also

						ST_MapAlgebraExpr,
						ST_BandPixelType,
						ST_GeoReference,
						ST_SetValue
					

Name
ST_TransScale — Translate a geometry by given factors and offsets.

Synopsis
	geometry fsfuncST_TransScale(geomA, 	
	 	deltaX, 	
	 	deltaY, 	
	 	XFactor, 	
	 	YFactor);	

geometry geomA;
float deltaX;
float deltaY;
float XFactor;
float YFactor;

Description
Translates the geometry using the deltaX and deltaY args,
			then scales it using the XFactor, YFactor args, working in 2D only.
Note
ST_TransScale(geomA, deltaX, deltaY, XFactor, YFactor)
			is short-hand for ST_Affine(geomA, XFactor, 0, 0, 0, YFactor, 0,
			0, 0, 1, deltaX*XFactor, deltaY*YFactor, 0).

Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Availability: 1.1.0.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_AsEWKT(ST_TransScale(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), 0.5, 1, 1, 2));
		 st_asewkt

 LINESTRING(1.5 6 3,1.5 4 1)

--Buffer a point to get an approximation of a circle, convert to curve and then translate 1,2 and scale it 3,4
 SELECT ST_AsText(ST_Transscale(ST_LineToCurve(ST_Buffer('POINT(234 567)', 3)),1,2,3,4));
														 st_astext
--
 CURVEPOLYGON(CIRCULARSTRING(714 2276,711.363961030679 2267.51471862576,705 2264,698.636038969321 2284.48528137424,714 2276))

See Also
ST_Affine, ST_Translate

Name
ST_SetSRID — Set the SRID on a geometry to a particular integer
		value.

Synopsis
	geometry fsfuncST_SetSRID(geom, 	
	 	srid);	

geometry
			geom;
integer
			srid;

Description
Sets the SRID on a geometry to a particular integer value.
		Useful in constructing bounding boxes for queries.
Note
This function does not transform the geometry coordinates in any way -
		 it simply sets the meta data defining the spatial reference system the geometry is assumed to be in.
		 Use ST_Transform if you want to transform the
		 geometry into a new projection.

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description]
 This method supports Circular Strings and Curves

Examples
-- Mark a point as WGS 84 long lat --
SELECT ST_SetSRID(ST_Point(-123.365556, 48.428611),4326) As wgs84long_lat;
-- the ewkt representation (wrap with ST_AsEWKT) -
SRID=4326;POINT(-123.365556 48.428611)
			
-- Mark a point as WGS 84 long lat and then transform to web mercator (Spherical Mercator) --
SELECT ST_Transform(ST_SetSRID(ST_Point(-123.365556, 48.428611),4326),3785) As spere_merc;
-- the ewkt representation (wrap with ST_AsEWKT) -
SRID=3785;POINT(-13732990.8753491 6178458.96425423)
			

See Also
the section called “The SPATIAL_REF_SYS Table and Spatial Reference Systems”, ST_AsEWKT, ST_Point, ST_SRID, ST_Transform, UpdateGeometrySRID

Release 2.0.4

Release date: 2013/09/06
This is a bug fix release, addressing issues that have been filed since the 2.0.3 release. If you are using PostGIS 2.0+ a soft upgrade is required. For users of PostGIS 1.5 or below, a hard upgrade is required.
Bug Fixes

#2110, Equality operator between EMPTY and point on origin
Allow adding points at precision distance with TopoGeo_addPoint
#1968, Fix missing edge from toTopoGeom return
#2165, ST_NumPoints regression failure with CircularString
#2168, ST_Distance is not always commutative
#2186, gui progress bar updates too frequent
#2201, ST_GeoHash wrong on boundaries
#2257, GBOX variables not initialized when testing with empty geometries
#2271, Prevent parallel make of raster
#2267, Server crash from analyze table
#2277, potential segfault removed
#2307, ST_MakeValid outputs invalid geometries
#2351, st_distance between geographies wrong
#2359, Incorrect handling of schema for overview constraints
#2371, Support GEOS versions with more than 1 digit in micro
#2372, Cannot parse space-padded KML coordinates
Fix build with systemwide liblwgeom installed
#2383, Fix unsafe use of \' in warning message
#2410, Fix segmentize of collinear curve
#2412, ST_LineToCurve support for lines with less than 4 vertices
#2415, ST_Multi support for COMPOUNDCURVE and CURVEPOLYGON
#2420, ST_LineToCurve: require at least 8 edges to define a full circle
#2423, ST_LineToCurve: require all arc edges to form the same angle
#2424, ST_CurveToLine: add support for COMPOUNDCURVE in MULTICURVE
#2427, Make sure to retain first point of curves on ST_CurveToLine

Enhancements

#2269, Avoid uselessly detoasting full geometries on ANALYZE

Known Issues

#2111, Raster bands can only reference the first 256 bands of out-db rasters

Name
ST_Band — Returns one or more bands of an existing raster as a new raster. Useful for building new rasters from existing rasters.

Synopsis
	raster fsfuncST_Band(rast, 	
	 	nbands = ARRAY[1]);	

raster rast;
integer[] nbands = ARRAY[1];

	raster fsfuncST_Band(rast, 	
	 	nband);	

raster rast;
integer nband;

	raster fsfuncST_Band(rast, 	
	 	nbands, 	
	 	delimiter=,);	

raster rast;
text nbands;
character delimiter=,;

Description
Returns one or more bands of an existing raster as a new raster. Useful for building new rasters from existing rasters or export of only selected
				bands of a raster or rearranging the order of bands in a raster. If no band is specified, band 1 is assumed. Used as a helper function in various functions such as for deleting a band.
Warning
For the nbands as text variant of function, the default delimiter is , which means you can ask for '1,2,3' and if you wanted to use a different delimeter you would do ST_Band(rast, '1@2@3', '@'). For asking for multiple bands, we strongly suggest you use the array form of this function e.g. ST_Band(rast, '{1,2,3}'::int[]); since the text list of bands form may be removed in future versions of PostGIS.

Availability: 2.0.0

Examples
-- Make 2 new rasters: 1 containing band 1 of dummy, second containing band 2 of dummy and then reclassified as a 2BUI
SELECT ST_NumBands(rast1) As numb1, ST_BandPixelType(rast1) As pix1,
 ST_NumBands(rast2) As numb2, ST_BandPixelType(rast2) As pix2
FROM (
 SELECT ST_Band(rast) As rast1, ST_Reclass(ST_Band(rast,3), '100-200):1, [200-254:2', '2BUI') As rast2
 FROM dummy_rast
 WHERE rid = 2) As foo;

 numb1 | pix1 | numb2 | pix2
-------+------+-------+------
 1 | 8BUI | 1 | 2BUI
					
-- Return bands 2 and 3. Using array cast syntax
SELECT ST_NumBands(ST_Band(rast, '{2,3}'::int[])) As num_bands
 FROM dummy_rast WHERE rid=2;

num_bands

2

-- Return bands 2 and 3. Use array to define bands
SELECT ST_NumBands(ST_Band(rast, ARRAY[2,3])) As num_bands
 FROM dummy_rast
WHERE rid=2;
					
	[image: Examples]original (column rast)

		 	[image: Examples]dupe_band

		 	[image: Examples]sing_band

		

--Make a new raster with 2nd band of original and 1st band repeated twice,
and another with just the third band
SELECT rast, ST_Band(rast, ARRAY[2,1,1]) As dupe_band,
	ST_Band(rast, 3) As sing_band
FROM samples.than_chunked
WHERE rid=35;
					

See Also
ST_AddBand, ST_NumBands, ST_Reclass, Chapter 9, Raster Reference

Name
ST_ClusterIntersecting — Aggregate. Returns an array with the connected components of a set of geometries

Synopsis
	geometry[] fsfuncST_ClusterIntersecting(g);	

geometry set g;

Description
ST_ClusterIntersecting is an aggregate function that returns an array of GeometryCollections, where each GeometryCollection represents an interconnected set of geometries.
Availability: 2.2.0 - requires GEOS

Examples

WITH testdata AS
 (SELECT unnest(ARRAY['LINESTRING (0 0, 1 1)'::geometry,
		 'LINESTRING (5 5, 4 4)'::geometry,
		 'LINESTRING (6 6, 7 7)'::geometry,
		 'LINESTRING (0 0, -1 -1)'::geometry,
		 'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))'::geometry]) AS geom)

SELECT ST_AsText(unnest(ST_ClusterIntersecting(geom))) FROM testdata;

--result

st_astext

GEOMETRYCOLLECTION(LINESTRING(0 0,1 1),LINESTRING(5 5,4 4),LINESTRING(0 0,-1 -1),POLYGON((0 0,4 0,4 4,0 4,0 0)))
GEOMETRYCOLLECTION(LINESTRING(6 6,7 7))

See Also

 ST_ClusterDBSCAN,
 ST_ClusterKMeans,
 ST_ClusterWithin

Name
ST_SetScale — Sets the X and Y size of pixels in units of coordinate reference system. Number units/pixel width/height.

Synopsis
	raster fsfuncST_SetScale(rast, 	
	 	xy);	

raster rast;
float8 xy;

	raster fsfuncST_SetScale(rast, 	
	 	x, 	
	 	y);	

raster rast;
float8 x;
float8 y;

Description
Sets the X and Y size of pixels in units of coordinate reference system. Number units/pixel width/height. If
				only one unit passed in, assumed X and Y are the same number.
Note
ST_SetScale is different from ST_Rescale in that ST_SetScale do not resample the raster to match the raster extent. It only changes the metadata (or georeference) of the raster to correct an originally mis-specified scaling. ST_Rescale results in a raster having different width and height computed to fit the geographic extent of the input raster. ST_SetScale do not modify the width, nor the height of the raster.

Changed: 2.0.0 In WKTRaster versions this was called ST_SetPixelSize. This was changed in 2.0.0.

Examples
UPDATE dummy_rast
	SET rast = ST_SetScale(rast, 1.5)
WHERE rid = 2;

SELECT ST_ScaleX(rast) As pixx, ST_ScaleY(rast) As pixy, Box3D(rast) As newbox
FROM dummy_rast
WHERE rid = 2;

 pixx | pixy | newbox
------+------+--
 1.5 | 1.5 | BOX(3427927.75 5793244 0, 3427935.25 5793251.5 0)
				
UPDATE dummy_rast
	SET rast = ST_SetScale(rast, 1.5, 0.55)
WHERE rid = 2;

SELECT ST_ScaleX(rast) As pixx, ST_ScaleY(rast) As pixy, Box3D(rast) As newbox
FROM dummy_rast
WHERE rid = 2;

 pixx | pixy | newbox
------+------+--
 1.5 | 0.55 | BOX(3427927.75 5793244 0,3427935.25 5793247 0)
				

See Also
ST_ScaleX, ST_ScaleY, Box3D

Name
DisableLongTransactions — Disable long transaction support. This function removes the
			long transaction support metadata tables, and drops all triggers
			attached to lock-checked tables.

Synopsis
	text fsfuncDisableLongTransactions();	

;

Description
Disable long transaction support. This function removes the
			long transaction support metadata tables, and drops all triggers
			attached to lock-checked tables.
Drops meta table called authorization_table and a view called authorized_tables
				and all triggers called checkauthtrigger
Availability: 1.1.3

Examples
SELECT DisableLongTransactions();
--result--
Long transactions support disabled
		

See Also
EnableLongTransactions

Name
ST_NumInteriorRings — Return the number of interior rings of a polygon geometry.

Synopsis
	integer fsfuncST_NumInteriorRings(a_polygon);	

geometry a_polygon;

Description

 Return the number of interior rings of a polygon geometry.
			Return NULL if the geometry is not a polygon.

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.2.5
Changed: 2.0.0 - in prior versions it would allow passing a MULTIPOLYGON, returning the number of interior rings of first POLYGON.

Examples

--If you have a regular polygon
SELECT gid, field1, field2, ST_NumInteriorRings(the_geom) AS numholes
FROM sometable;

--If you have multipolygons
--And you want to know the total number of interior rings in the MULTIPOLYGON
SELECT gid, field1, field2, SUM(ST_NumInteriorRings(the_geom)) AS numholes
FROM (SELECT gid, field1, field2, (ST_Dump(the_geom)).geom As the_geom
	FROM sometable) As foo
GROUP BY gid, field1,field2;
			

See Also
ST_NumInteriorRing

Name
PostGIS_Full_Version — Reports full postgis version and build configuration
		infos.

Synopsis
	text fsfuncPostGIS_Full_Version();	

;

Description
Reports full postgis version and build configuration
		infos. Also informs about synchronization between
		libraries and scripts suggesting upgrades as needed.

Examples
SELECT PostGIS_Full_Version();
							 postgis_full_version
--
POSTGIS="2.2.0dev r12699" GEOS="3.5.0dev-CAPI-1.9.0 r3989" SFCGAL="1.0.4" PROJ="Rel. 4.8.0, 6 March 2012"
GDAL="GDAL 1.11.0, released 2014/04/16" LIBXML="2.7.8" LIBJSON="0.12" RASTER
(1 row)

See Also

		the section called “Upgrading”,
		PostGIS_GEOS_Version,
		PostGIS_Lib_Version,
		PostGIS_LibXML_Version,
		PostGIS_PROJ_Version,
		PostGIS_Version
		

Name
geography — Ellipsoidal spatial data type.

Description
geography is a spatial data type used to represent a feature in the round-earth coordinate system.

Casting Behavior
This section lists the automatic as well as explicit casts allowed for this data type
	Cast To	Behavior
	geometry	explicit

See Also
the section called “PostGIS Geography Support Functions”, the section called “PostGIS Geography Type”

Name
TopoGeo_AddLineString —
Adds a linestring to an existing topology using a tolerance and possibly splitting existing edges/faces. Returns edge identifiers
				

Synopsis
	SETOF integer fsfuncTopoGeo_AddLineString(toponame, 	
	 	aline, 	
	 	tolerance);	

varchar toponame;
geometry aline;
float8 tolerance;

Description

Adds a linestring to an existing topology and return a set of edge identifiers forming it up.
The given line will snap to existing nodes or edges within given tolerance.
Existing edges and faces may be split by the line.

Availability: 2.0.0

See Also

TopoGeo_AddPoint,
TopoGeo_AddPolygon,
AddEdge,
CreateTopology
				

Name
~ — Returns TRUE if A's bounding box is contains B's. Uses double precision bounding box.

Synopsis
	boolean fsfunc~(A, 	
	 	B);	

 raster
 A
 ;

 raster
 B
 ;

	boolean fsfunc~(A, 	
	 	B);	

 geometry
 A
 ;

 raster
 B
 ;

	boolean fsfunc~(B, 	
	 	A);	

 raster
 B
 ;

 geometry
 A
 ;

Description
The ~ operator returns TRUE if the bounding box of raster/geometry A
			is contains bounding box of raster/geometr B.
Note
This operand will use spatial indexes on the rasters.

Availability: 2.0.0

See Also
@

Name
ST_DistanceSpheroid — Returns the minimum distance between two lon/lat geometries given a
			particular spheroid.
			PostGIS versions prior to 1.5 only support points.

Synopsis
	float fsfuncST_DistanceSpheroid(geomlonlatA, 	
	 	geomlonlatB, 	
	 	measurement_spheroid);	

geometry geomlonlatA;
geometry geomlonlatB;
spheroid measurement_spheroid;

Description
Returns minimum distance in meters between two lon/lat
				geometries given a particular spheroid. See the explanation of spheroids given for
			ST_LengthSpheroid. PostGIS version prior to 1.5 only support points.
Note
This function currently does not look at the SRID of a geometry and will always assume its represented in the coordinates of the passed in spheroid. Prior versions of this function only support points.

Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.
Changed: 2.2.0 In prior versions this used to be called ST_Distance_Spheroid

Examples
SELECT round(CAST(
		ST_DistanceSpheroid(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326), 'SPHEROID["WGS 84",6378137,298.257223563]')
			As numeric),2) As dist_meters_spheroid,
		round(CAST(ST_DistanceSphere(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326)) As numeric),2) As dist_meters_sphere,
round(CAST(ST_Distance(ST_Transform(ST_Centroid(the_geom),32611),
		ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As dist_utm11_meters
FROM
	(SELECT ST_GeomFromText('LINESTRING(-118.584 38.374,-118.583 38.5)', 4326) As the_geom) as foo;
 dist_meters_spheroid | dist_meters_sphere | dist_utm11_meters
----------------------+--------------------+-------------------
			 70454.92 | 70424.47 | 70438.00

	

See Also
ST_Distance, ST_DistanceSphere

Name
ST_Perimeter — Return the length measurement of the boundary of an ST_Surface
		 or ST_MultiSurface geometry or geography. (Polygon, MultiPolygon). geometry measurement is in units of spatial reference and geography is in meters.

Synopsis
	float fsfuncST_Perimeter(g1);	

geometry g1;

	float fsfuncST_Perimeter(geog, 	
	 	use_spheroid=true);	

geography geog;
boolean use_spheroid=true;

Description
Returns the 2D perimeter of the geometry/geography if it is a ST_Surface, ST_MultiSurface (Polygon, MultiPolygon). 0 is returned for
				non-areal geometries. For linear geometries use ST_Length. For geometry types, units for perimeter measures are specified by the
				spatial reference system of the geometry.
For geography types, the calculations are performed using the inverse geodesic problem, where perimeter units are in meters.
				If PostGIS is compiled with PROJ version 4.8.0 or later, the spheroid is specified by the SRID, otherwise it is exclusive to WGS84.
				If use_spheroid=false, then calculations will approximate a sphere instead of a spheroid.
Currently this is an alias for ST_Perimeter2D, but this may change to support higher dimensions.
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.5.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.1.3, 9.5.4
Availability 2.0.0: Support for geography was introduced

Examples: Geometry
Return perimeter in feet for Polygon and MultiPolygon. Note this is in feet because EPSG:2249 is
				Massachusetts State Plane Feet

SELECT ST_Perimeter(ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416))', 2249));
st_perimeter

 122.630744000095
(1 row)

SELECT ST_Perimeter(ST_GeomFromText('MULTIPOLYGON(((763104.471273676 2949418.44119003,
763104.477769673 2949418.42538203,
763104.189609677 2949418.22343004,763104.471273676 2949418.44119003)),
((763104.471273676 2949418.44119003,763095.804579742 2949436.33850239,
763086.132105649 2949451.46730207,763078.452329651 2949462.11549407,
763075.354136904 2949466.17407812,763064.362142565 2949477.64291974,
763059.953961626 2949481.28983009,762994.637609571 2949532.04103014,
762990.568508415 2949535.06640477,762986.710889563 2949539.61421415,
763117.237897679 2949709.50493431,763235.236617789 2949617.95619822,
763287.718121842 2949562.20592617,763111.553321674 2949423.91664605,
763104.471273676 2949418.44119003)))', 2249));
st_perimeter

 845.227713366825
(1 row)
			

Examples: Geography
Return perimeter in meters and feet for Polygon and MultiPolygon. Note this is geography (WGS 84 long lat)

SELECT ST_Perimeter(geog) As per_meters, ST_Perimeter(geog)/0.3048 As per_ft
FROM ST_GeogFromText('POLYGON((-71.1776848522251 42.3902896512902,-71.1776843766326 42.3903829478009,
-71.1775844305465 42.3903826677917,-71.1775825927231 42.3902893647987,-71.1776848522251 42.3902896512902))') As geog;

 per_meters | per_ft
-----------------+------------------
37.3790462565251 | 122.634666195949

-- MultiPolygon example --
SELECT ST_Perimeter(geog) As per_meters, ST_Perimeter(geog,false) As per_sphere_meters, ST_Perimeter(geog)/0.3048 As per_ft
FROM ST_GeogFromText('MULTIPOLYGON(((-71.1044543107478 42.340674480411,-71.1044542869917 42.3406744369506,
-71.1044553562977 42.340673886454,-71.1044543107478 42.340674480411)),
((-71.1044543107478 42.340674480411,-71.1044860600303 42.3407237015564,-71.1045215770124 42.3407653385914,
-71.1045498002983 42.3407946553165,-71.1045611902745 42.3408058316308,-71.1046016507427 42.340837442371,
-71.104617893173 42.3408475056957,-71.1048586153981 42.3409875993595,-71.1048736143677 42.3409959528211,
-71.1048878050242 42.3410084812078,-71.1044020965803 42.3414730072048,
-71.1039672113619 42.3412202916693,-71.1037740497748 42.3410666421308,
-71.1044280218456 42.3406894151355,-71.1044543107478 42.340674480411)))') As geog;

 per_meters | per_sphere_meters | per_ft
------------------+-------------------+------------------
 257.634283683311 | 257.412311446337 | 845.256836231335
			

See Also
ST_GeogFromText, ST_GeomFromText, ST_Length

Name
PostGIS_Lib_Version — Returns the version number of the PostGIS
		library.

Synopsis
	text fsfuncPostGIS_Lib_Version();	

;

Description
Returns the version number of the PostGIS library.

Examples
SELECT PostGIS_Lib_Version();
 postgis_lib_version

 1.3.3
(1 row)

See Also
PostGIS_Full_Version, PostGIS_GEOS_Version, PostGIS_LibXML_Version, PostGIS_PROJ_Version, PostGIS_Version

Name
ST_IsValidDetail — Returns a valid_detail (valid,reason,location) row stating if a geometry is valid or not and if not valid, a reason why and a location where.

Synopsis
	valid_detail fsfuncST_IsValidDetail(geom);	

geometry geom;

	valid_detail fsfuncST_IsValidDetail(geom, 	
	 	flags);	

geometry geom;
integer flags;

Description
Returns a valid_detail row, formed by a boolean (valid) stating if a geometry is valid, a varchar (reason) stating a reason why it is invalid and a geometry (location) pointing out where it is invalid.
Useful to substitute and improve the combination of ST_IsValid and ST_IsValidReason to generate a detailed report of invalid geometries.

The 'flags' argument is a bitfield. It can have the following values:
			
	
1: Consider self-intersecting rings forming holes as valid.
 This is also know as "the ESRI flag".
 Note that this is against the OGC model.

		
Availability: 2.0.0 - requires GEOS >= 3.3.0.

Examples

--First 3 Rejects from a successful quintuplet experiment
SELECT gid, reason(ST_IsValidDetail(the_geom)), ST_AsText(location(ST_IsValidDetail(the_geom))) as location
FROM
(SELECT ST_MakePolygon(ST_ExteriorRing(e.buff), ST_Accum(f.line)) As the_geom, gid
FROM (SELECT ST_Buffer(ST_MakePoint(x1*10,y1), z1) As buff, x1*10 + y1*100 + z1*1000 As gid
	FROM generate_series(-4,6) x1
	CROSS JOIN generate_series(2,5) y1
	CROSS JOIN generate_series(1,8) z1
	WHERE x1 > y1*0.5 AND z1 < x1*y1) As e
	INNER JOIN (SELECT ST_Translate(ST_ExteriorRing(ST_Buffer(ST_MakePoint(x1*10,y1), z1)),y1*1, z1*2) As line
	FROM generate_series(-3,6) x1
	CROSS JOIN generate_series(2,5) y1
	CROSS JOIN generate_series(1,10) z1
	WHERE x1 > y1*0.75 AND z1 < x1*y1) As f
ON (ST_Area(e.buff) > 78 AND ST_Contains(e.buff, f.line))
GROUP BY gid, e.buff) As quintuplet_experiment
WHERE ST_IsValid(the_geom) = false
ORDER BY gid
LIMIT 3;

 gid | reason | location
------+-------------------+-------------
 5330 | Self-intersection | POINT(32 5)
 5340 | Self-intersection | POINT(42 5)
 5350 | Self-intersection | POINT(52 5)

 --simple example
SELECT * FROM ST_IsValidDetail('LINESTRING(220227 150406,2220227 150407,222020 150410)');

 valid | reason | location
-------+--------+----------
 t | |

		

See Also

ST_IsValid,
ST_IsValidReason

Name
ST_GeometryType — Return the geometry type of the ST_Geometry value.

Synopsis
	text fsfuncST_GeometryType(g1);	

geometry g1;

Description
Returns the type of the geometry as a string. EG: 'ST_Linestring', 'ST_Polygon','ST_MultiPolygon' etc. This function differs from GeometryType(geometry) in the case of the string and ST in front that is returned, as well as the fact that it will not indicate whether the geometry is measured.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
[image: Description] This method implements the SQL/MM specification.	SQL-MM 3: 5.1.4
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_GeometryType(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
			--result
			ST_LineString
SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
		((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
		((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
		((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'));
			--result
			ST_PolyhedralSurface
SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
		((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
		((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
		((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'));
			--result
			ST_PolyhedralSurface
SELECT ST_GeometryType(geom) as result
 FROM
 (SELECT
 ST_GeomFromEWKT('TIN (((
 0 0 0,
 0 0 1,
 0 1 0,
 0 0 0
)), ((
 0 0 0,
 0 1 0,
 1 1 0,
 0 0 0
))
)') AS geom
) AS g;
 result

 ST_Tin

See Also
GeometryType

Name
ST_SetValue — Returns modified raster resulting from setting the value of a given band in a given columnx, rowy pixel or the pixels that intersect a particular geometry. Band numbers start at 1 and assumed to be 1 if not specified.

Synopsis
	raster fsfuncST_SetValue(rast, 	
	 	bandnum, 	
	 	geom, 	
	 	newvalue);	

raster rast;
integer bandnum;
geometry geom;
double precision newvalue;

	raster fsfuncST_SetValue(rast, 	
	 	geom, 	
	 	newvalue);	

raster rast;
geometry geom;
double precision newvalue;

	raster fsfuncST_SetValue(rast, 	
	 	bandnum, 	
	 	columnx, 	
	 	rowy, 	
	 	newvalue);	

raster rast;
integer bandnum;
integer columnx;
integer rowy;
double precision newvalue;

	raster fsfuncST_SetValue(rast, 	
	 	columnx, 	
	 	rowy, 	
	 	newvalue);	

raster rast;
integer columnx;
integer rowy;
double precision newvalue;

Description
Returns modified raster resulting from setting the specified pixels' values to new value for the designed band given the raster's row and column or a geometry. If no band is specified, then band 1 is assumed.
				
Enhanced: 2.1.0 Geometry variant of ST_SetValue() now supports any geometry type, not just point. The geometry variant is a wrapper around the geomval[] variant of ST_SetValues()

Examples

				-- Geometry example
SELECT (foo.geomval).val, ST_AsText(ST_Union((foo.geomval).geom))
FROM (SELECT ST_DumpAsPolygons(
		ST_SetValue(rast,1,
				ST_Point(3427927.75, 5793243.95),
				50)
) As geomval
FROM dummy_rast
where rid = 2) As foo
WHERE (foo.geomval).val < 250
GROUP BY (foo.geomval).val;

 val | st_astext
-----+---
 50 | POLYGON((3427927.75 5793244,3427927.75 5793243.95,3427927.8 579324 ...
 249 | POLYGON((3427927.95 5793243.95,3427927.95 5793243.85,3427928 57932 ...

				

-- Store the changed raster --
	UPDATE dummy_rast SET rast = ST_SetValue(rast,1, ST_Point(3427927.75, 5793243.95),100)
		WHERE rid = 2 ;

				

See Also
ST_Value, ST_DumpAsPolygons

Name
ST_MinkowskiSum — Performs Minkowski sum

Synopsis
	geometry fsfuncST_MinkowskiSum(geom1, 	
	 	geom2);	

geometry geom1;
geometry geom2;

Description
This function performs a 2D minkowski sum of a point, line or polygon with a polygon.
A minkowski sum of two geometries A and B is the set of all points that are the sum of any point in A and B. Minkowski sums are often used in motion planning and computer-aided design. More details on Wikipedia Minkowski addition.
The first parameter can be any 2D geometry (point, linestring, polygon). If a 3D geometry is passed, it will be converted to 2D by forcing Z to 0, leading to possible cases of invalidity. The second parameter must be a 2D polygon.
Implementation utilizes CGAL 2D Minkowskisum.
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.

Examples
Minkowski Sum of Linestring and circle polygon where Linestring cuts thru the circle
	

[image: Examples]Before Summing

 	

[image: Examples]After summing

SELECT ST_MinkowskiSum(line, circle))
FROM (SELECT
 ST_MakeLine(ST_MakePoint(10, 10),ST_MakePoint(100, 100)) As line,
 ST_Buffer(ST_GeomFromText('POINT(50 50)'), 30) As circle) As foo;

-- wkt --
MULTIPOLYGON(((30 59.9999999999999,30.5764415879031 54.1472903395161,32.2836140246614 48.5194970290472,35.0559116309237 43.3328930094119,38.7867965644036 38.7867965644035,43.332893009412 35.0559116309236,48.5194970290474 32.2836140246614,54.1472903395162 30.5764415879031,60.0000000000001 30,65.8527096604839 30.5764415879031,71.4805029709527 32.2836140246614,76.6671069905881 35.0559116309237,81.2132034355964 38.7867965644036,171.213203435596 128.786796564404,174.944088369076 133.332893009412,177.716385975339 138.519497029047,179.423558412097 144.147290339516,180 150,179.423558412097 155.852709660484,177.716385975339 161.480502970953,174.944088369076 166.667106990588,171.213203435596 171.213203435596,166.667106990588 174.944088369076,
161.480502970953 177.716385975339,155.852709660484 179.423558412097,150 180,144.147290339516 179.423558412097,138.519497029047 177.716385975339,133.332893009412 174.944088369076,128.786796564403 171.213203435596,38.7867965644035 81.2132034355963,35.0559116309236 76.667106990588,32.2836140246614 71.4805029709526,30.5764415879031 65.8527096604838,30 59.9999999999999)))

Minkowski Sum of a polygon and multipoint
	

[image: Examples]Before Summing

 	

[image: Examples]After summing: polygon is duplicated and translated to position of points

SELECT ST_MinkowskiSum(mp, poly)
FROM (SELECT 'MULTIPOINT(25 50,70 25)'::geometry As mp,
 'POLYGON((130 150, 20 40, 50 60, 125 100, 130 150))'::geometry As poly
) As foo

-- wkt --
MULTIPOLYGON(
 ((70 115,100 135,175 175,225 225,70 115)),
 ((120 65,150 85,225 125,275 175,120 65))
)

Name
Geocode — Takes in an address as a string (or other normalized address) and outputs a set of possible locations which include a point geometry in NAD 83 long lat, a normalized address for each, and the rating. The lower the rating the more likely the match.
 Results are sorted by lowest rating first. Can optionally pass in maximum results, defaults to 10, and restrict_region (defaults to NULL)

Synopsis
	setof record fsfuncgeocode(address, 	
	 	max_results=10, 	
	 	restrict_region=NULL, 	
	 	OUT addy, 	
	 	OUT geomout, 	
	 	OUT rating);	

varchar address;
integer max_results=10;
geometry restrict_region=NULL;
norm_addy OUT addy;
geometry OUT geomout;
integer OUT rating;

	setof record fsfuncgeocode(in_addy, 	
	 	max_results=10, 	
	 	restrict_region=NULL, 	
	 	OUT addy, 	
	 	OUT geomout, 	
	 	OUT rating);	

norm_addy in_addy;
integer max_results=10;
geometry restrict_region=NULL;
norm_addy OUT addy;
geometry OUT geomout;
integer OUT rating;

Description
Takes in an address as a string (or already normalized address) and outputs a set of possible locations which include a point geometry in NAD 83 long lat, a normalized_address (addy) for each, and the rating. The lower the rating the more likely the match.
 Results are sorted by lowest rating first. Uses Tiger data (edges,faces,addr), PostgreSQL fuzzy string matching (soundex,levenshtein) and PostGIS line interpolation functions to interpolate address along the Tiger edges. The higher the rating the less likely the geocode is right.
 The geocoded point is defaulted to offset 10 meters from center-line off to side (L/R) of street address is located on.
Enhanced: 2.0.0 to support Tiger 2010 structured data and revised some logic to improve speed, accuracy of geocoding, and to offset point from centerline to side of street address is located on. The new parameter max_results useful for specifying number of best results or just returning the best result.

Examples: Basic
The below examples timings are on a 3.0 GHZ single processor Windows 7 machine with 2GB ram running PostgreSQL 9.1rc1/PostGIS 2.0 loaded with all of MA,MN,CA, RI state Tiger data loaded.
Exact matches are faster to compute (61ms)
SELECT g.rating, ST_X(g.geomout) As lon, ST_Y(g.geomout) As lat,
 (addy).address As stno, (addy).streetname As street,
 (addy).streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st,(addy).zip
 FROM geocode('75 State Street, Boston MA 02109') As g;
 rating | lon | lat | stno | street | styp | city | st | zip
--------+-------------------+------------------+------+--------+------+--------+----+-------
 0 | -71.0556722990239 | 42.3589914927049 | 75 | State | St | Boston | MA | 02109

Even if zip is not passed in the geocoder can guess (took about 122-150 ms)
SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
 (addy).address As stno, (addy).streetname As street,
 (addy).streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st,(addy).zip
 FROM geocode('226 Hanover Street, Boston, MA',1) As g;
 rating | wktlonlat | stno | street | styp | city | st | zip
--------+---------------------------+------+---------+------+--------+----+-------
 1 | POINT(-71.05528 42.36316) | 226 | Hanover | St | Boston | MA | 02113

Can handle misspellings and provides more than one possible solution with ratings and takes longer (500ms).
SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
 (addy).address As stno, (addy).streetname As street,
 (addy).streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st,(addy).zip
 FROM geocode('31 - 37 Stewart Street, Boston, MA 02116') As g;
 rating | wktlonlat | stno | street | styp | city | st | zip
--------+---------------------------+------+--------+------+--------+----+-------
 70 | POINT(-71.06459 42.35113) | 31 | Stuart | St | Boston | MA | 02116

Using to do a batch geocode of addresses. Easiest is to set max_results=1. Only process those not yet geocoded (have no rating).
CREATE TABLE addresses_to_geocode(addid serial PRIMARY KEY, address text,
 lon numeric, lat numeric, new_address text, rating integer);

INSERT INTO addresses_to_geocode(address)
VALUES ('529 Main Street, Boston MA, 02129'),
 ('77 Massachusetts Avenue, Cambridge, MA 02139'),
 ('25 Wizard of Oz, Walaford, KS 99912323'),
 ('26 Capen Street, Medford, MA'),
 ('124 Mount Auburn St, Cambridge, Massachusetts 02138'),
 ('950 Main Street, Worcester, MA 01610');

-- only update the first 3 addresses (323-704 ms - there are caching and shared memory effects so first geocode you do is always slower) --
-- for large numbers of addresses you don't want to update all at once
-- since the whole geocode must commit at once
-- For this example we rejoin with LEFT JOIN
-- and set to rating to -1 rating if no match
-- to ensure we don't regeocode a bad address
UPDATE addresses_to_geocode
 SET (rating, new_address, lon, lat)
 = (COALESCE((g.geo).rating,-1), pprint_addy((g.geo).addy),
 ST_X((g.geo).geomout)::numeric(8,5), ST_Y((g.geo).geomout)::numeric(8,5))
FROM (SELECT addid
 FROM addresses_to_geocode
 WHERE rating IS NULL ORDER BY addid LIMIT 3) As a
 LEFT JOIN (SELECT addid, (geocode(address,1)) As geo
 FROM addresses_to_geocode As ag
 WHERE ag.rating IS NULL ORDER BY addid LIMIT 3) As g ON a.addid = g.addid
WHERE a.addid = addresses_to_geocode.addid;

result

Query returned successfully: 3 rows affected, 480 ms execution time.

SELECT * FROM addresses_to_geocode WHERE rating is not null;

 addid | address | lon | lat | new_address | rating
-------+--+-----------+----------+---+--------
 1 | 529 Main Street, Boston MA, 02129 | -71.07181 | 42.38359 | 529 Main St, Boston, MA 02129 | 0
 2 | 77 Massachusetts Avenue, Cambridge, MA 02139 | -71.09428 | 42.35988 | 77 Massachusetts Ave, Cambridge, MA 02139 | 0
 3 | 25 Wizard of Oz, Walaford, KS 99912323 | | | | -1

Examples: Using Geometry filter

SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
 (addy).address As stno, (addy).streetname As street,
 (addy).streettypeabbrev As styp,
 (addy).location As city, (addy).stateabbrev As st,(addy).zip
 FROM geocode('100 Federal Street, MA',
 3,
 (SELECT ST_Union(the_geom)
 FROM place WHERE statefp = '25' AND name = 'Lynn')::geometry
) As g;

 rating | wktlonlat | stno | street | styp | city | st | zip
--------+--------------------------+------+---------+------+------+----+-------
 8 | POINT(-70.96796 42.4659) | 100 | Federal | St | Lynn | MA | 01905
Total query runtime: 245 ms.

See Also
Normalize_Address, Pprint_Addy, ST_AsText, ST_SnapToGrid, ST_X, ST_Y

Name
ST_LineInterpolatePoint — Returns a point interpolated along a line. Second argument is a float8 between 0 and 1
			representing fraction of total length of linestring the point has to be located.

Synopsis
	geometry fsfuncST_LineInterpolatePoint(a_linestring, 	
	 	a_fraction);	

geometry a_linestring;
float8 a_fraction;

Description
Returns a point interpolated along a line. First argument
			must be a LINESTRING. Second argument is a float8 between 0 and 1
			representing fraction of total linestring length the point has to be located.
See ST_LineLocatePoint for
			computing the line location nearest to a Point.
Note
Since release 1.1.1 this function also interpolates M and
			 Z values (when present), while prior releases set them to
			 0.0.

Availability: 0.8.2, Z and M supported added in 1.1.1
Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Interpolate_Point.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
[image: Examples]A linestring with the interpolated point at 20% position (0.20)

--Return point 20% along 2d line
SELECT ST_AsEWKT(ST_LineInterpolatePoint(the_line, 0.20))
	FROM (SELECT ST_GeomFromEWKT('LINESTRING(25 50, 100 125, 150 190)') as the_line) As foo;
 st_asewkt

 POINT(51.5974135047432 76.5974135047432)

--Return point mid-way of 3d line
SELECT ST_AsEWKT(ST_LineInterpolatePoint(the_line, 0.5))
	FROM (SELECT ST_GeomFromEWKT('LINESTRING(1 2 3, 4 5 6, 6 7 8)') as the_line) As foo;

	st_asewkt

 POINT(3.5 4.5 5.5)

--find closest point on a line to a point or other geometry
 SELECT ST_AsText(ST_LineInterpolatePoint(foo.the_line, ST_LineLocatePoint(foo.the_line, ST_GeomFromText('POINT(4 3)'))))
FROM (SELECT ST_GeomFromText('LINESTRING(1 2, 4 5, 6 7)') As the_line) As foo;
 st_astext

 POINT(3 4)

See Also
ST_AsText, ST_AsEWKT, ST_Length, ST_LineLocatePoint

Name
ST_AsText — Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.

Synopsis
	text fsfuncST_AsText(g1);	

geometry g1;

	text fsfuncST_AsText(g1);	

geography g1;

Description
Returns the Well-Known Text representation of the geometry/geography.
Note
The WKT spec does not include the SRID. To get the SRID as part of the data, use the non-standard
				PostGIS ST_AsEWKT

[image: Description]
				WKT format does not maintain precision so to prevent floating truncation, use ST_AsBinary or ST_AsEWKB format for transport.
			
Note
ST_AsText is the reverse of ST_GeomFromText. Use ST_GeomFromText to convert to a postgis geometry from ST_AsText representation.

Availability: 1.5 - support for geography was introduced.
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.25
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_AsText('01030000000100000005000000000000000000
00
F03F000000000000F03F000000000000F03F000000000000F03
F00');

		 st_astext

 POLYGON((0 0,0 1,1 1,1 0,0 0))
(1 row)

See Also
ST_AsBinary, ST_AsEWKB, ST_AsEWKT, ST_GeomFromText

Name
ST_SnapToGrid — Resample a raster by snapping it to a grid. New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.
				

Synopsis
	raster fsfuncST_SnapToGrid(rast, 	
	 	gridx, 	
	 	gridy, 	
	 	algorithm=NearestNeighbour, 	
	 	maxerr=0.125, 	
	 	scalex=DEFAULT 0, 	
	 	scaley=DEFAULT 0);	

raster rast;
double precision gridx;
double precision gridy;
text algorithm=NearestNeighbour;
double precision maxerr=0.125;
double precision scalex=DEFAULT 0;
double precision scaley=DEFAULT 0;

	raster fsfuncST_SnapToGrid(rast, 	
	 	gridx, 	
	 	gridy, 	
	 	scalex, 	
	 	scaley, 	
	 	algorithm=NearestNeighbour, 	
	 	maxerr=0.125);	

raster rast;
double precision gridx;
double precision gridy;
double precision scalex;
double precision scaley;
text algorithm=NearestNeighbour;
double precision maxerr=0.125;

	raster fsfuncST_SnapToGrid(rast, 	
	 	gridx, 	
	 	gridy, 	
	 	scalexy, 	
	 	algorithm=NearestNeighbour, 	
	 	maxerr=0.125);	

raster rast;
double precision gridx;
double precision gridy;
double precision scalexy;
text algorithm=NearestNeighbour;
double precision maxerr=0.125;

Description
Resample a raster by snapping it to a grid defined by an arbitrary pixel corner (gridx & gridy) and optionally a pixel size (scalex & scaley). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. The default is NearestNeighbor which is the fastest but results in the worst interpolation.
gridx and gridy define any arbitrary pixel corner of the new grid. This is not necessarily the upper left corner of the new raster and it does not have to be inside or on the edge of the new raster extent.
You can optionnal define the pixel size of the new grid with scalex and scaley.
The extent of the new raster will encompass the extent of the provided raster.
A maxerror percent of 0.125 if no maxerr is specified.
Note
Refer to: GDAL Warp resampling methods for more details.

Note
Use ST_Resample if you need more control over the grid parameters.

Availability: 2.0.0 Requires GDAL 1.6.1+
Changed: 2.1.0 Works on rasters with no SRID

Examples
A simple example snapping a raster to a slightly different grid.
-- the original raster pixel size
SELECT ST_UpperLeftX(ST_AddBand(ST_MakeEmptyRaster(10, 10, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0))

-- the rescaled raster raster pixel size
SELECT ST_UpperLeftX(ST_SnapToGrid(ST_AddBand(ST_MakeEmptyRaster(10, 10, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0), 0.0002, 0.0002))

See Also
ST_Resample, ST_Rescale, ST_UpperLeftX, ST_UpperLeftY

Release 1.2.0

Release date: 2006/12/08
This release provides type definitions along with
 serialization/deserialization capabilities for SQL-MM defined curved
 geometries, as well as performance enhancements.
Changes

Added curved geometry type support for
 serialization/deserialization
Added point-in-polygon shortcircuit to the Contains and Within
 functions to improve performance for these cases.

PostGIS Geometry / Geography / Raster Dump Functions

The functions given below are PostGIS functions that take as input or return as output a set of or single geometry_dump or geomval data type object.
	ST_DumpAsPolygons - Returns a set of geomval (geom,val) rows, from a given raster band. If no band number is specified, band num defaults to 1.
	ST_Intersection - Returns a raster or a set of geometry-pixelvalue pairs representing the shared portion of two rasters or the geometrical intersection of a vectorization of the raster and a geometry.
	ST_Dump - Returns a set of geometry_dump (geom,path) rows, that make up a geometry g1.
	ST_DumpPoints - Returns a set of geometry_dump (geom,path) rows of all points that make up a geometry.
	ST_DumpRings - Returns a set of geometry_dump rows, representing the exterior and interior rings of a polygon.

Name
ST_YMin — Returns Y minima of a bounding box 2d or 3d or a geometry.

Synopsis
	float fsfuncST_YMin(aGeomorBox2DorBox3D);	

box3d aGeomorBox2DorBox3D;

Description
Returns Y minima of a bounding box 2d or 3d or a geometry.
Note
Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
			defined for geometries and box2d. However you can not feed it a geometry or box2d text representation, since that will not auto-cast.

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_YMin('BOX3D(1 2 3, 4 5 6)');
st_ymin

2

SELECT ST_YMin(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'));
st_ymin

3

SELECT ST_YMin(CAST('BOX(-3 2, 3 4)' As box2d));
st_ymin

2
--Observe THIS DOES NOT WORK because it will try to autocast the string representation to a BOX3D
SELECT ST_YMin('LINESTRING(1 3, 5 6)');

--ERROR: BOX3D parser - doesn't start with BOX3D(

SELECT ST_YMin(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
st_ymin

150406
		

See Also
ST_GeomFromEWKT, ST_XMin, ST_XMax, ST_YMax, ST_ZMax, ST_ZMin

Name
<-> —
Returns the 2D distance between A and B.
			

Synopsis
	double precision fsfunc<->(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

	double precision fsfunc<->(A, 	
	 	B);	

				 geography

				 A
				;

				 geography

				 B
				;

Description

The <-> operator returns the 2D distance between
two geometries. Used in the "ORDER BY" clause provides index-assisted
nearest-neighbor result sets. For PostgreSQL below 9.5 only gives
centroid distance of bounding boxes and for PostgreSQL 9.5+, does true
KNN distance search giving true distance between geometries, and distance
sphere for geographies.

Note
This operand will make use of 2D GiST indexes that may be available on the geometries. It is different from other operators that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

Note
Index only kicks in if one of the geometries is a constant (not in a subquery/cte). e.g. 'SRID=3005;POINT(1011102 450541)'::geometry instead of a.geom

Refer to OpenGeo workshop: Nearest-Neighbour Searching for real live example.
Enhanced: 2.2.0 -- True KNN ("K nearest neighbor") behavior for geometry and geography for PostgreSQL 9.5+. Note for geography KNN is based on sphere rather than spheroid. For PostgreSQL 9.4 and below, geography support is new but only supports centroid box.
Changed: 2.2.0 -- For PostgreSQL 9.5 users, old Hybrid syntax may be slower, so you'll want to get rid of that hack if you are running your code only on PostGIS 2.2+ 9.5+. See examples below.
Availability: 2.0.0 -- Weak KNN provides nearest neighbors based on geometry centroid distances instead of true distances. Exact results for points, inexact for all other types. Available for PostgreSQL 9.1+

Examples
SELECT ST_Distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
FROM va2005
ORDER BY d limit 10;

 d | edabbr | vaabbr
------------------+--------+--------
 0 | ALQ | 128
 5541.57712511724 | ALQ | 129A
 5579.67450712005 | ALQ | 001
 6083.4207708641 | ALQ | 131
 7691.2205404848 | ALQ | 003
 7900.75451037313 | ALQ | 122
 8694.20710669982 | ALQ | 129B
 9564.24289057111 | ALQ | 130
 12089.665931705 | ALQ | 127
 18472.5531479404 | ALQ | 002
(10 rows)

Then the KNN raw answer:

SELECT st_distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
FROM va2005
ORDER BY geom <-> 'SRID=3005;POINT(1011102 450541)'::geometry limit 10;

 d | edabbr | vaabbr
------------------+--------+--------
 0 | ALQ | 128
 5541.57712511724 | ALQ | 129A
 5579.67450712005 | ALQ | 001
 6083.4207708641 | ALQ | 131
 7691.2205404848 | ALQ | 003
 7900.75451037313 | ALQ | 122
 8694.20710669982 | ALQ | 129B
 9564.24289057111 | ALQ | 130
 12089.665931705 | ALQ | 127
 18472.5531479404 | ALQ | 002
(10 rows)

If you run "EXPLAIN ANALYZE" on the two queries you would see a performance improvement for the second.

For users running with PostgreSQL < 9.5, use a hybrid query to find the true nearest neighbors. First a CTE query using the index-assisted KNN, then an exact query to get correct ordering:

WITH index_query AS (
 SELECT ST_Distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
	FROM va2005
 ORDER BY geom <-> 'SRID=3005;POINT(1011102 450541)'::geometry LIMIT 100)
 SELECT *
	FROM index_query
 ORDER BY d limit 10;

 d | edabbr | vaabbr
------------------+--------+--------
 0 | ALQ | 128
 5541.57712511724 | ALQ | 129A
 5579.67450712005 | ALQ | 001
 6083.4207708641 | ALQ | 131
 7691.2205404848 | ALQ | 003
 7900.75451037313 | ALQ | 122
 8694.20710669982 | ALQ | 129B
 9564.24289057111 | ALQ | 130
 12089.665931705 | ALQ | 127
 18472.5531479404 | ALQ | 002
(10 rows)

			

See Also
ST_DWithin, ST_Distance, <#>

Name
ST_Rotate — Rotate a geometry rotRadians counter-clockwise about an origin.

Synopsis
	geometry fsfuncST_Rotate(geomA, 	
	 	rotRadians);	

geometry geomA;
float rotRadians;

	geometry fsfuncST_Rotate(geomA, 	
	 	rotRadians, 	
	 	x0, 	
	 	y0);	

geometry geomA;
float rotRadians;
float x0;
float y0;

	geometry fsfuncST_Rotate(geomA, 	
	 	rotRadians, 	
	 	pointOrigin);	

geometry geomA;
float rotRadians;
geometry pointOrigin;

Description
Rotates geometry rotRadians counter-clockwise about the origin. The rotation origin can be
			specified either as a POINT geometry, or as x and y coordinates. If the origin is not
			specified, the geometry is rotated about POINT(0 0).
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.0.0 additional parameters for specifying the origin of rotation were added.
Availability: 1.1.2. Name changed from Rotate to ST_Rotate in 1.2.2
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

--Rotate 180 degrees
SELECT ST_AsEWKT(ST_Rotate('LINESTRING (50 160, 50 50, 100 50)', pi()));
 st_asewkt

 LINESTRING(-50 -160,-50 -50,-100 -50)
(1 row)

--Rotate 30 degrees counter-clockwise at x=50, y=160
SELECT ST_AsEWKT(ST_Rotate('LINESTRING (50 160, 50 50, 100 50)', pi()/6, 50, 160));
 st_asewkt

 LINESTRING(50 160,105 64.7372055837117,148.301270189222 89.7372055837117)
(1 row)

--Rotate 60 degrees clockwise from centroid
SELECT ST_AsEWKT(ST_Rotate(geom, -pi()/3, ST_Centroid(geom)))
FROM (SELECT 'LINESTRING (50 160, 50 50, 100 50)'::geometry AS geom) AS foo;
 st_asewkt
--
 LINESTRING(116.4225 130.6721,21.1597 75.6721,46.1597 32.3708)
(1 row)
		

See Also
ST_Affine, ST_RotateX, ST_RotateY, ST_RotateZ

Name
ST_AddBand —
					Returns a raster with the new band(s) of given type added with given initial value in the given index location. If no index is specified, the band is added to the end.
				

Synopsis
	(1) raster fsfuncST_AddBand(rast, 	
	 	addbandargset);	

raster rast;
addbandarg[] addbandargset;

	(2) raster fsfuncST_AddBand(rast, 	
	 	index, 	
	 	pixeltype, 	
	 	initialvalue=0, 	
	 	nodataval=NULL);	

raster rast;
integer index;
text pixeltype;
double precision initialvalue=0;
double precision nodataval=NULL;

	(3) raster fsfuncST_AddBand(rast, 	
	 	pixeltype, 	
	 	initialvalue=0, 	
	 	nodataval=NULL);	

raster rast;
text pixeltype;
double precision initialvalue=0;
double precision nodataval=NULL;

	(4) raster fsfuncST_AddBand(torast, 	
	 	fromrast, 	
	 	fromband=1, 	
	 	torastindex=at_end);	

raster torast;
raster fromrast;
integer fromband=1;
integer torastindex=at_end;

	(5) raster fsfuncST_AddBand(torast, 	
	 	fromrasts, 	
	 	fromband=1, 	
	 	torastindex=at_end);	

raster torast;
raster[] fromrasts;
integer fromband=1;
integer torastindex=at_end;

	(6) raster fsfuncST_AddBand(rast, 	
	 	index, 	
	 	outdbfile, 	
	 	outdbindex, 	
	 	nodataval=NULL);	

raster rast;
integer index;
text outdbfile;
integer[] outdbindex;
double precision nodataval=NULL;

	(7) raster fsfuncST_AddBand(rast, 	
	 	outdbfile, 	
	 	outdbindex, 	
	 	index=at_end, 	
	 	nodataval=NULL);	

raster rast;
text outdbfile;
integer[] outdbindex;
integer index=at_end;
double precision nodataval=NULL;

Description

					Returns a raster with a new band added in given position (index), of given type, of given initial value, and of given nodata value. If no index is specified, the band is added to the end. If no fromband is specified, band 1 is assumed. Pixel type is a string representation of one of the pixel types specified in ST_BandPixelType. If an existing index is specified all subsequent bands >= that index are incremented by 1. If an initial value greater than the max of the pixel type is specified, then the initial value is set to the highest value allowed by the pixel type.
				

					For the variant that takes an array of addbandarg (Variant 1), a specific addbandarg's index value is relative to the raster at the time when the band described by that addbandarg is being added to the raster. See the Multiple New Bands example below.
				

					For the variant that takes an array of rasters (Variant 5), if torast is NULL then the fromband band of each raster in the array is accumulated into a new raster.
				

					For the variants that take outdbfile (Variants 6 and 7), the value must include the full path to the raster file. The file must also be accessible to the postgres server process.
				
Enhanced: 2.1.0 support for addbandarg added.
Enhanced: 2.1.0 support for new out-db bands added.

Examples: Single New Band

-- Add another band of type 8 bit unsigned integer with pixels initialized to 200
UPDATE dummy_rast
 SET rast = ST_AddBand(rast,'8BUI'::text,200)
WHERE rid = 1;
				

-- Create an empty raster 100x100 units, with upper left right at 0, add 2 bands (band 1 is 0/1 boolean bit switch, band2 allows values 0-15)
-- uses addbandargs
INSERT INTO dummy_rast(rid,rast)
 VALUES(10, ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 1, -1, 0, 0, 0),
	ARRAY[
		ROW(1, '1BB'::text, 0, NULL),
		ROW(2, '4BUI'::text, 0, NULL)
]::addbandarg[]
)
);

-- output meta data of raster bands to verify all is right --
SELECT (bmd).*
FROM (SELECT ST_BandMetaData(rast,generate_series(1,2)) As bmd
 FROM dummy_rast WHERE rid = 10) AS foo;
 --result --
 pixeltype | nodatavalue | isoutdb | path
-----------+----------------+-------------+---------+------
 1BB | | f |
 4BUI | | f |

-- output meta data of raster -
SELECT (rmd).width, (rmd).height, (rmd).numbands
FROM (SELECT ST_MetaData(rast) As rmd
 FROM dummy_rast WHERE rid = 10) AS foo;
-- result --
 upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
------------+------------+-------+--------+------------+------------+-------+-------+------+----------
 0 | 0 | 100 | 100 | 1 | -1 | 0 | 0 | 0 | 2
				

Examples: Multiple New Bands

SELECT
	*
FROM ST_BandMetadata(
	ST_AddBand(
		ST_MakeEmptyRaster(10, 10, 0, 0, 1, -1, 0, 0, 0),
		ARRAY[
			ROW(NULL, '8BUI', 255, 0),
			ROW(NULL, '16BUI', 1, 2),
			ROW(2, '32BUI', 100, 12),
			ROW(2, '32BF', 3.14, -1)
]::addbandarg[]
),
	ARRAY[]::integer[]
);

 bandnum | pixeltype | nodatavalue | isoutdb | path
---------+-----------+-------------+---------+------
 1 | 8BUI | 0 | f |
 2 | 32BF | -1 | f |
 3 | 32BUI | 12 | f |
 4 | 16BUI | 2 | f |
				

-- Aggregate the 1st band of a table of like rasters into a single raster
-- with as many bands as there are test_types and as many rows (new rasters) as there are mice
-- NOTE: The ORDER BY test_type is only supported in PostgreSQL 9.0+
-- for 8.4 and below it usually works to order your data in a subselect (but not guaranteed)
-- The resulting raster will have a band for each test_type alphabetical by test_type
-- For mouse lovers: No mice were harmed in this exercise
SELECT
	mouse,
	ST_AddBand(NULL, array_agg(rast ORDER BY test_type), 1) As rast
FROM mice_studies
GROUP BY mouse;
				

Examples: New Out-db band

SELECT
	*
FROM ST_BandMetadata(
	ST_AddBand(
		ST_MakeEmptyRaster(10, 10, 0, 0, 1, -1, 0, 0, 0),
		'/home/raster/mytestraster.tif'::text, NULL::int[]
),
	ARRAY[]::integer[]
);

 bandnum | pixeltype | nodatavalue | isoutdb | path
---------+-----------+-------------+---------+------
 1 | 8BUI | | t | /home/raster/mytestraster.tif
 2 | 8BUI | | t | /home/raster/mytestraster.tif
 3 | 8BUI | | t | /home/raster/mytestraster.tif
				

See Also

					ST_BandMetaData,
					ST_BandPixelType,
					ST_MakeEmptyRaster,
					ST_MetaData,
					ST_NumBands,
					ST_Reclass
				

Name
ST_DumpValues —
					Get the values of the specified band as a 2-dimension array.
				

Synopsis
	setof record fsfuncST_DumpValues(rast, 	
	 	nband=NULL, 	
	 	exclude_nodata_value=true);	

							raster rast
						;

							integer[] nband=NULL
						;

							boolean exclude_nodata_value=true
						;

	double precision[][] fsfuncST_DumpValues(rast, 	
	 	nband, 	
	 	exclude_nodata_value=true);	

							raster rast
						;

							integer nband
						;

							boolean exclude_nodata_value=true
						;

Description

					Get the values of the specified band as a 2-dimension array (first index is row, second is column). If nband is NULL or not provided, all raster bands are processed.
				
Availability: 2.1.0

Examples

WITH foo AS (
	SELECT ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 2, '32BF', 3, -9999), 3, '16BSI', 0, 0) AS rast
)
SELECT
	(ST_DumpValues(rast)).*
FROM foo;

 nband | valarray
-------+--
 1 | {{1,1,1},{1,1,1},{1,1,1}}
 2 | {{3,3,3},{3,3,3},{3,3,3}}
 3 | {{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL}}
(3 rows)
				

WITH foo AS (
	SELECT ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 2, '32BF', 3, -9999), 3, '16BSI', 0, 0) AS rast
)
SELECT
	(ST_DumpValues(rast, ARRAY[3, 1])).*
FROM foo;

 nband | valarray
-------+--
 3 | {{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL}}
 1 | {{1,1,1},{1,1,1},{1,1,1}}
(2 rows)
				

WITH foo AS (
	SELECT ST_SetValue(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 1, 2, 5) AS rast
)
SELECT
	(ST_DumpValues(rast, 1))[2][1]
FROM foo;

 st_dumpvalues

 5
(1 row)
				

See Also

					ST_Value,
					ST_SetValue,
					ST_SetValues
				

Name
ST_LineSubstring — Return a linestring being a substring of the input one
			starting and ending at the given fractions of total 2d length.
			Second and third arguments are float8 values between 0 and
			1.

Synopsis
	geometry fsfuncST_LineSubstring(a_linestring, 	
	 	startfraction, 	
	 	endfraction);	

geometry a_linestring;
float8 startfraction;
float8 endfraction;

Description
Return a linestring being a substring of the input one
			starting and ending at the given fractions of total 2d length.
			Second and third arguments are float8 values between 0 and
			1. This only works with LINESTRINGs.
			To use with contiguous MULTILINESTRINGs use in conjunction with ST_LineMerge.
If 'start' and 'end' have the same value this is equivalent
			to ST_LineInterpolatePoint.
See ST_LineLocatePoint for
			computing the line location nearest to a Point.
Note
Since release 1.1.1 this function also interpolates M and
			 Z values (when present), while prior releases set them to
			 unspecified values.

Availability: 1.1.0, Z and M supported added in 1.1.1
Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Substring.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
[image: Examples]A linestring seen with 1/3 midrange overlaid (0.333, 0.666)

--Return the approximate 1/3 mid-range part of a linestring
SELECT ST_AsText(ST_Line_SubString(ST_GeomFromText('LINESTRING(25 50, 100 125, 150 190)'), 0.333, 0.666));

										 st_astext
--
LINESTRING(69.2846934853974 94.2846934853974,100 125,111.700356260683 140.210463138888)

--The below example simulates a while loop in
--SQL using PostgreSQL generate_series() to cut all
--linestrings in a table to 100 unit segments
-- of which no segment is longer than 100 units
-- units are measured in the SRID units of measurement
-- It also assumes all geometries are LINESTRING or contiguous MULTILINESTRING
--and no geometry is longer than 100 units*10000
--for better performance you can reduce the 10000
--to match max number of segments you expect

SELECT field1, field2, ST_LineSubstring(the_geom, 100.00*n/length,
 CASE
	WHEN 100.00*(n+1) < length THEN 100.00*(n+1)/length
	ELSE 1
 END) As the_geom
FROM
 (SELECT sometable.field1, sometable.field2,
 ST_LineMerge(sometable.the_geom) AS the_geom,
 ST_Length(sometable.the_geom) As length
 FROM sometable
) AS t
CROSS JOIN generate_series(0,10000) AS n
WHERE n*100.00/length < 1;
			

See Also
ST_Length, ST_LineInterpolatePoint, ST_LineMerge

Name
GetNodeByPoint — Find the id of a node at a point location

Synopsis
	integer fsfuncGetNodeByPoint(atopology, 	
	 	point, 	
	 	tol);	

varchar atopology;
geometry point;
float8 tol;

Retrieve the id of a node at a point location
The function return an integer (id-node) given a topology, a POINT and a tolerance. If tolerance = 0 mean exactly intersection otherwise retrieve the node from an interval.
If there isn't a node at the point, it return 0 (zero).
If use tolerance > 0 and near the point there are more than one node it throw an exception.
Note
If tolerance = 0, the function use ST_Intersects otherwise will use ST_DWithin.

Availability: 2.0.0 - requires GEOS >= 3.3.0.

Examples
These examples use edges we created in AddEdge
SELECT topology.GetNodeByPoint('ma_topo',geom, 1) As nearnode
 FROM ST_GeomFromEWKT('SRID=26986;POINT(227591.9 893900.4)') As geom;
 nearnode

 2

SELECT topology.GetNodeByPoint('ma_topo',geom, 1000) As too_much_tolerance
 FROM ST_GeomFromEWKT('SRID=26986;POINT(227591.9 893900.4)') As geom;

 ----get error--
 ERROR: Two or more nodes found

See Also

AddEdge,
GetEdgeByPoint,
GetFaceByPoint

Name
lex table — A lex table is used to classify alphanumeric input and associate that input with (a) input tokens (See the section called “Input Tokens”) and (b) standardized representations.

Description
A lex (short for lexicon) table is used to classify alphanumeric input and associate that input with the section called “Input Tokens” and (b) standardized representations. Things you will find in these tables are ONE mapped to stdword: 1.
A lex has at least the following columns in the table. You may add
	id
	Primary key of table

	seq
	integer: definition number?

	word
	text: the input word

	stdword
	text: the standardized replacement word

	token
	integer: the kind of word it is. Only if it is used in this context will it be replaced. Refer to PAGC Tokens.

Name
ST_MakePoint — Creates a 2D,3DZ or 4D point geometry.

Synopsis
	geometry fsfuncST_MakePoint(x, 	
	 	y);	

double precision x;
double precision y;

	geometry fsfuncST_MakePoint(x, 	
	 	y, 	
	 	z);	

double precision x;
double precision y;
double precision z;

	geometry fsfuncST_MakePoint(x, 	
	 	y, 	
	 	z, 	
	 	m);	

double precision x;
double precision y;
double precision z;
double precision m;

Description
Creates a 2D,3DZ or 4D point geometry (geometry with measure).
			ST_MakePoint while not being OGC compliant is
			generally faster and more precise than ST_GeomFromText
			and ST_PointFromText. It is also easier to use if
			you have raw coordinates rather than WKT.
Note
Note x is longitude and y is latitude

Note
Use ST_MakePointM if you need to make a point with x,y,m.

[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
--Return point with unknown SRID
SELECT ST_MakePoint(-71.1043443253471, 42.3150676015829);

--Return point marked as WGS 84 long lat
SELECT ST_SetSRID(ST_MakePoint(-71.1043443253471, 42.3150676015829),4326);

--Return a 3D point (e.g. has altitude)
SELECT ST_MakePoint(1, 2,1.5);

--Get z of point
SELECT ST_Z(ST_MakePoint(1, 2,1.5));
result

1.5

See Also
ST_GeomFromText, ST_PointFromText, ST_SetSRID, ST_MakePointM

Name
addbandarg — A composite type used as input into the ST_AddBand function defining the attributes and initial value of the new band.

Description

					A composite type used as input into the ST_AddBand function defining the attributes and initial value of the new band.

					
	
								index
								integer
							
	
									1-based value indicating the position where the new band will be added amongst the raster's bands. If NULL, the new band will be added at the end of the raster's bands.
								

	
								pixeltype
								text
							
	
					Pixel type of the new band. One of defined pixel types as described in ST_BandPixelType.
								

	
								initialvalue
								double precision
							
	
					Initial value that all pixels of new band will be set to.
								

	
								nodataval
								double precision
							
	
					NODATA value of the new band. If NULL, the new band will not have a NODATA value assigned.
								

				

See Also

					ST_AddBand
				

Geometry Accessors

Name
ST_AsGeoJSON — Return the geometry as a GeoJSON element.

Synopsis
	text fsfuncST_AsGeoJSON(geom, 	
	 	maxdecimaldigits=15, 	
	 	options=0);	

geometry geom;
integer maxdecimaldigits=15;
integer options=0;

	text fsfuncST_AsGeoJSON(geog, 	
	 	maxdecimaldigits=15, 	
	 	options=0);	

geography geog;
integer maxdecimaldigits=15;
integer options=0;

	text fsfuncST_AsGeoJSON(gj_version, 	
	 	geom, 	
	 	maxdecimaldigits=15, 	
	 	options=0);	

integer gj_version;
geometry geom;
integer maxdecimaldigits=15;
integer options=0;

	text fsfuncST_AsGeoJSON(gj_version, 	
	 	geog, 	
	 	maxdecimaldigits=15, 	
	 	options=0);	

integer gj_version;
geography geog;
integer maxdecimaldigits=15;
integer options=0;

Description
Return the geometry as a Geometry Javascript Object Notation (GeoJSON) element. (Cf GeoJSON
			specifications 1.0). 2D and 3D Geometries are both
			supported. GeoJSON only support SFS 1.1 geometry type (no curve
			support for example).
The gj_version parameter is the major version of the GeoJSON spec. If specified, must be 1. This represents the spec version of GeoJSON.
The third argument may be used to reduce the maximum number
			of decimal places used in output (defaults to 15).
The last 'options' argument could be used to add Bbox or Crs
			in GeoJSON output:
			
	0: means no option (default value)

	1: GeoJSON Bbox

	2: GeoJSON Short CRS (e.g EPSG:4326)

	4: GeoJSON Long CRS (e.g urn:ogc:def:crs:EPSG::4326)

			
Version 1: ST_AsGeoJSON(geom) / precision=15 version=1 options=0
Version 2: ST_AsGeoJSON(geom, precision) / version=1 options=0
Version 3: ST_AsGeoJSON(geom, precision, options) / version=1
Version 4: ST_AsGeoJSON(gj_version, geom) / precision=15 options=0
Version 5: ST_AsGeoJSON(gj_version, geom, precision) /options=0
Version 6: ST_AsGeoJSON(gj_version, geom, precision,options)
Availability: 1.3.4
Availability: 1.5.0 geography support was introduced.
Changed: 2.0.0 support default args and named args.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
GeoJSON format is generally more efficient than other formats for use in ajax mapping.
			One popular javascript client that supports this is Open Layers.
			Example of its use is OpenLayers GeoJSON Example
		
SELECT ST_AsGeoJSON(the_geom) from fe_edges limit 1;
					 st_asgeojson

{"type":"MultiLineString","coordinates":[[[-89.734634999999997,31.492072000000000],
[-89.734955999999997,31.492237999999997]]]}
(1 row)
--3d point
SELECT ST_AsGeoJSON('LINESTRING(1 2 3, 4 5 6)');

st_asgeojson

 {"type":"LineString","coordinates":[[1,2,3],[4,5,6]]}

Name
ST_Distance — For geometry type Returns the 2D Cartesian distance between two geometries in
		projected units (based on spatial ref). For geography type defaults to return minimum geodesic distance between two geographies in meters.

Synopsis
	float fsfuncST_Distance(g1, 	
	 	g2);	

geometry
			g1;
geometry
			g2;

	float fsfuncST_Distance(gg1, 	
	 	gg2);	

geography
			gg1;
geography
			gg2;

	float fsfuncST_Distance(gg1, 	
	 	gg2, 	
	 	use_spheroid);	

geography
			gg1;
geography
			gg2;
boolean
			use_spheroid;

Description
For geometry type returns the minimum 2D Cartesian distance between two geometries in
		projected units (spatial ref units). For geography type defaults to return the minimum geodesic distance between two geographies in meters. If use_spheroid is
		false, a faster sphere calculation is used instead of a spheroid.
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.23
[image: Description]
 This method supports Circular Strings and Curves
[image: Description] This method is also provided by SFCGAL backend.
Availability: 1.5.0 geography support was introduced in 1.5. Speed improvements for planar to better handle large or many vertex geometries
Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.
Enhanced: 2.1.0 - support for curved geometries was introduced.
Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires Proj >= 4.9.0 to take advantage of the new feature.

Basic Geometry Examples

--Geometry example - units in planar degrees 4326 is WGS 84 long lat unit=degrees
SELECT ST_Distance(
		ST_GeomFromText('POINT(-72.1235 42.3521)',4326),
		ST_GeomFromText('LINESTRING(-72.1260 42.45, -72.123 42.1546)', 4326)
);
st_distance

0.00150567726382282

-- Geometry example - units in meters (SRID: 26986 Massachusetts state plane meters) (most accurate for Massachusetts)
SELECT ST_Distance(
			ST_Transform(ST_GeomFromText('POINT(-72.1235 42.3521)',4326),26986),
			ST_Transform(ST_GeomFromText('LINESTRING(-72.1260 42.45, -72.123 42.1546)', 4326),26986)
);
st_distance

123.797937878454

-- Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (least accurate)
SELECT ST_Distance(
			ST_Transform(ST_GeomFromText('POINT(-72.1235 42.3521)',4326),2163),
			ST_Transform(ST_GeomFromText('LINESTRING(-72.1260 42.45, -72.123 42.1546)', 4326),2163)
);

st_distance

126.664256056812

Geography Examples
-- same as geometry example but note units in meters - use sphere for slightly faster less accurate
SELECT ST_Distance(gg1, gg2) As spheroid_dist, ST_Distance(gg1, gg2, false) As sphere_dist
FROM (SELECT
	ST_GeogFromText('SRID=4326;POINT(-72.1235 42.3521)') As gg1,
	ST_GeogFromText('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)') As gg2
) As foo ;

 spheroid_dist | sphere_dist
------------------+------------------
 123.802076746848 | 123.475736916397

See Also
ST_3DDistance, ST_DWithin, ST_DistanceSphere, ST_DistanceSpheroid, ST_MaxDistance, ST_Transform

Name
ST_Retile —
					Return a set of configured tiles from an arbitrarily tiled raster coverage.
				

Synopsis
	SETOF raster fsfuncST_Retile(tab, 	
	 	col, 	
	 	ext, 	
	 	sfx, 	
	 	sfy, 	
	 	tw, 	
	 	th, 	
	 	algo='NearestNeighbor');	

regclass tab;
name col;
geometry ext;
float8 sfx;
float8 sfy;
int tw;
int th;
text algo='NearestNeighbor';

Description

Return a set of tiles having the specified scale (sfx,
sfy) and max size (tw,
th) and covering the specified extent
(ext) with data coming from the specified
raster coverage (tab, col).
				
Algorithm options are: 'NearestNeighbor', 'Bilinear', 'Cubic', 'CubicSpline', and 'Lanczos'. Refer to: GDAL Warp resampling methods for more details.
Availability: 2.2.0

See Also

 ST_CreateOverview

Topology Spatial Relationships

Abstract
This section lists the Topology functions used to check relationships between topogeometries and topology primitives

Name
ST_BandPath — Returns system file path to a band stored in file system. If no bandnum specified, 1 is assumed.

Synopsis
	text fsfuncST_BandPath(rast, 	
	 	bandnum=1);	

raster rast;
integer bandnum=1;

Description
Returns system file path to a band. Throws an error if called with an in db band.

Examples

					

See Also

Name
ST_AsLatLonText — Return the Degrees, Minutes, Seconds representation of the given point.

Synopsis
	text fsfuncST_AsLatLonText(pt, 	
	 	format='');	

geometry pt;
text format='';

Description
Returns the Degrees, Minutes, Seconds representation of the point.
Note
It is assumed the point is in a lat/lon projection. The X (lon) and Y (lat) coordinates are normalized in the output
				to the "normal" range (-180 to +180 for lon, -90 to +90 for lat).

					The text parameter is a format string containing the format for the resulting text, similar to a date format string. Valid tokens
					are "D" for degrees, "M" for minutes, "S" for seconds, and "C" for cardinal direction (NSEW). DMS tokens may be repeated to indicate
					desired width and precision ("SSS.SSSS" means " 1.0023").
				

					"M", "S", and "C" are optional. If "C" is omitted, degrees are
					shown with a "-" sign if south or west. If "S" is omitted, minutes will be shown as decimal with as many digits of precision
					as you specify. If "M" is also omitted, degrees are shown as decimal with as many digits precision as you specify.
				

					If the format string is omitted (or zero-length) a default format will be used.
				

			
Availability: 2.0

Examples
Default format.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)'));
 st_aslatlontext

 2°19'29.928"S 3°14'3.243"W

Providing a format (same as the default).

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D°M''S.SSS"C'));
 st_aslatlontext

 2°19'29.928"S 3°14'3.243"W

Characters other than D, M, S, C and . are just passed through.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D degrees, M minutes, S seconds to the C'));
 st_aslatlontext
--
 2 degrees, 19 minutes, 30 seconds to the S 3 degrees, 14 minutes, 3 seconds to the W

Signed degrees instead of cardinal directions.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D°M''S.SSS"'));
 st_aslatlontext

 -2°19'29.928" -3°14'3.243"

Decimal degrees.

SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D.DDDD degrees C'));
 st_aslatlontext

 2.3250 degrees S 3.2342 degrees W

Excessively large values are normalized.

SELECT (ST_AsLatLonText('POINT (-302.2342342 -792.32498)'));
 st_aslatlontext

 72°19'29.928"S 57°45'56.757"E

Release 1.0.0RC4

Release date: 2005/03/18
Fourth release candidate for 1.0.0. Contains bug fixes and a few
 improvements.
Upgrading

You need a dump/reload to upgrade from precedent releases. See
 the upgrading chapter for more
 informations.

Library changes

BUGFIX (segfaulting) in geom_accum().
BUGFIX in 64bit architectures support.
BUGFIX in box3d computation function with collections.
NEW subselects support in selectivity estimator.
Early return from force_collection.
Consistency check fix in SnapToGrid().
Box2d output changed back to 15 significant digits.

Scripts changes

NEW distance_sphere() function.
Changed get_proj4_from_srid implementation to use PL/PGSQL
 instead of SQL.

Other changes

BUGFIX in loader and dumper handling of MultiLine shapes
BUGFIX in loader, skipping all but first hole of
 polygons.
jdbc2: code cleanups, Makefile improvements
FLEX and YACC variables set *after* pgsql Makefile.global is
 included and only if the pgsql *stripped* version evaluates to the
 empty string
Added already generated parser in release
Build scripts refinements
improved version handling, central Version.config
improvements in postgis_restore.pl

Name
ST_LocateAlong — Return a derived geometry collection value with elements
			that match the specified measure. Polygonal elements are not
			supported.

Synopsis
	geometry fsfuncST_LocateAlong(ageom_with_measure, 	
	 	a_measure, 	
	 	offset);	

geometry ageom_with_measure;
float8 a_measure;
float8 offset;

Description
Return a derived geometry collection value with elements
		that match the specified measure. Polygonal elements are not
		supported.
If an offset is provided, the resultant will be offset to the
		left or right of the input line by the specified number of units.
		A positive offset will be to the left, and a negative one to the
		right.
Semantic is specified by: ISO/IEC CD 13249-3:200x(E) - Text
		for Continuation CD Editing Meeting
Availability: 1.1.0 by old name ST_Locate_Along_Measure.
Changed: 2.0.0 in prior versions this used to be called ST_Locate_Along_Measure. The old name has been deprecated and will be removed in the future but is still available.
Note
Use this function only for geometries with an M component

[image: Description]
 This function supports M coordinates.

Examples
SELECT ST_AsText(the_geom)
		FROM
		(SELECT ST_LocateAlong(
			ST_GeomFromText('MULTILINESTRINGM((1 2 3, 3 4 2, 9 4 3),
		(1 2 3, 5 4 5))'),3) As the_geom) As foo;

						 st_asewkt

 MULTIPOINT M (1 2 3)

--Geometry collections are difficult animals so dump them
--to make them more digestable
SELECT ST_AsText((ST_Dump(the_geom)).geom)
	FROM
	(SELECT ST_LocateAlong(
			ST_GeomFromText('MULTILINESTRINGM((1 2 3, 3 4 2, 9 4 3),
	(1 2 3, 5 4 5))'),3) As the_geom) As foo;

 st_asewkt

 POINTM(1 2 3)
 POINTM(9 4 3)
 POINTM(1 2 3)
	

See Also
ST_Dump, ST_LocateBetween

Name
ST_EstimatedExtent — Return the 'estimated' extent of the given spatial table.
			The estimated is taken from the geometry column's statistics. The
			current schema will be used if not specified.

Synopsis
	box2d fsfuncST_EstimatedExtent(schema_name, 	
	 	table_name, 	
	 	geocolumn_name, 	
	 	parent_ony);	

text schema_name;
text table_name;
text geocolumn_name;
boolean parent_ony;

	box2d fsfuncST_EstimatedExtent(schema_name, 	
	 	table_name, 	
	 	geocolumn_name);	

text schema_name;
text table_name;
text geocolumn_name;

	box2d fsfuncST_EstimatedExtent(table_name, 	
	 	geocolumn_name);	

text table_name;
text geocolumn_name;

Description
Return the 'estimated' extent of the given spatial table.
			The estimated is taken from the geometry column's statistics. The
			current schema will be used if not specified. The default behavior
			is to also use statistics collected from children tables (tables
			with INHERITS) if available. If 'parent_ony' is set to TRUE, only
			statistics for the given table are used and children tables are
			ignored.
		
For PostgreSQL>=8.0.0 statistics are gathered by VACUUM
		ANALYZE and resulting extent will be about 95% of the real
		one.
Note

In absence of statistics (empty table or no ANALYZE called) this function
returns NULL. Prior to version 1.5.4 an exception was thrown
instead.
		

For PostgreSQL<8.0.0 statistics are gathered by
		update_geometry_stats() and resulting extent will be exact.
Availability: 1.0.0
Changed: 2.1.0. Up to 2.0.x this was called ST_Estimated_Extent.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_EstimatedExtent('ny', 'edges', 'the_geom');
--result--
BOX(-8877653 4912316,-8010225.5 5589284)

SELECT ST_EstimatedExtent('feature_poly', 'the_geom');
--result--
BOX(-124.659652709961 24.6830825805664,-67.7798080444336 49.0012092590332)
		

See Also
ST_Extent

Name
ST_ColorMap — Creates a new raster of up to four 8BUI bands (grayscale, RGB, RGBA) from the source raster and a specified band. Band 1 is assumed if not specified.

Synopsis
	raster fsfuncST_ColorMap(rast, 	
	 	nband=1, 	
	 	colormap=grayscale, 	
	 	method=INTERPOLATE);	

raster rast;
integer nband=1;
text colormap=grayscale;
text method=INTERPOLATE;

	raster fsfuncST_ColorMap(rast, 	
	 	colormap, 	
	 	method=INTERPOLATE);	

raster rast;
text colormap;
text method=INTERPOLATE;

Description

						Apply a colormap to the band at nband of rast resulting a new raster comprised of up to four 8BUI bands. The number of 8BUI bands in the new raster is determined by the number of color components defined in colormap.
					
If nband is not specified, then band 1 is assumed.

						colormap can be a keyword of a pre-defined colormap or a set of lines defining the value and the color components.
					

						Valid pre-defined colormap keyword:
					
	
								grayscale or greyscale for a one 8BUI band raster of shades of gray.
							

	
								pseudocolor for a four 8BUI (RGBA) band raster with colors going from blue to green to red.
							

	
								fire for a four 8BUI (RGBA) band raster with colors going from black to red to pale yellow.
							

	
								bluered for a four 8BUI (RGBA) band raster with colors going from blue to pale white to red.
							

						Users can pass a set of entries (one per line) to colormap to specify custom colormaps. Each entry generally consists of five values: the pixel value and corresponding Red, Green, Blue, Alpha components (color components between 0 and 255). Percent values can be used instead of pixel values where 0% and 100% are the minimum and maximum values found in the raster band. Values can be separated with commas (','), tabs, colons (':') and/or spaces. The pixel value can be set to nv, null or nodata for the NODATA value. An example is provided below.
					

5 0 0 0 255
4 100:50 55 255
1 150,100 150 255
0% 255 255 255 255
nv 0 0 0 0
					

						The syntax of colormap is similar to that of the color-relief mode of GDAL gdaldem.
					

						Valid keywords for method:
					
	
								INTERPOLATE to use linear interpolation to smoothly blend the colors between the given pixel values
							

	
								EXACT to strictly match only those pixels values found in the colormap. Pixels whose value does not match a colormap entry will be set to 0 0 0 0 (RGBA)
							

	
								NEAREST to use the colormap entry whose value is closest to the pixel value
							

Note

							A great reference for colormaps is ColorBrewer.
						

Warning

							The resulting bands of new raster will have no NODATA value set. Use ST_SetBandNoDataValue to set a NODATA value if one is needed.
						

Availability: 2.1.0

Examples
This is a junk table to play with

-- setup test raster table --
DROP TABLE IF EXISTS funky_shapes;
CREATE TABLE funky_shapes(rast raster);

INSERT INTO funky_shapes(rast)
WITH ref AS (
	SELECT ST_MakeEmptyRaster(200, 200, 0, 200, 1, -1, 0, 0) AS rast
)
SELECT
	ST_Union(rast)
FROM (
	SELECT
		ST_AsRaster(
			ST_Rotate(
				ST_Buffer(
					ST_GeomFromText('LINESTRING(0 2,50 50,150 150,125 50)'),
					i*2
),
				pi() * i * 0.125, ST_Point(50,50)
),
			ref.rast, '8BUI'::text, i * 5
) AS rast
	FROM ref
	CROSS JOIN generate_series(1, 10, 3) AS i
) AS shapes;
					

SELECT
	ST_NumBands(rast) As n_orig,
	ST_NumBands(ST_ColorMap(rast,1, 'greyscale')) As ngrey,
	ST_NumBands(ST_ColorMap(rast,1, 'pseudocolor')) As npseudo,
	ST_NumBands(ST_ColorMap(rast,1, 'fire')) As nfire,
	ST_NumBands(ST_ColorMap(rast,1, 'bluered')) As nbluered,
	ST_NumBands(ST_ColorMap(rast,1, '
100% 255 0 0
 80% 160 0 0
 50% 130 0 0
 30% 30 0 0
 20% 60 0 0
 0% 0 0 0
 nv 255 255 255
	')) As nred
FROM funky_shapes;
					

 n_orig | ngrey | npseudo | nfire | nbluered | nred
--------+-------+---------+-------+----------+------
 1 | 1 | 4 | 4 | 4 | 3
					

Examples: Compare different color map looks using ST_AsPNG

SELECT
	ST_AsPNG(rast) As orig_png,
	ST_AsPNG(ST_ColorMap(rast,1,'greyscale')) As grey_png,
	ST_AsPNG(ST_ColorMap(rast,1, 'pseudocolor')) As pseudo_png,
	ST_AsPNG(ST_ColorMap(rast,1, 'nfire')) As fire_png,
	ST_AsPNG(ST_ColorMap(rast,1, 'bluered')) As bluered_png,
	ST_AsPNG(ST_ColorMap(rast,1, '
100% 255 0 0
 80% 160 0 0
 50% 130 0 0
 30% 30 0 0
 20% 60 0 0
 0% 0 0 0
 nv 255 255 255
	')) As red_png
FROM funky_shapes;
					
	
										
											
[image: Examples: Compare different color map looks using ST_AsPNG]orig_png

										

										
										
											
[image: Examples: Compare different color map looks using ST_AsPNG]grey_png

										

										
										
											
[image: Examples: Compare different color map looks using ST_AsPNG]pseudo_png

										

									
	
										
											
[image: Examples: Compare different color map looks using ST_AsPNG]fire_png

										

										
										
											
[image: Examples: Compare different color map looks using ST_AsPNG]bluered_png

										

										
										
											
[image: Examples: Compare different color map looks using ST_AsPNG]red_png

										

									

See Also

						ST_AsPNG,
						ST_AsRaster
						ST_MapAlgebra,
						ST_NumBands,
						ST_Reclass,
						ST_SetBandNoDataValue,
						ST_Union
					

Name
ST_Tile — Returns a set of rasters resulting from the split of the input raster based upon the desired dimensions of the output rasters.

Synopsis
	setof raster fsfuncST_Tile(rast, 	
	 	nband, 	
	 	width, 	
	 	height, 	
	 	padwithnodata=FALSE, 	
	 	nodataval=NULL);	

raster rast;
int[] nband;
integer width;
integer height;
boolean padwithnodata=FALSE;
double precision nodataval=NULL;

	setof raster fsfuncST_Tile(rast, 	
	 	nband, 	
	 	width, 	
	 	height, 	
	 	padwithnodata=FALSE, 	
	 	nodataval=NULL);	

raster rast;
integer nband;
integer width;
integer height;
boolean padwithnodata=FALSE;
double precision nodataval=NULL;

	setof raster fsfuncST_Tile(rast, 	
	 	width, 	
	 	height, 	
	 	padwithnodata=FALSE, 	
	 	nodataval=NULL);	

raster rast;
integer width;
integer height;
boolean padwithnodata=FALSE;
double precision nodataval=NULL;

Description

					Returns a set of rasters resulting from the split of the input raster based upon the desired dimensions of the output rasters.
				

					If padwithnodata = FALSE, edge tiles on the right and bottom sides of the raster may have different dimensions than the rest of the tiles. If padwithnodata = TRUE, all tiles will have the same dimensions with the possibility that edge tiles being padded with NODATA values. If raster band(s) do not have NODATA value(s) specified, one can be specified by setting nodataval.
				
Note

						If a specified band of the input raster is out-of-db, the corresponding band in the output rasters will also be out-of-db.
					

Availability: 2.1.0

Examples

WITH foo AS (
	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 2, '8BUI', 10, 0) AS rast UNION ALL
	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, 0, 1, -1, 0, 0, 0), 1, '8BUI', 2, 0), 2, '8BUI', 20, 0) AS rast UNION ALL
	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, 0, 1, -1, 0, 0, 0), 1, '8BUI', 3, 0), 2, '8BUI', 30, 0) AS rast UNION ALL

	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -3, 1, -1, 0, 0, 0), 1, '8BUI', 4, 0), 2, '8BUI', 40, 0) AS rast UNION ALL
	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -3, 1, -1, 0, 0, 0), 1, '8BUI', 5, 0), 2, '8BUI', 50, 0) AS rast UNION ALL
	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -3, 1, -1, 0, 0, 0), 1, '8BUI', 6, 0), 2, '8BUI', 60, 0) AS rast UNION ALL

	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -6, 1, -1, 0, 0, 0), 1, '8BUI', 7, 0), 2, '8BUI', 70, 0) AS rast UNION ALL
	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -6, 1, -1, 0, 0, 0), 1, '8BUI', 8, 0), 2, '8BUI', 80, 0) AS rast UNION ALL
	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -6, 1, -1, 0, 0, 0), 1, '8BUI', 9, 0), 2, '8BUI', 90, 0) AS rast
), bar AS (
	SELECT ST_Union(rast) AS rast FROM foo
), baz AS (
	SELECT ST_Tile(rast, 3, 3, TRUE) AS rast FROM bar
)
SELECT
	ST_DumpValues(rast)
FROM baz;

 st_dumpvalues
--
 (1,"{{1,1,1},{1,1,1},{1,1,1}}")
 (2,"{{10,10,10},{10,10,10},{10,10,10}}")
 (1,"{{2,2,2},{2,2,2},{2,2,2}}")
 (2,"{{20,20,20},{20,20,20},{20,20,20}}")
 (1,"{{3,3,3},{3,3,3},{3,3,3}}")
 (2,"{{30,30,30},{30,30,30},{30,30,30}}")
 (1,"{{4,4,4},{4,4,4},{4,4,4}}")
 (2,"{{40,40,40},{40,40,40},{40,40,40}}")
 (1,"{{5,5,5},{5,5,5},{5,5,5}}")
 (2,"{{50,50,50},{50,50,50},{50,50,50}}")
 (1,"{{6,6,6},{6,6,6},{6,6,6}}")
 (2,"{{60,60,60},{60,60,60},{60,60,60}}")
 (1,"{{7,7,7},{7,7,7},{7,7,7}}")
 (2,"{{70,70,70},{70,70,70},{70,70,70}}")
 (1,"{{8,8,8},{8,8,8},{8,8,8}}")
 (2,"{{80,80,80},{80,80,80},{80,80,80}}")
 (1,"{{9,9,9},{9,9,9},{9,9,9}}")
 (2,"{{90,90,90},{90,90,90},{90,90,90}}")
(18 rows)
				

WITH foo AS (
	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 2, '8BUI', 10, 0) AS rast UNION ALL
	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, 0, 1, -1, 0, 0, 0), 1, '8BUI', 2, 0), 2, '8BUI', 20, 0) AS rast UNION ALL
	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, 0, 1, -1, 0, 0, 0), 1, '8BUI', 3, 0), 2, '8BUI', 30, 0) AS rast UNION ALL

	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -3, 1, -1, 0, 0, 0), 1, '8BUI', 4, 0), 2, '8BUI', 40, 0) AS rast UNION ALL
	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -3, 1, -1, 0, 0, 0), 1, '8BUI', 5, 0), 2, '8BUI', 50, 0) AS rast UNION ALL
	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -3, 1, -1, 0, 0, 0), 1, '8BUI', 6, 0), 2, '8BUI', 60, 0) AS rast UNION ALL

	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -6, 1, -1, 0, 0, 0), 1, '8BUI', 7, 0), 2, '8BUI', 70, 0) AS rast UNION ALL
	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -6, 1, -1, 0, 0, 0), 1, '8BUI', 8, 0), 2, '8BUI', 80, 0) AS rast UNION ALL
	SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -6, 1, -1, 0, 0, 0), 1, '8BUI', 9, 0), 2, '8BUI', 90, 0) AS rast
), bar AS (
	SELECT ST_Union(rast) AS rast FROM foo
), baz AS (
	SELECT ST_Tile(rast, 3, 3, 2) AS rast FROM bar
)
SELECT
	ST_DumpValues(rast)
FROM baz;

 st_dumpvalues
--
 (1,"{{10,10,10},{10,10,10},{10,10,10}}")
 (1,"{{20,20,20},{20,20,20},{20,20,20}}")
 (1,"{{30,30,30},{30,30,30},{30,30,30}}")
 (1,"{{40,40,40},{40,40,40},{40,40,40}}")
 (1,"{{50,50,50},{50,50,50},{50,50,50}}")
 (1,"{{60,60,60},{60,60,60},{60,60,60}}")
 (1,"{{70,70,70},{70,70,70},{70,70,70}}")
 (1,"{{80,80,80},{80,80,80},{80,80,80}}")
 (1,"{{90,90,90},{90,90,90},{90,90,90}}")
(9 rows)
				

See Also

					ST_Union,
					ST_Retile
				

Release 1.1.0

Release date: 2005/12/21
This is a Minor release, containing many improvements and new
 things. Most notably: build procedure greatly simplified; transform()
 performance drastically improved; more stable GEOS connectivity (CAPI
 support); lots of new functions; draft topology support.
It is highly recommended that you upgrade to
 GEOS-2.2.x before installing PostGIS, this will ensure future GEOS
 upgrades won't require a rebuild of the PostGIS library.
Credits

This release includes code from Mark Cave Ayland for caching of
 proj4 objects. Markus Schaber added many improvements in his JDBC2
 code. Alex Bodnaru helped with PostgreSQL source dependency relief and
 provided Debian specfiles. Michael Fuhr tested new things on Solaris
 arch. David Techer and Gerald Fenoy helped testing GEOS C-API
 connector. Hartmut Tschauner provided code for the azimuth() function.
 Devrim GUNDUZ provided RPM specfiles. Carl Anderson helped with the
 new area building functions. See the credits section for more names.

Upgrading

If you are upgrading from release 1.0.3 or later you
 DO NOT need a dump/reload. Simply sourcing the
 new lwpostgis_upgrade.sql script in all your existing databases will
 work. See the soft upgrade chapter
 for more information.
If you are upgrading from a release between 1.0.0RC6
 and 1.0.2 (inclusive) and really want a live upgrade read
 the upgrade section of the
 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

New functions

scale() and transscale() companion methods to translate()
line_substring()
line_locate_point()
M(point)
LineMerge(geometry)
shift_longitude(geometry)
azimuth(geometry)
locate_along_measure(geometry, float8)
locate_between_measures(geometry, float8, float8)
SnapToGrid by point offset (up to 4d support)
BuildArea(any_geometry)
OGC BdPolyFromText(linestring_wkt, srid)
OGC BdMPolyFromText(linestring_wkt, srid)
RemovePoint(linestring, offset)
ReplacePoint(linestring, offset, point)

Bug fixes

Fixed memory leak in polygonize()
Fixed bug in lwgeom_as_anytype cast functions
Fixed USE_GEOS, USE_PROJ and USE_STATS elements of
 postgis_version() output to always reflect library state.

Function semantic changes

SnapToGrid doesn't discard higher dimensions
Changed Z() function to return NULL if requested dimension is
 not available

Performance improvements

Much faster transform() function, caching proj4 objects
Removed automatic call to fix_geometry_columns() in
 AddGeometryColumns() and update_geometry_stats()

JDBC2 works

Makefile improvements
JTS support improvements
Improved regression test system
Basic consistency check method for geometry collections
Support for (Hex)(E)wkb
Autoprobing DriverWrapper for HexWKB / EWKT switching
fix compile problems in ValueSetter for ancient jdk
 releases.
fix EWKT constructors to accept SRID=4711; representation
added preliminary read-only support for java2d geometries

Other new things

Full autoconf-based configuration, with PostgreSQL source
 dependency relief
GEOS C-API support (2.2.0 and higher)
Initial support for topology modelling
Debian and RPM specfiles
New lwpostgis_upgrade.sql script

Other changes

JTS support improvements
Stricter mapping between DBF and SQL integer and string
 attributes
Wider and cleaner regression test suite
old jdbc code removed from release
obsoleted direct use of postgis_proc_upgrade.pl
scripts version unified with release version

Name
ST_MapAlgebraExpr — 1 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the input raster band and of pixeltype provided. Band 1 is assumed if no band is specified.

Synopsis
	raster fsfuncST_MapAlgebraExpr(rast, 	
	 	band, 	
	 	pixeltype, 	
	 	expression, 	
	 	nodataval=NULL);	

raster rast;
integer band;
text pixeltype;
text expression;
double precision nodataval=NULL;

	raster fsfuncST_MapAlgebraExpr(rast, 	
	 	pixeltype, 	
	 	expression, 	
	 	nodataval=NULL);	

raster rast;
text pixeltype;
text expression;
double precision nodataval=NULL;

Description
Warning

							ST_MapAlgebraExpr is deprecated as of 2.1.0. Use ST_MapAlgebra instead.
						

						Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation defined by the expression on the input raster (rast). If no band is specified band 1 is assumed. The new raster will have the same georeference, width, and height as the original raster but will only have one band.
					

						If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL, then the new raster band will have the same pixeltype as the input rast band.
					

						In the expression you can use the term [rast] to refer to the pixel value of the original band, [rast.x] to refer to the 1-based pixel column index, [rast.y] to refer to the 1-based pixel row index.
					
Availability: 2.0.0

Examples
Create a new 1 band raster from our original that is a function of modulo 2 of the original raster band.

ALTER TABLE dummy_rast ADD COLUMN map_rast raster;
UPDATE dummy_rast SET map_rast = ST_MapAlgebraExpr(rast,NULL,'mod([rast],2)') WHERE rid = 2;

SELECT
	ST_Value(rast,1,i,j) As origval,
	ST_Value(map_rast, 1, i, j) As mapval
FROM dummy_rast
CROSS JOIN generate_series(1, 3) AS i
CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;

 origval | mapval
---------+--------
 253 | 1
 254 | 0
 253 | 1
 253 | 1
 254 | 0
 254 | 0
 250 | 0
 254 | 0
 254 | 0
					
Create a new 1 band raster of pixel-type 2BUI from our original that is reclassified and set the nodata value to be 0.
ALTER TABLE dummy_rast ADD COLUMN map_rast2 raster;
UPDATE dummy_rast SET
	map_rast2 = ST_MapAlgebraExpr(rast,'2BUI','CASE WHEN [rast] BETWEEN 100 and 250 THEN 1 WHEN [rast] = 252 THEN 2 WHEN [rast] BETWEEN 253 and 254 THEN 3 ELSE 0 END', '0')
WHERE rid = 2;

SELECT DISTINCT
	ST_Value(rast,1,i,j) As origval,
	ST_Value(map_rast2, 1, i, j) As mapval
FROM dummy_rast
CROSS JOIN generate_series(1, 5) AS i
CROSS JOIN generate_series(1,5) AS j
WHERE rid = 2;

 origval | mapval
---------+--------
 249 | 1
 250 | 1
 251 |
 252 | 2
 253 | 3
 254 | 3

SELECT
	ST_BandPixelType(map_rast2) As b1pixtyp
FROM dummy_rast
WHERE rid = 2;

 b1pixtyp

 2BUI
					
	
										
											
[image: Examples]original (column rast-view)

										

										
										
											
[image: Examples]rast_view_ma

										

									

Create a new 3 band raster same pixel type from our original 3 band raster with first band altered by map algebra and remaining 2 bands unaltered.

SELECT
	ST_AddBand(
		ST_AddBand(
			ST_AddBand(
				ST_MakeEmptyRaster(rast_view),
				ST_MapAlgebraExpr(rast_view,1,NULL,'tan([rast])*[rast]')
),
			ST_Band(rast_view,2)
),
		ST_Band(rast_view, 3) As rast_view_ma
)
FROM wind
WHERE rid=167;
					

See Also

						ST_MapAlgebraExpr,
						ST_MapAlgebraFct,
						ST_BandPixelType,
						ST_GeoReference,
						ST_Value
					

Name
ST_MakeEmptyRaster — Returns an empty raster (having no bands) of given dimensions (width & height), upperleft X and Y, pixel size and rotation (scalex, scaley, skewx & skewy) and reference system (srid).
				If a raster is passed in, returns a new raster with the same size, alignment and SRID. If srid is left out, the spatial ref is set to unknown (0).

Synopsis
	raster fsfuncST_MakeEmptyRaster(rast);	

raster rast;

	raster fsfuncST_MakeEmptyRaster(width, 	
	 	height, 	
	 	upperleftx, 	
	 	upperlefty, 	
	 	scalex, 	
	 	scaley, 	
	 	skewx, 	
	 	skewy, 	
	 	srid=unknown);	

integer width;
integer height;
float8 upperleftx;
float8 upperlefty;
float8 scalex;
float8 scaley;
float8 skewx;
float8 skewy;
integer srid=unknown;

	raster fsfuncST_MakeEmptyRaster(width, 	
	 	height, 	
	 	upperleftx, 	
	 	upperlefty, 	
	 	pixelsize);	

integer width;
integer height;
float8 upperleftx;
float8 upperlefty;
float8 pixelsize;

Description
Returns an empty raster (having no band) of given dimensions (width & height) and georeferenced in spatial (or world) coordinates with upper left X (upperleftx), upper left Y (upperlefty),
				pixel size and rotation (scalex, scaley, skewx & skewy) and reference system (srid).
The last version use a single parameter to specify the pixel size (pixelsize). scalex is set to this argument and scaley is set to the negative value of this argument. skewx and skewy are set to 0.
If an existing raster is passed in, it returns a new raster with the same meta data settings (without the bands).
If no srid is specified it defaults to 0. After you create an empty raster you probably want to add bands to it and maybe edit it. Refer to ST_AddBand to define bands and ST_SetValue to set initial pixel values.

Examples

INSERT INTO dummy_rast(rid,rast)
VALUES(3, ST_MakeEmptyRaster(100, 100, 0.0005, 0.0005, 1, 1, 0, 0, 4326));

--use an existing raster as template for new raster
INSERT INTO dummy_rast(rid,rast)
SELECT 4, ST_MakeEmptyRaster(rast)
FROM dummy_rast WHERE rid = 3;

-- output meta data of rasters we just added
SELECT rid, (md).*
FROM (SELECT rid, ST_MetaData(rast) As md
	FROM dummy_rast
	WHERE rid IN(3,4)) As foo;

-- output --
 rid | upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
-----+------------+------------+-------+--------+------------+------------+-------+-------+------+----------
 3 | 0.0005 | 0.0005 | 100 | 100 | 1 | 1 | 0 | 0 | 4326 | 0
 4 | 0.0005 | 0.0005 | 100 | 100 | 1 | 1 | 0 | 0 | 4326 | 0
				

See Also
ST_AddBand, ST_MetaData, ST_ScaleX, ST_ScaleY, ST_SetValue, ST_SkewX, , ST_SkewY

Name
Install_Missing_Indexes — Finds all tables with key columns used in geocoder joins and filter conditions that are missing used indexes on those columns and will add them.

Synopsis
	boolean fsfuncInstall_Missing_Indexes();	

;

Description
Finds all tables in tiger and tiger_data schemas with key columns used in geocoder joins and filters that are missing indexes on those columns and will output the SQL DDL to
 define the index for those tables and then execute the generated script. This is a helper function that adds new indexes needed to make queries faster that may have been missing during the load process.
 This function is a companion to Missing_Indexes_Generate_Script that in addition to generating the create index script, also executes it.
 It is called as part of the update_geocode.sql upgrade script.
Availability: 2.0.0

Examples
SELECT install_missing_indexes();
 install_missing_indexes

 t

See Also
Loader_Generate_Script, Missing_Indexes_Generate_Script

Name
ST_RasterToWorldCoordX — Returns the geometric X coordinate upper left of a raster, column and row. Numbering of columns
					and rows starts at 1.

Synopsis
	float8 fsfuncST_RasterToWorldCoordX(rast, 	
	 	xcolumn);	

raster rast;
integer xcolumn;

	float8 fsfuncST_RasterToWorldCoordX(rast, 	
	 	xcolumn, 	
	 	yrow);	

raster rast;
integer xcolumn;
integer yrow;

Description
Returns the upper left X coordinate of a raster column row in geometric units of the georeferenced raster.
					Numbering of columns and rows starts at 1 but if you pass in a negative number or number higher than number of
						columns in raster, it will give you
					coordinates outside of the raster file to left or right with the assumption that the
					skew and pixel sizes are same as selected raster.
Note
For non-skewed rasters, providing the X column is sufficient. For skewed rasters,
						the georeferenced coordinate is a function of the ST_ScaleX and ST_SkewX and row and column.
						An error will be raised if you give just the X column for a skewed raster.

Changed: 2.1.0 In prior versions, this was called ST_Raster2WorldCoordX

Examples

-- non-skewed raster providing column is sufficient
SELECT rid, ST_RasterToWorldCoordX(rast,1) As x1coord,
	ST_RasterToWorldCoordX(rast,2) As x2coord,
	ST_ScaleX(rast) As pixelx
FROM dummy_rast;

 rid | x1coord | x2coord | pixelx
-----+------------+-----------+--------
 1 | 0.5 | 2.5 | 2
 2 | 3427927.75 | 3427927.8 | 0.05
				

-- for fun lets skew it
SELECT rid, ST_RasterToWorldCoordX(rast, 1, 1) As x1coord,
	ST_RasterToWorldCoordX(rast, 2, 3) As x2coord,
	ST_ScaleX(rast) As pixelx
FROM (SELECT rid, ST_SetSkew(rast, 100.5, 0) As rast FROM dummy_rast) As foo;

 rid | x1coord | x2coord | pixelx
-----+------------+-----------+--------
 1 | 0.5 | 203.5 | 2
 2 | 3427927.75 | 3428128.8 | 0.05
				

See Also
ST_ScaleX, ST_RasterToWorldCoordY, ST_SetSkew, ST_SkewX

Name
ST_Z — Return the Z coordinate of the point, or NULL if not
			available. Input must be a point.

Synopsis
	float fsfuncST_Z(a_point);	

geometry a_point;

Description
Return the Z coordinate of the point, or NULL if not
			available. Input must be a point.
[image: Description] This method implements the SQL/MM specification.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_Z(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_z

	3
(1 row)

		

See Also
ST_GeomFromEWKT, ST_M, ST_X, ST_Y, ST_ZMax, ST_ZMin

Name
ST_StraightSkeleton — Compute a straight skeleton from a geometry

Synopsis
	geometry fsfuncST_StraightSkeleton(geom);	

geometry geom;

Description
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_StraightSkeleton(ST_GeomFromText('POLYGON ((190 190, 10 190, 10 10, 190 10, 190 20, 160 30, 60 30, 60 130, 190 140, 190 190))'));
	[image: Examples]Original polygon

					 	[image: Examples]Straight Skeleton of polygon

					

Name
geometry_dump — A spatial datatype with two fields - geom (holding a geometry object)
				and path[] (a 1-d array holding the position of the geometry within the dumped object.)

Description
geometry_dump is a compound data type consisting of a geometry object referenced by the .geom field
			and path[] a 1-dimensional integer array (starting at 1 e.g. path[1] to get first element) array that defines the navigation path within the dumped geometry to find this element.
			It is used by the ST_Dump* family of functions as an output type to explode a more complex geometry into its
				constituent parts and location of parts.

See Also
the section called “PostGIS Geometry / Geography / Raster Dump Functions”

Name
ST_DumpAsPolygons — Returns a set of geomval (geom,val) rows, from a given raster band. If no band number is specified, band num defaults to 1.

Synopsis
	setof geomval fsfuncST_DumpAsPolygons(rast, 	
	 	band_num=1, 	
	 	exclude_nodata_value=TRUE);	

raster rast;
integer band_num=1;
boolean exclude_nodata_value=TRUE;

Description
This is a set-returning function (SRF). It returns a set of
					geomval rows, formed by a geometry (geom) and a pixel band value (val).
					Each polygon is the union of all pixels for that band that have the same pixel value denoted by val.
ST_DumpAsPolygon is useful for polygonizing rasters. It is the
					reverse of a GROUP BY in that it creates new rows. For example it
					can be used to expand a single raster into multiple POLYGONS/MULTIPOLYGONS.
Availability: Requires GDAL 1.7 or higher.
Note
If there is a no data value set for a band, pixels with that value will not be returned.

Note
If you only care about count of pixels with a given value in a raster, it is faster to use ST_ValueCount.

Note

							This is different than ST_PixelAsPolygons where one geometry is returned for each pixel regardless of pixel value.
						

Examples

SELECT val, ST_AsText(geom) As geomwkt
FROM (
SELECT (ST_DumpAsPolygons(rast)).*
FROM dummy_rast
WHERE rid = 2
) As foo
WHERE val BETWEEN 249 and 251
ORDER BY val;

 val | geomwkt
-----+--
 249 | POLYGON((3427927.95 5793243.95,3427927.95 5793243.85,3427928 5793243.85,
		3427928 5793243.95,3427927.95 5793243.95))
 250 | POLYGON((3427927.75 5793243.9,3427927.75 5793243.85,3427927.8 5793243.85,
		3427927.8 5793243.9,3427927.75 5793243.9))
 250 | POLYGON((3427927.8 5793243.8,3427927.8 5793243.75,3427927.85 5793243.75,
		3427927.85 5793243.8, 3427927.8 5793243.8))
 251 | POLYGON((3427927.75 5793243.85,3427927.75 5793243.8,3427927.8 5793243.8,
		3427927.8 5793243.85,3427927.75 5793243.85))
					

See Also

						geomval,
						ST_Value,
						ST_Polygon,
						ST_ValueCount
					

Raster Management

Name
ST_LineToCurve — Converts a LINESTRING/POLYGON to a CIRCULARSTRING, CURVEPOLYGON

Synopsis
	geometry fsfuncST_LineToCurve(geomANoncircular);	

geometry geomANoncircular;

Description
Converts plain LINESTRING/POLYGONS to CIRCULAR STRINGs and Curved Polygons. Note much fewer points are needed to describe the curved equivalent.
Availability: 1.2.2?
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples: 2D

SELECT ST_AsText(ST_LineToCurve(foo.the_geom)) As curvedastext,ST_AsText(foo.the_geom) As non_curvedastext
	FROM (SELECT ST_Buffer('POINT(1 3)'::geometry, 3) As the_geom) As foo;

curvedatext non_curvedastext
--|---
CURVEPOLYGON(CIRCULARSTRING(4 3,3.12132034355964 0.878679656440359, | POLYGON((4 3,3.94235584120969 2.41472903395162,3.77163859753386 1.85194970290473,
1 0,-1.12132034355965 5.12132034355963,4 3)) | 3.49440883690764 1.33328930094119,3.12132034355964 0.878679656440359,
 | 2.66671069905881 0.505591163092366,2.14805029709527 0.228361402466141,
 | 1.58527096604839 0.0576441587903094,1 0,
 | 0.414729033951621 0.0576441587903077,-0.148050297095264 0.228361402466137,
 | -0.666710699058802 0.505591163092361,-1.12132034355964 0.878679656440353,
 | -1.49440883690763 1.33328930094119,-1.77163859753386 1.85194970290472
 | --ETC-- ,3.94235584120969 3.58527096604839,4 3))
--3D example
SELECT ST_AsEWKT(ST_LineToCurve(ST_GeomFromEWKT('LINESTRING(1 2 3, 3 4 8, 5 6 4, 7 8 4, 9 10 4)')));

			 st_asewkt

 CIRCULARSTRING(1 2 3,5 6 4,9 10 4)

		

See Also
ST_CurveToLine

Name
ST_GeometryN — Return the 1-based Nth geometry if the geometry is a
			GEOMETRYCOLLECTION, (MULTI)POINT, (MULTI)LINESTRING, MULTICURVE or (MULTI)POLYGON, POLYHEDRALSURFACE
			Otherwise, return NULL.

Synopsis
	geometry fsfuncST_GeometryN(geomA, 	
	 	n);	

geometry geomA;
integer n;

Description
Return the 1-based Nth geometry if the geometry is a
			GEOMETRYCOLLECTION, (MULTI)POINT, (MULTI)LINESTRING, MULTICURVE or (MULTI)POLYGON, POLYHEDRALSURFACE
			Otherwise, return NULL
Note
Index is 1-based as for OGC specs since version 0.8.0.
		 Previous versions implemented this as 0-based instead.

Note
If you want to extract all geometries, of a geometry, ST_Dump is more efficient and will also work for singular geoms.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Changed: 2.0.0 Prior versions would return NULL for singular geometries. This was changed to return the geometry for ST_GeometryN(..,1) case.
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 9.1.5
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Standard Examples
--Extracting a subset of points from a 3d multipoint
SELECT n, ST_AsEWKT(ST_GeometryN(the_geom, n)) As geomewkt
FROM (
VALUES (ST_GeomFromEWKT('MULTIPOINT(1 2 7, 3 4 7, 5 6 7, 8 9 10)')),
(ST_GeomFromEWKT('MULTICURVE(CIRCULARSTRING(2.5 2.5,4.5 2.5, 3.5 3.5), (10 11, 12 11))'))
)As foo(the_geom)
	CROSS JOIN generate_series(1,100) n
WHERE n <= ST_NumGeometries(the_geom);

 n | geomewkt
---+---
 1 | POINT(1 2 7)
 2 | POINT(3 4 7)
 3 | POINT(5 6 7)
 4 | POINT(8 9 10)
 1 | CIRCULARSTRING(2.5 2.5,4.5 2.5,3.5 3.5)
 2 | LINESTRING(10 11,12 11)

--Extracting all geometries (useful when you want to assign an id)
SELECT gid, n, ST_GeometryN(the_geom, n)
FROM sometable CROSS JOIN generate_series(1,100) n
WHERE n <= ST_NumGeometries(the_geom);

Polyhedral Surfaces, TIN and Triangle Examples
-- Polyhedral surface example
-- Break a Polyhedral surface into its faces
SELECT ST_AsEWKT(ST_GeometryN(p_geom,3)) As geom_ewkt
 FROM (SELECT ST_GeomFromEWKT('POLYHEDRALSURFACE(
((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1))
)') AS p_geom) AS a;

 geom_ewkt
--
 POLYGON((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0))
-- TIN --
SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt
 FROM
 (SELECT
 ST_GeomFromEWKT('TIN (((
 0 0 0,
 0 0 1,
 0 1 0,
 0 0 0
)), ((
 0 0 0,
 0 1 0,
 1 1 0,
 0 0 0
))
)') AS geom
) AS g;
-- result --
 wkt

 TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))

See Also
ST_Dump, ST_NumGeometries

Name
ST_WKBToSQL — Return a specified ST_Geometry value from Well-Known Binary representation (WKB). This is an alias name for ST_GeomFromWKB that takes no srid

Synopsis
	geometry fsfuncST_WKBToSQL(WKB);	

bytea WKB;

Description
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.36

See Also
ST_GeomFromWKB

Name
DropTopoGeometryColumn — Drops the topogeometry column from the table named table_name in schema schema_name and unregisters the columns from topology.layer table.

Synopsis
	text fsfuncDropTopoGeometryColumn(schema_name, 	
	 	table_name, 	
	 	column_name);	

varchar schema_name;
varchar table_name;
varchar column_name;

Description
Drops the topogeometry column from the table named table_name in schema schema_name and unregisters the columns from topology.layer table. Returns summary
 of drop status. NOTE: it first sets all values to NULL before dropping to bypass referential integrity checks.
Availability: 1.?

Examples
SELECT topology.DropTopoGeometryColumn('ma_topo', 'parcel_topo', 'topo');

See Also
AddTopoGeometryColumn

Name
ST_Force4D — Force the geometries into XYZM mode.

Synopsis
	geometry fsfuncST_Force4D(geomA);	

geometry geomA;

Description
Forces the geometries into XYZM mode. 0 is tacked on for missing Z and M dimensions.
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_4D.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples

--Nothing happens to an already 3D geometry
SELECT ST_AsEWKT(ST_Force4D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
						st_asewkt

 CIRCULARSTRING(1 1 2 0,2 3 2 0,4 5 2 0,6 7 2 0,5 6 2 0)

SELECT ST_AsEWKT(ST_Force4D('MULTILINESTRINGM((0 0 1,0 5 2,5 0 3,0 0 4),(1 1 1,3 1 1,1 3 1,1 1 1))'));

									 st_asewkt
--
 MULTILINESTRING((0 0 0 1,0 5 0 2,5 0 0 3,0 0 0 4),(1 1 0 1,3 1 0 1,1 3 0 1,1 1 0 1))

		

See Also
ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3D

Name
PostGIS_Raster_Lib_Version — Reports full raster version and build configuration
		infos.

Synopsis
	text fsfuncPostGIS_Raster_Lib_Version();	

;

Description
Reports full raster version and build configuration
		infos.

Examples
SELECT PostGIS_Raster_Lib_Version();
postgis_raster_lib_version

 2.0.0

See Also
 PostGIS_Lib_Version

Name
ST_RemEdgeModFace —
Removes an edge and, if the removed edge separated two faces,
delete one of the them and modify the other to take the space of both.

Synopsis
	integer fsfuncST_RemEdgeModFace(atopology, 	
	 	anedge);	

varchar atopology;
integer anedge;

Description

Removes an edge and, if the removed edge separated two faces,
delete one of the them and modify the other to take the space of both.
Preferentially keeps the face on the right, to be symmetric with
ST_AddEdgeModFace also keeping it.
Returns the id of the face remaining in place of the removed edge.
		

Updates all existing joined edges and relationships accordingly.
		

Refuses to remove an edge partecipating in the definition of an
existing TopoGeometry.
Refuses to heal two faces if any TopoGeometry is defined by only
one of them (and not the other).
		

If any arguments are null, the given edge is unknown (must already exist in
the edge table of the topology schema), the topology
name is invalid then an error is thrown.

Availability: 2.0
[image: Description] This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.15

Examples

See Also
ST_AddEdgeModFace
ST_RemEdgeNewFace

Name
ST_Points — Returns a MultiPoint containing all of the coordinates of a geometry.
			

Synopsis
	geometry fsfuncST_Points(geom);	

						geometry
						geom
					;

Description

				Returns a MultiPoint containing all of the coordinates of a
				geometry. Does not remove points that are duplicated in
				the input geometry, including start and end points of ring geometries.
				(If this behavior is undesired, duplicates may be removed using
				ST_RemoveRepeatedPoints).
			

				M and Z ordinates will be preserved if present.
			
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports 3d and will not drop the z-index.
Availability: 2.3.0

Examples
SELECT ST_AsText(ST_Points('POLYGON Z ((30 10 4,10 30 5,40 40 6, 30 10))'));

--result
MULTIPOINT Z (30 10 4,10 30 5,40 40 6, 30 10 4)
			

See Also
ST_RemoveRepeatedPoints

Name
ST_Area — Returns the area of the surface if it is a Polygon or
				MultiPolygon. For geometry, a 2D Cartesian area is determined with units specified by the SRID. For geography, area is determined on a curved surface with units in square meters.

Synopsis
	float fsfuncST_Area(g1);	

geometry g1;

	float fsfuncST_Area(geog, 	
	 	use_spheroid=true);	

geography geog;
boolean use_spheroid=true;

Description
Returns the area of the geometry if it is a Polygon or
				MultiPolygon. Return the area measurement of an ST_Surface or
		 ST_MultiSurface value. For geometry, a 2D Cartesian area is determined with units specified by the SRID. For geography, by default area is determined on a spheroid with units in square meters.
		 To measure around the faster but less accurate sphere, use ST_Area(geog,false).
		
Enhanced: 2.0.0 - support for 2D polyhedral surfaces was introduced.
Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires Proj >= 4.9.0 to take advantage of the new feature.
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.1.2, 9.5.3
[image: Description]
 This function supports Polyhedral surfaces.
Note
For polyhedral surfaces, only supports 2D polyhedral surfaces (not 2.5D). For 2.5D, may give a non-zero answer, but only for the faces that
			sit completely in XY plane.

[image: Description] This method is also provided by SFCGAL backend.

Examples
Return area in square feet for a plot of Massachusetts land and multiply by conversion to get square meters.
				Note this is in square feet because EPSG:2249 is
				Massachusetts State Plane Feet

SELECT ST_Area(the_geom) As sqft, ST_Area(the_geom)*POWER(0.3048,2) As sqm
		FROM (SELECT
		ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,
			743265 2967450,743265.625 2967416,743238 2967416))',2249)) As foo(the_geom);
 sqft | sqm
---------+-------------
 928.625 | 86.27208552

Return area square feet and transform to Massachusetts state plane meters (EPSG:26986) to get square meters.
				Note this is in square feet because 2249 is
				Massachusetts State Plane Feet and transformed area is in square meters since EPSG:26986 is state plane Massachusetts meters

SELECT ST_Area(the_geom) As sqft, ST_Area(ST_Transform(the_geom,26986)) As sqm
		FROM (SELECT
		ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,
			743265 2967450,743265.625 2967416,743238 2967416))',2249)) As foo(the_geom);
 sqft | sqm
---------+------------------
 928.625 | 86.2724304199219
			
Return area square feet and square meters using geography data type. Note that we transform to our geometry to geography
	(before you can do that make sure your geometry is in WGS 84 long lat 4326). Geography always measures in meters.
	This is just for demonstration to compare. Normally your table will be stored in geography data type already.

SELECT ST_Area(the_geog)/POWER(0.3048,2) As sqft_spheroid, ST_Area(the_geog,false)/POWER(0.3048,2) As sqft_sphere, ST_Area(the_geog) As sqm_spheroid
		FROM (SELECT
		geography(
		ST_Transform(
			ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,743265 2967450,743265.625 2967416,743238 2967416))',
				2249
) ,4326
)
)
) As foo(the_geog);
 sqft_spheroid | sqft_sphere | sqm_spheroid
------------------+------------------+------------------
 928.684403538925 | 927.049336105925 | 86.2776042893529

 --if your data is in geography already
 SELECT ST_Area(the_geog)/POWER(0.3048,2) As sqft, ST_Area(the_geog) As sqm
	FROM somegeogtable;

See Also
ST_GeomFromText, ST_GeographyFromText, ST_SetSRID, ST_Transform

Management Functions

Name
AsGML — Returns the GML representation of a topogeometry.

Synopsis
	text fsfuncAsGML(tg);	

topogeometry tg;

	text fsfuncAsGML(tg, 	
	 	nsprefix_in);	

topogeometry tg;
text nsprefix_in;

	text fsfuncAsGML(tg, 	
	 	visitedTable);	

topogeometry tg;
regclass visitedTable;

	text fsfuncAsGML(tg, 	
	 	visitedTable, 	
	 	nsprefix);	

topogeometry tg;
regclass visitedTable;
text nsprefix;

	text fsfuncAsGML(tg, 	
	 	nsprefix_in, 	
	 	precision, 	
	 	options);	

topogeometry tg;
text nsprefix_in;
integer precision;
integer options;

	text fsfuncAsGML(tg, 	
	 	nsprefix_in, 	
	 	precision, 	
	 	options, 	
	 	visitedTable);	

topogeometry tg;
text nsprefix_in;
integer precision;
integer options;
regclass visitedTable;

	text fsfuncAsGML(tg, 	
	 	nsprefix_in, 	
	 	precision, 	
	 	options, 	
	 	visitedTable, 	
	 	idprefix);	

topogeometry tg;
text nsprefix_in;
integer precision;
integer options;
regclass visitedTable;
text idprefix;

	text fsfuncAsGML(tg, 	
	 	nsprefix_in, 	
	 	precision, 	
	 	options, 	
	 	visitedTable, 	
	 	idprefix, 	
	 	gmlversion);	

topogeometry tg;
text nsprefix_in;
integer precision;
integer options;
regclass visitedTable;
text idprefix;
int gmlversion;

Description
Returns the GML representation of a topogeometry in version GML3 format. If no nsprefix_in is specified then gml is used. Pass in an empty string for nsprefix to get a non-qualified name space. The precision (default: 15) and options (default 1) parameters, if given, are passed untouched to the underlying call to ST_AsGML.

The visitedTable parameter, if given, is used for keeping track of the visited Node and Edge elements so to use cross-references (xlink:xref) rather than duplicating definitions. The table is expected to have (at least) two integer fields: 'element_type' and 'element_id'. The calling user must have both read and write privileges on the given table.
For best performance, an index should be defined on
element_type and element_id,
in that order. Such index would be created automatically by adding a unique
constraint to the fields. Example:

CREATE TABLE visited (
 element_type integer, element_id integer,
 unique(element_type, element_id)
);

		
The idprefix parameter, if given, will be prepended to Edge and Node tag identifiers.
The gmlver parameter, if given, will be passed to the underlying ST_AsGML. Defaults to 3.
Availability: 2.0.0

Examples
This uses the topo geometry we created in CreateTopoGeom
SELECT topology.AsGML(topo) As rdgml
 FROM ri.roads
 WHERE road_name = 'Unknown';

-- rdgml--
<gml:TopoCurve>
 <gml:directedEdge>
 <gml:Edge gml:id="E1">
 <gml:directedNode orientation="-">
 <gml:Node gml:id="N1"/>
 </gml:directedNode>
 <gml:directedNode></gml:directedNode>
 <gml:curveProperty>
 <gml:Curve srsName="urn:ogc:def:crs:EPSG::3438">
 <gml:segments>
 <gml:LineStringSegment>
 <gml:posList srsDimension="2">384744 236928 384750 236923 384769 236911 384799 236895 384811 236890
 384833 236884 384844 236882 384866 236881 384879 236883 384954 236898 385087 236932 385117 236938
 385167 236938 385203 236941 385224 236946 385233 236950 385241 236956 385254 236971
 385260 236979 385268 236999 385273 237018 385273 237037 385271 237047 385267 237057 385225 237125
 385210 237144 385192 237161 385167 237192 385162 237202 385159 237214 385159 237227 385162 237241
 385166 237256 385196 237324 385209 237345 385234 237375 385237 237383 385238 237399 385236 237407
 385227 237419 385213 237430 385193 237439 385174 237451 385170 237455 385169 237460 385171 237475
 385181 237503 385190 237521 385200 237533 385206 237538 385213 237541 385221 237542 385235 237540 385242 237541
 385249 237544 385260 237555 385270 237570 385289 237584 385292 237589 385291 237596 385284 237630</gml:posList>
 </gml:LineStringSegment>
 </gml:segments>
 </gml:Curve>
 </gml:curveProperty>
 </gml:Edge>
 </gml:directedEdge>
</gml:TopoCurve>

Same exercise as previous without namespace
SELECT topology.AsGML(topo,'') As rdgml
 FROM ri.roads
 WHERE road_name = 'Unknown';

-- rdgml--
<TopoCurve>
 <directedEdge>
 <Edge id="E1">
 <directedNode orientation="-">
 <Node id="N1"/>
 </directedNode>
 <directedNode></directedNode>
 <curveProperty>
 <Curve srsName="urn:ogc:def:crs:EPSG::3438">
 <segments>
 <LineStringSegment>
 <posList srsDimension="2">384744 236928 384750 236923 384769 236911 384799 236895 384811 236890
 384833 236884 384844 236882 384866 236881 384879 236883 384954 236898 385087 236932 385117 236938
 385167 236938 385203 236941 385224 236946 385233 236950 385241 236956 385254 236971
 385260 236979 385268 236999 385273 237018 385273 237037 385271 237047 385267 237057 385225 237125
 385210 237144 385192 237161 385167 237192 385162 237202 385159 237214 385159 237227 385162 237241
 385166 237256 385196 237324 385209 237345 385234 237375 385237 237383 385238 237399 385236 237407
 385227 237419 385213 237430 385193 237439 385174 237451 385170 237455 385169 237460 385171 237475
 385181 237503 385190 237521 385200 237533 385206 237538 385213 237541 385221 237542 385235 237540 385242 237541
 385249 237544 385260 237555 385270 237570 385289 237584 385292 237589 385291 237596 385284 237630</posList>
 </LineStringSegment>
 </segments>
 </Curve>
 </curveProperty>
 </Edge>
 </directedEdge>
</TopoCurve>

See Also
CreateTopoGeom, ST_CreateTopoGeo

Name
ST_GeomFromGML — Takes as input GML representation of geometry and outputs a PostGIS geometry object

Synopsis
	geometry fsfuncST_GeomFromGML(geomgml);	

text geomgml;

	geometry fsfuncST_GeomFromGML(geomgml, 	
	 	srid);	

text geomgml;
integer srid;

Description
Constructs a PostGIS ST_Geometry object from the OGC GML representation.
ST_GeomFromGML works only for GML Geometry fragments. It throws an error if you try to use it on a whole GML document.

			OGC GML versions supported:
			
	GML 3.2.1 Namespace

	GML 3.1.1 Simple Features profile SF-2 (with GML 3.1.0 and 3.0.0 backward compatibility)

	GML 2.1.2

			OGC GML standards, cf: http://www.opengeospatial.org/standards/gml:
		
Availability: 1.5, requires libxml2 1.6+
Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
Enhanced: 2.0.0 default srid optional parameter added.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
GML allow mixed dimensions (2D and 3D inside the same MultiGeometry for instance). As PostGIS geometries don't, ST_GeomFromGML convert the whole geometry to 2D if a missing Z dimension is found once.
GML support mixed SRS inside the same MultiGeometry. As PostGIS geometries don't, ST_GeomFromGML, in this case, reproject all subgeometries to the SRS root node. If no srsName attribute available for the GML root node, the function throw an error.
ST_GeomFromGML function is not pedantic about an explicit GML namespace. You could avoid to mention it explicitly for common usages. But you need it if you want to use XLink feature inside GML.
Note
ST_GeomFromGML function not support SQL/MM curves geometries.

Examples - A single geometry with srsName
SELECT ST_GeomFromGML('
		<gml:LineString srsName="EPSG:4269">
			<gml:coordinates>
				-71.16028,42.258729 -71.160837,42.259112 -71.161143,42.25932
			</gml:coordinates>
		</gml:LineString>');
		

Examples - XLink usage
SELECT ST_GeomFromGML('
		<gml:LineString xmlns:gml="http://www.opengis.net/gml"
				xmlns:xlink="http://www.w3.org/1999/xlink"
				srsName="urn:ogc:def:crs:EPSG::4269">
			<gml:pointProperty>
				<gml:Point gml:id="p1"><gml:pos>42.258729 -71.16028</gml:pos></gml:Point>
			</gml:pointProperty>
			<gml:pos>42.259112 -71.160837</gml:pos>
			<gml:pointProperty>
				<gml:Point xlink:type="simple" xlink:href="#p1"/>
			</gml:pointProperty>
		</gml:LineString>'););
		

Examples - Polyhedral Surface
SELECT ST_AsEWKT(ST_GeomFromGML('
<gml:PolyhedralSurface>
<gml:polygonPatches>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing><gml:posList srsDimension="3">0 0 0 0 0 1 0 1 1 0 1 0 0 0 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">0 0 0 0 1 0 1 1 0 1 0 0 0 0 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">0 0 0 1 0 0 1 0 1 0 0 1 0 0 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">1 1 0 1 1 1 1 0 1 1 0 0 1 1 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">0 1 0 0 1 1 1 1 1 1 1 0 0 1 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">0 0 1 1 0 1 1 1 1 0 1 1 0 0 1</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
</gml:polygonPatches>
</gml:PolyhedralSurface>'));

-- result --
 POLYHEDRALSURFACE(((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),
 ((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0)),
 ((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0)),
 ((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)),
 ((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0)),
 ((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1)))
		

See Also
the section called “Configuration”, ST_AsGML, ST_GMLToSQL

Name
ST_LineCrossingDirection — Given 2 linestrings, returns a number between -3 and 3 denoting what kind of crossing behavior. 0 is no crossing.

Synopsis
	integer fsfuncST_LineCrossingDirection(linestringA, 	
	 	linestringB);	

geometry linestringA;
geometry linestringB;

Description
Given 2 linestrings, returns a number between -3 and 3 denoting what kind of crossing behavior. 0 is no crossing. This is only supported for LINESTRING
Definition of integer constants is as follows:
		
	 0: LINE NO CROSS

	-1: LINE CROSS LEFT

	 1: LINE CROSS RIGHT

	-2: LINE MULTICROSS END LEFT

	 2: LINE MULTICROSS END RIGHT

	-3: LINE MULTICROSS END SAME FIRST LEFT

	 3: LINE MULTICROSS END SAME FIRST RIGHT

	
Availability: 1.4

Examples
	[image: Examples]Line 1 (green), Line 2 ball is start point,
					triangle are end points. Query below.

				

SELECT ST_LineCrossingDirection(foo.line1, foo.line2) As l1_cross_l2 ,
	 ST_LineCrossingDirection(foo.line2, foo.line1) As l2_cross_l1
FROM (
SELECT
 ST_GeomFromText('LINESTRING(25 169,89 114,40 70,86 43)') As line1,
 ST_GeomFromText('LINESTRING(171 154,20 140,71 74,161 53)') As line2
) As foo;

 l1_cross_l2 | l2_cross_l1
-------------+-------------
 3 | -3
				

			

			
			[image: Examples]Line 1 (green), Line 2 (blue) ball is start point,
						triangle are end points. Query below.

			

SELECT ST_LineCrossingDirection(foo.line1, foo.line2) As l1_cross_l2 ,
	 ST_LineCrossingDirection(foo.line2, foo.line1) As l2_cross_l1
FROM (
 SELECT
 ST_GeomFromText('LINESTRING(25 169,89 114,40 70,86 43)') As line1,
 ST_GeomFromText('LINESTRING (171 154, 20 140, 71 74, 2.99 90.16)') As line2
) As foo;

 l1_cross_l2 | l2_cross_l1
-------------+-------------
 2 | -2
				

			

		
	[image: Examples]Line 1 (green), Line 2 (blue) ball is start point,
					triangle are end points. Query below.

				

SELECT
	ST_LineCrossingDirection(foo.line1, foo.line2) As l1_cross_l2 ,
	ST_LineCrossingDirection(foo.line2, foo.line1) As l2_cross_l1
FROM (
 SELECT
 ST_GeomFromText('LINESTRING(25 169,89 114,40 70,86 43)') As line1,
 ST_GeomFromText('LINESTRING (20 140, 71 74, 161 53)') As line2
) As foo;

 l1_cross_l2 | l2_cross_l1
-------------+-------------
 -1 | 1
				

			

			
			[image: Examples]Line 1 (green), Line 2 (blue) ball is start point,
						triangle are end points. Query below.

			

SELECT ST_LineCrossingDirection(foo.line1, foo.line2) As l1_cross_l2 ,
	 ST_LineCrossingDirection(foo.line2, foo.line1) As l2_cross_l1
FROM (SELECT
	ST_GeomFromText('LINESTRING(25 169,89 114,40 70,86 43)') As line1,
	ST_GeomFromText('LINESTRING(2.99 90.16,71 74,20 140,171 154)') As line2
) As foo;

 l1_cross_l2 | l2_cross_l1
-------------+-------------
 -2 | 2
				

			

		

SELECT s1.gid, s2.gid, ST_LineCrossingDirection(s1.the_geom, s2.the_geom)
	FROM streets s1 CROSS JOIN streets s2 ON (s1.gid != s2.gid AND s1.the_geom && s2.the_geom)
WHERE ST_CrossingDirection(s1.the_geom, s2.the_geom) > 0;

See Also
ST_Crosses

Name
&> — Returns TRUE if A' bounding box overlaps or is to the right of B's.

Synopsis
	boolean fsfunc&>(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The &> operator returns TRUE if the bounding box of geometry A
			overlaps or is to the right of the bounding box of geometry B, or more accurately, overlaps or is NOT to the left
			of the bounding box of geometry B.
Note
This operand will make use of any indexes that may be available on the
				geometries.

Examples
SELECT tbl1.column1, tbl2.column1, tbl1.column2 &> tbl2.column2 AS overright
FROM
 (VALUES
	(1, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl1,
 (VALUES
	(2, 'LINESTRING(0 0, 3 3)'::geometry),
	(3, 'LINESTRING(0 1, 0 5)'::geometry),
	(4, 'LINESTRING(6 0, 6 1)'::geometry)) AS tbl2;

 column1 | column1 | overright
---------+---------+-----------
	 1 | 2 | t
	 1 | 3 | t
	 1 | 4 | f
(3 rows)

See Also

				&&,
				|&>,
				&<|,
				&<

PostGIS SQL-MM Compliant Functions

The functions given below are PostGIS functions that conform to the SQL/MM 3 standard
Note
SQL-MM defines the default SRID of all geometry constructors as 0.
			 PostGIS uses a default SRID of -1.

	ST_3DDWithin - For 3d (z) geometry type Returns true if two geometries 3d distance is within number of units.

 This method implements the SQL/MM specification. SQL-MM ?
	ST_3DDistance - For geometry type Returns the 3-dimensional cartesian minimum distance (based on spatial ref) between two geometries in projected units.

 This method implements the SQL/MM specification. SQL-MM ?
	ST_3DIntersects - Returns TRUE if the Geometries "spatially intersect" in 3d - only for points, linestrings, polygons, polyhedral surface (area). With SFCGAL backend enabled also supports TINS

 This method implements the SQL/MM specification. SQL-MM 3: ?
	ST_AddEdgeModFace - Add a new edge and, if in doing so it splits a face, modify the original face and add a new face.

 This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.13
	ST_AddEdgeNewFaces - Add a new edge and, if in doing so it splits a face, delete the original face and replace it with two new faces.

 This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.12
	ST_AddIsoEdge - Adds an isolated edge defined by geometry alinestring to a topology connecting two existing isolated nodes anode and anothernode and returns the edge id of the new edge.

 This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.4
	ST_AddIsoNode - Adds an isolated node to a face in a topology and returns the nodeid of the new node. If face is null, the node is still created.

 This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X+1.3.1
	ST_Area - Returns the area of the surface if it is a Polygon or MultiPolygon. For geometry, a 2D Cartesian area is determined with units specified by the SRID. For geography, area is determined on a curved surface with units in square meters.

 This method implements the SQL/MM specification. SQL-MM 3: 8.1.2, 9.5.3
	ST_AsBinary - Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.37
	ST_AsText - Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.25
	ST_Boundary - Returns the closure of the combinatorial boundary of this Geometry.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.14
	ST_Buffer - (T)Returns a geometry covering all points within a given distancefrom the input geometry.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.17
	ST_Centroid - Returns the geometric center of a geometry.

 This method implements the SQL/MM specification. SQL-MM 3: 8.1.4, 9.5.5
	ST_ChangeEdgeGeom - Changes the shape of an edge without affecting the topology structure.

 This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details X.3.6
	ST_Contains - Returns true if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies in the interior of A.

 This method implements the SQL/MM specification.	SQL-MM 3: 5.1.31
	ST_ConvexHull - The convex hull of a geometry represents the minimum convex geometry that encloses all geometries within the set.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.16
	ST_CoordDim - Return the coordinate dimension of the ST_Geometry value.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.3
	ST_CreateTopoGeo - Adds a collection of geometries to a given empty topology and returns a message detailing success.

 This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details -- X.3.18
	ST_Crosses - Returns TRUE if the supplied geometries have some, but not all, interior points in common.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.29
	ST_CurveToLine - Converts a CIRCULARSTRING/CURVEPOLYGON to a LINESTRING/POLYGON

 This method implements the SQL/MM specification. SQL-MM 3: 7.1.7
	ST_Difference - Returns a geometry that represents that part of geometry A that does not intersect with geometry B.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.20
	ST_Dimension - The inherent dimension of this Geometry object, which must be less than or equal to the coordinate dimension.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.2
	ST_Disjoint - Returns TRUE if the Geometries do not "spatially intersect" - if they do not share any space together.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.26
	ST_Distance - For geometry type Returns the 2D Cartesian distance between two geometries in projected units (based on spatial ref). For geography type defaults to return minimum geodesic distance between two geographies in meters.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.23
	ST_EndPoint - Returns the last point of a LINESTRING or CIRCULARLINESTRING geometry as a POINT.

 This method implements the SQL/MM specification. SQL-MM 3: 7.1.4
	ST_Envelope - Returns a geometry representing the double precision (float8) bounding box of the supplied geometry.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.15
	ST_Equals - Returns true if the given geometries represent the same geometry. Directionality is ignored.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.24
	ST_ExteriorRing - Returns a line string representing the exterior ring of the POLYGON geometry. Return NULL if the geometry is not a polygon. Will not work with MULTIPOLYGON

 This method implements the SQL/MM specification. SQL-MM 3: 8.2.3, 8.3.3
	ST_GMLToSQL - Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.50 (except for curves support).
	ST_GeomCollFromText - Makes a collection Geometry from collection WKT with the given SRID. If SRID is not give, it defaults to 0.

 This method implements the SQL/MM specification.
	ST_GeomFromText - Return a specified ST_Geometry value from Well-Known Text representation (WKT).

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.40
	ST_GeomFromWKB - Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional SRID.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.41
	ST_GeometryFromText - Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.40
	ST_GeometryN - Return the 1-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, (MULTI)POINT, (MULTI)LINESTRING, MULTICURVE or (MULTI)POLYGON, POLYHEDRALSURFACE Otherwise, return NULL.

 This method implements the SQL/MM specification. SQL-MM 3: 9.1.5
	ST_GeometryType - Return the geometry type of the ST_Geometry value.

 This method implements the SQL/MM specification.	SQL-MM 3: 5.1.4
	ST_GetFaceEdges - Returns a set of ordered edges that bound aface.

 This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.5
	ST_GetFaceGeometry - Returns the polygon in the given topology with the specified face id.

 This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.16
	ST_InitTopoGeo - Creates a new topology schema and registers this new schema in the topology.topology table and details summary of process.

 This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.17
	ST_InteriorRingN - Return the Nth interior linestring ring of the polygon geometry. Return NULL if the geometry is not a polygon or the given N is out of range.

 This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5
	ST_Intersection - (T)Returns a geometry that represents the shared portion of geomA and geomB.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.18
	ST_Intersects - Returns TRUE if the Geometries/Geography "spatially intersect in 2D" - (share any portion of space) and FALSE if they don't (they are Disjoint). For geography -- tolerance is 0.00001 meters (so any points that close are considered to intersect)

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.27
	ST_IsClosed - Returns TRUE if the LINESTRING's start and end points are coincident. For Polyhedral surface is closed (volumetric).

 This method implements the SQL/MM specification. SQL-MM 3: 7.1.5, 9.3.3
	ST_IsEmpty - Returns true if this Geometry is an empty geometrycollection, polygon, point etc.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.7
	ST_IsRing - Returns TRUE if this LINESTRING is both closed and simple.

 This method implements the SQL/MM specification. SQL-MM 3: 7.1.6
	ST_IsSimple - Returns (TRUE) if this Geometry has no anomalous geometric points, such as self intersection or self tangency.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.8
	ST_IsValid - Returns true if the ST_Geometry is well formed.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.9
	ST_Length - Returns the 2D length of the geometry if it is a LineString or MultiLineString. geometry are in units of spatial reference and geography are in meters (default spheroid)

 This method implements the SQL/MM specification. SQL-MM 3: 7.1.2, 9.3.4
	ST_LineFromText - Makes a Geometry from WKT representation with the given SRID. If SRID is not given, it defaults to 0.

 This method implements the SQL/MM specification. SQL-MM 3: 7.2.8
	ST_LineFromWKB - Makes a LINESTRING from WKB with the given SRID

 This method implements the SQL/MM specification. SQL-MM 3: 7.2.9
	ST_LinestringFromWKB - Makes a geometry from WKB with the given SRID.

 This method implements the SQL/MM specification. SQL-MM 3: 7.2.9
	ST_M - Return the M coordinate of the point, or NULL if not available. Input must be a point.

 This method implements the SQL/MM specification.
	ST_MLineFromText - Return a specified ST_MultiLineString value from WKT representation.

 This method implements the SQL/MM specification.SQL-MM 3: 9.4.4
	ST_MPointFromText - Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to 0.

 This method implements the SQL/MM specification. SQL-MM 3: 9.2.4
	ST_MPolyFromText - Makes a MultiPolygon Geometry from WKT with the given SRID. If SRID is not give, it defaults to 0.

 This method implements the SQL/MM specification. SQL-MM 3: 9.6.4
	ST_ModEdgeHeal - Heal two edges by deleting the node connecting them, modifying the first edgeand deleting the second edge. Returns the id of the deleted node.

 This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9
	ST_ModEdgeSplit - Split an edge by creating a new node along an existing edge, modifying the original edge and adding a new edge.

 This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9
	ST_MoveIsoNode - Moves an isolated node in a topology from one point to another. If new apoint geometry exists as a node an error is thrown. REturns description of move.

 This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X.3.2
	ST_NewEdgeHeal - Heal two edges by deleting the node connecting them, deleting both edges,and replacing them with an edge whose direction is the same as the firstedge provided.

 This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9
	ST_NewEdgesSplit - Split an edge by creating a new node along an existing edge, deleting the original edge and replacing it with two new edges. Returns the id of the new node created that joins the new edges.

 This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X.3.8
	ST_NumGeometries - If geometry is a GEOMETRYCOLLECTION (or MULTI*) return the number of geometries, for single geometries will return 1, otherwise return NULL.

 This method implements the SQL/MM specification. SQL-MM 3: 9.1.4
	ST_NumInteriorRings - Return the number of interior rings of a polygon geometry.

 This method implements the SQL/MM specification. SQL-MM 3: 8.2.5
	ST_NumPatches - Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.

 This method implements the SQL/MM specification. SQL-MM 3: ?
	ST_NumPoints - Return the number of points in an ST_LineString or ST_CircularString value.

 This method implements the SQL/MM specification. SQL-MM 3: 7.2.4
	ST_OrderingEquals - Returns true if the given geometries represent the same geometry and points are in the same directional order.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.43
	ST_Overlaps - Returns TRUE if the Geometries share space, are of the same dimension, but are not completely contained by each other.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.32
	ST_PatchN - Return the 1-based Nth geometry (face) if the geometry is a POLYHEDRALSURFACE, POLYHEDRALSURFACEM. Otherwise, return NULL.

 This method implements the SQL/MM specification. SQL-MM 3: ?
	ST_Perimeter - Return the length measurement of the boundary of an ST_Surface or ST_MultiSurface geometry or geography. (Polygon, MultiPolygon). geometry measurement is in units of spatial reference and geography is in meters.

 This method implements the SQL/MM specification. SQL-MM 3: 8.1.3, 9.5.4
	ST_Point - Returns an ST_Point with the given coordinate values. OGC alias for ST_MakePoint.

 This method implements the SQL/MM specification. SQL-MM 3: 6.1.2
	ST_PointFromText - Makes a point Geometry from WKT with the given SRID. If SRID is not given, it defaults to unknown.

 This method implements the SQL/MM specification. SQL-MM 3: 6.1.8
	ST_PointFromWKB - Makes a geometry from WKB with the given SRID

 This method implements the SQL/MM specification. SQL-MM 3: 6.1.9
	ST_PointN - Return the Nth point in the first LineString or circular LineString in the geometry. Negative values are counted backwards from the end of the LineString. Returns NULL if there is no linestring in the geometry.

 This method implements the SQL/MM specification. SQL-MM 3: 7.2.5, 7.3.5
	ST_PointOnSurface - Returns a POINT guaranteed to lie on the surface.

 This method implements the SQL/MM specification. SQL-MM 3: 8.1.5, 9.5.6.
		 According to the specs, ST_PointOnSurface works for surface geometries (POLYGONs, MULTIPOLYGONS, CURVED POLYGONS). So PostGIS seems to be extending what
		 the spec allows here. Most databases Oracle,DB II, ESRI SDE seem to only support this function for surfaces. SQL Server 2008 like PostGIS supports for all common geometries.
	ST_Polygon - Returns a polygon built from the specified linestring and SRID.

 This method implements the SQL/MM specification. SQL-MM 3: 8.3.2
	ST_PolygonFromText - Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to 0.

 This method implements the SQL/MM specification. SQL-MM 3: 8.3.6
	ST_Relate - Returns true if this Geometry is spatially related to anotherGeometry, by testing for intersections between the Interior, Boundary and Exterior of the two geometries as specified by the values in the intersectionMatrixPattern. If no intersectionMatrixPattern is passed in, then returns the maximum intersectionMatrixPattern that relates the 2 geometries.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.25
	ST_RemEdgeModFace - Removes an edge and, if the removed edge separated two faces,delete one of the them and modify the other to take the space of both.

 This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.15
	ST_RemEdgeNewFace - Removes an edge and, if the removed edge separated two faces,delete the original faces and replace them with a new face.

 This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.14
	ST_RemoveIsoNode - Removes an isolated node and returns description of action. If the node is not isolated (is start or end of an edge), then an exception is thrown.

 This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3
	ST_SRID - Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.5
	ST_StartPoint - Returns the first point of a LINESTRING geometry as a POINT.

 This method implements the SQL/MM specification. SQL-MM 3: 7.1.3
	ST_SymDifference - Returns a geometry that represents the portions of A and B that do not intersect. It is called a symmetric difference because ST_SymDifference(A,B) = ST_SymDifference(B,A).

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.21
	ST_Touches - Returns TRUE if the geometries have at least one point in common, but their interiors do not intersect.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.28
	ST_Transform - Return a new geometry with its coordinates transformed to a different spatial reference.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.6
	ST_Union - Returns a geometry that represents the point set union of the Geometries.

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.19
		the z-index (elevation) when polygons are involved.
	ST_WKBToSQL - Return a specified ST_Geometry value from Well-Known Binary representation (WKB). This is an alias name for ST_GeomFromWKB that takes no srid

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.36
	ST_WKTToSQL - Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.34
	ST_Within - Returns true if the geometry A is completely inside geometry B

 This method implements the SQL/MM specification. SQL-MM 3: 5.1.30
	ST_X - Return the X coordinate of the point, or NULL if not available. Input must be a point.

 This method implements the SQL/MM specification. SQL-MM 3: 6.1.3
	ST_Y - Return the Y coordinate of the point, or NULL if not available. Input must be a point.

 This method implements the SQL/MM specification. SQL-MM 3: 6.1.4
	ST_Z - Return the Z coordinate of the point, or NULL if not available. Input must be a point.

 This method implements the SQL/MM specification.

Name
ST_Disjoint —
				Return true if raster rastA does not spatially intersect rastB.
			

Synopsis
	boolean fsfuncST_Disjoint(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB);	

						raster
						rastA
					;

						integer
						nbandA
					;

						raster
						rastB
					;

						integer
						nbandB
					;

	boolean fsfuncST_Disjoint(rastA, 	
	 	rastB);	

						raster
						rastA
					;

						raster
						rastB
					;

Description

				Raster rastA and rastB are disjointed if they do not share any space together. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.
			
Note

					This function does NOT use any indexes.
				

Note

					To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Disjoint(ST_Polygon(raster), geometry).
				

Availability: 2.1.0

Examples

-- rid = 1 has no bands, hence the NOTICE and the NULL value for st_disjoint
SELECT r1.rid, r2.rid, ST_Disjoint(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

NOTICE: The second raster provided has no bands
 rid | rid | st_disjoint
-----+-----+-------------
 2 | 1 |
 2 | 2 | f
			

-- this time, without specifying band numbers
SELECT r1.rid, r2.rid, ST_Disjoint(r1.rast, r2.rast) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_disjoint
-----+-----+-------------
 2 | 1 | t
 2 | 2 | f
			

See Also

				ST_Intersects
			

Create a spatially-enabled database without using extensions

Note
This is generally only needed if you built-PostGIS without raster support. Since raster functions are part of the postgis extension, extension support is not enabled if PostGIS is built without raster.

 The first step in creating a PostGIS database is to create a simple
	 PostgreSQL database.
	

	 createdb [yourdatabase]
	

	 Many of the PostGIS functions are written in the PL/pgSQL procedural
	 language. As such, the next step to create a PostGIS database is to enable
	 the PL/pgSQL language in your new database. This is accomplish by the
	 command below command. For PostgreSQL 8.4+, this is generally already installed
	

	 createlang plpgsql [yourdatabase]
	

	 Now load the PostGIS object and function definitions into your database by
	 loading the postgis.sql definitions file (located in
	 [prefix]/share/contrib as specified during the
	 configuration step).
	

	 psql -d [yourdatabase] -f postgis.sql
	

	 For a complete set of EPSG coordinate system definition identifiers, you
	 can also load the spatial_ref_sys.sql definitions
	 file and populate the spatial_ref_sys table. This will
	 permit you to perform ST_Transform() operations on geometries.
	

	 psql -d [yourdatabase] -f spatial_ref_sys.sql
	

	 If you wish to add comments to the PostGIS functions, the final step is to
	 load the postgis_comments.sql into your spatial
	 database. The comments can be viewed by simply typing \dd
	 [function_name] from a psql terminal window.
	

	 psql -d [yourdatabase] -f postgis_comments.sql
	

	 Install raster support
	

	 psql -d [yourdatabase] -f rtpostgis.sql
	

	 Install raster support comments. This will provide quick help info for each raster function
	 using psql or PgAdmin or any other PostgreSQL tool that can show function comments
	

	 psql -d [yourdatabase] -f raster_comments.sql
	

	 Install topology support
	

	 psql -d [yourdatabase] -f topology/topology.sql
	

	 Install topology support comments. This will provide quick help info for each topology function / type
	 using psql or PgAdmin or any other PostgreSQL tool that can show function comments
	

	 psql -d [yourdatabase] -f topology/topology_comments.sql
	
If you plan to restore an old backup from prior versions in this new db, run:
psql -d [yourdatabase] -f legacy.sql
Note
There is an alternative legacy_minimal.sql you can run instead which will install barebones needed to recover tables and work with apps like MapServer
	and GeoServer. If you have views that use things like distance / length etc, you'll need the full blown legacy.sql

You can later run uninstall_legacy.sql to get rid of the deprecated functions after you are done with restoring and cleanup.

Name
ST_MinConvexHull —
						Return the convex hull geometry of the raster excluding NODATA pixels.
					

Synopsis
	geometry fsfuncST_MinConvexHull(rast, 	
	 	nband=NULL);	

raster rast;
integer nband=NULL;

Description

						Return the convex hull geometry of the raster excluding NODATA pixels. If nband is NULL, all bands of the raster are considered.
					
Availability: 2.1.0

Examples

WITH foo AS (
	SELECT
		ST_SetValues(
			ST_SetValues(
				ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(9, 9, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0), 2, '8BUI', 1, 0),
				1, 1, 1,
				ARRAY[
					[0, 0, 0, 0, 0, 0, 0, 0, 0],
					[0, 0, 0, 0, 0, 0, 0, 0, 0],
					[0, 0, 0, 0, 0, 0, 0, 0, 0],
					[0, 0, 0, 1, 0, 0, 0, 0, 1],
					[0, 0, 0, 1, 1, 0, 0, 0, 0],
					[0, 0, 0, 1, 0, 0, 0, 0, 0],
					[0, 0, 0, 0, 0, 0, 0, 0, 0],
					[0, 0, 0, 0, 0, 0, 0, 0, 0],
					[0, 0, 0, 0, 0, 0, 0, 0, 0]
]::double precision[][]
),
			2, 1, 1,
			ARRAY[
				[0, 0, 0, 0, 0, 0, 0, 0, 0],
				[0, 0, 0, 0, 0, 0, 0, 0, 0],
				[0, 0, 0, 0, 0, 0, 0, 0, 0],
				[1, 0, 0, 0, 0, 1, 0, 0, 0],
				[0, 0, 0, 0, 1, 1, 0, 0, 0],
				[0, 0, 0, 0, 0, 1, 0, 0, 0],
				[0, 0, 0, 0, 0, 0, 0, 0, 0],
				[0, 0, 0, 0, 0, 0, 0, 0, 0],
				[0, 0, 1, 0, 0, 0, 0, 0, 0]
]::double precision[][]
) AS rast
)
SELECT
	ST_AsText(ST_ConvexHull(rast)) AS hull,
	ST_AsText(ST_MinConvexHull(rast)) AS mhull,
	ST_AsText(ST_MinConvexHull(rast, 1)) AS mhull_1,
	ST_AsText(ST_MinConvexHull(rast, 2)) AS mhull_2
FROM foo

 hull | mhull | mhull_1 | mhull_2
----------------------------------+-------------------------------------+-------------------------------------+-------------------------------------
 POLYGON((0 0,9 0,9 -9,0 -9,0 0)) | POLYGON((0 -3,9 -3,9 -9,0 -9,0 -3)) | POLYGON((3 -3,9 -3,9 -6,3 -6,3 -3)) | POLYGON((0 -3,6 -3,6 -9,0 -9,0 -3))
					

See Also

						ST_Envelope,
						ST_ConvexHull,
						ST_ConvexHull,
						ST_AsText
					

Name
ST_IsSimple — Returns (TRUE) if this Geometry has no anomalous geometric
				points, such as self intersection or self tangency.

Synopsis
	boolean fsfuncST_IsSimple(geomA);	

geometry geomA;

Description
Returns true if this Geometry has no anomalous geometric
				points, such as self intersection or self tangency. For more
			information on the OGC's definition of geometry simplicity and validity, refer
			to "Ensuring OpenGIS compliancy of geometries"
Note
SQL-MM defines the result of ST_IsSimple(NULL) to be 0,
			while PostGIS returns NULL.

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.8
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
 SELECT ST_IsSimple(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))'));
 st_issimple

 t
(1 row)

 SELECT ST_IsSimple(ST_GeomFromText('LINESTRING(1 1,2 2,2 3.5,1 3,1 2,2 1)'));
 st_issimple

 f
(1 row)

See Also
ST_IsValid

PostGIS Functions that support 3D

The functions given below are PostGIS functions that do not throw away the Z-Index.
	AddGeometryColumn - Adds a geometry column to an existing table of attributes. By default uses type modifier to define rather than constraints. Pass in false for use_typmod to get old check constraint based behavior
	Box3D - Returns a BOX3D representing the maximum extents of the geometry.
	DropGeometryColumn - Removes a geometry column from a spatial table.
	GeometryType - Returns the type of the geometry as a string. Eg: 'LINESTRING', 'POLYGON', 'MULTIPOINT', etc.
	ST_3DArea - Computes area of 3D surface geometries. Will return 0 for solids.
	ST_3DClosestPoint - Returns the 3-dimensional point on g1 that is closest to g2. This is the first point of the 3D shortest line.
	ST_3DDFullyWithin - Returns true if all of the 3D geometries are within the specified distance of one another.
	ST_3DDWithin - For 3d (z) geometry type Returns true if two geometries 3d distance is within number of units.
	ST_3DDifference - Perform 3D difference
	ST_3DDistance - For geometry type Returns the 3-dimensional cartesian minimum distance (based on spatial ref) between two geometries in projected units.
	ST_3DExtent - an aggregate function that returns the box3D bounding box that bounds rows of geometries.
	ST_3DIntersection - Perform 3D intersection
	ST_3DIntersects - Returns TRUE if the Geometries "spatially intersect" in 3d - only for points, linestrings, polygons, polyhedral surface (area). With SFCGAL backend enabled also supports TINS
	ST_3DLength - Returns the 3-dimensional or 2-dimensional length of the geometry if it is a linestring or multi-linestring.
	ST_3DLongestLine - Returns the 3-dimensional longest line between two geometries
	ST_3DMakeBox - Creates a BOX3D defined by the given 3d point geometries.
	ST_3DMaxDistance - For geometry type Returns the 3-dimensional cartesian maximum distance (based on spatial ref) between two geometries in projected units.
	ST_3DPerimeter - Returns the 3-dimensional perimeter of the geometry, if it is a polygon or multi-polygon.
	ST_3DShortestLine - Returns the 3-dimensional shortest line between two geometries
	ST_3DUnion - Perform 3D union
	ST_Accum - Aggregate. Constructs an array of geometries.
	ST_AddMeasure - Return a derived geometry with measure elements linearly interpolated between the start and end points.
	ST_AddPoint - Add a point to a LineString.
	ST_Affine - Apply a 3d affine transformation to a geometry.
	ST_ApproximateMedialAxis - Compute the approximate medial axis of an areal geometry.
	ST_AsBinary - Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsEWKB - Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.
	ST_AsEWKT - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
	ST_AsGML - Return the geometry as a GML version 2 or 3 element.
	ST_AsGeoJSON - Return the geometry as a GeoJSON element.
	ST_AsHEXEWKB - Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR) encoding.
	ST_AsKML - Return the geometry as a KML element. Several variants. Default version=2, default precision=15
	ST_AsX3D - Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML
	ST_Boundary - Returns the closure of the combinatorial boundary of this Geometry.
	ST_BoundingDiagonal - Returns the diagonal of the supplied geometry's bounding box.
	ST_CPAWithin - Returns true if the trajectories' closest points of approachare within the specified distance.
	ST_ClosestPointOfApproach - Returns the measure at which points interpolated along two lines are closest.
	ST_Collect - Return a specified ST_Geometry value from a collection of other geometries.
	ST_ConvexHull - The convex hull of a geometry represents the minimum convex geometry that encloses all geometries within the set.
	ST_CoordDim - Return the coordinate dimension of the ST_Geometry value.
	ST_CurveToLine - Converts a CIRCULARSTRING/CURVEPOLYGON to a LINESTRING/POLYGON
	ST_DelaunayTriangles - Return a Delaunay triangulation around the given input points.
	ST_Difference - Returns a geometry that represents that part of geometry A that does not intersect with geometry B.
	ST_DistanceCPA - Returns the distance between closest points of approach in two trajectories.
	ST_Dump - Returns a set of geometry_dump (geom,path) rows, that make up a geometry g1.
	ST_DumpPoints - Returns a set of geometry_dump (geom,path) rows of all points that make up a geometry.
	ST_DumpRings - Returns a set of geometry_dump rows, representing the exterior and interior rings of a polygon.
	ST_EndPoint - Returns the last point of a LINESTRING or CIRCULARLINESTRING geometry as a POINT.
	ST_ExteriorRing - Returns a line string representing the exterior ring of the POLYGON geometry. Return NULL if the geometry is not a polygon. Will not work with MULTIPOLYGON
	ST_Extrude - Extrude a surface to a related volume
	ST_FlipCoordinates - Returns a version of the given geometry with X and Y axis flipped. Useful for people who have built latitude/longitude features and need to fix them.
	ST_Force2D - Force the geometries into a "2-dimensional mode".
	ST_ForceCurve - Upcast a geometry into its curved type, if applicable.
	ST_ForceLHR - Force LHR orientation
	ST_ForceRHR - Force the orientation of the vertices in a polygon to follow the Right-Hand-Rule.
	ST_ForceSFS - Force the geometries to use SFS 1.1 geometry types only.
	ST_Force_3D - Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.
	ST_Force_3DZ - Force the geometries into XYZ mode.
	ST_Force_4D - Force the geometries into XYZM mode.
	ST_Force_Collection - Convert the geometry into a GEOMETRYCOLLECTION.
	ST_GeomFromEWKB - Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).
	ST_GeomFromEWKT - Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).
	ST_GeomFromGML - Takes as input GML representation of geometry and outputs a PostGIS geometry object
	ST_GeomFromGeoJSON - Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object
	ST_GeomFromKML - Takes as input KML representation of geometry and outputs a PostGIS geometry object
	ST_GeometricMedian - Returns the geometric median of a MultiPoint.
	ST_GeometryN - Return the 1-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, (MULTI)POINT, (MULTI)LINESTRING, MULTICURVE or (MULTI)POLYGON, POLYHEDRALSURFACE Otherwise, return NULL.
	ST_GeometryType - Return the geometry type of the ST_Geometry value.
	ST_HasArc - Returns true if a geometry or geometry collection contains a circular string
	ST_InteriorRingN - Return the Nth interior linestring ring of the polygon geometry. Return NULL if the geometry is not a polygon or the given N is out of range.
	ST_InterpolatePoint - Return the value of the measure dimension of a geometry at the point closed to the provided point.
	ST_IsClosed - Returns TRUE if the LINESTRING's start and end points are coincident. For Polyhedral surface is closed (volumetric).
	ST_IsCollection - Returns TRUE if the argument is a collection (MULTI*, GEOMETRYCOLLECTION, ...)
	ST_IsPlanar - Check if a surface is or not planar
	ST_IsSimple - Returns (TRUE) if this Geometry has no anomalous geometric points, such as self intersection or self tangency.
	ST_IsSolid - Test if the geometry is a solid. No validity check is performed.
	ST_IsValidTrajectory - Returns true if the geometry is a valid trajectory.
	ST_Length_Spheroid - Calculates the 2D or 3D length/perimeter of a geometry on an ellipsoid. This is useful if the coordinates of the geometry are in longitude/latitude and a length is desired without reprojection.
	ST_LineFromMultiPoint - Creates a LineString from a MultiPoint geometry.
	ST_LineInterpolatePoint - Returns a point interpolated along a line. Second argument is a float8 between 0 and 1 representing fraction of total length of linestring the point has to be located.
	ST_LineSubstring - Return a linestring being a substring of the input one starting and ending at the given fractions of total 2d length. Second and third arguments are float8 values between 0 and 1.
	ST_LineToCurve - Converts a LINESTRING/POLYGON to a CIRCULARSTRING, CURVEPOLYGON
	ST_LocateBetweenElevations - Return a derived geometry (collection) value with elements that intersect the specified range of elevations inclusively. Only 3D, 4D LINESTRINGS and MULTILINESTRINGS are supported.
	ST_M - Return the M coordinate of the point, or NULL if not available. Input must be a point.
	ST_MakeLine - Creates a Linestring from point, multipoint, or line geometries.
	ST_MakePoint - Creates a 2D,3DZ or 4D point geometry.
	ST_MakePolygon - Creates a Polygon formed by the given shell. Input geometries must be closed LINESTRINGS.
	ST_MakeSolid - Cast the geometry into a solid. No check is performed. To obtain a valid solid, the input geometry must be a closed Polyhedral Surface or a closed TIN.
	ST_MakeValid - Attempts to make an invalid geometry valid without losing vertices.
	ST_MemSize - Returns the amount of space (in bytes) the geometry takes.
	ST_MemUnion - Same as ST_Union, only memory-friendly (uses less memory and more processor time).
	ST_NDims - Returns coordinate dimension of the geometry as a small int. Values are: 2,3 or 4.
	ST_NPoints - Return the number of points (vertexes) in a geometry.
	ST_NRings - If the geometry is a polygon or multi-polygon returns the number of rings.
	ST_Node - Node a set of linestrings.
	ST_NumGeometries - If geometry is a GEOMETRYCOLLECTION (or MULTI*) return the number of geometries, for single geometries will return 1, otherwise return NULL.
	ST_NumPatches - Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.
	ST_Orientation - Determine surface orientation
	ST_PatchN - Return the 1-based Nth geometry (face) if the geometry is a POLYHEDRALSURFACE, POLYHEDRALSURFACEM. Otherwise, return NULL.
	ST_PointFromWKB - Makes a geometry from WKB with the given SRID
	ST_PointN - Return the Nth point in the first LineString or circular LineString in the geometry. Negative values are counted backwards from the end of the LineString. Returns NULL if there is no linestring in the geometry.
	ST_PointOnSurface - Returns a POINT guaranteed to lie on the surface.
	ST_Points - Returns a MultiPoint containing all of the coordinates of a geometry.
	ST_Polygon - Returns a polygon built from the specified linestring and SRID.
	ST_RemovePoint - Remove point from a linestring.
	ST_RemoveRepeatedPoints - Returns a version of the given geometry with duplicated points removed.
	ST_Rotate - Rotate a geometry rotRadians counter-clockwise about an origin.
	ST_RotateX - Rotate a geometry rotRadians about the X axis.
	ST_RotateY - Rotate a geometry rotRadians about the Y axis.
	ST_RotateZ - Rotate a geometry rotRadians about the Z axis.
	ST_Scale - Scale a geometry by given factors.
	ST_SetPoint - Replace point of a linestring with a given point.
	ST_Shift_Longitude - Toggle geometry coordinates between -180..180 and 0..360 ranges.
	ST_SnapToGrid - Snap all points of the input geometry to a regular grid.
	ST_StartPoint - Returns the first point of a LINESTRING geometry as a POINT.
	ST_StraightSkeleton - Compute a straight skeleton from a geometry
	ST_SwapOrdinates - Returns a version of the given geometry with given ordinate values swapped.
	ST_SymDifference - Returns a geometry that represents the portions of A and B that do not intersect. It is called a symmetric difference because ST_SymDifference(A,B) = ST_SymDifference(B,A).
	ST_Tesselate - Perform surface Tesselation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS
	ST_TransScale - Translate a geometry by given factors and offsets.
	ST_Translate - Translate a geometry by given offsets.
	ST_UnaryUnion - Like ST_Union, but working at the geometry component level.
	ST_Volume - Computes the volume of a 3D solid. If applied to surface (even closed) geometries will return 0.
	ST_WrapX - Wrap a geometry around an X value.
	ST_X - Return the X coordinate of the point, or NULL if not available. Input must be a point.
	ST_XMax - Returns X maxima of a bounding box 2d or 3d or a geometry.
	ST_XMin - Returns X minima of a bounding box 2d or 3d or a geometry.
	ST_Y - Return the Y coordinate of the point, or NULL if not available. Input must be a point.
	ST_YMax - Returns Y maxima of a bounding box 2d or 3d or a geometry.
	ST_YMin - Returns Y minima of a bounding box 2d or 3d or a geometry.
	ST_Z - Return the Z coordinate of the point, or NULL if not available. Input must be a point.
	ST_ZMax - Returns Z minima of a bounding box 2d or 3d or a geometry.
	ST_ZMin - Returns Z minima of a bounding box 2d or 3d or a geometry.
	ST_Zmflag - Returns ZM (dimension semantic) flag of the geometries as a small int. Values are: 0=2d, 1=3dm, 2=3dz, 3=4d.
	TG_Equals - Returns true if two topogeometries are composed of the same topology primitives.
	TG_Intersects - Returns true if any pair of primitives from thetwo topogeometries intersect.
	UpdateGeometrySRID - Updates the SRID of all features in a geometry column, geometry_columns metadata and srid. If it was enforced with constraints, the constraints will be updated with new srid constraint. If the old was enforced by type definition, the type definition will be changed.
	geometry_overlaps_nd - Returns TRUE if A's n-D bounding box intersects B's n-D bounding box.
	overlaps_nd_geometry_gidx - Returns TRUE if a geometry's (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).
	overlaps_nd_gidx_geometry - Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry's (cached) n-D bounding box.
	overlaps_nd_gidx_gidx - Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.
	postgis_sfcgal_version - Returns the version of SFCGAL in use

Name
ST_3DIntersection — Perform 3D intersection

Synopsis
	geometry fsfuncST_3DIntersection(geom1, 	
	 	geom2);	

geometry geom1;
geometry geom2;

Description
Return a geometry that is the shared portion between geom1 and geom2.
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
3D images were generated using PostGIS ST_AsX3D and rendering in HTML using X3Dom HTML Javascript rendering library.
	

SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2;

[image: Examples]Original 3D geometries overlaid. geom2 is shown semi-transparent

 	

SELECT ST_3DIntersection(geom1,geom2)
FROM (SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2) As t;

[image: Examples]Intersection of geom1 and geom2

3D linestrings and polygons
	SELECT ST_AsText(ST_3DIntersection(linestring, polygon)) As wkt
FROM ST_GeomFromText('LINESTRING Z (2 2 6,1.5 1.5 7,1 1 8,0.5 0.5 8,0 0 10)') AS linestring
 CROSS JOIN ST_GeomFromText('POLYGON((0 0 8, 0 1 8, 1 1 8, 1 0 8, 0 0 8))') AS polygon;

 wkt

 LINESTRING Z (1 1 8,0.5 0.5 8)
		
Cube (closed Polyhedral Surface) and Polygon Z
SELECT ST_AsText(ST_3DIntersection(
		ST_GeomFromText('POLYHEDRALSURFACE Z(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
	((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
	((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
	((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'),
	'POLYGON Z ((0 0 0, 0 0 0.5, 0 0.5 0.5, 0 0.5 0, 0 0 0))'::geometry))
TIN Z (((0 0 0,0 0 0.5,0 0.5 0.5,0 0 0)),((0 0.5 0,0 0 0,0 0.5 0.5,0 0.5 0)))
Intersection of 2 solids that result in volumetric intersection is also a solid (ST_Dimension returns 3)
SELECT ST_AsText(ST_3DIntersection(ST_Extrude(ST_Buffer('POINT(10 20)'::geometry,10,1),0,0,30),
 ST_Extrude(ST_Buffer('POINT(10 20)'::geometry,10,1),2,0,10)));
POLYHEDRALSURFACE Z (((13.3333333333333 13.3333333333333 10,20 20 0,20 20 10,13.3333333333333 13.3333333333333 10)),
	((20 20 10,16.6666666666667 23.3333333333333 10,13.3333333333333 13.3333333333333 10,20 20 10)),
	((20 20 0,16.6666666666667 23.3333333333333 10,20 20 10,20 20 0)),
	((13.3333333333333 13.3333333333333 10,10 10 0,20 20 0,13.3333333333333 13.3333333333333 10)),
	((16.6666666666667 23.3333333333333 10,12 28 10,13.3333333333333 13.3333333333333 10,16.6666666666667 23.3333333333333 10)),
	((20 20 0,9.99999999999995 30 0,16.6666666666667 23.3333333333333 10,20 20 0)),
	((10 10 0,9.99999999999995 30 0,20 20 0,10 10 0)),((13.3333333333333 13.3333333333333 10,12 12 10,10 10 0,13.3333333333333 13.3333333333333 10)),
	((12 28 10,12 12 10,13.3333333333333 13.3333333333333 10,12 28 10)),
	((16.6666666666667 23.3333333333333 10,9.99999999999995 30 0,12 28 10,16.6666666666667 23.3333333333333 10)),
	((10 10 0,0 20 0,9.99999999999995 30 0,10 10 0)),
	((12 12 10,11 11 10,10 10 0,12 12 10)),((12 28 10,11 11 10,12 12 10,12 28 10)),
	((9.99999999999995 30 0,11 29 10,12 28 10,9.99999999999995 30 0)),((0 20 0,2 20 10,9.99999999999995 30 0,0 20 0)),
	((10 10 0,2 20 10,0 20 0,10 10 0)),((11 11 10,2 20 10,10 10 0,11 11 10)),((12 28 10,11 29 10,11 11 10,12 28 10)),
	((9.99999999999995 30 0,2 20 10,11 29 10,9.99999999999995 30 0)),((11 11 10,11 29 10,2 20 10,11 11 10)))

Name
ST_MemSize — Returns the amount of space (in bytes) the raster takes.

Synopsis
	integer fsfuncST_MemSize(rast);	

raster rast;

Description
Returns the amount of space (in bytes) the raster takes.
This is a nice compliment to PostgreSQL built in functions pg_column_size, pg_size_pretty, pg_relation_size, pg_total_relation_size.
Note
pg_relation_size which gives the byte size of a table may return byte size lower than ST_MemSize. This is because
		pg_relation_size does not add toasted table contribution and large geometries are stored in TOAST tables. pg_column_size might return lower because it returns the compressed size.
pg_total_relation_size - includes, the table, the toasted tables, and the indexes.

Availability: 2.2.0

Examples

		SELECT ST_MemSize(ST_AsRaster(ST_Buffer(ST_Point(1,5),10,1000),150, 150, '8BUI')) As rast_mem;

		rast_mem

		22568
	

See Also

Spatial Relationships and Measurements

Name
AddNode — Adds a point node to the node table in the specified topology schema and returns the nodeid of new node. If point already exists as node, the existing nodeid is returned.

Synopsis
	integer fsfuncAddNode(toponame, 	
	 	apoint, 	
	 	allowEdgeSplitting=false, 	
	 	computeContainingFace=false);	

varchar toponame;
geometry apoint;
boolean allowEdgeSplitting=false;
boolean computeContainingFace=false;

Description

Adds a point node to the node table in the specified topology schema.
The AddEdge function automatically adds start and end
points of an edge when called so not necessary to explicitly add nodes
of an edge.

If any edge crossing the node is found either an exception is raised or
the edge is split, depending on the allowEdgeSplitting
parameter value.
	

If computeContainingFace is true a newly added node would
get the correct containing face computed.
	
Note
If the apoint geometry already exists as a node, the node is not added but the existing nodeid is returned.

Availability: 2.0.0

Examples
SELECT topology.AddNode('ma_topo', ST_GeomFromText('POINT(227641.6 893816.5)', 26986)) As nodeid;
-- result --
nodeid

 4

See Also
AddEdge, CreateTopology

Name
ST_3DDistance — For geometry type Returns the 3-dimensional cartesian minimum distance (based on spatial ref) between two geometries in
		projected units.

Synopsis
	float fsfuncST_3DDistance(g1, 	
	 	g2);	

geometry
			g1;
geometry
			g2;

Description
For geometry type returns the 3-dimensional minimum cartesian distance between two geometries in
		projected units (spatial ref units).
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description] This method implements the SQL/MM specification. SQL-MM ?
[image: Description] This method is also provided by SFCGAL backend.
Availability: 2.0.0
Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

Examples

-- Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point and line compared 2D point and line)
-- Note: currently no vertical datum support so Z is not transformed and assumed to be same units as final.
SELECT ST_3DDistance(
			ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 4)'),2163),
			ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
) As dist_3d,
		ST_Distance(
			ST_Transform(ST_GeomFromText('POINT(-72.1235 42.3521)',4326),2163),
			ST_Transform(ST_GeomFromText('LINESTRING(-72.1260 42.45, -72.123 42.1546)', 4326),2163)
) As dist_2d;

 dist_3d | dist_2d
------------------+-----------------
 127.295059324629 | 126.66425605671

-- Multilinestring and polygon both 3d and 2d distance
-- Same example as 3D closest point example
SELECT ST_3DDistance(poly, mline) As dist3d,
 ST_Distance(poly, mline) As dist2d
 FROM (SELECT ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
 ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
 (1 10 2, 5 20 1))') As mline) As foo;
 dist3d | dist2d
-------------------+--------
 0.716635696066337 | 0

See Also
ST_Distance, ST_3DClosestPoint, ST_3DDWithin, ST_3DMaxDistance, ST_3DShortestLine, ST_Transform

Name
ST_MakeLine — Creates a Linestring from point, multipoint, or line geometries.

Synopsis
	geometry fsfuncST_MakeLine(geoms);	

geometry set geoms;

	geometry fsfuncST_MakeLine(geom1, 	
	 	geom2);	

geometry geom1;
geometry geom2;

	geometry fsfuncST_MakeLine(geoms_array);	

geometry[] geoms_array;

Description
ST_MakeLine comes in 3 forms: a spatial aggregate that takes
			rows of point, multipoint, or line geometries and returns a line string, a
			function that takes an array of point, multipoint, or line, and a regular
			function that takes two point, multipoint, or line geometries. You
			might want to use a subselect to order points before feeding them
			to the aggregate version of this function.
Inputs other than point, multipoint, or lines are ignored.

			When adding line components common nodes at the beginning of lines are removed from the output. Common nodes in point and multipoint inputs are not removed.
		
[image: Description]
 This function supports 3d and will not drop the z-index.
Availability: 2.3.0 - Support for multipoint input elements was introduced
Availability: 2.0.0 - Support for linestring input elements was introduced
Availability: 1.4.0 - ST_MakeLine(geomarray) was introduced. ST_MakeLine aggregate functions was enhanced to handle more points faster.

Examples: Spatial Aggregate version
This example takes a sequence of GPS points and creates one record for each
			gps travel where the geometry field is a line string composed of the gps points
			in the order of the travel.

-- For pre-PostgreSQL 9.0 - this usually works,
-- but the planner may on occasion choose not to respect the order of the subquery
SELECT gps.gps_track, ST_MakeLine(gps.the_geom) As newgeom
	FROM (SELECT gps_track,gps_time, the_geom
			FROM gps_points ORDER BY gps_track, gps_time) As gps
	GROUP BY gps.gps_track;

-- If you are using PostgreSQL 9.0+
-- (you can use the new ORDER BY support for aggregates)
-- this is a guaranteed way to get a correctly ordered linestring
-- Your order by part can order by more than one column if needed
SELECT gps.gps_track, ST_MakeLine(gps.the_geom ORDER BY gps_time) As newgeom
	FROM gps_points As gps
	GROUP BY gps.gps_track;

Examples: Non-Spatial Aggregate version
First example is a simple one off line string composed of 2 points. The second formulates
				line strings from 2 points a user draws. The third is a one-off that joins 2 3d points to create a line in 3d space.

SELECT ST_AsText(ST_MakeLine(ST_MakePoint(1,2), ST_MakePoint(3,4)));
	 st_astext

 LINESTRING(1 2,3 4)

SELECT userpoints.id, ST_MakeLine(startpoint, endpoint) As drawn_line
	FROM userpoints ;

SELECT ST_AsEWKT(ST_MakeLine(ST_MakePoint(1,2,3), ST_MakePoint(3,4,5)));
		st_asewkt

 LINESTRING(1 2 3,3 4 5)
			

Examples: Using Array version

SELECT ST_MakeLine(ARRAY(SELECT ST_Centroid(the_geom) FROM visit_locations ORDER BY visit_time));

--Making a 3d line with 3 3-d points
SELECT ST_AsEWKT(ST_MakeLine(ARRAY[ST_MakePoint(1,2,3),
				ST_MakePoint(3,4,5), ST_MakePoint(6,6,6)]));
		st_asewkt

LINESTRING(1 2 3,3 4 5,6 6 6)
			

See Also
ST_AsEWKT, ST_AsText, ST_GeomFromText, ST_MakePoint

Chapter 6. Using PostGIS Geometry: Building Applications

Using MapServer

The Minnesota MapServer is an internet web-mapping server which
 conforms to the OpenGIS Web Mapping Server specification.
	The MapServer homepage is at http://mapserver.org.

	The OpenGIS Web Map Specification is at http://www.opengeospatial.org/standards/wms.

Basic Usage

To use PostGIS with MapServer, you will need to know about how to
 configure MapServer, which is beyond the scope of this documentation.
 This section will cover specific PostGIS issues and configuration
 details.
To use PostGIS with MapServer, you will need:
	Version 0.6 or newer of PostGIS.

	Version 3.5 or newer of MapServer.

MapServer accesses PostGIS/PostgreSQL data like any other
 PostgreSQL client -- using the libpq interface. This means that
 MapServer can be installed on any machine with network access to the
 PostGIS server, and use PostGIS as a source of data. The faster the connection
 between the systems, the better.
	Compile and install MapServer, with whatever options you
 desire, including the "--with-postgis" configuration option.

	In your MapServer map file, add a PostGIS layer. For
 example:
LAYER
 CONNECTIONTYPE postgis
 NAME "widehighways"
 # Connect to a remote spatial database
 CONNECTION "user=dbuser dbname=gisdatabase host=bigserver"
 PROCESSING "CLOSE_CONNECTION=DEFER"
 # Get the lines from the 'geom' column of the 'roads' table
 DATA "geom from roads using srid=4326 using unique gid"
 STATUS ON
 TYPE LINE
 # Of the lines in the extents, only render the wide highways
 FILTER "type = 'highway' and numlanes >= 4"
 CLASS
 # Make the superhighways brighter and 2 pixels wide
 EXPRESSION ([numlanes] >= 6)
 STYLE
 COLOR 255 22 22
 WIDTH 2
 END
 END
 CLASS
 # All the rest are darker and only 1 pixel wide
 EXPRESSION ([numlanes] < 6)
 STYLE
 COLOR 205 92 82
 END
 END
END
In the example above, the PostGIS-specific directives are as
 follows:
	CONNECTIONTYPE
	For PostGIS layers, this is always "postgis".

	CONNECTION
	The database connection is governed by the a 'connection
 string' which is a standard set of keys and values like this
 (with the default values in <>):
user=<username> password=<password>
 dbname=<username> hostname=<server>
 port=<5432>
An empty connection string is still valid, and any of
 the key/value pairs can be omitted. At a minimum you will
 generally supply the database name and username to connect
 with.

	DATA
	The form of this parameter is "<geocolumn> from
 <tablename> using srid=<srid> using unique <primary key>" where the column is the spatial column to
 be rendered to the map, the SRID is SRID used by the column and the primary key is the table primary key (or any
 other uniquely-valued column with an index).
You can omit the "using srid" and "using unique" clauses and MapServer will automatically determine the
 correct values if possible, but at the cost of running a few extra queries on the server for each map
 draw.

	PROCESSING
	Putting in a CLOSE_CONNECTION=DEFER if you have multiple layers reuses existing connections instead of closing them. This improves
					speed. Refer to for MapServer PostGIS Performance Tips for a more detailed explanation.

	FILTER
	The filter must be a valid SQL string corresponding to
 the logic normally following the "WHERE" keyword in a SQL
 query. So, for example, to render only roads with 6 or more
 lanes, use a filter of "num_lanes >= 6".

	In your spatial database, ensure you have spatial (GiST)
 indexes built for any the layers you will be drawing.
CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]);

	If you will be querying your layers using MapServer you will
 also need to use the "using unique" clause in your DATA statement.
MapServer requires unique identifiers for each spatial record
 when doing queries, and the PostGIS module of MapServer uses the
 unique value you specify in order to provide these unique
 identifiers. Using the table primary key is the best practice.

Frequently Asked Questions

	1.
	When I use an EXPRESSION in my map file,
 the condition never returns as true, even though I know the values
 exist in my table.

		Unlike shape files, PostGIS field names have to be
 referenced in EXPRESSIONS using lower
 case.
EXPRESSION ([numlanes] >= 6)

	2.
	The FILTER I use for my Shape files is not working for my
 PostGIS table of the same data.

		Unlike shape files, filters for PostGIS layers use SQL
 syntax (they are appended to the SQL statement the PostGIS
 connector generates for drawing layers in MapServer).
FILTER "type = 'highway' and numlanes >= 4"

	3.
	My PostGIS layer draws much slower than my Shape file layer,
 is this normal?

		In general, the more features you are drawing into a given map,
 the more likely it is that PostGIS will be slower than Shape files.
 For maps with relatively few features (100s), PostGIS will often be faster.
 For maps with high feature density (1000s), PostGIS will always be slower.

If you are finding substantial draw performance problems, it
 is possible that you have not built a spatial index on your
 table.
postgis# CREATE INDEX geotable_gix ON geotable USING GIST (geocolumn);
postgis# VACUUM ANALYZE;

	4.
	My PostGIS layer draws fine, but queries are really slow.
 What is wrong?

		For queries to be fast, you must have a unique key for your
 spatial table and you must have an index on that unique
 key.
You can specify what unique key for mapserver to use with
 the USING UNIQUE clause in your
 DATA line:
DATA "geom FROM geotable USING UNIQUE gid"

	5.
	Can I use "geography" columns (new in PostGIS 1.5) as a source for
 MapServer layers?

		Yes! MapServer understands geography columns as being the same as
 geometry columns, but always using an SRID of 4326. Just make sure to include
 a "using srid=4326" clause in your DATA statement. Everything else
 works exactly the same as with geometry.
DATA "geog FROM geogtable USING SRID=4326 USING UNIQUE gid"

Advanced Usage

The USING pseudo-SQL clause is used to add some
 information to help mapserver understand the results of more complex
 queries. More specifically, when either a view or a subselect is used as
 the source table (the thing to the right of "FROM" in a
 DATA definition) it is more difficult for mapserver
 to automatically determine a unique identifier for each row and also the
 SRID for the table. The USING clause can provide
 mapserver with these two pieces of information as follows:
DATA "geom FROM (
 SELECT
 table1.geom AS geom,
 table1.gid AS gid,
 table2.data AS data
 FROM table1
 LEFT JOIN table2
 ON table1.id = table2.id
) AS new_table USING UNIQUE gid USING SRID=4326"
	USING UNIQUE <uniqueid>
	MapServer requires a unique id for each row in order to
 identify the row when doing map queries. Normally it identifies
 the primary key from the system tables. However, views and subselects don't
 automatically have an known unique column. If you want to use MapServer's
 query functionality, you need to ensure your view
 or subselect includes a uniquely valued column, and declare it with USING UNIQUE.
 For example, you could explicitly select nee of the table's primary key
 values for this purpose, or any other column which is guaranteed
 to be unique for the result set.
Note
"Querying a Map" is the action of clicking on a map to ask
 for information about the map features in that location. Don't
 confuse "map queries" with the SQL query in a
 DATA definition.

	USING SRID=<srid>
	PostGIS needs to know which spatial referencing system is
 being used by the geometries in order to return the correct data
 back to MapServer. Normally it is possible to find this
 information in the "geometry_columns" table in the PostGIS
 database, however, this is not possible for tables which are
 created on the fly such as subselects and views. So the
 USING SRID= option allows the correct SRID to
 be specified in the DATA definition.

Examples

Lets start with a simple example and work our way up. Consider the
 following MapServer layer definition:
LAYER
 CONNECTIONTYPE postgis
 NAME "roads"
 CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
 DATA "geom from roads"
 STATUS ON
 TYPE LINE
 CLASS
 STYLE
 COLOR 0 0 0
 END
 END
END
This layer will display all the road geometries in the roads table
 as black lines.
Now lets say we want to show only the highways until we get zoomed
 in to at least a 1:100000 scale - the next two layers will achieve this
 effect:
LAYER
 CONNECTIONTYPE postgis
 CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
 PROCESSING "CLOSE_CONNECTION=DEFER"
 DATA "geom from roads"
 MINSCALE 100000
 STATUS ON
 TYPE LINE
 FILTER "road_type = 'highway'"
 CLASS
 COLOR 0 0 0
 END
END
LAYER
 CONNECTIONTYPE postgis
 CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
 PROCESSING "CLOSE_CONNECTION=DEFER"
 DATA "geom from roads"
 MAXSCALE 100000
 STATUS ON
 TYPE LINE
 CLASSITEM road_type
 CLASS
 EXPRESSION "highway"
 STYLE
 WIDTH 2
 COLOR 255 0 0
 END
 END
 CLASS
 STYLE
 COLOR 0 0 0
 END
 END
END
The first layer is used when the scale is greater than 1:100000,
 and displays only the roads of type "highway" as black lines. The
 FILTER option causes only roads of type "highway" to
 be displayed.
The second layer is used when the scale is less than 1:100000, and
 will display highways as double-thick red lines, and other roads as
 regular black lines.
So, we have done a couple of interesting things using only
 MapServer functionality, but our DATA SQL statement
 has remained simple. Suppose that the name of the road is stored in
 another table (for whatever reason) and we need to do a join to get it
 and label our roads.
LAYER
 CONNECTIONTYPE postgis
 CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
 DATA "geom FROM (SELECT roads.gid AS gid, roads.geom AS geom,
 road_names.name as name FROM roads LEFT JOIN road_names ON
 roads.road_name_id = road_names.road_name_id)
 AS named_roads USING UNIQUE gid USING SRID=4326"
 MAXSCALE 20000
 STATUS ON
 TYPE ANNOTATION
 LABELITEM name
 CLASS
 LABEL
 ANGLE auto
 SIZE 8
 COLOR 0 192 0
 TYPE truetype
 FONT arial
 END
 END
END
This annotation layer adds green labels to all the roads when the
 scale gets down to 1:20000 or less. It also demonstrates how to use an
 SQL join in a DATA definition.

Name
ST_Force3D — Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.

Synopsis
	geometry fsfuncST_Force3D(geomA);	

geometry geomA;

Description
Forces the geometries into XYZ mode. This is an alias for ST_Force_3DZ. If a geometry has no Z component, then a 0 Z coordinate is tacked on.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3D.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

		--Nothing happens to an already 3D geometry
		SELECT ST_AsEWKT(ST_Force3D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
				 st_asewkt

 CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST_AsEWKT(ST_Force3D('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))'));

						 st_asewkt
--
 POLYGON((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))
		

See Also
ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3DZ

Name
&& — Returns TRUE if A's bounding box intersects B's bounding box.

Synopsis
	boolean fsfunc&&(A, 	
	 	B);	

						raster
						A
					;

						raster
						B
					;

	boolean fsfunc&&(A, 	
	 	B);	

						raster
						A
					;

						geometry
						B
					;

	boolean fsfunc&&(B, 	
	 	A);	

						geometry
						B
					;

						raster
						A
					;

Description
The && operator returns TRUE if the bounding box of raster/geometr A intersects the bounding box of raster/geometr B.
Note
This operand will make use of any indexes that may be available on the
				rasters.

Availability: 2.0.0

Examples
SELECT A.rid As a_rid, B.rid As b_rid, A.rast && B.rast As intersect
 FROM dummy_rast AS A CROSS JOIN dummy_rast AS B LIMIT 3;

 a_rid | b_rid | intersect
-------+-------+---------
 2 | 2 | t
 2 | 3 | f
 2 | 1 | f

Name
ST_DumpPoints — Returns a set of geometry_dump (geom,path) rows of all points that make up a geometry.

Synopsis
	geometry_dump[]fsfuncST_DumpPoints(geom);	

geometry geom;

Description
This set-returning function (SRF) returns a set of geometry_dump rows formed
				 by a geometry (geom) and an array of integers (path).
The geom component of geometry_dump are
				 all the POINTs that make up the supplied geometry
The path component of geometry_dump (an integer[])
				 is an index reference enumerating the POINTs of the supplied geometry.
					For example, if a LINESTRING is supplied, a path of {i} is
					returned where i is the nth coordinate in the LINESTRING.
					If a POLYGON is supplied, a path of {i,j} is returned where
					i is the ring number (1 is outer; inner rings follow) and j
					enumerates the POINTs (again 1-based index).
				
Enhanced: 2.1.0 Faster speed. Reimplemented as native-C.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.5.0
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports 3d and will not drop the z-index.

Classic Explode a Table of LineStrings into nodes
SELECT edge_id, (dp).path[1] As index, ST_AsText((dp).geom) As wktnode
FROM (SELECT 1 As edge_id
	, ST_DumpPoints(ST_GeomFromText('LINESTRING(1 2, 3 4, 10 10)')) AS dp
 UNION ALL
 SELECT 2 As edge_id
	, ST_DumpPoints(ST_GeomFromText('LINESTRING(3 5, 5 6, 9 10)')) AS dp
) As foo;
 edge_id | index | wktnode
---------+-------+--------------
 1 | 1 | POINT(1 2)
 1 | 2 | POINT(3 4)
 1 | 3 | POINT(10 10)
 2 | 1 | POINT(3 5)
 2 | 2 | POINT(5 6)
 2 | 3 | POINT(9 10)

Standard Geometry Examples
[image: Standard Geometry Examples]

SELECT path, ST_AsText(geom)
FROM (
 SELECT (ST_DumpPoints(g.geom)).*
 FROM
 (SELECT
 'GEOMETRYCOLLECTION(
 POINT (0 1),
 LINESTRING (0 3, 3 4),
 POLYGON ((2 0, 2 3, 0 2, 2 0)),
 POLYGON ((3 0, 3 3, 6 3, 6 0, 3 0),
 (5 1, 4 2, 5 2, 5 1)),
 MULTIPOLYGON (
 ((0 5, 0 8, 4 8, 4 5, 0 5),
 (1 6, 3 6, 2 7, 1 6)),
 ((5 4, 5 8, 6 7, 5 4))
)
)'::geometry AS geom
) AS g
) j;

 path | st_astext
-----------+------------
 {1,1} | POINT(0 1)
 {2,1} | POINT(0 3)
 {2,2} | POINT(3 4)
 {3,1,1} | POINT(2 0)
 {3,1,2} | POINT(2 3)
 {3,1,3} | POINT(0 2)
 {3,1,4} | POINT(2 0)
 {4,1,1} | POINT(3 0)
 {4,1,2} | POINT(3 3)
 {4,1,3} | POINT(6 3)
 {4,1,4} | POINT(6 0)
 {4,1,5} | POINT(3 0)
 {4,2,1} | POINT(5 1)
 {4,2,2} | POINT(4 2)
 {4,2,3} | POINT(5 2)
 {4,2,4} | POINT(5 1)
 {5,1,1,1} | POINT(0 5)
 {5,1,1,2} | POINT(0 8)
 {5,1,1,3} | POINT(4 8)
 {5,1,1,4} | POINT(4 5)
 {5,1,1,5} | POINT(0 5)
 {5,1,2,1} | POINT(1 6)
 {5,1,2,2} | POINT(3 6)
 {5,1,2,3} | POINT(2 7)
 {5,1,2,4} | POINT(1 6)
 {5,2,1,1} | POINT(5 4)
 {5,2,1,2} | POINT(5 8)
 {5,2,1,3} | POINT(6 7)
 {5,2,1,4} | POINT(5 4)
(29 rows)

Polyhedral Surfaces, TIN and Triangle Examples
-- Polyhedral surface cube --
SELECT (g.gdump).path, ST_AsEWKT((g.gdump).geom) as wkt
 FROM
 (SELECT
 ST_DumpPoints(ST_GeomFromEWKT('POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))')) AS gdump
) AS g;
-- result --
 path | wkt
---------+--------------
 {1,1,1} | POINT(0 0 0)
 {1,1,2} | POINT(0 0 1)
 {1,1,3} | POINT(0 1 1)
 {1,1,4} | POINT(0 1 0)
 {1,1,5} | POINT(0 0 0)
 {2,1,1} | POINT(0 0 0)
 {2,1,2} | POINT(0 1 0)
 {2,1,3} | POINT(1 1 0)
 {2,1,4} | POINT(1 0 0)
 {2,1,5} | POINT(0 0 0)
 {3,1,1} | POINT(0 0 0)
 {3,1,2} | POINT(1 0 0)
 {3,1,3} | POINT(1 0 1)
 {3,1,4} | POINT(0 0 1)
 {3,1,5} | POINT(0 0 0)
 {4,1,1} | POINT(1 1 0)
 {4,1,2} | POINT(1 1 1)
 {4,1,3} | POINT(1 0 1)
 {4,1,4} | POINT(1 0 0)
 {4,1,5} | POINT(1 1 0)
 {5,1,1} | POINT(0 1 0)
 {5,1,2} | POINT(0 1 1)
 {5,1,3} | POINT(1 1 1)
 {5,1,4} | POINT(1 1 0)
 {5,1,5} | POINT(0 1 0)
 {6,1,1} | POINT(0 0 1)
 {6,1,2} | POINT(1 0 1)
 {6,1,3} | POINT(1 1 1)
 {6,1,4} | POINT(0 1 1)
 {6,1,5} | POINT(0 0 1)
(30 rows)
-- Triangle --
SELECT (g.gdump).path, ST_AsText((g.gdump).geom) as wkt
 FROM
 (SELECT
 ST_DumpPoints(ST_GeomFromEWKT('TRIANGLE ((
 0 0,
 0 9,
 9 0,
 0 0
))')) AS gdump
) AS g;
-- result --
 path | wkt
------+------------
 {1} | POINT(0 0)
 {2} | POINT(0 9)
 {3} | POINT(9 0)
 {4} | POINT(0 0)

-- TIN --
SELECT (g.gdump).path, ST_AsEWKT((g.gdump).geom) as wkt
 FROM
 (SELECT
 ST_DumpPoints(ST_GeomFromEWKT('TIN (((
 0 0 0,
 0 0 1,
 0 1 0,
 0 0 0
)), ((
 0 0 0,
 0 1 0,
 1 1 0,
 0 0 0
))
)')) AS gdump
) AS g;
-- result --
 path | wkt
---------+--------------
 {1,1,1} | POINT(0 0 0)
 {1,1,2} | POINT(0 0 1)
 {1,1,3} | POINT(0 1 0)
 {1,1,4} | POINT(0 0 0)
 {2,1,1} | POINT(0 0 0)
 {2,1,2} | POINT(0 1 0)
 {2,1,3} | POINT(1 1 0)
 {2,1,4} | POINT(0 0 0)
(8 rows)

See Also
geometry_dump, the section called “PostGIS Geometry / Geography / Raster Dump Functions”, ST_Dump, ST_DumpRings

Name
ST_ConvexHull — The convex hull of a geometry represents the minimum convex
		geometry that encloses all geometries within the set.

Synopsis
	geometry fsfuncST_ConvexHull(geomA);	

geometry geomA;

Description
The convex hull of a geometry represents the minimum convex
		geometry that encloses all geometries within the set.
One can think of the convex hull as the geometry you get by wrapping an elastic
			band around a set of geometries. This is different from a concave hull
				which is analogous to shrink-wrapping your geometries.
It is usually used with MULTI and Geometry Collections.
		Although it is not an aggregate - you can use it in conjunction
		with ST_Collect to get the convex hull of a set of points.
		ST_ConvexHull(ST_Collect(somepointfield)).
It is often used to
		determine an affected area based on a set of point
		observations.
Performed by the GEOS module
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.3
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.16
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

--Get estimate of infected area based on point observations
SELECT d.disease_type,
	ST_ConvexHull(ST_Collect(d.the_geom)) As the_geom
	FROM disease_obs As d
	GROUP BY d.disease_type;

	
[image: Examples]Convex Hull of a MultiLinestring and a MultiPoint seen together with the MultiLinestring and MultiPoint

	

SELECT ST_AsText(ST_ConvexHull(
	ST_Collect(
		ST_GeomFromText('MULTILINESTRING((100 190,10 8),(150 10, 20 30))'),
			ST_GeomFromText('MULTIPOINT(50 5, 150 30, 50 10, 10 10)')
)));
---st_astext--
POLYGON((50 5,10 8,10 10,100 190,150 30,150 10,50 5))
	

See Also
ST_Collect, ST_ConcaveHull, ST_MinimumBoundingCircle

Name
postgis.enable_outdb_rasters —
					A boolean configuration option to enable access to out-db raster bands.
				

Description

					A boolean configuration option to enable access to out-db raster bands. This option can be set in PostgreSQL's configuration file: postgresql.conf. It can also be set by connection or transaction.
				

					The initial value of postgis.enable_outdb_rasters may also be set by passing the environment variable POSTGIS_ENABLE_OUTDB_RASTERS with a non-zero value to the process starting PostgreSQL.
				
Note

						Even if postgis.enable_outdb_rasters is True, the GUC postgis.enable_outdb_rasters determines the accessible raster formats.
					

Note

						In the standard PostGIS installation, postgis.enable_outdb_rasters is set to False.
					

Availability: 2.2.0

Examples
Set and reset postgis.enable_outdb_rasters

SET postgis.enable_outdb_rasters TO True;
SET postgis.enable_outdb_rasters = default;
SET postgis.enable_outdb_rasters = True;
SET postgis.enable_outdb_rasters = False;
				

See Also

					postgis.gdal_enabled_drivers
				

Name
PostGIS_GEOS_Version — Returns the version number of the GEOS
		library.

Synopsis
	text fsfuncPostGIS_GEOS_Version();	

;

Description
Returns the version number of the GEOS library, or
		NULL if GEOS support is not enabled.

Examples
SELECT PostGIS_GEOS_Version();
 postgis_geos_version

 3.1.0-CAPI-1.5.0
(1 row)

See Also
PostGIS_Full_Version, PostGIS_Lib_Version, PostGIS_LibXML_Version, PostGIS_PROJ_Version, PostGIS_Version

Name
ST_Disjoint — Returns TRUE if the Geometries do not "spatially
			intersect" - if they do not share any space together.
			

Synopsis
	boolean fsfuncST_Disjoint(A, 	
	 	B);	

						geometry
						A
					;

						geometry
						B
					;

Description
Overlaps, Touches, Within all imply geometries are not spatially disjoint. If any of the aforementioned
				returns true, then the geometries are not spatially disjoint.
				Disjoint implies false for spatial intersection.
Important
Do not call with a GEOMETRYCOLLECTION as an argument

Performed by the GEOS module
Note
This function call does not use indexes

Note
NOTE: this is the "allowable" version that returns a
			boolean, not an integer.

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3
			- a.Relate(b, 'FF*FF****')
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.26

Examples
SELECT ST_Disjoint('POINT(0 0)'::geometry, 'LINESTRING (2 0, 0 2)'::geometry);
 st_disjoint

 t
(1 row)
SELECT ST_Disjoint('POINT(0 0)'::geometry, 'LINESTRING (0 0, 0 2)'::geometry);
 st_disjoint

 f
(1 row)
		

See Also
ST_IntersectsST_Intersects

Address Standardizer Functions

Name
ST_WorldToRasterCoordY — Returns the row in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw) represented
				in world spatial reference system of raster.

Synopsis
	integer fsfuncST_WorldToRasterCoordY(rast, 	
	 	pt);	

raster rast;
geometry pt;

	integer fsfuncST_WorldToRasterCoordY(rast, 	
	 	xw);	

raster rast;
double precision xw;

	integer fsfuncST_WorldToRasterCoordY(rast, 	
	 	xw, 	
	 	yw);	

raster rast;
double precision xw;
double precision yw;

Description
Returns the row in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw). A point, or (both xw and yw world coordinates are required if a raster is skewed). If a raster
					is not skewed then xw is sufficient. World coordinates are in the spatial reference coordinate system of the raster.
Changed: 2.1.0 In prior versions, this was called ST_World2RasterCoordY

Examples
SELECT rid, ST_WorldToRasterCoordY(rast,20.5) As ycoord,
		ST_WorldToRasterCoordY(rast,3427927.8,20.5) As ycoord_xwyw,
		ST_WorldToRasterCoordY(rast,ST_GeomFromText('POINT(3427927.8 20.5)',ST_SRID(rast))) As ptycoord
FROM dummy_rast;

 rid | ycoord | ycoord_xwyw | ptycoord
-----+-----------+-------------+-----------
 1 | 7 | 7 | 7
 2 | 115864471 | 115864471 | 115864471
				

See Also
ST_RasterToWorldCoordX, ST_RasterToWorldCoordY, ST_SRID

Release 1.1.5

Release date: 2006/10/13
This is an bugfix release, including a critical segfault on win32.
 Upgrade is encouraged.
Upgrading

If you are upgrading from release 1.0.3 or later follow the
 soft upgrade procedure.
If you are upgrading from a release between 1.0.0RC6
 and 1.0.2 (inclusive) and really want a live upgrade read
 the upgrade section of the
 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

Bug fixes

Fixed MingW link error that was causing pgsql2shp to segfault on
 Win32 when compiled for PostgreSQL 8.2
fixed nullpointer Exception in Geometry.equals() method in
 Java
Added EJB3Spatial.odt to fulfill the GPL requirement of
 distributing the "preferred form of modification"
Removed obsolete synchronization from JDBC Jts code.
Updated heavily outdated README files for shp2pgsql/pgsql2shp by
 merging them with the manpages.
Fixed version tag in jdbc code that still said "1.1.3" in the
 "1.1.4" release.

New Features

Added -S option for non-multi geometries to shp2pgsql

Name
ST_InteriorRingN — Return the Nth interior linestring ring of the polygon geometry.
			Return NULL if the geometry is not a polygon or the given N is out
			of range.

Synopsis
	geometry fsfuncST_InteriorRingN(a_polygon, 	
	 	n);	

geometry a_polygon;
integer n;

Description
Return the Nth interior linestring ring of the polygon geometry.
			Return NULL if the geometry is not a polygon or the given N is out
			of range. index starts at 1.
Note
This will not work for MULTIPOLYGONs. Use in conjunction with ST_Dump for MULTIPOLYGONS

[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText(ST_InteriorRingN(the_geom, 1)) As the_geom
FROM (SELECT ST_BuildArea(
		ST_Collect(ST_Buffer(ST_Point(1,2), 20,3),
			ST_Buffer(ST_Point(1, 2), 10,3))) As the_geom
) as foo
		

See Also

ST_ExteriorRing
ST_BuildArea,
ST_Collect,
ST_Dump,
ST_NumInteriorRing,
ST_NumInteriorRings
		

Name
ST_ScaleX — Returns the X component of the pixel width in units of coordinate reference system.

Synopsis
	float8 fsfuncST_ScaleX(rast);	

raster rast;

Description
Returns the X component of the pixel width in units of coordinate reference system. Refer to World File
				for more details.
Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeX.

Examples
SELECT rid, ST_ScaleX(rast) As rastpixwidth
FROM dummy_rast;

 rid | rastpixwidth
-----+--------------
 1 | 2
 2 | 0.05
				

See Also
ST_Width

Name
ST_PixelAsCentroids —
					Returns the centroid (point geometry) for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The point geometry is the centroid of the area represented by a pixel.
				

Synopsis
	geometry fsfuncST_PixelAsCentroids(rast, 	
	 	band=1, 	
	 	exclude_nodata_value=TRUE);	

raster rast;
integer band=1;
boolean exclude_nodata_value=TRUE;

Description

					Returns the centroid (point geometry) for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The point geometry is the centroid of the area represented by a pixel.
				
Note

						When exclude_nodata_value = TRUE, only those pixels whose values are not NODATA are returned as points.
					

Availability: 2.1.0
Changed: 2.1.1 Changed behavior of exclude_nodata_value.

Examples

SELECT x, y, val, ST_AsText(geom) FROM (SELECT (ST_PixelAsCentroids(rast, 1)).* FROM dummy_rast WHERE rid = 2) foo;
 x | y | val | st_astext
---+---+-----+--------------------------------
 1 | 1 | 253 | POINT(3427927.775 5793243.975)
 2 | 1 | 254 | POINT(3427927.825 5793243.975)
 3 | 1 | 253 | POINT(3427927.875 5793243.975)
 4 | 1 | 254 | POINT(3427927.925 5793243.975)
 5 | 1 | 254 | POINT(3427927.975 5793243.975)
 1 | 2 | 253 | POINT(3427927.775 5793243.925)
 2 | 2 | 254 | POINT(3427927.825 5793243.925)
 3 | 2 | 254 | POINT(3427927.875 5793243.925)
 4 | 2 | 253 | POINT(3427927.925 5793243.925)
 5 | 2 | 249 | POINT(3427927.975 5793243.925)
 1 | 3 | 250 | POINT(3427927.775 5793243.875)
 2 | 3 | 254 | POINT(3427927.825 5793243.875)
 3 | 3 | 254 | POINT(3427927.875 5793243.875)
 4 | 3 | 252 | POINT(3427927.925 5793243.875)
 5 | 3 | 249 | POINT(3427927.975 5793243.875)
 1 | 4 | 251 | POINT(3427927.775 5793243.825)
 2 | 4 | 253 | POINT(3427927.825 5793243.825)
 3 | 4 | 254 | POINT(3427927.875 5793243.825)
 4 | 4 | 254 | POINT(3427927.925 5793243.825)
 5 | 4 | 253 | POINT(3427927.975 5793243.825)
 1 | 5 | 252 | POINT(3427927.775 5793243.775)
 2 | 5 | 250 | POINT(3427927.825 5793243.775)
 3 | 5 | 254 | POINT(3427927.875 5793243.775)
 4 | 5 | 254 | POINT(3427927.925 5793243.775)
 5 | 5 | 254 | POINT(3427927.975 5793243.775)
				

See Also

					ST_DumpAsPolygons,
					ST_PixelAsPolygon,
					ST_PixelAsPolygons,
					ST_PixelAsPoint,
					ST_PixelAsPoints,
					ST_PixelAsCentroid
				

Name
ST_IsValid — Returns true if the
		ST_Geometry is well formed.
		

Synopsis
	boolean fsfuncST_IsValid(g);	

geometry g;

	boolean fsfuncST_IsValid(g, 	
	 	flags);	

geometry g;
integer flags;

Description
Test if an ST_Geometry value is well formed. For geometries that are invalid,
			the PostgreSQL NOTICE will provide details of why it is not valid. For more
			information on the OGC's definition of geometry simplicity and validity, refer
			to "Ensuring OpenGIS compliancy of geometries"
		
Note
SQL-MM defines the result of ST_IsValid(NULL) to be 0, while
			PostGIS returns NULL.

The version accepting flags is available starting with 2.0.0
and requires GEOS >= 3.3.0. Such version does not print a NOTICE
explaining the invalidity.
Allowed flags are documented in ST_IsValidDetail.
		
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.9
Note

Neither OGC-SFS nor SQL-MM specifications include a flag argument
for ST_IsValid. The flag is a PostGIS extension.
			

Examples
SELECT ST_IsValid(ST_GeomFromText('LINESTRING(0 0, 1 1)')) As good_line,
	ST_IsValid(ST_GeomFromText('POLYGON((0 0, 1 1, 1 2, 1 1, 0 0))')) As bad_poly
--results
NOTICE: Self-intersection at or near point 0 0
 good_line | bad_poly
-----------+----------
 t | f

See Also

ST_IsSimple,
ST_IsValidReason,
ST_IsValidDetail,
ST_Summary

Name
ST_BandIsNoData — Returns true if the band is filled with only nodata values.

Synopsis
	boolean fsfuncST_BandIsNoData(rast, 	
	 	band, 	
	 	forceChecking=true);	

raster rast;
integer band;
boolean forceChecking=true;

	boolean fsfuncST_BandIsNoData(rast, 	
	 	forceChecking=true);	

raster rast;
boolean forceChecking=true;

Description
Returns true if the band is filled with only nodata
 values. Band 1 is assumed if not specified. If the last argument
 is TRUE, the entire band is checked pixel by pixel. Otherwise,
 the function simply returns the value of the isnodata flag for
 the band. The default value for this parameter is FALSE, if not
 specified.
Availability: 2.0.0
Note
If the flag is dirty (this is, the result is different
 using TRUE as last parameter and not using it) you should
 update the raster to set this flag to true, by using ST_SetBandIsNodata(),
 or ST_SetBandNodataValue() with TRUE as last argument. See ST_SetBandIsNoData.

Examples

-- Create dummy table with one raster column
create table dummy_rast (rid integer, rast raster);

-- Add raster with two bands, one pixel/band. In the first band, nodatavalue = pixel value = 3.
-- In the second band, nodatavalue = 13, pixel value = 4
insert into dummy_rast values(1,
(
'01' -- little endian (uint8 ndr)
||
'0000' -- version (uint16 0)
||
'0200' -- nBands (uint16 0)
||
'17263529ED684A3F' -- scaleX (float64 0.000805965234044584)
||
'F9253529ED684ABF' -- scaleY (float64 -0.00080596523404458)
||
'1C9F33CE69E352C0' -- ipX (float64 -75.5533328537098)
||
'718F0E9A27A44840' -- ipY (float64 49.2824585505576)
||
'ED50EB853EC32B3F' -- skewX (float64 0.000211812383858707)
||
'7550EB853EC32B3F' -- skewY (float64 0.000211812383858704)
||
'E6100000' -- SRID (int32 4326)
||
'0100' -- width (uint16 1)
||
'0100' -- height (uint16 1)
||
'6' -- hasnodatavalue and isnodata value set to true.
||
'2' -- first band type (4BUI)
||
'03' -- novalue==3
||
'03' -- pixel(0,0)==3 (same that nodata)
||
'0' -- hasnodatavalue set to false
||
'5' -- second band type (16BSI)
||
'0D00' -- novalue==13
||
'0400' -- pixel(0,0)==4
)::raster
);

select st_bandisnodata(rast, 1) from dummy_rast where rid = 1; -- Expected true
select st_bandisnodata(rast, 2) from dummy_rast where rid = 1; -- Expected false
			

See Also
ST_BandNoDataValue, ST_NumBands, ST_SetBandNoDataValue, ST_SetBandIsNoData

Name
ST_Reverse — Return the geometry with vertex order reversed.

Synopsis
	geometry fsfuncST_Reverse(g1);	

geometry g1;

Description
Can be used on any geometry and reverses the order of the vertexes.

Examples

SELECT ST_AsText(the_geom) as line, ST_AsText(ST_Reverse(the_geom)) As reverseline
FROM
(SELECT ST_MakeLine(ST_MakePoint(1,2),
		ST_MakePoint(1,10)) As the_geom) as foo;
--result
		line | reverseline
---------------------+----------------------
LINESTRING(1 2,1 10) | LINESTRING(1 10,1 2)

Chapter 12. Address Standardizer

This is a fork of the PAGC standardizer (original code for this portion was PAGC PostgreSQL Address Standardizer).
The address standardizer is a single line address parser that takes an input address and normalizes it based on a set of rules stored in a table and helper lex and gaz tables.
The code is built into a single postgresql extension library called address_standardizer which can be installed with CREATE EXTENSION address_standardizer;. In addition to the address_standardizer extension, a sample data extension called address_standardizer_data_us extensions is built, which contains gaz, lex, and rules tables for US data. This extensions can be installed via: CREATE EXTENSION address_standardizer_data_us;
The code for this extension can be found in the PostGIS extensions/address_standardizer and is currently self-contained.
For installation instructions refer to: the section called “Installing and Using the address standardizer”.
How the Parser Works

The parser works from right to left looking first at the macro elements
			for postcode, state/province, city, and then looks micro elements to determine
if we are dealing with a house number street or intersection or landmark.
It currently does not look for a country code or name, but that could be
introduced in the future.
	Country code
	Assumed to be US or CA based on: postcode as US or Canada state/province as US or Canada else US

	Postcode/zipcode
	These are recognized using Perl compatible regular expressions.
These regexs are currently in the parseaddress-api.c and are relatively
simple to make changes to if needed.

	State/province
	These are recognized using Perl compatible regular expressions.
These regexs are currently in the parseaddress-api.c but could get moved
into includes in the future for easier maintenance.

Name
CopyTopology — Makes a copy of a topology structure (nodes, edges, faces, layers and TopoGeometries).

Synopsis
	integer fsfuncCopyTopology(existing_topology_name, 	
	 	new_name);	

varchar existing_topology_name;
varchar new_name;

Description

Creates a new topology with name new_topology_name and SRID and precision taken from existing_topology_name, copies all nodes, edges and faces in there, copies layers and their TopoGeometries too.
		
Note

The new rows in topology.layer will contain synthesized values for schema_name, table_name and feature_column. This is because the TopoGeometry will only exist as a definition but won't be available in any user-level table yet.
		

Availability: 2.0.0

Examples

This example makes a backup of a topology called ma_topo
				
SELECT topology.CopyTopology('ma_topo', 'ma_topo_bakup');

See Also
the section called “The SPATIAL_REF_SYS Table and Spatial Reference Systems”, CreateTopology

Name
reclassarg — A composite type used as input into the ST_Reclass function defining the behavior of reclassification.

Description
A composite type used as input into the ST_Reclass function defining the behavior of reclassification.
	nband integer
	The band number of band to reclassify.

	reclassexpr text
	range expression consisting of comma delimited range:map_range mappings. : to define mapping that defines how to map old band values to new band values. (means >,) means less than,] < or equal, [means > or equal
1. [a-b] = a <= x <= b

2. (a-b] = a < x <= b

3. [a-b) = a <= x < b

4. (a-b) = a < x < b
(notation is optional so a-b means the same as (a-b)

	pixeltype text
	One of defined pixel types as described in ST_BandPixelType

	nodataval double precision
	Value to treat as no data. For image outputs that support transparency, these will be blank.

Example: Reclassify band 2 as an 8BUI where 255 is nodata value
SELECT ROW(2, '0-100:1-10, 101-500:11-150,501 - 10000: 151-254', '8BUI', 255)::reclassarg;

Example: Reclassify band 1 as an 1BB and no nodata value defined
SELECT ROW(1, '0-100]:0, (100-255:1', '1BB', NULL)::reclassarg;

See Also
ST_Reclass

Name
postgis.gdal_datapath —
					A configuration option to assign the value of GDAL's GDAL_DATA option. If not set, the environmentally set GDAL_DATA variable is used.
				

Description

					A PostgreSQL GUC variable for setting the value of GDAL's GDAL_DATA option. The postgis.gdal_datapath value should be the complete physical path to GDAL's data files.
				

					This configuration option is of most use for Windows platforms where GDAL's data files path is not hard-coded. This option should also be set when GDAL's data files are not located in GDAL's expected path.
				
Note

						This option can be set in PostgreSQL's configuration file postgresql.conf. It can also be set by connection or transaction.
					

Availability: 2.2.0
Note

						Additional information about GDAL_DATA is available at GDAL's Configuration Options.
					

Examples
Set and reset postgis.gdal_datapath

SET postgis.gdal_datapath TO '/usr/local/share/gdal.hidden';
SET postgis.gdal_datapath TO default;
				
Setting on windows for a particular database
ALTER DATABASE gisdb
SET postgis.gdal_datapath = 'C:/Program Files/PostgreSQL/9.3/gdal-data';

See Also

					PostGIS_GDAL_Version, ST_Transform
				

Topology Constructors

Abstract
This section covers the topology functions for creating new topologies.

Name
ST_MinimumClearanceLine — Returns the two-point LineString spanning a geometry's minimum clearance.

Synopsis
	Geometry fsfuncST_MinimumClearanceLine(g);	

geometry
			g;

Description

			Returns the two-point LineString spanning a geometry's minimum clearance. If the geometry does not have a minimum
			clearance, LINESTRING EMPTY will be returned.
		
Availability: 2.3.0 - requires GEOS >= 3.6.0

Examples

SELECT ST_AsText(ST_MinimumClearanceLine('POLYGON ((0 0, 1 0, 1 1, 0.5 3.2e-4, 0 0))'));
st_astext

LINESTRING(0.5 0.00032,0.5 0)
		

See Also

			ST_MinimumClearance
		

Name
ST_AsSVG — Returns a Geometry in SVG path data given a geometry or geography object.

Synopsis
	text fsfuncST_AsSVG(geom, 	
	 	rel=0, 	
	 	maxdecimaldigits=15);	

geometry geom;
integer rel=0;
integer maxdecimaldigits=15;

	text fsfuncST_AsSVG(geog, 	
	 	rel=0, 	
	 	maxdecimaldigits=15);	

geography geog;
integer rel=0;
integer maxdecimaldigits=15;

Description
Return the geometry as Scalar Vector Graphics (SVG) path data. Use 1 as second
			argument to have the path data implemented in terms of relative
			moves, the default (or 0) uses absolute moves. Third argument may
			be used to reduce the maximum number of decimal digits used in
			output (defaults to 15). Point geometries will be rendered as
			cx/cy when 'rel' arg is 0, x/y when 'rel' is 1. Multipoint
			geometries are delimited by commas (","), GeometryCollection
			geometries are delimited by semicolons (";").
Note
Availability: 1.2.2. Availability: 1.4.0 Changed in PostGIS 1.4.0 to include L command in absolute path to conform to http://www.w3.org/TR/SVG/paths.html#PathDataBNF

Changed: 2.0.0 to use default args and support named args

Examples
SELECT ST_AsSVG(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

		st_assvg

		M 0 0 L 0 -1 1 -1 1 0 Z

Name
ST_Subdivide — Returns a set of geometry where no geometry in the set has more than the specified number of vertices.

Synopsis
	setof geometry fsfuncST_Subdivide(geom, 	
	 	max_vertices=256);	

geometry geom;
integer max_vertices=256;

Description

Turns a single geometry into a set in which each element has fewer than
the maximum allowed number of vertices. Useful for converting excessively
large polygons and other objects into small portions that fit within the
database page size. Uses the same envelope clipping as ST_ClipByBox2D does,
recursively subdividing the input geometry until all portions have less than the
maximum vertex count. Minimum vertice count allowed is 8 and if you try to specify lower than 8, it will throw an error.

Clipping performed by the GEOS module.
Note
Requires GEOS 3.5.0+

Availability: 2.2.0 requires GEOS >= 3.5.0.

Examples
-- Create a new subdivided table suitable for joining to the original
CREATE TABLE subdivided_geoms AS
SELECT pkey, ST_Subdivide(geom) AS geom
FROM original_geoms;

	[image: Examples]Subdivide max 10 vertices

				
SELECT row_number() OVER() As rn, ST_AsText(geom) As wkt
FROM (SELECT ST_SubDivide('POLYGON((132 10,119 23,85 35,68 29,66 28,49 42,32 56,22 64,32 110,40 119,36 150,
57 158,75 171,92 182,114 184,132 186,146 178,176 184,179 162,184 141,190 122,
190 100,185 79,186 56,186 52,178 34,168 18,147 13,132 10))'::geometry,10)) As f(geom);

rn | wkt
---+---
 1 | POLYGON((22 64,29.3913043478263 98.000000000001,106.000000000001 98.00000000001,
 106.000000000001 27.5882352941173,85 35,68 29,66 28,49 42,32 56,22 64))
 2 | POLYGON((29.3913043478263 98.000000000001,32 110,40 119,36 150,57 158,
 75 11,92 182,106.000000000001 183.272727272727,106.000000000001 98.000000000001,
 29.913043478263 98.000000000001))
 3 | POLYGON((106.000000000001 27.5882352941173,106.000000000001 98.00000000000,
 189.52380952381 98.000000000001,185 79,186 56,186 52,178 34,168 18,147 13,
 132 0,119 23,106.000000000001 27.5882352941173))
 4 | POLYGON((106.000000000001 98.000000000001,106.000000000001 183.27272727272,
 114 184,132 186,146 178,176 184,179 162,184 141,190 122,190 100,189.5238095238
 98.000000000001,106.000000000001 98.000000000001))

						

	[image: Examples]Useful in conjunction with ST_Segmentize to create additional vertices that can then be used for splitting

				
SELECT ST_AsText(ST_SubDivide(ST_Segmentize('LINESTRING(0 0, 100 100, 150 150)'::geometry,10),8));

LINESTRING(0 0,7.07106781186547 7.07106781186547,14.1421356237309 14.1421356237309,21.2132034355964 21.2132034355964,28.2842712474619 28.2842712474619,35.3553390593274 35.3553390593274,37.499999999998 37.499999999998)
LINESTRING(37.499999999998 37.499999999998,42.4264068711929 42.4264068711929,49.4974746830583 49.4974746830583,56.5685424949238 56.5685424949238,63.6396103067893 63.6396103067893,70.7106781186548 70.7106781186548,74.999999999998 74.999999999998)
LINESTRING(74.999999999998 74.999999999998,77.7817459305202 77.7817459305202,84.8528137423857 84.8528137423857,91.9238815542512 91.9238815542512,98.9949493661167 98.9949493661167,100 100,107.071067811865 107.071067811865,112.499999999998 112.499999999998)
LINESTRING(112.499999999998 112.499999999998,114.142135623731 114.142135623731,121.213203435596 121.213203435596,128.284271247462 128.284271247462,135.355339059327 135.355339059327,142.426406871193 142.426406871193,149.497474683058 149.497474683058,149.999999999998 149.999999999998)

						

See Also

ST_AsText,
ST_ClipByBox2D,
ST_Segmentize,
ST_Split

Name
TopoGeo_AddPolygon —
Adds a polygon to an existing topology using a tolerance and possibly splitting existing edges/faces.
				

Synopsis
	integer fsfuncTopoGeo_AddPolygon(atopology, 	
	 	apoly, 	
	 	atolerance);	

varchar atopology;
geometry apoly;
float8 atolerance;

Description

Adds a polygon to an existing topology and return a set of face identifiers forming it up.
The boundary of the given polygon will snap to existing nodes or edges within given tolerance.
Existing edges and faces may be split by the boundary of the new polygon.

Availability: 2.0.0

See Also

TopoGeo_AddPoint,
TopoGeo_AddLineString,
AddFace,
CreateTopology
				

Name
ST_SetSkew — Sets the georeference X and Y skew (or rotation parameter). If only one is passed in, sets X and Y to the same value.

Synopsis
	raster fsfuncST_SetSkew(rast, 	
	 	skewxy);	

raster rast;
float8 skewxy;

	raster fsfuncST_SetSkew(rast, 	
	 	skewx, 	
	 	skewy);	

raster rast;
float8 skewx;
float8 skewy;

Description
Sets the georeference X and Y skew (or rotation parameter). If only one is passed in, sets X and Y to the same value. Refer to World File
				for more details.

Examples

-- Example 1
UPDATE dummy_rast SET rast = ST_SetSkew(rast,1,2) WHERE rid = 1;
SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
 ST_GeoReference(rast) as georef
FROM dummy_rast WHERE rid = 1;

rid | skewx | skewy | georef
----+-------+-------+--------------
 1 | 1 | 2 | 2.0000000000
 : 2.0000000000
 : 1.0000000000
 : 3.0000000000
 : 0.5000000000
 : 0.5000000000

				

-- Example 2 set both to same number:
UPDATE dummy_rast SET rast = ST_SetSkew(rast,0) WHERE rid = 1;
SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
 ST_GeoReference(rast) as georef
FROM dummy_rast WHERE rid = 1;

 rid | skewx | skewy | georef
-----+-------+-------+--------------
 1 | 0 | 0 | 2.0000000000
 : 0.0000000000
 : 0.0000000000
 : 3.0000000000
 : 0.5000000000
 : 0.5000000000
				

See Also
ST_GeoReference, ST_SetGeoReference, ST_SkewX, ST_SkewY

Name
ST_NDims — Returns coordinate dimension of the geometry as a small int.
			Values are: 2,3 or 4.

Synopsis
	integer fsfuncST_NDims(g1);	

geometry g1;

Description
Returns the coordinate dimension of the geometry. PostGIS supports 2 - (x,y) ,
			3 - (x,y,z) or 2D with measure - x,y,m, and 4 - 3D with measure space x,y,z,m
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_NDims(ST_GeomFromText('POINT(1 1)')) As d2point,
	ST_NDims(ST_GeomFromEWKT('POINT(1 1 2)')) As d3point,
	ST_NDims(ST_GeomFromEWKT('POINTM(1 1 0.5)')) As d2pointm;

	 d2point | d3point | d2pointm
---------+---------+----------
	 2 | 3 | 3
			

See Also
ST_CoordDim, ST_Dimension, ST_GeomFromEWKT

Name
ST_IsRing — Returns TRUE if this
	 LINESTRING is both closed and simple.

Synopsis
	boolean fsfuncST_IsRing(g);	

geometry g;

Description
Returns TRUE if this
	 LINESTRING is both ST_IsClosed
	 (ST_StartPoint(g)
	 ~=
	 ST_Endpoint(g)) and ST_IsSimple (does not self intersect).
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1. 2.1.5.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.1.6
Note
SQL-MM defines the result of
		ST_IsRing(NULL) to be 0, while
		PostGIS returns NULL.

Examples
SELECT ST_IsRing(the_geom), ST_IsClosed(the_geom), ST_IsSimple(the_geom)
FROM (SELECT 'LINESTRING(0 0, 0 1, 1 1, 1 0, 0 0)'::geometry AS the_geom) AS foo;
 st_isring | st_isclosed | st_issimple
-----------+-------------+-------------
 t | t | t
(1 row)

SELECT ST_IsRing(the_geom), ST_IsClosed(the_geom), ST_IsSimple(the_geom)
FROM (SELECT 'LINESTRING(0 0, 0 1, 1 0, 1 1, 0 0)'::geometry AS the_geom) AS foo;
 st_isring | st_isclosed | st_issimple
-----------+-------------+-------------
 f | t | f
(1 row)

See Also
ST_IsClosed, ST_IsSimple, ST_StartPoint,
	 ST_EndPoint

CLUSTERing on geometry indices

For tables that are mostly read-only, and where a single index is
 used for the majority of queries, PostgreSQL offers the CLUSTER command.
 This command physically reorders all the data rows in the same order as
 the index criteria, yielding two performance advantages: First, for index
 range scans, the number of seeks on the data table is drastically reduced.
 Second, if your working set concentrates to some small intervals on the
 indices, you have a more efficient caching because the data rows are
 spread along fewer data pages. (Feel invited to read the CLUSTER command
 documentation from the PostgreSQL manual at this point.)
However, currently PostgreSQL does not allow clustering on PostGIS
 GIST indices because GIST indices simply ignores NULL values, you get an
 error message like:
lwgeom=# CLUSTER my_geom_index ON my_table;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column "the_geom" NOT NULL.
As the HINT message tells you, one can work around this deficiency
 by adding a "not null" constraint to the table:
lwgeom=# ALTER TABLE my_table ALTER COLUMN the_geom SET not null;
ALTER TABLE
Of course, this will not work if you in fact need NULL values in
 your geometry column. Additionally, you must use the above method to add
 the constraint, using a CHECK constraint like "ALTER TABLE blubb ADD CHECK
 (geometry is not null);" will not work.

Name
ST_WorldToRasterCoordX — Returns the column in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw) represented
				in world spatial reference system of raster.

Synopsis
	integer fsfuncST_WorldToRasterCoordX(rast, 	
	 	pt);	

raster rast;
geometry pt;

	integer fsfuncST_WorldToRasterCoordX(rast, 	
	 	xw);	

raster rast;
double precision xw;

	integer fsfuncST_WorldToRasterCoordX(rast, 	
	 	xw, 	
	 	yw);	

raster rast;
double precision xw;
double precision yw;

Description
Returns the column in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw). A point, or (both xw and yw world coordinates are required if a raster is skewed). If a raster
					is not skewed then xw is sufficient. World coordinates are in the spatial reference coordinate system of the raster.
Changed: 2.1.0 In prior versions, this was called ST_World2RasterCoordX

Examples
SELECT rid, ST_WorldToRasterCoordX(rast,3427927.8) As xcoord,
		ST_WorldToRasterCoordX(rast,3427927.8,20.5) As xcoord_xwyw,
		ST_WorldToRasterCoordX(rast,ST_GeomFromText('POINT(3427927.8 20.5)',ST_SRID(rast))) As ptxcoord
FROM dummy_rast;

 rid | xcoord | xcoord_xwyw | ptxcoord
-----+---------+---------+----------
 1 | 1713964 | 1713964 | 1713964
 2 | 1 | 1 | 1
				

See Also

					ST_RasterToWorldCoordX,
					ST_RasterToWorldCoordY,
					ST_SRID
				

Name
ST_Dump — Returns a set of geometry_dump (geom,path) rows, that make up a geometry g1.

Synopsis
	geometry_dump[] fsfuncST_Dump(g1);	

geometry g1;

Description
This is a set-returning function (SRF). It returns a set of
			geometry_dump rows, formed by a geometry (geom) and an array of
			integers (path). When the input geometry is a simple type
			(POINT,LINESTRING,POLYGON) a single record will be returned with
			an empty path array and the input geometry as geom. When the input
			geometry is a collection or multi it will return a record for each
			of the collection components, and the path will express the
			position of the component inside the collection.
ST_Dump is useful for expanding geometries. It is the
			reverse of a GROUP BY in that it creates new rows. For example it
			can be use to expand MULTIPOLYGONS into POLYGONS.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: PostGIS 1.0.0RC1. Requires PostgreSQL 7.3 or higher.
Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports 3d and will not drop the z-index.

Standard Examples
SELECT sometable.field1, sometable.field1,
 (ST_Dump(sometable.the_geom)).geom AS the_geom
FROM sometable;

-- Break a compound curve into its constituent linestrings and circularstrings
SELECT ST_AsEWKT(a.geom), ST_HasArc(a.geom)
 FROM (SELECT (ST_Dump(p_geom)).geom AS geom
 FROM (SELECT ST_GeomFromEWKT('COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))') AS p_geom) AS b
) AS a;
 st_asewkt | st_hasarc
-----------------------------+----------
 CIRCULARSTRING(0 0,1 1,1 0) | t
 LINESTRING(1 0,0 1) | f
(2 rows)

Polyhedral Surfaces, TIN and Triangle Examples
-- Polyhedral surface example
-- Break a Polyhedral surface into its faces
SELECT (a.p_geom).path[1] As path, ST_AsEWKT((a.p_geom).geom) As geom_ewkt
 FROM (SELECT ST_Dump(ST_GeomFromEWKT('POLYHEDRALSURFACE(
((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1))
)')) AS p_geom) AS a;

 path | geom_ewkt
------+--
 1 | POLYGON((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0))
 2 | POLYGON((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0))
 3 | POLYGON((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0))
 4 | POLYGON((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0))
 5 | POLYGON((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0))
 6 | POLYGON((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1))
-- TIN --
SELECT (g.gdump).path, ST_AsEWKT((g.gdump).geom) as wkt
 FROM
 (SELECT
 ST_Dump(ST_GeomFromEWKT('TIN (((
 0 0 0,
 0 0 1,
 0 1 0,
 0 0 0
)), ((
 0 0 0,
 0 1 0,
 1 1 0,
 0 0 0
))
)')) AS gdump
) AS g;
-- result --
 path | wkt
------+-------------------------------------
 {1} | TRIANGLE((0 0 0,0 0 1,0 1 0,0 0 0))
 {2} | TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))

See Also
geometry_dump, the section called “PostGIS Geometry / Geography / Raster Dump Functions”, ST_Collect, ST_Collect, ST_GeometryN

Name
ST_GeogFromWKB — Creates a geography instance from a Well-Known Binary geometry
		representation (WKB) or extended Well Known Binary (EWKB).

Synopsis
	geography fsfuncST_GeogFromWKB(wkb);	

bytea wkb;

Description
The ST_GeogFromWKB function, takes a well-known
		binary representation (WKB) of a geometry or PostGIS Extended WKB and creates an instance of the appropriate
		geography type. This function plays the role of the Geometry Factory in
		SQL.
If SRID is not specified, it defaults to 4326 (WGS 84 long lat).
[image: Description]
 This method supports Circular Strings and Curves

Examples
--Although bytea rep contains single \, these need to be escaped when inserting into a table
SELECT ST_AsText(
ST_GeogFromWKB(E'\\001\\002\\000\\000\\000\\002\\000\\000\\000\\037\\205\\353Q\\270~\\\\\\300\\323Mb\\020X\\231C@\\020X9\\264\\310~\\\\\\300)\\\\\\217\\302\\365\\230C@')
);
					 st_astext
--
 LINESTRING(-113.98 39.198,-113.981 39.195)
(1 row)

See Also
ST_GeogFromText, ST_AsBinary

Name
ST_Touches —
				Return true if raster rastA and rastB have at least one point in common but their interiors do not intersect.
			

Synopsis
	boolean fsfuncST_Touches(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB);	

						raster
						rastA
					;

						integer
						nbandA
					;

						raster
						rastB
					;

						integer
						nbandB
					;

	boolean fsfuncST_Touches(rastA, 	
	 	rastB);	

						raster
						rastA
					;

						raster
						rastB
					;

Description

				Return true if raster rastA spatially touches raster rastB. This means that rastA and rastB have at least one point in common but their interiors do not intersect. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.
			
Note

					This function will make use of any indexes that may be available on the rasters.
				

Note

					To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Touches(ST_Polygon(raster), geometry).
				

Availability: 2.1.0

Examples

SELECT r1.rid, r2.rid, ST_Touches(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_touches
-----+-----+------------
 2 | 1 | f
 2 | 2 | f
			

See Also

				ST_Intersects
			

Name
raster — raster spatial data type.

Description
raster is a spatial data type used to represent raster data such as those imported from jpegs, tiffs, pngs, digital elevation models.
 Each raster has 1 or more bands each having a set of pixel values. Rasters can be georeferenced.
Note
Requires PostGIS be compiled with GDAL support. Currently rasters can be implicitly converted to geometry type, but the conversion returns the
 ST_ConvexHull of the raster. This auto casting may be removed in the near future so don't rely on it.

Casting Behavior
This section lists the automatic as well as explicit casts allowed for this data type
	Cast To	Behavior
	geometry	automatic

See Also
Chapter 9, Raster Reference

PostGIS Polyhedral Surface Support Functions

The functions given below are PostGIS functions that can use POLYHEDRALSURFACE, POLYHEDRALSURFACEM geometries
	Box2D - Returns a BOX2D representing the maximum extents of the geometry.
	Box3D - Returns a BOX3D representing the maximum extents of the geometry.
	GeometryType - Returns the type of the geometry as a string. Eg: 'LINESTRING', 'POLYGON', 'MULTIPOINT', etc.
	ST_3DArea - Computes area of 3D surface geometries. Will return 0 for solids.
	ST_3DClosestPoint - Returns the 3-dimensional point on g1 that is closest to g2. This is the first point of the 3D shortest line.
	ST_3DDFullyWithin - Returns true if all of the 3D geometries are within the specified distance of one another.
	ST_3DDWithin - For 3d (z) geometry type Returns true if two geometries 3d distance is within number of units.
	ST_3DDifference - Perform 3D difference
	ST_3DDistance - For geometry type Returns the 3-dimensional cartesian minimum distance (based on spatial ref) between two geometries in projected units.
	ST_3DExtent - an aggregate function that returns the box3D bounding box that bounds rows of geometries.
	ST_3DIntersection - Perform 3D intersection
	ST_3DIntersects - Returns TRUE if the Geometries "spatially intersect" in 3d - only for points, linestrings, polygons, polyhedral surface (area). With SFCGAL backend enabled also supports TINS
	ST_3DLongestLine - Returns the 3-dimensional longest line between two geometries
	ST_3DMaxDistance - For geometry type Returns the 3-dimensional cartesian maximum distance (based on spatial ref) between two geometries in projected units.
	ST_3DShortestLine - Returns the 3-dimensional shortest line between two geometries
	ST_3DUnion - Perform 3D union
	ST_Accum - Aggregate. Constructs an array of geometries.
	ST_Affine - Apply a 3d affine transformation to a geometry.
	ST_ApproximateMedialAxis - Compute the approximate medial axis of an areal geometry.
	ST_Area - Returns the area of the surface if it is a Polygon or MultiPolygon. For geometry, a 2D Cartesian area is determined with units specified by the SRID. For geography, area is determined on a curved surface with units in square meters.
	ST_AsBinary - Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsEWKB - Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.
	ST_AsEWKT - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
	ST_AsGML - Return the geometry as a GML version 2 or 3 element.
	ST_AsX3D - Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML
	ST_CoordDim - Return the coordinate dimension of the ST_Geometry value.
	ST_Dimension - The inherent dimension of this Geometry object, which must be less than or equal to the coordinate dimension.
	ST_Dump - Returns a set of geometry_dump (geom,path) rows, that make up a geometry g1.
	ST_DumpPoints - Returns a set of geometry_dump (geom,path) rows of all points that make up a geometry.
	ST_Expand - Returns bounding box expanded in all directions from the bounding box of the input geometry. Uses double-precision
	ST_Extent - an aggregate function that returns the bounding box that bounds rows of geometries.
	ST_Extrude - Extrude a surface to a related volume
	ST_FlipCoordinates - Returns a version of the given geometry with X and Y axis flipped. Useful for people who have built latitude/longitude features and need to fix them.
	ST_Force2D - Force the geometries into a "2-dimensional mode".
	ST_ForceLHR - Force LHR orientation
	ST_ForceRHR - Force the orientation of the vertices in a polygon to follow the Right-Hand-Rule.
	ST_ForceSFS - Force the geometries to use SFS 1.1 geometry types only.
	ST_Force3D - Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.
	ST_Force3DZ - Force the geometries into XYZ mode.
	ST_ForceCollection - Convert the geometry into a GEOMETRYCOLLECTION.
	ST_GeomFromEWKB - Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).
	ST_GeomFromEWKT - Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).
	ST_GeomFromGML - Takes as input GML representation of geometry and outputs a PostGIS geometry object
	ST_GeometryN - Return the 1-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, (MULTI)POINT, (MULTI)LINESTRING, MULTICURVE or (MULTI)POLYGON, POLYHEDRALSURFACE Otherwise, return NULL.
	ST_GeometryType - Return the geometry type of the ST_Geometry value.
	= - Returns TRUE if A's bounding box is the same as B's. Uses double precision bounding box.
	&<| - Returns TRUE if A's bounding box overlaps or is below B's.
	~= - Returns TRUE if A's bounding box is the same as B's.
	ST_IsClosed - Returns TRUE if the LINESTRING's start and end points are coincident. For Polyhedral surface is closed (volumetric).
	ST_IsPlanar - Check if a surface is or not planar
	ST_IsSolid - Test if the geometry is a solid. No validity check is performed.
	ST_MakeSolid - Cast the geometry into a solid. No check is performed. To obtain a valid solid, the input geometry must be a closed Polyhedral Surface or a closed TIN.
	ST_MemSize - Returns the amount of space (in bytes) the geometry takes.
	ST_NPoints - Return the number of points (vertexes) in a geometry.
	ST_NumGeometries - If geometry is a GEOMETRYCOLLECTION (or MULTI*) return the number of geometries, for single geometries will return 1, otherwise return NULL.
	ST_NumPatches - Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.
	ST_PatchN - Return the 1-based Nth geometry (face) if the geometry is a POLYHEDRALSURFACE, POLYHEDRALSURFACEM. Otherwise, return NULL.
	ST_RemoveRepeatedPoints - Returns a version of the given geometry with duplicated points removed.
	ST_Rotate - Rotate a geometry rotRadians counter-clockwise about an origin.
	ST_RotateX - Rotate a geometry rotRadians about the X axis.
	ST_RotateY - Rotate a geometry rotRadians about the Y axis.
	ST_RotateZ - Rotate a geometry rotRadians about the Z axis.
	ST_Scale - Scale a geometry by given factors.
	ST_ShiftLongitude - Toggle geometry coordinates between -180..180 and 0..360 ranges.
	ST_StraightSkeleton - Compute a straight skeleton from a geometry
	ST_Summary - Returns a text summary of the contents of the geometry.
	ST_SwapOrdinates - Returns a version of the given geometry with given ordinate values swapped.
	ST_Tesselate - Perform surface Tesselation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS
	ST_Transform - Return a new geometry with its coordinates transformed to a different spatial reference.
	ST_Volume - Computes the volume of a 3D solid. If applied to surface (even closed) geometries will return 0.
	~(box2df,box2df) - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).
	~(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry's 2D bonding box.
	~(geometry,box2df) - Returns TRUE if a geometry's 2D bonding box contains a 2D float precision bounding box (GIDX).
	&& - Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.
	&&& - Returns TRUE if A's n-D bounding box intersects B's n-D bounding box.
	@(box2df,box2df) - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision bounding box.
	@(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry's 2D bounding box.
	@(geometry,box2df) - Returns TRUE if a geometry's 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).
	&&(box2df,box2df) - Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.
	&&(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry's (cached) 2D bounding box.
	&&(geometry,box2df) - Returns TRUE if a geometry's (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).
	&&&(geometry,gidx) - Returns TRUE if a geometry's (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).
	&&&(gidx,geometry) - Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry's (cached) n-D bounding box.
	&&&(gidx,gidx) - Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.
	postgis_sfcgal_version - Returns the version of SFCGAL in use

Name
ST_Value — Returns the value of a given band in a given columnx, rowy pixel or at a particular geometric point. Band numbers start at 1 and assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include nodata pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.

Synopsis
	double precision fsfuncST_Value(rast, 	
	 	pt, 	
	 	exclude_nodata_value=true);	

raster rast;
geometry pt;
boolean exclude_nodata_value=true;

	double precision fsfuncST_Value(rast, 	
	 	band, 	
	 	pt, 	
	 	exclude_nodata_value=true);	

raster rast;
integer band;
geometry pt;
boolean exclude_nodata_value=true;

	double precision fsfuncST_Value(rast, 	
	 	x, 	
	 	y, 	
	 	exclude_nodata_value=true);	

raster rast;
integer x;
integer y;
boolean exclude_nodata_value=true;

	double precision fsfuncST_Value(rast, 	
	 	band, 	
	 	x, 	
	 	y, 	
	 	exclude_nodata_value=true);	

raster rast;
integer band;
integer x;
integer y;
boolean exclude_nodata_value=true;

Description
Returns the value of a given band in a given columnx, rowy pixel or at a given geometry point. Band numbers start at 1 and band is assumed to be 1 if not specified.
				If exclude_nodata_value is set to true, then only non nodata pixels are considered. If exclude_nodata_value is set to false, then all pixels are considered.
Enhanced: 2.0.0 exclude_nodata_value optional argument was added.

Examples

-- get raster values at particular postgis geometry points
-- the srid of your geometry should be same as for your raster
SELECT rid, ST_Value(rast, foo.pt_geom) As b1pval, ST_Value(rast, 2, foo.pt_geom) As b2pval
FROM dummy_rast CROSS JOIN (SELECT ST_SetSRID(ST_Point(3427927.77, 5793243.76), 0) As pt_geom) As foo
WHERE rid=2;

 rid | b1pval | b2pval
-----+--------+--------
 2 | 252 | 79

-- general fictitious example using a real table
SELECT rid, ST_Value(rast, 3, sometable.geom) As b3pval
FROM sometable
WHERE ST_Intersects(rast,sometable.geom);
				

SELECT rid, ST_Value(rast, 1, 1, 1) As b1pval,
 ST_Value(rast, 2, 1, 1) As b2pval, ST_Value(rast, 3, 1, 1) As b3pval
FROM dummy_rast
WHERE rid=2;

 rid | b1pval | b2pval | b3pval
-----+--------+--------+--------
 2 | 253 | 78 | 70
				

--- Get all values in bands 1,2,3 of each pixel --
SELECT x, y, ST_Value(rast, 1, x, y) As b1val,
	ST_Value(rast, 2, x, y) As b2val, ST_Value(rast, 3, x, y) As b3val
FROM dummy_rast CROSS JOIN
generate_series(1, 1000) As x CROSS JOIN generate_series(1, 1000) As y
WHERE rid = 2 AND x <= ST_Width(rast) AND y <= ST_Height(rast);

 x | y | b1val | b2val | b3val
---+---+-------+-------+-------
 1 | 1 | 253 | 78 | 70
 1 | 2 | 253 | 96 | 80
 1 | 3 | 250 | 99 | 90
 1 | 4 | 251 | 89 | 77
 1 | 5 | 252 | 79 | 62
 2 | 1 | 254 | 98 | 86
 2 | 2 | 254 | 118 | 108
 :
 :
				

--- Get all values in bands 1,2,3 of each pixel same as above but returning the upper left point point of each pixel --
SELECT ST_AsText(ST_SetSRID(
	ST_Point(ST_UpperLeftX(rast) + ST_ScaleX(rast)*x,
		ST_UpperLeftY(rast) + ST_ScaleY(rast)*y),
		ST_SRID(rast))) As uplpt
 , ST_Value(rast, 1, x, y) As b1val,
	ST_Value(rast, 2, x, y) As b2val, ST_Value(rast, 3, x, y) As b3val
FROM dummy_rast CROSS JOIN
generate_series(1,1000) As x CROSS JOIN generate_series(1,1000) As y
WHERE rid = 2 AND x <= ST_Width(rast) AND y <= ST_Height(rast);

 uplpt | b1val | b2val | b3val
-----------------------------+-------+-------+-------
 POINT(3427929.25 5793245.5) | 253 | 78 | 70
 POINT(3427929.25 5793247) | 253 | 96 | 80
 POINT(3427929.25 5793248.5) | 250 | 99 | 90
:
				

--- Get a polygon formed by union of all pixels
	that fall in a particular value range and intersect particular polygon --
SELECT ST_AsText(ST_Union(pixpolyg)) As shadow
FROM (SELECT ST_Translate(ST_MakeEnvelope(
		ST_UpperLeftX(rast), ST_UpperLeftY(rast),
			ST_UpperLeftX(rast) + ST_ScaleX(rast),
			ST_UpperLeftY(rast) + ST_ScaleY(rast), 0
), ST_ScaleX(rast)*x, ST_ScaleY(rast)*y
) As pixpolyg, ST_Value(rast, 2, x, y) As b2val
	FROM dummy_rast CROSS JOIN
generate_series(1,1000) As x CROSS JOIN generate_series(1,1000) As y
WHERE rid = 2
	AND x <= ST_Width(rast) AND y <= ST_Height(rast)) As foo
WHERE
	ST_Intersects(
		pixpolyg,
		ST_GeomFromText('POLYGON((3427928 5793244,3427927.75 5793243.75,3427928 5793243.75,3427928 5793244))',0)
) AND b2val != 254;

		shadow
--
 MULTIPOLYGON(((3427928 5793243.9,3427928 5793243.85,3427927.95 5793243.85,3427927.95 5793243.9,
 3427927.95 5793243.95,3427928 5793243.95,3427928.05 5793243.95,3427928.05 5793243.9,3427928 5793243.9)),((3427927.95 5793243.9,3427927.95 579324
3.85,3427927.9 5793243.85,3427927.85 5793243.85,3427927.85 5793243.9,3427927.9 5793243.9,3427927.9 5793243.95,
3427927.95 5793243.95,3427927.95 5793243.9)),((3427927.85 5793243.75,3427927.85 5793243.7,3427927.8 5793243.7,3427927.8 5793243.75
,3427927.8 5793243.8,3427927.8 5793243.85,3427927.85 5793243.85,3427927.85 5793243.8,3427927.85 5793243.75)),
((3427928.05 5793243.75,3427928.05 5793243.7,3427928 5793243.7,3427927.95 5793243.7,3427927.95 5793243.75,3427927.95 5793243.8,3427
927.95 5793243.85,3427928 5793243.85,3427928 5793243.8,3427928.05 5793243.8,
3427928.05 5793243.75)),((3427927.95 5793243.75,3427927.95 5793243.7,3427927.9 5793243.7,3427927.85 5793243.7,
3427927.85 5793243.75,3427927.85 5793243.8,3427927.85 5793243.85,3427927.9 5793243.85,
3427927.95 5793243.85,3427927.95 5793243.8,3427927.95 5793243.75)))
				

--- Checking all the pixels of a large raster tile can take a long time.
--- You can dramatically improve speed at some lose of precision by orders of magnitude
-- by sampling pixels using the step optional parameter of generate_series.
-- This next example does the same as previous but by checking 1 for every 4 (2x2) pixels and putting in the last checked
-- putting in the checked pixel as the value for subsequent 4

SELECT ST_AsText(ST_Union(pixpolyg)) As shadow
FROM (SELECT ST_Translate(ST_MakeEnvelope(
		ST_UpperLeftX(rast), ST_UpperLeftY(rast),
			ST_UpperLeftX(rast) + ST_ScaleX(rast)*2,
			ST_UpperLeftY(rast) + ST_ScaleY(rast)*2, 0
), ST_ScaleX(rast)*x, ST_ScaleY(rast)*y
) As pixpolyg, ST_Value(rast, 2, x, y) As b2val
	FROM dummy_rast CROSS JOIN
generate_series(1,1000,2) As x CROSS JOIN generate_series(1,1000,2) As y
WHERE rid = 2
	AND x <= ST_Width(rast) AND y <= ST_Height(rast)) As foo
WHERE
	ST_Intersects(
		pixpolyg,
		ST_GeomFromText('POLYGON((3427928 5793244,3427927.75 5793243.75,3427928 5793243.75,3427928 5793244))',0)
) AND b2val != 254;

		shadow
--
 MULTIPOLYGON(((3427927.9 5793243.85,3427927.8 5793243.85,3427927.8 5793243.95,
 3427927.9 5793243.95,3427928 5793243.95,3427928.1 5793243.95,3427928.1 5793243.85,3427928 5793243.85,3427927.9 5793243.85)),
 ((3427927.9 5793243.65,3427927.8 5793243.65,3427927.8 5793243.75,3427927.8 5793243.85,3427927.9 5793243.85,
 3427928 5793243.85,3427928 5793243.75,3427928.1 5793243.75,3427928.1 5793243.65,3427928 5793243.65,3427927.9 5793243.65)))
				

See Also

					ST_SetValue,
					ST_DumpAsPolygons,
					ST_NumBands,
					ST_PixelAsPolygon,
					ST_ScaleX,
					ST_ScaleY,
					ST_UpperLeftX,
					ST_UpperLeftY,
					ST_SRID,
					ST_AsText,
					ST_Point,
					ST_MakeEnvelope,
					ST_Intersects,
					ST_Intersection
				

Name
TopoElementArray_Agg — Returns a topoelementarray for a set of element_id, type arrays (topoelements)

Synopsis
	topoelementarray fsfuncTopoElementArray_Agg(tefield);	

topoelement set tefield;

Description
Used to create a TopoElementArray from a set of TopoElement.
Availability: 2.0.0

Examples
SELECT topology.TopoElementArray_Agg(ARRAY[e,t]) As tea
 FROM generate_series(1,3) As e CROSS JOIN generate_series(1,4) As t;
 tea
--
{{1,1},{1,2},{1,3},{1,4},{2,1},{2,2},{2,3},{2,4},{3,1},{3,2},{3,3},{3,4}}

See Also
TopoElement, TopoElementArray

Geometry Editors

Name
PostGIS_Scripts_Installed — Returns version of the postgis scripts installed in this
			database.

Synopsis
	text fsfuncPostGIS_Scripts_Installed();	

;

Description
Returns version of the postgis scripts installed in this
			database.
Note
If the output of this function doesn't match the output of
			 PostGIS_Scripts_Released
			 you probably missed to properly upgrade an existing database.
			 See the Upgrading section for
			 more info.

Availability: 0.9.0

Examples
SELECT PostGIS_Scripts_Installed();
 postgis_scripts_installed

 1.5.0SVN
(1 row)

See Also
PostGIS_Full_Version, PostGIS_Scripts_Released, PostGIS_Version

Name
Box3D — Returns a BOX3D representing the maximum extents of the geometry.

Synopsis
	box3d fsfuncBox3D(geomA);	

geometry geomA;

Description
Returns a BOX3D representing the maximum extents of the geometry.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT Box3D(ST_GeomFromEWKT('LINESTRING(1 2 3, 3 4 5, 5 6 5)'));
	Box3d

	BOX3D(1 2 3,5 6 5)

	SELECT Box3D(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 1,220227 150406 1)'));
	Box3d

	BOX3D(220227 150406 1,220268 150415 1)
	

See Also
Box2D, ST_GeomFromEWKT

Raster and Raster Band Spatial Relationships

Name
ST_IsValidTrajectory —
Returns true if the geometry is a valid trajectory.

Synopsis
	boolean fsfuncST_IsValidTrajectory(line);	

geometry line;

Description

Tell if a geometry encodes a valid trajectory.
Valid trajectories are encoded as LINESTRING with M value growing
from each vertex to the next.
			

Valid trajectories are expected as input to some spatio-temporal queries
like ST_ClosestPointOfApproach
			
Availability: 2.2.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

-- A valid trajectory
SELECT ST_IsValidTrajectory(ST_MakeLine(
 ST_MakePointM(0,0,1),
 ST_MakePointM(0,1,2))
);
 t

-- An invalid trajectory
SELECT ST_IsValidTrajectory(ST_MakeLine(ST_MakePointM(0,0,1), ST_MakePointM(0,1,0)));
NOTICE: Measure of vertex 1 (0) not bigger than measure of vertex 0 (1)
 st_isvalidtrajectory

 f

See Also

ST_ClosestPointOfApproach
			

Geometry Processing

Name
ST_WKTToSQL — Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText

Synopsis
	geometry fsfuncST_WKTToSQL(WKT);	

text WKT;

Description
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.34

See Also
ST_GeomFromText

Name
AddOverviewConstraints — Tag a raster column as being an overview of another.

Synopsis
	boolean fsfuncAddOverviewConstraints(ovschema, 	
	 	ovtable, 	
	 	ovcolumn, 	
	 	refschema, 	
	 	reftable, 	
	 	refcolumn, 	
	 	ovfactor);	

name
 ovschema;
name
 ovtable;
name
 ovcolumn;
name
 refschema;
name
 reftable;
name
 refcolumn;
int
 ovfactor;

	boolean fsfuncAddOverviewConstraints(ovtable, 	
	 	ovcolumn, 	
	 	reftable, 	
	 	refcolumn, 	
	 	ovfactor);	

name
 ovtable;
name
 ovcolumn;
name
 reftable;
name
 refcolumn;
int
 ovfactor;

Description

Adds constraints on a raster column that are used to display information
in the raster_overviews raster catalog.
		

The ovfactor parameter represents the scale multiplier
in the overview column: higher overview factors have lower resolution.
		

When the ovschema and refschema
parameters are omitted, the first table found scanning the
search_path will be used.
		
Availability: 2.0.0

Examples

CREATE TABLE res1 AS SELECT
ST_AddBand(
 ST_MakeEmptyRaster(1000, 1000, 0, 0, 2),
 1, '8BSI'::text, -129, NULL
) r1;

CREATE TABLE res2 AS SELECT
ST_AddBand(
 ST_MakeEmptyRaster(500, 500, 0, 0, 4),
 1, '8BSI'::text, -129, NULL
) r2;

SELECT AddOverviewConstraints('res2', 'r2', 'res1', 'r1', 2);

-- verify if registered correctly in the raster_overviews view --
SELECT o_table_name ot, o_raster_column oc,
 r_table_name rt, r_raster_column rc,
 overview_factor f
FROM raster_overviews WHERE o_table_name = 'res2';
 ot | oc | rt | rc | f
------+----+------+----+---
 res2 | r2 | res1 | r1 | 2
(1 row)
		

See Also

 the section called “Raster Overviews”,
 DropOverviewConstraints,
 ST_CreateOverview,
 AddRasterConstraints

Name
ST_RemEdgeNewFace —
Removes an edge and, if the removed edge separated two faces,
delete the original faces and replace them with a new face.

Synopsis
	integer fsfuncST_RemEdgeNewFace(atopology, 	
	 	anedge);	

varchar atopology;
integer anedge;

Description

Removes an edge and, if the removed edge separated two faces,
delete the original faces and replace them with a new face.
		

Returns the id of a newly created face or NULL, if no new face is created.
No new face is created when the removed edge is dangling or isolated or
confined with the universe face (possibly making the universe flood into
the face on the other side).
		

Updates all existing joined edges and relationships accordingly.
		

Refuses to remove an edge partecipating in the definition of an
existing TopoGeometry.
Refuses to heal two faces if any TopoGeometry is defined by only
one of them (and not the other).
		

If any arguments are null, the given edge is unknown (must already exist in
the edge table of the topology schema), the topology
name is invalid then an error is thrown.

Availability: 2.0
[image: Description] This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.14

Examples

See Also
ST_RemEdgeModFace
ST_AddEdgeNewFaces

Name
<< — Returns TRUE if A's bounding box is strictly to the left of B's.

Synopsis
	boolean fsfunc<<(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The << operator returns TRUE if the bounding box of geometry A
			is strictly to the left of the bounding box of geometry B.
Note
This operand will make use of any indexes that may be available on the
				geometries.

Examples
SELECT tbl1.column1, tbl2.column1, tbl1.column2 << tbl2.column2 AS left
FROM
 (VALUES
	(1, 'LINESTRING (1 2, 1 5)'::geometry)) AS tbl1,
 (VALUES
	(2, 'LINESTRING (0 0, 4 3)'::geometry),
	(3, 'LINESTRING (6 0, 6 5)'::geometry),
	(4, 'LINESTRING (2 2, 5 6)'::geometry)) AS tbl2;

 column1 | column1 | left
---------+---------+------
	 1 | 2 | f
	 1 | 3 | t
	 1 | 4 | t
(3 rows)

See Also
>>, |>>, <<|

Name
ST_AddEdgeModFace — Add a new edge and, if in doing so it splits a face, modify the original face and add a new face.

Synopsis
	integer fsfuncST_AddEdgeModFace(atopology, 	
	 	anode, 	
	 	anothernode, 	
	 	acurve);	

varchar atopology;
integer anode;
integer anothernode;
geometry acurve;

Description

Add a new edge and, if doing so splits a face, modify the original
face and add a new one.

Note

If possible, the new face will be created on left side of the new edge.
This will not be possible if the face on the left side will need to
be the Universe face (unbounded).

Returns the id of the newly added edge.
		

Updates all existing joined edges and relationships accordingly.
		
If any arguments are null, the given nodes are unknown (must already exist in the node table of the topology schema) ,
 the acurve is not a LINESTRING, the anode and anothernode are not the start
 and endpoints of acurve then an error is thrown.
If the spatial reference system (srid) of the acurve geometry is not the same as the topology an exception is thrown.
Availability: 2.0
[image: Description] This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.13

Examples

See Also
ST_RemEdgeModFace
ST_AddEdgeNewFaces

Installing, Upgrading Tiger Geocoder and loading data

Extras like Tiger geocoder may not be packaged in your PostGIS distribution, but will always be available in the postgis-2.3.0beta1.tar.gz file. The instructions provided here are also available in the extras/tiger_geocoder/README
If you are on Windows and you don't have tar installed, you can use http://www.7-zip.org/ to unzip the PostGIS tarball.
Tiger Geocoder Enabling your PostGIS database: Using Extension

If you are using PostgreSQL 9.1+ and PostGIS 2.1+, you can take advantage of the new extension model for installing tiger geocoder. To do so:
	First get binaries for PostGIS 2.1+ or compile and install as usual. This should install the necessary extension files as well for tiger geocoder.

	Connect to your database via psql or pgAdmin or some other tool and run the following SQL commands. Note that if you are installing in a database that already has postgis, you don't need to do the first step. If you have fuzzystrmatch extension already installed, you don't need to do the second step either.
CREATE EXTENSION postgis;
CREATE EXTENSION fuzzystrmatch;
--this one is optional if you want to use the rules based standardizer (pagc_normalize_address)
CREATE EXTENSION address_standardizer;
CREATE EXTENSION postgis_tiger_geocoder;
If you already have postgis_tiger_geocoder extension installed, and just want to update to the latest run:
ALTER EXTENSION postgis UPDATE;
ALTER EXTENSION postgis_tiger_geocoder UPDATE;
If you made custom entries or changes to tiger.loader_platform and tiger.loader_variables you may need to update these.

	To confirm your install is working correctly, run this sql in your database:
SELECT na.address, na.streetname,na.streettypeabbrev, na.zip
	FROM normalize_address('1 Devonshire Place, Boston, MA 02109') AS na;
Which should output
 address | streetname | streettypeabbrev | zip
---------+------------+------------------+-------
	 1 | Devonshire | Pl | 02109

	Create a new record in tiger.loader_platform table with the paths of your executables and server.
So for example to create a profile called debbie that follows sh convention. You would do:
INSERT INTO tiger.loader_platform(os, declare_sect, pgbin, wget, unzip_command, psql, path_sep,
		 loader, environ_set_command, county_process_command)
SELECT 'debbie', declare_sect, pgbin, wget, unzip_command, psql, path_sep,
	 loader, environ_set_command, county_process_command
 FROM tiger.loader_platform
 WHERE os = 'sh';
And then edit the paths in the declare_sect column to those that fit Debbie's pg, unzip,shp2pgsql, psql, etc path locations.
If you don't edit this loader_platform table, it will just contain common case locations of items and you'll have to edit the generated script after the script is generated.

	Create a folder called gisdata on root of server or your local pc if you have a fast network connection to the server. This folder is
where the tiger files will be downloaded to and processed. If you are not happy with having the folder on the root of the server, or simply want to change to a different folder for staging, then edit the field staging_fold in the tiger.loader_variables table.

	Create a folder called temp in the gisdata folder or whereever you designated the staging_fold to be. This will be
the folder where the loader extracts the downloaded tiger data.

	Then run the Loader_Generate_Nation_Script and Loader_Generate_Script SQL functions make sure to use the name of your custom profile and copy the scripts to a .sh or .bat file. So for example to do the nation load and one state using our new profile, you can do this using psql:
psql -c "SELECT Loader_Generate_Nation_Script('debbie')" -d geocoder -tA > /gisdata/nation_script_load.sh
psql -c "SELECT Loader_Generate_Script(ARRAY['MA'], 'debbie')" -d geocoder -tA > /gisdata/ma_load.sh

	Run the generated commandline scripts.
cd /gisdata
sh nation_script_load.sh
sh ma_load.sh

	After you are done loading all data or at a stopping point, it's a good idea to analyze all the tiger tables to update the stats (include inherited stats)
SELECT install_missing_indexes();
vacuum analyze verbose tiger.addr;
vacuum analyze verbose tiger.edges;
vacuum analyze verbose tiger.faces;
vacuum analyze verbose tiger.featnames;
vacuum analyze verbose tiger.place;
vacuum analyze verbose tiger.cousub;
vacuum analyze verbose tiger.county;
vacuum analyze verbose tiger.state;
vacuum analyze verbose tiger.zip_lookup_base;
vacuum analyze verbose tiger.zip_state;
vacuum analyze verbose tiger.zip_state_loc;

Converting a Tiger Geocoder Regular Install to Extension Model

If you installed the tiger geocoder without using the extension model, you can convert to the extension model as follows:
	Follow instructions in the section called “Upgrading your Tiger Geocoder Install” for the non-extension model upgrade.

	Connect to your database with psql or pgAdmin and run the following command:
CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

Tiger Geocoder Enabling your PostGIS database: Not Using Extensions

		 First install PostGIS using the prior instructions.
		

		 If you don't have an extras folder, download http://download.osgeo.org/postgis/source/postgis-2.3.0beta1.tar.gz
		

		 tar xvfz postgis-2.3.0beta1.tar.gz
		

		 cd postgis-2.3.0beta1/extras/tiger_geocoder
		
Edit the tiger_loader_2015.sql (or latest loader file you find, unless you want to load different year) to the paths of your executables server etc or alternatively you can update the loader_platform table once installed. If you don't edit this file or the loader_platform table, it will just contain common case locations of items and you'll have to edit the generated script after the fact when you run the Loader_Generate_Nation_Script and Loader_Generate_Script SQL functions.
		
If you are installing Tiger geocoder for the first time edit either the create_geocode.bat script If you are on windows
			or the create_geocode.sh if you are on Linux/Unix/Mac OSX with your PostgreSQL specific settings and run the corresponding script from the commandline.
Verify that you now have a tiger schema in your database and that it is part of your database search_path. If it is not, add it with a command something along the line of:
ALTER DATABASE geocoder SET search_path=public, tiger;
The normalizing address functionality works more or less without any data except for tricky addresses. Run this test and verify things look like this:
			
SELECT pprint_addy(normalize_address('202 East Fremont Street, Las Vegas, Nevada 89101')) As pretty_address;
pretty_address

202 E Fremont St, Las Vegas, NV 89101
			

		

Using Address Standardizer Extension with Tiger geocoder

One of the many complaints of folks is the address normalizer function Normalize_Address function that normalizes an address for prepping before geocoding. The normalizer is far from perfect and trying to patch its imperfectness takes a vast amount of resources. As such we have integrated with another
			project that has a much better address standardizer engine. To use this new address_standardizer, you compile the extension as described in the section called “Installing and Using the address standardizer” and install as an extension in your database.
Once you install this extension in the same database as you have installed postgis_tiger_geocoder, then the Pagc_Normalize_Address can be used instead of Normalize_Address. This extension is tiger agnostic, so can be used with other data sources such as international addresses. The tiger geocoder extension does come packaged with its own custom versions of rules table (tiger.pagc_rules) , gaz table (tiger.pagc_gaz), and lex table (tiger.pagc_lex). These you can add and update to improve your standardizing experience for your own needs.

Loading Tiger Data

The instructions for loading data are available in a more detailed form in the extras/tiger_geocoder/tiger_2011/README. This just includes the general steps.
The load process downloads data from the census website for the respective nation files, states requested, extracts the files, and then loads each state into its own separate
		set of state tables. Each state table inherits from the tables defined in tiger schema so that its sufficient to just query those tables to access all the data and drop a set of state tables at any time using the Drop_State_Tables_Generate_Script if you need to reload a state or just don't need a state anymore.
In order to be able to load data you'll need the following tools:
	A tool to unzip the zip files from census website.
For Unix like systems: unzip executable which is usually already installed on most Unix like platforms.
For Windows, 7-zip which is a free compress/uncompress tool you can download from http://www.7-zip.org/

	shp2pgsql commandline which is installed by default when you install PostGIS.

	wget which is a web grabber tool usually installed on most Unix/Linux systems.
If you are on windows, you can get pre-compiled binaries from http://gnuwin32.sourceforge.net/packages/wget.htm

If you are upgrading from tiger_2010, you'll need to first generate and run Drop_Nation_Tables_Generate_Script. Before you load any state data, you need to load the nation wide data which you do with Loader_Generate_Nation_Script. Which will
		generate a loader script for you. Loader_Generate_Nation_Script is a one-time step that should be done for upgrading (from 2010) and for new installs.
To load state data refer to Loader_Generate_Script to generate a data load script for your platform for the states you desire.
			Note that you can install these piecemeal. You don't have to load all the states you want all at once. You can load them as you need them.
After the states you desire have been loaded, make sure to run the:
		
SELECT install_missing_indexes();
 as described in Install_Missing_Indexes.
To test that things are working as they should, try to run a geocode on an address in your state using Geocode

Upgrading your Tiger Geocoder Install

		 If you have Tiger Geocoder packaged with 2.0+ already installed, you can upgrade the functions at any time even from an interim tar ball if there are fixes you badly need. This will only work for Tiger geocoder not installed with extensions.
		

		 If you don't have an extras folder, download http://download.osgeo.org/postgis/source/postgis-2.3.0beta1.tar.gz
		

		 tar xvfz postgis-2.3.0beta1.tar.gz
		

		 cd postgis-2.3.0beta1/extras/tiger_geocoder/tiger_2011
		
Locate the upgrade_geocoder.bat script If you are on windows
			or the upgrade_geocoder.sh if you are on Linux/Unix/Mac OSX. Edit the file to have your postgis database credentials.
If you are upgrading from 2010 or 2011, make sure to unremark out the loader script line so you get the latest script for loading 2012 data.

			Then run th corresponding script from the commandline.
		
Next drop all nation tables and load up the new ones. Generate a drop script with this SQL statement as detailed in Drop_Nation_Tables_Generate_Script
SELECT drop_nation_tables_generate_script();
Run the generated drop SQL statements.
Generate a nation load script with this SELECT statement as detailed in Loader_Generate_Nation_Script
For windows
SELECT loader_generate_nation_script('windows');
For unix/linux
SELECT loader_generate_nation_script('sh');
Refer to the section called “Loading Tiger Data” for instructions on how to run the generate script. This only needs to be done once.
Note
You can have a mix of 2010/2011 state tables and can upgrade each state separately. Before you upgrade a state to 2011, you first need to drop the 2010 tables for that state using Drop_State_Tables_Generate_Script.

Name
ST_3DDifference — Perform 3D difference

Synopsis
	geometry fsfuncST_3DDifference(geom1, 	
	 	geom2);	

geometry geom1;
geometry geom2;

Description
Returns that part of geom1 that is not part of geom2.
Availability: 2.2.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
3D images were generated using PostGIS ST_AsX3D and rendering in HTML using X3Dom HTML Javascript rendering library.
	

SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2;

[image: Examples]Original 3D geometries overlaid. geom2 is the part that will be removed.

 	

SELECT ST_3DDifference(geom1,geom2)
FROM (SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2) As t;

[image: Examples]What's left after removing geom2

See Also

 ST_Extrude,
 ST_AsX3D, ST_3DIntersection
 ST_3DUnion

Other Contributors

	Individual Contributors
	In alphabetical order:
Alex Bodnaru,
Alex Mayrhofer,
Andrea Peri,
Andreas Forø Tollefsen,
Andreas Neumann,
Anne Ghisla,
Barbara Phillipot,
Ben Jubb,
Bernhard Reiter,
Brian Hamlin,
Bruce Rindahl,
Bruno Wolff III,
Bryce L. Nordgren,
Carl Anderson,
Charlie Savage,
Dane Springmeyer,
David Skea,
David Techer,
Eduin Carrillo,
Even Rouault,
Frank Warmerdam,
George Silva,
Gerald Fenoy,
Gino Lucrezi,
Guillaume Lelarge,
IIDA Tetsushi,
Ingvild Nystuen,
Jason Smith,
Jeff Adams,
Jose Carlos Martinez Llari,
Julien Rouhaud,
Kashif Rasul,
Klaus Foerster,
Kris Jurka,
Leo Hsu,
Loic Dachary,
Luca S. Percich,
Maria Arias de Reyna,
Mark Sondheim,
Markus Schaber,
Maxime Guillaud,
Maxime van Noppen,
Michael Fuhr,
Mike Toews,
Nathan Wagner,
Nathaniel Clay,
Nikita Shulga,
Norman Vine,
Rafal Magda,
Ralph Mason,
Rémi Cura,
Richard Greenwood,
Silvio Grosso,
Steffen Macke,
Stephen Frost,
Tom van Tilburg,
Vincent Mora,
Vincent Picavet
		

	Corporate Sponsors
	These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the PostGIS project
In alphabetical order:
Arrival 3D,
Associazione Italiana per l'Informazione Geografica Libera (GFOSS.it),
AusVet,
Avencia,
Azavea,
Cadcorp,
CampToCamp,
CartoDB,
City of Boston (DND),
Clever Elephant Solutions,
Cooperativa Alveo,
Deimos Space,
Faunalia,
Geographic Data BC,
Hunter Systems Group,
Lidwala Consulting Engineers,
LisaSoft,
Logical Tracking & Tracing International AG,
Maponics,
Michigan Tech Research Institute,
Natural Resources Canada,
Norwegian Forest and Landscape Institute,
Boundless (former OpenGeo),
OSGeo,
Oslandia,
Palantir Technologies,
Paragon Corporation,
R3 GIS,
Refractions Research,
Regione Toscana - SITA,
Safe Software,
Sirius Corporation plc,
Stadt Uster,
UC Davis Center for Vectorborne Diseases,
University of Laval,
U.S Department of State (HIU),
Zonar Systems

	Crowd Funding Campaigns
	Crowd funding campaigns are campaigns we run to get badly wanted features funded that can service a large number of people. Each campaign is specifically focused on a particular feature or set of features. Each sponsor chips in a small fraction of the needed funding and with enough people/organizations contributing, we have the funds to pay for the work that will help many. If you have an idea for a feature you think many others would be willing to co-fund, please post to the PostGIS newsgroup your thoughts and together we can make it happen.
PostGIS 2.0.0 was the first release we tried this strategy. We used PledgeBank and we got two successful campaigns out of it.
postgistopology - 10 plus sponsors each contributed $250 USD to build toTopoGeometry function and beef up topology support in 2.0.0. It happened.
postgis64windows - 20 someodd sponsors each contributed $100 USD to pay for the work needed to work out PostGIS 64-bit issues on windows. It happened. We now have a 64-bit release for PostGIS 2.0.1 available on PostgreSQL stack builder.

	Important Support Libraries
	The GEOS
		 geometry operations library, and the algorithmic work of Martin
		 Davis in making it all work, ongoing maintenance and support of
		 Mateusz Loskot, Sandro Santilli (strk), Paul Ramsey and others.
The GDAL
		 Geospatial Data Abstraction Library, by Frank Warmerdam and others is used to
		 power much of the raster functionality introduced in PostGIS 2.0.0. In kind, improvements needed in GDAL
		 to support PostGIS are contributed back to the GDAL project.
The Proj4
		 cartographic projection library, and the work of Gerald Evenden and
		 Frank Warmerdam in creating and maintaining it.
Last but not least, the PostgreSQL DBMS,
		 The giant that PostGIS stands on. Much of the speed and flexibility of PostGIS would not be possible without
		 the extensibility, great query planner, GIST index, and plethora of SQL features provided by PostgreSQL.

Name
Reverse_Geocode — Takes a geometry point in a known spatial ref sys and returns a record containing an array of theoretically possible addresses and an array of cross streets. If include_strnum_range = true, includes the street range in the cross streets.

Synopsis
	record fsfuncReverse_Geocode(pt, 	
	 	include_strnum_range=false, 	
	 	OUT intpt, 	
	 	OUT addy, 	
	 	OUT street);	

geometry pt;
boolean include_strnum_range=false;
geometry[] OUT intpt;
norm_addy[] OUT addy;
varchar[] OUT street;

Description
Takes a geometry point in a known spatial ref and returns a record containing an array of theoretically possible addresses and an array of cross streets. If include_strnum_range = true, includes the street range in the cross streets.
 include_strnum_range defaults to false if not passed in. Addresses are sorted according to which road a point is closest to so first address is most likely the right one.
Why do we say theoretical instead of actual addresses. The Tiger data doesn't have real addresses, but just street ranges. As such the theoretical address is an interpolated address based on the
 street ranges. Like for example interpolating one of my addresses returns a 26 Court St. and 26 Court Sq., though there is no such place as 26 Court Sq. This is because a point may be at a corner of 2
 streets and thus the logic interpolates along both streets. The logic also assumes addresses are equally spaced along a street, which of course is wrong since you can have a municipal building taking up
 a good chunk of the street range and the rest of the buildings are clustered at the end.
Note: Hmm this function relies on Tiger data. If you have not loaded data covering the region of this point, then hmm you will get a record filled with NULLS.
 Returned elements of the record are as follows:
	intpt is an array of points: These are the center line points on the street closest to the input point. There are as many points as there are addresses.

	addy is an array of norm_addy (normalized addresses): These are an array of possible addresses that fit the input point. The first one in the array is most likely.
 Generally there should be only one, except in the case when a point is at the corner of 2 or 3 streets, or the point is somewhere on the road and not off to the side.

	street an array of varchar: These are cross streets (or the street) (streets that intersect or are the street the point is projected to be on).

Availability: 2.0.0

Examples
Example of a point at the corner of two streets, but closest to one. This is approximate location of MIT: 77 Massachusetts Ave, Cambridge, MA 02139
 Note that although we don't have 3 streets, PostgreSQL will just return null for entries above our upper bound so safe to use. This includes street ranges
SELECT pprint_addy(r.addy[1]) As st1, pprint_addy(r.addy[2]) As st2, pprint_addy(r.addy[3]) As st3,
 array_to_string(r.street, ',') As cross_streets
 FROM reverse_geocode(ST_GeomFromText('POINT(-71.093902 42.359446)',4269),true) As r;

 result

 st1 | st2 | st3 | cross_streets
---+-----+-----+--
 67 Massachusetts Ave, Cambridge, MA 02139 | | | 67 - 127 Massachusetts Ave,32 - 88 Vassar St
Here we choose not to include the address ranges for the cross streets and picked a location
really really close to a corner of 2 streets thus could be known by two different addresses.
SELECT pprint_addy(r.addy[1]) As st1, pprint_addy(r.addy[2]) As st2,
pprint_addy(r.addy[3]) As st3, array_to_string(r.street, ',') As cross_str
FROM reverse_geocode(ST_GeomFromText('POINT(-71.06941 42.34225)',4269)) As r;

result

 st1 | st2 | st3 | cross_str
---------------------------------+---------------------------------+-----+------------------------
 5 Bradford St, Boston, MA 02118 | 49 Waltham St, Boston, MA 02118 | | Waltham St

For this one we reuse our geocoded example from Geocode and we only want the primary address and at most 2 cross streets.
SELECT actual_addr, lon, lat, pprint_addy((rg).addy[1]) As int_addr1,
 (rg).street[1] As cross1, (rg).street[2] As cross2
FROM (SELECT address As actual_addr, lon, lat,
 reverse_geocode(ST_SetSRID(ST_Point(lon,lat),4326)) As rg
 FROM addresses_to_geocode WHERE rating > -1) As foo;

 actual_addr | lon | lat | int_addr1 | cross1 | cross2
---+-----------+----------+---+-----------------+------------
 529 Main Street, Boston MA, 02129 | -71.07181 | 42.38359 | 527 Main St, Boston, MA 02129 | Medford St |
 77 Massachusetts Avenue, Cambridge, MA 02139 | -71.09428 | 42.35988 | 77 Massachusetts Ave, Cambridge, MA 02139 | Vassar St |
 26 Capen Street, Medford, MA | -71.12377 | 42.41101 | 9 Edison Ave, Medford, MA 02155 | Capen St | Tesla Ave
 124 Mount Auburn St, Cambridge, Massachusetts 02138 | -71.12304 | 42.37328 | 3 University Rd, Cambridge, MA 02138 | Mount Auburn St |
 950 Main Street, Worcester, MA 01610 | -71.82368 | 42.24956 | 3 Maywood St, Worcester, MA 01603 | Main St | Maywood Pl

See Also
Pprint_Addy, Geocode

Name
~ — Returns TRUE if A's bounding box contains B's.

Synopsis
	boolean fsfunc~(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The ~ operator returns TRUE if the bounding box of geometry A completely
			contains the bounding box of geometry B.
Note
This operand will make use of any indexes that may be available on the
			 geometries.

Examples
SELECT tbl1.column1, tbl2.column1, tbl1.column2 ~ tbl2.column2 AS contains
FROM
 (VALUES
	(1, 'LINESTRING (0 0, 3 3)'::geometry)) AS tbl1,
 (VALUES
	(2, 'LINESTRING (0 0, 4 4)'::geometry),
	(3, 'LINESTRING (1 1, 2 2)'::geometry),
	(4, 'LINESTRING (0 0, 3 3)'::geometry)) AS tbl2;

 column1 | column1 | contains
---------+---------+----------
	 1 | 2 | f
	 1 | 3 | t
	 1 | 4 | t
(3 rows)

See Also
@, &&

Name
ST_Union — Returns the union of a set of raster tiles into a single raster composed of 1 or more bands.

Synopsis
	raster fsfuncST_Union(rast);	

setof raster rast;

	raster fsfuncST_Union(rast, 	
	 	unionargset);	

setof raster rast;
unionarg[] unionargset;

	raster fsfuncST_Union(rast, 	
	 	nband);	

setof raster rast;
integer nband;

	raster fsfuncST_Union(rast, 	
	 	uniontype);	

setof raster rast;
text uniontype;

	raster fsfuncST_Union(rast, 	
	 	nband, 	
	 	uniontype);	

setof raster rast;
integer nband;
text uniontype;

Description
Returns the union of a set of raster tiles into a single raster composed of at least one band. The resulting raster's extent is the extent of the whole set. In the case of intersection, the resulting value is defined by uniontype which is one of the following: LAST (default), FIRST, MIN, MAX, COUNT, SUM, MEAN, RANGE.
Note
In order for rasters to be unioned, they most all have the same alignment. Use ST_SameAlignment and ST_NotSameAlignmentReason for more details and help. One way to fix alignment issues is to use ST_Resample and use the same reference raster for alignment.

Availability: 2.0.0
Enhanced: 2.1.0 Improved Speed (fully C-Based).
Availability: 2.1.0 ST_Union(rast, unionarg) variant was introduced.
Enhanced: 2.1.0 ST_Union(rast) (variant 1) unions all bands of all input rasters. Prior versions of PostGIS assumed the first band.
Enhanced: 2.1.0 ST_Union(rast, uniontype) (variant 4) unions all bands of all input rasters.

Examples: Reconstitute a single band chunked raster tile

-- this creates a single band from first band of raster tiles
-- that form the original file system tile
SELECT filename, ST_Union(rast,1) As file_rast
FROM sometable WHERE filename IN('dem01', 'dem02') GROUP BY filename;
					

Examples: Return a multi-band raster that is the union of tiles intersecting geometry

-- this creates a multi band raster collecting all the tiles that intersect a line
-- Note: In 2.0, this would have just returned a single band raster
-- , new union works on all bands by default
-- this is equivalent to unionarg: ARRAY[ROW(1, 'LAST'), ROW(2, 'LAST'), ROW(3, 'LAST')]::unionarg[]
SELECT ST_Union(rast)
FROM aerials.boston
WHERE ST_Intersects(rast, ST_GeomFromText('LINESTRING(230486 887771, 230500 88772)',26986));
					

Examples: Return a multi-band raster that is the union of tiles intersecting geometry
Here we use the longer syntax if we only wanted a subset of bands or we want to change order of bands

-- this creates a multi band raster collecting all the tiles that intersect a line
SELECT ST_Union(rast,ARRAY[ROW(2, 'LAST'), ROW(1, 'LAST'), ROW(3, 'LAST')]::unionarg[])
FROM aerials.boston
WHERE ST_Intersects(rast, ST_GeomFromText('LINESTRING(230486 887771, 230500 88772)',26986));
					

See Also

						unionarg,
						ST_Envelope,
						ST_ConvexHull,
						ST_Clip,
						ST_Union
					

Name
ST_NearestValue —
					Returns the nearest non-NODATA value of a given band's pixel specified by a columnx and rowy or a geometric point expressed in the same spatial reference coordinate system as the raster.
				

Synopsis
	double precision fsfuncST_NearestValue(rast, 	
	 	bandnum, 	
	 	pt, 	
	 	exclude_nodata_value=true);	

raster rast;
integer bandnum;
geometry pt;
boolean exclude_nodata_value=true;

	double precision fsfuncST_NearestValue(rast, 	
	 	pt, 	
	 	exclude_nodata_value=true);	

raster rast;
geometry pt;
boolean exclude_nodata_value=true;

	double precision fsfuncST_NearestValue(rast, 	
	 	bandnum, 	
	 	columnx, 	
	 	rowy, 	
	 	exclude_nodata_value=true);	

raster rast;
integer bandnum;
integer columnx;
integer rowy;
boolean exclude_nodata_value=true;

	double precision fsfuncST_NearestValue(rast, 	
	 	columnx, 	
	 	rowy, 	
	 	exclude_nodata_value=true);	

raster rast;
integer columnx;
integer rowy;
boolean exclude_nodata_value=true;

Description

					Returns the nearest non-NODATA value of a given band in a given columnx, rowy pixel or at a specific geometric point. If the columnx, rowy pixel or the pixel at the specified geometric point is NODATA, the function will find the nearest pixel to the columnx, rowy pixel or geometric point whose value is not NODATA.
				

					Band numbers start at 1 and bandnum is assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include nodata pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.
				
Availability: 2.1.0
Note

						ST_NearestValue is a drop-in replacement for ST_Value.
					

Examples

-- pixel 2x2 has value
SELECT
	ST_Value(rast, 2, 2) AS value,
	ST_NearestValue(rast, 2, 2) AS nearestvalue
FROM (
	SELECT
		ST_SetValue(
			ST_SetValue(
				ST_SetValue(
					ST_SetValue(
						ST_SetValue(
							ST_AddBand(
								ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
								'8BUI'::text, 1, 0
),
							1, 1, 0.
),
						2, 3, 0.
),
					3, 5, 0.
),
				4, 2, 0.
),
			5, 4, 0.
) AS rast
) AS foo

 value | nearestvalue
-------+--------------
 1 | 1
				

-- pixel 2x3 is NODATA
SELECT
	ST_Value(rast, 2, 3) AS value,
	ST_NearestValue(rast, 2, 3) AS nearestvalue
FROM (
	SELECT
		ST_SetValue(
			ST_SetValue(
				ST_SetValue(
					ST_SetValue(
						ST_SetValue(
							ST_AddBand(
								ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
								'8BUI'::text, 1, 0
),
							1, 1, 0.
),
						2, 3, 0.
),
					3, 5, 0.
),
				4, 2, 0.
),
			5, 4, 0.
) AS rast
) AS foo

 value | nearestvalue
-------+--------------
 | 1
				

See Also

					ST_Neighborhood,
					ST_Value
				

Name
ST_3DClosestPoint — Returns the 3-dimensional point on g1 that is closest to g2. This is the first point of
				the 3D shortest line.

Synopsis
	geometry fsfuncST_3DClosestPoint(g1, 	
	 	g2);	

geometry
				g1;
geometry
				g2;

Description
Returns the 3-dimensional point on g1 that is closest to g2. This is the first point of
				the 3D shortest line. The 3D length of the 3D shortest line is the 3D distance.
			
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
Availability: 2.0.0
Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

Examples
	linestring and point -- both 3d and 2d closest point
					

SELECT ST_AsEWKT(ST_3DClosestPoint(line,pt)) AS cp3d_line_pt,
		ST_AsEWKT(ST_ClosestPoint(line,pt)) As cp2d_line_pt
	FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
			'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry As line
) As foo;

 cp3d_line_pt						| cp2d_line_pt
---+--
 POINT(54.6993798867619 128.935022917228 11.5475869506606) | POINT(73.0769230769231 115.384615384615)
					

							

	linestring and multipoint -- both 3d and 2d closest point
					
SELECT ST_AsEWKT(ST_3DClosestPoint(line,pt)) AS cp3d_line_pt,
		ST_AsEWKT(ST_ClosestPoint(line,pt)) As cp2d_line_pt
	FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
			'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
) As foo;

 cp3d_line_pt | cp2d_line_pt
---+--------------
 POINT(54.6993798867619 128.935022917228 11.5475869506606) | POINT(50 75)
					

							

	Multilinestring and polygon both 3d and 2d closest point
					
SELECT ST_AsEWKT(ST_3DClosestPoint(poly, mline)) As cp3d,
 ST_AsEWKT(ST_ClosestPoint(poly, mline)) As cp2d
 FROM (SELECT ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
 ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
 (1 10 2, 5 20 1))') As mline) As foo;
 cp3d | cp2d
---+--------------
 POINT(39.993580415989 54.1889925532825 5) | POINT(20 40)

							

See Also
ST_AsEWKT, ST_ClosestPoint, ST_3DDistance, ST_3DShortestLine

Name
ST_RelateMatch — Returns true if intersectionMattrixPattern1 implies intersectionMatrixPattern2

Synopsis
	boolean fsfuncST_RelateMatch(intersectionMatrix, 	
	 	intersectionMatrixPattern);	

text intersectionMatrix;
text intersectionMatrixPattern;

Description
 Takes intersectionMatrix and intersectionMatrixPattern and Returns true if the intersectionMatrix satisfies
		the intersectionMatrixPattern. For more information refer to the section called “Dimensionally Extended 9 Intersection Model (DE-9IM)”.	
Availability: 2.0.0 - requires GEOS >= 3.3.0.

Examples

SELECT ST_RelateMatch('101202FFF', 'TTTTTTFFF') ;
-- result --
t
--example of common intersection matrix patterns and example matrices
-- comparing relationships of involving one invalid geometry and (a line and polygon that intersect at interior and boundary)
SELECT mat.name, pat.name, ST_RelateMatch(mat.val, pat.val) As satisfied
 FROM
 (VALUES ('Equality', 'T1FF1FFF1'),
 ('Overlaps', 'T*T***T**'),
 ('Within', 'T*F**F***'),
 ('Disjoint', 'FF*FF****') As pat(name,val)
 CROSS JOIN
 (VALUES ('Self intersections (invalid)', '111111111'),
 ('IE2_BI1_BB0_BE1_EI1_EE2', 'FF2101102'),
 ('IB1_IE1_BB0_BE0_EI2_EI1_EE2', 'F11F00212')
) As mat(name,val);

		

See Also
the section called “Dimensionally Extended 9 Intersection Model (DE-9IM)”, ST_Relate

Name
GetTopoGeomElementArray — Returns a topoelementarray (an array of topoelements) containing the topological elements and type of the given TopoGeometry (primitive elements)

Synopsis
	topoelementarray fsfuncGetTopoGeomElementArray(toponame, 	
	 	layer_id, 	
	 	tg_id);	

varchar toponame;
integer layer_id;
integer tg_id;

	topoelementarray topoelement fsfuncGetTopoGeomElementArray(tg);	

topogeometry tg;

Description
Returns a TopoElementArray containing the topological elements and type of the given TopoGeometry (primitive elements). This is similar to GetTopoGeomElements except it returns the elements as an array rather
 than as a dataset.
tg_id is the topogeometry id of the topogeometry object in the topology in the layer denoted by layer_id in the topology.layer table.
Availability: 1.?

Examples

See Also
GetTopoGeomElements, TopoElementArray

Name
ST_Dimension — The inherent dimension of this Geometry object, which must
			be less than or equal to the coordinate dimension.

Synopsis
	integer fsfuncST_Dimension(g);	

geometry g;

Description
The inherent dimension of this Geometry object, which must
			be less than or equal to the coordinate dimension. OGC SPEC
			s2.1.1.1 - returns 0 for POINT, 1 for LINESTRING, 2 for POLYGON, and
			the largest dimension of the components of a
			GEOMETRYCOLLECTION.
			If unknown (empty geometry) null is returned.
		
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.2
Enhanced: 2.0.0 support for Polyhedral surfaces and TINs was introduced. No longer throws an exception if given empty geometry.
Note
Prior to 2.0.0, this function throws an exception if used with empty geometry.

[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_Dimension('GEOMETRYCOLLECTION(LINESTRING(1 1,0 0),POINT(0 0))');
ST_Dimension

1

See Also
ST_NDims

Name
ST_SetUpperLeft — Sets the value of the upper left corner of the pixel to projected X and Y coordinates.

Synopsis
	raster fsfuncST_SetUpperLeft(rast, 	
	 	x, 	
	 	y);	

raster rast;
double precision x;
double precision y;

Description
Set the value of the upper left corner of raster to the projected X coordinates

Examples

SELECT ST_SetUpperLeft(rast,-71.01,42.37)
FROM dummy_rast
WHERE rid = 2;
					

See Also
ST_UpperLeftX, ST_UpperLeftY

Name
ST_MakeEnvelope — Creates a rectangular Polygon formed from the given minimums and maximums. Input
			values must be in SRS specified by the SRID.

Synopsis
	geometry fsfuncST_MakeEnvelope(xmin, 	
	 	ymin, 	
	 	xmax, 	
	 	ymax, 	
	 	srid=unknown);	

double precision xmin;
double precision ymin;
double precision xmax;
double precision ymax;
integer srid=unknown;

Description
Creates a rectangular Polygon formed from the minima and maxima. by the given shell. Input
				values must be in SRS specified by the SRID. If no SRID is specified the unknown spatial reference system is assumed
Availability: 1.5
Enhanced: 2.0: Ability to specify an envelope without specifying an SRID was introduced.

Example: Building a bounding box polygon

SELECT ST_AsText(ST_MakeEnvelope(10, 10, 11, 11, 4326));

st_asewkt

POLYGON((10 10, 10 11, 11 11, 11 10, 10 10))
			

See Also
ST_MakePoint, ST_MakeLine, ST_MakePolygon

Name
GetTopoGeomElements — Returns a set of topoelement objects containing the topological element_id,element_type of the given TopoGeometry (primitive elements)

Synopsis
	setof topoelement fsfuncGetTopoGeomElements(toponame, 	
	 	layer_id, 	
	 	tg_id);	

varchar toponame;
integer layer_id;
integer tg_id;

	setof topoelement fsfuncGetTopoGeomElements(tg);	

topogeometry tg;

Description
Returns a set of element_id,element_type (topoelements) for a given topogeometry object in toponame schema.
tg_id is the topogeometry id of the topogeometry object in the topology in the layer denoted by layer_id in the topology.layer table.
Availability: 2.0.0

Examples

See Also

 GetTopoGeomElementArray,
 TopoElement,
 TopoGeom_addElement,
 TopoGeom_remElement

Name
ST_LocateBetween — Return a derived geometry collection value with elements
			that match the specified range of measures inclusively. Polygonal
			elements are not supported.

Synopsis
	geometry fsfuncST_LocateBetween(geomA, 	
	 	measure_start, 	
	 	measure_end, 	
	 	offset);	

geometry geomA;
float8 measure_start;
float8 measure_end;
float8 offset;

Description
Return a derived geometry collection value with elements
			that match the specified range of measures inclusively. Polygonal
			elements are not supported.
Semantic is specified by: ISO/IEC CD 13249-3:200x(E) - Text
			for Continuation CD Editing Meeting
Availability: 1.1.0 by old name ST_Locate_Between_Measures.
Changed: 2.0.0 - in prior versions this used to be called ST_Locate_Between_Measures. The old name has been deprecated and will be removed in the future but is still available for backward compatibility.
[image: Description]
 This function supports M coordinates.

Examples
SELECT ST_AsText(the_geom)
		FROM
		(SELECT ST_LocateBetween(
			ST_GeomFromText('MULTILINESTRING M ((1 2 3, 3 4 2, 9 4 3),
		(1 2 3, 5 4 5))'),1.5, 3) As the_geom) As foo;

							 st_asewkt
--
 GEOMETRYCOLLECTION M (LINESTRING M (1 2 3,3 4 2,9 4 3),POINT M (1 2 3))

--Geometry collections are difficult animals so dump them
--to make them more digestable
SELECT ST_AsText((ST_Dump(the_geom)).geom)
		FROM
		(SELECT ST_LocateBetween(
			ST_GeomFromText('MULTILINESTRING M ((1 2 3, 3 4 2, 9 4 3),
		(1 2 3, 5 4 5))'),1.5, 3) As the_geom) As foo;

		 st_asewkt

 LINESTRING M (1 2 3,3 4 2,9 4 3)
 POINT M (1 2 3)

See Also
ST_Dump, ST_LocateAlong

Release 1.0.4

Release date: 2005/09/09
Contains important bug fixes and a few improvements. In
 particular, it fixes a memory leak preventing successful build of GiST
 indexes for large spatial tables.
Upgrading

If you are upgrading from release 1.0.3 you DO
 NOT need a dump/reload.
If you are upgrading from a release between 1.0.0RC6
 and 1.0.2 (inclusive) and really want a live upgrade read
 the upgrade section of the
 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

Bug fixes

Memory leak plugged in GiST indexing
Segfault fix in transform() handling of proj4 errors
Fixed some proj4 texts in spatial_ref_sys (missing +proj)
Loader: fixed string functions usage, reworked NULL objects
 check, fixed segfault on MULTILINESTRING input.
Fixed bug in MakeLine dimension handling
Fixed bug in translate() corrupting output bounding box

Improvements

Documentation improvements
More robust selectivity estimator
Minor speedup in distance()
Minor cleanups
GiST indexing cleanup
Looser syntax acceptance in box3d parser

Name
ST_NRings — If the geometry is a polygon or multi-polygon returns the number of rings.

Synopsis
	integer fsfuncST_NRings(geomA);	

geometry geomA;

Description
If the geometry is a polygon or multi-polygon returns the number of rings. Unlike NumInteriorRings, it counts
		the outer rings as well.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_NRings(the_geom) As Nrings, ST_NumInteriorRings(the_geom) As ninterrings
					FROM (SELECT ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))') As the_geom) As foo;
	 nrings | ninterrings
--------+-------------
	 1 | 0
(1 row)

See Also
ST_NumInteriorRings

Release 1.5.3

Release date: 2011/06/25
This is a bug fix release, addressing issues that have been filed since the 1.5.2 release. If you are running PostGIS 1.3+, a soft upgrade is sufficient
	otherwise a hard upgrade is recommended.
Bug Fixes

#1056, produce correct bboxes for arc geometries, fixes index errors
 (Paul Ramsey)
#1007, ST_IsValid crash fix requires GEOS 3.3.0+ or 3.2.3+
				 (Sandro Santilli, reported by Birgit Laggner)
#940, support for PostgreSQL 9.1 beta 1
				 (Regina Obe, Paul Ramsey, patch submitted by stl)
#845, ST_Intersects precision error (Sandro Santilli, Nicklas Avén)
				 Reported by cdestigter
#884, Unstable results with ST_Within, ST_Intersects (Chris Hodgson)
#779, shp2pgsql -S option seems to fail on points (Jeff Adams)
#666, ST_DumpPoints is not null safe (Regina Obe)
#631, Update NZ projections for grid transformation support (jpalmer)
#630, Peculiar Null treatment in arrays in ST_Collect (Chris Hodgson)
				 Reported by David Bitner
#624, Memory leak in ST_GeogFromText (ryang, Paul Ramsey)
#609, Bad source code in manual section 5.2 Java Clients (simoc, Regina Obe)
#604, shp2pgsql usage touchups (Mike Toews, Paul Ramsey)
#573 ST_Union fails on a group of linestrings
				 Not a PostGIS bug, fixed in GEOS 3.3.0
#457 ST_CollectionExtract returns non-requested type
				(Nicklas Avén, Paul Ramsey)
#441 ST_AsGeoJson Bbox on GeometryCollection error (Olivier Courtin)
#411 Ability to backup invalid geometries (Sando Santilli)
				 Reported by Regione Toscana
#409 ST_AsSVG - degraded (Olivier Courtin)
				 Reported by Sdikiy
#373 Documentation syntax error in hard upgrade (Paul Ramsey)
				 Reported by psvensso

Name
ST_CoordDim — Return the coordinate dimension of the ST_Geometry value.

Synopsis
	integer fsfuncST_CoordDim(geomA);	

geometry geomA;

Description
Return the coordinate dimension of the ST_Geometry value.
This is the MM compliant alias name for ST_NDims
[image: Description]
 This method implements the OpenGIS Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.3
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_CoordDim('CIRCULARSTRING(1 2 3, 1 3 4, 5 6 7, 8 9 10, 11 12 13)');
			---result--
				3

				SELECT ST_CoordDim(ST_Point(1,2));
			--result--
				2

		

See Also
ST_NDims

Name
|>> — Returns TRUE if A's bounding box is strictly above B's.

Synopsis
	boolean fsfunc|>>(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The |>> operator returns TRUE if the bounding box of geometry A
			is strictly to the right of the bounding box of geometry B.
Note
This operand will make use of any indexes that may be available on the
			 geometries.

Examples
SELECT tbl1.column1, tbl2.column1, tbl1.column2 |>> tbl2.column2 AS above
FROM
 (VALUES
	(1, 'LINESTRING (1 4, 1 7)'::geometry)) AS tbl1,
 (VALUES
	(2, 'LINESTRING (0 0, 4 2)'::geometry),
	(3, 'LINESTRING (6 1, 6 5)'::geometry),
	(4, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl2;

 column1 | column1 | above
---------+---------+-------
	 1 | 2 | t
	 1 | 3 | f
	 1 | 4 | f
(3 rows)

See Also
<<, >>, <<|

Name
ST_Slope — Returns the slope (in degrees by default) of an elevation raster band. Useful for analyzing terrain.

Synopsis
	raster fsfuncST_Slope(rast, 	
	 	nband=1, 	
	 	pixeltype=32BF, 	
	 	units=DEGREES, 	
	 	scale=1.0, 	
	 	interpolate_nodata=FALSE);	

raster rast;
integer nband=1;
text pixeltype=32BF;
text units=DEGREES;
double precision scale=1.0;
boolean interpolate_nodata=FALSE;

	raster fsfuncST_Slope(rast, 	
	 	nband, 	
	 	customextent, 	
	 	pixeltype=32BF, 	
	 	units=DEGREES, 	
	 	scale=1.0, 	
	 	interpolate_nodata=FALSE);	

raster rast;
integer nband;
raster customextent;
text pixeltype=32BF;
text units=DEGREES;
double precision scale=1.0;
boolean interpolate_nodata=FALSE;

Description
Returns the slope (in degrees by default) of an elevation raster band. Utilizes map algebra and applies the slope equation to neighboring pixels.

						units indicates the units of the slope. Possible values are: RADIANS, DEGREES (default), PERCENT.
					

						scale is the ratio of vertical units to horizontal. For Feet:LatLon use scale=370400, for Meters:LatLon use scale=111120.
					

						If interpolate_nodata is TRUE, values for NODATA pixels from the input raster will be interpolated using ST_InvDistWeight4ma before computing the surface slope.
					
Note

 For more information about Slope, Aspect and Hillshade, please refer to ESRI - How hillshade works and ERDAS Field Guide - Slope Images.
						

Availability: 2.0.0
Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional units, scale, interpolate_nodata function parameters
Changed: 2.1.0 In prior versions, return values were in radians. Now, return values default to degrees

Examples: Variant 1

WITH foo AS (
	SELECT ST_SetValues(
		ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '32BF', 0, -9999),
		1, 1, 1, ARRAY[
			[1, 1, 1, 1, 1],
			[1, 2, 2, 2, 1],
			[1, 2, 3, 2, 1],
			[1, 2, 2, 2, 1],
			[1, 1, 1, 1, 1]
]::double precision[][]
) AS rast
)
SELECT
	ST_DumpValues(ST_Slope(rast, 1, '32BF'))
FROM foo

 st_dumpvalues

--
--

 (1,"{{10.0249881744385,21.5681285858154,26.5650520324707,21.5681285858154,10.0249881744385},{21.5681285858154,35.2643890380859,36.8698959350586,35.2643890380859,21.5681285858154},
{26.5650520324707,36.8698959350586,0,36.8698959350586,26.5650520324707},{21.5681285858154,35.2643890380859,36.8698959350586,35.2643890380859,21.5681285858154},{10.0249881744385,21.
5681285858154,26.5650520324707,21.5681285858154,10.0249881744385}}")
(1 row)
					

Examples: Variant 2
Complete example of tiles of a coverage. This query only works with PostgreSQL 9.1 or higher.

WITH foo AS (
	SELECT ST_Tile(
		ST_SetValues(
			ST_AddBand(
				ST_MakeEmptyRaster(6, 6, 0, 0, 1, -1, 0, 0, 0),
				1, '32BF', 0, -9999
),
			1, 1, 1, ARRAY[
				[1, 1, 1, 1, 1, 1],
				[1, 1, 1, 1, 2, 1],
				[1, 2, 2, 3, 3, 1],
				[1, 1, 3, 2, 1, 1],
				[1, 2, 2, 1, 2, 1],
				[1, 1, 1, 1, 1, 1]
]::double precision[]
),
		2, 2
) AS rast
)
SELECT
	t1.rast,
	ST_Slope(ST_Union(t2.rast), 1, t1.rast)
FROM foo t1
CROSS JOIN foo t2
WHERE ST_Intersects(t1.rast, t2.rast)
GROUP BY t1.rast;
					

See Also

						ST_MapAlgebra,
						ST_TRI,
						ST_TPI,
						ST_Roughness,
						ST_HillShade,
						ST_Aspect
					

PostGIS Function Support Matrix

Below is an alphabetical listing of spatial specific functions in PostGIS and the kinds of spatial
				types they work with or OGC/SQL compliance they try to conform to.

	A [image: PostGIS Function Support Matrix] means the function works with the type or subtype natively.
	A [image: PostGIS Function Support Matrix] means it works but with a transform cast built-in using cast to geometry, transform to a "best srid" spatial ref and then cast back. Results may not be as expected for large areas or areas at poles
						and may accumulate floating point junk.
	A [image: PostGIS Function Support Matrix] means the function works with the type because of a auto-cast to another such as to box3d rather than direct type support.
	A [image: PostGIS Function Support Matrix] means the function only available if PostGIS compiled with SFCGAL support.
	A [image: PostGIS Function Support Matrix] means the function support is provided by SFCGAL if PostGIS compiled with SFCGAL support, otherwise GEOS/built-in support.
	geom - Basic 2D geometry support (x,y).
	geog - Basic 2D geography support (x,y).
	2.5D - basic 2D geometries in 3 D/4D space (has Z or M coord).
	PS - Polyhedral surfaces
	T - Triangles and Triangulated Irregular Network surfaces (TIN)

	Function	geom	geog	2.5D	Curves	SQL MM	PS	T
	
 Box2D
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 Box3D
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 Find_SRID
 	 	 	 	 	 	 	
	
 GeometryType
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_3DArea
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_3DClosestPoint
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	
	
 ST_3DDFullyWithin
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	
	
 ST_3DDWithin
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	
	
 ST_3DDifference
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_3DDistance
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	
	
 ST_3DExtent
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_3DIntersection
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_3DIntersects
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_3DLength
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_3DLongestLine
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	
	
 ST_3DMakeBox
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_3DMaxDistance
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	
	
 ST_3DPerimeter
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_3DShortestLine
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	
	
 ST_3DUnion
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_Accum
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_AddMeasure
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_AddPoint
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_Affine
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_ApproximateMedialAxis
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_Area
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	
	
 ST_AsBinary
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_AsEWKB
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_AsEWKT
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_AsEncodedPolyline
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_AsGML
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_AsGeoJSON
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_AsHEXEWKB
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_AsKML
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_AsLatLonText
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_AsSVG
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	 	 	
	
 ST_AsTWKB
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_AsText
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	
	
 ST_AsX3D
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_Azimuth
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	 	 	
	
 ST_BdMPolyFromText
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_BdPolyFromText
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_Boundary
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]
	
 ST_BoundingDiagonal
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_Box2dFromGeoHash
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_Buffer
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_BuildArea
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_CPAWithin
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_Centroid
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_ClipByBox2D
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_ClosestPoint
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_ClosestPointOfApproach
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_ClusterDBSCAN
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_ClusterIntersecting
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_ClusterKMeans
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_ClusterWithin
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_Collect
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_CollectionExtract
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_CollectionHomogenize
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_ConcaveHull
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_Contains
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_ContainsProperly
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_ConvexHull
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_CoordDim
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_CoveredBy
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	 	 	
	
 ST_Covers
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	 	 	
	
 ST_Crosses
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_CurveToLine
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	
	
 ST_DFullyWithin
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_DWithin
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	 	 	
	
 ST_DelaunayTriangles
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]
	
 ST_Difference
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_Dimension
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_Disjoint
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_Distance
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	
	
 ST_DistanceCPA
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_DistanceSphere
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_DistanceSpheroid
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_Dump
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_DumpPoints
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_DumpRings
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_EndPoint
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	
	
 ST_Envelope
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_Equals
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_EstimatedExtent
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_Expand
 	[image: PostGIS Function Support Matrix]	 	 	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_Extent
 	[image: PostGIS Function Support Matrix]	 	 	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_ExteriorRing
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_Extrude
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_FlipCoordinates
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_Force2D
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 ST_ForceCurve
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_ForceLHR
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_ForceRHR
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	
	
 ST_ForceSFS
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_Force3D
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 ST_Force3DM
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_Force3DZ
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 ST_Force4D
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_ForceCollection
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 ST_GMLToSQL
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	
	
 ST_GeneratePoints
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_GeoHash
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_GeogFromText
 	 	[image: PostGIS Function Support Matrix]	 	 	 	 	
	
 ST_GeogFromWKB
 	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_GeographyFromText
 	 	[image: PostGIS Function Support Matrix]	 	 	 	 	
	
 ST_GeomCollFromText
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_GeomFromEWKB
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_GeomFromEWKT
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_GeomFromGML
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_GeomFromGeoHash
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_GeomFromGeoJSON
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_GeomFromKML
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_GeomFromTWKB
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_GeomFromText
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	
	
 ST_GeomFromWKB
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	
	

			 ST_GeometricMedian
		
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_GeometryFromText
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_GeometryN
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_GeometryType
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	
	
 |>>
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 <<|
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ~
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 @
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 =
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 <<
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 |&>
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 &<|
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 &<
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 &>
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 >>
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ~=
 	[image: PostGIS Function Support Matrix]	 	 	 	 	[image: PostGIS Function Support Matrix]	
	
 ST_HasArc
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_HausdorffDistance
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_InteriorRingN
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_InterpolatePoint
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_Intersection
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_Intersects
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_IsClosed
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	
	
 ST_IsCollection
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_IsEmpty
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	
	
 ST_IsPlanar
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_IsRing
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_IsSimple
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_IsSolid
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_IsValid
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_IsValidDetail
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_IsValidReason
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_IsValidTrajectory
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_Length
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_Length2D
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_Length2D_Spheroid
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_LengthSpheroid
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_LineCrossingDirection
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_LineFromEncodedPolyline
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_LineFromMultiPoint
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_LineFromText
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_LineFromWKB
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_LineInterpolatePoint
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_LineLocatePoint
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_LineMerge
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_LineSubstring
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_LineToCurve
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_LinestringFromWKB
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_LocateAlong
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_LocateBetween
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_LocateBetweenElevations
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_LongestLine
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_M
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_MLineFromText
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_MPointFromText
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_MPolyFromText
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_MakeBox2D
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_MakeEnvelope
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_MakeLine
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_MakePoint
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_MakePointM
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_MakePolygon
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_MakeSolid
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_MakeValid
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_MaxDistance
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_MemSize
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_MemUnion
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_MinimumBoundingCircle
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_MinimumBoundingRadius
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_MinimumClearance
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_MinimumClearanceLine
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_MinkowskiSum
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_Multi
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_NDims
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_NPoints
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 ST_NRings
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_Node
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_Normalize
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_NumGeometries
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_NumInteriorRing
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_NumInteriorRings
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_NumPatches
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	
	
 ST_NumPoints
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_OffsetCurve
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_OrderingEquals
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_Orientation
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_Overlaps
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_PatchN
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	
	
 ST_Perimeter
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_Perimeter2D
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_Point
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_PointFromGeoHash
 	 	 	 	 	 	 	
	
 ST_PointFromText
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_PointFromWKB
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	
	
 ST_PointN
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	
	
 ST_PointOnSurface
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_PointInsideCircle
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_Points
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_Polygon
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_PolygonFromText
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_Polygonize
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_Project
 	 	[image: PostGIS Function Support Matrix]	 	 	 	 	
	
 ST_Relate
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_RelateMatch
 	 	 	 	 	 	 	
	
 ST_RemovePoint
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_RemoveRepeatedPoints
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	
	
 ST_Reverse
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_Rotate
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_RotateX
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_RotateY
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_RotateZ
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_SRID
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	
	
 ST_Scale
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_Segmentize
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	 	 	
	
 ST_SetEffectiveArea
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_SetPoint
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_SetSRID
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_SharedPaths
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_ShiftLongitude
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_ShortestLine
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_Simplify
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_SimplifyPreserveTopology
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_SimplifyVW
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_Snap
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_SnapToGrid
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_Split
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_StartPoint
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	
	
 ST_StraightSkeleton
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_Subdivide
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_Summary
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_SwapOrdinates
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_SymDifference
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_Tesselate
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_Touches
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_TransScale
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_Transform
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	
	
 ST_Translate
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_UnaryUnion
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_Union
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_Volume
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 ST_VoronoiLines
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_VoronoiPolygons
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 ST_WKBToSQL
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_WKTToSQL
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_Within
 	[image: PostGIS Function Support Matrix]	 	 	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_WrapX
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	 	 	
	
 ST_X
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_XMax
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_XMin
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_Y
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_YMax
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_YMin
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_Z
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	
	
 ST_ZMax
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_ZMin
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ST_Zmflag
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	
	
 ~(box2df,box2df)
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 ~(box2df,geometry)
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 ~(geometry,box2df)
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 <#>
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 <<#>>
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 <<->>
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 |=|
 	[image: PostGIS Function Support Matrix]	 	 	 	 	 	
	
 <->
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	 	 	 	
	
 &&
 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 &&&
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 @(box2df,box2df)
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 @(box2df,geometry)
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 @(geometry,box2df)
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 &&(box2df,box2df)
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 &&(box2df,geometry)
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 &&(geometry,box2df)
 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	
	
 &&&(geometry,gidx)
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 &&&(gidx,geometry)
 	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 &&&(gidx,gidx)
 	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]
	
 postgis.backend
 	 	 	 	 	 	 	
	
 postgis.enable_outdb_rasters
 	 	 	 	 	 	 	
	
 postgis.gdal_datapath
 	 	 	 	 	 	 	
	
 postgis.gdal_enabled_drivers
 	 	 	 	 	 	 	
	
 postgis_sfcgal_version
 	 	 	[image: PostGIS Function Support Matrix]	 	 	[image: PostGIS Function Support Matrix]	[image: PostGIS Function Support Matrix]

Name
ST_Covers —
				Return true if no points of raster rastB lie outside raster rastA.
			

Synopsis
	boolean fsfuncST_Covers(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB);	

						raster
						rastA
					;

						integer
						nbandA
					;

						raster
						rastB
					;

						integer
						nbandB
					;

	boolean fsfuncST_Covers(rastA, 	
	 	rastB);	

						raster
						rastA
					;

						raster
						rastB
					;

Description

				Raster rastA covers rastB if and only if no points of rastB lie in the exterior of rastA. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.
			
Note

					This function will make use of any indexes that may be available on the rasters.
				

Note

					To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Covers(ST_Polygon(raster), geometry) or ST_Covers(geometry, ST_Polygon(raster)).
				

Availability: 2.1.0

Examples

SELECT r1.rid, r2.rid, ST_Covers(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_covers
-----+-----+-----------
 2 | 1 | f
 2 | 2 | t
			

See Also

				ST_Intersects,
				ST_CoveredBy
			

Name
TopologySummary — Takes a topology name and provides summary totals of types of objects in topology

Synopsis
	text fsfuncTopologySummary(topology_schema_name);	

varchar topology_schema_name;

Description
Takes a topology name and provides summary totals of types of objects in topology.
Availability: 2.0.0

Examples
SELECT topology.topologysummary('city_data');
 topologysummary
--
 Topology city_data (329), SRID 4326, precision: 0
 22 nodes, 24 edges, 10 faces, 29 topogeoms in 5 layers
 Layer 1, type Polygonal (3), 9 topogeoms
 Deploy: features.land_parcels.feature
 Layer 2, type Puntal (1), 8 topogeoms
 Deploy: features.traffic_signs.feature
 Layer 3, type Lineal (2), 8 topogeoms
 Deploy: features.city_streets.feature
 Layer 4, type Polygonal (3), 3 topogeoms
 Hierarchy level 1, child layer 1
 Deploy: features.big_parcels.feature
 Layer 5, type Puntal (1), 1 topogeoms
 Hierarchy level 1, child layer 2
 Deploy: features.big_signs.feature

See Also
Topology_Load_Tiger

More Information

	The latest software, documentation and news items are available
		at the PostGIS web site, http://postgis.net.

	More information about the GEOS geometry operations library is
		available at
		http://trac.osgeo.org/geos/.

	More information about the Proj4 reprojection library is
		available at http://trac.osgeo.org/proj/.

	More information about the PostgreSQL database server is
		available at the PostgreSQL main site http://www.postgresql.org.

	More information about GiST indexing is available at the
		PostgreSQL GiST development site, http://www.sai.msu.su/~megera/postgres/gist/.

	More information about MapServer internet map server is
		available at http://mapserver.org.

	The "Simple Features for
		Specification for SQL" is available at the OpenGIS Consortium
		web site: http://www.opengeospatial.org/.

Name
DropOverviewConstraints — Untag a raster column from being an overview of another.

Synopsis
	boolean fsfuncDropOverviewConstraints(ovschema, 	
	 	ovtable, 	
	 	ovcolumn);	

name
 ovschema;
name
 ovtable;
name
 ovcolumn;

	boolean fsfuncDropOverviewConstraints(ovtable, 	
	 	ovcolumn);	

name
 ovtable;
name
 ovcolumn;

Description

Remove from a raster column the constraints used to show it as
being an overview of another in the raster_overviews
raster catalog.
		

When the ovschema parameter is omitted,
the first table found scanning the search_path
will be used.
		
Availability: 2.0.0

See Also

 the section called “Raster Overviews”,
 AddOverviewConstraints,
 DropRasterConstraints

Reporting Documentation Issues

The documentation should accurately reflect the features and
 behavior of the software. If it doesn't, it could be because of a software
 bug or because the documentation is in error or deficient.
Documentation issues can also be reported to the PostGIS bug
 tracker.
If your revision is trivial, just describe it in a new bug tracker
 issue, being specific about its location in the documentation.
If your changes are more extensive, a Subversion patch is definitely
 preferred. This is a four step process on Unix (assuming you already have
 Subversion
 installed):
	Check out a copy of PostGIS' Subversion trunk. On Unix,
 type:
svn checkout
 http://svn.osgeo.org/postgis/trunk/
This will be stored in the directory ./trunk

	Make your changes to the documentation with your favorite text
 editor. On Unix, type (for example):
vim trunk/doc/postgis.xml
Note that the documentation is written in DocBook XML rather than HTML,
 so if you are not familiar with it please follow the example of the
 rest of the documentation.

	Make a patch file containing the differences from the master
 copy of the documentation. On Unix, type:
svn diff trunk/doc/postgis.xml >
 doc.patch

	Attach the patch to a new issue in bug tracker.

Name
ST_3DLongestLine — Returns the 3-dimensional longest line between two geometries

Synopsis
	geometry fsfuncST_3DLongestLine(g1, 	
	 	g2);	

geometry
			g1;
geometry
			g2;

Description
Returns the 3-dimensional longest line between two geometries. The function will
		only return the first longest line if more than one.
		The line returned will always start in g1 and end in g2.
		The 3D length of the line this function returns will always be the same as ST_3DMaxDistance returns for g1 and g2.
		
Availability: 2.0.0
Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.

Examples
	linestring and point -- both 3d and 2d longest line
					

SELECT ST_AsEWKT(ST_3DLongestLine(line,pt)) AS lol3d_line_pt,
		ST_AsEWKT(ST_LongestLine(line,pt)) As lol2d_line_pt
	FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
			'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry As line
) As foo;

 lol3d_line_pt | lol2d_line_pt
-----------------------------------+----------------------------
 LINESTRING(50 75 1000,100 100 30) | LINESTRING(98 190,100 100)
					

							

	linestring and multipoint -- both 3d and 2d longest line
					
SELECT ST_AsEWKT(ST_3DLongestLine(line,pt)) AS lol3d_line_pt,
		ST_AsEWKT(ST_LongestLine(line,pt)) As lol2d_line_pt
	FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
			'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
) As foo;

 lol3d_line_pt | lol2d_line_pt
---------------------------------+--------------------------
 LINESTRING(98 190 1,50 74 1000) | LINESTRING(98 190,50 74)
					

							

	Multilinestring and polygon both 3d and 2d longest line
					
SELECT ST_AsEWKT(ST_3DLongestLine(poly, mline)) As lol3d,
 ST_AsEWKT(ST_LongestLine(poly, mline)) As lol2d
 FROM (SELECT ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
 ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
 (1 10 2, 5 20 1))') As mline) As foo;
 lol3d | lol2d
------------------------------+--------------------------
 LINESTRING(175 150 5,1 10 2) | LINESTRING(175 150,1 10)

							

See Also
ST_3DClosestPoint, ST_3DDistance, ST_LongestLine, ST_3DShortestLine, ST_3DMaxDistance

Name
|&> — Returns TRUE if A's bounding box overlaps or is above B's.

Synopsis
	boolean fsfunc|&>(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description
The |&> operator returns TRUE if the bounding box of geometry A
			overlaps or is above the bounding box of geometry B, or more accurately, overlaps or is NOT below
			the bounding box of geometry B.
Note
This operand will make use of any indexes that may be available on the
			 geometries.

Examples
SELECT tbl1.column1, tbl2.column1, tbl1.column2 |&> tbl2.column2 AS overabove
FROM
 (VALUES
	(1, 'LINESTRING(6 0, 6 4)'::geometry)) AS tbl1,
 (VALUES
	(2, 'LINESTRING(0 0, 3 3)'::geometry),
	(3, 'LINESTRING(0 1, 0 5)'::geometry),
	(4, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl2;

 column1 | column1 | overabove
---------+---------+-----------
	 1 | 2 | t
	 1 | 3 | f
	 1 | 4 | f
(3 rows)

See Also

				&&,
				&>,
				&<|,
				&<

Name
|=| —
Returns the distance between A and B trajectories at their closest point of approach.
			

Synopsis
	double precision fsfunc|=|(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

Description

The |=| operator returns the 3D distance between
two trajectories (See ST_IsValidTrajectory).
This is the same as ST_DistanceCPA but as an operator
it can be used for doing nearest neightbor searches using an N-dimensional
index (requires PostgreSQL 9.5.0 or higher).

Note
This operand will make use of ND GiST indexes that may be available on the geometries. It is different from other operators that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

Note
Index only kicks in if one of the geometries is a constant (not in a subquery/cte). e.g. 'SRID=3005;LINESTRINGM(0 0 0,0 0 1)'::geometry instead of a.geom

Availability: 2.2.0. Index-supported only available for PostgreSQL 9.5+

Examples

-- Save a literal query trajectory in a psql variable...
\set qt 'ST_AddMeasure(ST_MakeLine(ST_MakePointM(-350,300,0),ST_MakePointM(-410,490,0)),10,20)'
-- Run the query !
SELECT track_id, dist FROM (
 SELECT track_id, ST_DistanceCPA(tr,:qt) dist
 FROM trajectories
 ORDER BY tr |=| :qt
 LIMIT 5
) foo;
 track_id dist
----------+-------------------
 395 | 0.576496831518066
 380 | 5.06797130410151
 390 | 7.72262293958322
 385 | 9.8004461358071
 405 | 10.9534397988433
(5 rows)

See Also

ST_DistanceCPA,
ST_ClosestPointOfApproach,
ST_IsValidTrajectory

Name
ST_GetFaceGeometry — Returns the polygon in the given topology with the specified face id.

Synopsis
	geometry fsfuncST_GetFaceGeometry(atopology, 	
	 	aface);	

varchar atopology;
integer aface;

Description
Returns the polygon in the given topology with the specified face id. Builds the polygon from the edges making up the face.
Availability: 1.?
[image: Description] This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.16

Examples

-- Returns the wkt of the polygon added with AddFace
SELECT ST_AsText(topology.ST_GetFaceGeometry('ma_topo', 1)) As facegeomwkt;
-- result --
 facegeomwkt

--
 POLYGON((234776.9 899563.7,234896.5 899456.7,234914 899436.4,234946.6 899356.9,
234872.5 899328.7,234891 899285.4,234992.5 899145,234890.6 899069,
234755.2 899255.4,234612.7 899379.4,234776.9 899563.7))

See Also
AddFace

Name
ST_GeomFromTWKB — Creates a geometry instance from a TWKB ("Tiny Well-Known Binary") geometry
		representation.

Synopsis
	geometry fsfuncST_GeomFromTWKB(twkb);	

bytea twkb;

Description
The ST_GeomFromTWKB function, takes a a TWKB ("Tiny Well-Known Binary") geometry representation (WKB) and creates an instance of the appropriate
		geometry type.

Examples

SELECT ST_AsText(ST_GeomFromTWKB(ST_AsTWKB('LINESTRING(126 34, 127 35)'::geometry)));

 st_astext

 LINESTRING(126 34, 127 35)
(1 row)

SELECT ST_AsEWKT(
 ST_GeomFromTWKB(E'\\x620002f7f40dbce4040105')
);
					 st_asewkt
--
LINESTRING(-113.98 39.198,-113.981 39.195)
(1 row)

See Also
ST_AsTWKB

Name
Loader_Generate_Script — Generates a shell script for the specified platform for the specified states that will download Tiger data, stage and load into tiger_data schema. Each state script is returned as a separate record. Latest version supports Tiger 2010 structural changes and also loads census tract, block groups, and blocks tables.

Synopsis
	setof text fsfuncloader_generate_script(param_states, 	
	 	os);	

text[] param_states;
text os;

Description
Generates a shell script for the specified platform for the specified states that will download Tiger data, stage and load into tiger_data schema. Each state script is returned as a separate record.
It uses unzip on Linux (7-zip on Windows by default) and wget to do the downloading. It uses the section called “shp2pgsql: Using the ESRI Shapefile Loader” to load in the data. Note the smallest unit it does is a whole state, but you can overwrite this by downloading the files yourself. It will only
 process the files in the staging and temp folders.
It uses the following control tables to control the process and different OS shell syntax variations.
	loader_variables keeps track of various variables such as census site, year, data and staging schemas

	loader_platform profiles of various platforms and where the various executables are located. Comes with windows and linux. More can be added.

	loader_lookuptables each record defines a kind of table (state, county), whether to process records in it and how to load them in. Defines the steps to import data, stage data, add, removes columns, indexes, and constraints for each. Each table is prefixed with the state and inherits from a table in the tiger schema. e.g. creates tiger_data.ma_faces which inherits from tiger.faces

Availability: 2.0.0 to support Tiger 2010 structured data and load census tract (tract), block groups (bg), and blocks (tabblocks) tables .
Note
If you are using pgAdmin 3, be warned that by default pgAdmin 3 truncates long text. To fix, change
 File -> Options -> Query Tool -> Query Editor - > Max. characters per column to larger than 50000 characters.

Examples
Using psql where gistest is your database and /gisdata/data_load.sh is the file to create with the shell commands to run.
psql -U postgres -h localhost -d gistest -A -t \
 -c "SELECT Loader_Generate_Script(ARRAY['MA'], 'gistest')" > /gisdata/data_load.sh;

Generate script to load up data for 2 states in Windows shell script format.
SELECT loader_generate_script(ARRAY['MA','RI'], 'windows') AS result;
-- result --
set TMPDIR=\gisdata\temp\
set UNZIPTOOL="C:\Program Files\7-Zip\7z.exe"
set WGETTOOL="C:\wget\wget.exe"
set PGBIN=C:\Program Files\PostgreSQL\9.4\bin\
set PGPORT=5432
set PGHOST=localhost
set PGUSER=postgres
set PGPASSWORD=yourpasswordhere
set PGDATABASE=geocoder
set PSQL="%PGBIN%psql"
set SHP2PGSQL="%PGBIN%shp2pgsql"
cd \gisdata

cd \gisdata
%WGETTOOL% ftp://ftp2.census.gov/geo/tiger/TIGER2015/PLACE/tl_*_25_* --no-parent --relative --recursive --level=2 --accept=zip --mirror --reject=html
cd \gisdata/ftp2.census.gov/geo/tiger/TIGER2015/PLACE
:
:
Generate sh script
SELECT loader_generate_script(ARRAY['MA','RI'], 'sh') AS result;
-- result --
TMPDIR="/gisdata/temp/"
UNZIPTOOL=unzip
WGETTOOL="/usr/bin/wget"
export PGBIN=/usr/lib/postgresql/9.4/bin
export PGPORT=5432
export PGHOST=localhost
export PGUSER=postgres
export PGPASSWORD=yourpasswordhere
export PGDATABASE=geocoder
PSQL=${PGBIN}/psql
SHP2PGSQL=${PGBIN}/shp2pgsql
cd /gisdata

cd /gisdata
wget ftp://ftp2.census.gov/geo/tiger/TIGER2015/PLACE/tl_*_25_* --no-parent --relative --recursive --level=2 --accept=zip --mirror --reject=html
cd /gisdata/ftp2.census.gov/geo/tiger/TIGER2015/PLACE
rm -f ${TMPDIR}/*.*
:
:

See Also
the section called “Tiger Geocoder Enabling your PostGIS database: Using Extension”, Loader_Generate_Nation_Script

Name
ST_ConcaveHull — The concave hull of a geometry represents a possibly concave
		geometry that encloses all geometries within the set. You can think of it as shrink wrapping.

Synopsis
	geometry fsfuncST_ConcaveHull(geomA, 	
	 	target_percent, 	
	 	allow_holes=false);	

geometry geomA;
float target_percent;
boolean allow_holes=false;

Description
The concave hull of a geometry represents a possibly concave
		geometry that encloses all geometries within the set. Defaults to false for allowing polygons with holes.
		The result is never higher than a single polygon.
The target_percent is the target percent of area of convex hull the PostGIS solution will try to approach before giving up or exiting.
		One can think of the concave hull as the geometry you get by vacuum sealing a set of geometries. The
			target_percent of 1 will give you the same answer as the convex hull. A target_percent
				between 0 and 0.99 will give you something that should have a smaller area than the convex hull. This is different from a convex hull which is more like wrapping a rubber band around the set of geometries.
It is usually used with MULTI and Geometry Collections.
		Although it is not an aggregate - you can use it in conjunction
		with ST_Collect or ST_Union to get the concave hull of a set of points/linestring/polygons
		ST_ConcaveHull(ST_Collect(somepointfield), 0.80).
It is much slower to compute than convex hull but encloses the geometry better and is also useful for
			image recognition.
Performed by the GEOS module
Note
Note - If you are using with points, linestrings, or geometry collections use ST_Collect. If you are using with polygons, use ST_Union since
			it may fail with invalid geometries.

Note
Note - The smaller you make the target percent, the longer it takes to process the concave hull and more likely to run into topological exceptions. Also the more
			floating points and number of points you accrue. First try a 0.99 which does a first hop, is usually very fast, sometimes as fast as computing the convex hull, and usually gives much better than 99% of shrink since it almost always overshoots. Second hope of 0.98 it slower, others get slower usually quadratically.
			To reduce precision and float points, use ST_SimplifyPreserveTopology or ST_SnapToGrid after ST_ConcaveHull. ST_SnapToGrid is a bit faster, but
				could result in invalid geometries where as ST_SimplifyPreserveTopology almost always preserves the validity of the geometry.

More real world examples and brief explanation of the technique are shown http://www.bostongis.com/postgis_concavehull.snippet
Also check out Simon Greener's article on demonstrating ConcaveHull introduced in Oracle 11G R2. http://www.spatialdbadvisor.com/oracle_spatial_tips_tricks/172/concave-hull-geometries-in-oracle-11gr2.
		The solution we get at 0.75 target percent of convex hull is similar to the shape Simon gets with Oracle SDO_CONCAVEHULL_BOUNDARY.
Availability: 2.0.0

Examples

--Get estimate of infected area based on point observations
SELECT d.disease_type,
	ST_ConcaveHull(ST_Collect(d.pnt_geom), 0.99) As geom
	FROM disease_obs As d
	GROUP BY d.disease_type;

	[image: Examples]ST_ConcaveHull of 2 polygons encased in target 100% shrink concave hull

				

-- geometries overlaid with concavehull
-- at target 100% shrink (this is the same as convex hull - since no shrink)
SELECT
	ST_ConcaveHull(
		ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
			50 60, 125 100, 175 150))'),
		ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
), 1)
	 As convexhull;
				

						
	[image: Examples]-- geometries overlaid with concavehull
								at target 90% of convex hull area

				

-- geometries overlaid with concavehull at target 90% shrink
SELECT
	ST_ConcaveHull(
		ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
			50 60, 125 100, 175 150))'),
		ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
), 0.9)
	 As target_90;
				

						

	[image: Examples]L Shape points overlaid with convex hull

				

-- this produces a table of 42 points that form an L shape
SELECT (ST_DumpPoints(ST_GeomFromText(
'MULTIPOINT(14 14,34 14,54 14,74 14,94 14,114 14,134 14,
150 14,154 14,154 6,134 6,114 6,94 6,74 6,54 6,34 6,
14 6,10 6,8 6,7 7,6 8,6 10,6 30,6 50,6 70,6 90,6 110,6 130,
6 150,6 170,6 190,6 194,14 194,14 174,14 154,14 134,14 114,
14 94,14 74,14 54,14 34,14 14)'))).geom
	INTO TABLE l_shape;

SELECT ST_ConvexHull(ST_Collect(geom))
FROM l_shape;
				

						
	[image: Examples]ST_ConcaveHull of L points at target 99% of convex hull

				

SELECT ST_ConcaveHull(ST_Collect(geom), 0.99)
	FROM l_shape;
				

						

	[image: Examples]Concave Hull of L points at target 80% convex hull area

	

	-- Concave Hull L shape points
	-- at target 80% of convexhull
	SELECT ST_ConcaveHull(ST_Collect(geom), 0.80)
	FROM l_shape;
	

			

				
				
[image: Examples]multilinestring overlaid with Convex hull

				
[image: Examples]multilinestring with overlaid with Concave hull
				 of linestrings at 99% target -- first hop

	

SELECT ST_ConcaveHull(ST_GeomFromText('MULTILINESTRING((106 164,30 112,74 70,82 112,130 94,
	130 62,122 40,156 32,162 76,172 88),
(132 178,134 148,128 136,96 128,132 108,150 130,
170 142,174 110,156 96,158 90,158 88),
(22 64,66 28,94 38,94 68,114 76,112 30,
132 10,168 18,178 34,186 52,184 74,190 100,
190 122,182 148,178 170,176 184,156 164,146 178,
132 186,92 182,56 158,36 150,62 150,76 128,88 118))'),0.99)
	

			

			

See Also
ST_Collect, ST_ConvexHull, ST_SimplifyPreserveTopology, ST_SnapToGrid

Name
ST_UnaryUnion — Like ST_Union, but working at the geometry component level.

Synopsis
	geometry fsfuncST_UnaryUnion(geom);	

geometry geom;

Description

		Unlike ST_Union, ST_UnaryUnion does dissolve boundaries
		between components of a multipolygon (invalid)
		and does perform union between the components of a
		geometrycollection.
		Each components of the input geometry is assumed to be
		valid, so you won't get a valid multipolygon out of a
		bow-tie polygon (invalid).
		

		You may use this function to node a set of linestrings.
		You may mix ST_UnaryUnion with ST_Collect to fine-tune
		how many geometries at once you want to dissolve to
		be nice on both memory size and CPU time, finding the
		balance between ST_Union and ST_MemUnion.
		
[image: Description]
 This function supports 3d and will not drop the z-index.
Availability: 2.0.0 - requires GEOS >= 3.3.0.

See Also

			ST_Union,
			ST_MemUnion,
			ST_Collect,
			ST_Node
		

Release 1.0.2

Release date: 2005/07/04
Contains a few bug fixes and improvements.
Upgrading

If you are upgrading from release 1.0.0RC6 or up you
 DO NOT need a dump/reload.
Upgrading from older releases requires a dump/reload. See the
 upgrading chapter for more
 informations.

Bug fixes

Fault tolerant btree ops
Memory leak plugged in pg_error
Rtree index fix
Cleaner build scripts (avoided mix of CFLAGS and
 CXXFLAGS)

Improvements

New index creation capabilities in loader (-I switch)
Initial support for postgresql 8.1dev

Name
ST_SkewY — Returns the georeference Y skew (or rotation parameter).

Synopsis
	float8 fsfuncST_SkewY(rast);	

raster rast;

Description
Returns the georeference Y skew (or rotation parameter). Refer to World File
				for more details.

Examples
SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
 ST_GeoReference(rast) as georef
FROM dummy_rast;

 rid | skewx | skewy | georef
-----+-------+-------+--------------------
 1 | 0 | 0 | 2.0000000000
 : 0.0000000000
 : 0.0000000000
 : 3.0000000000
 : 0.5000000000
 : 0.5000000000
 :
 2 | 0 | 0 | 0.0500000000
 : 0.0000000000
 : 0.0000000000
 : -0.0500000000
 : 3427927.7500000000
 : 5793244.0000000000
				

See Also
ST_GeoReference, ST_SkewX, ST_SetSkew

Name
ST_YMax — Returns Y maxima of a bounding box 2d or 3d or a geometry.

Synopsis
	float fsfuncST_YMax(aGeomorBox2DorBox3D);	

box3d aGeomorBox2DorBox3D;

Description
Returns Y maxima of a bounding box 2d or 3d or a geometry.
Note
Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
			defined for geometries and box2d. However you can not feed it a geometry or box2d text representation, since that will not auto-cast.

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_YMax('BOX3D(1 2 3, 4 5 6)');
st_ymax

5

SELECT ST_YMax(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'));
st_ymax

6

SELECT ST_YMax(CAST('BOX(-3 2, 3 4)' As box2d));
st_ymax

4
--Observe THIS DOES NOT WORK because it will try to autocast the string representation to a BOX3D
SELECT ST_YMax('LINESTRING(1 3, 5 6)');

--ERROR: BOX3D parser - doesn't start with BOX3D(

SELECT ST_YMax(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
st_ymax

150506.126829327
		

See Also
ST_XMin, ST_XMax, ST_YMin, ST_ZMax, ST_ZMin

Name
@ — Returns TRUE if A's bounding box is contained by B's. Uses double precision bounding box.

Synopsis
	boolean fsfunc@(A, 	
	 	B);	

 raster
 A
 ;

 raster
 B
 ;

	boolean fsfunc@(A, 	
	 	B);	

 geometry
 A
 ;

 raster
 B
 ;

	boolean fsfunc@(B, 	
	 	A);	

 raster
 B
 ;

 geometry
 A
 ;

Description
The @ operator returns TRUE if the bounding box of raster/geometry A
			is contained by bounding box of raster/geometr B.
Note
This operand will use spatial indexes on the rasters.

Availability: 2.0.0 raster @ raster, raster @ geometry introduced
Availability: 2.0.5 geometry @ raster introduced

See Also
~

Name
ST_Split — Returns a collection of geometries resulting by splitting a geometry.

Synopsis
	geometry fsfuncST_Split(input, 	
	 	blade);	

geometry input;
geometry blade;

Description

 The function supports splitting a line by (multi)point, (multi)line or (multi)polygon boundary, a (multi)polygon by line. The returned geometry is always a collection.

 Think of this function as the opposite of ST_Union.
 Theoretically applying ST_Union to the elements of the returned collection
 should always yield the original geometry.

Availability: 2.0.0
Changed: 2.2.0 support for splitting a line by a multiline, a multipoint or (multi)polygon boundary was introduced.
Note
To improve the robustness of ST_Split it may be convenient to ST_Snap the input to the blade in advance using a very low tolerance. Otherwise the internally used coordinate grid may cause tolerance problems, where coordinates of input and blade do not fall onto each other and the input is not being split correctly (see #2192).

Note

When a (multi)polygon is passed as as the blade, its linear component
(the boundary) is used for cutting the input.

Examples
Polygon Cut by Line
	

[image: Examples]Before Split

 	

[image: Examples]After split

-- this creates a geometry collection consisting of the 2 halves of the polygon
-- this is similar to the example we demonstrated in ST_BuildArea
SELECT ST_Split(circle, line)
FROM (SELECT
 ST_MakeLine(ST_MakePoint(10, 10),ST_MakePoint(190, 190)) As line,
 ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50) As circle) As foo;

-- result --
 GEOMETRYCOLLECTION(POLYGON((150 90,149.039264020162 80.2454838991936,146.193976625564 70.8658283817455,..), POLYGON(..)))

-- To convert to individual polygons, you can use ST_Dump or ST_GeometryN
SELECT ST_AsText((ST_Dump(ST_Split(circle, line))).geom) As wkt
FROM (SELECT
 ST_MakeLine(ST_MakePoint(10, 10),ST_MakePoint(190, 190)) As line,
 ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50) As circle) As foo;

-- result --
wkt

POLYGON((150 90,149.039264020162 80.2454838991936,..))
POLYGON((60.1371179574584 60.1371179574584,58.4265193848728 62.2214883490198,53.8060233744357 ..))

Multilinestring Cut by point
	

[image: Examples]Before Split

 	

[image: Examples]After split

SELECT ST_AsText(ST_Split(mline, pt)) As wktcut
 FROM (SELECT
 ST_GeomFromText('MULTILINESTRING((10 10, 190 190), (15 15, 30 30, 100 90))') As mline,
 ST_Point(30,30) As pt) As foo;

wktcut

GEOMETRYCOLLECTION(
 LINESTRING(10 10,30 30),
 LINESTRING(30 30,190 190),
 LINESTRING(15 15,30 30),
 LINESTRING(30 30,100 90)
)

See Also

ST_AsText,
ST_BuildArea,
ST_Dump,
ST_GeometryN,
ST_Union,
ST_Subdivide

Name
ST_PixelAsCentroid —
					Returns the centroid (point geometry) of the area represented by a pixel.
				

Synopsis
	geometry fsfuncST_PixelAsCentroid(rast, 	
	 	x, 	
	 	y);	

raster rast;
integer x;
integer y;

Description
Returns the centroid (point geometry) of the area represented by a pixel.
Availability: 2.1.0

Examples

SELECT ST_AsText(ST_PixelAsCentroid(rast, 1, 1)) FROM dummy_rast WHERE rid = 1;

 st_astext

 POINT(1.5 2)
				

See Also

					ST_DumpAsPolygons,
					ST_PixelAsPolygon,
					ST_PixelAsPolygons,
					ST_PixelAsPoint,
					ST_PixelAsPoints,
					ST_PixelAsCentroids
				

Chapter 4. Using PostGIS: Data Management and Queries

GIS Objects

The GIS objects supported by PostGIS are a superset of the "Simple
	Features" defined by the OpenGIS Consortium (OGC). As of version 0.9,
	PostGIS supports all the objects and functions specified in the OGC
	"Simple Features for SQL" specification.
PostGIS extends the standard with support for 3DZ,3DM and 4D
	coordinates.
OpenGIS WKB and WKT

The OpenGIS specification defines two standard ways of expressing
	 spatial objects: the Well-Known Text (WKT) form and the Well-Known
	 Binary (WKB) form. Both WKT and WKB include information about the type
	 of the object and the coordinates which form the object.
Examples of the text representations (WKT) of the spatial objects
	 of the features are as follows:
	POINT(0 0)

	LINESTRING(0 0,1 1,1 2)

	POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1, 2 1, 2 2, 1 2,1 1))

	MULTIPOINT((0 0),(1 2))

	MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

	MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)),
		 ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))

	GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))

The OpenGIS specification also requires that the internal storage
	 format of spatial objects include a spatial referencing system
	 identifier (SRID). The SRID is required when creating spatial objects
	 for insertion into the database.
Input/Output of these formats are available using the following
	 interfaces:
bytea WKB = ST_AsBinary(geometry);
text WKT = ST_AsText(geometry);
geometry = ST_GeomFromWKB(bytea WKB, SRID);
geometry = ST_GeometryFromText(text WKT, SRID);
For example, a valid insert statement to create and insert an OGC
	 spatial object would be:
INSERT INTO geotable (the_geom, the_name)
 VALUES (ST_GeomFromText('POINT(-126.4 45.32)', 312), 'A Place');

PostGIS EWKB, EWKT and Canonical Forms

OGC formats only support 2d geometries, and the associated SRID is
	 never embedded in the input/output representations.
PostGIS extended formats are currently superset of OGC one (every
	 valid WKB/WKT is a valid EWKB/EWKT) but this might vary in the future,
	 specifically if OGC comes out with a new format conflicting with our
	 extensions. Thus you SHOULD NOT rely on this feature!
PostGIS EWKB/EWKT add 3dm,3dz,4d coordinates support and embedded
	 SRID information.
Examples of the text representations (EWKT) of the extended
	 spatial objects of the features are as follows. The * ones are new in this version of PostGIS:
	POINT(0 0 0) -- XYZ

	SRID=32632;POINT(0 0) -- XY with SRID

	POINTM(0 0 0) -- XYM

	POINT(0 0 0 0) -- XYZM

	SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID

	MULTILINESTRING((0 0 0,1 1 0,1 2 1),(2 3 1,3 2 1,5 4
		 1))

	POLYGON((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2
		 0,1 1 0))

	MULTIPOLYGON(((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2
		 0,1 2 0,1 1 0)),((-1 -1 0,-1 -2 0,-2 -2 0,-2 -1 0,-1 -1 0)))

	GEOMETRYCOLLECTIONM(POINTM(2 3 9), LINESTRINGM(2 3 4, 3 4 5))

	MULTICURVE((0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4))

	POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))

	TRIANGLE ((0 0, 0 9, 9 0, 0 0))

	TIN(((0 0 0, 0 0 1, 0 1 0, 0 0 0)),
		 ((0 0 0, 0 1 0, 1 1 0, 0 0 0)))

Input/Output of these formats are available using the following
	 interfaces:
bytea EWKB = ST_AsEWKB(geometry);
text EWKT = ST_AsEWKT(geometry);
geometry = ST_GeomFromEWKB(bytea EWKB);
geometry = ST_GeomFromEWKT(text EWKT);
For example, a valid insert statement to create and insert a
	 PostGIS spatial object would be:
INSERT INTO geotable (the_geom, the_name)
 VALUES (ST_GeomFromEWKT('SRID=312;POINTM(-126.4 45.32 15)'), 'A Place')
The "canonical forms" of a PostgreSQL type are the representations
	 you get with a simple query (without any function call) and the one
	 which is guaranteed to be accepted with a simple insert, update or copy.
	 For the postgis 'geometry' type these are:
- Output
 - binary: EWKB
	ascii: HEXEWKB (EWKB in hex form)
- Input
 - binary: EWKB
	ascii: HEXEWKB|EWKT
For example this statement reads EWKT and returns HEXEWKB in the
	 process of canonical ascii input/output:
=# SELECT 'SRID=4;POINT(0 0)'::geometry;

geometry
--
01010000200400000000000000000000000000000000000000
(1 row)

SQL-MM Part 3

The SQL Multimedia Applications Spatial specification extends the
	 simple features for SQL spec by defining a number of circularly
	 interpolated curves.
The SQL-MM definitions include 3dm, 3dz and 4d coordinates, but do
	 not allow the embedding of SRID information.
The well-known text extensions are not yet fully supported.
	 Examples of some simple curved geometries are shown below:
	CIRCULARSTRING(0 0, 1 1, 1 0)
CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0)
The CIRCULARSTRING is the basic curve type, similar to a
		 LINESTRING in the linear world. A single segment required three
		 points, the start and end points (first and third) and any other
		 point on the arc. The exception to this is for a closed circle,
		 where the start and end points are the same. In this case the
		 second point MUST be the center of the arc, ie the opposite side of
		 the circle. To chain arcs together, the last point of the previous
		 arc becomes the first point of the next arc, just like in
		 LINESTRING. This means that a valid circular string must have an
		 odd number of points greated than 1.

	COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))
A compound curve is a single, continuous curve that has both
		 curved (circular) segments and linear segments. That means that
		 in addition to having well-formed components, the end point of
		 every component (except the last) must be coincident with the
		 start point of the following component.

	CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),(1 1, 3
		 3, 3 1, 1 1))
Example compound curve in a curve polygon:
				CURVEPOLYGON(COMPOUNDCURVE(CIRCULARSTRING(0 0,2 0, 2 1, 2 3, 4 3),(4 3, 4 5, 1 4, 0 0)),
					CIRCULARSTRING(1.7 1, 1.4 0.4, 1.6 0.4, 1.6 0.5, 1.7 1))
		
A CURVEPOLYGON is just like a polygon, with an outer ring
		 and zero or more inner rings. The difference is that a ring can
		 take the form of a circular string, linear string or compound
		 string.
As of PostGIS 1.4 PostGIS supports compound curves in a curve polygon.

	MULTICURVE((0 0, 5 5),CIRCULARSTRING(4 0, 4 4, 8 4))
The MULTICURVE is a collection of curves, which can include
		 linear strings, circular strings or compound strings.

	MULTISURFACE(CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0
		 0),(1 1, 3 3, 3 1, 1 1)),((10 10, 14 12, 11 10, 10 10),(11 11, 11.5
		 11, 11 11.5, 11 11)))
This is a collection of surfaces, which can be (linear)
		 polygons or curve polygons.

Note
PostGIS prior to 1.4 does not support compound curves in a curve polygon, but
				PostGIS 1.4 and above do support the use of Compound Curves in
		a Curve Polygon.

Note
All floating point comparisons within the SQL-MM implementation
		are performed to a specified tolerance, currently 1E-8.

Avoiding dimension conversion

Sometimes, you happen to have 3D or 4D data in your table, but
 always access it using OpenGIS compliant ST_AsText() or ST_AsBinary()
 functions that only output 2D geometries. They do this by internally
 calling the ST_Force2D() function, which introduces a significant
 overhead for large geometries. To avoid this overhead, it may be feasible
 to pre-drop those additional dimensions once and forever:
UPDATE mytable SET the_geom = ST_Force2D(the_geom);
VACUUM FULL ANALYZE mytable;
Note that if you added your geometry column using
 AddGeometryColumn() there'll be a constraint on geometry dimension. To
 bypass it you will need to drop the constraint. Remember to update the
 entry in the geometry_columns table and recreate the constraint
 afterwards.
In case of large tables, it may be wise to divide this UPDATE into
 smaller portions by constraining the UPDATE to a part of the table via a
 WHERE clause and your primary key or another feasible criteria, and
 running a simple "VACUUM;" between your UPDATEs. This drastically reduces
 the need for temporary disk space. Additionally, if you have mixed
 dimension geometries, restricting the UPDATE by "WHERE
 dimension(the_geom)>2" skips re-writing of geometries that already are
 in 2D.

Name
&&&(gidx,gidx) — Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.

Synopsis
	boolean fsfunc&&&(A, 	
	 	B);	

				 gidx

				 A
				;

				 gidx

				 B
				;

Description
The &&& operator returns TRUE if two n-D bounding boxes A and B intersect each other, using float precision. This means that if A (or B) is a (double precision) box3d, it will be internally converted to a float precision 3D bounding box (GIDX)
Note
This operator is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) &&& ST_3DMakeBox(ST_MakePoint(1,1,1), ST_MakePoint(3,3,3)) AS overlaps;

 overlaps

 t
(1 row)

See Also

 &&&(geometry,gidx),
 &&&(gidx,geometry)

Name
ST_Expand — Returns bounding box expanded in all directions from the bounding box of the input geometry. Uses double-precision

Synopsis
	geometry fsfuncST_Expand(geom, 	
	 	units_to_expand);	

geometry geom;
float units_to_expand;

	geometry fsfuncST_Expand(geom, 	
	 	dx, 	
	 	dy, 	
	 	dz=0, 	
	 	dm=0);	

geometry geom;
float dx;
float dy;
float dz=0;
float dm=0;

	box2d fsfuncST_Expand(box, 	
	 	units_to_expand);	

box2d box;
float units_to_expand;

	box2d fsfuncST_Expand(box, 	
	 	dx, 	
	 	dy);	

box2d box;
float dx;
float dy;

	box3d fsfuncST_Expand(box, 	
	 	units_to_expand);	

box3d box;
float units_to_expand;

	box3d fsfuncST_Expand(box, 	
	 	dx, 	
	 	dy, 	
	 	dz=0);	

box3d box;
float dx;
float dy;
float dz=0;

Description
This function returns a bounding box expanded from the bounding box of the input,
			either by specifying a single distance with which the box should be expanded in all
			directions, or by specifying an expansion distance for each direction.

			Uses double-precision. Can be very useful for distance queries, or to add a bounding box
			filter to a query to take advantage of a spatial index.
In addition to the geometry version of ST_Expand, which is the most commonly used, variants
			are provided that accept and produce internal BOX2D and BOX3D data types.
		
ST_Expand is similar in concept to ST_Buffer, except while buffer expands the geometry in all directions,
			ST_Expand expands the bounding box an x,y,z unit amount.
Units are in the units of the spatial reference system in use denoted by the SRID.
Note
Pre 1.3, ST_Expand was used in conjunction with distance to do indexable queries. Something of the form
			the_geom && ST_Expand('POINT(10 20)', 10) AND ST_Distance(the_geom, 'POINT(10 20)') < 10
			Post 1.2, this was replaced with the easier ST_DWithin construct.

Note
Availability: 1.5.0 behavior changed to output double precision instead of float4 coordinates.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.3.0 support was added to expand a box by different amounts in different dimensions.

[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
Note
Examples below use US National Atlas Equal Area (SRID=2163) which is a meter projection

		
--10 meter expanded box around bbox of a linestring
SELECT CAST(ST_Expand(ST_GeomFromText('LINESTRING(2312980 110676,2312923 110701,2312892 110714)', 2163),10) As box2d);
					 st_expand

 BOX(2312882 110666,2312990 110724)

--10 meter expanded 3d box of a 3d box
SELECT ST_Expand(CAST('BOX3D(778783 2951741 1,794875 2970042.61545891 10)' As box3d),10)
							 st_expand

 BOX3D(778773 2951731 -9,794885 2970052.61545891 20)

 --10 meter geometry astext rep of a expand box around a point geometry
 SELECT ST_AsEWKT(ST_Expand(ST_GeomFromEWKT('SRID=2163;POINT(2312980 110676)'),10));
											st_asewkt

 SRID=2163;POLYGON((2312970 110666,2312970 110686,2312990 110686,2312990 110666,2312970 110666))

		

See Also
ST_AsEWKT, ST_Buffer, ST_DWithin, ST_GeomFromEWKT, ST_GeomFromText, ST_SRID

Name
ST_3DLength — Returns the 3-dimensional or 2-dimensional length of the geometry if it is a
			linestring or multi-linestring.

Synopsis
	float fsfuncST_3DLength(a_3dlinestring);	

geometry a_3dlinestring;

Description
Returns the 3-dimensional or 2-dimensional length of the geometry if it is a
			linestring or multi-linestring. For 2-d lines it will just return the 2-d length (same as ST_Length and ST_Length2D)
[image: Description]
 This function supports 3d and will not drop the z-index.
Changed: 2.0.0 In prior versions this used to be called ST_Length3D

Examples
Return length in feet for a 3D cable. Note this is in feet because EPSG:2249 is
				Massachusetts State Plane Feet

SELECT ST_3DLength(ST_GeomFromText('LINESTRING(743238 2967416 1,743238 2967450 1,743265 2967450 3,
743265.625 2967416 3,743238 2967416 3)',2249));
ST_3DLength

122.704716741457
		

See Also
ST_Length, ST_Length2D

Name
ST_CreateTopoGeo —
Adds a collection of geometries to a given empty topology and returns a message detailing success.
				

Synopsis
	text fsfuncST_CreateTopoGeo(atopology, 	
	 	acollection);	

varchar atopology;
geometry acollection;

Description

Adds a collection of geometries to a given empty topology and returns a message detailing success.

Useful for populating an empty topology.
Availability: 2.0
[image: Description] This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details -- X.3.18

Examples

-- Populate topology --
SELECT topology.ST_CreateTopoGeo('ri_topo',
 ST_GeomFromText('MULTILINESTRING((384744 236928,384750 236923,384769 236911,384799 236895,384811 236890,384833 236884,
 384844 236882,384866 236881,384879 236883,384954 236898,385087 236932,385117 236938,
 385167 236938,385203 236941,385224 236946,385233 236950,385241 236956,385254 236971,
 385260 236979,385268 236999,385273 237018,385273 237037,385271 237047,385267 237057,
 385225 237125,385210 237144,385192 237161,385167 237192,385162 237202,385159 237214,
 385159 237227,385162 237241,385166 237256,385196 237324,385209 237345,385234 237375,
 385237 237383,385238 237399,385236 237407,385227 237419,385213 237430,385193 237439,
 385174 237451,385170 237455,385169 237460,385171 237475,385181 237503,385190 237521,
 385200 237533,385206 237538,385213 237541,385221 237542,385235 237540,385242 237541,
 385249 237544,385260 237555,385270 237570,385289 237584,385292 237589,385291 237596,385284 237630))',3438)
);

 st_createtopogeo

 Topology ri_topo populated

-- create tables and topo geometries --
CREATE TABLE ri.roads(gid serial PRIMARY KEY, road_name text);

SELECT topology.AddTopoGeometryColumn('ri_topo', 'ri', 'roads', 'topo', 'LINE');
				

See Also
AddTopoGeometryColumn, CreateTopology, DropTopology

Name
ST_MapAlgebra —
						Callback function version - Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.
					

Synopsis
	raster fsfuncST_MapAlgebra(rastbandargset, 	
	 	callbackfunc, 	
	 	pixeltype=NULL, 	
	 	extenttype=INTERSECTION, 	
	 	customextent=NULL, 	
	 	distancex=0, 	
	 	distancey=0, 	
	 	VARIADIC userargs=NULL);	

rastbandarg[] rastbandargset;
regprocedure callbackfunc;
text pixeltype=NULL;
text extenttype=INTERSECTION;
raster customextent=NULL;
integer distancex=0;
integer distancey=0;
text[] VARIADIC userargs=NULL;

	raster fsfuncST_MapAlgebra(rast, 	
	 	nband, 	
	 	callbackfunc, 	
	 	pixeltype=NULL, 	
	 	extenttype=FIRST, 	
	 	customextent=NULL, 	
	 	distancex=0, 	
	 	distancey=0, 	
	 	VARIADIC userargs=NULL);	

raster rast;
integer[] nband;
regprocedure callbackfunc;
text pixeltype=NULL;
text extenttype=FIRST;
raster customextent=NULL;
integer distancex=0;
integer distancey=0;
text[] VARIADIC userargs=NULL;

	raster fsfuncST_MapAlgebra(rast, 	
	 	nband, 	
	 	callbackfunc, 	
	 	pixeltype=NULL, 	
	 	extenttype=FIRST, 	
	 	customextent=NULL, 	
	 	distancex=0, 	
	 	distancey=0, 	
	 	VARIADIC userargs=NULL);	

raster rast;
integer nband;
regprocedure callbackfunc;
text pixeltype=NULL;
text extenttype=FIRST;
raster customextent=NULL;
integer distancex=0;
integer distancey=0;
text[] VARIADIC userargs=NULL;

	raster fsfuncST_MapAlgebra(rast1, 	
	 	nband1, 	
	 	rast2, 	
	 	nband2, 	
	 	callbackfunc, 	
	 	pixeltype=NULL, 	
	 	extenttype=INTERSECTION, 	
	 	customextent=NULL, 	
	 	distancex=0, 	
	 	distancey=0, 	
	 	VARIADIC userargs=NULL);	

raster rast1;
integer nband1;
raster rast2;
integer nband2;
regprocedure callbackfunc;
text pixeltype=NULL;
text extenttype=INTERSECTION;
raster customextent=NULL;
integer distancex=0;
integer distancey=0;
text[] VARIADIC userargs=NULL;

	raster fsfuncST_MapAlgebra(integer, 	
	 	callbackfunc, 	
	 	mask, 	
	 	weighted, 	
	 	pixeltype=NULL, 	
	 	extenttype=INTERSECTION, 	
	 	customextent=NULL, 	
	 	VARIADIC userargs=NULL);	

nband integer;
regprocedure callbackfunc;
float8[] mask;
boolean weighted;
text pixeltype=NULL;
text extenttype=INTERSECTION;
raster customextent=NULL;
text[] VARIADIC userargs=NULL;

Description

						Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.
					
	rast,rast1,rast2, rastbandargset
	
									Rasters on which the map algebra process is evaluated.
rastbandargset allows the use of a map algebra operation on many rasters and/or many bands. See example Variant 1.
								

	nband, nband1, nband2
	
									Band numbers of the raster to be evaluated. nband can be an integer or integer[] denoting the bands. nband1 is band on rast1 and nband2 is band on rast2 for hte 2 raster/2band case.
								

	callbackfunc
	
									The callbackfunc parameter must be the name and signature of an SQL or PL/pgSQL function, cast to a regprocedure. An example PL/pgSQL function example is:
									

CREATE OR REPLACE FUNCTION sample_callbackfunc(value double precision[][][], position integer[][], VARIADIC userargs text[])
	RETURNS double precision
	AS $$
	BEGIN
		RETURN 0;
	END;
	$$ LANGUAGE 'plpgsql' IMMUTABLE;
									

									The callbackfunc must have three arguments: a 3-dimension double precision array, a 2-dimension integer array and a variadic 1-dimension text array. The first argument value is the set of values (as double precision) from all input rasters. The three dimensions (where indexes are 1-based) are: raster #, row y, column x. The second argument position is the set of pixel positions from the output raster and input rasters. The outer dimension (where indexes are 0-based) is the raster #. The position at outer dimension index 0 is the output raster's pixel position. For each outer dimension, there are two elements in the inner dimension for X and Y. The third argument userargs is for passing through any user-specified arguments.
								

									Passing a regprocedure argument to a SQL function requires the full function signature to be passed, then cast to a regprocedure type. To pass the above example PL/pgSQL function as an argument, the SQL for the argument is:

									

'sample_callbackfunc(double precision[], integer[], text[])'::regprocedure
									

									Note that the argument contains the name of the function, the types of the function arguments, quotes around the name and argument types, and a cast to a regprocedure.
								

	mask
	
									An n-dimenional array (matrix) of numbers used to filter what cells get passed to map algebra call-back function. 0 means a neighbor cell value should be treated as no-data and 1 means value should be treated as data. If weight is set to true, then the values, are used as multipliers to multiple the pixel value of that value in the neighborhood position.
								

	weighted
	
									boolean (true/false) to denote if a mask value should be weighted (multiplied by original value) or not (only applies to proto that takes a mask).
								

	pixeltype
	
									If pixeltype is passed in, the one band of the new raster will be of that pixeltype. If pixeltype is passed NULL or left out, the new raster band will have the same pixeltype as the specified band of the first raster (for extent types: INTERSECTION, UNION, FIRST, CUSTOM) or the specified band of the appropriate raster (for extent types: SECOND, LAST). If in doubt, always specify pixeltype.
								

									The resulting pixel type of the output raster must be one listed in ST_BandPixelType or left out or set to NULL.
								

	extenttype
	
									Possible values are INTERSECTION (default), UNION, FIRST (default for one raster variants), SECOND, LAST, CUSTOM.
								

	customextent
	
									If extentype is CUSTOM, a raster must be provided for customextent. See example 4 of Variant 1.
								

	distancex
	
									The distance in pixels from the reference cell. So width of resulting matrix would be 2*distancex + 1.If not specified only the reference cell is considered (neighborhood of 0).
								

	distancey
	
									The distance in pixels from reference cell in y direction. Height of resulting matrix would be 2*distancey + 1 .If not specified only the reference cell is considered (neighborhood of 0).
								

	userargs
	
									The third argument to the callbackfunc is a variadic text array. All trailing text arguments are passed through to the specified callbackfunc, and are contained in the userargs argument.
								

Note

							For more information about the VARIADIC keyword, please refer to the PostgreSQL documentation and the "SQL Functions with Variable Numbers of Arguments" section of Query Language (SQL) Functions.
						

Note

							The text[] argument to the callbackfunc is required, regardless of whether you choose to pass any arguments to the callback function for processing or not.
						

						Variant 1 accepts an array of rastbandarg allowing the use of a map algebra operation on many rasters and/or many bands. See example Variant 1.
					

						Variants 2 and 3 operate upon one or more bands of one raster. See example Variant 2 and 3.
					

						Variant 4 operate upon two rasters with one band per raster. See example Variant 4.
					
Availability: 2.2.0: Ability to add a mask
Availability: 2.1.0

Examples: Variant 1
One raster, one band

WITH foo AS (
	SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0) AS rast
)
SELECT
	ST_MapAlgebra(
		ARRAY[ROW(rast, 1)]::rastbandarg[],
		'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
) AS rast
FROM foo
					
One raster, several bands

WITH foo AS (
	SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast
)
SELECT
	ST_MapAlgebra(
		ARRAY[ROW(rast, 3), ROW(rast, 1), ROW(rast, 3), ROW(rast, 2)]::rastbandarg[],
		'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
) AS rast
FROM foo
					
Several rasters, several bands

WITH foo AS (
	SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast UNION ALL
	SELECT 2 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0), 2, '8BUI', 20, 0), 3, '32BUI', 300, 0) AS rast
)
SELECT
	ST_MapAlgebra(
		ARRAY[ROW(t1.rast, 3), ROW(t2.rast, 1), ROW(t2.rast, 3), ROW(t1.rast, 2)]::rastbandarg[],
		'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 1
	AND t2.rid = 2
					
Complete example of tiles of a coverage with neighborhood. This query only works with PostgreSQL 9.1 or higher.

WITH foo AS (
	SELECT 0 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0) AS rast UNION ALL
	SELECT 1, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, 0, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0) AS rast UNION ALL
	SELECT 2, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, 0, 1, -1, 0, 0, 0), 1, '16BUI', 3, 0) AS rast UNION ALL

	SELECT 3, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -2, 1, -1, 0, 0, 0), 1, '16BUI', 10, 0) AS rast UNION ALL
	SELECT 4, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, -2, 1, -1, 0, 0, 0), 1, '16BUI', 20, 0) AS rast UNION ALL
	SELECT 5, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, -2, 1, -1, 0, 0, 0), 1, '16BUI', 30, 0) AS rast UNION ALL

	SELECT 6, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -4, 1, -1, 0, 0, 0), 1, '16BUI', 100, 0) AS rast UNION ALL
	SELECT 7, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, -4, 1, -1, 0, 0, 0), 1, '16BUI', 200, 0) AS rast UNION ALL
	SELECT 8, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, -4, 1, -1, 0, 0, 0), 1, '16BUI', 300, 0) AS rast
)
SELECT
	t1.rid,
	ST_MapAlgebra(
		ARRAY[ROW(ST_Union(t2.rast), 1)]::rastbandarg[],
		'sample_callbackfunc(double precision[], int[], text[])'::regprocedure,
		'32BUI',
		'CUSTOM', t1.rast,
		1, 1
) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 4
	AND t2.rid BETWEEN 0 AND 8
	AND ST_Intersects(t1.rast, t2.rast)
GROUP BY t1.rid, t1.rast
					
Example like the prior one for tiles of a coverage with neighborhood but works with PostgreSQL 9.0.

WITH src AS (
	SELECT 0 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0) AS rast UNION ALL
	SELECT 1, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, 0, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0) AS rast UNION ALL
	SELECT 2, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, 0, 1, -1, 0, 0, 0), 1, '16BUI', 3, 0) AS rast UNION ALL

	SELECT 3, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -2, 1, -1, 0, 0, 0), 1, '16BUI', 10, 0) AS rast UNION ALL
	SELECT 4, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, -2, 1, -1, 0, 0, 0), 1, '16BUI', 20, 0) AS rast UNION ALL
	SELECT 5, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, -2, 1, -1, 0, 0, 0), 1, '16BUI', 30, 0) AS rast UNION ALL

	SELECT 6, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -4, 1, -1, 0, 0, 0), 1, '16BUI', 100, 0) AS rast UNION ALL
	SELECT 7, ST_AddBand(ST_MakeEmptyRaster(2, 2, 2, -4, 1, -1, 0, 0, 0), 1, '16BUI', 200, 0) AS rast UNION ALL
	SELECT 8, ST_AddBand(ST_MakeEmptyRaster(2, 2, 4, -4, 1, -1, 0, 0, 0), 1, '16BUI', 300, 0) AS rast
)
WITH foo AS (
	SELECT
		t1.rid,
		ST_Union(t2.rast) AS rast
	FROM src t1
	JOIN src t2
		ON ST_Intersects(t1.rast, t2.rast)
		AND t2.rid BETWEEN 0 AND 8
	WHERE t1.rid = 4
	GROUP BY t1.rid
), bar AS (
	SELECT
		t1.rid,
		ST_MapAlgebra(
			ARRAY[ROW(t2.rast, 1)]::rastbandarg[],
			'raster_nmapalgebra_test(double precision[], int[], text[])'::regprocedure,
			'32BUI',
			'CUSTOM', t1.rast,
			1, 1
) AS rast
	FROM src t1
	JOIN foo t2
		ON t1.rid = t2.rid
)
SELECT
	rid,
	(ST_Metadata(rast)),
	(ST_BandMetadata(rast, 1)),
	ST_Value(rast, 1, 1, 1)
FROM bar;
					

Examples: Variants 2 and 3
One raster, several bands

WITH foo AS (
	SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast
)
SELECT
	ST_MapAlgebra(
		rast, ARRAY[3, 1, 3, 2]::integer[],
		'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
) AS rast
FROM foo
					
One raster, one band

WITH foo AS (
	SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast
)
SELECT
	ST_MapAlgebra(
		rast, 2,
		'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
) AS rast
FROM foo
					

Examples: Variant 4
Two rasters, two bands

WITH foo AS (
	SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast UNION ALL
	SELECT 2 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0), 2, '8BUI', 20, 0), 3, '32BUI', 300, 0) AS rast
)
SELECT
	ST_MapAlgebra(
		t1.rast, 2,
		t2.rast, 1,
		'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 1
	AND t2.rid = 2
					

Examples: Using Masks

WITH foo AS (SELECT
 ST_SetBandNoDataValue(
ST_SetValue(ST_SetValue(ST_AsRaster(
		ST_Buffer(
			ST_GeomFromText('LINESTRING(50 50,100 90,100 50)'), 5,'join=bevel'),
			200,200,ARRAY['8BUI'], ARRAY[100], ARRAY[0]), ST_Buffer('POINT(70 70)'::geometry,10,'quad_segs=1') ,50),
 'LINESTRING(20 20, 100 100, 150 98)'::geometry,1),0) AS rast)
SELECT 'original' AS title, rast
FROM foo
UNION ALL
SELECT 'no mask mean value' AS title, ST_MapAlgebra(rast,1,'ST_mean4ma(double precision[], int[], text[])'::regprocedure) AS rast
FROM foo
UNION ALL
SELECT 'mask only consider neighbors, exclude center' AS title, ST_MapAlgebra(rast,1,'ST_mean4ma(double precision[], int[], text[])'::regprocedure,
 '{{1,1,1}, {1,0,1}, {1,1,1}}'::double precision[], false) As rast
FROM foo

UNION ALL
SELECT 'mask weighted only consider neighbors, exclude center multi otehr pixel values by 2' AS title, ST_MapAlgebra(rast,1,'ST_mean4ma(double precision[], int[], text[])'::regprocedure,
 '{{2,2,2}, {2,0,2}, {2,2,2}}'::double precision[], true) As rast
FROM foo;
					
	
										
											
[image: Examples: Using Masks]original

										

										
										
											
[image: Examples: Using Masks]no mask mean value (same as having all 1s in mask matrix)

										

									
	
										
											
[image: Examples: Using Masks]mask only consider neighbors, exclude center

										

										
										
											
[image: Examples: Using Masks]mask weighted only consider neighbors, exclude center multi other pixel values by 2

										

									

See Also

						rastbandarg,
						ST_Union,
						ST_MapAlgebra
					

Name
ST_Intersection — Returns a raster or a set of geometry-pixelvalue pairs representing the shared portion of two rasters or the geometrical intersection of a vectorization of the raster and a geometry.

Synopsis
	setof geomval fsfuncST_Intersection(geom, 	
	 	rast, 	
	 	band_num=1);	

geometry geom;
raster rast;
integer band_num=1;

	setof geomval fsfuncST_Intersection(rast, 	
	 	geom);	

raster rast;
geometry geom;

	setof geomval fsfuncST_Intersection(rast, 	
	 	band, 	
	 	geomin);	

raster rast;
integer band;
geometry geomin;

	raster fsfuncST_Intersection(rast1, 	
	 	rast2, 	
	 	nodataval);	

raster rast1;
raster rast2;
double precision[] nodataval;

	raster fsfuncST_Intersection(rast1, 	
	 	rast2, 	
	 	returnband, 	
	 	nodataval);	

raster rast1;
raster rast2;
text returnband;
double precision[] nodataval;

	raster fsfuncST_Intersection(rast1, 	
	 	band1, 	
	 	rast2, 	
	 	band2, 	
	 	nodataval);	

raster rast1;
integer band1;
raster rast2;
integer band2;
double precision[] nodataval;

	raster fsfuncST_Intersection(rast1, 	
	 	band1, 	
	 	rast2, 	
	 	band2, 	
	 	returnband, 	
	 	nodataval);	

raster rast1;
integer band1;
raster rast2;
integer band2;
text returnband;
double precision[] nodataval;

Description

						Returns a raster or a set of geometry-pixelvalue pairs representing the shared portion of two rasters or the geometrical intersection of a vectorization of the raster and a geometry.
					

						The first three variants, returning a setof geomval, works in vector space. The raster is first vectorized (using ST_DumpAsPolygon) into a set of geomval rows and those rows are then intersected with the geometry using the ST_Intersection(geometry, geometry) PostGIS function. Geometries intersecting only with a nodata value area of a raster returns an empty geometry. They are normally excluded from the results by the proper usage of ST_Intersect in the WHERE clause.
					

						You can access the geometry and the value parts of the resulting set of geomval by surrounding them with parenthesis and adding '.geom' or '.val' at the end of the expression. e.g. (ST_Intersection(rast, geom)).geom
					

						The other variants, returning a raster, works in raster space. They are using the two rasters version of ST_MapAlgebraExpr to perform the intersection.
					

						The extent of the resulting raster corresponds to the geometrical intersection of the two raster extents. The resulting raster includes 'BAND1', 'BAND2' or 'BOTH' bands, following what is passed as the returnband parameter. Nodata value areas present in any band results in nodata value areas in every bands of the result. In other words, any pixel intersecting with a nodata value pixel becomes a nodata value pixel in the result.
					

						Rasters resulting from ST_Intersection must have a nodata value assigned for areas not intersecting. You can define or replace the nodata value for any resulting band by providing a nodataval[] array of one or two nodata values depending if you request 'BAND1', 'BAND2' or 'BOTH' bands. The first value in the array replace the nodata value in the first band and the second value replace the nodata value in the second band. If one input band do not have a nodata value defined and none are provided as an array, one is chosen using the ST_MinPossibleValue function. All variant accepting an array of nodata value can also accept a single value which will be assigned to each requested band.
					

						In all variants, if no band number is specified band 1 is assumed. If you need an intersection between a raster and geometry that returns a raster, refer to ST_Clip.
					
Note

							To get more control on the resulting extent or on what to return when encountering a nodata value, use the two rasters version of ST_MapAlgebraExpr.
						

Note

							To compute the intersection of a raster band with a geometry in raster space, use ST_Clip. ST_Clip works on multiple bands rasters and does not return a band corresponding to the rasterized geometry.
						

Note

							ST_Intersection should be used in conjunction with ST_Intersects and an index on the raster column and/or the geometry column.
						

						Enhanced: 2.0.0 - Intersection in the raster space was introduced. In earlier pre-2.0.0 versions, only intersection performed in vector space were supported.
					

Examples: Geometry, Raster -- resulting in geometry vals

SELECT
	foo.rid,
	foo.gid,
	ST_AsText((foo.geomval).geom) As geomwkt,
	(foo.geomval).val
FROM (
	SELECT
		A.rid,
		g.gid,
		ST_Intersection(A.rast, g.geom) As geomval
	FROM dummy_rast AS A
	CROSS JOIN (
		VALUES
			(1, ST_Point(3427928, 5793243.85)),
			(2, ST_GeomFromText('LINESTRING(3427927.85 5793243.75,3427927.8 5793243.75,3427927.8 5793243.8)')),
			(3, ST_GeomFromText('LINESTRING(1 2, 3 4)'))
) As g(gid,geom)
	WHERE A.rid = 2
) As foo;

 rid | gid | geomwkt												| val
-----+-----+---
 2 | 1 | POINT(3427928 5793243.85)									| 249
 2 | 1 | POINT(3427928 5793243.85)									| 253
 2 | 2 | POINT(3427927.85 5793243.75)								| 254
 2 | 2 | POINT(3427927.8 5793243.8)									| 251
 2 | 2 | POINT(3427927.8 5793243.8)									| 253
 2 | 2 | LINESTRING(3427927.8 5793243.75,3427927.8 5793243.8)	| 252
 2 | 2 | MULTILINESTRING((3427927.8 5793243.8,3427927.8 5793243.75),...) | 250
 2 | 3 | GEOMETRYCOLLECTION EMPTY
					

See Also

						geomval,
						ST_Intersects,
						ST_MapAlgebraExpr,
						ST_Clip,
						ST_AsText
					

Name
DropRasterConstraints — Drops PostGIS raster constraints that refer to a raster table column. Useful if you need to reload data or update your raster column data.

Synopsis
	boolean fsfuncDropRasterConstraints(rasttable, 	
	 	rastcolumn, 	
	 	srid, 	
	 	scale_x, 	
	 	scale_y, 	
	 	blocksize_x, 	
	 	blocksize_y, 	
	 	same_alignment, 	
	 	regular_blocking, 	
	 	num_bands=true, 	
	 	pixel_types=true, 	
	 	nodata_values=true, 	
	 	out_db=true, 	
	 	extent=true);	

name
			rasttable;
name
			rastcolumn;
boolean
			srid;
boolean
			scale_x;
boolean
			scale_y;
boolean
			blocksize_x;
boolean
			blocksize_y;
boolean
			same_alignment;
boolean
			regular_blocking;
boolean
			num_bands=true;
boolean
			pixel_types=true;
boolean
			nodata_values=true;
boolean
				out_db=true
			;
boolean
			extent=true;

	boolean fsfuncDropRasterConstraints(rastschema, 	
	 	rasttable, 	
	 	rastcolumn, 	
	 	srid=true, 	
	 	scale_x=true, 	
	 	scale_y=true, 	
	 	blocksize_x=true, 	
	 	blocksize_y=true, 	
	 	same_alignment=true, 	
	 	regular_blocking=false, 	
	 	num_bands=true, 	
	 	pixel_types=true, 	
	 	nodata_values=true, 	
	 	out_db=true, 	
	 	extent=true);	

name
			rastschema;
name
			rasttable;
name
			rastcolumn;
boolean
			srid=true;
boolean
			scale_x=true;
boolean
			scale_y=true;
boolean
			blocksize_x=true;
boolean
			blocksize_y=true;
boolean
			same_alignment=true;
boolean
			regular_blocking=false;
boolean
			num_bands=true;
boolean
			pixel_types=true;
boolean
			nodata_values=true;
boolean
				out_db=true
			;
boolean
			extent=true;

	boolean fsfuncDropRasterConstraints(rastschema, 	
	 	rasttable, 	
	 	rastcolumn, 	
	 	constraints);	

name
			rastschema;
name
			rasttable;
name
			rastcolumn;
text[]
			constraints;

Description
Drops PostGIS raster constraints that refer to a raster table column that were added by AddRasterConstraints. Useful if you need to load more data or update your raster column data.
		You do not need to do this if you want to get rid of a raster table or a raster column.
To drop a raster table use the standard
DROP TABLE mytable
To drop just a raster column and leave the rest of the table, use standard SQL
ALTER TABLE mytable DROP COLUMN rast
the table will disappear from the raster_columns catalog if the column or table is dropped. However if only the constraints are dropped, the
		raster column will still be listed in the raster_columns catalog, but there will be no other information about it aside from the column name and table.
Availability: 2.0.0

Examples

SELECT DropRasterConstraints ('myrasters','rast');
----RESULT output ---
t

-- verify change in raster_columns --
SELECT srid, scale_x, scale_y, blocksize_x, blocksize_y, num_bands, pixel_types, nodata_values
	FROM raster_columns
	WHERE r_table_name = 'myrasters';

 srid | scale_x | scale_y | blocksize_x | blocksize_y | num_bands | pixel_types| nodata_values
------+---------+---------+-------------+-------------+-----------+-------------+---------------
 0 | | | | | | |
		

See Also
AddRasterConstraints

Name
GetTopologySRID — Returns the SRID of a topology in the topology.topology table given the name of the topology.

Synopsis
	integer fsfuncGetTopologyID(toponame);	

varchar toponame;

Description
Returns the spatial reference id of a topology in the topology.topology table given the name of the topology.
Availability: 2.0.0

Examples
SELECT topology.GetTopologySRID('ma_topo') As SRID;
 SRID

 4326

See Also

	CreateTopology,
	DropTopology,
	GetTopologyName,
	GetTopologyID
				

Name
ST_Histogram — Returns a set of record summarizing a raster or raster coverage data distribution separate bin ranges. Number of bins are autocomputed if not specified.

Synopsis
	SETOF record fsfuncST_Histogram(rast, 	
	 	nband=1, 	
	 	exclude_nodata_value=true, 	
	 	bins=autocomputed, 	
	 	width=NULL, 	
	 	right=false);	

raster rast;
integer nband=1;
boolean exclude_nodata_value=true;
integer bins=autocomputed;
double precision[] width=NULL;
boolean right=false;

	SETOF record fsfuncST_Histogram(rast, 	
	 	nband, 	
	 	bins, 	
	 	width=NULL, 	
	 	right=false);	

raster rast;
integer nband;
integer bins;
double precision[] width=NULL;
boolean right=false;

	SETOF record fsfuncST_Histogram(rast, 	
	 	nband, 	
	 	exclude_nodata_value, 	
	 	bins, 	
	 	right);	

raster rast;
integer nband;
boolean exclude_nodata_value;
integer bins;
boolean right;

	SETOF record fsfuncST_Histogram(rast, 	
	 	nband, 	
	 	bins, 	
	 	right);	

raster rast;
integer nband;
integer bins;
boolean right;

	SETOF record fsfuncST_Histogram(rastertable, 	
	 	rastercolumn, 	
	 	nband, 	
	 	bins, 	
	 	right);	

text rastertable;
text rastercolumn;
integer nband;
integer bins;
boolean right;

	SETOF record fsfuncST_Histogram(rastertable, 	
	 	rastercolumn, 	
	 	nband, 	
	 	exclude_nodata_value, 	
	 	bins, 	
	 	right);	

text rastertable;
text rastercolumn;
integer nband;
boolean exclude_nodata_value;
integer bins;
boolean right;

	SETOF record fsfuncST_Histogram(rastertable, 	
	 	rastercolumn, 	
	 	nband=1, 	
	 	exclude_nodata_value=true, 	
	 	bins=autocomputed, 	
	 	width=NULL, 	
	 	right=false);	

text rastertable;
text rastercolumn;
integer nband=1;
boolean exclude_nodata_value=true;
integer bins=autocomputed;
double precision[] width=NULL;
boolean right=false;

	SETOF record fsfuncST_Histogram(rastertable, 	
	 	rastercolumn, 	
	 	nband=1, 	
	 	bins, 	
	 	width=NULL, 	
	 	right=false);	

text rastertable;
text rastercolumn;
integer nband=1;
integer bins;
double precision[] width=NULL;
boolean right=false;

Description
Returns set of records consisting of min, max, count, percent for a given raster band for each bin. If no band is specified nband defaults to 1.
Note
By default only considers pixel values not equal to the nodata value . Set exclude_nodata_value to false to get count all pixels.

	width double precision[]
	width: an array indicating the width of each category/bin. If the number of bins is greater than the number of widths, the widths are repeated.
Example: 9 bins, widths are [a, b, c] will have the output be [a, b, c, a, b, c, a, b, c]

	bins integer
	Number of breakouts -- this is the number of records you'll get back from the function if specified. If not specified
 then the number of breakouts is autocomputed.

	right boolean
	compute the histogram from the right rather than from the left (default). This changes the criteria for evaluating a value x from [a, b) to (a, b]

Availability: 2.0.0

Example: Single raster tile - compute histograms for bands 1, 2, 3 and autocompute bins
SELECT band, (stats).*
FROM (SELECT rid, band, ST_Histogram(rast, band) As stats
 FROM dummy_rast CROSS JOIN generate_series(1,3) As band
 WHERE rid=2) As foo;

 band | min | max | count | percent
------+-------+-------+-------+---------
 1 | 249 | 250 | 2 | 0.08
 1 | 250 | 251 | 2 | 0.08
 1 | 251 | 252 | 1 | 0.04
 1 | 252 | 253 | 2 | 0.08
 1 | 253 | 254 | 18 | 0.72
 2 | 78 | 113.2 | 11 | 0.44
 2 | 113.2 | 148.4 | 4 | 0.16
 2 | 148.4 | 183.6 | 4 | 0.16
 2 | 183.6 | 218.8 | 1 | 0.04
 2 | 218.8 | 254 | 5 | 0.2
 3 | 62 | 100.4 | 11 | 0.44
 3 | 100.4 | 138.8 | 5 | 0.2
 3 | 138.8 | 177.2 | 4 | 0.16
 3 | 177.2 | 215.6 | 1 | 0.04
 3 | 215.6 | 254 | 4 | 0.16

Example: Just band 2 but for 6 bins
SELECT (stats).*
FROM (SELECT rid, ST_Histogram(rast, 2,6) As stats
 FROM dummy_rast
 WHERE rid=2) As foo;

 min | max | count | percent
------------+------------+-------+---------
 78 | 107.333333 | 9 | 0.36
 107.333333 | 136.666667 | 6 | 0.24
 136.666667 | 166 | 0 | 0
 166 | 195.333333 | 4 | 0.16
 195.333333 | 224.666667 | 1 | 0.04
 224.666667 | 254 | 5 | 0.2
(6 rows)

-- Same as previous but we explicitly control the pixel value range of each bin.
SELECT (stats).*
FROM (SELECT rid, ST_Histogram(rast, 2,6,ARRAY[0.5,1,4,100,5]) As stats
 FROM dummy_rast
 WHERE rid=2) As foo;

 min | max | count | percent
-------+-------+-------+----------
 78 | 78.5 | 1 | 0.08
 78.5 | 79.5 | 1 | 0.04
 79.5 | 83.5 | 0 | 0
 83.5 | 183.5 | 17 | 0.0068
 183.5 | 188.5 | 0 | 0
 188.5 | 254 | 6 | 0.003664
(6 rows)

See Also

					ST_Count,
					ST_SummaryStats,
					ST_SummaryStatsAgg
				

Name
ST_Count — Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the nodata value.

Synopsis
	bigint fsfuncST_Count(rast, 	
	 	nband=1, 	
	 	exclude_nodata_value=true);	

raster rast;
integer nband=1;
boolean exclude_nodata_value=true;

	bigint fsfuncST_Count(rast, 	
	 	exclude_nodata_value);	

raster rast;
boolean exclude_nodata_value;

	bigint fsfuncST_Count(rastertable, 	
	 	rastercolumn, 	
	 	nband=1, 	
	 	exclude_nodata_value=true);	

text rastertable;
text rastercolumn;
integer nband=1;
boolean exclude_nodata_value=true;

	bigint fsfuncST_Count(rastertable, 	
	 	rastercolumn, 	
	 	exclude_nodata_value);	

text rastertable;
text rastercolumn;
boolean exclude_nodata_value;

Description
Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified nband defaults to 1.
Note
If exclude_nodata_value is set to true, will only count pixels with value not equal to the nodata value of the raster. Set exclude_nodata_value to false to get count all pixels

Availability: 2.0.0
Warning

						The ST_Count(rastertable, rastercolumn, ...) variants are deprecated as of 2.2.0. Use ST_CountAgg instead.
					

Examples

--example will count all pixels not 249 and one will count all pixels. --
SELECT rid, ST_Count(ST_SetBandNoDataValue(rast,249)) As exclude_nodata,
 ST_Count(ST_SetBandNoDataValue(rast,249),false) As include_nodata
 FROM dummy_rast WHERE rid=2;

rid | exclude_nodata | include_nodata
-----+----------------+----------------
 2 | 23 | 25
				

See Also

					ST_CountAgg,
					ST_SummaryStats,
					ST_SetBandNoDataValue
				

Name
PostGIS_Scripts_Build_Date — Returns build date of the PostGIS scripts.

Synopsis
	text fsfuncPostGIS_Scripts_Build_Date();	

;

Description
Returns build date of the PostGIS scripts.
Availability: 1.0.0RC1

Examples
SELECT PostGIS_Scripts_Build_Date();
 postgis_scripts_build_date

 2007-08-18 09:09:26
(1 row)

See Also
PostGIS_Full_Version, PostGIS_GEOS_Version, PostGIS_Lib_Version, PostGIS_LibXML_Version, PostGIS_Version

Release 2.1.7

Release date: 2015-03-30
This is a critical bug fix release.
Bug Fixes

#3086, ST_DumpValues() crashes backend on cleanup with invalid band indexes
#3088, Do not (re)define strcasestr in a liblwgeom.h
#3094, Malformed GeoJSON inputs crash backend

C Clients (libpq)

...
Text Cursors

...

Binary Cursors

...

Name
Pprint_Addy — Given a norm_addy composite type object, returns a pretty print representation of it. Usually used in conjunction with normalize_address.

Synopsis
	varchar fsfuncpprint_addy(in_addy);	

norm_addy in_addy;

Description
Given a norm_addy composite type object, returns a pretty print representation of it. No other data is required aside from what is packaged with the geocoder.
Usually used in conjunction with Normalize_Address.

Examples
Pretty print a single address
SELECT pprint_addy(normalize_address('202 East Fremont Street, Las Vegas, Nevada 89101')) As pretty_address;
 pretty_address

 202 E Fremont St, Las Vegas, NV 89101

Pretty print address a table of addresses
SELECT address As orig, pprint_addy(normalize_address(address)) As pretty_address
 FROM addresses_to_geocode;

 orig | pretty_address
---+---
 529 Main Street, Boston MA, 02129 | 529 Main St, Boston MA, 02129
 77 Massachusetts Avenue, Cambridge, MA 02139 | 77 Massachusetts Ave, Cambridge, MA 02139
 28 Capen Street, Medford, MA | 28 Capen St, Medford, MA
 124 Mount Auburn St, Cambridge, Massachusetts 02138 | 124 Mount Auburn St, Cambridge, MA 02138
 950 Main Street, Worcester, MA 01610 | 950 Main St, Worcester, MA 01610

See Also
Normalize_Address

Name
Intersects —
Returns true if any pair of primitives from the
two topogeometries intersect.

Synopsis
	boolean fsfuncIntersects(tg1, 	
	 	tg2);	

topogeometry tg1;
topogeometry tg2;

Description

Returns true if any pair of primitives from the
two topogeometries intersect.

Note
This function not supported for topogeometries that are geometry collections. It also can not compare topogeometries from different topologies.
 Also not currently supported for hierarchichal topogeometries (topogeometries composed of other topogeometries).

Availability: 1.1.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

See Also
ST_Intersects

Name
CheckAuth — Creates trigger on a table to prevent/allow updates and deletes of rows based on authorization token.

Synopsis
	integer fsfuncCheckAuth(a_schema_name, 	
	 	a_table_name, 	
	 	a_key_column_name);	

text a_schema_name;
text a_table_name;
text a_key_column_name;

	integer fsfuncCheckAuth(a_table_name, 	
	 	a_key_column_name);	

text a_table_name;
text a_key_column_name;

Description
Creates trigger on a table to prevent/allow updates and deletes of rows based on authorization token. Identify rows using <rowid_col> column.
If a_schema_name is not passed in, then searches for table in current schema.
Note
If an authorization trigger already exists on this table function errors.
If Transaction support is not enabled, function throws an exception.

Availability: 1.1.3

Examples

			SELECT CheckAuth('public', 'towns', 'gid');
			result

			0
			

See Also
EnableLongTransactions

Name
ST_GeogFromText — Return a specified geography value from Well-Known Text representation or extended (WKT).

Synopsis
	geography fsfuncST_GeogFromText(EWKT);	

text EWKT;

Description
Returns a geography object from the well-known text or extended well-known representation. SRID 4326 is assumed if unspecified.
				This is an alias for ST_GeographyFromText. Points are always expressed in long lat form.

Examples

--- converting lon lat coords to geography
ALTER TABLE sometable ADD COLUMN geog geography(POINT,4326);
UPDATE sometable SET geog = ST_GeogFromText('SRID=4326;POINT(' || lon || ' ' || lat || ')');

--- specify a geography point using EPSG:4267, NAD27
SELECT ST_AsEWKT(ST_GeogFromText('SRID=4267;POINT(-77.0092 38.889588)'));
			

See Also
ST_AsText, ST_GeographyFromText

