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3

1 Release 4.3 Updates.

As with the previous Rel. 4 update manual, this rep-
resents new changes reflected in the third subrelease.
The main reason for not combining this material with
updates in the previous report in one document are the
changes in typesetting style and the delays that would
be caused with changing style in the previous report.

Changes most obvious to users of the program proj
are the addition of new projections—the total is now
about 110. For programmers using the projection li-
brary, the main change is in how to limit the list of pro-
jections linked into application programs. Additional,
internal changes were made to ease maintenance of the
system, but they should be transparent to both user
and programmer.

Manual Style. This update is concerned with only
documenting projections. Waffling by the author about
what should be included or ignored are beginning to
converge to the style presented here. Description of
the Pseudocylindrical class of projections that follows
is nearly complete and will probably not change greatly
in the final documentation. A few of previous Miscel-
laneous projections and new additions are included as
well as a section on the General Oblique projection.

It was also decided to include the formulary as part of
documentation for reference by the serious reader and
to make an explicit definition of what is considered by
the author to be the mathematical definition of each
projection in this system.

Any comments as to this new style are appreciated.

Apologies. Because automatic typesetting programs
do not always make the best choices, there are several
undesirable locating of figures relative to text. These
can usually be overcome by extra effort by the author,
but such manipulations are likely to be destroyed by
later, overall document alterations. Thus, little effort
was expended at this preliminary stage in “beautifying”
the text.
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2 Pseudocylindrical Projections.

Pseudocylindrical projections are a result of efforts to
minimize the distortion of the polar regions of the cylin-
drical projections by bending the meridians toward the
center of the map as a function of longitude while main-
taining the cylindrical characterstic of parallel parallels.
These projections are almost excusively used for small
scale global displays and, except for the Sinsoidal pro-
jection, only derived for a spherical Earth. Because
of the basic definition of pseudocylindrical projections,
none are conformal, but many are equal area.

Figure 1: Interupted Goode Homolosine emphasizing
land masses.

To further reduce distortion, pseudocylindrical are of-
ten presented in interupted form that are made by join-
ing several regions with appropriate central meridians
and false easting and clipping boundaries. Figs. 1 and
2 show typical construction that are suited for showing
respective global land and oceanic regions. To reduce
the lateral size of the map, some uses remove an irreg-
ular, North-South strip of the mid-Atlantic region so
that the western tip of Africa is plotted north of the
eastern tip of South America.

Figure 2: Interupted Goode Homolosine emphasizing
oceanic masses.

Pseudocylindrical are sub-classed into groups based
upon the shape of the merdians: sinusoidal, elliptical,
parabolic, hyperbolic, rectilinear and miscellaneous. An
additional category is based upon whether the meridi-
ans come to a point at the pole or are terminated along
a straight line—flat-topped.

2.0.1 Computations.

A complicating factor in computing the forward projec-
tion for pseudocylindricals is that some of the projection
formulae use a parametric variable, typically θ, which
is a function of φ. In some cases, the parametric equa-
tion is not directly solvable for θ and requires use of
Newton-Raphson’s method of iterative finding the root
of P (θ). The defining equations for these cases are thus
given in the form of P (θ) and its derivative, P ′(θ), and
an estimating initial value for θ0 = f(φ). Refinement of
θ is made by θ ← θ − P (θ)/P ′(θ) until |P (θ)/P ′(θ)| is
less than predefined tolerance.

When known, formula constant factors are given in
rational form (e.g.

√
2/2) rather than a decimal value

(0.7071) so that the precision used in the resultant pro-
gram code constants is determined by the programmer.
However, source material may only provide decimal val-
ues, typically to 5 or 6 decimal digits. This is adequate
in most cases, but has caused problems with the con-
vergence of a Newton-Raphson determination and de-
grades the determination of numerical derivatives.

Because several of the pseudocylindrical projections
have a common computational base, they are grouped
into a single module with multiple initializing entry
points. This may lead to a minor loss of efficiency, such
as adding a zero term in the simple Sinusoidal case of
the the Generalized Sinusoidal (2.1.1).

2.0.2 Sources.

The principle source for pseudocylindrical formulae is
[7]. Many formulae are repeated in Snyder’s later works
[11] and [10], with the latter adding a few additional
projections. Mahling, [2], covers several of the Rus-
sian projections but the formulae are often difficult to
read. Mahling also has given fourteen pseudocylindri-
cal formulae in [3, Appendix 1] but some discrepancies
are found when compared to Snyder’s work. For the
Robinson Projection (2.6.6), [6] was consulted to verify
precision of tabular values and lack of specification of
interpolation method. Common pseudocylindicals for-
mulae are also found in Pearson’s work: [4] and [5].
Ellipsoid formulae for the Sinusoidal projection is from
[9].

2.1 Sinusoidal Pseudocylindricals

2.1.1 Generalized Sinusoidal

McBryde and Thomas developed a generalized formu-
las for several of the pseudocylindricals with sinusoidal
meridians:

x = Cλ(m + cos θ)/(m + 1)
y = Cθ
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Table 1: List of pseudocylindrical projections
Projection name Fig. Class Sect. H/V P/H +proj= args file

Boggs Eumorphic 39 A,M 2.6.4 2 0 boggs boggs.c

Collignon 30 A,R 2.5.1 2 0 collg collg.c

Craster (Putnin. s̆ P4) 24 A,P 2.4.1 2 0 crast crast.c

Denoyer 42 M 2.6.7 2 0.3075 denoy denoy.c

Eckert I 31 R 2.5.2 2 1/2 eck1 eck1

II 32 A,R 2.5.3 2 1/2 eck2 eck2

III 16 E 2.2.5 2 1/2 eck3 eck3.c

IV 13 A,E 2.2.2 2 1/2 eck4 eck4.c

V 5 S 2.1.3 2 1/2 eck5 eck5.c

VI 3 A,S 2.1.1 2 1/2 eck6 gn sinu.c

Fahey 43 M 2.6.8 1.4146 0 fahey fahey.c

Foucaut 36 A,S 2.6.1 1.5708 0 fouc sts.c

Foucaut Sinusoidal 9 A,M 2.1.7 1.5708 0 fouc s fouc s.c

General Sinusoidal S 2.1.1 gn sinu +n= +m= gn sinu.c

Ginsburg VIII 44 M 2.6.9 1.2893 0.5993 gins8 gins8.c

Goode Homolosine 47 A,M 2.6.13 2.3076 0 goode goode

Hatano 15 A,E 2.2.4 2.0372 1/3 hatano hatano

Kavraisky VII 19 E 2.2.5
√

3 1/2 kav7 eck3.c

V 35 A,M 2.6.1 2.0495 0 kav5 sts.c

Loximuthal 45 M 2.6.10 loxim +lat_1= loxim.c

McBryde-Thomas
Sine (No. 1) 34 A,M 2.6.1 2.1192 0 mbt s sts.c

Flat-Polar Sine (No. 2) 37 A,M 2.6.2 2.1192 0 mbt fps mbt fps.c

Flat-Polar Sinusoidal (No. 3) 3 A,S 2.1.1 2 1/3 mbtfps gn sinu.c

Flat-Polar Quartic (No. 4) 38 A,M 2.6.3 2.2214 1/3 mbtfpq mbtfpq

Flat-Polar Parabolic (No. 5) 29 A,P 2.4.4 2.0944 1/3 mbtfpp mbtfpp.c

Mollweide 10 A,E 2.2.1 2 0 moll moll.c

Putnin. s̆ P1 17 E 2.2.5 2 0 putp1 eck3.c

P2 14 A,E 2.2.3 2 0 putp2 putp2.c

P3 27 P 2.4.3 2 0 putp3 putp3.c

P′
3 28 P 2.4.3 2 1/2 putp3p putp3.c

P′
4 25 A,P 2.4.2 2 1/2 putp4p putp4p.c

P5 22 H 2.3.2 2 0 putp5 putp5.c

P′
5 23 H 2.3.2 2 1/2 putp5p putp5.c

P6 20 H,E 2.3.1 2 0 putp6 putp6.c

P′
6 20 H,E 2.3.1 2 1/2 putp6p putp6.c

Nell-Hammer 40 A,M 2.6.5 2.7519 1/2 nell h nell h.c

Quartic Authalic 33 A,M 2.6.1 2.2214 0 qua aut sts.c

Robinson 41 M 2.6.6 1.9717 0.5322 robin robin.c

Sinusoidal 3 A,S 2.1.1 2 0 sinu gn sinu.c

Urmaev Flat-Polar Sinusoidal A,S 2.1.2
√

1− n2 urmfps +n= urmfps.c

V Series A,M 2.6.12 1.8648 0.6 urm5 +n= +q=

+m=

urm5.c

Wagner I (Kavraisky VI) 4 A,S 2.1.2 2 1/2 wag1 urmfps.c

II 8 S 2.1.6 2 1/2 wag2 wag2.c

III 7 S 2.1.5 wag3 +lat_ts= wag3.c

IV (Putnin. s̆ P′
2) 11 A,E 2.2.1 2 1/2 wag4 moll.c

V 12 S 2.2.1 1.9429 0.4531 wag5 moll.c

VI (Putnin. s̆ P′
1) 18 E 2.2.5 2 1/2 wag6 putp1peck3.c

Werenskiold 26 A,H 2.4.2 2 1/2 weren putp4p.c

Winkel I 46 S 2.1.4 2 1/2 wink1 +lat_ts= wink1.c

Winkel II 46 M 2.6.11 wink2 +lat_1= wink2.c
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A

B

C

Figure 3: Sinusoidal projections from general formulas:
A–Sinusoidal, B–Eckert VI and C–McBryde-Thomas
Flat-Polar Sinusoidal.

C =
√

(m + 1)/n

P (θ) = mθ + sin θ − n sinφ

P ′(θ) = m + cosθ

θ0 = φ

m n C

Sinusoidal
(Sanson-Flamsteed) 0 1 1

Eckert VI 1 1 + π/2 2/
√

2 + π

McBryde-Thomas
Flat-Polar Sinusoidal

1/2 1 + π/4
√

6/(4 + π)

Parameters n=n and m=m are required for the general
form, proj=gn_sinu. The projection is equal-area for
all cases.

When m = 0, P (θ) simplifies and does not need
Newton-Raphson iterative solution and in the Sinu-
soidal case, θ = φ.

Figure 4: Wagner I.

Elliptical Earth. The Sinusoidal projection for the
ellipsoidal case becomes:

x = λ cos φ(1− e2 sin2 φ)−1/2

y = M(φ)

The inverse is readily solved by determining φ from
M−1(y) and substituting into the x equation for the
solution of λ.

2.1.2 Urmaev Flat-Polar Sinusoidal Series

This equal-area system is similar to 2.1.1 where the re-
spective x and y axis are multiplied and divided by√

2/3 and where m = 0. The parameter, n=n, must be
specified and is restricted by 0 < n ≤ 1. The Wagner
I (Kavraisky VI) projection is generated when n=

√
3/2

or by selecting proj=wag1.

x = mλ cos θ

y = 3θ/mn

sin θ = n sinφ

where m = 2 4
√

3/3. Latitude of true scale on the central
meridian is determined by the relation: sin2 φts = (9−
4
√

3)/(9− 4n2
√

3). The ratio of the length of the poles
to the equator is determined by

√
1− n2.

2.1.3 Eckert V

x = λ(1 + cos φ)/
√

2 + π

y = 2φ/
√

2 + π

2.1.4 Winkel I

Option lat_ts=φts estabishes latitude of true scale
on central meridian (default = 0◦ and thus the same
as Eckert V). Not equal-area but if cos φts = 2/π
(lat ts=50d28’) the total area of the global map is
correct. If φts = 0

x = λ(cos φts + cos φ)/2
y = φ
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Figure 5: Eckert V.

Figure 6: Winkel I, lat ts=50d28’

2.1.5 Wagner III

x = [cos φts/ cos(2φts/3)]λ cos(2φ/3)
y = φ

2.1.6 Wagner II

x = 0.92483λ cos θ

y = 1.38725θ

sin θ = 0.88022 sin(0.8855φ)

Figure 7: Wagner III.

Figure 8: Wagner II.

Figure 9: Foucaut Sinusoidal, +n=0.5.

2.1.7 Foucaut Sinusoidal.

The y-axis is based upon a weighted mean of the cylin-
drical equal-area and the sinusoidal projections. Pa-
rameter n=n is the weighting factor where 0 ≤ n ≤ 1.

x = λ cos φ/(n + (1− n) cos φ)
y = nφ + (1− n) sinφ

For the inverse, the Newton-Raphson method can be
used to determine φ from the equation for y above. As
n→ 0 and φ→ π/2, convergence is slow but for n = 0,
φ = sin−1 y.

Figure 10: Mollweide.
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Figure 11: Wagner IV.

Figure 12: Wagner V

2.2 Elliptical Pseudocylindricals.

2.2.1 Mollweide, Wagner IV (Putnin. s̆ P′
2), and

Wagner V

Mollweide and Wagner IV are equal area, but Wagner
V is not.

x = Cxλ cos(θ/2)
y = Cy sin(θ/2)

Cx = 0.90977 for Wagner V
= 2r/π otherwise

Cy = 1.65014 for Wagner V
= r/ sin p otherwise

P (θ) = θ + sin θ − Cp sinφ

Cp = 3.00896 for Wagner V
= 2p + sin 2p otherwise

P ′(θ) = 1 + cos θ

θ0 = φ

r =
√

2π sin p/(2p + sin 2p)

and where p = π/2 for Mollweide and p = π/3 for
Wagner IV. The parametric equation converges slowly
for the Mollweide case.

2.2.2 Eckert IV

x = 2λ(1 + cos θ)/
√

π(4 + π)

Figure 13: Eckert IV.

Figure 14: Putnin. s̆ P2.

y = 2
√

π/(4 + π) sin θ

P (θ) = θ + sin 2θ + 2 sin θ − (4 + π)
2

sinφ

= θ + sin θ(cos θ + 2)− (4 + π)
2

sinφ

P ′(θ) = 2 + 4 cos 2θ + 4 cos θ

= 1. + cos θ(cos θ + 2)− sin2 θ

θ0 = 0.895168φ + 0.0218849φ3 + 0.00826809φ5

2.2.3 Putnin. s̆ P2

x = 1.89490λ(cos θ − 1/2)
y = 1.71848 sin θ

P (θ) = 2θ + sin 2θ − 2 sin θ − [(4π − 3
√

3)/6] sinφ

= θ + sin θ(cos θ − 1)− [(4π − 3
√

3)/12] sinφ

P ′(θ) = 2 + 2 cos 2θ + 2 cos θ

= 1 + cos θ(cos θ − 1)− sin2 θ

θ0 = 0.615709φ + 0.00909953φ3 + 0.0046292φ5

The parametric equation converges slowly as φ nears
π/2 and θ approaches pi/3.

2.2.4 Hatano

x = 0.85λ cos θ

y = Cy sin θ
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Figure 15: Hatano.

Figure 16: Eckert III.

P (θ) = 2θ + sin 2θ − Cp sinφ

P ′(θ) = 2(1 + cos 2θ)
θ0 = 2φ

Cy Cp

φ > 0 1.75859 2.67595
φ < 0 1.93052 2.43763

For φ = 0, y ← 0 and x← 0.85λ.

2.2.5 Eckert III, Putnin. s̆ P1, Wagner VI
(Putnin. s̆ P′

1), and Kavraisky VII

None of these projections are equal-area and are flat-
polar when coefficient A 6= 0.

x = Cxλ(A +
√

1−B(φ/π)2)

Figure 17: Putnin. s̆ P1.

Figure 18: Wagner VI.

Figure 19: Kavraisky VII.

y = Cyφ

Cx Cy A B

Putnin. s̆ P1 0.94745 0.94745 0 3
Wagner VI 1.89490 0.94745 −1/2 3
Eckert III 2√

π(4+π)

4√
π(4+π)

1 4

Kavraisky VII
√

3/2 1 0 3

2.3 Hyperbolic Pseudocylindricals

In this group where the meridians are hyperbolic only
four Putnin. s̆ forms are given.

2.3.1 Putnin. s̆ P6 and P′
6

Putnin. s̆ P6 and P′
6 projections are equal-area with re-

spective pointed and flat poles defined by:

x = Cxλ(D − (1 + p2)1/2)
y = Cyp

P (p) = (A− (1 + p2)1/2)p− ln(p + (1 + p2)1/2)
−B sinφ

P ′(p) = A− 2
√

1 + p2

p0 = φ

where
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Figure 20: Putnin. s̆ P6.

Figure 21: Putnin. s̆ P′
6.

P6 P′
6

Cx 1.01346 0.44329
D 2 3

Cy 0.91910 0.80404
A 4.00000 6.00000
B 2.14714 5.61125

2.3.2 Putnin. s̆ P5 and P′
5

Putnin. s̆ P5 and P′
5 projections have equally spaced par-

allels and respectively pointed and flat poles:

x = 1.01346λ(A−B
√

1 + 12φ2/π2)
y = 1.01346φ

Figure 22: Putnin. s̆ P5.

Figure 23: Putnin. s̆ P′
5.

Figure 24: Craster.

P5 P′
5

A 2.0 1.5
B 1.0 0.5

2.4 Parabolic Pseudocylindricals

In this group where the meridians are parabolic.

2.4.1 Craster (Putnin. s̆ P4)

A pointed pole, equal-area projection with standard
parallels at 36◦46′.

x =
√

3/πλ[2 cos(2φ/3)− 1]

y =
√

3π sin(φ/3)

2.4.2 Putnin. s̆ P′
4 and Werenskiold I

This is the flat pole version of Putnin. s̆’s P4 or Craster’s
Parabolic:

x = Cxλ cos θ/ cos(θ/3)
y = Cy sin(θ/3)

sin θ = (5
√

2/8) sinφ

where

P′
4 Weren. I

Cx 2
√

0.6/π 1.0
Cy 2

√
1.2π π

√
2
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Figure 25: Putnin. s̆ P′
4.

Figure 26: Werenskiold I.

2.4.3 Putnin. s̆ P3 and P′
3

x =
√

2/πλ(1−Aφ2/π2)

y =
√

2/πφ

where A is 4 and 2 for respective P3 and P′
3.

2.4.4 McBryde-Thomas Flat-Polar Parabolic

x =
√

6/7/3λ[1 + 2 cos θ/ cos(θ/3)]

y = 3
√

6/7 sin(θ/3)
P (θ) = 1.125 sin(θ/3)− sin3(θ/3)− 0.4375 sinφ

P ′(θ) = [0.375− sin2(θ/3)] cos(θ/3)
θ0 = φ

Figure 27: Putnin. s̆ P3.

Figure 28: Putnin. s̆ P′
3.

Figure 29: McBryde-Thomas Flat-Polar Parabolic.

2.5 Rectilinear

2.5.1 Collignon

x = (2/
√

π)λ
√

1− sinφ

y =
√

π(1−
√

1− sinφ)

2.5.2 Eckert I

x = 2
√

2/3πλ(1− |φ|/π)

y = 2
√

2/3πφ

2.5.3 Eckert II

x = (2/
√

6π)λ
√

4− 3 sin |φ|
y =

√
2π/3(2−

√
4− 3 sin |φ|)

y assumes sign of φ

Figure 30: Collignon.
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Figure 31: Eckert I.

Figure 32: Eckert II.

2.6 Miscellaneous
pseudo/Pseudocylindricals.

2.6.1 Sine-Tangent Series

Sine series:

x = (q/p)λ cos φ/ cos(φ/q)
y = p sin(φ/q)

Tangent series:

x = (q/p)λ cos φ cos2(φ/q)
y = p tan(φ/q)

Figure 33: Quartic Authalic.

Figure 34: McBryde-Thomas Sine.

Figure 35: Kavraisky V.

q p Sine Tangent

2
√

π Foucaut
2 2 Quartic Authalic

1.36509 1.48875 McBryde-Thomas
1.35439 1.50488 Kavraisky V

2.6.2 McBryde-Thomas Flat-Polar Sine (No.
1).

x = 0.22248λ[1 + 3 cos θ/ cos(θ/1.36509)]
y = 1.44492 sin(θ/1.36509)

P (θ) = 0.45503 sin(θ/1.36509) + sin θ − 1.41546 sinφ

Figure 36: Foucaut.
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Figure 37: McBryde-Thomas Flat-Polar Sine (No. 1).

Figure 38: McBryde-Thomas Flat-Polar Quartic.

P ′(θ) =
0.45503
1.36509

cos(θ/1.36509) + cos θ

θ = φ

At the moment, there is a discrepancy between formu-
lary and claim that 80◦ parallel length is 1/2 length of
equator.

2.6.3 McBryde-Thomas Flat-Polar Quartic

x = λ(1 + 2 cos θ/ cos(θ/2))[3
√

2 + 6]−1/2

y = (2
√

3 sin(θ/2)[2 +
√

2]−1/2

P (θ) = sin(θ/2) + sin θ − (1 +
√

2/2) sinφ

P ′(θ) = (1/2) cos(θ/2) + cos θ

θ = φ

2.6.4 Boggs Eumorphic

x = 2.00276λ(sec φ + 1.11072 sec θ)

y = 0.49931(φ +
√

2 sin θ)
P (θ) = 2θ + sin 2θ − π sinφ

P ′(θ) = 2 + 2 cos 2θ

θ = φ

2.6.5 Nell-Hammer

x = λ(1 + cos φ)/2
y = 2(φ− tan(φ/2))

Figure 39: Boggs Eumorphic.

Figure 40: Nell-Hammer.

2.6.6 Robinson

Common for global thematic maps in recent atlases.
Not equal-area.

x = 0.8487λX(|φ|)
y = 1.3523Y (|φ|) y assumes sign of φ

where the coefficients of X and Y are determined from
the following table:

Figure 41: Robinson.
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Figure 42: Denoyer.

φ◦ Y X φ◦ Y X

0 0.0000 1.0000 50 0.6176 0.8679
5 0.0620 0.9986 55 0.6769 0.8350
10 0.1240 0.9954 60 0.7346 0.7986
15 0.1860 0.9900 65 0.7903 0.7597
20 0.2480 0.9822 70 0.8435 0.7186
25 0.3100 0.9730 75 0.8936 0.6732
30 0.3720 0.9600 80 0.9394 0.6213
35 0.4340 0.9427 85 0.9761 0.5722
40 0.4968 0.9216 90 1.0000 0.5322
45 0.5571 0.8962

Robinson did not define how intermediate values were
to be interpolated between the 5◦ intervals. The proj
system uses a set of bicubic splines determined for each
X–Y set with zero second derivatives at the poles.
gctp [12, program comments] uses Stirling’s interpo-
lation with second differences.

2.6.7 Denoyer

x = λ cos[(0.95− λ/12 + λ3/600)φ]
y = φ

2.6.8 Fahey

x = λ cos 35◦
√

1− tan2(φ/2)

y = (1 + cos 35◦) tan(φ/2)

2.6.9 Ginsburg VIII or TsNIIGAiK

x = λ(1− 0.162388φ2)(0.87− 0.000952426λ4)
y = φ(1 + φ3/12)

2.6.10 Loximuthal

All straight lines radiating from the point where
lat_1=φ1 intersects the central meridian are loxo-
dromes (rhumb lines) and scale along the loxodomes

Figure 43: Fahey.

Figure 44: Ginsburg VIII.

Figure 45: Loximuthal. lat 1=51d28, Greenwich, Eng-
land.
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Figure 46: Winkel II, +lat 1=50d28’ (cos−1(2/π)).

is true.

x = λ(φ− φ1)/[ln tan(π/4 + φ/2)−
ln tan(π/4 + φ1/2)] for φ 6= φ1

= λ cos φ1 forφ = φ1

y = φ− φ1

2.6.11 Winkel II

Arithmetic mean of Equirectangular and Mollweide and
is not equal-area. Parameter lat_1=φ1 controls stan-
dard parallel and width of flat polar extent.

x = λ(cos θ + cos φ1)/2
y = π(sin θ + 2φ/π)/4

P (θ) = 2θ + sin 2θ − π sinφ

P ′(θ) = 2 + 2 cos 2θ

θ0 = 0.9φ

As with Mollweide, P converges slowly as φ→ π/2 and
θ → π/2.

2.6.12 Urmaev V Series

x = mλ cos θ

y = θ(1 + qθ2/3)/(mn)
sin θ = n sinφ

where m = 2 4
√

3/3, n = 0.8 and q = 0.414524 are de-
fault values that have been employed in some atlases

2.6.13 Goode Homolosine

This projection is a combination of the Sinusoidal and
Mollweide projections where the Sinusoidal is used for
the equitorial regions between the latitudes of ±40◦44′

and a corrected Mollwiede projection used for the re-
maining polar regions. The Mollweide correction is to

Figure 47: Goode Homolosine.

the y axis with 0.05280 subtracted for northern latitudes
and added for southern latitudes. Most often used in
the interrupted form (Figs. 1 and 2).
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3 Miscellaneous Projections.

Projections that do not clearly fall into previous classi-
fications are placed into the miscellaneous class. This
class is further subdivided into subgroupings that are
based upon general appearance rather than inherent
mathematical or derivative properties.

3.1 Near Pseudocylindricals.

This group of projections are similar to the pseudocylin-
drical class but with the major exception that they have
curved parallels.

3.1.1 Aitoff

Figure 48: Aitoff

x = 2θ cos φ sin(λ/2)/ sin θ

y = θ sinφ/ sin θ

cos θ = cos φ cos(λ/2)

If λ = φ = 0, then x = y = 0.

3.1.2 Winkel Tripel

Winkel Tripel is the arithmetic mean of the Aitoff and
Equidistant Cylindrical projections with the latter’s φts

(latitude of true scale) becoming φ1. If lat_1=φ1 is
not specified, Winkel’s value of φ1 = cos−1(2/π) or
50◦27′35.1945′′ is used. For Bartholomew’s variant, use
lat_1=40.

3.1.3 Hammer (Hammer-Aitoff) and Eckert-
Greifendorff.

A popular alternative to pseudocylindricals.

x = (
√

2MD) cos φ sin(Wλ)

y = (
√

2D/M) sinφ

D =
√

1 + cos φ sin(Wλ)

where W = 0.5 for Hammer and W = 0.25 for Eckert-
Greifendorff. M = 1 unless overridden with M= option

Figure 49: Winkel Tripel, +proj=wintri.

Figure 50: Hammer.

which changes the aspect ratio—mainly used for Breise-
meister projection (M=

√
1.75/2).

3.1.4 Larrivée.

x = λ(1 + cos1/2 φ)/2
y = φ/(cos(φ/2) cos(λ/6)

3.1.5 Wagner VII.

x = 2.66723 cos θ sin(λ/3)/ cos(α/2)
y = 1.24104 sin θ/ cos(α/2)

Figure 51: Eckert-Griefendroff, (+proj=hammer
+W=0.25).
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Figure 52: Briesemeister +proj=ob tran,
+o proj=hammer, +o lat p=45, +o lon p=0,
+lon 0=10, +M=0.93541.

Figure 53: Larrivée, +proj=larr.

Figure 54: Wagner VII.

Figure 55: Laskowski, +proj=lask.

sin θ = sin 65◦ sinφ

cos α = cos θ cos(λ/3)

3.1.6 Laskowski.

x =
∑
i=0

∑
j=0

aijλ
iφj

y =
∑
i=0

∑
j=0

bijλ
iφj

where non-zero coefficients are:

a10 0.975534
a12 -0.119161
a32 -0.0143059
a14 -0.0547009
b01 1.00384
b21 0.0802894
b03 0.0998909
b41 0.000199025
b23 -0.0285500
b05 -0.0491032
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4 Creating Oblique Projections.

All of the spherical forms of the projections in the proj
system can be transformed into an oblique aspect by
making an axis transformation of the geographic coor-
dinates with the following formula:

φ′ = sin−1(sinφp sinφ− cos φp cos φ cos λ)
λ′ = λ + atan2(cos φ sinλ,

sinφp cos φ cos λ + cos φp sinφ)

where λp and φp are the coordinates of the North pole
of the transformed coordinate system on the original
coordinate system. To use this transformation, the
+o_proj=name parameter is used where name is the
acronym of one of the standard projections—+o_proj
is used instead of +proj. Parameters +o_lat=φp and
+o_lon=λp are used to set the translated pole position.
Any other parameters related to the selected projec-
tion name are entered as otherwise documented. The
parameter lon_0 used to shift the central meridian is
applied before the transformation in +ob_tran so the
effect is to rotate the merdians about the transformed
pole and not the pole of the target projection.

To illustrate this procedure, the National Geographic
Societies’ Atlas of the World [1, p. 4] uses the Oblique
McBryde-Thomas Flat-Polar projection for a shaded-
relief map of the world. Unfortunately, they do not
fully annotate the figure (see [8] for comments on this
cronic problem) but examination indicates that the
transformed pole is at approximately 30◦ N and 120◦ W.
Fig. 56A shows the overlay of this oblique transforma-
tion on the base projection as performed by the options:

+o_proj=mbtfpq +o_lat_p=30 +o_lon_b=-120

Fig. 56B shows the transformation with coastlines. An
element to note is that the 0◦ meridian of the trans-
formed system follows the λp meridian of the untrans-
formed system. Because the creators of the map wanted
to emphasize oceanic regions, the axis were rotated by
using λ0. This results in the final options

+o_proj=mbtfpq +o_lat_p=30 +o_lon_b=-120 +lon_0=180

which results in the map shown in fig. 56C.
Two more examples of transverse pseudocylindrical

projections are included here: the Atlantis projection
(fig. 57 emphasizes the Atlantic and Arctic Oceans and
Close’s map (fig. 58 covers the eastern hemisphere. In
the latter map, note that the 20◦ W and 160◦ E merid-
ians form a circle.

Use of the general oblique transformation is limited
to projections assuming a spherical earth. Oblique or
transverse projections on a elliptical earth present com-
plex problem that requires specific analysis of each pro-
jection and cannot be applied in a general manner.

A

B

C

Figure 56: Transverse use of the McBryde-Thomas
Flat-Polar Quartic projection: A–oblique transforma-
tion on base projection, B–oblique projection with
coastlines and C–projection rotated 180◦ about pole
to emphasize oceanic regions.
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Figure 57: The Atlantis transverse Mollweide projec-
tion, +proj=ob tran, +o proj=moll, 10◦ graticule.

Figure 58: Oblique Mollwiede projection proposed
by Close, +proj=ob tran, +o proj=moll, +o lat p=0,
+o lon p=90, +lon 0=160. 10◦ graticule.
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