

SOZip: using directly large
(geospatial) compressed

files in a ZIP archive!
Even Rouault
SPATIALYS

June 28th 2023

Why SOZip ?

● Number of popular Geospatial formats don’t come with native
compression:

● And despite growing storage capabilities, we always need
compression:
○ Lower costs
○ Faster download times

FlatGeobuf

Why SOZip ?

Which options for formats that don’t support compression:
● Add one inside the format !

■ Can be fine-tuned to the specificities of the format, e.g.
SQLite3 has a CEROD (Compressed and Encrypted
Read-Only Database) *proprietary* extension to
compress individually SQLite pages

■ But breaks forward compatibility with existing readers
■ Additional implementation complexity
■ Must be done on a format case-by-case basis

● Do not modify the file format, but put it inside an archive
format: .zip, .tar, .7z, etc.

Let’s put them in a ZIP!

● ZIP is ubiquitous.
● Easy to do ! ZIP compression and decompression is a

one-click operation in modern operating systems
● Compresses well
● Example with a dataset with the 3.2 millions footprint

polygons of buildings of New Zealand with 13 attributes each

Format Uncompressed
size

.zip size Compression ratio

GeoPackage 1.666 GB 480 MB 3.47

FlatGeoBuf 1.826 GB 455 MB 4.01

Shapefile 2.948 GB 396 MB 7.44

Let’s put them in a ZIP!

● … but …. ZIP is thought as mostly a transport/archiving
operation

● A file once Zipped is temporarily unusable

zip unzip

Enjoy Enjoy

transmit

We can do better

● ZIP has an indexing mechanism to locate the start of each
compressed file within an archive
(contrary to the .tar format)

● So it is possible for a smart enough reader to read a file !
● Yes…but if you read it from its beginning to the end (or up to

the point you’re interested in in the file)

● The /vsizip/ virtual file system in GDAL can already do that.

Laaaaarge compressed file….

The part I’m
interested in!

A few insights on Deflate

● ZIP historical and widely used codec is Deflate
● Standardized as https://datatracker.ietf.org/doc/html/rfc1951
● Overview at https://en.wikipedia.org/wiki/Deflate
● Deflate = LZ77 dictionary-based + Huffman compression
● LZ77: sliding window of 32 kB over uncompressed data, with

emissions of:
○ Literal bytes [0,255] when no repetition found
○ (length, distance) tuples when repetitions are found

Uncompressed stream:
This is a long sentence isn’t it?

Compressed stream:
This [3,3]a long sentence[3,19]n’t it?

https://datatracker.ietf.org/doc/html/rfc1951
https://en.wikipedia.org/wiki/Deflate

A few insights on Deflate

● Huffman code trees used to encode literals bytes/lengths and
distances

● Minimize the bit representation of a numeric value based on
its occurrence count

Symbol Coding (bit values)

A 0

B 100

C 101

D 110

E 111

A few insights on Deflate

● Concepts of blocks.
● Compressors are free to use a single or multiple blocks
● Each block is preceded by 3 bit:

○ First bit:
■ 0: last block of the stream
■ 1: more blocks after this one

○ Second and third bit:
■ 00: Stored/uncompressed block of up to 65,635 bytes
■ 01: LZ77 + Static Huffman compressed tree

(unlimited size)
■ 11: LZ77 + Dynamic Huffman compressed tree

(unlimited size)
● A block can potentially reference symbols from preceding

blocks … and we don’t want that!

What do we need ?

● To be able to access any part of the compressed stream
without having to decompress the stream from its beginning

● 2 potential solutions:
○ Serialize regularly the state of the compressor, so that the

decompressor can restart with it. But that’s pretty large, at
least 32 kB!

○ Or instruct the compressor to flush its sliding window at
regular intervals, typically at block boundaries, or more
exactly instruct it to *not* reference sequences of
preceding blocks

Block 1 Block 2

What do we need ?

● Venerable ZLib library has a “full flush” mode that:
○ Resets the encoding dictionary
○ Align the compression stream with byte boundaries
○ Emits a 0-byte uncompressed block as a signature

between 2 compressed blocks
○ Enables a decoder to start decoding the new block

without knowing anything about the preceding block
● Technique used by the pigz (https://zlib.net/pigz/) Parallel

GZip utility
● All compliant Deflate/ZIP readers can deal with that. They

don’t even realize that a “full flush” has been done !

https://zlib.net/pigz/

SOZip ingredients

● Compressed stream, structured in chunks, each terminated
by a ZLib “full flush”

● A index file pointing every X bytes of uncompressed data to
the offset of the beginning of the corresponding chunk:

Structure of a SOZip file

● Just a ZIP file:
○ “End of central directory record” marker
○ Central directory: index of all files, that point to the

beginning of each file
○ And we find for each SOZip-enabled file in the archive:

■ The Deflate compressed stream (chunked) preceded
by its “local” header

■ A hidden file that stores the index mapping
uncompressed offsets to compressed ones

SOZip pros & cons

● Pros:
○ Make ZIP a workable format for random access
○ Multithreaded compression/decompression of

independent chunks possible
○ For decompression, each chunk can be decompressed

with a fast alternative, like libdeflate
○ Excellent backward compatibility: a data producer may

deliver a SOZip enabled file with good confidence that
nearly all existing ZIP readers can decompress it (at time
of writing, we are not aware of ZIP readers that reject a
SOZip enabled file)

● Cons:
○ Inherits the same limitations of the Zip format
○ Slightly degrade compression rate (dependent of the

chunk size). Typically 2% with a 32 KB chunk size

GDAL implementation

● Available in GDAL 3.7 (released in May 2023)
● Existing /vsizip/ virtual file system handler enhanced to:

○ Generate SOZip-enabled archives (for files sufficiently
big)

○ Can use multi-threading (like pigz) to compress files
○ Detect hidden SOZip index and use it to provide very fast

random reading
● CPLAddFileInZip(): compress a file and add it to an new or

existing ZIP file, and enable the SOZip optimization when
relevant.

● VSIGetFileMetadata("/vsizip//path/to/my.zip/filename/inside","
ZIP") to get information if a SOZip index is available for that
file.

GDAL implementation

● GeoPackage and Shapefile driver can directly generate
SOZip enabled (.gpkg.zip / .shp.zip extensions):

⇒ ogr2ogr my.gpkg.zip my.gpkg

● New “sozip” command line utility:
○ List the content of a ZIP file and check if files in it are

SOZip-optimized: “sozip -l my.zip”

○ Validate a SOZip file: “sozip --validate my.zip”

○ Create a SOZip file: “sozip my.zip my.gpkg meta.html”

○ Convert a regular ZIP to SOZip:
“sozip --convert-from=in.zip out.zip”

Python implementation

● https://github.com/sozip/sozipfile : fork of core “zipfile” Python
module

● ⇒ “pip install sozipfile”
● Fully API compatible with “zipfile”
● Create a SOZip enabled file in a ZIP:

● Check if a file is SOZip enabled:

https://github.com/sozip/sozipfile

Indirect implementations

● MapServer webmapping server:
○ MapServer 8.2 + GDAL 3.7 will produce SOZip enabled files

when using a ZIP output format, such as:
 OUTPUTFORMAT

 NAME "OGRGPKGZIP"

 DRIVER "OGR/GPKG"

 MIMETYPE "application/zip; driver=ogr/gpkg"

 FORMATOPTION "STORAGE=memory"

 FORMATOPTION "FORM=zip"

 FORMATOPTION "FILENAME=result.gpkg.zip"

 END

● QGIS with GDAL 3.7 automatically benefits from SOZip:
drop a SOZip compressed GeoPackage, FlatGeoBuf, Shapefile,
etc. And it is instantly opened and usable in a fully fluent way!

Benchmarking

Benchmarking

And now the question you all
wonder about….

Is it cloud optimized/friendly… ?

● Yes and no
● SOZip by itself doesn’t make a non cloud-optimized

uncompressed format magically optimized

● But if a uncompressed format is cloud-optimized, it will
remain cloud-optimized after ZIP compression. ⇒ /vsicurl/ +
/vsizip/ can become cloud optimized

Uncompressed file:

The parts I’m interested in!

Compressed file:

What remains to be done?

● Mostly use it!
● We encourage data producers and distributors to adopt it

○ Existing readers will not be affected
○ SOZip aware readers will benefit from it

⇒ Same idea as the COG (Cloud Optimized GeoTIFF) or
 COPC (Cloud Optimized Point Cloud) formats

● More implementation in other languages: Javascript, etc. ?

Questions?

Credits to Safe Software for funding this effort

Links:
 http://sozip.org/

Contact: even.rouault@spatialys.com

http://www.gdal.org/
mailto:even.rouault@spatialys.com

Spare slides

Related works

● https://github.com/minio/zipindex: a size optimized
representation of a zip file directory to allow decompressing
the file without reading the zip file index.

● https://github.com/linz/cotar (Cloud-optimized TAR): similar
but for .tar format

● https://github.com/vasi/lzopfs#gzip: FUSE filesystem allows
you to view a compressed file as if it was uncompressed,
including random access operations. Uses the space
consuming technique of storing the compressor state at
regular intervals

https://github.com/minio/zipindex
https://github.com/linz/cotar
https://github.com/vasi/lzopfs#gzip

