MAPSERVER

MapServer Documentation
Release 5.4.2

The MapServer Team

January 13, 2010

CONTENTS

About 3
An Introduction to MapServer 5
2.1 MapServer OVEeIvView o ot e e e e e e e e e 5
2.2 Anatomy of a MapServer Application L e 6
2.3 Installation and Requirements Lo 8
2.4 Introduction to the Mapfile o e e e e e e e e e e e 14
2.5 Makingthe Site Your OWn o it e e e e e e e e e e e e 21
2.6 Enhancing yourSite i i e e e e e e e e e e e e e e e e e e 22
277 HowdolIgetHelp?. e e e e 24
MapServer Tutorial 25
3.1 Tutorial Timeframe e e e 25
32 Tutorial Data e e e e e e 25
3.3 Before Using the Tutorial e 26
3.4 Windows, UNIX/LIinux ISSUES o i e e e e e e e e e e 26
3.5 OtherResources i i i e e 27
3.6 Section 1: Static Maps andthe MapFile 27
3.7 Section 2: CGI variables and the User Interface 27
Installation 29
4.1 Compilingon UniX o o it e e e e e e e e e e e 29
42 Compilingon Win32 e 37
4.3 PHP MapScript Installation e e 44
4.4 NET MapScript Compilation 0 e 50
4.5 TIS Setup for MapServer o o i e e e e e e e e e e e e e 55
4.6 OracleInstallation e e e 58
Mapfile 63
5.1 CLASS . . o 63
5.2 EXPIessions o v v it e e e e e e e e e e e e e e e e e 66
53 FEATURE e 71
54 FONTSET e e e 71
5.5 INCLUDE 72
56 GRID 74
57 JOIN . . e 75
5.8 LABEL e 79
59 LAYER 82
5.10 LEGEND e 89

S.1 MAP . Lo e

5.12 OUTPUTFORMAT e e e e e e e e e s e e e
5.13 PROJECTION e e e e e e e e
514 QUERYMAP
5.15 REFERENCE e
5.16 SCALEBAR
507 STYLE . . o o e
5.8 SYMBOL . . . e e
5.19 Cartographic Symbol Construction with MapServer
5.20 Symbology Examples e e e
521 Templating L e e e e
5.22 Variable Substitution L e e e e
523 WEB . . .
524 NOLES . . . v o e o e e e e e e e e e e e e e e e e e e
MapScript

6.1 Introduction e e e e
6.2 SWIG MapScript API Reference o
6.3 PHP MapScript o o e e e e e e
6.4 Python MapScript Appendix e
6.5 Python MapScript Image Generation it e e
6.6 Mapfile Manipulation L e e e e e e e e e
6.7 QUETYING o i e e e e e e e e e e e e e
6.8 MapScript Variables L e e e e e
Data Input

7.1 VectorData e e
7.2 RasterData L e e e e e e
Output Generation

8.1 AGG Rendering Specifics L. e e
8.2 AntiAliasing with MapServer e
8.3 Dynamic Charting L e e e e e
8.4 Flash Output e e e e e e e e e
8.5 HTML Legends with MapServer 0 i ittt e e e e
8.6 HTML Imagemaps v v v v v e e e e e et e e e e e e e e e e e e e e e e e
87 PDFOUtpUt o e e e e e e e e e
8.8 SVG . .
89 TileMode e
OGC Support and Configuration

9.1 WMS Server e e e e e e
0.2 WMSCHeNnt e e
03 WMSTIME oot e e
0.4 Map Context v v v it e e e e e e e e e e e e e e e e e
0.5 WES Server o e e e e
9.6 WESClient L e
9.7 WEFSFilter Encoding e
0.8 SLD e
9.9 WCS Server e
0.10 WCSUseCases it ittt e e e e e e e
.11 SOS Server o o e e e e e e
9.12 MapScript Wrappers for WxS Services o e

10 Optimization

10.1 Mapfile e e e e e e e e e e e 447

10.2 VECOT . . . o e o e e e e e e e e e e e e e 449
103 RaASIEr o o e e e e e e e e e e e 451
104 FastCGL. o e e 452
10.5 TileIndexes o i e e e 455
11 Utilities 459
1.1 legend o L e 459
11.2 msencrypt e e 459
11.3 scalebar o L e e e e 461
11.4 shp2img . . . o o e e e e e e e e e e e 461
I1.5 shptree o o . o e e e e e e e e 463
11.6 shptreevis o o o e e e e e e e e 464
I1.7 sortshp o e 465
I1.8 sym2img o e e e e e 467
11.9 tiledms o o e e e e e e 468
11.10 Batch Scripting o o o e e e e e e e e 472
11.11 File Management o v i i v e et e 472
12 CGI 475
12.1 MapServer CGIL Introduction 0 e e e e e e 475
122 mapserv. e e e e e e 476
123 Map Context Files e e 476
124 MapServer CGI Controls L . o o e 477
12.5 Run-time Substitution e e e e e e 481
12.6 A Simple CGI Wrapper Script o o e e e e e e e e e e 483
13 Community Activities 485
13.1 IRC . . e 485
13.2 Mailing Lists o o o e e e e e e e e e 486
13.3 MapServer Wiki Pages o 487
13.4 MapServer Service Providers oL 487
14 Development 489
4.1 Sponsors e e e e 489
142 BugSubmission e 489
14.3 Subversion e e e e e 490
14.4 Documentation Development Guide e e e 491
145 Testing . . . o o v v i e e e e e e e e e e e e e e e 497
14.6 Requestfor Comments e 503
1477 Mapfile Editing e 665
14.8 External Links e 667
15 Download 669
IS.1 Source o . e e e e e e e 669
152 BiInaries o oo e e e e e 669
15.3 Demo Application o o e e e e e e e e e e e e e e e e e 670
16 Glossary 671
17 Errors 675
17.1 drawEPP(): EPPL7 supportisnotavailable 675
17.2 loadMaplnternal(): Given map extentisinvalid 675
17.3 msSavelmageGD(): Unable to accessfile 676
17.4 msLoadMap(): Failedtoopenmapfile 677

17.5 msQueryByPoint: search returned noresults oL oo 677

17.6 msLoadFontset(): Error opening fontset e e 677
17.7 msGetLabelSize(): Requested fontnotfound 678
17.8 loadLayer(): Unknown identifier. Maximum number of classes reached 678
17.9 msReturnPage(): Web application error. Malformed template name 678
17.10 Unable to load dIl (MapScript) o o o i e e e e e e 679
17.11 msProcessProjection(): Projection library error.major axis or radius =0 not given 679
17.12 msProcessProjection(): no options found in “init’ file 680
17.13 msProcessProjection(): No such file or directory L. 680
17.14 msQueryByPoint: search returned noresults L Lo oo 680
18 FAQ 683
18.1 Where is the MapServer log file? L 683
18.2 What books are available about MapServer? L 683
18.3 How do I compile MapServer for Windows? o 683
18.4 What do MapServer version numbers mean? it e e e e e e e e e 683
18.5 1Is MapServer Thread-safe? e e 683
18.6 What does STATUS meanina LAYER? 684
18.7 How can I make my maps run faster? oL 685
18.8 What does Polyline mean in MapServer? e 685
18.9 Whatis MapScript? L e e e e 685
18.10 Does MapServer support reverse geocoding?o e e e e 686
18.11 Does MapServer support geocoding? oL e e e e e e e e e e e 686
18.12 How do I'set line width in my maps? 686
18.13 Why do my JPEG input images look crappy via MapServer? 686
18.14 Which image format should Tuse? 687
18.15 Why doesn’t PIL (Python Imaging Library) open my PNGs? 687
18.16 Why do my symbols look poor in JPEG output? 687
18.17 How do I add a copyright notice on the cornerof my map? 688
18.18 How do I have a polygon that has both a fill and an outline with a width? 689
18.19 How can I create simple antialiased line features? 690
18.20 Which OGC Specifications does MapServer support?« o v v v v v v v e 690
18.21 Why does my requested WMS layer not align correctly? 691
18.22 When I do a GetCapabilities, why does my browser want to download mapserv.exe/mapserv? 692
18.23 Why do my WMS GetMap requests return exception using MapServer 5.0? 692
18.24 Wheredo I find my EPSG code? o o i it i i i i e 693
18.25 How can I reproject my data using ogr208r? o vt i it e e e 693
19 License 695
20 Credits 697
Bibliography 699
Index 701

MapServer Documentation, Release 5.4.2

1
Note: The entire documentation is also available as a single PDF document u

Table 1: Quick Links

An Introduction to MapServer Installation Mapfile

MapScript Data Input Output Generation

OGC Support and Configuration | Optimization | Utilities

Development Glossary Errors

Index About Community Activities
CONTENTS

MapServer Documentation, Release 5.4.2

2 CONTENTS

CHAPTER
ONE

ABOUT

MapServer is an Open Source geographic data rendering engine written in C. Beyond browsing GIS data, MapServer
allows you create “geographic image maps”, that is, maps that can direct users to content. For example, the Minnesota
DNR Recreation Compass provides users with more than 10,000 web pages, reports and maps via a single application.
The same application serves as a “map engine” for other portions of the site, providing spatial context where needed.

MapServer was originally developed by the University of Minnesota (UMN) ForNet project in cooperation with
NASA, and the Minnesota Department of Natural Resources (MNDNR). Later it was hosted by the TerraSIP project,
a NASA sponsored project between the UMN and a consortium of land management interests.

MapServer is now a project of OSGeo, and is maintained by a growing number of developers (nearing 20) from
around the world. It is supported by a diverse group of organizations that fund enhancements and maintenance,
and administered within OSGeo by the MapServer Project Steering Committee made up of developers and other
contributors.

* Advanced cartographic output
— Scale dependent feature drawing and application execution

— Feature labeling including label collision mediation

Fully customizable, template driven output

TrueType fonts

Map element automation (scalebar, reference map, and legend)

Thematic mapping using logical- or regular expression-based classes
* Support for popular scripting and development environments
— PHP, Python, Perl, Ruby, Java, and .NET
* Cross-platform support
— Linux, Windows, Mac OS X, Solaris, and more
 Support of numerous Open Geospatial Consortium (OGC) standards

— WMS (client/server), non-transactional WES (client/server), WMC, WCS, Filter Encoding, SLD, GML,
SOS, OM

¢ A multitude of raster and vector data formats

— TIFF/GeoTIFF, EPPL7, and many others via GDAL

— ESRI shapfiles, PostGIS, ESRI ArcSDE, Oracle Spatial, MySQL and many others via OGR
* Map projection support

— On-the-fly map projection with 1000s of projections through the Proj.4 library

http://www.opensource.org
http://www.dnr.state.mn.us/maps/compass.html
http://www.osgeo.org

MapServer Documentation, Release 5.4.2

4 Chapter 1. About

CHAPTER
TWO

AN INTRODUCTION TO MAPSERVER

Revision $Revision: 8478 $

Date $Date: 2009-01-29 11:54:42 -0800 (Thu, 29 Jan 2009) $
Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Author David Fawcett

Contact david.fawcett at moea.state.mn.us

Author Howard Butler

Contact hobu.inc at gmail.com

Contents

* An Introduction to MapServer

— MapServer Overview

— Anatomy of a MapServer Application
Installation and Requirements
Introduction to the Mapfile
Making the Site Your Own
Enhancing your site
How do I get Help?

2.1 MapServer Overview

MapServer is a popular Open Source project whose purpose is to display dynamic spatial maps over the Internet. Some
of its major features include:

* support for display and querying of hundreds of raster, vector, and database formats

* ability to run on various operating systems (Windows, Linux, Mac OS X, etc.)

* support for popular scripting languages and development environments (PHP, Python, Perl, Ruby, Java, NET)
¢ on-the-fly projections

* high quality rendering

« fully customizable application output

MapServer Documentation, Release 5.4.2

* many ready-to-use Open Source application environments

In its most basic form, MapServer is a CG/ program that sits inactive on your Web server. When a request is sent to
MapServer, it uses information passed in the request URL and the Mapfile to create an image of the requested map.
The request may also return images for legends, scale bars, reference maps, and values passed as CGI variables.

See Also:
The Glossary contains an overview of many of the jargon terms in this document.

MapServer can be extended and customized through MapScript or templating. It can be built to support many different
vector and raster input data formats, and it can generate a multitude of oufpur formats. Most pre-compiled MapServer
distributions contain most all of its features.

See Also:
Compiling on Unix and Compiling on Win32

Note: MapScript provides a scripting interface for MapServer for the construction of Web and stand-alone appli-
cations. MapScript can used independently of CGI MapServer, and it is a loadable module that adds MapServer
capability to your favorite scripting language. MapScript currently exists in PHP, Perl, Python, Ruby, Tcl, Java, and
.NET flavors.

This guide will not explicitly discuss MapScript, check out the MapScript Reference for more information.

2.2 Anatomy of a MapServer Application

A simple MapServer application consists of:

* Map File - a structured text configuration file for your MapServer application. It defines the area of your map,
tells the MapServer program where your data is and where to output images. It also defines your map layers,
including their data source, projections, and symbology. It must have a .map extension or MapServer will not
recognize it.

See Also:
MapServer Mapfile Reference

¢ Geographic Data - MapServer can utilize many geographic data source types. The default format is the ESRI
shapefile. Many other data formats can be supported, this is discussed further below in Adding data to your site.

See Also:
Vector Input Reference and Raster Input Reference

* HTML Pages - the interface between the user and MapServer . They normally sit in Web root. In it’s simplest
form, MapServer can be called to place a static map image on a html page. To make the map interactive, the
image is placed in an html form on a page.

CGI programs are ‘stateless’, every request they get is new and they don’t remember anything about the last time
that they were hit by your application. For this reason, every time your application sends a request to MapServer,
it needs to pass context information (what layers are on, where you are on the map, application mode, etc.) in
hidden form variables or URL variables.

A simple MapServer CGI application may include two html pages:

— Initialization File - uses a form with hidden variables to send an initial query to the http server and
MapServer. This form could be placed on another page or be replaced by passing the initialization infor-
mation as variables in a URL.

6 Chapter 2. An Introduction to MapServer

MapServer Documentation, Release 5.4.2

Figure 2.1: The basic architecture of MapServer applications.

2.2. Anatomy of a MapServer Application 7

MapServer Documentation, Release 5.4.2

— Template File - controls how the maps and legends output by MapServer will appear in the browser. By
referencing MapServer CGI variables in the template html, you allow MapServer to populate them with
values related to the current state of your application (e.g. map image name, reference image name, map
extent, etc.) as it creates the html page for the browser to read. The template also determines how the user
can interact with the MapServer application (browse, zoom, pan, query).

See Also:
Templating

* MapServer CGI - The binary or executable file that receives requests and returns images, data, etc. It sits in the
cgi-bin or scripts directory of the http server. The Web server user must have execute rights for the directory that
it sits in, and for security reasons, it should not be in the web root. By default, this program is called mapserv

¢ HTTP Server - serves up the html pages when hit by the user’s browser. You need a working HTTP (Web)
server, such as Apache or Microsoft Internet Information Server, on the machine on which you are installing
MapServer.

2.3 Installation and Requirements

2.3.1 Windows Installation
0SGeo4W is a new Windows installer that downloads and/or updates MapServer, add-on applications, and also other
Open Source geospatial software. The following steps illustrate how to use OSGeo4W:

1. Download OSGeo4W http://download.osgeo.org/osgeodw/osgeodw-setup.exe

2. Execute (double-click) the .exe

3. Choose “Advanced” install type

8 Chapter 2. An Introduction to MapServer

http://httpd.apache.org
http://download.osgeo.org/osgeo4w/osgeo4w-setup.exe

MapServer Documentation, Release 5.4.2

0SGeod W Setup =5 EoR| =%

05Geod4W Net Release Setup Program

This setup program ig used for the initial installation of the 05GeodW environment as
well as all subsequent updates. Make sure to remember where you saved it.

The pages that follow will guide you through the installation. Please note that
05GeodW consists of a large number of packages spanning a wide variety of
purposes. We only install a base set of packages by default. You can always run
thiz program at any time in the future to add, remove, or upgrade packages as
nEecessary.

@ Express Install

(71 Advanced Install

()

(u1]

)
X

[Mext =][Cancel

Note: Express contains options for higher-level packages such as MapServer, GRASS, and uDig. Advanced
gives you full access to choosing commandline tools and applications for MapServer that are not included in the
Express install

4. Select packages to install

2.3. Installation and Requirements 9

MapServer Documentation, Release 5.4.2

—

- O5GecdW Setup - Select Packages

Select Packages
Select packages to install

ESEa
&

TikKeep T)Prev @ Cur O Bep Categnr'_.f

m

Category New B. 5. BSize Package o
Commandline_Ltilties 4% Default
Desktop 4% Default
Libs &¥ Default
B Web 4% Defauk
&2 281 njia 1.59% apache: Apache Web Server
&% Skip nin nfa ? apache-manual: Apache Web Server (manual)
5021 O 543 mapserver: A CGl Web Map Server, including a varety of O
&% Skip nin nin 7 mapserverdev: A CGl Web Map Server, including a variety
45251 njin 6,287 php: PHP Interpreter for Apache)
5021 njin 73 php_mapscript: Mapscript extension for PHP
& Skip nja nfa ? php_mapscript-dev: Mapscript exdension for PHP {dev)
B Web_Applications &% Default
&% Skip nja - nfa ? chameleon: Chameleon Application Development Environme
&*1.0.31 nja B2 M fusion: Fusion MapServer Demo
& 501 njn 2 756k gmap: GMap PHP/MapScript demo application
4 B m ' o = B }
Hide obsolete packages

| <Back || MNet> | [cancel

Note: Click on the “Default” text beside the higher-level packages (such as Web) to install all of Web’s sub-
packages, or click on the “Skip” text beside the sub-package (such as MapServer) to install that package and all

of its dependencies.

5. Let the installer fetch the packages.

10

Chapter 2. An Introduction to MapServer

MapServer Documentation, Release 5.4.2

. 4% - Cygwin Setup = | B[]
This page displays the progress of the download or installation. L
Downloading...

gdal-1.5.0-3 tar bzZ from http://download osgeo org/osgeodw, ...
41 % (876k/2136k) 99.4 kb/s

Package: | —— -
Tatal: "

= - -

< Back Mex :

6. Run the apache-install.bat script to install the Apache Service.

Note: You must run this script under the “OSGeo4W Shell”. This is usually available as a shortcut on your
desktop

Note: A apache-uninstall.bat script is also available to remove the Apache service installation.

7. Start Apache from the OSGeo4W shell and navigate to http://127.0.0.1

apache-restart.bat

2.3. Installation and Requirements 11

http://127.0.0.1

MapServer Documentation, Release 5.4.2

& 05GecdW - 05Geo for Windows - Mazilla Firefox =n e =

File Edit View History Bookmarks Tools Help

@ D @ L @ [0 ooy [~[] [Glcoc: oy
- 1

%J/OSGeo

0SGeodW - OSGeo for Windows

Installed Web Applications and Features
There are currently 5 osgeodw applications installed.
Apache 2.2.8:
Manual
Fusion MapServer Demo

Fusion MapSenver Demo

OpenLayers 2.5:

Examples

m

Done

8. Verify that MapServer is working

12

Chapter 2. An Introduction to MapServer

MapServer Documentation, Release 5.4.2

/2 btk 120,00, fcgi-bin/mapsery.exe - Windows Intermet Explorers =10 x|

—

Ko = [vpeiiien.00.1jcg-bnjmapsery exe =] % % £ -
r »

W Ehpeif127.0.0.1 fog-binjmapssrv.exe | | fi -) - = - - Page = () Todk ~

No query mformation to decode. QUERY_STRING is set, but empty.

[v G Imernat A0 -

2.3.2 Hardware Requirements

MapServer runs on Linux, Windows, Mac OS X, Solaris, and more. To compile or install some of the required pro-
grams, you may need administrative rights to the machine. People commonly ask questions about minimum hardware
specifications for MapServer applications, but the answers are really specific to the individual application. For devel-
opment and learning purposes, a very minimal machine will work fine. For deployment, you will want to investigate
Optimization of everything from your data to server configuration.

2.3.3 Software Requirements

You need a working and properly configured HTTP (Web) server, such as Apache or Microsoft Internet Information
Server, on the machine on which you are installing MapServer. OSGeo4W contains Apache already, but you can
reconfigure things to use IIS if you need to. Alternatively, MS4W can be used to install MapServer on Windows.

If you are on a Windows machine, and you don’t have a HTTP server installed, you may want to check out MS4W,
which will install a pre-configured HTTP server, MapServer, and more. The FGS Linux Installer provides similar
functionality for several Linux distributions.

This introduction will assume you are using pre-compiled OSGeo4W Windows binaries to follow along. Obtaining
MapServer or Linux or Mac OS X should be straightforward. Visit Download for installing pre-compiled MapServer
builds on Mac OS X and Linux.

You will also need a Web browser, and a text editor (vi, emacs, notepad, homesite) to modify your html and mapfiles.

2.3. Installation and Requirements 13

http://httpd.apache.org/
http://www.maptools.org/ms4w/index.phtml
http://www.maptools.org/ms4w/index.phtml
http://www.maptools.org/fgs/

MapServer Documentation, Release 5.4.2

2.3.4 Skills

In addition to learning how the different components of a MapServer application work together and learning Map File
syntax, building a basic application requires some conceptual understanding and proficiency in several skill areas.

You need to be able to create or at least modify HTML pages and understand how HTML forms work. Since the
primary purpose of a MapServer application is to create maps, you will also need to understand the basics of geographic
data and likely, map projections. As your applications get more complex, skills in SQL, DHTML/Javascript, Java,
databases, expressions, compiling, and scripting may be very useful.

2.4 Introduction to the Mapfile

The .map file is the basic configuration file for data access and styling for MapServer. The file is an ASCII text file,
and is made up of different objects. Each object has a variety of parameters available for it. All .map file (or mapfile)
parameters are documented in the mapfile reference. A simple mapfile example displaying only one layer follows, as
well as the map image output:

NAME "sample"

STATUS ON

SIZE 600 400

SYMBOLSET "../etc/symbols.txt"
EXTENT -180 -90 180 90

UNITS DD

SHAPEPATH "../data"

IMAGECOLOR 255 255 255

FONTSET "../etc/fonts.txt"

#

Start of web interface definition
#

WEB

IMAGEPATH "/msdw/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"
END

#
Start of layer definitions
#
LAYER
NAME ’'global-raster
TYPE RASTER
STATUS DEFAULT

pata [b[1[ufe[na[z[b e git

END

Note:
* Comments in a mapfile are specified with a ‘#° character

e MapServer parses mapfiles from top to bottom, therefore layers at the end of the mapfile will be drawn last
(meaning they will be displayed on top of other layers)

» Using relative paths is always recommended

* Paths should be quoted (single or double quotes are accepted)

14 Chapter 2. An Introduction to MapServer

http://www.w3.org/MarkUp/Guide/

MapServer Documentation, Release 5.4.2

Figure 2.2: Rendered Bluemarble Image

2.4.1 MAP Object

MAP
NAME "sample"
EXTENT -180 -90 180 90 # Geographic
SIZE 800 400
IMAGECOLOR 128 128 255
END

e EXTENT is the output extent in the units of the output map
» SIZE is the width and height of the map image in pixels
¢ IMAGECOLOR is the default image background color

2.4.2 LAYER Obiject

* starting with MapServer 5.0, there is no limit to the number of layers in a mapfile
* DATA parameter is relative to the SHAPEPATH parameter the MAP object

* if no DATA extension is provided in the filename, MapServer will assume it is an ESRI shapefile (.shp)

Raster Layers

LAYER
v (o2 e[y [m[e []2y
TYPE RASTER
STATUS DEFAULT

pata |b[a[t|hlfn[a[e]s e e [v e) t[i]f

END

2.4. Introduction to the Mapfile 15

MapServer Documentation, Release 5.4.2

See Also:
Raster Data
Vector Layers

Vector layers of TYPE point, line, or polygon can be displayed. The following example shows how to display only
lines from a TYPE polygon layer, using the OUTLINECOLOR parameter:

LAYER

NAME "world_poly"

DATA ’shapefile/countries_area.shp’

STATUS ON

TYPE POLYGON

CLASS
NAME "The World’
STYLE

OUTLINECOLOR 000

END

END

END # layer

See Also:

Vector Data

Figure 2.3: Rendered Bluemarble image with vector boundaries

2.4.3 CLASS and STYLE Objects

* typical styling information is stored within the CLASS and STYLE objects of a LAYER

* starting with MapServer 5.0, there is no limit to the number of classes or styles in a mapfile

16 Chapter 2. An Introduction to MapServer

MapServer Documentation, Release 5.4.2

* the following example shows how to display a road line with two colors by using overlayed STYLE objects

CLASS

NAME "Primary Roads"

STYLE
SYMBOL "circle"
COLOR 178 114 1
SIZE 15

END #stylel

STYLE
SYMBOL "circle"
COLOR 254 161 O
SIZE 7

END #styleZ

END

Figure 2.4: Rendered Bluemarble image with styled roads

2.4.4 SYMBOLs

¢ can be defined directly in the mapfile, or in a separate file
* the separate file method must use the SYMBOLSET parameter in the MAP object:
MAP

NAME "sample"
EXTENT -180 =90 180 90 # Geographic

2.4. Introduction to the Mapfile 17

MapServer Documentation, Release 5.4.2

SIZE 800 400
IMAGECOLOR 128 128 255
SYMBOLSET "../etc/symbols.txt"

END

where symbols.txt might contain:

SYMBOL
NAME "ski"
TYPE PIXMAP
IMAGE "ski.gif"
END

and the mapfile would contain:

LAYER
CLASS
NAME "Ski Area"
STYLE
SYMBOL "ski"
END
END

END # layer

Figure 2.5: Rendered Bluemarble image with skier symbol

See Also:

18 Chapter 2. An Introduction to MapServer

MapServer Documentation, Release 5.4.2

Cartographic Symbol Construction with MapServer, Symbology Examples, and SYMBOL

2.4.5 LABEL

¢ defined within a LAYER object

¢ the LABELITEM parameters in the LAYER object can be used to label by a specific column in the data refer to
a FONTSET file, that is set in the MAP object, that contains a reference to the available font names

An example LABEL object that references one of the above fonts might look like:

LABEL

FONT "sans-bold"

TYPE truetype

SIZE 10

POSITION LC

PARTIALS FALSE

COLOR 100 100 100

OUTLINECOLOR 242 236 230
END # label

Figure 2.6: Rendered Bluemarble image with skier symbol and a label

See Also:
LABEL, FONTSET

2.4. Introduction to the Mapfile 19

MapServer Documentation, Release 5.4.2

2.4.6 CLASS Expressions

MapServer supports three types of CLASS expressions in a LAYER:
1. String comparisons
(EXPRESSION "africa")

2. Regular expressions
(EXPRESSION /”~9]710/)
3. Logical expressions
([POPULATION] > 50000 AND ’ [LANGUAGE]’ eqg ’'FRENCH')

Note: Logical expressions should be avoided wherever possible as they are very costly in terms of drawing time.
See Also:

Expressions

2.4.7 INCLUDE

Added to MapServer 4.10, any part of the mapfile can now be stored in a separate file and added to the main mapfile
using the INCLUDE parameter. The filename to be included can have any extension, and it is always relative to the
main .map file. Here are some potential uses:

e LAYER s can be stored in files and included to any number of applications
e STYLE s can also be stored and included in multiple applications
The following is an example of using mapfile includes to include a layer definition in a separate file:

If ‘shadedrelief.lay’ contains:

LAYER

NAME "shadedrelief’

STATUS ON

TYPE RASTER

DATA " GLOBALeb3colshade. jpg’
END

therefore the main mapfile would contain:
MAP

i:I:IC'ILUDE "shadedrelief.lay"
END

The following is an example of a mapfile where all LAYER s are in separate .lay files, and all other objects (WEB,
REFERENCE, SCALEBAR, etc.) are stored in a “.ref” file:

20 Chapter 2. An Introduction to MapServer

MapServer Documentation, Release 5.4.2

NAME "base"

#

include reference objects

#

INCLUDE "../templates/template.ref"

#

Start of layer definitions

#

INCLUDE "../layers/usa/usa_outline.lay"

INCLUDE "../layers/canada/base/lm/provinces.lay"

INCLUDE "../layers/canada/base/lm/roads_atlas_of_canada_lm.lay"
INCLUDE "../layers/canada/base/Ilm/roads_atlas_of_canada_lm_shields.lay"
INCLUDE "../layers/canada/base/lm/populated_places.lay"

END # Map File

Warning: Mapfiles must end with the .map extension or MapServer will not recognize them. Include files can
have any extension you want, however.

See Also:
INCLUDE

2.4.8 Get MapServer Running

MapServer version 5.2 OUTPUT=GIF OUTPUT=PNG
OUTPUT=JPEG OUTPUT=WBMP SUPPORTS=PROJ SUPPORTS=FREETYPE
SUPPORTS=WMS_SERVER INPUT=SHAPEFILE

You can also send a HTTP request directly to the MapServer CGI program without passing any configuration vari-
ables (e.g. http://your.domain.name/cgi-bin/ms4/mapserv.exe). If you receive the message, ‘No query information to
decode. QUERY_STRING not set.’, your installation is working.

2.4.9 Get Demo Running

Download the MapServer Demo. UnZip it and follow the directions in ReadMe.txt. You will need to move the demo
files to their appropriate locations on your HTTP server, and modify the Map File and html pages to reflect the paths
and URLSs of your server. Next, point your browser to init.html and hit the ‘initialize button’. If you get errors, verify
that you have correctly modified the demo files.

2.5 Making the Site Your Own

Now that you have a working MapServer demo, you can use the demo to display your own data. Add new LAYERs
to your Map file that refer to your own geographic data layers. (You will probably want to delete the existing layers or
set their status to OFF.)

Unless you are adding layers that fall within the same geographic area as the demo, modify MAP EXTENT to match
the extent of your data. To determine the extent of your data, you can use ogrinfo. If you have access to a GIS, you
could use that as well. The MAP EXTENT needs to be in the units of your output projection.

If you add geographic data layers of different projections, you will need to modify your Map File to add a PROJEC-
TION block to the MAP (output projection) and each of the LAYER (existing layer projection).

2.5. Making the Site Your Own 21

http://your.domain.name/cgi-bin/ms4/mapserv.exe
http://maps.dnr.state.mn.us/mapserver_demos/workshop-5.0.zip
http://www.gdal.org/ogrinfo.html

MapServer Documentation, Release 5.4.2

2.5.1 Adding Data to Your Site

MapServer supports several data input formats ‘natively’, and many more if it is compiled with the open source
libraries GDAL and OGR.

2.5.2 Vector Data

Vector data includes features made up of points, lines, and polygons. MapServer supports ESRI shapefiles by de-
fault, but it can be compiled to support spatially enabled databases such as PostgreSQL-PostGIS, Geography Markup
Language (GML), Maplnfo, delimited text files, and more formats with OGR.

See the Vector Data reference for examples on how to add different geographic data sources to your MapServer project.

2.5.3 Raster Data

Raster data is image or grid data. By default, MapServer supports Tiff/GeoTiff, and EPPL7. With GDAL, it supports
GRASS, Jpeg2000, ArcInfo Grids, and more formats. If you do compile MapServer with GDAL, which includes tiff
support, do not compile with native tiff support, as this will cause a conflict. More specific information can be found
in the Raster Data reference.

2.5.4 Projections

Because the earth is round and your monitor (or paper map) is flat, distortions will occur when you display geographic
data in a two-dimensional image. Projections allow you to represent geographic data on a flat surface. In doing
so, some of the original properties (e.g. area, direction, distance, scale or conformity)of the data will be distorted.
Different projections excel at accurately portraying different properties. A good primer on map projections can be
found at the University of Colorado.

With MapServer, if you keep all of your spatial data sets in the same projection (or unprojected Latitude and Longi-
tude), you do not need to include any projection info in your Map File. In building your first MapServer application,
this simplification is recommended.

On-the-fly projection can be accomplished when MapServer is compiled with Proj.4 support. Instructions on how to
enable Proj.4 support on Windows can be found on the Wiki.

2.6 Enhancing your site

2.6.1 Adding Query Capability

There are two primary ways to query spatial data. Both methods return data through the use of templates and CGI
variable replacement. A QUERYMAP can be used to map the results of the query.

To be queryable, each mapfile LAYER must have a TEMPLATE defined, or each CLASS within the LAYER must have a
TEMPLATE defined. More information about the CGI variables used to define queries can be found in the MapServer
CGI Reference.

2.6.2 Attribute queries

The user selects features based on data associated with that feature. ‘Show me all of the lakes where depth is greater
than 100 feet’, with ‘depth’ being a field in the shapefile .dbf or the spatial database. Attribute queries are accomplished

22 Chapter 2. An Introduction to MapServer

http://postgis.refractions.net/
http://en.wikipedia.org/wiki/Geography_Markup_Language
http://en.wikipedia.org/wiki/Geography_Markup_Language
http://www.mapinfo.com/
http://www.gdal.org/
http://www.gdal.org/formats_list.html
http://www.colorado.edu/geography/gcraft/notes/mapproj/mapproj_f.html
http://trac.osgeo.org/mapserver/wiki/WindowsProjHowto

MapServer Documentation, Release 5.4.2

by passing query definition information to MapServer in the URL (or form post). Mode=itemquery returns a single
result, and mode=itemnquery returns multiple result sets.

The request must also include a QLAYER, which identifies the layer to be queried, and a QSTRING which contains
the query string. Optionally, QITEM, can be used in conjunction with QSTRING to define the field to be queried.
Attribute queries only apply within the EXTENT set in the map file.

2.6.3 Spatial queries

The user selects features based on a click on the map or a user-defined selection box. Again the request is passed
through a URL or form post. By setting mode=QUERY, a user click will return the one closest feature. In
mode=NQUERY, all features found by a map click or user-defined selection box are returned. Additional query
options can be found in the CGI.

2.6.4 Interfaces

See: OpenLayers http://openlayers.org

2.6.5 Data Optimization

Data organization is at least as important as hardware configuration in optimizing a MapServer application for perfor-
mance. MapServer is quite efficient at what it does, but by reducing the amount of processing that it needs to do at the
time of a user request, you can greatly increase performance. Here are a few rules:

* Index Your data - By creating spatial indexes for your shapefiles using shptree. Spatial indexes should also be
created for spatially aware databases such as PostGIS and Oracle Spatial.

¢ Tile Your Data - Ideally, your data will be ‘sliced up’ into pieces about the size in which it will be displayed.
There is unnecessary overhead to searching through a large shapefile or image of which you are only going
to display a small area. By breaking the data up into tiles and creating a tile index, MapServer only needs to
open up and search the data files of interest. Shapefile data can be broken into smaller tiles and then a tileindex
shapefile can be created using the file4ms utility. A tileindex shapefile for raster files can also be created.

* Pre-Classify Your Data - MapServer allows for the use of quite complex EXPRESSIONs to classify data.
However, using logical and regular expressions is more resource intensive than string comparisons. To increase
efficiency, you can divide your data into classes ahead of time, create a field to use as the CLASSITEM and
populate it with a simple value that identifies the class, such as 1,2,3, or 4 for a four class data set. You can then
do a simple string comparison for the class EXPRESSION.

¢ Pre-Process Your Images - Do resource intensive processing up front. See the Raster Data reference for more
info.

* Generalize for Overview - create a more simple, generalized data layer to display at small scales, and then
use scale-dependent layers utilizing LAYER MINSCALE and LAYER MAXSCALE to show more detailed data
layers as the user zooms in. This same concept applies to images.

See Also:

Optimization

2.6. Enhancing your site 23

http://openlayers.org

MapServer Documentation, Release 5.4.2

2.7 How do | get Help?

2.7.1 Documentation

* Official MapServer documentation lives here on this site.

 User contributed documentation exists on the MapServer Wiki.

2.7.2 Users Mailing List

Register and post questions to the MapServer Users listserv. Questions to the list are usually answered quickly and
often by the developers themselves. A few things to remember:

1. Search the archives for your answer first, people get tired of answering the same questions over and over.

2. Provide version and configuration information for your MapServer installation, and relevant snippets of your
map and template files.

3. Always post your responses back to the whole list, as opposed to just the person who replied to your question.

2.7.3 IRC

MapServer users and developers can be found on Internet Relay Chat. The channel is #mapserver on irc.freenode.net.

2.7.4 Gallery

See examples of existing MapServer applications.

2.7.5 Tutorial

Perry Nacionales built a great Tutorial on how to build a MapServer application. You are invited to extend the collec-
tion of examples if you see cases that are missing.

2.7.6 Test Suite

Download the MapServer Test Suite for a demonstration of some MapServer functionality.

2.7.7 Books

Web Mapping Illustrated , a new book by Tyler Mitchell that describes well and provides real-world examples for the
use of Web mapping concepts, Open Source GIS software, MapServer, Web services, and PostGIS.

Mapping Hacks , by Schuyler Erle, Rich Gibson, and Jo Walsh, creatively demonstrates digital mapping tools and
concepts. MapServer only appears in a handful of the 100 hacks, but many more are useful for concepts and inspiration.

Beginning MapServer: Opensource GIS Development , by Bill Kropla, is a new book focusing on MapServer. So new,
I haven’t seen it yet. According to the publisher, it covers installation and configuration, basic MapServer topics and
features, incorporation of dynamic data, advanced topics, MapScript, and the creation of an actual application.

24 Chapter 2. An Introduction to MapServer

http://trac.osgeo.org/mapserver/wiki/
http://lists.osgeo.org/mailman/listinfo/mapserver-users/
http://www.nabble.com/MapServer-f1214.html
http://ms.gis.umn.edu/gallery/galleryfolder_view
http://hypnos.cbs.umn.edu/tutorial/
http://noah.dnr.state.mn.us/mapserver_demos/tests46/
http://www.oreilly.com/catalog/webmapping/
http://www.oreilly.com/catalog/mappinghks/
http://www.apress.com/book/bookDisplay.html?bID=443

CHAPTER
THREE

MAPSERVER TUTORIAL

Author Pericles S. Nacionales

Contact pnaciona at gmail.com

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 8577 $

Date $Date: 2009-02-18 11:38:50 -0500 (Wed, 18 Feb 2009) $

This tutorial was designed to give new users a quick (relatively speaking) introduction to the concepts behind
MapServer. It is arranged into four sections with each section having one or more examples and increasing in com-
plexity. Users can jump to any section at any time although it is recommended that absolute beginners work on the
first three sections sequentially.

Section one focuses on basic MapServer configuration concepts such as layer and class ordering, using vector and
raster data, projections and labeling. Section two provides examples on how to use HTML templates to create a simple
interface for an interactive web mapping application. Section three introduces the use of HTML templates to provide
a “query” interface. Finally, section four introduces some advanced user interface concepts.

3.1 Tutorial Timeframe

While some users can go through this tutorial in one day, those who work on each example in detail can probably
expect to finish in one week.

3.2 Tutorial Data

The dataset used in this tutorial was taken from the U.S. Department of the Interior’s National Atlas of the United
States. You can visit their web site at http://www.nationalatlas.gov. The dataset was clipped to the upper great lakes
region (Minnesota, Michigan, and Wisconsin) to reduce storage size. Additional raster images were added courtesy
of the TerraSIP project at the University of Minnesota. When using this tutorial, you are encouraged to use your own
dataset.

Like MapServer itself, this tutorial is open and customizable to anyone. This was done in the hope that someone (or
some folks) will help design and develop it further.

Download the data for this tutorial at http://demo.mapserver.org/tutorial/mstutorial_data.zip.

25

http://www.nationalatlas.gov
http://demo.mapserver.org/tutorial/mstutorial_data.zip

MapServer Documentation, Release 5.4.2

3.3 Before Using the Tutorial

There are some prerequisites to using this tutorial:

1. Users will need to have a web server installed and running on your computer. This web server has to have
support for common gateway interface (CGI) programs.

2. Users should have a basic understanding of web servers and internet security. A poorly configured web server
can easily be attacked by malicious people. At the very least your software installation will be corrupted and
you’ll lose hours of productivity, at worst your computer can be used to attack other computers on the internet.

3. It is recommended that users of this tutorial read the Introduction to MapServer before proceeding with this
tutorial.

4. To use this tutorial, users will need to have a web server and a MapServer CGI program (mapserv or
mapserv.exe) installed in their systems. MapServer source code is available for download /ere. Documentation
exists on how to compile and install MapServer:

* for UNIX users, please read the MapServer UNIX Compilation and Installation HOWTO.
* Windows users should read the MapServer Win32 Compilation and Installation HOWTO

In addition, Windows users can also download precompiled binaries from /ere.

3.4 Windows, UNIX/Linux Issues

3.4.1 Paths

This tutorial was created in Linux/UNIX but should work with minimal changes on Windows platform. The main
differences are the paths in the map files. Windows users need to specify the drive letter of the hard disk where their
tutorial files reside. Here’s an example:

A UNIX map file might include a parameter like this:
SHAPEPATH "/data/projects/tutorial/data"
In Windows, the same parameters might look like this:

SHAPEPATH "C:/data/projects/tutorial/data"

or:

SHAPEPATH "C:\data\projects\tutoriall\data".

Notice that either slash or backslash works in Windows. The usual backslash may work well for you if you want to
make a distinction between virtual (as in URLs or web addresses) and local paths in your map file. However, if you
plan to move your application to UNIX at some point, you’ll have the tedious task of switching all backslashes to
slashes.

While we’re on the subject of paths, keep in mind that paths in mapfiles are typically relative to the system’s root
directory: the slash (“/”) in UNIX or some drive letter (“C:”) in Windows. This is true except when specifi-
cally asked to enter a URL or when referencing a URL. When working with HTML template files, paths are rel-
ative to the web server’s root directory. i.e., “/tutorial/” is relative to “http://demo.mapserver.org/. Please read
http://www.alistapart.com/stories/slashforward/ for a few insights on URLs.

26 Chapter 3. MapServer Tutorial

http://demo.mapserver.org/
http://www.alistapart.com/stories/slashforward/

MapServer Documentation, Release 5.4.2

3.4.2 Executable

Another issue is that UNIX executable files don’t require a .EXE or .COM extensions, but they do in Windows. If
you are using Windows, append .exe to all instances of “/cgi-bin/mapserv” or *“/cgi-bin/mapserv50” to make it “/cgi-
bin/mapserv.exe” or “/cgi-bin/mapserv50.exe”.

3.5 Other Resources

Other documentation exist to give you better understanding of the many customizations MapServer offer. Please visit
the MapServer documentation page at http://www.mapserver.org. There you will find several HOWTO documents,
from getting started to using MapScript, a scripting interface for MapServer.

Back to Tutorial home | Proceed to Section 1

3.6 Section 1: Static Maps and the MapFile

* Take a shapefile. Any shapefile. We can use MapServer to display that shapefile on a web browser. Look... -
Example 1.1 - A map with a single layer

¢ We can display the same shapefile repeatedly. We can display the polygon attributes on one LAYER and and the line attri
Example 1.2 - A map with two layers

* And we can select which parts of the shapefile to display. We do this using the CLASS object... -
Example 1.3 - Using classes to make a “useful” map

* We can also label our maps... — Example 1.4 - Labeling layers and label layers

¢ Or add raster data such as satellite images, aerial photographs, or shaded reliefs... - Example 1.5 -
Adding a raster layer

* We can reproject our data from just about any projection to just about any... Yeah, check it out! -
Example 1.6 - Projection/Reprojection

¢ And we can use layers from other map servers on the internet (as long as they are WMS servers)... -
Example 1.7 - Adding a WMS layer

* MapServer can output to various formats such as PDF and GeoTIFF. - Example 1.8 - A different output
format
¢ MapServer not only generates static maps, it can also create interactive maps... - Example 1.9 - The

difference between map and browse mode

Back to Tutorial home | Proceed to Section 2

3.7 Section 2: CGl variables and the User Interface

So far we have only looked at the mapfile when creating maps. In creating web mapping applications, it is usually
our intention to make maps that can be changed by the user (of the application) interactively. That is, a user should be
able to change the content of (or the information in) the map. To accomplish this interactivity, we use the MapServer
HTML templates.

3.5. Other Resources 27

http://www.mapserver.org

MapServer Documentation, Release 5.4.2

3.7.1 HTML Templates

A MapServer HTML template is essentially an HTML file with a few MapServer specific tags. These tags are the
MapServer CGI variables and are enclosed in square brackets “[]”. When the MapServer CGI program processes an
application, it first parses the query string and the mapfile, and produces the necessary output. Some of this output
will need to be written to the HTML template file which you would have to also specify in the mapfile using the web
template keyword (or in a separate HTML initialization file). The CGI program will replace all the variables in the
HTML template with the proper value before sending it back to the web browser. If you are to directly view an HTML
template on a web browser, there won’t be any maps rendered and you will instead get blank images and other junk.

Variables

MapServer provides several variables for web mapping: the “img” variable which you’ve seen in Example 1.9 is but
one example. There area few core CGI variables originally designed as part of the mapping interface but practically
all the mapfile parameters can be defined as variables. The definitive reference to the CGI variables can be found at
here.

We can also define our own variables, which MapServer will pass along to our application. For example, we can create
a variable called “root” to represent the root directory of this tutorial, the value for “root” will then be “/tutorial”.
When the MapServer CGI program processes our HTML template, it will replace every instance of he “[root]” tag
with “/tutorial”. You will see this in action for each of the following examples.

3.7.2 Examples

So, let’s build an interactive interface for our application...

» Users of a web mapping application should be able to pan and zoom on the map: Example 2.1 - Pan and Zoom
Controls

* They also should be able to turn on and off layers on a map: Example 2.2 - Layer Control
* A map should always include a scalebar. Example 2.3 - Adding a Scalebar

* If users are to navigate through the map, a reference map should be provided: Example 2.4 - Adding a Reference
Map

* The map should include a legend. Example 2.5- Adding a Legend

Back to Section I index

Begin tutorial

28 Chapter 3. MapServer Tutorial

http://demo.mapserver.org/cgi-bin/mapserv.exe?map=/ms4w/apps/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv.exe&map_web=template+example2-1.html
http://demo.mapserver.org/cgi-bin/mapserv.exe?map=/ms4w/apps/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv.exe&map_web=template+example2-1.html
http://demo.mapserver.org/cgi-bin/mapserv.exe?map=/ms4w/apps/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv.exe&map_web=template+example2-2.html
http://demo.mapserver.org/cgi-bin/mapserv.exe?map=/ms4w/apps/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv.exe&map_web=template+example2-3.html
http://demo.mapserver.org/cgi-bin/mapserv.exe?map=/ms4w/apps/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv.exe&map_web=template+example2-4.html
http://demo.mapserver.org/cgi-bin/mapserv.exe?map=/ms4w/apps/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv.exe&map_web=template+example2-4.html
http://demo.mapserver.org/cgi-bin/mapserv.exe?map=/ms4w/apps/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv.exe&map_web=template+example2-5.html

CHAPTER
FOUR

INSTALLATION

4.1 Compiling on Unix

Author J.F. Doyon

Contact jdoyon at nrcan.gc.ca

Author Howard Butler

Contact hobu.inc at gmail.com

Revision $Revision: 8463 $

Date $Date: 2009-01-28 07:37:36 -0800 (Wed, 28 Jan 2009) $

Table of Contents

* Compiling on Unix

Introduction

Obtaining the necessary software
libgd

Anti-Grain Geometry Support
OGC Support

Spatial Warehousing

Compiling

Installation

4.1.1 Introduction

The University of Minnesota’s MapServer is an open-source and freely available map rendering engine for the web.
Due to its open-source nature, it can be compiled on a wide variety of platforms and operating systems. We will focus
on how to obtain, compile and install MapServer on UNIX-like platforms.

You might also check the MapServerCompilation wiki page for additional information.

4.1.2 Obtaining the necessary software

You can obtain the MapServer source code as well as the demo package from the Download section.

You can also get the latest MapServer source code from Subversion.

29

http://trac.osgeo.org/mapserver/wiki/MapServerCompilation

MapServer Documentation, Release 5.4.2

Required External Libraries

libpng: libpng should be on your system by default. 1.2.12 is the current release with security patches, although
versions all the way back to 1.2.7 should work.

freetype: Version 2.x or above is required by GD.

GD: libgd is used by MapServer for rendering images. Version 2.0.28 or greater required. Version 2.0.29 or
later is required to use curved (following) labels, and version 2.0.34 is required for antialiasing (1 pixel wide
lines/outlines).

zlib: Zlib should be on your system by default. 1.2.1 is the current release with security patches.

Highly Recommended Libraries

libproj: libproj provides projection support for MapServer. Version 4.4.6 or greater is required.

libcurl: libcurl is the foundation of OGC (WFS/WMS/WCS) client and server support. Version 7.10 or greater
is required

OGR: OGR provides access to at least 18 different vector formats.
GDAL: GDAL provides access to at least 42 different raster formats.

AGG: AGG (Anti-Grain Geometry) is an optional dependency to enable high quality antialiased output for
vector data. Currently versions 2.4 and 2.5 are identical featurewise, and only vary in their licence (2.4 is BSD,
2.5is GPL)

Optional External Libraries

libtiff: libtiff provides TIFF (Tagged Image File Format) reading support to MapServer.
libgeotiff libgeotiff provides support to read GeoTIFF files (TIFF files with geographic referencing).

libjpeg: libjpeg allows MapServer to render images in JPEG format. A sufficient version should be installed by
default on your system. Version 6b is the current version and dates back to 1998.

GEOS: GEOS allows MapServer to do spatial predicate and algebra operations (within, touches, etc & union,
difference, intersection). Requires version 4.10 or greater.

libxml: libxml is required to use OGC SOS support in MapServer (versions 4.10 and greater).

SDE Client Library: The client libraries for your platform should be part of the ArcSDE media kit. They are not
publicly available for download.

Oracle Spatial OCI: The client libraries for your platform are available for download from Oracle’s website.
Ideally, your client library matches the database you are querying from, but this is not a hard requirement.

libpq: libpq is required to support the use of PostGIS geometries within the PostgreSQL database. Ideally, your
client library matches the database you are querying from.

pdflib (lite): PDFlib Lite is the Open Source version of PDFlIib that allows MapServer to produce PDF output.
Version 4.0.3 or greater is required.

libming: libming provides Macromedia Flash output to MapServer. Version 0.2a is required. Later versions are
not known to work.

4.1.3 libgd

There are a number of issues that you should be aware of when using GD in combination with MapServer.

30

Chapter 4. Installation

http://www.libpng.org/pub/png/libpng.html
http://www.freetype.org/
http://www.libgd.org/
http://www.gzip.org/zlib/
http://trac.osgeo.org/proj/
http://curl.haxx.se/libcurl/
http://www.gdal.org/ogr/
http://www.gdal.org/
http://antigrain.com
http://www.libtiff.org/
http://trac.osgeo.org/geotiff/
http://www.ijg.org/
http://trac.osgeo.org/geos/
http://xmlsoft.org
http://www.esri.com/software/arcgis/arcsde/index.html
http://www.oracle.com/technology/products/spatial/index.html
http://www.postgresql.org/
http://www.pdflib.com/products/pdflib-family/pdflib-lite/
http://www.libming.org

MapServer Documentation, Release 5.4.2

Minimum libgd versions

MapServer aggressively takes advantage of new features and bug fixes in the latest versions of libgd. The minimum
required version to run MapServer is 2.0.29. Upgrading to at least 2.0.34 is advised as it includes an important bug
fix for antialiased lines. Configure should detect which version of libgd you have installed, but you can quickly check
yourself by issuing the following command:

gdlib-config —--version

libiconv

If you intend to use international character sets, your version of libgd must be compiled against the GNU iconv
libraries. If you are using a pre-packaged version, it is very likely that this is the case. To check for yourself, issue the
following command and look for ‘-liconv’ in the output:

gdlib-config —-1libs

Pre-packaged/system libraries

If you intend to use your system’s libgd, ensure that you have the development package also installed so MapServer
can find and use the appropriate headers.

MacOSX

A useful FAQ on for libgd on OSX is available at http://www.libgd.org/DOC_INSTALL_OSX

FreeType support

The GD you compile MapServer against MUST be compiled against the FreeType library in order to use TrueType
fonts. MapServer no longer uses it’s own interface to FreeType, using it through GD instead.

When you run your “configure” script, look for the following output:

using GD (-DUSE_GD_GIF -DUSE_GD_PNG -DUSE_GD_JPEG
—-DUSE_GD_WBMP -DUSE_GD_TTF -DGD_HAS_GDIMAGEGIFPTR) from system libs.

If your GD is built against FreeType, you will see either “~-DUSE_GD_TTF” (Or “-DUSE_GD_FT” for Freetype 2.x)
part. If it’s missing, you will need to recompile your GD to make sure you include FreeType support. See the GD
documentation for more information.

Also note that the configure script looks for the FreeType library separately as well, generating output looking some-
what like this:

checking where FreeType 1s installed...
checking for FT_Init_FreeType in -lfreetype... yes
using libfreetype -lfreetype from system libs.

Even though you have FreeType installed on your system and the configure script finds it, does NOT mean you will
have TrueType font support. GD MUST be compiled against FreeType either way.

4.1. Compiling on Unix 31

http://www.libgd.org/DOC_INSTALL_OSX

MapServer Documentation, Release 5.4.2

1px Anti-Aliasing and segfaults

Versions of libgd earlier than 2.0.34 contain a one very significant bug and will always cause a segfault if you attempt
to do one pixel wide antialiasing. You can manually patch older gd’s, or better yet upgrade to at least GD 2.0.34.

In gd.c, function gdlmageSetA APixelColor() change:

int dr,dg,db,p,r,qg,b;
p = gdImageGetPixel (im, x,V);

to
int dr,dg,db,p,r,qg,b;
if (!gdImageBoundsSafeMacro (im, x, y)) return;

p = gdImageGetPixel (im, x,V);

More detail about this patch (if you need any) was described by Steve Lime in a post to mapserver-users.

Curved label support

ANGLE FOLLOW, a new feature that allows MapServer to draw curved labels about a linear feature like a road,
requires libgd 2.0.29 and TrueType font support. Configure should autodetect if you have a sufficient libgd and
TrueType support to be able to use this feature.

4.1.4 Anti-Grain Geometry Support
Since version 5.0 MapServer supports the AGG rendering backend. Download the 2.4 tarball from the antigrain

website and just type make in the root directory. If you intend on using mapscript, you must beforehand tweak the agg
makefile to add -fPIC to the compiler options.

4.1.5 OGC Support

MapServer provides support for many OGC specifications. At 4.2.3, it provides support for WMS (Web Mapping
Service), SLD (Styled Layer Descriptor), WES (Web Feature Service), and experimental support for WCS (Web
Coverage Service).

WMS support

WMS Server

Support for this specification is automatically enabled when you include PROJ.4 support. (—-with-proj) You can check
this yourself by looking for the following in your “configure” output:

checking whether we should include WMS support...
OGC WMS compatibility enabled (-DUSE_WMS) .

If, for some reason you DON’T want WMS support, you can force it off by passing “~without-wms” to your configure
script.

More information on using this feature is available in the WMS Server HOWTO available on the MapServer website.

32 Chapter 4. Installation

http://article.gmane.org/gmane.comp.gis.mapserver.user/17766
http://www.opengeospatial.org

MapServer Documentation, Release 5.4.2

WMS Client

Cascading is also supported. This allows mapserver to transparently fetch remote layers over WMS, basically acting
like a client, and combine them with other layers to generate the final map.

In order to enable this feature, you will need to pass the “—with-wmsclient” option to the configure script. MapServer
will automatically look for libcurl, which is also required.

To verify that the WMS Client feature is enabled, check the output from the configure script:

checking whether we should include WMS Client Connections support...
OGC WMS Client Connections enabled (-DUSE_WMS_LYR) .

Note that this feature is disabled by default, you have to specifically request it.

More information on using this feature is available in the WMS Client HOWTO available on the MapServer website.

WFS support

WFS Server

Support for this specification is enabled by passing the configure script the “~with-wfs” option. OGR and PROJ.4
support is required.

You can check this yourself by looking for the following in your “configure” output:

checking whether we should include WFS Server support...
OGC WFS Server support enabled (-DUSE_WFS_SVR) .

Note that this feature is disabled by default, you have to specifically request it.

More information on using this feature is available in the WFS Server HOWTO available on the MapServer website.

WFS Client

MapServer can also act as a WFS client. This effectively means that MapServer reads it’s data from a remote server’s
WES output and renders it into a map, just like it would when reading data from a shapefile.

In order to enable this feature, you will need to make sure you include OGR (Built with Xerces support) and PROJ.4
support, and pass the “—with-wfsclient” option to your configure script. MapServer will automatically look for libcurl,
which is also required.

To verify that the WES Client feature is enabled, check the output from the configure script:

checking whether we should include WFS Client Connections support...
OGC WFS Client Connections enabled (-DUSE_WFS_LYR) .

Note that this feature is disabled by default, you have to specifically request it.

More information on using this feature is available in the WFS Client HOWTO available on the MapServer website.

4.1. Compiling on Unix 33

MapServer Documentation, Release 5.4.2

4.1.6 Spatial Warehousing

MapServer can use a wide variety of sources of data input. One of the solutions growing in popularity is to use spatially
enabled databases to store data, and to use them directly to draw maps for the web.

Here you will find out how to enable mapserver to talk to one of these products. Please refer to the MapFile reference
for more details on how to use these. This section only details how to compile MapServer for their use.

PostGIS

PostGIS adds support for geographic objects to the PostgreSQL object-relational database. In effect, PostGIS “spa-
tially enables” the PostgreSQL server, allowing it to be used as a backend spatial database for geographic information
systems (GIS), much like ESRI’s SDE or Oracle’s Spatial extension. PostGIS is included in many distributions’
packaging system, but you can also roll your own if needed.

MapServer can use PostGIS as a data source. In order to do so simply use “~with-postgis” when running your configure

script.

—-—with-postgis=/usr/local/pgsql/bin/pg_config

ArcSDE

MapServer allows you to use SDE as a data source both for geometry and attributes. In order to achieve this, you must
have the SDE client librairies at your disposition, and have them installed on the machine running MapServer.

In order to enable SDE support in MapServer, you have to compile it with two options specified:

—-—with-sde=/opt/sdeexe90
—-—with-sde-version=90

Oracle Spatial

Oracle’s Spatial Warehousing cartridge is also supported by MapServer. In order to connect to it, you will need to
compile MapServer against the Oracle libraries by passing the “—with-oraclespatial” argument to your configure script.
You will very likely need an ORACLE_HOME environment variable set to have it configure things correctly.

-—with-oraclespatial=/opt/oracle

4.1.7 Compiling

First prepare the ground by making sure all of your required and/or recommended libraries are installed before at-
tempting to compile MapServer. This will make your life much less complicated ;). Here is the order that I usually
use:

1. Compile GD. This often means acquiring libjpeg, libpng, zlib, and freetype before actually compiling the library.
You shouldn’t have too much trouble finding binaries of the libraries that GD requires, and often, they will
already be installed with your system. On unix, I've had very little luck finding pre-compiled binaries of the
required GD library. See libgd section for notes about patching libgd if you plan to use antialiasing.

2. Compile GDAL/OGR. Describing how to compile GDAL/OGR is beyond the scope of this document. If you
have requirements for lots of different formats, make sure to install those libraries first. I often find that building
up a GDAL/OGR library often takes as long as compiling MapServer itself!

34 Chapter 4. Installation

http://postgis.refractions.net
http://www.postresql.org

MapServer Documentation, Release 5.4.2

3. Compile Proj.4. Proj.4 is a straight-forward configure/make/make install library.
4. Compile libcurl. libcurl is a straight-forward configure/make/make install library.

5. Compile/install optional libraries. These might include SDE, PostGIS, Oracle Spatial, AGG, Ming, PDFlib, or
MyGIS. Mix and match as you need them.

6. Unpack the MapServer tarball and cd into the mapserver directory:

[user@host user]$ tar -zxvf mapserver-X.Y.Z.tar.gz

7. Configure your environment using “configure”. I often place my configure command in its own file and changes
its mode to be executable (+x) to save typing and have a record of how MapServer was configured.

./configure —-with-sde=/usr/sde/sdeexe90 \
——with-sde-version=90 \
—-—with-ogr=/usr/local/bin/gdal-config \
—--with—-gdal=/usr/local/bin/gdal-config \
——with-httpd=/usr/sbin/httpd \

——with-wfsclient \

—-with-wmsclient \

—-—enable—-debug \
——with-curl-config=/usr/bin/curl-config \
—-with-proj=/usr/local \

——with-tiff \

—--with-gd=/usr/local/ \

-—-with—jpeg \

-—with-freetype=/usr/ \
—--with-oraclespatial=/usr/oracle \

-—with-threads \

——with-wcs \
--with-postgis=/usr/local/database/bin/pg_config \
—-with-libiconv=/usr \ # new in 4.8
—--with—-geos=/usr/local/bin/geos—config \ # new in 4.8
—--with-libiconv=/usr \ # new in 4.8
——with-xml2-config=/usr/bin/xml2-config \ # new in 4.10
—--with-sos \ # new in 4.10
--with-agg=/path/to/agg-2.4

8. Now that you have configured your build options and selected all the libraries you wish mapserver to use, you’re
ready to compile the source code into an executable.

This is actually quite simple, just execute “make’:

[user@host mapserver]$ make

9. There is no make install step in the installation of MapServer. The output of the compilation of MapServer is a
binary executable that you can use in a CGI execution environment.

To make sure all went well, look for the file called mapserv

[user@host mapserver]$ 1ls —-al mapserv
—IWXT—XIr—X 1 user user 351177 Dec 21 11:38 mapserv

A simple test is to try and run it:

4.1. Compiling on Unix 35

MapServer Documentation, Release 5.4.2

[user@host mapserver]$./mapserv

This script can only be used to decode form results and
should be initiated as a CGI process via a httpd server.
[user@host mapserver]$

The message above is perfectly normal, and means exactly what it says. If you get anything else, something
went terribly wrong.

4.1.8 Installation

MapServer binary
The MapServer program itself consists of only one file, the “mapserv” binary executable. This is a CGI executable,
meant to be called and run by your web server.

In this section, we will assume you are running Apache under its default directory structure in /usr/local/apache. You
may need to have privileges to edit your httpd.conf (the main apache configuration file), or have someone (such as
your webmaster) help you with the configuration details.

The main goal is to get the “mapserv” binary installed in a publicly accessible directory that is configured to run CGI
programs and scripts.

The basic install

Under a default configuration, the CGI directory is ‘“/usr/local/apache/cgi-bin” (RedHat users will use
“/home/httpd/cgi-bin”’). Placing the mapserv file in this directory makes it accessible by the following URL:
“http://yourhostname.com/cgi-bin/mapserv*. When accessing this URL through your web client, you should expect
the following output if all has worked well: “No query information to decode. QUERY_STRING is set, but empty.”
If you get this message, you’re done installing MapServer.

Common problems

File permissions

The most common problem one is likely to encounter when attempting to install the binary are permissions issues:

* You do not have write permissions into your web server’s CGI Directory. Ask your webmaster to install the file
for you.

* The web server gives you a “403 Permission denied” error. Make sure the user the web server runs as (usually
“nobody”) has execute permission on the binary executable. Making the file world executable is perfectly fine
and safe:

[user@host cgi-bin]$ chmod o+x mapserv

Apache errors

You may receive a few different type of errors as well if your web server configuration isn’t right:

36 Chapter 4. Installation

http://yourhostname.com/cgi-bin/mapserv

MapServer Documentation, Release 5.4.2

* 500 Internal server error: This is a fairly generic error message. All it basically tells you is that the web server
was unsuccessful in running the program. You will have to consult the web server’s error log to find out more,
and may need to enlist the help of your webmaster/system administrator.

Where to go once you’ve got it compiled

The An Introduction to MapServer document provides excellent coverage of getting started with MapServer.

4.2 Compiling on Win32

Author Pericles Nacionales

Contact pnaciona at gmail.com

Revision $Revision: 8380 $

Date $Date: 2009-01-02 10:27:46 -0800 (Fri, 02 Jan 2009) $

Table of Contents

* Compiling on Win32
— Introduction
— Compiling
— Set up a Project Directory
— Download MapServer Source Code and Supporting Libraries
— The MapServer source code
— Set Compilation Options
— Compile the Libraries
— Compile MapServer
— Compiling MapServer with PostGIS support
— Common Compiling Errors
— Installation
— Other Helpful Information
— Acknowledgements

4.2.1 Introduction

This document provides a simple set of compilation procedures for MapServer on Win32 platforms.

If you’ve made it this far, chances are you already know about MapServer and are at least tempted to try compiling it
for yourself. Pre-compiled binaries for MapServer are available from a variety of sources. Refer to Windows. Building
MapServer for win32 platforms can be a daunting task, so if existing binaries are sufficient for your needs, it is strongly
advised that they be used in preference to trying to build everything from source.

However, there can be a variety of reasons to want to build MapServer from source on win32. Reasons include the
need to enable specific options, to build with alternate versions of support libraries (such as GDAL), the desire for
MapScript support not part of the core builds, the need to debug and fix bugs or even to implement new features in
MapServer. To make it easy for users and developers, I’ve made a list of steps to compile MapServer. Background
information is provided in each step, along with examples. Each example is a continuation of the previous one and in
the end will produce the MapServer DLL (libmap.dll), the CGI program (the mapserv.exe), and utility programs.

4.2. Compiling on Win32 37

MapServer Documentation, Release 5.4.2

Warning: This document may refer to older library versions. You may want to try to use more recent library
versions for your build.

4.2.2 Compiling

If you are new to Windows programming, please follow this document carefully. The compilation steps are fairly
simple but I've added a few blurbs in each step to help you understand how MapServer compiles. For the more
experienced programmers, perhaps reading the README.Win32 that accompanies the MapServer source code would
be more useful. For those who are antsy, compiling MapServer involves download and unpacking the source codes,
editing the make files, and invoking Microsoft’s Visual C++ compiler from the command prompt. The resulting
mapserv.exe is the CGI program that installs in the cgi-bin directory of your web server.

For those who are willing to take the time, the compilation steps follow.

4.2.3 Set up a Project Directory

Before you start to compile MapServer, I recommend creating a directory called “projects” where you can put the
source code for MapServer and its supporting libraries. Since you will be working with DOS-style commands, you
might as well get used to the Windows command prompt. For Windows 95/98 users the command processor would be
called command.com. For Windows NT/2000/XP, it would be cmd.exe. So fire up the old command prompt and go to
the drive where you want to create the project directory.

Here is an example of how to create a directory called projects on the C: drive:

C:\Users> mkdir C:\Projects

To go to that directory:

C:\Users> cd \Projects
C:\Projects>

From the projects directory, you can extract the source codes for MapServer and its libraries. Now you’re ready to
download the source codes.

4.2.4 Download MapServer Source Code and Supporting Libraries

After creating a project directory, download the MapServer source code and the codes for the supporting libraries and
save the source code packages in the newly created “projects” directory. These source codes are usually packaged as
ZIP, or as UNIX TAR and GZIP files. You’ll need a software that can unzip these packages. 7-Zip is an example of
software that can handle these files.

Cygwin is a free, open-source software package which is a port of these tools on Windows. You can use the gzip and
tar utilities from this tool collection. Cygwin is available from http://www.cygwin.com.

In order to compile the MapServer CGI program, you must download a few required and optional libraries. At
its simplest configuration, MapServer only requires the GD (to provide the image output) and REGEX (to provide
regular expression support) libraries. This configuration allows the developer/data provider to use shapefiles as input
and, depending on the version of GD library used, GIF or PNG images as output. Additional libraries are needed for
input data in alternative formats. The libraries that work with MapServer are listed below.

38 Chapter 4. Installation

http://www.7-zip.org/
http://www.cygwin.com

MapServer Documentation, Release 5.4.2

4.2.5 The MapServer source code

The MapServer source code can be downloaded from the download page. If you’d like to get the current development
version of the software, following the nightly snapshot link under the Interim Builds title. The absolute latest copy of
the source code can be obtained from SVN; however, the SVN respository does not contain several important source
files (maplexer.c, mapparser.c and mapparser.h) normally generated on unix, so if possible, using a nightly snaphot is
substantially easier than working directly from Subversion.

Required Libraries

GD Library: MapServer uses the GD graphics library for rendering map images in GIF, PNG and JPEG format.
These map images are displayed in web browser clients using the MapServer CGI. The current official version
of GD is 2.0.33. The distributed makefiles are setup to use the prebuilt GD Win32 DLL binaries which include
GD, libjpeg, libpng, libz, libgif and FreeType 2 all within one DLL. This package is generally listed as “Windows
DLL .zip” and the latest version is normally available at http://www.boutell.com/gd/http/gdwin32.zip.

Regex: Regex is the regular expression library used by MapServer. It can be downloaded at http:/ftp.gnu.org/old-
gnu/regex/regex-0.12.tar.gz

Optional Libraries

JPEG library: This library is required by GD to render JPEG images, if building GD from source. You may down-
load this library at http://www.ijg.org/files/jpegsrc.v6b.tar.gz

PNG library: This library is required by GD to render PNG images, if building GD from source. You may download
this library at http://sourceforge.net/projects/libpng/

Zlib: This library is required by libpng to provide graphics compression support. It can be downloaded along with
the PNG library, or at http://www.gzip.org/zlib.zip .

FreeType 2: FreeType provides TrueType support in MapServer via GD. We only need to build FreeType seperately
if building GD from source. It can be downloaded at http://gnuwin32.sourceforge.net/packages/freetype.htm .

PROJ.4: Proj.4 provides on-the-fly projection support to MapServer. Users whose data are in different projection
systems can use this library to reproject into a common projection. It is also required for WMS, WFS or WCS
services.

GDAL/OGR: The GDAL/OGR library allows MapServer to read a variety of geospatial raster formats (GDAL) and
vector formats (OGR). It can be downloaded at http://www.gdal.org/.

ArcSDE: ArcSDE is an ESRI proprietary spatial database engine. Most users will not have access to it but if you
have ArcSDE license, you can use its libraries to give MapServer access to SDE databases.

EPPL7: This library allows MapServer to read EPPL7 datasets, as well as the older Erdas LAN/GIS files. This library
is set as a default library in MapServer so there’s no special source code to download.

Now that you have reviewed the libraries that provide support to MapServer, it is time to decide which ones to compile
and use. We will work with the pre-built GD distributed on Boutell.com with PNG, GIF, JPEG, and FreeType “built
in”. If you want to provide OGC Web Services (ie. WMS, WFS) or want to perform on the fly reprojection then the
PROJ.4 library will be needed. If you need additional raster and vector data sources consider including GDAL/OGR
support. GDAL is also required for WCS service.

Our example calls for the required libraries and on-the-fly projection support so we need to download GD, regex, and
Proj.4 libraries. Go ahead and get those libraries.

4.2. Compiling on Win32 39

http://www.libgd.org/
http://www.boutell.com/gd/http/gdwin32.zip
http://ftp.gnu.org/old-gnu/regex/regex-0.12.tar.gz
http://ftp.gnu.org/old-gnu/regex/regex-0.12.tar.gz
http://www.ijg.org/
http://www.ijg.org/files/jpegsrc.v6b.tar.gz
http://www.libpng.org/pub/png/
http://sourceforge.net/projects/libpng/
http://www.gzip.org/zlib/
http://www.gzip.org/zlib.zip
http://www.freetype.org/
http://gnuwin32.sourceforge.net/packages/freetype.htm
http://trac.osgeo.org/proj/
http://www.gdal.org/
http://www.gdal.org/
http://www.esri.com/software/arcgis/arcsde/
http://www.lmic.state.mn.us/resource.html?Id=3603

MapServer Documentation, Release 5.4.2

4.2.6 Set Compilation Options

MapServer, like many of it’s support libraries, comes with a Visual C++ makefile called Makefile.vc. It includes the
file nmake.opt which contains many of the site specific definitions. We will only need to edit the nmake.opt file to
configure the build for our local site options, and support libraries. The Makefile.vc, and nmake.opt template file have
been provided by Assefa Yewondwossen, and the DM Solutions folks.

As of MapServer 4.4, the default MapServer build options only include GD, and regex. MapServer is built using the
/MD option (which means MSVCRT.DLL should be used), so if any support libraries are being built statically (rather
than as DLLs) we need to use /MD when building them as well. By default modern PROJ.4 builds use /MD so we
should be able to use the default PROJ.4 build without tweaking.

The example will compile with the GDWin32 pre-built DLL as well as regex-0.12, and PROJ.4. The PROJ.4 support
will ensure we can enable MapServer OGC-WMS compatibility. Use notepad or another text editor to open the
nmake.opt file and make the following changes.

Comments

Use the pound sign (#) to comment out the lines that you want to disable, or remove the pound sign to enable an
option for NMAKE.

A. Enable PROJ.4 support, and update the path to the PROJ.4 directory. Uncomment the PROJ= line, and the
PROJ_DIR= line as follows, and update the PROJ_DIR path to point to your PROJ build.

Reprojecting.

If you would like mapserver to be able to reproject data from one
geographic projection to another, uncomment the following flag
Proj.4 distribution (cartographic projection routines). PROJ.4 is
also required for all OGC services (WMS, WEFS, and WCS).

e

For PROJ_DIR use full path to Proj.4 distribution
PROJ=-DUSE_PROJ -DUSE_PROJ_API_H
PROJ_DIR=c:\projects\proj—-4.4.9

If you look down later in the file, you can see that once PROJ is enabled, MapServer will be linked with proj_i.lib, the

PROJ 4 stub library, meaning that MapServer will be using the PROJ.DLL as opposed to statically linking in PROJ.4.
1. Uncomment the WMS option.

Use this flag to compile with WMS Server support.

To find out more about the OpenGIS Web Map Server Specification go to

http://www.opengis.org/
WMS=-DUSE_WMS_SVR

1. Update to use GD. Here’s what it should look like in our example.

GD_DIR=c:/projects/gdwin32
GD_LIB=$ (GD_DIR) /bgd.1lib

Note: As distributed the GDWin32 binary build does not include the bgd.lib stub library. It is necessary to run the
makemsvcimport.bat script in the gdwin32 directory first.

D. Make sure the regex path is set correctly. In order for the “delete” command in the “nmake /f makefile.vc clean”
target to work properly it is necessary to use backslashes in the REGEX_DIR definition.

40 Chapter 4. Installation

MapServer Documentation, Release 5.4.2

REGEX Libary

VC++ does not include the REGEX library... so we must provide our one.

The following definitions will try to build GNU regex-0.12 located in the
regex—0.12 sub-directory.

If it was not included in the source distribution, then you can get it from:

EEE

ftp://ftp.gnu.org/pub/gnu/regex/regex-0.12.tar.gz

Provide the full path to the REGEX project directory

You do not need this library if you are compiling for PHP mapscript.
In that case the PHP regex library will be used instead

| TFNDEF PHP

REGEX_DIR=c:\projects\regex-0.12

'ENDIF

Your Makefile is now set.

4.2.7 Compile the Libraries

Before compiling MapServer, you must first compile its supporting libraries. How this is done varies for each library.
For the PROJ .4 library a nmake /f makefile.ve command in the proj-4.4.9src directory should be sufficient. The
regex-0.12 code is actually built by the MapServer build process, so you don’t need to do anything there.

Compiling libcurl

Previously, curl libraries can be compiled using the following command:

nmake /f makefile.vc6 CFG=release

This creates a static library, libcurl.lib, to which you compile against. Versions newer than version 7.10.x should be
compiled as dynamic library. This is accomplished using the command:

nmake /f makefile.vc6 CFG=release-dll

You will then need to edit MapServer’s nmake.opt to replace the CURL_LIB variable with this line:

CURL_LIB = $(CURL_DIR)/lib/libcurl_imp.lib

4.2.8 Compile MapServer

Once you have compiled the supporting libraries successfully, you are ready to take the final compilation step. If
you have not already done so, open a command prompt and set the VC++ environment variables by running the
vevars32.bat usually located in C:Program FilesMicrosoft Visual StudioVC98binvcvars32.bat.

C:\Users> cd \projects\mapserver
C:\Projects\mapserver&> C:\Program Files\Microsoft Visual Studio\VC98\Bin\vcvars32.bat"
C:\Projects\mapserver>

Setting environment for using Microsoft Visual C++ tool.
C:\Projects\mapserver>

4.2. Compiling on Win32 41

MapServer Documentation, Release 5.4.2

Now issue the command: nmake /f Makefile.ve and wait for it to finish compiling. If it compiles successfully, you
should get mapserver.lib, libmap.dll, mapserv.exe, and other .EXE files. That’s it for the compilation process. If you
run into problems, read section 4 about compiling errors. You can also ask for help from the helpful folks in the
MapServer-dev e-mail list.

4.2.9 Compiling MapServer with PostGIS support

To compile PostGIS support into MapServer, here’s what you need to do:

1.

A

download the PostgreSQL 8.0.1 (or later) source from: ftp://ftp.heanet.ie/pub/postgresql/source/
I extracted them to C:projectspostgresql-8.0.1

download the Microsoft Platform SDK otherwise you get link errors on shfolder.lib.

compile libpq under C:projectspostgresql-8.0.1srcinterfaceslibpq using the win32.mak makefile

copy everything from C:projectspostgresql-8.0.1srcinterfaceslibpgrelease to C:projectspostgresql-
8.0.1srcinterfaceslibpq as the MapServer makefile will try to find it there

Define the following in the nmake.opt for MapServer: POSTGIS =-DUSE_POSTGIS POSTGIS_DIR
=c:/projects/postgresql-8.0.1/src

nmake /f makefile.vc

don’t forget to copy libpq.dll (from C:projectspostgresql-8.0.1srcinterfaceslibpgrelease) into a location where
MapServer can find it.

4.2.10 Common Compiling Errors

Following are a few common errors you may encounter while trying to build MapServer.

¢ Visual C++ Tools Not Properly Initialized.

C:\projects\mapserver> nmake —-f /makefile.vc
"nmake’ is not recognized as an internal or external command,
operable program or batch file.

This occurs if you have not properly defined the path and other environment variables required to use MS
VisualC++ from the command shell. Invoke the VCVARS32.BAT script, usually with the command C:Program
FilesMicrosoft Visual StudioVC98binvcvars32.bat or something similar if visual studio was installed in an
alternate location. To test if VC++ is available, just type “nmake” or “cl” in the command shell and ensure it is
found.

Regex Build Problems.

regex.obj : error LNK2001l: unresolved external symbol _printchar
libmap.dll : fatal error LNK1120: 1 unresolved externals

NMAKE : fatal error U1l077: ’link’ : return code ’0x460’

Stop.

This occurs if you use the stock regex-0.12 we referenced. I work around this by commenting out the “extern”
statement for the printchar() function, and replacing it with a stub implementation in regex-0.12regex.c.

//extern void printchar ();
void printchar(int i) {}

* GD Import Library Missing.

42

Chapter 4. Installation

ftp://ftp.heanet.ie/pub/postgresql/source/
http://www.microsoft.com/downloads/details.aspx?familyid=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en

MapServer Documentation, Release 5.4.2

LINK : fatal error LNK1104: cannot open file ’'c:/projects/gdwin32/bgd.lib’
NMAKE : fatal error U1l077: ’link’ : return code ’0x450’
Stop.

If you are using the pre-built GD binaries, you still need to run the makemsvcimport.bat script in the gdwin32
directory to create a VC++ compatible stub library (bgd.lib).

4.2.11 Installation

The file we are most interested in is mapserv.exe. The other executable files are the MapServer utility programs.

See Also:

MapServer Utilities

to learn more about these utilities.

To test that the CGI program is working, type mapserv.exe at the command prompt. You should see the following

message:

This script can only be used to decode form results and
should be initiated as a CGI process via a httpd server.

You may instead get a popup indicating that a DLL (such as bgd.dll) is missing. You will need to copy all the required
DLLs (ie. bgd.dll, and proj.dll) to the same directory as the mapserv.exe program.

Now type mapserv -v at the command prompt to get this message:
MapServer version 4.4.0-beta3 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP

SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER INPUT=SHAPEFILE
DEBUG=MSDEBUG

This tells us what data formats and other options are supported by mapserv.exe. Assuming you have your web server
set up, copy mapserv.exe, libmap.dll, bgd.dll, proj.dll and any other required DLLs to the cgi-bin directory.

You are now ready to download the demo application and try out your own MapServer CGI program. If you wish,
you can also create a directory to store the utility programs. I’d suggest making a subdirectory called “bin” under
the directory “projects” and copy the executables to that subdirectory. You might find these programs useful as you
develop MapServer applications.

4.2.12 Other Helpful Information

The MapServer Unix Compilation and Installation HOWTO has good descriptions of some MapServer compilation
options and library issues. I will write more about those options and issues on the next revision of this HOWTO.

The README documents of each of the supporting libraries provide compilation instructions for Windows.

The MapServer User community has a collective knowledge of the nuances of MapServer compilation. Seek their
advice wisely.

4.2.13 Acknowledgements

Thanks to Assefa Yewondwossen for providing the Makefile.vc. 1 would not have been able to write this HOWTO
without that file.

Thanks to Bart van den Eijnden for the libcurl and PostGIS compilation info.

4.2. Compiling on Win32 43

MapServer Documentation, Release 5.4.2

Thanks to the Steve Lime for developing MapServer and to the many developers who contribute time and effort in
order to keep the MapServer project successful.

4.3 PHP MapScript Installation

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 8459 $

Date $Date: 2009-01-27 10:13:56 -0800 (Tue, 27 Jan 2009) $

Table of Contents

* PHP MapScript Installation
— Introduction
— Obtaining, Compiling, and Installing PHP and the PHP/MapScript Module
— FAQ / Common Problems

4.3.1 Introduction
The PHP/MapScript module is a PHP dynamically loadable module that makes MapServer’s MapScript functions and
classes available in a PHP environment.

The original version of MapScript (in Perl) uses SWIG, but since SWIG does not support the PHP language, the
module has to be maintained separately and may not always be in sync with the Perl version.

The PHP module was developed by DM Solutions Group and is currently maintained by Mapgears.
This document assumes that you are already familiar with certain aspects of your operating system:
¢ For Unix/Linux users, a familiarity with the build environment, notably make.

» For Windows users, some compilation skills if you don’t have ready access to a pre-compiled installation and
need to compile your own copy of MapServer with the PHP/MapScript module.

Which version of PHP is supported?
PHP MapScript was originally developed for PHP-3.0.14 but after MapServer 3.5 support for PHP3 has been dropped
and as of the last update of this document, PHP 4.3.11 or more recent was required (PHPS5 is well supported).
The best combinations of MapScript and PHP versions are:
e MapScript 4.10 with PHP 5.2.1 and up
* MapScript 4.10 with PHP 4.4.6 and up

How to Get More Information on the PHP/MapScript Module for MapServer

* For a list of all classes, properties, and methods available in the module see the PHP MapScript reference
document.

* More information on the PHP/MapScript module can be found on the PHP/MapScript page on MapTools.org.

44 Chapter 4. Installation

http://www.swig.org/
http://www.dmsolutions.ca/
http://www.mapgears.com
http://www.maptools.org/php_mapscript/

MapServer Documentation, Release 5.4.2

* The MapServer Wiki also has PHP/MapScript build and installation notes and some php code snippets.

* Questions regarding the module should be forwarded to the MapServer mailing list.

4.3.2 Obtaining, Compiling, and Installing PHP and the PHP/MapScript Module
Download PHP and PHP/MapScript

¢ The PHP source or the Win32 binaries can be obtained from the PHP web site.

* Once you have verified that PHP is installed and is running, you need to get the latest MapServer source and
compile MapServer and the PHP module.

Setting Up PHP on Your Server

Unix
 Check if you have PHP already installed (several Linux distributions have it built in).
¢ If not, see the PHP manual’s “Installation on Unix systems” section.

Windows

o MS4W (MapServer For Windows) is a package that contains Apache, PHP, and PHP/MapScript ready to use in
a simple zipfile. Several Open Source applications are also available for use in MS4W.

* Windows users can follow steps in the Installing Apache, PHP and MySQL on Windows tutorial to install
Apache and PHP manually on their system.

e Window users running PWS/IIS can follow php.net’s howto for installing PHP for PWS/IIS 3, PWS 4 or newer,
and IIS 4 or newer.

Note: When setting up PHP on Windows, make sure that PHP is configured as a CGI and not as an Apache module
because php_mapscript.dll is not thread-safe and does not work as an Apache module (See the Example Steps of a Full
Windows Installation section of this document).

Build/Install the PHP/MapScript Module

Building on a Linux Box

NOTE: For UNIX users, see the README.CONFIGURE file in the MapServer source, or see the Compiling on Unix
HowTo.

* The main MapServer configure script will automatically setup the main makefile to compile php_mapscript.so
if you pass the —with-php=DIR argument to the configure script.

* Copy the php_mapscript.so library to your PHP extensions directory, and then use the dI() function to load the
module at the beginning of your PHP scripts. See also the PHP function extension_loaded() to check whether
an extension is already loaded.

e The file mapscript/php3/examples/phpinfo_mapscript.phtml will test that the php_mapscript module is properly
installed and can be loaded.

* If you get an error from PHP complaining that it cannot load the library, then make sure that you recompiled
and reinstalled PHP with support for dynamic libraries. On RedHat 5.x and 6.x, this means adding “-rdynamic”
to the CLDFLAGS in the main PHP3 Makefile after running ./configure Also make sure all directories in the
path to the location of php_mapscript.so are at least r-x for the HTTPd user (usually ‘nobody’), otherwise dI()
may complain that it cannot find the file even if it’s there.

4.3. PHP MapScript Installation 45

http://trac.osgeo.org/mapserver/wiki/PHPMapScript
http://www.php.net/
http://php.net/manual/en/install.unix.php
http://www.maptools.org/ms4w/
http://www.php-mysql-tutorial.com/install-apache-php-mysql.php
http://www.php.net/manual/en/install.iis.php
http://www.php.net/manual/en/function.extension-loaded.php

MapServer Documentation, Release 5.4.2

Building on Windows

» For Windows users, it is recommended to look for a precompiled binary for your PHP version on the MapServer

download page or on MapTools.org.

* If for some reason you really need to compile your own Windows binary then see the README.WIN32 file in

the MapServer source (good luck!).

Installing PHP/MapScript

Simply copy the file php4_mapscript.dll to your PHP4 extensions directory (pathto/php/extensions)

Using phpinfo()

To verify that PHP and PHP/MapScript were installed properly, create a ‘.php’ file containing the following code and

try to access it through your web server:

<HTML>
<BODY>

<?php

if (PHP_OS == "WINNT" || PHP_OS == "WIN32")

{
dl ("php_mapscript.dll");
}
else
{
dl ("php_mapscript.so");
}
phpinfo();
?>

</BODY>
</HTML>

If PHP and PHP/MapScript were installed properly, several tables should be displayed on your page, and ‘MapScript’

should be listed in the ‘Extensions’ table.

Example Steps of a Full Windows Installation

Using MS4W (MapServer for Windows)
1. Download the latest MS4W base package.

. Extract the files in the archive to the root of one of your drives (e.g. C:/ or D:/).

2
3. Double-click the file /ms4w/apache-install.bat to install and start the Apache Web server.
4

. In a web browser goto http://127.0.0.1. You should see an MS4W opening page. You are now running PHP,

PHP/MapScript, and Apache.

5. You can now optionally install other applications that are pre-configured for MS4W, which are located on the

MS4W download page.

Manual Installation Using Apache Server

1. Download the Apache Web Server and extract it to the root of a directory (eg. D:/Apache).

2. Download PHP4 and extract it to your Apache folder (eg. D:/Apache/PHP4).

46

Chapter 4. Installation

http://www.maptools.org/php_mapscript/index.phtml?page=downloads.html
http://www.maptools.org/ms4w/index.phtml?page=downloads.html
http://127.0.0.1
http://www.maptools.org/ms4w/index.phtml?page=downloads.html
http://httpd.apache.org/
http://www.php.net/

MapServer Documentation, Release 5.4.2

3.

7.

Create a temp directory to store MapServer created GIFs. NOTE: This directory is specified in the IMAGEPATH
parameter of the WEB Object in the Mapfile reference. For this example we will call the temp directory
“ms_tmp” (eg. E:/tmp/ms_tmp).

Locate the file httpd.conf in the conf directory of Apache, and open it in a text viewer (eg. TextPad, Emacs,
Notepad).

In the Alias section of this file, add aliases to the ms_tmp folder and any other folder you require (for this
example we will use the msapps folder):

Alias /ms_tmp/ "path/to/ms_tmp/"
Alias /msapps/ "path/to/msapps/"

In the ScriptAlias section of this file, add an alias for the PHP4 folder.
ScriptAlias /cgi-phpd/ "pathto/apache/phpd/"

In the AddType section of this file, add a type for php4 files.

AddType application/x-httpd-php4 .php

In the Action section of this file, add an action for the php.exe file.
Action application/x-httpd-php4 "/cgi-php4/php.exe"

Copy the file php4.ini-dist located in your Apache/php4 directory and paste it into your WindowsNT folder (eg.
c:/winnt), and then rename this file to php.ini in your WindowsNT folder.

If you want specific extensions loaded by default, open the php.ini file in a text viewer and uncomment the
appropriate extension.

Place the file php_mapscript.dll into your Apache/php4/extensions folder.

Installation Using Microsoft’s IIS

(please see the /IS Setup for MapServer document for uptodate steps)

1.
. Install PHP and PHP/MapScript (see above).

~ W

Install IIS if required (see the IIS 4.0 installation procedure).

. Open the Internet Service Manager (eg. C/WINNT/system32/inetsrv/inetmgr.exe).

. Select the Default web site and create a virtual directory (right click, select New/Virtual directory). For this

example we will call the directory msapps.

. In the Alias field enter msapps and click Next.
. Enter the path to the root of your application (eg. “c:/msapps”) and click Next.
. Set the directory permissions and click Finish.

. Select the msapps virtual directory previously created and open the directory property sheets (by right clicking

and selecting properties) and then click on the Virtual directory tab.

. Click on the Configuration button and then click the App Mapping tab.
. Click Add and in the Executable box type: path/to/php4/php.exe %s %s. You MUST have the %s %s on the

end, PHP will not function properly if you fail to do this. In the Extension box, type the file name extension to
be associated with your PHP scripts. Usual extensions needed to be associated are phtml and php. You must
repeat this step for each extension.

4.3.

PHP MapScript Installation 47

http://support.microsoft.com/support/iis/install/install_iis4.asp

MapServer Documentation, Release 5.4.2

11. Create a temp directory in Explorer to store MapServer created GIFs.

Note: This directory is specified in the IMAGEPATH parameter of the WEB Object in the Mapfile. For this
example we will call the temp directory ms_tmp (eg. C:/tmp/ms_tmp).

12. Open the Internet Service Manager again.

13. Select the Default web site and create a virtual directory called ms_tmp (right click, select New/Virtual direc-
tory). Set the path to the ms_tmp directory (eg. C:/tmp/ms_tmp) . The directory permissions should at least be
set to Read/Write Access.

4.3.3 FAQ/ Common Problems

Questions Regarding Documentation

Q Is there any documentation available?

A The main reference document is the PHP MapScript reference, which describes all of the current
classes, properties and methods associated with the PHP/MapScript module.

To get a more complete description of each class and the meaning of their member variables, see the
MapScript reference and the MapFile reference.

The MapServer Wiki also has PHP/MapScript build and installation notes and some php code snip-
pets.

Q Where can I find sample scripts?

A Some examples are included in directory mapserver/mapscript/php3/examples/ in the MapServer
source distribution. A good one to get started is test_draw_map.phtml: it’s a very simple script
that just draws a map, legend and scalebar in an HTML page.

A good intermediate example is the PHP MapScript By Example guide (note that this document was
created for an earlier MapServer version but the code might be still useful).

The next example is the GMap demo. You can download the whole source and data files from the
MapTools.org download page.

Questions About Installation

Q How can I tell that the module is properly installed on my server?

A Create a file called phpinfo.phtml with the following contents:

<?php dl ("php_mapscript.so");
phpinfo();
?>

Make sure you replace the php_mapscript.so with the name under which you installed it, it could be
php_mapscript_46.so on Unix, or php_mapscript_46.dll on Windows

You can then try the second test page mapserver/mapscript/php3/examples/test_draw_map.phtml.
This page simply opens a MapServer .map file and inserts its map, legend, and scalebar in an HTML
page. Modify the page to access one of your own MapServer .map files, and if you get the expected
result, then everything is probably working fine.

48 Chapter 4. Installation

http://trac.osgeo.org/mapserver/wiki/PHPMapScript
http://www.mapsherpa.com/gmap/
http://www.maptools.org/dl/

MapServer Documentation, Release 5.4.2

Q I try to display my .phtml or .php page in my browser but the page is shown as it would it
Notepad.

A The problem is that your PHP installation does not recognize “.phtml” as a PHP file extension. As-
suming you’re using PHP4 under Apache then you need to add the following line with the other
PHP-related AddType lines in the httpd.conf:

AddType application/x-httpd-php .phtml

For a more detailed explanation, see the Example Steps of a Full Windows Installation section of
this document.

Q Iinstalled the PROJ.4, GDAL, or one of the support libraries on my system, it is recognized by
MapServer’s “configure” as a system lib but at runtime I get an error: “libproj.so.0: No such
file or directory”.

A You are probably running a RedHat Linux system if this happened to you. This happens because the
libraries install themselves under /usr/local/lib but this directory is not part of the runtime library
path by default on your system.

(I'm still surprised that “configure” picked proj.4 as a system lib since it’s not in the system’s lib
path...probably something magic in autoconf that we’ll have to look into)

There are a couple of possible solutions:
1. Add a “setenv LD_LIBRARY_PATH” to your httpd.conf to contain that directory

2. Edit /etc/ld.so.conf to add /ust/local/lib, and then run “/sbin/ldconfig”. This will permanently
add /usr/local/lib to your system’s runtime lib path.

3. Configure MapServer with the following options:

—-—with-proj=/usr/local --enable-runpath

and the /usr/local/lib directory will be hardcoded in the exe and .so files

I (Daniel Morissette) personally prefer option #2 because it is permanent and applies to everything
running on your system.

Q Does PHP/MapScript have to be setup as a CGI? If so, why?
A Yes, please see the PHP/MapScript CGI page in the MapServer Wiki for details.

Q I have compiled PHP as a CGI and when PHP tries to load the php_mapscript.so, I get an
‘“undefined symbol: _register_list_destructors’ error. What’s wrong?

A Your PHP CGI executable is probably not linked to support loading shared libraries. The MapServer
configure script must have given you a message about a flag to add to the PHP Makefile to enable
shared libs.

Edit the main PHP Makefile and add “-rdynamic” to the LDFLAGS at the top of the Makefile, then
relink your PHP executable.

Note: The actual parameter to add to LDFLAGS may vary depending on the system you’re running
on. On Linux it is “-rdynamic”, and on *BSD it is “-export-dynamic”.

4.3.

PHP MapScript Installation

49

http://old-mapserver.gis.umn.edu/cgi-bin/wiki.pl?PHPMapScriptCGI

MapServer Documentation, Release 5.4.2

Q What are the best combinations of MapScript and PHP versions?
A The best combinations are:

* MapScript 4.10 with PHP 5.2.1 and up

e MapScript 4.10 with PHP 4.4.6 and up

Q I am dynamically loading gd.so and php_mapscript.so and running into problems, why?

A The source of the problems could be a mismatch of GD versions. The PHP GD module compiles its
own version of libgd, and if the GD library is loaded before the mapscript library, mapscript will
use the php-specific version. Wherever possible you should use a gd.so built with the same GD as
PHPMapScript. A workaround is to load the php_mapscript module before the GD module.

4.4 .NET MapScript Compilation

Author Tamas Szekeres

Contact szekerest at gmail.com

Revision $Revision: 8386 $

Date $Date: 2009-01-04 14:03:29 -0800 (Sun, 04 Jan 2009) $

4.4.1 Compilation

Before compiling C# MapScript you should compile MapServer with the options for your requirements. For more
information about the compilation of MapServer please see Win32 Compilation and Installation Guide. It is highly
recommended to minimize the library dependency of your application, so when compiling MapServer enable only the
features really needed. To compile the C# binding SWIG 1.3.31 or later is required.

Warning: This document may refer to older library versions. You may want to try to use more recent library
versions for your build.

Win32 compilation targeting the MS.NET framework 1.1

You should compile MapServer, MapScript and all of the subsequent libraries using Visual Studio 2003. Download
and uncompress the latest SWIGWIN package that contains the precompiled swig.exe Open the Visual Studio .NET
2003 Command Prompt and step into the /mapscript/csharp directory. Edit makefile.vc and set the SWIG variable to
the location of your swig.exe

Use

nmake —-f makefile.vc

to compile mapscript.dll and mapscript_csharp.dIl.

50 Chapter 4. Installation

MapServer Documentation, Release 5.4.2

Win32 compilation targeting the MS.NET framework 2.0

You should compile MapServer, MapScript and all of the subsequent libraries using Visual Studio 2005. Download
and uncompress the latest SWIGWIN package that contains the precompiled swig.exe Open the Visual Studio 2005
Command Prompt and step into the /mapscript/csharp directory Edit makefile.vc and set the SWIG variable to the
location of your swig.exe.

Use

nmake —-f makefile.vc

to compile mapscript.dll and mapscript_csharp.dll.

Win32 compilation targeting the MONO framework

Before the compilation you should download and install the recent mono Win32 setup package (eg. mono-1.1.13.2-
gtksharp-2.8.1-win32-1.exe) Edit makefile.vc and set the CSC variable to the location of your mcs.exe. Alternatively
you can define

MONO = YES

in your nmake.opt file.

You should use the same compiler for compiling MapScript as the compiler has been used for the MapServer compi-
lation. To compile MapScript open the Command Prompt supplied with your compiler and use

nmake —-f makefile.vc

to compile mapscript.dll and mapscript_csharp.dll.

Alternative compilation methods on Windows

Beginning from MapServer 4.8.3 you can invoke the C# compilation from the MapServer directory by uncommenting
DOT_NET in nmake.opt

.NET will of course only work with MSVC 7.0 and 7.1. Also note that
you will definitely want USE_THREAD defined.

#DOT_NET = YES

and invoking the compilation by
nmake —-f makefile.vc csharp
You can also use

nmake —-f makefile.vc install

for making the compilation an copying the targets into a common output directory.

4.4. .NET MapScript Compilation 51

MapServer Documentation, Release 5.4.2

Testing the compilation
For testing the compilation and the runtime environment you can use

nmake —-f makefile.vc test

within the csharp directory for starting the sample applications compiled previously. Before making the test the
location of the corresponding libraries should be included in the system PATH.

Linux compilation targeting the MONO framework

Before the compilation you should download and install the recent mono Linux package. Some distributions have pre-
compiled binaries to install, but for using the latest version you might want to compile and install it from the source.
Download and uncompress the latest SWIG release. You should probably compile it from the source if pre-compiled
binaries are not available for your platform.

Before compiling MapScript, MapServer should be configured and compiled. Beginning from MapServer 4.8.2 during
configuration the mapscript/csharp/Makefile will be created according to the configuration options. Edit this file and
set the SWIG and CSC for the corresponding executable pathes if the files could not be accessed by default. To compile
at a console step into the /mapscript/csharp directory use.

make

to compile libmapscript.so and mapscript_csharp.dll.

For testing the compilation and the runtime environment you can use
make test

for starting the sample applications compiled previously.

OSX compilation targeting the MONO framework
Beginning from 4.10.0 the csharp/Makefile supports the OSX builds. Before making the build the recent MONO
package should be installed on the system.

Before compiling MapScript, MapServer should be configured and compiled. Beginning from MapServer 4.8.2 during
configuration the mapscript/csharp/Makefile will be created according to the configuration options. Edit this file and
set the SWIG and CSC for the corresponding executable pathes if the files could not be accessed by default. To compile
at a console step into the /mapscript/csharp directory use

make

to compile libmapscript.dylib and mapscript_csharp.dll.

For testing the compilation and the runtime environment you can use
make test

for starting the sample applications compiled previously.

To run the applications mapscript_csharp.dll.config is needed along with the mapscript_csharp.dll file. This file is
created during the make process

52 Chapter 4. Installation

MapServer Documentation, Release 5.4.2

4.4.2 Installation

The files required for your application should be manually installed. It is highly recommended to copy the files into
the same folder as the executable resides.

4.4.3 Known issues

Visual Studio 2005 requires a manifest file to load the CRT native assembly wrapper

If you have compiled MapServer for using the CRT libraries and you are using the MS.NET framework 2.0 as the
execution runtime you should supply a proper manifest file along with your executable, like:

<?xml version="1.0" encoding="utf-8"7?>

<assembly xsi:schemalocation="urn:schemas-microsoft-com:asm.vl assembly.adaptive.xsd" manifestVersio:
<assemblyIdentity name="drawmap.exe" version="1.0.0.0" type="win32" />

<dependency>

<dependentAssembly asmv2:dependencyType="install" asmv2:codebase="Microsoft.VC80.CRT.manifest" asmv2
<assemblyIdentity name="Microsoft.VC80.CRT" version="8.0.50608.0" publicKeyToken="1fc8b3b9%lel8e3b" i
<hash xmlns="urn:schemas-microsoft-com:asm.v2">

<dsig:Transforms>

<dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />

</dsig:Transforms>

<dsig:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<dsig:DigestValue>UMOlhUBGeKRrrg9DaaPNgyhRjyM=</dsig:DigestValue>

</hash>

</dependentAssembly>

</dependency>

</assembly>

This will inform the CLR that your exe depends on the CRT and the proper assembly wrapper is to be used. If you are
using the IDE the manifest file could be pregenerated by adding a reference to Microsoft. VC80.CRT.manifest within
the /Microsoft Visual Studio 8/VC/redist/x86/Microsoft. VC80.CRT directory.

Manifests for the dll-s must be embedded as a resource

According to the windows makefile the MapScript compilation target (mapscript.dll) is linked with the /MD option. In
this case the VS2005 linker will generate a manifest file containing the unmanaged assembly dependency. The sample
contents of the manifest file are:

<?xml version='1.0" encoding='UTF-8’ standalone=’yes’?>

<assembly xmlns=’urn:schemas-microsoft-com:asm.vl’ manifestVersion='1.0'">

<dependency>

<dependentAssembly>

<assemblyIdentity type=’'win32’ name='Microsoft.VC80.CRT’ version=’8.0.50608.0" processorArchitecture:
</dependentAssembly>

</dependency>

</assembly>

Like previously mentioned if you are creating a windows application the common language runtime will search for a
manifest file for the application. The name of the manifest file should be the same as the executable append and end
with the .manifest extension. However if the host process is not controlled by you (like web mapping applications using
aspnet_wp.exe as the host process) you will not be certain if the host process (.exe) will have a manifest containing a
reference to the CRT wrapper. In this case you may have to embed the manifest into the dll as a resource using the mt
tool like:

4.4. .NET MapScript Compilation 53

MapServer Documentation, Release 5.4.2

mt /manifest mapscript.dll.manifest /outputresource:mapscript.dll;#2

the common language runtime will search for the embedded resource and load the CRT assembly properly.

Normally it is enough to load the CRT with the root dll (mapscript.dll), but it is not harmful embedding the manifest
into the dependent libraries as well.

Issue with regex and Visual Studio 2005

When compiling with Microsoft Visual Studio 2005 variable name collision may occur between regex.c and crtdefs.h.
For more details see:

http://trac.osgeo.org/mapserver/ticket/1651

C# MapScript library name mapping with MONO

Using the MapScript interface created by the SWIG interface generator the communication between the C# wrapper
classes (mapscript_csharp.dll) and the C code (mapscript.dll) takes place using platform invoke like:

[DllImport ("mapscript", EntryPoint="CSharp_new_mapObi")]
public static extern IntPtr new_mapObj(string jargl);

The DIlImport declaration contains the library name, however to transform the library name into a file name is platform
dependent. On Windows the library name is simply appended with the .dll extension (mapscript.dll). On the Unix
systems the library file name normally starts with the 1ib prefix and appended with the .so extension (libmapscript.so).

Mapping of the library name may be manually controlled using a dll.config file. This simply maps the library file
the DllImport is looking for to its unix equivalent. The file normally contains the following information (map-
script_csharp.dll.config):

<configuration>
<dllmap dll="mapscript" target="libmapscript.so" />
</configuration>

and with the OSX builds:

<configuration>
<dllmap dll="mapscript" target="libmapscript.dylib" />
</configuration>

The file should be placed along with the corresponding mapscript_csharp.dll file, and created by default during the
make process. For more information see:

http://trac.osgeo.org/mapserver/ticket/1596 http://www.mono-project.com/Interop_with_Native_Libraries

Localization issues with MONO/Linux

According to http://trac.osgeo.org/mapserver/ticket/1762 MapServer may not operate equally well on different locale
settings. Especially when the decimal separator is other than *.” inside the locale of the process may cause parse errors
when the mapfile contains float numbers. Since the MONO process takes over the locale settings of the environment

it is worth considering to set the default locale to “C” of the host process, like:

LC_ALL=C mono ./drawmap.exe ../../tests/test.map test_csharp.png

54 Chapter 4. Installation

http://trac.osgeo.org/mapserver/ticket/1651
http://trac.osgeo.org/mapserver/ticket/1596
http://www.mono-project.com/Interop_with_Native_Libraries
http://trac.osgeo.org/mapserver/ticket/1762

MapServer Documentation, Release 5.4.2

4.4.4 Most frequent errors

This chapter will summarize the most frequent problems the user can run into. The issues were collected mainly from
the -users list and the IRC.

Unable to load dll (MapScript)

You can get this problem on Windows and in most cases it can be dedicated to a missing or an unloadable shared
library. The error message talks about mapscript.dll but surely one or more of the dll-s are missing that libmap.dll
depends on. So firstly you might want to check for the dependencies of your libmap.dll in your application directory.
You can use the Visual Studio Dependency Walker to accomplish this task. You can also use a file monitoring tool
(like SysInternal’s filemon) to detect the dll-s that could not be loaded. I propose to store all of the dll-s required by
your application in the application folder. If you can run the drawmap C# sample application with your mapfile your
compilation might be correct and all of the dlls are available.

You may find that the MapScript C# interface behaves differently for the desktop and the ASP.NET applications.
Although you can run the drawmap sample correctly you may encounter the dll loading problem with the ASPNET
applications. When creating an ASP.NET project your application folder will be ‘Inetpubwwwroot[YourApp]bin’
by default. The host process of the application will aspnet_wp.exe or w3wp.exe depending on your system. The
application will run under a different security context than the interactive user (under the context of the ASPNET
user by default). When placing the dll-s outside of your application directory you should consider that the PATH
environment variable may differ between the interactive and the ASPNET user and/or you may not have enough
permission to access a dll outside of your application folder.

4.4.5 Bug reports

If you find a problem dedicated to the MapScript C# interface feel free to file a bug report to the Issue Tracker.

4.5 IIS Setup for MapServer

Author Debbie Paqurek
Last Updated 2005/12/12

Table of Contents

o IIS Setup for MapServer
— Base configuration
Php.ini file
Internet Services Manager
Under the tree for your new website - add virtual directories for
Test PHP
Mapfiles for IIS
Configuration files:

Some help on how to set up MapServer/Chameleon/PhpPgAdmin on Microsoft IIS (v5.0). Contains note on changes
to the php.ini file and necessary changes to the MapServer mapfiles. Please contribute or make changes as required.

4.5. IS Setup for MapServer 55

http://trac.osgeo.org/mapserver

MapServer Documentation, Release 5.4.2

4.5.1 Base configuration

* Windows 2000

« [IS5.0

e MS4W 1.2.1

* Chameleon 2.2

e PHP4.3.11

* MapServer 4.7

e PhpPgAdmin 3.5.4 (if using postgresql/postgis)
* Postgres 8.0.3 (if using postgresql/postgis)

* Postgis 1.0.3 (if using postgresql/postgis)

This setup assumes that MS4W was unzipped to form c:\ms4w\ directory.

4.5.2 Php.ini file

* session.save_path (absolute path to your tmp directory)
* extension_dir (relative path to your php/extensions directory)
* cgi.force_redirect = O

* enable the pg_sql extension (php_pgsql.dll) (for Postgresql)

4.5.3 Internet Services Manager

Under your website tree, create a new website (e.g. msprojects). View the properties for the new website.

Web Site Tab e set the IP address and under the Advanced tab put the complete Host Header name
(e.g.msprojects.gc.ca).

Home Directory Tab * content should come from: A directory located on this computer.
* Local Path: c:\ms4w\Apache\htdocs
* Read access + whatever else you need
* Execute Permissions: Scripts only

* Configuration button - App Mappings (Add extensions .php and .phtml, Executable is
c:\ms4w\Apache\cgi-bin\php.exe,select All verbs, Script Engine, and check that file exists

Documents Tab * Add index.phtml and index.html
* Directory Security Tab - Anonymous access amd authentication control
— Select Anonymous access and the edit button should indicate the IUSR_account

Server Extensions Tab Enable authoring is selected and client scripting says Javascript

56 Chapter 4. Installation

MapServer Documentation, Release 5.4.2

4.5.4 Under the tree for your new website - add virtual directories for

cgi-bin Under Properties, virtual directory tab Local Path should point to c:\ms4w\apache\cgi-bin. Select Read.
Execute Permissions should say “scripts and executables”

ms_tmp Under Properties, virtual directory tab Local Path should point to c:\ms4w\tmp\ms_tmp. Select Read, Write.
Execute Permissions should say “scripts only”. This is where temporary images are written to so in the File
system Security tab (use windows explorer), the c:\ms4w\tmp\ms_tmp directory should have permissions set
for the Internet Guest Account (Read and execute, Read, Write, List Folder Contents).

tmp Under Properties, virtual directory tab Local Path should point to c:\\ms4w\tmp. Select Read, Write. Execute
Permissions should say “scripts only”. This is where chameleon writes sessions to so in the File system Secu-
rity tab (use windows explorer), the c:\ms4w\tmp directory should have permissions set for the Internet Guest
Accounnt (Read and execute, Read, Write, List Folder Contents).

chameleon Under Properties, virtual directory tab Local Path should point to C:\ms4w\apps\chameleon\htdocs. Select
Read. Execute Permissions should say “scripts only”. Under the Chameleon tree, you can add virtual directories
for admin (c:\ms4w\apps\chameleon\admin\htdocs), samples (c:\ms4w\apps\chameleon\samples\htdocs), cwc2
(c:\ms4w\apps\chameleon\cwc2\htdocs)

phppgadmin If using postgresql/postgis, under Properties, virtual directory tab Local Path should point to
C:\ms4w\Apache\htdocs\phpPgAdmin. Select Read, Write. Execute Permissions should say “scripts and ex-
ecutables”. Under Documents - add index.php.

Note: We had to unzip the phppgadmin package into this directory in order to get phppgadmin to show us the login
page at http://yourserver/phppgadmin/index.php. You might want additional security on this directory.

gmap Good for testing purposes. Remember to change your mapfiles as discussed in Mapfiles for IIS below. Under
Properties, virtual directory tab Local Path should point to C:\ms4w\apps\gmap\htdocs. Select Read. Execute
Permissions should say “scripts only”.

4.5.5 Test PHP

In a command line window, navigate to c:\ms4w\apache\cgi-bin and run php -i. This should return the out-
put that the phpinfo() function returns. I got an error about how it couldn’t find ntwdblib.dll. I found this in
c:\ms4w\apache\php\dlls and I copied it to the cgi-bin directory.

4.5.6 Mapfiles for IIS
* Add a config line to the MAP level of the mapfile

CONFIG PROJ_LIB "c:\msdw\proj\nad\"

* change the IMAGEPATH to be an absolute path to your tmp/ms_tmp folder

IMAGEPATH "c:\ms4w\tmp\ms_tmp"

4.5.7 Configuration files:
For Chameleon

C:\ms4w\apps\chameleon\config\chameleon.xml
C:\ms4w\apps\chameleon\config\cwc2.xml

4.5. IS Setup for MapServer 57

http://yourserver/phppgadmin/index.php

MapServer Documentation, Release 5.4.2

For phppgadmin: (if using postgresql/postgis)

C:\ms4w\apps\phpPgAdmin\conf\config.inc.php

4.6 Oracle Installation

Author Till Adams
Last Updated 2007/02/16

Table of Contents

* Oracle Installation
— Preface
— System Assumptions
— Compile MapServer
— Set Environment Variables

4.6.1 Preface

This document explains the whole configuration needed to get the connect between MapServer CG/ and an Oracle
database server on a linux (Ubuntu) box. The aim of this document is just to put a lot of googled knowledge in ONE
place. Hopefully it will preserve many of people spending analog amount of time than I did!

This manual was written, because I spent several days googling around to get my UMN having access to an oracle
database. I'm NOT an oracle expert, so the aim of this document is just to put a lot of googled knowledge in ONE
place. Hopefully it will preserve many of people spending analog amount of time than I did! (Or: If you have the
choice: Try PostGIS ;-))

Before we start, some basic knowledge, I didn’t know before:

e MapServer can access oracle spatial as well as geodata from any oracle locator installation! Oracle locator
comes with every oracle instance, there is no need for an extra license.

 There is no need for further installation of any packages beside oracle/oracle OCI

4.6.2 System Assumptions
We assume that Oracle is already installed, there is a database and there is some geodata in the database. The following
paths should be known by the reader:

* ORACLE_HOME

* ORACLE_SID

* ORACLE_BASE

 LD_LIBRARY_PATH

We also assume that you have installed apache2 (our version was 2.0.49) and you are used to work with Linux/UNIX
systems. We also think you are able to handle the editor vi/vim.

We ensure that the Oracle user who later accesses the database has write-access to the oracle_home directory.

We also assume, that you already have setup the tnsnames.ora file. It should look like that:

58 Chapter 4. Installation

MapServer Documentation, Release 5.4.2

MY_ORACLE =
(DESCRIPTION
(ADDRESS = (PROTOCOL = TCP) (HOST = host) (PORT = 1521))
(CONNECT_DATA =
(SERVICE_NAME = your_name)

)
It is important that you know the NAME of the datasource, in this example this is “MY_ORACLE” and will be used

further on. Done that, you're fine using User/Password@MY_ORACLE in your mapfile to connect to the oracle
database. But first we have to do some more stuff.

4.6.3 Compile MapServer

Compile as normal compilation and set this flag:
—--with-oraclespatial=/path/to/oracle/home/</p>
If MapServer configure and make runs well, try

. /mapserv -v

This should at least give this output:

INPUT=ORACLESPATIAL

If you got that, you’re fine from the MapServer point of view.

4.6.4 Set Environment Variables

It is important to set all environment variables correctly. There are one the one hand system-wide environment vari-
ables to be set, on the other hand there should be set some for the cgi-directory in your Apache configuration.

System Variables

On Ubuntu (and on many other systems) there is the file “/etc/profile” which sets environment variables for all users
on the system (you may also dedicate user-specific environment variables by editing the users “.profile” file in their
home directory, but usually the oracle database users are not users of the system with their own home)

Set the following variables:

S cd /etc

$ echo export ORACLE_HOME=/path/to/oracle/home >> /etc/profile
xx(e.g. ORACLE_HOME=/app/oracle/oralOqg)

$ echo export ORACLE_BASE=path/to/oracle >> /etc/profile

x*(e.g. ORACLE_HOME=/app/oracle)

$ echo export ORACLE_SID=MY_ORACLE >> /etc/profile

4.6. Oracle Installation 59

MapServer Documentation, Release 5.4.2

$ echo export LD_LIBRARY_PATH=path/to/oracle/home/lib >> /etc/profile
xx(e.g. ORACLE_HOME=/app/oracle/orallg/lib)

The command comes silent, so there is no system output if you didn’t mistype anything!

Setting the Apache Environment

Sometimes it is confusing WHERE to set WHAT in the splitted apache2.conf-files. In the folder
“/etc/apache2/sites_available” you find your sites-file. If you did not do sth. Special e.g. installing virtual hosts,
the file is named “default”. In this file, the apache cgi-directory is defined. Our file looks like this:

ScriptAlias /cgi-bin/ /var/www/cgi-bin/
<Directory "/var/www/cgi-bin">
AllowOverride None
Options ExecCGI -MultiViews +SymLinksIfOwnerMatch
Order allow,deny
Allow from all
</Directory></p>

In this file, the local apache environment variables must be set. We did it within a location-block like this:

<Location "/cgi-bin/">
SetEnv ORACLE_HOME "/path/to/oracle/home"
</Location></p>

Where /cgi-bin/ in the opening location block refers to the script alias /cgi-bin/ and the TNS_ADMIN directory point
to the location of the tnsnames.ora file.

Then restart apache:

$ /etc/init.d/apache2 force-reload

Create mapfile
Before we start creating our mapfile ensure that you have a your access data (User/Password) and that you know the
Oracle SRID, which could be different from the proj-EPSG!
The data access parameters:
* CONNECTIONTYPE oraclespatial
* CONNECTION ‘user/password@MY_ORACLE*
* DATA ‘GEOM FROM MY_LAYER USING SRID 82032’
[...]
Where:
¢ GEOM is the name of the geometry column
e MY_LAYER the name of the table
* 82032 is equivalent to the EPSG code 31468 (German projection system)

60 Chapter 4. Installation

mailto:'user/password@MY_ORACLE

MapServer Documentation, Release 5.4.2

Testing & Error handling

So you are fine now. Load the mapfile in your application and try it. If everything goes well: Great, if not, possibly this
ugly error-emssage occurs (this one cmae by querying MapServer through the WMS interface as a GetMap-request):

<ServiceExceptionReport version="1.0.1">
<ServiceException>
msDrawMap () : Image handling error. Failed to draw layer named ’'testl’.
msOracleSpatiallayerOpen () : OracleSpatial error. Cannot create OCI Handlers.
Connection failure. Check the connection string. Error:
</ServiceException>
</ServiceExceptionReport>

This points us towards, that there might be a problem with the connection to the database. First of all, let’s check, if
the mapfile is all right. Therefore we use the MapServer utility program shp2img.

Let’s assume you are in the directory, where you compiled MapServer and run shp2img:

$ cd /var/src/mapserver_version/
$ shp2img -m /path/to/mapfile/mapfile.map —-i png -o /path/to/output/output.png
The output of the command should look like this:

[Fri Feb 2 14:32:17 2007].522395 msDrawMap(): Layer 0 (testl), 0.074s
[Fri Feb 2 14:32:17 2007].522578 msDrawMap () : Drawing Label Cache, 0.000s
[Fri Feb 2 14:32:17 2007].522635 msDrawMap () total time: 0.075s

If not, this possibly points you towards any error in your mapfile or in the way to access the data directly. In this
case, take a look at Oracle Spatial. If there is a problem with your oracle connect, the same message as above
(MsDrawMap() ...) occurs. Check your mapfile syntax and/or the environment settings for Oracle.

For Debian/Ubuntu it’s worth also checking the file “/etc/environment” and test-wise to add the system variables
comparable to System Variables

If the output is OK, you may have a look at the generated image (output.png). Then your problem reduces to the access
of apache to oracle home directory. Carefully check your apache configuration. Please note, that the apache.config file
differs in several linux-distributions. For this paper we talk about Ubuntu, which should be the same as Debian.

4.6. Oracle Installation 61

MapServer Documentation, Release 5.4.2

62

Chapter 4. Installation

CHAPTER
FIVE

MAPFILE

Author Steve Lime

Contact steve.lime at dnr.state.mn.us
Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com
Author Jean-Frangois Doyon

Contact jdoyon at ccrs.nrcan.gc.ca

The Mapfile is the heart of MapServer. It defines the relationships between objects, points MapServer to where data
are located and defines how things are to be drawn.

There are some important concepts that you must understand before you can reliably use mapfiles to configure
MapServer. First is the concept of a LAYER. A layer is the combination of data plus styling. Data, in the form of
attributes plus geometry, are given styling using CLASS and STYLE directives.

See Also:

An Introduction to MapServer for “An Introduction to the Mapfile”

5.1 CLASS

BACKGROUNDCOLOR [r] [g] [b] Color to use for non-transparent symbols.
COLOR [r] [g] [b] Color to use for drawing features.

DEBUG [onloff] Enables debugging of the class object. Verbose output is generated and sent to the standard error
output (STDERR) or the MapServer logfile if one is set using the LOG parameter in the WEB object.

See Also:
MS RFC 28: Redesign of LOG/DEBUG output mechanisms

EXPRESSION [string] Four types of expressions are now supported to define class membership. String compar-
isons, regular expressions, simple logical expressions, and string functions. If no expression is given, then all
features are said to belong to this class.

» String comparisons are case sensitive and are the fastest to evaluate. No special delimiters are neces-
sary although string must be quoted if they contain special characters. (As a matter of good habit, it is
recommended you quote all strings).

» Regular expressions function just like previous versions of MapServer. However, you must now delimit a
regular expression using /regex/. No quotes should be used.

63

MapServer Documentation, Release 5.4.2

* Logical expressions allow you to build fairly complex tests based on one or more attributes and there-
fore are only available with shapefiles. Logical expressions are delimited by parentheses “(expres-
sion)”. Attribute names are delimited by square brackets “[ATTRIBUTE]”. These names are case
sensitive and must match the items in the shapefile. For example: EXPRESSION ([POPULATION]
> 50000 AND ‘[LANGUAGE] eq ‘FRENCH’) ... The following logical operators are supported:
=><,<=>== or,and,lt,gt,ge,le,eq,ne. As you might expect this level of complexity is slower to process.

* One string function exists: length(). This obviously computes the length of a string. An example follows:
EXPRESSION (length (’ [NAME_E]’) < 8)

String comparisons and regular expressions work from the classitem defined at the layer level. You may
mix expression types within the different classes of a layer.

GROUP [string] Allows for grouping of classes. It is only used when a CLASSGROUP at the LAYER level is set.
If the CLASSGROUP parameter is set, only classes that have the same group name would be considered at
rendering time. An example of a layer with grouped classes might contain:

LAYER
CLASSGROUP "groupl"
CLASS
NAME "namel"

GROUP "groupl"

END

CLASS
NAME "name2"
GROUP "group2"

END

CLASS
NAME "name3"
GROUP "groupl"

END
END # layer
KEYIMAGE [filename] Full filename of the legend image for the CLASS. This image is used when building a legend
(or requesting a legend icon via MapScript or the CGI application).
LABEL Signals the start of a LABEL object.

MAXSCALEDENOM [double] Maximum scale at which this CLASS is drawn. Scale is given as the denominator
of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer
5.0, to replace the deprecated MAXSCALE parameter.

See Also:
Map Scale

MAXSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MAXSCALEDENOM in-
stead. The deprecated MAXSCALE is the maximum scale at which this CLASS is drawn. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.

MAXSIZE [integer] Maximum size in pixels to draw a symbol. Default is 50.

64 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

MINSCALEDENOM [double] Minimum scale at which this CLASS is drawn. Scale is given as the denominator of
the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer
5.0, to replace the deprecated MINSCALE parameter.

See Also:
Map Scale

MINSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MINSCALEDENOM in-
stead. The deprecated MINSCALE is the minimum scale at which this CLASS is drawn. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.

MINSIZE [integer] Minimum size in pixels to draw a symbol. Default is 0.
NAME [string] Name to use in legends for this class. If not set class won’t show up in legend.

OUTLINECOLOR [r] [g] [b] Color to use for outlining polygons and certain marker symbols. Line symbols do not
support outline colors.

SIZE [integer] Height, in pixels, of the symbol/pattern to be used. Only useful with scalable symbols. For vector
(and ellipse) symbol types the default size is based on the range of Y values in the POINTS defining the symbol.
For pixmaps, the default is the vertical size of the image. Default size is 1 for TTF symbols.

STATUS [onloff] Sets the current display status of the class. Default turns the class on.
STYLE Signals the start of a STYLE object. A class can contain multiple styles.

SYMBOL [integerlstringlfilename] The symbol name or number to use for all features if attribute tables are not used.
The number is the index of the symbol in the symbol file, starting at 1, the Sth symbol in the file is therefore
symbol number 5. You can also give your symbols names using the NAME keyword in the symbol definition
file, and use those to refer to them. Default is 0, which results in a single pixel, single width line, or solid
polygon fill, depending on layer type.

You can also specify a gif or png filename. The path is relative to the location of the mapfile.

TEMPLATE [filename] Template file or URL to use in presenting query results to the user. See Templating for more
info.

TEXT [string] Static text to label features in this class with. This overrides values obtained from the LABELTIEM.
The string may be given as an expression delimited using the ()’s. This allows you to concatenate multiple
attributes into a single label. For example: ([FIRSTNAME],[LASTNAME]).

You can also “stack” 2 symbols to achieve interesting effects. You define the second symbol, which effectively sits
“on top” of the symbol normally defined above. See Cartographic Symbol Construction with MapServer for more
information.

The following parameters allow you to define the symbol, and they are equivalent to their non-overlay counterparts:
* OVERLAYBACKGROUNDCOLOR

OVERLAYCOLOR

OVERLAYOUTLINECOLOR

OVERLAYSIZE

OVERLAYMINSIZE

OVERLAYMAXSIZE

OVERLAYSYMBOL

5.1. CLASS 65

MapServer Documentation, Release 5.4.2

5.2 Expressions

Author Dirk Tilger

Contact dirk at MIRIUP.DE

Author Umberto Nicoletti

Contact umberto.nicoletti at gmail.com

Revision $Revision: 8295 $

Date $Date: 2008-12-26 21:08:04 -0800 (Fri, 26 Dec 2008) $
Last Updated 2007/07/09

Contents

» Expressions
— Introduction
— Expression Types
— “MapServer expressions”

5.2.1 Introduction

As of version 4.6.1, expressions are used in two places. They’re used to filter layers for specific records in the dataset
and they’re used in CLASS EXPRESSIONS to specify to which items this CLASS does apply to.

5.2.2 Expression Types
Expression are used to match attribute values with certain logical checks. There are three different types of expressions
you can use with MapServer:

 String comparisons: A single attribute is compared with a string value.

* Regular expressions: A single attribute is matched with a regular expression.

* Logical “MapServer expressions”: One or more attributes are compared using logical expressions.

String comparison

String comparison means as the name suggests that attribute values are checked if they are equal to some value. String
comparison are the simplest form of MapServer expressions and the fastest option. To use a string comparison for
filtering a LAYER, both FILTERITEM and FILTER must be set. FILTERITEM is set to the attribute name. FILTER is
set to the value for comparison. The same rule applies to CLASSITEM and EXPRESSION in the CLASS object.

Example for a simple string comparison filter

FILTER "2005"
FILTERITEM "year"

would match all records that have the attribute “year” set to “2005”. The rendered map would appear as if the dataset
would only contain those items that have the “year” set to “2005”.

Similarly, a classification for the items matched above would be done by setting the CLASSITEM in the layer and the
EXPRESSION in the class

66 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

LAYER
NAME "example"
CLASSITEM "year"

CLASS
NAME "year-2005"
EXPRESSION "2005"

END
END

For a reason explained later on the values for both CLASSITEM and FILTERITEM should start neither with an ‘/’ nor
with a ‘(‘ character.

Regular expression comparison

Regular expressions are a standard text pattern matching mechanism from the UNIX world. The functionality of regu-
lar expression matching is provided by the operating system on UNIX systems and therefore slightly operating system
dependent. However their minimum set of features are those defined by the POSIX standard. The documentation of
the particular regular expression library is usually in the “regex” manual page (“man regex”).

Regular expression with MapServer work similarly to string comparison, but allow more complex operation. They are
slower than pure string comparisons, but might be still faster than logical expression. As with the string comparison
use regular expressions, a FILTERITEM or a CLASSITEM has to defined, respectively.

A regular expression typically consists of characters with special meanings and characters that are interpreted as they
are. Alphanumeric characters (A-Z, a-z and 0-9) are taken as they are. Characters with special means are:

* . will match a single character
* [and] are used for grouping. For example [A-Z] would match the characters A,B,C,....X,Y,Z.
¢ {, }, and * are used to specify how often something should match.
 ~ matches the beginning, $ matches the end of the value.
« The backslash \ is used to take away the special meaning. For example $ would match the dollar sign.
The following LAYER configuration would have all records rendered on the map that have “hotel” in the attribute

named “placename”

LAYER
NAME "regexp-example"
FILTERITEM "placename"
FILTER /hotel/

END

Note: The regular expression is case-sensitive, thus records having “Hotel” in them would not have matched.

Example: Match records that have a value for the current century (as of 2005 ;) in the attribute “year”

FILTERITEM "year"
FILTER /720[0-9][0-9]/

Example: Match all the records that are either purely numerical or empty

FILTER /"[0-91%$/

5.2. Expressions 67

MapServer Documentation, Release 5.4.2

Note: If you experience frequently segmentation faults when working with MapServer and regular expressions, it
might be that your current working environment is linked against more than one regular expression library. This can
happen when MapServer is linked with components that bring their own copy, like the Apache httpd or PHP. In these
cases the author has made best experiences with making all those components using the regular expression library of
the operating system (i.e. the one in libc). That involved editing the build files of some of the components, however.

5.2.3 “MapServer expressions”

MapServer expressions are the most complex and depending how they are written can become quite slow. They can
match any of the attributes and thus allow filtering and classification depending on more than one attribute. Besides
pure logical operations there are also expressions allow also certain arithmetic, string- and time operations.

To be able to use a MapServer expression for a FILTER or EXPRESSION value, the expression has to be finally of a
logical value.

Logical expressions
Syntactically, a logical expression is everything encapsulated in round brackets. Logical expressions take logical
values as their input and return logical values. A logical expression is either ‘true’ or ‘false’.

* ((..)AND(...)) ((...) && (...)) ... will become true when both of the two logical expressions in the
innermost brackets are true.

* ((..)OR(...)) ((C...)I(...)) ... will become true when at least one of the two logical expressions in the
innermost brackets is true.

* NOT (...) ! (...) ... will become true, when the logical expression in the brackets becomes false.

String operations that result in a logical value

Syntactically, a sting is something encapsulated in double-quotes.

e (“Stringl” eq “String2”) (“Stringl” == “String2”) (“String1” = “String2”) ... will become true when both
strings are equal. This operation is identical to the MapServer string comparison described earlier.

e (“Stringl” != “String2”) (“String1” ne “String2”) ... will become true when both strings are not equal.

e (“Stringl” < “String2”) (“String1” It “String2”) ... will become true when “String1” is lexicographically
smaller than “String2”

e (“Stringl” > “String2”) (“Stringl” gt “String2”) ... will become true when “String1” is lexicographically
larger than “String2”.

e (“Stringl” <= “String2”) (“String1” le “String2”) ... will become true when “String1” is not lexicographically
larger than “String2”

e (“Stringl” >=“String2”) (“String1” ge “String2”) ... will become true when “String1” is not lexicographically
smaller than “String2”.

e (“Stringl” IN “tokenl,token2,...,tokenN”) ... will become true when “Stringl” is in equal one of the given
tokens.

Note:

The separator for those tokens is the comma. That means that you must not add unnecessary white space
to the list and that you cannot compare to tokens that have a comma in it.

e (“Stringl” =~ /regexp/) ... will become true, when “String1” matches the regular expression “regexp”. This
operation is identical to the regular expression matching described earlier.

68 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

String operations that return string values

There is only one operation for strings that returns a string value:

e “Stringl” + “String?2 ... will return “String1String2”, thus the two string concatenated to each other.

Arithmetic expressions returning logical values
The basic element for the arithmetic operation is the number. There are some purely arithmetic operations that are
returning numbers as their value. They will be covered in the next section.

* (nleqn2)(nl==n2)(nl =n2) ... will become true when both numbers are equal.

* (nl!=n2)(nl nen2)... will become true when both numbers are not equal.

e (nl <n2)(nlltn2)... will become true when nl is smaller than n2

e (nl >n2)(nl gtn2) ... will become true when nl is larger than n2.

* (nl <=n2)(nllen2) ... will become true when nl is smaller or equal n2

* (nl>=n2)(nl gen2) ... will become true when n1 is larger or equal n2.

e (nl IN “numberl,number2,...,numberN”) ... will become true when n1 is equal to one of the given numbers.

Arithmetic expression returning a number

As stated in the previous section, MapServer can do purely numerical operations with numbers.
* nl +n2 ... will become the sum of nl and n2
e nl - n2 ... will become n2 subtracted from nl
* nl *n2 ... will become nl multiplicated with n2
* nl/n2> ... will become nl divided by n2
e -nl ... will become nl with negated sign
e nl A n2 ... will become nl by a power of n2
e length (“String1”) ... will become the number of characters of “String1”

Note: When the numerical operations above are used like logical operations, the following rule applies: values equal
to zero will be taken as ‘false’ and everything else will be ‘true’. That means the expression

2 (6+5) ..

would evaluate as true, but

(5 -5)

would evaluate as false.

Temporal expressions

MapServer uses an internal time type to do comparison. To convert a keys value into this time type it will check the
list below from the top down if the specified time matches and if so, it will do the conversion.

* YYYY-MM-DDTHH:MM:SSZ (‘Z’ and ‘T’ being the characters itself)</i>

5.2. Expressions 69

MapServer Documentation, Release 5.4.2

* YYYY-MM-DDTHH:MM:SS (T’ being the character itself)</i>
* YYYY-MM-DD HH:MM:SS
* YYYY-MM-DDTHH:MM (‘T being the character itself)</i>
* YYYY-MM-DD HH:MM
* YYYY-MM-DDTHH (‘T’ being the character itself)</i>
* YYYY-MM-DD HH
* YYYY-MM-DD
* YYYY-MM
* YYYY
e THH:MM:SSZ (‘Z’ and ‘T’ being the characters itself)</i>
 THH:MM:SS
For temporal values obtained this way, the following operations are supported:
* (nleqn2)(nl ==n2)(nl =n2)... will become true when both times are equal.
e (tl!=t2)(tl net2) ... will become true when both times are not equal.
e (tl<t2)(tl1tt2) ... will become true when t1 is earlier than t2
e (tI>t2)(tl gtt2) ... will become true when tl is later than t2.
e (tl<=1t2)(tllet2)... will become true when t1 is earlier or same t2

e (nl >=n2)(nl gen2) ... will become true when t1 is later or same t2.

How the attributes are referenced

To make a meaningful use of the expressions above, we need to get the attribute values into the expressions. That
is done by enclosing the attribute key into square brackets, like this: [KEY]. Then before the expression is evaluated
every occurrence of “[KEY]” will be replaced by the value for attribute “KEY”".

Example: how a simple string comparison would be evaluated. The filter is set to:

FILTER ("[BUILDING_NAME]" == "National Museum")

There is a attribute “BUILDING_NAME” and its value is ‘“National Government Building”. Thus the expression
actually evaluated is...

"National Government Building" == "National Museum")

...and as such should be false.

Some layers do not really come with metadata. For raster layers for example special attributes have been defined that
can be used for classification:

e [PIXEL] ... will become the pixel value as number

* [RED], [GREEN], [BLUE] ... will become the color value for the red, green and blue component in the pixel
value, respectively.

70 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

Quotes escaping in strings

Note: Quotes escaping is not supported in MapServer versions lower than 5.0.

Starting with MapServer 5.0, if your dataset contains double-quotes, you can use a C-like escape sequence in the
expression string. For example if your key “NAME” has the value ‘National “hero” statue’ you could write the
FILTER expression as follows:

FILTER ("[NAME]" == "National \"hero\" statue")

to escape a single quote use the following sequence instead:

FILTER ("[NAME]" == "National \’hero\’ statue")

5.3 FEATURE

POINTS A set of xy pairs terminated with an END, for example:

POINTS 1 1 50 50 1 50 1 1 END

Note: POLYGON/POLYLINE layers POINTS must start and end with the same point (i.e. close the feature).

ITEMS Comma separated list of the feature attributes:

ITEMS "valuel;value2;value3"

Note: Specifying the same number of items is recommended for each features of the same layer. The item names
should be specified as a PROCESSING option of the layer.

TEXT [string] String to use for labeling this feature.
WKT [string] A geometry expressed in OpenGIS Well Known Text geometry format. This feature is only supported
if MapServer is built with OGR or GEOS support.

WKT "POLYGON((500 500, 3500 500, 3500 2500, 500 2500, 500 500))"
WKT "POINT (2000 2500)"

Note: Inline features should be defined as their own layers in the mapfile. If another CONNECTIONTYPE is
specified in the same layer, MapServer will always use the inline features to draw the layer and ignore the other
CONNECTIONTYPE:s.

5.4 FONTSET

Author Kari Guerts

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 8295 $

Date $Date: 2008-12-26 21:08:04 -0800 (Fri, 26 Dec 2008) $
Last Updated 2008/10/08

5.3. FEATURE 71

MapServer Documentation, Release 5.4.2

Contents

e FONTSET
— Format

5.4.1 Format

The format is very simple. Each line contains 2 items: an alias and the name/path of the font separated by white space.
The alias is simply the name you refer to the font as in your Mapfile (eg. times-bold). The name is the actual name of
the TrueType file. If not full path then it is interpreted as relative to the location of the fontset. Here’s the fontset I use
(the font.list file and all .ttf files are stored in the same sub-directory).

Note: Aliases are case sensitive. Excellent reference information about the TrueType format and online font resources
is available from the FreeType.

arial

arial-bold
arial-italic
arial-bold-italic
arial_black
comic_sans
comic_sans-bold
courier
courier-bold
courier—-italic
courier-bold-italic
georgia
georgia-bold
georgia-italic
georgia-bold-italic
impact
monotype.com
recreation_symbols
times

times-bold
times-italic
times-bold-italic
trebuchet_ms
trebuchet_ms-bold
trebuchet_ms—-italic

trebuchet_ms-bold-italic

verdana
verdana-bold
verdana—-italic
verdana-bold-italic

5.5 INCLUDE

When this directive is encountered parsing switches to the included file immediately. As a result the included file can

arial.ttf
arialbd.ttf
ariali.ttf
arialbi.ttf
ariblk.ttf
comic.ttf
comicbhd.ttf
cour.ttf
courbd.ttf
couri.ttf
courbi.ttf
georgia.ttf
georgiab.ttf
georgiai.ttf
georgiaz.ttf
impact.ttf
monotype.ttf
recreate.ttf
times.ttf
timesbd.ttf
timesi.ttf
timesbi.ttf
trebuc.ttf
trebucbd.ttf
trebucit.ttf
trebucbi.ttf
verdana.ttf
verdanab.ttf
verdanai.ttf
verdanaz.ttf

be comprised of any valid mapfile syntax. For example:

INCLUDE ’'myLayer.map’

72

Chapter 5. Mapfile

http://www.freetype.org/

MapServer Documentation, Release 5.4.2

Performance does not seem to be seriously impacted with limited use, however in high performance instances you
may want to use includes in a pre-processing step to build a production mapfile. The C pre-processor can also be used
(albeit with a different syntax) and is far more powerful.

5.5.1 Notes

 Supported in versions 4.10 and higher.
* The name of the file to be included MUST be quoted (single or double quotes).
* Includes may be nested, up to 5 deep.
* File location can be given as a full path to the file, or (in MapServer >=4.10.1) as a path relative to the mapfile.
* Debugging can be problematic because:
1. the file an error occurs in does not get output to the user

2. the line number counter is not reset for each file. Here is one possible error that is thrown when the include
file cannot be found:

msyylex () : Unable to access file. Error opening included file "parks_include.map"

5.5.2 Example

MAP
NAME "include_mapfile"
EXTENT O O 500 500
SIZE 250 250

INCLUDE "test_include_symbols.map"
INCLUDE "test_include_layer.map"
END

where test_include_symbols.map contains:

SYMBOL

NAME ’square’

TYPE VECTOR

FILLED TRUE

POINTS 0 0 01 1 1 1 0 O 0O END
END

and test_include_layer.map contains:

LAYER
TYPE POINT
STATUS DEFAULT
FEATURE
POINTS 10 10 40 20 300 300 400 10 10 400 END
END
CLASS
NAME ’Church’
COLOR 0 0 O
SYMBOL ’square’
SIZE 7

5.5. INCLUDE 73

MapServer Documentation, Release 5.4.2

STYLE
SYMBOL "square"
SIZE 5
COLOR 255 255 255

END

STYLE
SYMBOL "square"
SIZE 3
COLOR 0 0 255

END

END
END

5.6 GRID

LABELFORMAT [DDIDDMMIDDMMSSIC format string] Format of the label. “DD” for degrees, “DDMM” for
degrees minutes, and “DDMMSS” for degrees, minutes, seconds. A C-style formatting string is also allowed,
such as “%g°” to show decimal degrees with a degree symbol. The default is decimal display of whatever SRS
you’re rendering the GRID with.

MINARCS [double] The minimum number of arcs to draw. Increase this parameter to get more lines. Optional.
MAXARCS [double] The maximum number of arcs to draw. Decrease this parameter to get fewer lines. Optional.

MININTERVAL [double] The minimum number of intervals to try to use. The distance between the grid lines, in
the units of the grid’s coordinate system. Optional.

MAXINTERVAL [double] The maximum number of intervals to try to use. The distance between the grid lines, in
the units of the grid’s coordinate system. Optional.

MINSUBDIVIDE [double] The minimum number of segments to use when rendering an arc. If the lines should be
very curved, use this to smooth the lines by adding more segments. Optional.

MAXSUBDIVIDE [double] The maximum number of segments to use when rendering an arc. If the graticule should
be very straight, use this to minimize the number of points for faster rendering. Optional, default 256.

The following is an example of a GRID object in use:

LAYER
NAME "grid"
METADATA
"DESCRIPTION" "Grid"
END
TYPE LINE
STATUS ON
CLASS
NAME "Graticule"
COLOR 0 0 O
LABEL
COLOR 255 0 O
FONT "fritgat"
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE
BUFFER 5
OUTLINECOLOR 255 255 255

74 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

END
END
PROJECTION
"init=epsg:4326"

END
GRID

LABELFORMAT "DDMM"
LABELFORMAT ’%g°’ # dec degrees with symbol

MAXARCS 10

MAXINTERVAL 10

MAXSUBDIVIDE 2
LABELFORMAT ’%7.0f m’ # nice if a projected SRS used
MININTERVAL 20000
MAXSUBDIVIDE 2
END
END # Layer

5.7 JOIN

5.7.1 Description

Joins are defined within a LAYER object. It is important to understand that JOINs are ONLY available once a query
has been processed. You cannot use joins to affect the look of a map. The primary purpose is to enable lookup tables
for coded data (e.g. 1 => Forest) but there are other possible uses.

5.7.2 Supported Formats

» DBF/XBase files

¢ CSV (comma delimited text file)
* PostgreSQL and PostGIS tables
MySQL tables

5.7.3 Mapfile Parameters:

CONNECTION [string] Parameters required for the join table’s database connection (not required for DBF or CSV
joins). The following is an example for PostgreSQOL:

CONNECTION "host=127.0.0.1 port=5432 user=postgres password=postgres dbname=somename"

CONNECTIONTYPE [string] Type of connection (not required for DBF or CSV joins). The following is an exam-
ple for PostgreSQL.:

CONNECTIONTYPE ogr

FROM [item] Join item in the dataset. This is case sensitive.

NAME [string] Unique name for this join. Required.

5.7. JOIN 75

MapServer Documentation, Release 5.4.2

TABLE [filenameltablename] For file-based joins this is the name of XBase or comma delimited file (relative to
the location of the mapfile) to join TO. For PostgreSQL and MySQL support this is the name of the Post-
greSQL/MySQL table to join TO.

TEMPLATE [filename] Template to use with one-to-many joins. The template is processed once for each record
and can only contain substitutions for items in the joined table. Refer to the column in the joined table in your
template like [joinname_columnname], where joinname is the NAME specified for the JOIN object.

TO [item] Join item in the table to be joined. This is case sensitive.

TYPE [ONE-TO-ONEIONE-TO-MANY] The type of join. Default is one-to-one.

5.7.4 Example 1: Join from SHP file to DBF file

Mapfile Layer

LAYER

NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS

NAME "Province"

STYLE

OUTLINECOLOR 120 120 120
COLOR 255 255 0

END
END
TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"
JOIN

NAME "test"

TABLE "../data/lookup.dbf"

FROM "ID"

TO "IDENT"

TYPE ONE-TO-ONE
END

END # layer

Ogrinfo

>ogrinfo lookup.dbf lookup -summary
INFO: Open of ‘lookup.dbf’
using driver ‘ESRI Shapefile’ successful.

Layer name: lookup
Geometry: None
Feature Count: 12
Layer SRS WKT:
(unknown)

IDENT: Integer (2.0)
VAL: Integer (2.0)

76 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

>ogrinfo prov.shp prov —-summary
INFO: Open of ‘prov.shp’
using driver ‘ESRI Shapefile’ successful.

Layer name: prov
Geometry: Polygon
Feature Count: 12

Extent: (-2340603.750000, -719746.062500) - (3009430.500000, 3836605.250000)
Layer SRS WKT:
(unknown)

NAME: String (30.0)
ID: Integer (2.0)

Template

<tr bgcolor="4#EFEFEF"><td align="left">[NAME]</td><td align="left">[test_VAL]</td></t

5.7.5 Example 2: Join from SHP file to PostgreSQL table

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120
COLOR 255 255 0
END
END
TOLERANCE 20
TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"
JOIN
NAME "test"
CONNECTION "host=127.0.0.1 port=5432 user=postgres password=postgres dbname=join"
CONNECTIONTYPE ogr
TABLE "lookup"
FROM "ID"
TO "ident"
TYPE ONE-TO-ONE
END
END # layer

r>

5.7. JOIN

77

MapServer Documentation, Release 5.4.2

Ogrinfo

>ogrinfo -ro PG:"host=127.0.0.1 port=5432 user=postgres password=postgre dbname=join" lookup -summar:
INFO: Open of ‘PG:host=127.0.0.1 port=5432 user=postgres password=postgres dbname=join’
using driver ‘PostgreSQL’ successful.

Layer name: lookup
Geometry: Unknown (any)
Feature Count: 12
Layer SRS WKT:

(unknown)

ident: Integer (0.0)
val: Integer (0.0)

Template

<tr bgcolor="#EFEFEF"><td align="left">[NAME]</td><td align="left">[test_val]</td></tr>

Note: When testing with MapServer 4.10.0 on Windows this postgresql join caused a mapserv.exe crash. However
when testing this with a MapServer build > 4.10.0 the crash did not occur.

5.7.6 Example 3: Join from SHP file to CSV file

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120
COLOR 255 255 0

END
END
TOLERANCE 20
TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"
JOIN

NAME "test"

TABLE "../data/lookup.csv"

FROM "ID"

TO "IDENT"

TYPE ONE-TO-ONE
END

END # layer

78 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

CSV File Structure

" IDENT" , "VAL "
1,12

Ogrinfo

>ogrinfo lookup.csv lookup —-summary
INFO: Open of ‘lookup.csv’
using driver ‘CSV’ successful.

Layer name: lookup
Geometry: None
Feature Count: 12
Layer SRS WKT:
(unknown)

IDENT: String (0.0)
VAL: String (0.0)

Template

<tr bgcolor="#EFEFEF"><td align="left">[NAME]</td><td align="left">[test_VAL]</td></tr>

5.8 LABEL

ALIGN [leftlcenterlright] Since version 5.4 . Specifies text alignment for multiline labels (see WRAP) Note that
the alignment algorithm is far from precise, so don’t expect fabulous results (especially for right alignment) if

you’re not using a fixed width font.

ANGLE [doublelautolfollowlattribute] * Angle, given in degrees, to draw the label.

¢ AUTO allows MapServer to compute the angle. Valid for LINE layers only.

* FOLLOW was introduced in version 4.10 and tells MapServer to compute a curved label for appropriate
linear features (see MS RFC 11: Support for Curved Labels for specifics).

* [Artribute] was introduced in version 5.0, to specify the item name in the attribute table to use for an-
gle values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named
“MYANGLE” that holds angle values for each record, your LABEL object might contain:

5.8. LABEL

79

MapServer Documentation, Release 5.4.2

LABEL
COLOR 150 150 150
OUTLINECOLOR 255 255 255

FONT [5]a[n]s]

TYPE truetype

SIZE 6

ANGLE [|M|Y |ANGLE]

POSITION AUTO

PARTIALS FALSE
END

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.

ANTIALIAS [truelfalse] Should text be antialiased? Note that this requires more available colors, decreases drawing
performance, and results in slightly larger output images.

BACKGROUNDCOLOR [r] [g] [b] Color to draw a background rectangle (i.e. billboard). Off by default.

BACKGROUNDSHADOWCOLOR [r] [g] [b] Color to draw a background rectangle (i.e. billboard) shadow. Off
by default.

BACKGROUNDSHADOWSIZE [x][y] How far should the background rectangle be offset? Default is 1.

BUFFER [integer] Padding, in pixels, around labels. Useful for maintaining spacing around text to enhance read-
ability. Available only for cached labels. Default is 0.

COLOR [r] [g] [b] | [attribute] ¢ Color to draw text with.

 [Attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for color
values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MY-
COLOR?” that holds color values for each record, your LABEL object might contain:

LABEL

COLOR [[M][Y |cOLOR]

OUTLINECOLOR 255 255 255
FONT [s[a[n]s]
TYPE truetype
SIZE ©
POSITION AUTO
PARTIALS FALSE
END

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.

ENCODING [string] Supported encoding format to be used for labels. If the format is not supported, the label will
not be drawn. Requires the iconv library (present on most systems). The library is always detected if present on
the system, but if not the label will not be drawn.

Required for displaying international characters in MapServer. More information can be found at:
http://www.foss4g.org/FOSS4G/MAPSERVER/mpsnf-il8n-en.html.

FONT [name] Font alias (as defined in the FONTSET) to use for labeling.

FORCE [truelfalse] Forces labels for a particular class on, regardless of collisions. Available only for cached labels.
Default is false.

MAXLENGTH [integer] Introduced in mapserver 5.4, this keyword interacts with the WRAP keyword so that line
breaks only occur after the defined number of characters

80 Chapter 5. Mapfile

http://www.foss4g.org/FOSS4G/MAPSERVER/mpsnf-i18n-en.html

MapServer Documentation, Release 5.4.2

Table 5.1: Interaction with WRAP keyword

maxlength = 0 maxlength > 0 maxlength < 0
wrap = | always wrap at the newline at the first WRAP character hard wrap (always break at exactly
‘char’ WRAP character after MAXLENGTH characters MAXLENGTH characters)
no no processing skip label if it contains more than hard wrap (always break at exactly
wrap MAXLENGTH characters MAXLENGTH characters)

The associated RFC document for this feature is MS RFC 40: Support Label Text Transformations.
MAXSIZE [integer] Maximum font size to use when scaling text (pixels). Default is 256.
MINDISTANCE [integer] Minimum distance between duplicate labels. Given in pixels.

MINFEATURESIZE [integerlauto] Minimum size a feature must be to be labeled. Given in pixels. For line data
the overall length of the displayed line is used, for polygons features the smallest dimension of the bounding box
is used. “Auto” keyword tells MapServer to only label features that are larger than their corresponding label.
Auvailable for cached labels only.

MINSIZE [integer] Minimum font size to use when scaling text (pixels). Default is 4.

OFFSET [x][y] Offset values for labels, relative to the lower left hand corner of the label and the label point. Given
in pixels. In the case of rotated text specify the values as if all labels are horizontal and any rotation will be
compensated for.

OUTLINECOLOR [r] [g] [b] | [attribute] * Color to draw a one pixel outline around the text.

* [Attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for color
values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MY-
OUTCOLOR?” that holds color values for each record, your LABEL object might contain:

LABEL
COLOR 150 150 150

OUTLINECOLOR [[M[Y]|0|U][T]|coLoR]
FONT |s|a|n|s

TYPE truetype

SIZE 6

POSITION AUTO

PARTIALS FALSE
END

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.

OUTLINEWIDTH [integer] Width of the outline if OUTLINECOLOR has been set. Defaults to 1. Currently only
the AGG renderer supports values greater than 1, and renders these as a ‘halo’ effect: recommended values are
3orS.

PARTIALS [truelfalse] Can text run off the edge of the map? Default is true.

POSITION [ulluclurlcllcclerillilclirlauto] Position of the label relative to the labeling point (layers only). First letter
is “Y” position, second letter is “X” position. “Auto” tells MapServer to calculate a label position that will not
interfere with other labels. With points, MapServer selects from the 8 outer positions (i.e. excluding cc). With
polygons, MapServer selects from cc (added in MapServer 5.4), uc, Ic, cl and cr as possible positions. With
lines, it only uses Ic or uc, until it finds a position that doesn’t collide with labels that have already been drawn.
If all positions cause a conflict, then the label is not drawn (Unless the label’s FORCE a parameter is set to
“true”). “Auto” placement is only available with cached labels.

PRIORITY [integer]l[item_name] The priority parameter (added in v5.0) takes an integer value between 1 (lowest)
and 10 (highest). The default value is 1. It is also possible to bind the priority to an attribute (item_name) using
square brackets around the [item_name]. e.g. “PRIORITY [someattribute]”

5.8. LABEL 81

MapServer Documentation, Release 5.4.2

Labels are stored in the label cache and rendered in order of priority, with the highest priority levels rendered
first. Specifying an out of range PRIORITY value inside a map file will result in a parsing error. An out of range
value set via MapScript or coming from a shape attribute will be clamped to the min/max values at rendering
time. There is no expected impact on performance for using label priorities.

SHADOWCOLOR [r] [g] [b] Color of drop shadow.
SHADOWSIZE [x][y] Shadow offset in pixels.

SIZE [integer]|[tinylsmalllmediumllargelgiant]i[attribute] o Text size. Use “integer” to give the size in pixels
of your TrueType font based label, or any of the other 5 listed keywords to bitmap fonts.

* [Attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for size val-
ues. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MYSIZE”
that holds size values for each record, your LABEL object might contain:

LABEL
COLOR 150 150 150
OUTLINECOLOR 255 255 255

rot [5[a[n]s]

TYPE truetype

SIZE [[M]Y|[SIZE]

POSITION AUTO
PARTIALS FALSE
END

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.

TYPE [bitmapltruetype] Type of font to use. Generally bitmap fonts are faster to draw then TrueType fonts. How-
ever, TrueType fonts are scalable and available in a variety of faces. Be sure to set the FONT parameter if you
select TrueType.

WRAP [character] Character that represents an end-of-line condition in label text, thus resulting in a multi-line label.
Interacts with MAXLENGTH for conditional line wrapping after a given number of characters

5.9 LAYER

CLASS Signals the start of a CLASS object.

Inside a layer, only a single class will be used for the rendering of a feature. Each feature is tested against each
class in the order in which they are defined in the mapfile. The first class that matches the its min/max scale
constraints and its EXPRESSION check for the current feature will be used for rendering.

CLASSITEM [attribute] Item name in attribute table to use for class lookups.

CLASSGROUP [string] Specify the class’s group that would be considered at rendering time. The CLASS object’s
GROUP parameter must be used in combination with CLASSGROUP.

CONNECTION [string] Database connection string to retrieve remote data.

An SDE connection string consists of a hostname, instance name, database name, username and password
separated by commas.

A PostGIS connection string is basically a regular PostgreSQL connection string, it takes the form of
“user=nobody password=****** dbname=dbname host=localhost port=5432"

An Oracle connection string: user/pass[@db]
See Also:

See Vector Data for specific connection information for various data sources.

82 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

CONNECTIONTYPE [locallsdelogripostgisloraclespatiallwms] Type of connection. Default is local. See addi-
tional documentation for any other type.

See Also:
See Vector Data for specific connection information for various data sources.

DATA [filename]l[sde parameters][postgis table/column][oracle table/column] Full filename of the spatial data to
process. No file extension is necessary for shapefiles. Can be specified relative to the SHAPEPATH option from
the Map Object.

If this is an SDE layer, the parameter should include the name of the layer as well as the geometry column, i.e.
“mylayer,shape,myversion”.

If this is a PostGIS layer, the parameter should be in the form of “<columnname> from <tablename>", where
“columnname” is the name of the column containing the geometry objects and “tablename” is the name of the
table from which the geometry data will be read.

For Oracle, use “shape FROM table” or “shape FROM (SELECT statement)” or even more complex Oracle
compliant queries! Note that there are important performance impacts when using spatial subqueries however.
Try using MapServer’s FILTER whenever possible instead. You can also see the SQL submitted by forcing an
error, for instance by submitting a DATA parameter you know won’t work, using for example a bad column
name.

See Also:

See Vector Data for specific connection information for various data sources.
DEBUG [offlonl0I112I3I4I5] Enables debugging of a layer in the current map.

Debugging with MapServer versions >= 5.0:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer errorfile if one
is set using the “MS_ERRORFILE” environment variable. You can set the environment variable by using the
CONFIG parameter at the MAP level of the mapfile, such as:

CONFIG "MS_ERRORFILE" "/ms4dw/tmp/ms_error.txt"

You can also set the environment variable in Apache by adding the following to your httpd.conf:

SetEnv MS_ERRORFILE "/msdw/tmp/ms_error.txt"

Once the environment variable is set, the DEBUG mapfile parameter can be used to control the level of debug-

ging output. Here is a description of the possible DEBUG values:

* DEBUG O or OFF - only msSetError() calls are logged to MS_ERRORFILE. No msDebug() output at
all. This is the default and corresponds to the original behavior of MS_ERRORFILE in MapServer 4.x

* DEBUG 1 or ON - includes all output from DEBUG 0 plus msDebug() warnings about common pitfalls,
failed assertions or non-fatal error situations (e.g. missing or invalid values for some parameters, missing
shapefiles in tileindex, timeout error from remote WMS/WES servers, etc.)

* DEBUG 2 - includes all output from DEBUG 1 plus notices and timing information useful for tuning
mapfiles and applications

* DEBUG 3 - all of DEBUG 2 plus some debug output useful in troubleshooting problems such as WMS
connection URLs being called, database connection calls, etc. This is the recommended level for debug-
ging mapfiles.

* DEBUG 4 - DEBUG 3 plus even more details...

* DEBUG 5 - DEBUG 4 plus any msDebug() output that might be more useful to the developers than to the
users.

5.9. LAYER 83

MapServer Documentation, Release 5.4.2

You can also set the debug level by using the “MS_DEBUGLEVEL” environment variable.

The DEBUG setting can also be specified for the entire map, by setting the DEBUG parameter in the MAP
object.

For more details on this debugging mechanism, please see MS RFC 28: Redesign of LOG/DEBUG output
mechanisms.

Debugging with MapServer versions < 5:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer logfile if one is
set using the LOG parameter in the WEB object. Apache users will see timing details for drawing in Apache’s
error_log file. Requires MapServer to be built with the DEBUG=MSDEBUG option (-with-debug configure
option).

DUMP [truelfalse] Switch to allow MapServer to return data in GML format. Useful when used with WMS GetFea-
tureInfo operations. “false” by default.

EXTENT [minx] [miny] [maxx] [maxy] The spatial extent of the data. In most cases you will not need to specify
this, but it can be used to avoid the speed cost of having MapServer compute the extents of the data. An
application can also possibly use this value to override the extents of the map.

FEATURE Signals the start of a FEATURE object.

FILTER [string] This parameter allows for data specific attribute filtering that is done at the same time spatial filter-
ing is done, but before any CLASS expressions are evaluated. For OGR and shapefiles the string is simply a
mapserver regular expression. For spatial databases the string is a SQL WHERE clause that is valid with respect
to the underlying database.

For example: FILTER “type="road’ and size <2”
FILTERITEM [attribute] Item to use with simple FILTER expressions. OGR and shapefiles only.
FOOTER [filename] Template to use after a layer’s set of results have been sent. Multiresult query modes only.
GRID Signals the start of a GRID object.

GROUP [name] Name of a group that this layer belongs to. The group name can then be reference as a regular layer
name in the template files, allowing to do things like turning on and off a group of layers at once.

HEADER [filename] Template to use before a layer’s set of results have been sent. Multiresult query modes only.
JOIN Signals the start of a JOIN object.

LABELANGLEITEM [attribute] (As of MapServer 5.0 this parameter is no longer available. Please see the LABEL
object’s ANGLE parameter) For MapServer versions < 5.0, this is the item name in attribute table to use for
class annotation angles. Values should be in degrees. Deprecated since version 5.0.

LABELCACHE [onloff] Specifies whether labels should be drawn as the features for this layer are drawn, or whether
they should be cached and drawn after all layers have been drawn. Default is on. Label overlap removal, auto
placement etc... are only available when the label cache is active.

LABELITEM |[attribute] Item name in attribute table to use for class annotation (i.e. labeling).

LABELMAXSCALEDENOM [double] Maximum scale at which this LAYER is labeled. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented
in MapServer 5.0, to replace the deprecated LABELMAXSCALE parameter.

See Also:
Map Scale

LABELMAXSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is LABELMAXS-
CALEDENOM instead. The deprecated LABELMAXSCALE is the maximum scale at which this LAYER is

84 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

labeled. Scale is given as the denominator of the actual scale fraction, for example for a map at a scale of
1:24,000 use 24000. Deprecated since version 5.0.

LABELMINSCALEDENOM [double] Minimum scale at which this LAYER is labeled. Scale is given as the de-
nominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in
MapServer 5.0, to replace the deprecated LABELMINSCALE parameter.

See Also:
Map Scale

LABELMINSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is LABELMIN-
SCALEDENOM instead. The deprecated LABELMINSCALE is the minimum scale at which this LAYER
is labeled. Scale is given as the denominator of the actual scale fraction, for example for a map at a scale of
1:24,000 use 24000. Deprecated since version 5.0.

LABELREQUIRES [expression] Sets context for labeling this layer, for example:
LABELREQUIRES "! [orthoquads]"

means that this layer would NOT be labeled if a layer named “orthoquads” is on. The expression consists of
a boolean expression based on the status of other layers, each [layer name] substring is replaced by a 0 or a 1
depending on that layer’s STATUS and then evaluated as normal. Logical operators AND and OR can be used.

LABELSIZEITEM [attribute] (As of MapServer 5.0 this parameter is no longer available. Please see the LABEL
object’s SIZE parameter) For MapServer versions < 5.0, this is the item name in attribute table to use for class
annotation sizes. Values should be in pixels. Deprecated since version 5.0.

MAXFEATURES [integer] Specifies the number of features that should be drawn for this layer in the CURRENT
window. Has some interesting uses with annotation and with sorted data (i.e. lakes by area).

MAXSCALEDENOM [double] Maximum scale at which this LAYER is drawn. Scale is given as the denominator
of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer
5.0, to replace the deprecated MAXSCALE parameter.

See Also:
Map Scale

MAXSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MAXSCALEDENOM in-
stead. The deprecated MAXSCALE is the maximum scale at which this LAYER is drawn. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Deprecated
since version 5.0.

METADATA This keyword allows for arbitrary data to be stored as name value pairs. This is used with OGC WMS
to define things such as layer title. It can also allow more flexibility in creating templates, as anything you put
in here will be accessible via template tags.

Example:

METADATA
title "My layer title"

END

MINSCALEDENOM [double] Minimum scale at which this LAYER is drawn. Scale is given as the denominator
of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer
5.0, to replace the deprecated MINSCALE parameter.

See Also:
Map Scale

5.9. LAYER 85

MapServer Documentation, Release 5.4.2

MINSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MINSCALEDENOM in-
stead. The deprecated MINSCALE is the minimum scale at which this LAYER is drawn. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Deprecated
since version 5.0.

NAME [string] Short name for this layer. Limit is 20 characters. This name is the link between the mapfile and web
interfaces that refer to this name. They must be identical. The name should be unique, unless one layer replaces
another at different scales. Use the GROUP option to associate layers with each other.

OFFSITE [r] [g] [b] Sets the color index to treat as transparent for raster layers.

OPACITY [integerlalpha] Sets the opacity level (or the inability to see through the layer) of all classed pixels for
a given layer. The value can either be an integer in the range (0-100) or the named symbol “ALPHA”. A
value of 100 is opaque and O is fully transparent. Implemented in MapServer 5.0, to replace the deprecated
TRANSPARENCY parameter.

The “ALPHA” symbol directs the MapServer rendering code to honor the indexed or alpha transparency of
pixmap symbols used to style a layer. This is only needed in the case of RGB output formats, and should be
used only when necessary as it is expensive to render transparent pixmap symbols onto an RGB map image.

POSTLABELCACHE [truelfalse] Tells MapServer to render this layer after all labels in the cache have been drawn.
Useful for adding neatlines and similar elements. Default is false.

PROCESSING [string] Passes a processing directive to be used with this layer. The supported processing directives
vary by layer type, and the underlying driver that processes them.

¢ Attributes Directive - The ITEMS processing option allows to specify the name of attributes for inline
layers or specify the subset of the attributes to be used by the layer, such as:

PROCESSING "ITEMS=itemnamel, itemname?2, itemname3"

* Connection Pooling Directive - This is where you can enable connection pooling for certain layer layer
types. Connection pooling will allow MapServer to share the handle to an open database or layer con-
nection throughout a single map draw process. Additionally, if you have FastCGI enabled, the connection
handle will stay open indefinitely, or according to the options specified in the FustCGI configuration.
Oracle Spatial, ArcSDE, OGR and PostG1S/PostgreSQL currently support this approach.

PROCESSING "CLOSE_CONNECTION=DEFER"

* OGR Styles Directive - This directive can be used for obtaining label styles through MapScript. For more
information see the MapServer’s OGR document.

PROCESSING "GETSHAPE_STYLE_ITEMS=all"

» Raster Directives - All raster processing options are described in Raster Data. Here we see the SCALE
and BANDs directives used to autoscale raster data and alter the band mapping.

PROCESSING "SCALE=AUTO"
PROCESSING "BANDS=3,2,1"

PROJECTION Signals the start of a PROJECTION object.
REQUIRES [expression] Sets context for displaying this layer (see LABELREQUIRES).

SIZEUNITS [pixelslfeetlincheslkilometersimetersimiles| Sets the unit of CLASS object SIZE values (default is pix-
els). Useful for simulating buffering.

86 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

STATUS [onloffldefault] Sets the current status of the layer. Often modified by MapServer itself. Default turns the
layer on permanently.

Note: In CGI mode, layers with STATUS DEFAULT cannot be turned off using normal mechanisms. It is
recommended to set layers to STATUS DEFAULT while debugging a problem, but set them back to ON/OFF in
normal use.

Note: For WAMS, layers in the server mapfile with STATUS DEFAULT are always sent to the client.

STYLEITEM [attribute] Item to use for feature specific styling. This is very experimental and OGR only at the
moment.

SYMBOLSCALEDENOM [double] The scale at which symbols and/or text appear full size. This allows for dy-
namic scaling of objects based on the scale of the map. If not set then this layer will always appear at the
same size. Scaling only takes place within the limits of MINSIZE and MAXSIZE as described above. Scale is
given as the denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.
Implemented in MapServer 5.0, to replace the deprecated SYMBOLSCALE parameter.

See Also:
Map Scale

SYMBOLSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is SYMBOLSCALEDE-
NOM instead. The deprecated SYMBOLSCALE is the scale at which symbols and/or text appear full size. This
allows for dynamic scaling of objects based on the scale of the map. If not set then this layer will always appear
at the same size. Scaling only takes place within the limits of MINSIZE and MAXSIZE as described above.
Scale is given as the denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use
24000. Deprecated since version 5.0.

TEMPLATE [filelurl] Used as a global alternative to CLASS TEMPLATE.

TILEINDEX [filenamellayername] Name of the tileindex file or layer. A tileindex is similar to an ArcInfo library
index. The tileindex contains polygon features for each tile. The item that contains the location of the tiled data
is given using the TILEITEM parameter. When a file is used as the tileindex for shapefile or raster layers, the
tileindex should be a shapefile. For CONNECTIONTYPE OGR layers, any OGR supported datasource can be
a tileindex. Normally the location should contain the path to the tile file relative to the shapepath, not relative to
the tileindex itself. If the DATA parameter contains a value then it is added to the end of the location. When a
tileindex layer is used, it works similarly to directly referring to a file, but any supported feature source can be
used (ie. postgres, oracle).

Note: All files in the tileindex should have the same coordinate system, and for vector files the same set of
attributes in the same order.

TILEITEM [attribute] Item that contains the location of an individual tile, default is “location”.

TOLERANCE [double] Sensitivity for point based queries (i.e. via mouse and/or map coordinates). Given in TOL-
ERANCEUNITS. If the layer is a POINT or a LINE, the default is 3. For all other layer types, the default is 0.
To restrict polygon searches so that the point must occur in the polygon set the tolerance to zero.

TOLERANCEUNITS [pixelsifeetlincheslkilometersimetersimilesidd] Units of the TOLERANCE value. Default
is pixels.

TRANSPARENCY [integerlalpha] - deprecated Since MapServer 5.0 the proper parameter to use is OPACITY.
The deprecated TRANSPARENCY parameter sets the transparency level of all classed pixels for a given layer.
The value can either be an integer in the range (0-100) or the named symbol “ALPHA”. Although this parameter
is named “transparency”’, the integer values actually parameterize layer opacity. A value of 100 is opaque and 0
is fully transparent.

The “ALPHA” symbol directs the MapServer rendering code to honor the indexed or alpha transparency of
pixmap symbols used to style a layer. This is only needed in the case of RGB output formats, and should be

5.9. LAYER 87

MapServer Documentation, Release 5.4.2

used only when necessary as it is expensive to render transparent pixmap symbols onto an RGB map image.
Deprecated since version 5.0.

See Also:
OPACITY

TRANSFORM [truelfalse ulluclurllclccllrilliicllr] Tells MapServer whether or not a particular layer needs to be

transformed from some coordinate system to image coordinates. Default is true. This allows you to create
shapefiles in image/graphics coordinates and therefore have features that will always be displayed in the same
location on every map. Ideal for placing logos or text in maps. Remember that the graphics coordinate system
has an origin in the upper left hand corner of the image, contrary to most map coordinate systems.

Version 4.10 introduces the ability to define features with coordinates given in pixels (or percentages, see
UNITS), most often inline features, relative to something other than the UL corner of an image. That is what
‘TRANSFORM FALSE’ means. By setting an alternative origin it allows you to anchor something like a copy-
right statement to another portion of the image in a way that is independent of image size.

TYPE [pointllinelpolygonlcirclelannotationlrasterlquerylchart] Specifies how the data should be drawn. Need not

be the same as the shapefile type. For example, a polygon shapefile may be drawn as a point layer, but a point
shapefile may not be drawn as a polygon layer. Common sense rules. Annotation means that a label point
will be calculated for the features, but the feature itself will not be drawn although a marker symbol can be
optionally drawn. this allows for advanced labeling like numbered highway shields. Points are labeled at that
point. Polygons are labeled first using a centroid, and if that doesn’t fall in the polygon a scanline approach
is used to guarantee the label falls within the feature. Lines are labeled at the middle of the longest arc in the
visible portion of the line. Query only means the layer can be queried but not drawn.

In order to differentiate between POLYGONs and POLYLINEs (which do not exist as a type), simply respec-
tively use or omit the COLOR keyword when classifying. If you use it, it’s a polygon with a fill color, otherwise
it’s a polyline with only an OUTLINECOLOR.

A circle must be defined by a a minimum bounding rectangle. That is, two points that define the smallest square
that can contain it. These two points are the two opposite corners of said box.

The following is an example using inline points to draw a circle:

LAYER
NAME ’'inline_circles’
TYPE CIRCLE
STATUS ON
FEATURE
POINTS
74.01 -53.8
110.7 -22.16
END
END
CLASS
STYLE
COLOR 0 0 255
END
END
END

See Also:
For CHART layers, see the Dynamic Charting HowTo.

UNITS [feetlincheslkilometersimetersimilesiddipixelsipercentages] Units of the layer. Percentages was added in

MapServer 4.10 and is mostly geared for inline features.

88

Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

5.10 LEGEND

The size of the legend image is NOT known prior to creation so be careful not to hard-code width and height in the
 tag in the template file.

IMAGECOLOR [r] [g] [b] Color to initialize the legend with (i.e. the background).

INTERLACE [onloff] Default is [on]. This keyword is now deprecated in favor of using the FORMATOPTION
“INTERLACE=ON" line in the OUTPUTFORMAT declaration. Deprecated since version 4.6.

LABEL Signals the start of a LABEL object

OUTLINECOLOR [r] [g] [b] Color to use for outlining symbol key boxes.

POSITION [ulluclarillllcllr] Where to place an embedded legend in the map. Default is Ir.

KEYSIZE [x][y] Size of symbol key boxes in pixels. Default is 20 by 10.

KEYSPACING [x][y] Spacing between symbol key boxes ([y]) and labels ([x]) in pixels. Default is 5 by 5.

POSTLABELCACHE [truelfalse] Tells MapServer to render this legend after all labels in the cache have been
drawn. Useful for adding neatlines and similar elements. Default is false.

STATUS [onlofflembed] Is the legend image to be created.
TEMPLATE [filename] HTML legend template file.

See Also:

HTML Legends with MapServer

TRANSPARENT [onloff] Should the background color for the legend be transparent. This flag is now deprecated in
favor of declaring transparency within OUTPUTFORMAT declarations. Default is off. Deprecated since version
4.6.

5.11 MAP

ANGLE [double] Angle, given in degrees, to rotate the map. Default is 0. The rendered map will rotate in a clockwise
direction. The following are important notes:

* Requires a PROJECTION object specified at the MAP level and for each LAYER object (even if all layers
are in the same projection).

* Requires MapScript (SWIG, PHP MapScript). Does not work with CGI mode.

e If using the LABEL object’s ANGLE or the LAYER object’'s LABELANGLEITEM parameters as well,
these parameters are relative to the map’s orientation (i.e. they are computed after the MAP object’s
ANGLE). For example, if you have specified an ANGLE for the map of 45, and then have a layer LA-
BELANGLEITEM value of 45, the resulting label will not appear rotated (because the resulting map is
rotated clockwise 45 degrees and the label is rotated counter-clockwise 45 degrees).

* More information can be found on the MapRotation Wiki Page.

CONFIG [key] [value] This can be used to specify several values at run-time, for both MapServer and GDAL/OGR
libraries. Developers: values will be passed on to CPLSetConfigOption(). Details on GDAL/OGR options
are found in their associated driver documentation pages (GDAL/OGR). The following options are available
specifically for MapServer:

CGI_CONTEXT_URL [value] The CONFIG parameter can be used to enable loading a map context from a
URL. See the Map Context HowTo for more info.

5.10. LEGEND 89

http://trac.osgeo.org/mapserver/wiki/MapRotation
http://www.gdal.org/formats_list.html
http://www.gdal.org/ogr/ogr_formats.html

MapServer Documentation, Release 5.4.2

MS_ENCRYPTION_KEY ([filename] The CONFIG parameter can be used to specify an encryption key that
is used with MapServer’s msencypt utility.

MS_ERRORFILE [filename] The CONFIG parameter can be used to write MapServer errors to a file (as of

MapServer 5.0). A full path (absolute reference) is required, including the filename. For more on this see
the DEBUG parameter below.

MS_NONSQUARE [yeslno] The CONFIG parameter can be used to allow non-square WMS requests.

MS_PROJ_LIB [path] The CONFIG parameter can be used to define the location of your EPSG files. For
more info see the ‘PROJ_LIB’ parameter below.

ON_MISSING_DATA [FAILILOGIIGNORE] The CONFIG parameter can be used to tell MapServer how
to handle missing data in tile indexes (as of MapServer 5.3-dev, r8015). Previous MapServer versions
required a compile-time switch (“IGNORE_MISSING_DATA”), but this is no longer required.

FAIL This will cause MapServer to throw an error and exit (to crash, in other words) on a missing file in
a tile index. This is the default.

CONFIG "ON_MISSING_DATA"™ "FAIL"

LOG This will cause MapServer to log the error message for a missing file in a tile index, and continue
with the map creation. Note: DEBUG parameter and CONFIG “MS_ERRORFILE” need to be set for
logging to occur, so please see the DEBUG parameter below for more information.

CONFIG "ON_MISSING_DATA" "LOG"

IGNORE This will cause MapServer to not report or log any errors for missing files, and map creation
will occur normally.

CONFIG "ON_MISSING_DATA"™ "IGNORE"

PROJ_LIB [path] The CONFIG parameter can be used to define the location of your EPSG files for the Proj.4
library. Setting the [key] to PROJ_LIB and the [value] to the location of your EPSG files will force
PROJ .4 to use this value. Using CONFIG allows you to avoid setting environment variables to point to
your PROJ_LIB directory. Here are some examples:

1. Unix

CONFIG "PROJ_LIB" "/usr/local/share/proj/"

2. Windows
CONFIG "PROJ_LIB" "C:/somedir/proj/nad/"

DATAPATTERN [regular expression] This defines a regular expression to be applied to requests to change DATA
parameters via URL requests (i.e. map_layername_data=...). If a pattern doesn’t exist then web users can’t
monkey with support files via URLs. This allows you to isolate one application from another if you desire, with
the default operation being very conservative. See also TEMPLATEPATTERN.

DEBUG [offlonl0I112131415] Enables debugging of all of the layers in the current map.
Debugging with MapServer versions >= 5.0:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer errorfile if one
is set using the “MS_ERRORFILE” environment variable. You can set the environment variable by using the
CONFIG parameter

at the MAP level of the mapfile, such as:

90 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

CONFIG "MS_ERRORFILE" "/msdw/tmp/ms_error.txt"
You can also set the environment variable in Apache by adding the following to your httpd.conf:

SetEnv MS_ERRORFILE "/msdw/tmp/ms_error.txt"

Once the environment variable is set, the DEBUG mapfile parameter can be used to control the level of debug-
ging output. Here is a description of the possible DEBUG values:

* DEBUG O or OFF - only msSetError() calls are logged to MS_ERRORFILE. No msDebug() output at
all. This is the default and corresponds to the original behavior of MS_ERRORFILE in MapServer 4.x

* DEBUG 1 or ON - includes all output from DEBUG 0 plus msDebug() warnings about common pitfalls,
failed assertions or non-fatal error situations (e.g. missing or invalid values for some parameters, missing
shapefiles in tileindex, timeout error from remote WMS/WES servers, etc.)

* DEBUG 2 - includes all output from DEBUG 1 plus notices and timing information useful for tuning
mapfiles and applications

* DEBUG 3 - all of DEBUG 2 plus some debug output useful in troubleshooting problems such as WMS
connection URLSs being called, database connection calls, etc. This is the recommended level for debug-
ging mapfiles.

* DEBUG 4 - DEBUG 3 plus even more details...

* DEBUG 5 - DEBUG 4 plus any msDebug() output that might be more useful to the developers than to the
users.

You can also set the debug level by using the “MS_DEBUGLEVEL” environment variable.
The DEBUG setting can also be specified for a layer, by setting the DEBUG parameter in the LAYER object.

For more details on this debugging mechanism, please see MS RFC 28: Redesign of LOG/DEBUG output
mechanisms.

Debugging with MapServer versions < 5:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer logfile if one is
set using the LOG parameter in the WEB object. Apache users will see timing details for drawing in Apache’s
error_log file. Requires MapServer to be built with the DEBUG=MSDEBUG option (-with-debug configure
option).

EXTENT [minx] [miny] [maxx] [maxy] The spatial extent of the map to be created. In most cases you will need to
specify this, although MapServer can sometimes (expensively) calculate one if it is not specified.

FONTSET [filename] Filename of fontset file to use. Can be a path relative to the mapfile, or a full path.

IMAGECOLOR [r] [g] [b] Color to initialize the map with (i.e. background color). When transparency is enabled
(TRANSPARENT ON) for the typical case of 8-bit pseudocolored map generation, this color will be marked as
transparent in the output file palette. Any other map components drawn in this color will also be transparent, so
for map generation with transparency it is best to use an otherwise unused color as the background color.

IMAGEQUALITY [int] Deprecated Use FORMATOPTION “QUALITY=n" in the OUTPUTFORMAT declaration
to specify compression quality for JPEG output. Deprecated since version 4.6.

IMAGETYPE [giflpngljpeglwbmplgtifflswfluserdefined] Output format to generate. See details in the OUTPUT-
FORMAT section for available formats. The name here must match the ‘NAME’ of a user defined or internally
generated OUTPUTFORMAT section.

INTERLACE [onloff] Deprecated Use FORMATOPTION “INTERLACE=ON" in the OUTPUTFORMAT declara-
tion to specify if the output images should be interlaced. Deprecated since version 4.6.

5.11. MAP 91

MapServer Documentation, Release 5.4.2

LAYER Signals the start of a LAYER object.
LEGEND Signals the start of a LEGEND object.

MAXSIZE [integer] Sets the maximum size of the map image. This will override the default value. For example,
setting this to 2048 means that you can have up to 2048 pixels in both dimensions (i.e. max of 2048x2048).

NAME [name] Prefix attached to map, scalebar and legend GIF filenames created using this mapfile. It should be
kept short.

PROJECTION Signals the start of a PROJECTION object.
QUERYMAP Signals the start of a QUERYMAP object.
REFERENCE Signals the start of a REFERENCE MAP object.

RESOLUTION [int] Sets the pixels per inch for output, only affects scale computations and nothing else, default is
72.

SCALEDENOM [double] Computed scale of the map. Set most often by the application. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented
in MapServer 5.0, to replace the deprecated SCALE parameter.

See Also:
Map Scale

SCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is SCALEDENOM instead. The
deprecated SCALE is the computed scale of the map. Set most often by the application. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Deprecated
since version 5.0.

SCALEBAR Signals the start of a SCALEBAR object.

SHAPEPATH [filename] Path to the directory holding the shapefiles or tiles. There can be further subdirectories
under SHAPEPATH.

SIZE [x][y] Size in pixels of the output image (i.e. the map).

STATUS [onloff] Is the map active? Sometimes you may wish to turn this off to use only the reference map or scale
bar.

SYMBOLSET [filename] Filename of the symbolset to use. Can be a path relative to the mapfile, or a full path.
SYMBOL Signals the start of a SYMBOL object.

TEMPLATEPATTERN [regular expression] This defines a regular expression to be applied to requests to change
TEMPLATE parameters via URL requests (i.e. map_layername_template=...). If a pattern doesn’t exist then
web users can’t monkey with support files via URLs. This allows you to isolate one application from another if
you desire, with the default operation being very conservative. See also DATAPATTERN.

TRANSPARENT [onloff] Use FORMATOPTION “TRANSPARENT=ON" in the OUTPUTFORMAT declaration
to specify if the output images should be transparent. Deprecated since version 4.6.

UNITS [feetlincheslkilometersimetersimilesldd] Units of the map coordinates. Used for scalebar and scale compu-
tations.

WEB Signals the start of a WEB object.

5.12 OUTPUTFORMAT

A map file may have zero, one or more OUTPUTFORMAT object declarations, defining available output formats
supported including formats like PNG, GIF, JPEG, GeoTIFF and Flash (SWF).

92 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

If OUTPUTFORMAT sections declarations are not found in the map file, the following implicit declarations will be
made. Only those for which support is compiled in will actually be available. The GeoTIFF depends on building with
GDAL support, and the Flash (SWF) depends on compiling with support for the MING library.

OUTPUTFORMAT
NAME |(a|g|g|p|n|gl|24
DRIVER AGG/PNG
MIMETYPE "image/png"
IMAGEMODE RGB
EXTENSION "png"

END

OUTPUTFORMAT
NAME gif
DRIVER "GD/GIF"
MIMETYPE "image/gif"
IMAGEMODE PC256
EXTENSION "gif"

END

OUTPUTFORMAT
NAME png
DRIVER "GD/PNG"
MIMETYPE "image/png"
IMAGEMODE PC256
EXTENSION "png"

END

OUTPUTFORMAT
NAME jpeg
DRIVER "GD/JPEG"
MIMETYPE "image/jpeg"
IMAGEMODE RGB
EXTENSION "jpg"

END

OUTPUTFORMAT
NAME wbmp
DRIVER "GD/WBMP"
MIMETYPE "image/wbmp"
IMAGEMODE PC256
EXTENSION "wbmp"

END

OUTPUTFORMAT
NAME swf
DRIVER "SWE"
MIMETYPE "application/x-shockwave-flash"
EXTENSION "swf"
IMAGEMODE PC256
FORMATOPTION "OUTPUT_MOVIE=SINGLE"

END

OUTPUTFORMAT
NAME GTiff
DRIVER "GDAL/GTiff"
MIMETYPE "image/tiff"
IMAGEMODE RGB
EXTENSION "tif"

END

NAME [name] The name to use use in the IMAGETYPE keyword of the map file to select this output for-
mat.(optional)

DRIVER [name] The name of the driver to use to generate this output format. Some driver names include the defini-

5.12. OUTPUTFORMAT 93

MapServer Documentation, Release 5.4.2

tion of the format if the driver supports multiple formats. For AGG, the possbile driver names are “AGG/PNG”
and “AGG/JPEG”. For GD the possible driver names are “GD/Gif”, “GD/PNG”, “GD/WBMP” and “GD/JPEG”.
For flash the driver is just called “SWF”. For output through GDAL the GDAL shortname for the format is ap-
pended, such as “GDAL/GTiff”. Note that PNG, JPEG and GIF output can be generated with either GDAL or
GD (GD is generally more efficient).(mandatory)

IMAGEMODE [PC256/RGB/RGBA/INT16/FLOAT32] Selects the imaging mode in which the output is gener-

ated.

Does matter for non-raster formats like Flash. Not all formats support all combinations. For instance

GD/GIF supports only PC256. (optional)

L]

PC256: Produced a pseudocolored result with up to 256 colors in the palette (traditional MapServer mode)
RGB: Render in 24bit Red/Green/Blue mode. Supports all colors but does not support transparency.

RGBA: Render in 32bit Red/Green/Blue/Alpha mode. Supports all colors, and alpha based transparency.
All features are rendered against an initially transparent background.

BYTE: Render raw 8bit pixel values (no presentation). Only works for RASTER layers (through GDAL)
and WMS layers currently.

INT16: Render raw 16bit signed pixel values (no presentation). Only works for RASTER layers (through
GDAL) and WMS layers currently.

FLOAT32: Render raw 32bit floating point pixel values (no presentation). Only works for RASTER layers
(through GDAL) and WMS layers currently.

MIMETYPE [type] Provide the mime type to be used when returning results over the web. (optional)

EXTENSION [type] Provide the extension to use when creating files of this type. (optional)

TRANSPARENT [ON/OFF] Indicates whether transparency should be enabled for this format. Note that trans-
parency does not work for IMAGEMODE RGB output. Not all formats support transparency (optional). When
transparency is enabled for the typical case of 8-bit pseudocolored map generation, the IMAGECOLOR color
will be marked as transparent in the output file palette. Any other map components drawn in this color will
also be transparent, so for map generation with transparency it is best to use an otherwise unused color as the
background color.

FORMATOPTION [option] Provides a driver or format specific option. Zero or more FORMATOPTION statement
may be present within a OUTPUTFORMAT declaration. (optional)

GD/JPEG: The “QUALITY=n" option may be used to set the quality of jpeg produced (value from 0-100).
GD/PNG: The “INTERLACE=[ON/OFF]” option may be used to turn interlacing on or off.
GD/GIF: The “INTERLACE=[ON/OFF]” option may be used to turn interlacing on or off.

GDAL/GTiff: Supports the TILED=YES, BLOCKXSIZE=n, BLOCKYSIZE=n, INTER-
LEAVE=[PIXEL/BAND] and COMPRESS=[NONE,PACKBITS,JPEG,LZW,DEFLATE] format specific
options.

GDAL/*: AIlFORMATOPTIONS are passed onto the GDAL create function. Options supported by GDAL
are described in the detailed documentation for each GDAL format

GD/PNG and AGG/PNG both support quantizing from 24/32 bits to 8bits, in order to reduce the final image
size (and therefore save bandwidth) (see also http://trac.osgeo.org/mapserver/ticket/2436#comment:4 for
strategies when applying these options):

— “QUANTIZE_FORCE=on" used to reduce an RGB or RGBA image into an 8bit (or less) paletted
images. The colors used in the palette are selected to best fit the actual colors in the RGB image
(RGBA quantization was introduced in mapserver 5.2, and requires the —enable-experimental-png
flag to be used when configuring)

94

Chapter 5. Mapfile

http://trac.osgeo.org/mapserver/ticket/2436#comment:4

MapServer Documentation, Release 5.4.2

— “QUANTIZE_COLORS=256" used to specify the number of colors to be used when applying quan-
tization. Maximum value is 256. Specifying anything between 17 and 255 is probably a waste of
quality as each pixel is still encoded with a full byte. Specifying a value under 16 will produce tiny
images, but severly degraded.

— “QUANTIZE_NEW=o0n" used to force using a slower but higher quality quantization algorithm for
RGB images. The default behavior is to use a fast but crude quantization algorithm, that usually
results in duplicate entries in the palette, and visible artifacts when tiling.

— “PALETTE_FORCE=o0n" is used to reduce image depth with a predefined palette. This option is
incompatible with the previous quantization options.

— “PALETTE=/path/to/palette.txt” is used to define the absolute path where palette colors can be found.
This file must contain 256 entries of r,g,b triplets for RGB imagemodes, or r,g,b,a quadruplets for
RGBA imagemodes. The expected format is one triplet (or quadruplet) per line, each value separated
by commas, and each triplet/quadruplet on a single line. If less than 256 triplets are found in the file,
256-n remaining colors will be computed by quantization. If you have enabled the RGBA_PNG sup-
port (the —with-experimental-png option) and want to use transparency with a palette, it is important
to have these two colors in the palette file: 0,0,0,0 and 255,255,255,255.

5.13 PROJECTION

To set up projections you must define two projection objects: one for the output image (in the /AP object) and one for
each layer (in the LAYER objects) to be projected. MapServer relies on the Proj.4 library for projections. Projection
objects therefore consist of a series of PROJ.4 keywords, which are either specified within the object directly or
referred to in an EPSG file. An EPSG file is a lookup file containing projection parameters, and is part of the PROJ.4
library.

The following two examples both define the same projection (UTM zone 15, NADS83), but use 2 different methods:

Example 1: Inline Projection Parameters

PROJECTION
"proj=utm"
"ellps=GRS80"
"datum=NAD83"
"zone=15"
"units=m"
"north"
"no_defs"

END

Example 2: EPSG Projection Use

PROJECTION
"init=epsg:26915"
END

Note: This refers to an EPSG lookup file that contains a ‘26915’ code with the full projection parameters. “epsg” in
this instance is case-sensitive because it is referring to a file name. If your file system is case-sensitive, this must be
lower case, or MapServer (Proj.4 actually) will complain about not being able to find this file.

Note: See http://spatialreference.org/ref/epsg/26915 for more information on this coordinate system.
The next two examples both display how to possibly define unprojected lat/longs (“geographic’):

Example 3: Inline Projection Parameters

5.13. PROJECTION 95

http://spatialreference.org/ref/epsg/26915

MapServer Documentation, Release 5.4.2

PROJECTION
"proj=latlong"
"ellps=WGS84"
"datum=WGS84"

END

Example 4: epsg Projection Use

PROJECTION
"init=epsg:4326"
END

5.13.1 Important Notes
« If all of your data in the mapfile is in the same projection, you DO NOT have to specify any projection objects.
MapServer will assume that all of the data is in the same projection.

* Think of the MAP-level projection object as your output projection. The EXTENT and UNITS values at the
MAP-level must be in the output projection units. Also, if you have layers in other projections (other than the
MAP-level projection) then you must define PROJECTION objects for those layers, to tell MapServer what
projections they are in.

¢ If you specify a MAP-level projection, and then only one other LAYER projection object, MapServer will
assume that all of the other layers are in the specified MAP-level projection.

» Always refer to the EPSG file in lowercase, because it is a lowercase filename and on Linux/Unix systems this
parameter is case sensitive.

5.13.2 For More Information

* If you get projection errors, refer to the Errors to check if your exact error has been discussed.
» Search the MapServer-users email list archives, odds are that someone has faced your exact issue before.
* See the PROJ.4 user guides for complete descriptions of supported projections and coordinate systems.

 Refer to the Cartographical Map Projections page for background information on projections.

5.14 QUERYMAP

COLOR [r] [g] [b] Color in which features are highlighted. Default is yellow.

SIZE [x][y] Size of the map in pixels. Defaults to the size defined in the map object.

STATUS [onloff] Is the query map to be drawn?

STYLE [normalihilitelselected] Sets how selected features are to be handled. Layers not queried are drawn as usual.
* Normal: Draws all features according to the settings for that layer.
* Hilite: Draws selected features using COLOR. Non-selected features are drawn normally.

 Selected: draws only the selected features normally.

96 Chapter 5. Mapfile

http://lists.osgeo.org/pipermail/mapserver-users/
http://trac.osgeo.org/proj/
http://www.progonos.com/furuti/MapProj/Normal/TOC/cartTOC.html

MapServer Documentation, Release 5.4.2

5.15 REFERENCE

Three types of reference maps are supported. The most common would be one showing the extent of a map in an
interactive interface. It is also possible to request reference maps as part of a query. Point queries will generate an
image with a marker (see below) placed at the query point. Region based queries will depict the extent of the area of
interest. Finally, feature based queries will display the selection feature(s) used.

COLOR [r] [g] [b] Color in which the reference box is drawn. Set any component to -1 for no fill. Default is red.
EXTENT [minx][miny][maxx][maxy] The spatial extent of the base reference image.
IMAGE [filename] Full filename of the base reference image. Must be a GIF image.

MARKER [integerlstring] Defines a symbol (from the symbol file) to use when the box becomes too small (see
MINBOXSIZE and MAXBOXSIZE below). Uses a crosshair by default.

MARKERSIZE [integer] Defines the size of the symbol to use instead of a box (see MARKER above).

MINBOXSIZE [integer] If box is smaller than MINBOXSIZE (use box width or height) then use the symbol defined
by MARKER and MARKERSIZE.

MAXBOXSIZE [integer] If box is greater than MAXBOXSIZE (use box width or height) then draw nothing (Often
the whole map gets covered when zoomed way out and it’s perfectly obvious where you are).

OUTLINECOLOR [r] [g] [b] Color to use for outlining the reference box. Set any component to -1 for no outline.
SIZE [x][y] Size, in pixels, of the base reference image.

STATUS [onloff] Is the reference map to be created? Default it off.

5.16 SCALEBAR

Scalebars currently do not make use of TrueType fonts. The size of the scalebar image is NOT known prior to
rendering, so be careful not to hard-code width and height in the tag in the template file. Future versions will
make the image size available.

ALIGN [leftlcenterlright] Defines how the scalebar is aligned within the scalebar image. Default is center. Available
in versions 5.2 and higher. New in version 5.2.

BACKGROUNDCOLOR [r] [g] [b] Color to use for scalebar background, not the image background.
COLOR [r] [g] [b] Color to use for drawing all features if attribute tables are not used.
IMAGECOLOR [r] [g] [b] Color to initialize the scalebar with (i.e. background).

INTERLACE [truelfalse] Should output images be interlaced? Default is [on]. This keyword is now deprecated in
favour of using the FORMATOPTION “INTERLACE=0ON" line in the OUTPUTFORMAT declaration. Depre-
cated since version 4.6.

INTERVALS [integer] Number of intervals to break the scalebar into. Default is 4.
LABEL Signals the start of a LABEL object

OUTLINECOLOR [r] [g] [b] Color to use for outlining individual intervals. Set any component to -1 for no outline
which is the default.

POSITION [ulluclurilllilcllr] Where to place an embedded scalebar in the image. Default is Ir.

POSTLABELCACHE [truelfalse] For use with embedded scalebars only. Tells the MapServer to embed the scale-
bar after all labels in the cache have been drawn. Default is false.

SIZE [x][y] Size in pixels of the scalebar. Labeling is not taken into account.

5.15. REFERENCE 97

MapServer Documentation, Release 5.4.2

STATUS [onlofflembed] Is the scalebar image to be created, and if so should it be embedded into the image? Default
is off. (Please note that embedding scalebars require that you define a markerset. In essence the scalebar
becomes a custom marker that is handled just like any other annotation.)

STYLE [integer] Chooses the scalebar style. Valid styles are O and 1.

TRANSPARENT [onloff] Should the background color for the scalebar be transparent. This flag is now deprecated
in favor of declaring transparency within OUTPUTFORMAT declarations. Default is off. Deprecated since
version 4.6.

UNITS [feetlincheslkilometersimetersimiles] Output scalebar units, default is miles. Used in conjunction with the
map’s units to develop the actual graphic. Note that decimal degrees are not valid scalebar units.

5.17 STYLE

Style holds parameters for symbolization. Multiple styles may be applied within a class.

This object is new in 4.0 and is intended to separate logic from looks. The final intent is to have named styles (Not yet
supported) that will be re-usable through the mapfile. This is the new, preferred way of defining the appearance of an
object, notably a class.

ANGLE [doublelattributel AUTO]

* Angle, given in degrees, to draw the line work. Default is 0. For symbols of Type HATCH, this is the angle of
the hatched lines. For its use with hatched lines, see Example#8 in the symbology examples.

* [Artribute] was introduced in version 5.0, to specify the item name in the attribute table to use for angle values.
The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MYANGLE” that
holds angle values for each record, your STYLE object for hatched lines might contain:

STYLE
SYMBOL ’hatch-test’
COLOR 255 0 0
ANGLE [|M|Y ANGLE]
SIZE 4
WIDTH 3

END

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.

e The AUTO keyword was added in version 5.4, and currently only applies when coupled with the GEOM-
TRANSFORM keyword.

ANGLEITEM [string]
* this parameter was removed in MapServer 5.0. You should use the ANGLE [attribute] parameter instead.

» For MapServer versions <5, this is the attribute/field that stores the angle to be used in rendering. Angle is given
in degrees with 0 meaning no rotation.

ANTIALIAS [truelfalse] Should TrueType fonts and Cartoline symbols be antialiased.
BACKGROUNDCOLOR [r] [g] [b] Color to use for non-transparent symbols.
COLOR [r] [g] [b] | [attribute]

¢ Color to use for drawing features.

¢ [Artribute] was introduced in version 5.0, to specify the item name in the attribute table to use for color values.
The hard brackets [] are required. For example, if your shapefile‘s DBF has a field named “MYCOLOR” that
holds color values for each record, your STYLE object for might contain:

98 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

STYLE

COLOR [[M]Y|coLOR]

OUTLINECOLOR 150 150 150
END

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.

GEOMTRANSFORM [startlendlverticeslbbox]

Used to indicate that the current feature will be transformed before the actual style is applied. Only applies to
versions from 5.4

“bbox”: uses the current style for rendering the bounding box of the underlying geometry

“start” and “end”: uses the current style to render a marker on the first or last vertex of the current geometry.
When used with ANGLE AUTO, this can be used to render arrowheads or tails on line segments.

“vertices”: uses the current style for rendering a marker on the intermediate vertices of the underlying geometry.
When used with ANGLE AUTO, the marker is oriented by the half angle formed by the two adjacent line
segments.

MAXSIZE [integer] Maximum size in pixels to draw a symbol. Default is 50.

MINSIZE [integer] Minimum size in pixels to draw a symbol. Default is 0.

MINWIDTH [integer] Minimum width in pixels to draw the line work.
OFFSET [x][y] Offset values for shadows, hollow symbols, etc ...

OPACITY [integer] Opacity to draw the current style (applies to 5.2+, AGG Rendering Specifics only, does not apply

to pixmap symbols)

OUTLINECOLOR [1] [g] [b] | [attribute]

Color to use for outlining polygons and certain marker symbols. Line symbols do not support outline colors.

[Attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for color values.
The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MYOUTCOLOR”
that holds color values for each record, your STYLE object for might contain:

STYLE
COLOR 255 0 O

OUTLINECOLOR [[M[Y|o[u]T]|coLoR]
ND

E

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.

SIZE [integerlattribute]

* Height, in layer SIZEUNITS, of the symbol/pattern to be used. Only useful with scalable symbols. Default is

1. For symbols of Type HATCH, the SIZE is the distance between hatched lines. For its use with hatched lines,
see Example#8 in the symbology examples.

* [A#tribute] was introduced in version 5.0, to specify the item name in the attribute table to use for size values.

The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MYSIZE” that holds
size values for each record, your STYLE object for hatched lines might contain:

STYLE
SYMBOL ’hatch-test’
COLOR 255 0 0
ANGLE 45
SIZE [[M]Y|[SIZE]

5.17. STYLE 99

MapServer Documentation, Release 5.4.2

WIDTH 3
END

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.

Starting from version 5.4, the value can also be a fractional value (and not only integer). Note that currently
only the AGG renderer can correctly render fractional widths.

SIZEITEM [string]

this parameter was removed in MapServer 5.0. You should use the SIZE [attribute] parameter instead.

For MapServer versions <5, this is the attribute/field that stores the size to be used in rendering. Value is given
in pixels.

SYMBOL [integerlstringlfilename] The symbol name or number to use for all features if attribute tables are not

used. The number is the index of the symbol in the symbol file, starting at 1, the 5th symbol in the file is
therefore symbol number 5. You can also give your symbols names using the NAME keyword in the symbol
definition file, and use those to refer to them. Default is O, which results in a single pixel, single width line, or
solid polygon fill, depending on layer type.

You can also specify a gif or png filename. The path is relative to the location of the mapfile.

WIDTH [integerlattribute]

Width refers to the thickness of line work drawn, in layer SIZEUNITS. Default is 1.

For symbols of Type HATCH, the WIDTH is how thick the hatched lines are. For its use with hatched lines, see
Example#8 in the symbology examples.

Attribute binding was added in version 5.2

Starting from version 5.4, the value can also be a fractional value (and not only integer). Note that currently
only the AGG renderer can correctly render fractional widths.

5.18 SYMBOL

Symbol definitions can be included within the main MapFile or, more commonly, in a separate file. Symbol
definitions in a separate file are designated using the SYMBOLSET keyword, as part of the MAP Object. This
recommended setup is ideal for re-using symbol definitions across multiple MapServer applications.

There are 3 main types of symbols in MapServer: Markers, Shadesets, and Lines.

Symbol 0 is always the degenerate case for a particular class of symbol. For points, symbol 0 is a single pixel,
for shading (i.e. filled polygons) symbol O is a solid fill, and for lines, symbol O is a single pixel wide line.

Symbol definitions contain no color information, colors are set within CLASS objects.

For MapServer versions < 5 there is a maximum of 64 symbols per file. This can be changed by editing
mapsymbol.h and changing the value of MS_MAXSYMBOLS at the top of the file. As of MapServer 5.0 there
is no symbol limit.

More information can be found in the Construction of Cartographic Symbols document.

ANTIALIAS [truelfalse] Should TrueType fonts be antialiased.

CHARACTER [char] Character used to reference a particular TrueType font character. You’ll need to figure out the

mapping from the keyboard character to font character.

FILLED [truelfalse] Sets the symbol to be filled with a user defined color (See the CLASS object). For marker

symbols, if OUTLINECOLOR was specified then the symbol is outlined with it.

100

Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

FONT [string] Name of TrueType font to use as defined in the FONTSET.

GAP [int] Given in pixels. This defines a distance between symbols for TrueType lines. As of MapServer 5.0 this
also applies to PixMap symbols.

When drawing the symbol along a line segment, a negative GAP will will add 180 degress to the angle. The
TrueType and PixMap symbols are always oriented along the line. A GAP of 0 (the default value) will cause
MapServer to use the symbol as a brush to draw the line.

IMAGE [string] Image (GIF or PNG) to use as a marker or brush for type PEIXMAP symbols.
NAME [string] Alias for this font to be used in CLASS objects

LINECAP [buttlroundIsquareltriangle] Sets the line cap type for the cartoline symbol. Default is butt. Works with
the CARTOLINE symbol only!

LINEJOIN [roundimiter|bevel] Sets the line join type for the cartoline symbol. Default is “none” - lines will not be
joined . Works with the CARTOLINE symbol only!

LINEJOINMAXSIZE [int] Sets the max length of the miter line join type. The value represents a coefficient which
multiplies a current symbol size. Default is 3. Works with the CARTOLINE symbol only!

PATTERN [num on] [num off] [num on] ... END Defines a dash style or pattern. Implemented in MapServer 5.0,
to replace the deprecated STYLE parameter.

POINTS [x y] [x y] ... END Signifies the start of the definition of points that make up a vector symbol or that define
the x and y radius of an ellipse symbol. The end of this section is signified with the keyword END. Coordinates
are given in pixels and define the default size of the symbol before any scaling. You can create non-contiguous
paths by inserting negative coordinates at the appropriate place. For ellipse symbols you provide a single point
that defines the x and y radius of an ellipse. Circles are created when x and y are equal.

Note: If a class using this symbol doesn’t contain an explicit size, then the default symbol size will be based on the
range of “’y” values in the point coordinates. e.g. if the y coordinates of the points in the symbol range from O to 5,
then the default size for this symbol will be assumed to be 5.

STYLE [num on] [num off] [num on] ... END -deprecated Since MapServer 5.0 the proper parameter to use is
PATTERN instead. The deprecated STYLE parameter defines a dash style or pattern. Deprecated since ver-
sion 5.0.

TRANSPARENT [color index] Sets a transparent color for the input GIF image for pixmap symbols, or determines
whether all shade symbols should have a transparent background. For shade symbols it may be desirable to have
background features “show through” a transparent hatching pattern, creating a more complex map. By default a
symbol’s background is the same as the parent image (i.e. color 0). This is user configurable.

TYPE [vectorlellipselpixmapltruetypelsimplelcartolinelhatch] * vector: a simple drawing is used to define the
shape of the symbol.

* ellipse: radius values in the x and y directions define an ellipse.
* pixmap: auser supplied GIF image will be used as the symbol.
* truetype: TrueType font to use as defined in the FONTSET.

e cartoline: allows for different designs of line ends (mitered, rounded, beveled). More information can be
found in the Cartographic Symbols document.

e hatch: produces hatched lines throughout the shape.

5.19 Cartographic Symbol Construction with MapServer

Author Peter Freimuth

5.19. Cartographic Symbol Construction with MapServer 101

MapServer Documentation, Release 5.4.2

Contact pf at mapmedia.de

Author Arnulf Christl

Contact arnulf.christl at wheregroup.com

Revision $Revision: 8484 $

Date $Date: 2009-01-31 07:38:27 -0800 (Sat, 31 Jan 2009) $

Table of Contents

* Cartographic Symbol Construction with MapServer
Abstract

Introduction

Using Cartographic Symbols in UMN MapServer
Examples

Current Problems / Open Issues

5.19.1 Abstract

This Document refers to the syntax of MAP and symbolfiles for MapServer 4.6. It is based upon the results of a
project carried out at the University of Hannover, Institute of Landscape and Nature Conservation. It was initiated by
Mr. Dipl. Ing. Roland Hachmann. Parts have been taken from a study carried through by Karsten Hoffmann, student
of Geography and Cartography at the FU Berlin. In the context of a hands-on training in the company GraS GmbH Mr.
Hoffman mainly dealed with the development of symbols. (Download study report in German) His degree dissertation
will also concern this subject.

At the end of this document you will find a link to a paper discussing further development of the UMN MapServer
software regarding the cartographic rendering capabilities. We will try to get around to also translating it to English
asap. We welcome everybody who is interested in this subject to participate in the discussion. As a result of this
discussion we want to put together a list with change requests and new requirements for UMN MapServer.

5.19.2 Introduction

Cartographic characters can be distinguished as point, line and area symbols. These symbols may vary depending on
their special attributes (variables). Bertin (1974) created a clear and logical symbol scheme in which symbols can be
varied referring to graphical variables. The following variables are used within MapServer: FORM, SIZE, PATTERN,
COLOR and LIGHTNESS. Point and area symbols as well as text fonts (ttf) can additionally be displayed with a
1-pixel wide frame which we call OUTLINE.

Multiple Rendering and Overlay

Complex cartographic effects can be achieved by rendering the same vector data with different attributes, sizes and
colors on top of each other. This is an easy workaround to creating complex signatures but obviously it will also
reflect on the performance of the application. Every rendering process of the same geometries will take up additional
processor time.

As an example consider displaying a highway with a black border line, two yellow lanes and a red center line. You
can achieve this by rendering the same highway geometry three times on top of each other. The lowest (in drawing
order) is rendered as a broad black line with a width of 9 pixel. The second level lines are rendered in yellow color
with a width of 7 pixel. The topmost layer is displayed as the red center line with a width of 3 pixel in size. That way
each yellow colored lane will have a width of (7-1)/2 = 3 pixel.

102 Chapter 5. Mapfile

http://www.mapmedia.de/fileadmin/user_upload/dokumente/umn_signaturen_howto/Praktikumsarbeit.zip

MapServer Documentation, Release 5.4.2

This can be a solution for many kinds of cartographic questions, a combination of different geometry types is also
possible. First define a polygon layer as TYPE LINE. It will frame the polygons with a line signature. On top of this
include the same geometry a second time but now as TYPE POLYGON with a symbol filling the polygon. This way
half of the underlying outline is covered by the polygon with the fill symbol. The clipping effect renders an asymmetric
line symbol. To present the outline without clipping just reorder the layers and put the outline presentation on top of
the layer with the fill symbol.

Each step growing more complex, yet another way to construct asymmetric line signatures for framed faces is to
tamper with the original geometries by buffering or clipping the original geometry such that the new objects lie
inside the original polygons or grow over the borders. A new line symbol for these geometries can use the OFFSET
parameter with the y-value set to -99. This is where current development stops short this functions has not been
developed further. (Anybody need this feature?). Buffer areas may provide ideal geometry for ambitious cartography,
this should be possible as soon as the GEOS library is implemented in MapServer. Until then using PostGIS helps to
solve a lot of problems.

Symbol Scaling
There are two basically different ways to handle the display size of symbols and cartographic elements in a map at
different scales. The size of cartographic objects is either set in screen pixel or in real world units.

* If the size is set in real world units (i.e. meters), then cartographic objects are scalable, they will shrink and
grow together with the scale at which the map ist displayed.

* Object sizes in screen pixel will be displayed in the same size no matter at what scale the map is displayed.

UMN MapServer implements the screen pixel size type for displaying cartographic elements. Additionally the size of
cartographic elements can be tied to defined scales, such that the symbols “grow” and “shrink” with the scale. The
involved parameters include SYMBOLSCALE, MINSIZE and MAXSIZE settings in the MAP file.

All symbol and style definitions referenced in the following section are contained in the archive at the end of this
document.

The following figure shows the theoretical structure of cartographic symbols, which are also used in UMN MapServer:

Figurel: Structure of Cartographic Symbols*

5.19. Cartographic Symbol Construction with MapServer 103

MapServer Documentation, Release 5.4.2

Structure of Cartographic Symbols

“_ ¥

COLOR +

?

POINT Features

Geometry LINE Features

Internal Variation \

Zeichen

AREA Features
SATTERN

s = 47

FORM A OUTLINE O Size
In a MapServer application symbol parameters are taken from the MAP and symbol file as follows:

MAP file:

external Variation

* The parameter TYPE defines the type of geometry (point, line or polygon) for each layer. The symbols are
accordingly rendered as single points, along a line or area symbols.

* The definition of the color, brightness (through the color parameter), size and outline is set inside the STYLE-
section of a CLASS-section by the parameters COLOR, SIZE and OUTLINECOLOR.

* Combining several basic elements to achieve a complex signature with several STYLEs inside one layer (observe
the display order).

Symbol file:
¢ Definition of form and pattern with TYPE, POINTS, IMAGE, FILLED, STYLE (meaning fill pattern) and GAP.

The following figure shows the interaction of these elements and explains the configuration in the MAP and the
SYMBOL file sections necessary for rendering cartographic symbols in the map:

Figure2: Schema showing interaction of MAP and SYMBOL file

104 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

LAYER-Sektion der Map-Datei: Zeichen aus der Symbaoldatei:
LAYER
.'F‘?L“EEFH&CJ?CMIE" Beatimmung der Geomelie (Punkee, SYMEDL
STATUS OM Linien ader Flachen), hes Punkle -??;JEE;EL;;?—F&%I Angabe der Art des Zeichens bestehend aus
DATA hochschul i —= YWekbaren, einer ERipse, einem Raslerbild oder
cchschule — Angabae dar Datei hochschuleshp mit den Vaklordatan FOINTS sinerm TrueTypeFont, hier. Vektor
CLASS — Beginn der STYLE-Sektion s
f : Angabe der Punkbe in x- und y-Koodinaten
Angabe des Zeichens aus der Symboldatei, welches 11 i
SE;bEBDL reuadrat " auf die: Punkbe gezeichnet werden sall 10 au3 denen die Vekiaren bestchen
EEEE:FI? pesgp " Grée der Signaturin Pixel E?uEl
OUTLNECOLOR [._‘ET;._""' Farbe in RGE-\Werien mit der das Zeichen FILLED TRUE == dasz Zeichen wird ausgedollt
END geffiallt wird, hier: Rot END
Definition einer 1-Pixel breiten Linie, die \
Eﬁ%ﬁ das Zeichen umrandet, hier: Schwarz
50 konnte das Zeichen dann aussahan:

S0 siehl die Signatur dann letztendlich aus.
Sie wird dann in der Kane auf den Punkten, daren Koondinaten in der

‘Vaklordatei stehen, gezeichnet

5.19.3 Using Cartographic Symbols in UMN MapServer

The basic graphic elements in a symbolfile are made up of vectors, truetype fonts, raster images or cartolines and are
defined by the TYPE-parameter. The following section explains all four types of basic graphic elements and how they
can be combined to create complex cartographic symbols.

Scaling of Symbols

The parameter SYMBOLSCALE in the LAYER section specifies the scale number at which the symbol or text label
is displayed in exactly the pixel size defined by the SIZE parameter. Observe that the SIZE parameter is tightly
connected to the SYMBOLSCALE parameter. The parameters MAXSIZE and MINSIZE inside the STYLE block
limit the rendering of symbols to the maximum and minimum scale specified here. Both the minimum reasonable
display size for symbols and the minimum of space required to display a symbol within a polygon should be observed.

Symbols of TYPE PIXMAP will not be scaled if used as line and polygon fills! In addition PEIXMAPs will not display
nicely when rescaled due to roundings caused by the integer arithmetics of the GD. The basic elements of a composite
cartographic symbol may change their relative positions to each other, especially at very small scales (large number).
They can also slightly change their form when they are displayed as tiny little images.

Furthermore the gaps of line symbols (the pattern itself) will not be scaled. The gaps stay fixed whereas the width is
scaled. This can result in strange effects seeming to change the original pattern.

There is no possibility to separately define the display intervals (gaps) with MINSCALE and MAXSCALE in the
STYLE-section (anybody need this?), so this tuning has to be solved at the LAYER level. TO do this create several
layers with the same geometries for different scale levels and specify the appropriate sizes accordingly.

5.19. Cartographic Symbol Construction with MapServer 105

MapServer Documentation, Release 5.4.2

Always observe that cartographic symbols depend a lot on the scale! So be careful with the interaction of content,
symbols and scale when creating projects. All three parameters heavily interact and have to be coordinated to produce
a good map.

Symbols of TYPE VECTOR and ELLIPSE

The TYPE VECTOR defines the form of a symbol by setting x- and y-values in a local caresian coordinate system
with the origin at the upper left corner. Each symbol is parenthesized by the tags POINTS and END. The maximum
number of points can be increased by changing the parameter MS_MAXVECTORPOINTS in the file mapsymbols.h.
The current default is 100. Note that by setting the end point equal to the start point you obtain a closed form (polygon).
To use the coordinates -99 -99 to break a line, the following point will not be connected by a line with the preceding
one.

When creating symbols of the TYPE VECTOR you should observe some style guidelines. Avoid downtilted lines in
area symbols, as they will lead to heavy aliasing effects. Furthermore you should not go below a useful minimum size,
which is relevant for all types of symbols. Keep in mind that the points in the local coordinate system are rendered
as pixel images, thus only integer values make any sense. Every symbol of the TYPE VECTOR is first rendered as a
pixel image and then added to the geometry. This is the basic principle of the GD graphic kernel. PIXMAP symbols
may be used directly for drawing.

To create circles and ellipses use the TYPE ELLIPSE. These forms are created by setting the x and y values as the
radius of the circle or ellipse inside POINTS and END.

Construction of Point Symbols

The following figure shows how to combine several basic elements to create a new point symbol. The combination is
achieved by adding several STYLEs within one layer. Each basic element references one item of the SYMBOL file,
which are centered and overlayed when rendered.

Notice that the SIZE parameter in the STYLE section only refers to the width of the symbol (size in the y-direction).
An edgewise rectangle will thus display smaller than a lying rectangle, although both have the same SIZE parameter.
When combining several point elements on top of each other, they will not always be centered correctly. We have not
found a regular rule yet. We can only recommend to set an even-numbered SIZE for combined elements. Combining
elements with even and odd numbered SIZE parameters seem to have larger irregularities.

Figure3: Construction of Point Symbols

106 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

LAYER-Section in the Map-File: Symboldefinitions in the Symbolfile:
LAYER
NAME Signatur1 . SYMBOI". '
TYPEPOINT —— Point Layer NAME "quadrat’
STATUS ON TYPE VECTOR
DATA ... POINTS
00
CLASS 01 —_— .
STYLE 10
SYMBOL "quadrat” 00
SIZE 40 END
COLOR 00 255 FILLED TRUE
OUTLINECOLOR 00 0 END
END
SYMBOL
STYLE NAME “punkt"
SYMBOL "punkt” TYPE ELLIPSE — which symbol type is used
SIZE 30 POINTS
COLOR 204 204 255 11 ——= Length of X and ¥ radius of the Ellipse
END END
FILEDTRUE —— @
STYLE END

SYMBOL "kreuz2"

SIZE 16 SYMBOL
COLOROOO NAME "kreuz2"
TYPE VECTOR

END
POINTS
END 00 \
END 11)<
-99 -99
01 — Negative values can be used
10 to separate singles vectorlines
END {also called pen-up command)

-

Visual appearance of the final result

Construction of Line Symbols

For displaying line geometries most often a simple point symbol (filled circle / SYMBOL 0) is used. This point is
painted for each pixel along the line, giving a continuous line with rounded ends. To create line patterns use the
STYLE section of the SYMBOL file (do not confuse this with the STYLE-section of the CLASS object). Here you
state how many pixel of the section shall be displayed and how many are left blank. This pattern will be repeated as
many times as that pattern will fit into the element. The following figure shows this effect. Unfortunately up to now
no OFFSET (start gap) can be defined to create asymetric patterns. (anybody need this?)

Figure4: Construction of Line Symbols

5.19. Cartographic Symbol Construction with MapServer 107

MapServer Documentation, Release 5.4.2

LAYER-Section in the Map-File:

LAYER
NAME Strasse
TYPE LINE —_—
STATUS ON
DATA ...

CLASS

STYLE
COLOROOO

Drawing a Layer of
Line Features

SYMBOL 'punkt’ >
IZE 7

END

STYLE
COLOR 255 255 0
SYMBOL “punkt”

SIZE 5
END

STYLE
COLOROOO

SYMBOL "linie-gestr4”
SIZE 1
END

END
END

Symboldefinitions in the Symbol-File:

SYMBOL
NAME "punkt’
TYPE ELLIPSE
POINTS
11

END
FILLED TRUE
END

SYMBOL

NAME "linie-gestr4”
TYPE ELLIPSE

POINTS
11 —_— - =
END
S;rg]{g 10 10 This defines a Line-Pattern — 10 Pixels
END will be drawn with the 1/1 EllipseBrush -
END 10 Pixel GAP — 10 Pixel Line — and again
a 10 Pixel GAP

Visual appearance of the final result

When using the point character for rendering all line features with have rounded ends. This can be a desired effect or
not, it gets more obvious the larger the width of line is set. Alternatively a rectangle can be used to generate a line. It
can be enhanced with a STYLE-parameter to create line patterns (see below).

Table 1. Creating a Symbol to Display Railways

108

Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

CLASS-section from the Mapfile

Character from the Symbolfile

CLASS
STYLE
COLOR 102 102 102

SYMBOL

NAME ’'point’
TYPE ELLIPSE

SYMBOL ’point’ POINTS
SIZE 4 11
END END
STYLE FILLED TRUE
COLOR 255 255 255 END
SYMBOL ’'rectangle-train’
SIZE 2 SYMBOL
END NAME ’'rectangle-train’
END TYPE VECTOR
POINTS
00
0 0.6
1 0.6
10
00
END
FILLED TRUE
STYLE
8 12 8 12
END
END

The STYLE parameter can be used for elements of the SYMBOL file with the TYPE VECTOR, ELLIPSE, CARTO-
LINE and PIXMAP. It will define the number of intervals in which the symbol is rendered. This can be done using the
GAP parameter with TRUETYPE symbols (see below).

When combining of several symbols on a line, they will be positioned on the baseline which is defined by the geometry
of the object in pixel coordinates. Again we face the problem of centering. In most cases MapServer corectly centers
symbols. The combination of a line displayed in 6 pixel width and overlayed with 4 pixel width results in a line symbol
with a 1 pixel border. If the cartographic symbol is to contain a centered line with a width of 1 pixel, then the SIZE
parameters have to be reconfiguredfor example to 7 and a 5 pixel. As a rule of thumb only combine even numbered or
odd numbered SIZE parameters (see above).

In the STYLE section of the MAP file an OFFSET parameter can be set to shift symbols or characters in the x and
y direction. Unfortunately the displacement is set relative to the map border, not the inclination of the line gemoetry
(with the exception: OFFSET n -99). Therefore the iterated characters are all shifted in the same direction, independent
of which direction the line takes (see Example 2). To generate asymmetrical line symbols apply -99 for the y value
of the OFFSET. Then the x-value defines the distance from a parallel to the original geometry, for which the selected
symbol is used (what a pity this wasn’t documented anywhere!).

Table 2: Use of the OFFSET parameter with line signatures

5.19. Cartographic Symbol Construction with MapServer 109

MapServer Documentation, Release 5.4.2

CLASS-section from the
Mapfile

Character from the Sym-
bolfile

CLASS-Section from the
Mapfile

Character from the Sym-
bolfile

CLASS SYMBOL CLASS SYMBOL

STYLE NAME "circle" STYLE NAME "circle"
SIZE 1 TYPE ELLIPSE SIZE 1 TYPE ELLIPSE
COILOR 0 0O O POINTS COILOR 0O 0 O POINTS

END 11 ANTIALIAS 11

STYLE END END END
SYMBOL "circle" STYLE STYLE STYLE
SIZE 7 1 10 1 10 SYMBOL "circle" 1 10 1 10
COLOR 0 0 255 END SIZE 12 END
OFFSET 8 -8 END COLOR 0 0 255 END

END
END

OFFSET -8 -99
ANTIALIAS TRUE
END
END

ROOOOOOQOQOOOOOO0

Soood

POoOOOOOOOOOOOO0

ROCOOOOQOOOOOQOO00

L]

o
o
L]
L]
o

QOOOOOO0OO00O00

Sooooodh Booooodv

Area Symbols

Areas (polygons) can be filled with elements of the SYMBOL file to create e.g. hatches and graticules. These are
by default rendered without spacing one after the other in x and y direction and fill out the whole polygon. Simple
line hatches (e.g. horizontal, vertical and diagonal) can be created by filling the polygon with a line symbol from the
SYMBOL file (see example 5).

The SIZE parameter in the STYLE section for line hatches only specifies the distance between the lines and not
their width. Thus in these hatches all lines will always have a width of 1 pixel. Unfortunately there is no additional
parameter to define the line width (Anybody need this feature?). Notice that the SIZE parameter is interpreted by
MapServer differently for horizontal and vertical lines. Vertical lines with a SIZE parameter of 8 pixel result in a
distance of 8 pixel between the lines. Horizontal lines with the same SIZE parameter are instead renderes with a much
smaller gap (see example 5). For creating cross hatches composed of vertical and horizontal lines the best method is
to use a simple cross from the SYMBOL file. Polygons can also be filled with other POINT elements to obtain special
patterns (e.g. with circles or triangles).

Table 3: Construction of a cross hatch with different line distances

110 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

CLASS-Section from the Mapfile

Character from the Symbolfile

CLASS SYMBOL
STYLE NAME "line-vertical"
SYMBOL "line-vertical" TYPE vector
SIZE 8 POINTS
COLOR 255 102 51 0.5 0
OUTLINECOLOR 0O 0 O 0.5 1
END END
STYLE END
SYMBOL "line-horizontal" SYMBOL
SIZE 8 NAME "line-horizontal"
COLOR 204 102 51 TYPE vector
OUTLINECOLOR 0O 0 O POINTS
END 0 0.5
END 1 0.5
END
END

Signatures of TYPE PIXMAP

Symbols of the TYPE PIXMAP are simply small raster images. The name of the raster images are specified in the
SYMBOL file with the parameter IMAGE. MapServer supports the raster formats GIF and PNG. Observe the color
depth of the images and avoid using 24 bit PNG symbols displayed in 8 bit mode as this may cause unexpected color
leaps. When using raster images the color cannot be modified in the SMBOL file subsequently. But you can specify
a color with the TRANPARENT parameter which will not be displayed - i.e. it will be transparent. As a result all
underlying objects and colors are visible.

The SIZE parameter defines the size of PIXMAP symbols when used as point symbols. Observe that the pixel structure
will show when the SIZE grows too large. Prevent this from happening by setting a MAXSIZE parameter. When using
PIXMAPS as line symbols or as fill symbols for polygons they will not be resized but are displayed in the original
size. So the use of PIXMAP STYLE objects for signatures with a high need of scaling is rather limited.

PIXMAP symbols are always rendered respective to the map border and will not follow the inclination of a line or
polygon outline. Only truetype font symbols can follow an inclined line geometry, although with some defects (see
below).

To create more complex area symbols, e.g. with defined distances between single characters or hatches with broad
lines, raster images are probably the most suitable objects. Depending on the desired pattern you have to generate the
raster image with high precision using a graphic editor. To obtain a regular allocation of symbols with defined spacing
you could use the raster image as shown in Figurel.

Figure5: Raster image for a regular polygon symbol fill

5.19. Cartographic Symbol Construction with MapServer 111

MapServer Documentation, Release 5.4.2

B=2x

y/2

H=2y

x/2 X x/2

Figure6: Raster image for a hatched fill

B

Instead of using circles you can use different characters. B defines the width and H the height of the raster image. For
a regular arrangment of symbols in a 45 degree angle B = H. For symbols, which are regularly arranged in parallel and
without offset between each other one centered symbol with same x and y distances to the imageborder is enough. A
regular hatch with wider lines can be created by using the raster image in fig. 2. To create a 45 degree hatch use:

B =H and x = y
When using the MapServer legend observe that each raster PIXMAP is displayed only once in the original size in the

middle of the legend box.

See the example below of some PIXMAP symbols, which can be used as area symbols with transparency. The raster
images were created using FreeHand, finished with Photoshop and exported to PNG with special attention regarding
the color palette. Observe that you have to specify a COLOR in the STYLE section of the CLASS to display raster

112 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

PIXMAPS although it has no influence on the output and color of the image.

Table 4: Construction of a horizontally arranged area symbol

CLASS-Section from the Mapfile

Character from the Symbolfile

CLASS
STYLE
COLOR 255 255 0
END
STYLE
SYMBOL "in_the_star"
COLOR 0O 0O O
OUTLINECOIOR 0O 0 O
END
END

SYMBOL
NAME "in_the_star"
TYPE PIXMAP
IMAGE "stern.png"
TRANSPARENT 8

END

*

L 2 o db b o

*x kX k ok ok

Table 5: Construction of a diagonally arranged area symbol

CLASS-Section from the Mapfile

Character from the Symbolfile

CLASS
STYLE
SYMBOL "in_ pointl"
COIOR 0 0 O
OUTLINECOLOR 0O O O
END
END

SYMBOL
NAME "in_pointl"
TYPE PIXMAP
IMAGE "flaechel 1.png"
TRANSPARENT 13

END
]
L]

Table 6: Construction of a face hatch

5.19. Cartographic Symbol Construction with MapServer 113

MapServer Documentation, Release 5.4.2

CLASS-Section from the Mapfile Character from the Symbolfile
CLASS SYMBOL
STYLE NAME "in_hatch"
COLOR 255 255 0 TYPE PIXMAP
END IMAGE "schraffur.png"
STYLE TRANSPARENT 2
SYMBOL "in_hatch" END
COLOR 0 0 0 /
OUTLINECOILOR 0O 0 O a
END
END

/
/.

Signatures of TYPE CARTOLINE

The TYPE Cartoline is not really an independent SYMBOL type or basic element but it is useful for creating line
signatures. The advantage over the above types is the antialising of lines with any width. Conventional lines can only
use antialising with a width of 1 pixel. This line type supports the ANTIALIAS parameter in the STYLE block of
the CLASS definition just like the truetype fonts and symbols. Here you can also define line patterns and offsets.
The design of the line ends can be controled with the LINECAP parameter. The LINECAP value BUTT stopps the
signature exactly at the end of the top line. Author of this features is Tomas Krecmer (tokr(a)tmapy.cz). If you have
questions concerning this type of signature or suggestions for improvement please contact the author.

Dashed line of TYPE CARTOLINE

SYMBOL
NAME "cartoline"
TYPE cartoline
LINECAP \ r ‘n“ #[butt |round|square|triangle]
LINEJOIN miter #/[round/miter|bevel]
LINEJOINMAXSIZE 3
STYLE
40 17 1 17 1 17 1 17
END
END

LINEJOIN

The different values for the parameter LINEJOIN have the following visual effects (see the following figure). Default
is ‘not set’ but do not specify the string ‘not set’, just omit the parameter LINEJOIN.

114 Chapter 5. Mapfile

mailto:tokr@tmapy.cz

MapServer Documentation, Release 5.4.2

Miter follow line borders until they intersect, fill the resulting area.

Round see above
Bevel see above

None Lines will not be connected but drawn with LINECAPP ‘butt’ at the respective ends.

Miter

s

LINEJOINMAXSIZE

Specify the maximum length of m (only relevant for LINEJOIN type MITER). The value is a multiplication factor
(default 3). The actual max length is calculated as follows:

m - current join size
d - symbol size
m_max = d * LINEJOINMAXSIZE

If current m > m_max then the connection length will be set to m_max.

Signatures of TYPE TRUETYPE

Finally you can use symbols from truetype fonts. The symbol settings are also defined in the SYMBOL file. Specify
the ASCII number of the symbol to be used in the CHARACTER parameter. Add the ALIAS name of the font file to
the parameter FONT as defined in the file fonts.list. Remember to set the FONTSET parameter in the MAP file to link
the correct fonts.list file. With the parameter ANTIALIAS you define whether to apply antialiasing to the symbols
or characters. It is recommended to do this especially with more complex symbols and and whenever they don’t fit

5.19. Cartographic Symbol Construction with MapServer 115

MapServer Documentation, Release 5.4.2

well into the raster matrix or show a visible pixel structure. Set a POSITION [ulluclurlclicclcrlllllcllr] relative to the
geometric origin of the geometry. In the STYLE section of the LAYER object it is possible to define colors for true
type symbols (as with signatures of the TYPE VECTOR).

When using truetype chracters to render complex line symbols, you can define the distance in pixel until the symbol is
repeated by setting the GAP parmeter in the SYMBOL file. A more complicated pattern like the STYLE parameters
for VECTOR, ELLIPSE or PIXMAP type symbols cannot be used not (Anybody need this feature?). The OFFSET
parameter is currently not implemented yet. Truetype symbols follow the inclination of the accompanying line.

When using asymmetrical symbols they unfortunately do not always follow the outside or the inside, left or right of a
line but change. If possible symbols will always be displayed upside (which makes a lot of sense for string characters,
what true type fonts basically are). On vertical lines symbols are rendered to the right or left side depending on the
drawing direction of the line. If the line is drawn from bottom to top, the truetype symbol is displayed to the left, if
the line is drawn from top to bottom, the symbol is displayed to the right (see table below). In left picture in the table
the line is drawn clockwise and in the right picture drawn counterclockwise.

Table 7: TrueType-character used on lines

CLASS-Section from the Mapfile Character from the Symbolfile
CLASS SYMBOL
STYLE NAME "T"

SYMBOL "T" TYPE TRUETYPE
SIZE 12 FONT "arial"
COLOR 0 0 255 CHARACTER "T"

END ANTIALIAS TRUE
END GAP 10
END
—F—F—F—F—"F—"F
H
H
-
H
KT T T T T T -F-l
T T T T T T 1
F—FF—F

To find out the character number of a symbol use one of the following options:
* Use the software FontMap (Shareware, with free trial version for download, thanks Till!)
* Use the MS Windows truetype map
e Trial and Error :-)

Please note that the numbering of the so-called “symbol fonts” starts at 61440! So if you want to use character T,
you have to use 61440 + 84 = . (ain’t that a pain!!)

5.19.4 Examples

Find some examples to show different possibilities of the UMN MapServer for cartographical symbols of the vector
based mapobjects (this is just a selection!):

116 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

Basic Symbols

Graphic Primitives for Point-Symbolizers located in the defined Symbolfile symbols.sym

: O
punkt i —_
kreis ellipse—flach ellipse-hoch
dreieck dreieck-leer dreieck-kopf zelt

rechteck-quer rechteck-hoch

quadrat quadrat-quer

+ X t +

kreuzl kreuz2 kreuz3 kreuzd

PN ® ® *

haus sechseck achteck stern

Synboldefinitions fron TrueTypeFont-Files

U S T H 303

u 3 T H sonne

5.19. Cartographic Symbol Construction with MapServer

117

MapServer Documentation, Release 5.4.2

Graphic Primitives for Line-Suymbolizers located in the defined Symbolfile sumbols.sym

linie-gestr2

linie-gestr3

linie-gestr4

linie-gépunktl

.lihieLge}uﬁkti

li‘nie-ge‘punkt3‘

rechteck-bahn

118 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

Graphical Primitives for Polygon-Symbolizers located in the defined Symbolfile symbols.sym

diagonal-auf diagonal-ab linie-vertikal
linie=horizontal linie-vertikal und kreuzl
linie-horizontal
A LS. 610/0.0.0/0.0/00/6 6000000006000
:::3:3:3:3:3:3:3:3:33:3:3:3:3:3:3:3 S0COEB00OOGE000CCO0000000
Yt Sttt Sttty ol el sle'oTe e]0 e]0 e e e e 0l o]0 o]0 e]0]
stetutetetetotetetatatetetototetetatets S3006CCO0CO0OO0OCOOCEI0R00
TS jolele]eelelelele]e!el0]0]0l0]e e 0 0]0l0]0 0] 0’s]
R R K K K Kk o [OL0.0/0,010.010.0]0.010/60.0/0/0/00.4.0/60.00]
e e e et ete e e et e jolele]eelelelele]e!el0]0]0l0]e e 0 0]0l0]0 0] 0’s]
0 R e [010.0.0.0.0.0/8.010.0/0.0/8 00000880060
(R [S10.0.6.0.0.0/0.0/6.6/0.0/0.0.0.6000006860]
BRI eI
SRS bolololo'slo’slo’sloidleielelelslelelele sle sle's]
kreuz2 punkt kreis
dreiec kreuz4 ’ quadrat-quer
Complex Symbols
Examples of Point-Symbolizers varying some graphical Attributes
Varying Size and Color
= + A A A
Yariationen mit quadcat Yariationen mit dreieck
: x x X X
Yariationen mit punkt Yariationen mit kreuzZ
= = = S I
Yariationen mit rechteck-guer Yariationen mit rechteck-hoch
Exanples for conbinations of several Basetypes
Signaturla Signaturza Signatur3a Signaturda SignaturSa SignaturGa Signatur?a
Sighaturlb Sighaturzh Sighatur3b Signaturdb SighaturSh Sighaturéh Sighatur7h
5.19. Cartographic Symbol Construction with MapServer 119

Signaturic Signaturzc Signatur3c

MapServer Documentation, Release 5.4.2

Examples of combined Line-Symbolizers varying some graphical Attributes

Grenzen

" & & & & 8 & & e

Strasse in Planung

Strasse

Autobahn
ﬂsgnnekrlc ELne-ggnEollzers T

Asynnetric Line-Synbolizers 1

120 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

Examples of Polygon-Symbolizers varying some graphical Attributes
Hatching with different Colors and Distances; this is replaced in 4,6 by the new HATCH Style

Layer Flaechel bis Flasched

Layer FlaecheS bis FlascheS

Polygon-Synbolizer based on VectorSynbols

~
~
~

Layer Flasched bis FlaechelZ

Polygon-Synbolizers based on TrueTypeFonts

i
DI I IS
17777777777777010777707000000705000)
ittt
7222222222222281100000000000000 0000

Layer Flaechel3 bis Flascheld

Polygon-5Synbolizers based on FIXHAF Synbols
e -

L e o o e s 0o o lfoo oo o0 o0 0 07 * * k *k k k * k * A
'i.l.i.l...i.i.i 000000000000000o *********“
* ® ® & ® o o #|loc o 0o 0 ©0 ©0 © © % % Kk Kk Kk ko k& A
et e e e e e’ e’el 006 %% %" A*********i

Layer Flaechel? bis FlascheZO

Layer FlaecheZl und FlascheZZ

5.19.5 Current Problems / Open Issues

The current version of MapServer renders open symbols (e.g. a cross) and empty symbols of the TYPE VECTOR
incorrectly by filling them. This bug has been removed during our code examination and should be eliminated with a
future release. Additionaly the OUTLINECOLOR-parameter can not be used to create a 1 pixel outline for symbols
and characters on a line. This can be achieved in a more flexible way as mentioned above. Another problem concerns
the use of line patterns (e.g. dashed line) on features with many points and nooks. The line pattern will then often be
displayed irregularly (see Table9).

Table 8: Use of a simple cross on a line

5.19. Cartographic Symbol Construction with MapServer 121

MapServer Documentation, Release 5.4.2

CLASS-Section from the Mapfile Character from the Symbolfile
CLASS SYMBOL
STYLE NAME "cross2"
SIZE 1 TYPE VECTOR
COLOR 0 0 O POINTS
END 0 0
STYLE 1 1
SYMBOL "cross2" -99 -99
SIZE 8 0 1
COLOR 204 153 0 1 0
OFFSET 1 -7 END
END STYLE
END 1 151 15
END
END

Table9: Irregularities with line patterns

CLASS-Section from the Mapfile Character from the Symbolfile
CLASS SYMBOL
STYLE NAME "border2"
SYMBOL "border2" TYPE VECTOR
SIZE 2 POINTS
COLOR 255 0 O 00
END 10
END 1 0.8
0 0.8
00
END
STYLE
10 6 1 6
END
FILLED TRUE
END
- -
f‘_ J-‘..\L _J’I‘ _r \h-'fﬁijf_f-- 3
'a._ . " - " = - . r ..!
> w -

All symbols in this document were created with MAP files and SYMBOL files, which can be downloaded. If you want
to use this MAP file please note, that your MapServer must at least be able to handle with 50 symbols. Otherwise you
get an error while loading the SYMBOL files.

I hope that this document will help you to present your data in a cartographically nice manner with the UMN
MapServer and explains some basics and possibilities of the concept of the UMN MapServer as well as some weak-
ness. It would be great to put together a cartographic symbols library for the profit of everyone. This especially
concerns truetype-fonts, which were developed for some projects and contain some typical signatures for cartographic
needs.

You can also view the discussion paper for the improvement of the MapServer Graphic-Kernel (sorry as yet German

122 Chapter 5. Mapfile

http://www.mapmedia.de/fileadmin/user_upload/dokumente/umn_signaturen_howto/vortrag_demo.zip
http://www.mapmedia.de/fileadmin/user_upload/dokumente/umn_signaturen_howto/DiskussionsPaper-UMNGraphikKernel.pdf

MapServer Documentation, Release 5.4.2

only).

5.20 Symbology Examples

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 8295 $

Date $Date: 2008-12-26 21:08:04 -0800 (Fri, 26 Dec 2008) $
Last Updated 2008/07/16

Table of Contents

* Symbology Examples
— Example 1. Dashed Line
Example 2. TrueType font marker symbol
Example 3. Vector triangle marker symbol
Example 4. Non-contiguous vector marker symbol (Cross)
Example 5. Circle vector symbol
Example 6. Downward diagonal fill
Example 7. Dashed Cartoline symbol
Example 8. Using the Symbol Type HATCH (new in 4.6)

The following example creates a dashed line with 10 pixels on, 5 off, 5 on, 10 off ...

5.20.1 Example 1. Dashed Line

SYMBOL

NAME ’'dashedl’

TYPE ELLIPSE

POINTS 1 1 END

FILLED true

PATTERN 10 5 5 10 END
END

The next example symbol is a star, used to represent the national capital, hence the name. The font name in defined
in the FONTSET file. The code number “114” varies, you can use MS Windows’ character map to figure it out, or
guestimate.

5.20.2 Example 2. TrueType font marker symbol

SYMBOL
NAME "natcap"
TYPE TRUETYPE
FONT [g]eo]
FILLED true
ANTIALIAS true
CHARACTER "r"
END

5.20. Symbology Examples 123

MapServer Documentation, Release 5.4.2

The next example is fairly straight forward. Note that to have 3 sides you need 4 points, hence the first and last points

are identical.

5.20.3 Example 3. Vector triangle marker symbol

SYMBOL

NAME "triangle"

TYPE vector
POINTS
0 4
2 0
4 4
0 4
END
END

The next example draws a cross, that is 2 lines (vectors) that are not connected end-to-end (Like the triangle in the

previous example). The negative values separate the two.

5.20.4 Example 4. Non-contiguous vector marker symbol (Cross)

SYMBOL
NAME "cross"
TYPE vector
POINTS
20
2 4
-99 =99
0 2
4 2
END
END

The next example creates a simple filled circle. Using non-equal values for the point will give you an actual ellipse.

5.20.5 Example 5. Circle vector symbol

SYMBOL

NAME "circle"

TYPE ellipse
FILLED true
POINTS
11
END
END

5.20.6 Example 6. Downward diagonal fill

SYMBOL

NAME "downwarddiagonalfill"

TYPE vector

124

Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

TRANSPARENT 0
POINTS
01
10
END
END

The next example creates a dashed line with 10 pixels on, 5 off,... The line will have butt caps and short miter joins. For
layers with a scaled symbol (SYMBOLSCALE, MINSIZE, MAXSIZE, ...) the PATTERN will be resized to maintain
symbol ratios.

5.20.7 Example 7. Dashed Cartoline symbol

SYMBOL
NAME "cartoline"
TYPE cartoline
LINECAP butt
LINEJOIN miter
LINEJOINMAXSIZE 1
PATTERN 10 5 END

END

5.20.8 Example 8. Using the Symbol Type HATCH (new in 4.6)

As of MapServer 4.6, you can now use the symbol type HATCH to produce hatched lines. The following will display
hatched lines at a 45 degree angle, 10 pixels apart, and 3 pixels wide.

Symbol definition:

SYMBOL
NAME ’'hatch-test’
TYPE HATCH

END

Layer definition:
LAYER
CLASS
STYLE
SYMBOL ’hatch-test’
COLOR 255 0 O
ANGLE 45
SIZE 10
WIDTH 3
END

END
END

Other parameters available for HATCH are: ANGLEITEM, SIZEITEM, MINWIDTH, and MAXWIDTH.

5.20. Symbology Examples 125

MapServer Documentation, Release 5.4.2

5.21 Templating

Author Frank Koormann

Contact frank.koormann at intevation.de

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 9647 $

Date $Date: 2010-01-01 07:12:59 -0800 (Fri, 01 Jan 2010) $
Last Updated 2008/07/18

Table of Contents

» Templating
— Introduction
— Format
— Example Template

5.21.1 Introduction

Templates are used:
* to define the look of a MapServer CGI application interface and
* to present the results of a query.

They guide the presentation of results, either a query or a map, to the user. Templates are almost always HTML files
although they can also be a URL (e.g.. http://www.somewhere.com/[ATTRIBUTE]/info.html). URL templates can
only be used with simple QUERY or ITEMQUERY results so many substitutions defined below are not available for
them. Simple pan/zoom interfaces use a single template file while complicated queries often require many templates.
Templates often use JavaScript to enhance the basic interface.

Notes

» Templates must contain the magic string ‘mapserver template’ in the first line of the template. Often this takes
the form of an HTML, javascript or XML comment. This line is not written to the client. The magic string is
not case sensitive.

* All CGI parameters can be referenced in template substitutions, MapServer specific parameters as well as user
defined ones. In principle parameters are handed through by the MapServer 1:1. This feature is essential for
implementing MapServer applications.

The reference below only lists special template substitution strings which are needed to obtain information
modified by the MapServer, e.g. a new scale, query results, etc.

» Template substitution strings are case sensitive.
¢ Attribute item substitutions must be the same case as the item names in the dbase file.

¢ ArcView and ArcInfo generally produce dbase files with item names that are all uppercase. Appropriate URL
encoding (i.e. * “ to ‘+°) is applied when templates are URLs.

* Some substitutions are also available in escaped form (i.e. URL encoded).

126 Chapter 5. Mapfile

http://www.somewhere.com/{[}ATTRIBUTE{]}/info.html

MapServer Documentation, Release 5.4.2

As an example this is needed when generating links within a template. This might pass the current mapextent to a new
MapServer call. [mapext] is substituted by a space delimited set of lower left and upper right coordinates. This would
break the URL. [mapext_esc] is substituted by a proper encoded set.

5.21.2 Format

Templates are simply HTML files or URL strings that contains special characters that are replaced by mapserv each
time the template is processed. The simple substitution allows information such as active layers or the spatial extent
to be passed from the user to mapserv and back again. Most often the new values are dumped into form variables that
will be passed on again. The list of special characters and form variables is given below. HTML templates can include
just about anything including JavaScript and Java calls.

132]

In HTML files, the attribute values can be inside quotes(*””). Writing attribute values inside quotes allows you to set
special characters in value that you couldn’t use normaly (ie:],=,” and space). To write a single quote in a attribute
value, just use two quotes (“”).

General

[version] The MapServer version number.

[id] Unique session id. The id can be passed in via a form but is more commonly generated by the software. In that
case the id is a concatenation of UNIX time (or NT equivalent) and the process id. Unless you’re getting more
requests in a second than the system has process ids the id can be considered unique. ;->

[host] Hostname of the web server.
[port] Port the web server is listening to.

[post or get variable name], [post or get variable name_esc] The contents of any variables passed to the
MapServer, whether they were used or not, can be echoed this way. One use might be to have the user set
a map title or north arrow style in an interactive map composer. The system doesn’t care about the values, but
they might be real important in creating the final output, e.g. if you specified a CGI parameter like myvalue=....
you can access this in the template file with [myvalue].

Also available as escaped version.

[web_meta data key],[web_meta data key_esc] Web object meta data access (e.g [web_projection]
Also available as escaped version.

[errmsg], [errmsg_esc] Current error stack output. Various error messages are delimited by semi-colons.

Also available as escaped version.

File Reference

[img] Path (relative to document root) of the new image, just the image name if IMAGE_URL is not set in the mapfile.

In a map interface template, [img] is substituted with the path to the map image. In a query results template, it
is substituted with the path to the querymap image (if a QUERYMAP object is defined in the Mapfile).

[ref] Path (relative to document root) of the new reference image.
[legend] Path (relative to document root) of new legend image rendered by the MapServer.

Since version 3.5.1 a new HTML Legend template is provided by MapServer. If a template is defined in the
Mapfile the [legend] string is replaced by the processed legend as. See the HTML Legends with MapServer for
details.

5.21. Templating 127

MapServer Documentation, Release 5.4.2

[scalebar] Path (relative to document root) of new scalebar image.
[queryfile] Path to the query file (if savequery was set as a CGI Parameter).

[map] Path to the map file (if savemap was set as a CGI Parameter).

Image Geometry

[center] Computed image center in pixels. Useful for setting imgxy form variable when map sizes change.
[center_x], [center_y] Computed image center X or Y coordinate in pixels.
[mapsize], [mapsize_esc] Current image size in cols and rows (separated by spaces).
Also available as escaped version.
[mapwidth], [mapheight] Current image width or height.

[scaledenom] Current image scale. The exact value is not appropriate for user information but essential for some
applications. The value can be rounded e.g. using JavaScript or server side post processing.

[scale] - deprecated Since MapServer 5.0 the proper parameter to use is [scaledenom] instead. The deprecated [scale]
is the current image scale. The exact value is not appropriate for user information but essential for some appli-
cations. The value can be rounded e.g. using JavaScript or server side post processing.

[cellsize] Size of an pixel in the current image in map units. Useful for distance measurement tools in user interfaces.

Map Geometry

[mapx], [mapy] X and Y coordinate of mouse click.
[mapext], [mapext_esc] Full mapextent (separated by spaces).

Also available as escaped version. (mapext_esc is deprecated in MapServer 5.2. You should use the “escape="
argument instead)

The default template [mapext] returns coordinates in the format of: mixx miny maxx maxy
Available arguments:
» escape= Escape the coordinates returned. Default is “none”. Valid values are:
— “url” Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.
» expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,

[mapext] might return:

123456 123456 567890 567890

and [mapext expand=1000] would therefore return:
122456 122456 568890 568890

e format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

[mapext format="$minx, $Sminy, $maxx, Smaxy"]

e precision= The number of decimal places to output for coordinates (default is 0).

128 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

[minx], [miny], [maxx], [maxy] Minimum / maximum X or Y coordinate of new map extent.
[dx], [dy] The differences of minimum / maximum X or Y coordinate of new map extent.
Useful for creating cachable extents (i.e. 0 0 dx dy) with legends and scalebars

[rawext], [rawext_esc] Raw mapextent, that is the extent before fitting to a window size (separated by spaces). In
cases where input came from imgbox (via Java or whatever) rawext refers to imgbox coordinates transformed
to map units. Useful for spatial query building.

Also available as escaped version. (rawext_esc is deprecated in MapServer 5.2. You should use the “escape="
argument instead)

The default template [rawext] returns coordinates in the format of: mixx miny maxx maxy
Available arguments:
» escape= Escape the coordinates returned. Default is “none”. Valid values are:
— “uar]l” Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.
* expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,

[rawext] might return:

123456 123456 567890 567890

and [rawext expand=1000] would therefore return:

122456 122456 568890 568890

e format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

[rawext format="S$minx, $Sminy, $Smaxx, Smaxy"]

¢ precision= The number of decimal places to output for coordinates (default is 0).

[rawminx], [rawminy], [rawmaxx], [rawmaxy] Minimum / maximum X or Y coordinate of a raw map/search ex-
tent.

The following substitutions are only available if the MapServer was compiled with PROJ support and a PROJECTION
is defined in the Mapfile.

[maplon], [maplat] Longitude / latitude value of mouse click. Available only when projection enabled.

[mapext_latlon], [mapext_latlon_esc] Full mapextent (separated by spaces). Available only when projection en-
abled.

Also available as escaped version. (mapext_latlon_esc is deprecated in MapServer 5.2. You should use the
“escape=""argument instead)

The default template [mapext_latlon] returns coordinates in the format of: mixx miny maxx maxy
Available arguments:
* escape= Escape the coordinates returned. Default is “none”. Valid values are:
— “ar]” Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.

» expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,
[mapext_latlon] might return:

5.21. Templating 129

MapServer Documentation, Release 5.4.2

123456 123456 567890 567890

and [mapext_latlon expand=1000] would therefore return:

122456 122456 568890 568890

¢ format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

[mapext_latlon format="$minx, Sminy, Smaxx, Smaxy"]

* precision= The number of decimal places to output for coordinates (default is 0).

[minlon], [minlat], [maxlon] [maxlat] Minimum / maximum longitude or latitude value of mapextent. Available
only when projection enabled.

[refext], [refext_esc] Reference map extent (separated by spaces).

This template has been added with version 4.6 on behalf of an enhancement request. See the thread in the
MapServer ticket#1102 for potential use cases.

Also available as escaped version. (refext_esc is deprecated in MapServer 5.2. You should use the “escape="
argument instead)

The default template [refext] returns coordinates in the format of: mixx miny maxx maxy
Available arguments:
» escape= Escape the coordinates returned. Default is “none”. Valid values are:
— “arl” Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.
* expand=

Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,
[refext] might return:

123456 123456 567890 567890
and [refext expand=1000] would therefore return:

122456 122456 568890 568890

o format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

[refwext format="$minx, $Sminy, Smaxx, Smaxy"]

e precision= The number of decimal places to output for coordinates (default is 0).

Layer

[layers] | [layers_esc] All active layers space delimited. Used for a “POST” request.

Also available as escaped version.

130 Chapter 5. Mapfile

http://trac.osgeo.org/mapserver/ticket/1102

MapServer Documentation, Release 5.4.2

[toggle_layers] | [toggle_layers_esc] List of all layers that can be toggled, i.e. all layers defined in the Mapfile which
status is currently not default.

Also available as escaped version.

[layername_check | select] Used for making layers persistent across a map creation session. String is replaced with
the keyword “checked”, “selected” or *” if layername is on. Layername is the name of a layer as it appears in
the Mapfile. Does not work for default layers.

[layername_meta data key] Layer meta data access (e.g. [streets_build] the underscore is essential).

Zoom

[zoom_minzoom to maxzoom_checklselect] Used for making the zoom factor persistent. Zoom values can range
from -25 to 25 by default. The string is replaced with the HTML keyword “checked”, “selected” or “”’ depending
on the current zoom value.

E.g. if the zoom is 12, a [zoom_12_select] is replaced with “selected”, while a [zoom_13_select] in the same
HTML template file is not.

[zoomdir_-1l0l1_checklselect] Used for making the zoom direction persistent. Use check with a radio control or
select with a selection list. See the demo for an example. The string is replaced with the HTML keyword
“checked”, “selected” or *“”’ depending on the current value of zoomdir.

Query

The following substitutions are only available when the template is processed as a result of a query.
[shpext], [shpext_esc] Extent of current shape plus a 5 percent buffer. Available only when processing query results.
The default template [shpext] returns coordinates in the format of: mixx miny maxx maxy
Available arguments:
* escape= Escape the coordinates returned. Default is “none”. Valid values are:
— “uarl” Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.
* expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,

[shpext] might return:

123456 123456 567890 567890

and [shpext expand=1000] would therefore return:

122456 122456 568890 568890

o format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

[shpext format="$minx, $Sminy, $Smaxx, $Smaxy"]

e precision= The number of decimal places to output for coordinates (default is 0).

[shpminx], [shpminy], [shpmaxx], [shpmaxy] Minimum / maximum X or Y coordinate of shape extent. Available
only when processing query results.

[shpmid] Middle of the extent of current shape. Available only when processing query results.

5.21. Templating 131

MapServer Documentation, Release 5.4.2

[shpmidx], [shpmidy] X or Y coordinate of middle of the extent of the current shape. Available only when processing
query results.

[shpidx] Index value of the current shape. Available only when processing query results.
[shpclass] Classindex value of the current shape. Available only when processing query results.
[shpxy formatting options] The list of shape coordinates, with list formatting options, especially useful for SVG.

The default template [shpxy] returns a comma separated list of space delimited of coordinates (i.e. x1 y1, x2 y2,
x3 y3).

Available only when processing query results.

Auvailable attributes (h = header, f=footer, s=separator):
¢ ¢s= Coordinate separator, default is comma (“,”).
e xh=, xf= Characters to put before and after the x coordinates (defaults are xh="""and xf=").
* yh=yf= Characters to put before and after the y coordinates (defaults are no characters).

e ph=, pf=, ps= Characters to put before and after and separators between feature parts (e.g. holes, defaults
are no characters).

 sh=, sf= Characters to put before and after a feature (defaults are no
characters)
e precision= The number of decimal places to output for coordinates (default is 0).

e proj= The output projection definition for the coordinates (default is none), a special value of “image”
will convert to image coordinates.

As a simple example:
[shpxy xh=" (" yf=")"] will result in: (x1 yl), (x2 y2), (x3 y3)

[tileindex] Index value of the current tile. If no tiles used for the current shape this is replaced by “-1”. Available only
when processing query results.

[DBASE item name],[DBASE item name_esc],[DBASE item name_raw] Item name from the attribute table of a
queried layer. Only attributes for the active query layers are accessible. Case must be the same as what is
stored in the DBASE file. ArcView, for example, uses all caps for shapefile field names. Available only when
processing query results.

By default the attributes are encoded especially for HTML representation. In addition the escaped version (for
use in URLs) as well as the raw data is available.

[Join name_DBASE item name],[Join name_DBASE item name_esc], [Join name_DBASE item name_raw]
One-to-one joins: First the join name (as specified in the Mapfile has to be given, second the tables fields can
be accessed similar to the layers attribute data. Available only when processing query results.

By default the attributes are encoded especially for HTML representation. In addition the escaped version (for
use in URLs) as well as the raw data is available.

[join_Join name] One-to-many joins: The more complex variant. If the join type is multiple (one-to-many) the
template is replaced by the set of header, template file and footer specified in the Mapfile.

[metadata_meta data key], [metadata_meta data key_esc] Queried layer meta data access (e.g [meta-
data_projection]

Also available as escaped version.

132 Chapter 5. Mapfile

20

21

22

23

24

25

26

27

28

29

MapServer Documentation, Release 5.4.2

For query modes that allow for multiple result sets, the following string substitutions are available. For FEATURESE-
LECT and FEATURENSELECT modes the totals a re adjusted so as not to include the selection layer. The selection
layer results ARE available for display to the user.

[nr] Total number of results. Useful in web header and footers. Available only when processing query results.

[nl] Number of layers returning results. Useful in web header and footers. Available only when processing query
results.

[nlr] Total number of results within the current layer. Useful in web header and footers. Available only when pro-
cessing query results.

[rn] Result number within all layers. Starts at 1. Useful in web header and footers. Available only when processing
query results.

[Irn] Result number within the current layer. Starts at 1. Useful in query templates. Available only when processing
query results.

[cl] Current layer name. Useful in layer headers and footers. Available only when processing query results.

5.21.3 Example Template

A small example to give an idea how to work with templates. Note that it covers MapServer specific templates (e.g.
the [map], [mapext]) and user defined templates (e.g. [htmlroot] or [program]) used to store application settings.

<!-- MapServer Template ——>
<!DOCTYPE HTML PUBLIC "-//W3C//DID HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/transitional.dtd">
<html>
<head>
<title>MapServer Template Sample</title>
</head>

<body>
MapServer Template Sample

<!-—- The central form the application is based on. ——>
<form method="GET" action="[program]">

<!-- CGI MapServer applications are server stateless in principle,

all information must be "stored" in the client. This includes
some basic settings as below.
The example is based on the pan and zoom test suite:
http://maps.dnr.state.mn.us/mapserver._demos/tests36/ >

<input type="hidden" name="map" value="[map]">

<input type="hidden" name="imgext" wvalue="[mapext]">

<input type="hidden" name="imgxy" value="149.5 199.5">

<input type="hidden" name="program" value="[program]">

<input type="hidden" name="htmlroot" value="[htmlroot]">

<input type="hidden" name="map_web" value="[map_web]">

<!-— A table for minimal page formatting. ——>
<table border=0 cellpadding=5>
<tr>
<!-— First column: Map and scale bar ——>
<td align=center>
<!-— The map --—>
<input type="image" name="img" src="[img]"

5.21. Templating 133

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

58

59

60

61

62

63

64

66

MapServer Documentation, Release 5.4.2

style="border:0;width:300;height:400">

<!-—- The scale bar——>

</td>
<!-- Second column: Zoom direction, Legend and Reference ——>
<td valign=top>

<!-- Zoom direction -->

Map Controls

Set your zoom option:

<select name="zoom" size="1">

<option value="2" \E\H‘H‘ —Is|e|lle]c]t ‘] > Zoom in 2 times
<option value="1" “E‘E‘H\\ s ee c|lt|]1p Recenter Map

<option value="-2" \\ o|mi={-]2[=s ee clt|]p Zoom out 2 times

</select>

<!-- Legend —-->
Legend

<!-— Reference map ——>
<input type="image" name="ref" src="[ref]"
style="border:0;width:150; height:150">
</td>
</tr>
</table>
</form>
</body>

</html>

5.22 Variable Substitution

Syntax: ‘%’ + variable name + ‘%’
Example 1. Connecting securely to a Spatial Database
You want to map some senstitive data held in a PostGIS database. The username and password to be used for the

database connection are held in 2 cookies previously set by a seperate authentication mechanism, “uid” and “passwd”.

CONNECTION "user=%uid% password=%$passwd bname=postgis"

Example 2. Handling temporary files
You have a user based discovery application that generates shapefiles and stores them in a user’s home directory on
the server. The “username” comes from a cookie, the “filename” comes from a request parameter.

DATA "/home/%username%/tempshp/%filename%"

This feature is only available in the CGI version of MapServer through a mapfile pre-processor. If you are using
MapScript, you will have to code the substitution logic into your application yourself (By writing your own pre-
processor).

134 Chapter 5. Mapfile

MapServer Documentation, Release 5.4.2

5.23 WEB

EMPTY [url] URL to forward users to if a query fails. If not defined the value for ERROR is used.

ERROR [url] URL to forward users to if an error occurs. Ugly old MapServer error messages will appear if this is
not defined

FOOTER [filename] Template to use AFTER anything else is sent. Multiresult query modes only.
HEADER [filename] Template to use BEFORE everything else has been sent. Multiresult query modes only.

IMAGEPATH [path] Path to the temporary directory fro writing temporary files and images. Must be writable by
the user the web server is running as. Must end with a / or depending on your platform.

IMAGEURL [path] Base URL for IMAGEPATH. This is the URL that will take the web browser to IMAGEPATH
to get the images.

LOG [filename] File to log MapServer activity in. Must be writable by the user the web server is running as.

MAXSCALEDENOM [double] Maximum scale at which this interface is valid. When a user requests a map at
a bigger scale, MapServer automatically returns the map at this scale. This effectively prevents user from
zooming too far out. Scale is given as the denominator of the actual scale fraction, for example for a map at a
scale of 1:24,000 use 24000. Implemented in MapServer 5.0, to replace the deprecated MAXSCALE parameter.
Deprecated since version 5.0.

MAXSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MAXSCALEDENOM in-
stead. The deprecated MAXSCALE is the maximum scale at which this interface is valid. When a user requests
a map at a bigger scale, MapServer automatically returns the map at this scale. This effectively prevents user
from zooming too far out. Scale is given as the denominator of the actual scale fraction, for example for a map
at a scale of 1:24,000 use 24000.

See Also:
Map scale
MAXTEMPLATE [filelurl] Template to be used if above the maximum scale for the app, useful for nesting apps.

METADATA This keyword allows for arbitrary data to be stored as name value pairs. This is used with OGC WMS
to define things such as layer title. It can also allow more flexibility in creating templates, as anything you put
in here will be accessible via template tags. Example:

METADATA
title "My layer title"

alult[npr "ot

END

MINSCALEDENOM [double] Minimum scale at which this interface is valid. When a user reqests a map at a
smaller scale, MapServer automatically returns the map at this scale. This effectively prevents the user from
zooming in too far. Scale is given as the denominator of the actual scale fraction, for example for a map at a
scale of 1:24,000 use 24000. Implemented in MapServer 5.0, to replace the deprecated MINSCALE parameter.

See Also:
Map scale

MINSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MINSCALEDENOM in-
stead. The deprecated MINSCALE is the minimum scale at which this interface is valid. When a user regests a
map at a smaller scale, MapServer automatically returns the map at this scale. This effectively prevents the user
from zooming in too far. Scale is given as the denominator of the actual scale fraction, for example for a map at
a scale of 1:24,000 use 24000. Deprecated since version 5.0.

MINTEMPLATE Template to be used if above the minimum scale for the app, useful for nesting apps.

5.23. WEB 135

MapServer Documentation, Release 5.4.2

OUTPUTFORMAT [mime-type] Format of the query output. Default is “text/html”. This is experimental, the use

of the OUTPUTFORMAT object is recommended instead.

TEMPLATE [filenamelurl] Template file or URL to use in presenting the results to the user in an interactive mode

(i.e. map generates map and so on ...)

5.24 Notes

The Mapfile is NOT case-sensitive.

Strings containing non-alphanumeric characters or a MapServer keyword MUST be quoted. It is recommended
to put ALL strings in double-quotes.

For MapServer versions < 5, there was a default maximum of 200 layers per mapfile (there is no layer limit with
MapServer >=5). This can be changed by editing the map.h file to change the value of MS_MAXLAYERS to
the desired number and recompiling. Here are other important default limits when using a MapServer version <
5:

— MAXCLASSES 250 (set in map.h)
— MAXSTYLES 5 (set in map.h)
— MAXSYMBOLS 64 (set in mapsymbol.h)
MapServer versions >= 5 have no limits for classes, styles, symbols, or layers.

File paths may be given as absolute paths, or as paths relative to the location of the mapfile. In addition, data
files may be specified relative to the SHAPEPATH.

The mapfile has a hierarchical structure, with the MAP object being the “root”. All other objects fall under this
one.

Comments are designated with a #.

Attributes are named using the following syntax: [ATTRIBUTENAME] ... Note that the name of the attribute
included between the square brackets IS CASE SENSITIVE. Generally ESRI generated shapefiles have their
attributes (.dbf column names) all in upper-case for instance, and for PostGIS, ALWAYS use lower-case.

MapServer Regular Expressions are used through the operating system’s C Library. For information on how to
use and write Regular Expressions on your system, you should read the documentation provided with your C
Library. On Linux, this is GLibC, and you can read “man 7 regex” ... This man page is also available on most
UNIX’s. Since these RegEx’s are POSIX compliant, they should be the same on Windows as well, so windows
users can try searching the web for “man 7 regex” since man pages are available all over the web.

136

Chapter 5. Mapfile

CHAPTER
SIX

MAPSCRIPT

Release 5.4.2
Date January 13,2010

6.1 Introduction

This is language agnostic documentation for the MapScript interface to MapServer generated by SWIG. This document
is intended for developers and to serve as a reference for writers of more extensive, language specific documentation
located at Mapfile

6.1.1 Appendices

Language-specific extensions are described in the following appendices

Python Appendix

6.1.2 Documentation Elements

Classes will be documented in alphabetical order in the manner outlined below. Attributes and methods will be
formatted as definition lists with the attribute or method as item, the type or return type as classifier, and a concise
description. To make the document as agnostic as possible, we refer to the following types: int, float, and string. There
are yet no mapscript methods that return arrays or sequences or accept array or sequence arguments.

We will use the SWIG term immutable to indicate that an attribute’s value is read-only.

6.1.3 fooObj

A paragraph or two about class fooOby;.

fooObj Attributes

attribute [type [access]] Concise description of the attribute.
Attribute name are completely lower case. Multiple words are packed together like outlinecolor.

Note that because of the way that mapscript is generated many confusing, meaningless, and even dangerous attributes
are creeping into objects. See outputFormatObj.refcount for example. Until we get a grip on the structure members
we are exposing to SWIG this problem will continue to grow.

137

MapServer Documentation, Release 5.4.2

fooObj Methods

method(type mandatory_parameter [, type optional_parameter=default]) [type] Description of the method in-
cluding elaboration on the method arguments, the method’s actions, and returned values. Optional parameters
and their default values are enclosed in brackets.

Class method names are camel case with a leading lower case character like getExpressionString.

6.1.4 Additional Documentation

There’s no point in duplicating the MapServer Mapfile Reference, which remains the primary reference for mapscript
class attributes.

6.2 SWIG MapScript API Reference

Author Sean Gillies

Author Steve Lime

Contact steve.lime at dnr.state.mn.us
Author Frank Warmerdam

Contact warmerdam at pobox.com
Author Umberto Nicoletti

Contact umberto.nicoletti at gmail.com
Author Tamas Szekeres

Contact szekerest at gmail.com
Author Daniel Morissette

Contact dmorisette at mapgears.com
Revision $Revision: 8391 $

Date $Date: 2009-01-06 10:27:50 -0800 (Tue, 06 Jan 2009) $

138 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

Contents

* SWIG MapScript API Reference
— Introduction
* Appendices
* Documentation Elements
* fooObj
% Additional Documentation
— MapScript Functions
— MapScript Classes
* classObj
colorObj
errorObj
fontSetObj
hashTableObj
imageQObj
intarray
labelCacheMemberObj
labelCacheObj
labelObj
layerObj
legendObj
lineObj
mapODbj
markerCacheMemberObj
outputFormatObj
OWSRequest
pointObj
projectionObj
rectObj
referenceMapObj
resultCacheMemberObj
resultCacheObj
scalebarObj
shapefileObj
shapeObj
styleObj
symbolObj
* symbolSetObj
* webObj

* % K ¥

* % K ¥ %

*

* ¥k KX X X X ¥ X ¥ %

* ¥ X ¥ ¥

*

*

6.2.1 Introduction
This is language agnostic documentation for the mapscript interface to MapServer generated by SWIG. This document

is intended for developers and to serve as a reference for writers of more extensive, language specific documentation
in DocBook format for the MDP.

Appendices

Language-specific extensions are described in the following appendices

Python MapScript Appendix

6.2. SWIG MapScript APl Reference 139

MapServer Documentation, Release 5.4.2

Documentation Elements

Classes will be documented in alphabetical order in the manner outlined below. Attributes and methods will be
formatted as definition lists with the attribute or method as item, the type or return type as classifier, and a concise
description. To make the document as agnostic as possible, we refer to the following types: int, float, and string. There
are yet no mapscript methods that return arrays or sequences or accept array or sequence arguments.

We will use the SWIG term immutable to indicate that an attribute’s value is read-only.

fooObj

A paragraph or two about class fooObj.

fooObj Attributes

attribute [type [access]] Concise description of the attribute.
Attribute name are completely lower case. Multiple words are packed together like outlinecolor.

Note that because of the way that mapscript is generated many confusing, meaningless, and even dangerous attributes
are creeping into objects. See outputFormatObj.refcount for example. Until we get a grip on the structure members
we are exposing to SWIG this problem will continue to grow.

fooObj Methods

method(type mandatory_parameter [, type optional_parameter=default]) [type] Description of the method in-
cluding elaboration on the method arguments, the method’s actions, and returned values. Optional parameters
and their default values are enclosed in brackets.

Class method names are camel case with a leading lower case character like getExpressionString.

Additional Documentation

There’s no point in duplicating the MapServer Mapfile Reference, which remains the primary reference for mapscript
class attributes.

6.2.2 MapScript Functions

msCleanup() [void] msCleanup() attempts to recover all dynamically allocated resources allocated by MapServer
code and dependent libraries. It it used primarily for final cleanup in scripts that need to do memory leak testing
to get rid of “noise” one-time allocations. It should not normally be used by production code.

msGetVersion() [string] Returns a string containing MapServer version information, and details on what optional
components are built in. The same report as produced by “mapserv -v”.

msGetVersionInt() [int] Returns the MapServer version number (X.y.z) as an integer (x*10000 + y*100 + z). (New
in v5.0) e.g. V5.4.3 would return 50403.

msResetErrorList() [void] Clears the current error stack.

mslIO_installStdoutToBuffer() [void] Installs a mapserver 10 handler directing future stdout output to a memory
buffer.

140 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

mslIO_installStdinFromBuffer() [void] Installs a mapserver IO handler directing future stdin reading (ie. post re-
quest capture) to come from a buffer.

mslO_resetHandlers() [void] Resets the default stdin and stdout handlers in place of “buffer” based handlers.

msIO_getStdoutBufferString() [string] Fetch the current stdout buffer contents as a string. This method does not
clear the buffer.

mslO_getStdoutBufferBytes() [binary data] Fetch the current stdout buffer contents as a binary buffer. The exact
form of this buffer will vary by mapscript language (eg. string in Python, byte[] array in Java and C#, unhandled
in perl)

mslIO_stripStdoutBufferContentType() [string] Strip the Content-type header off the stdout buffer if it has one, and
if a content type is found it is return (otherwise NULL/None/etc).

6.2.3 MapScript Classes

classObj

An instance of classObj is associated with with one instance of layerObj.

Fm———— + 1 0..% +——————~ +

| Class | ————————-— > | Style |

o + - +

Fem + 1 0..1 +——————- +

| Class | ————————— > | Label |

o + - +

o + 1 1 +————————— +

| Class | ————————— > | HashTable |

o + | - |
| metadata |
t—————— +

Multiple class styles are now supported in 4.1. See the styleObj section for details on use of multiple class styles.

classObj Attributes

debug [int] MS_TRUE or MS_FALSE

keyimage [string] TODO Not sure what this attribute is for
label [labelObj immutable] Definition of class labeling

layer [layerObj immutable] Reference to the parent layer
maxscale [float] The maximum scale at which class is drawn
metadata [hashTableObj immutable] class metadata hash table.

minscale [float] The minimum scale at which class is drawn

6.2. SWIG MapScript APl Reference 141

MapServer Documentation, Release 5.4.2

name [string] Unique within a layer

numstyles [int] Number of styles for class. In the future, probably the 4.4 release, this attribute will be made im-
mutable.

status [int] MS_ON or MS_OFF. Draw features of this class or do not.
template [string] Template for queries

title [string] Text used for legend labeling

type [int] The layer type of its parent layer

classObj Methods

new classObj([layerObj parent_layer=NULL]) [classObj] Create a new child classObj instance at the tail (high-
est index) of the class array of the parent_layer. A class can be created outside the context of a parent layer by
omitting the single constructor argument.

clone() [classObj] Return an independent copy of the class without a parent layer.

createLegendIcon(mapObj map, layerObj layer, int width, int height) [imageObj] Draw and return a new leg-
end icon.

drawLegendIcon(mapObj map, layerObj layer, int width, int height, imageObj image, int dstx, int dsty) [int]
Draw the legend icon onto image at dstx, dsty. Returns MS_SUCCESS or MS_FAILURE.

getExpressionString() [string] Return a string representation of the expression enclosed in the quote characters ap-
propriate to the expression type.

getFirstMetaDataKey() [string] Returns the first key in the metadata hash table. With getNextMetaDataKey(), pro-
vides an opaque iterator over keys.

getMetaData(string key) [string] Return the value of the classObj metadata at key.

getNextMetaDataKey(string lastkey) [string] Returns the next key in the metadata hash table or NULL if lastkey
is the last valid key. If lastkey is NULL, returns the first key of the metadata hash table.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed in a
future version. Replaced by direct metadata access, see hashTableOb;.

getStyle(int index) [styleObj] Return a reference to the styleObj at index in the styles array.
See the styleObj section for more details on multiple class styles.

getTextString() [string] Return a string representation of the text enclosed in the quote characters appropriate to the
text expression type (logical or simple string).

insertStyle(styleObj style [, int index=-1]) [int] Insert a copy of style into the styles array at index index. Default
is -1, or the end of the array. Returns the index at which the style was inserted.

moveStyleDown(int index) [int] Swap the styleObj at index with the styleObj index + 1.
moveStyleUp(int index) [int] Swap the styleObj at index with the styleObj index - 1.
removeStyle(int index) [styleObj] Remove the styleObj at index from the styles array and return a copy.

setExpression(string expression) [int] Set expression string where expression is a MapServer regular, logical or
string expression. Returns MS_SUCCESS or MS_FAILUIRE.

setMetaData(string key, string value) [int] Insert value into the classObj metadata at key. Returns MS_SUCCESS
or MS_FAILURE.

142 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

Note: setMetaData() is deprecated and will be removed in a future version. Replaced by direct metadata access, see
hashTableOb;.

setText(string text) [int] Set text string where fext is a MapServer text expression. Returns MS_SUCCESS or
MS_FAILUIRE.

Note: Older versions of MapScript (pre-4.8) featured the an undocumented setText() method that required a layerObj
be passed as the first argument. That argument was completely bogus and has been removed.

colorObj

Since the 4.0 release, MapServer colors are instances of colorObj. A colorObj may be a lone object or an attribute of
other objects and have no other associations.

colorObj Attributes

blue [int] Blue component of color in range [0-255]

green [int] Green component of color in range [0-255]

red [int] Red component of color in range [0-255]

pen [int] Don’t mess with this unless you know what you are doing!

Note: Because of the issue with pen, setting colors by individual components is unreliable. Best practice is to use
setRGB(), setHex(), or assign to a new instance of colorObj().

colorObj Methods

new colorObj([int red=0, int green=0, int blue=0, int pens=-4]) [colorObj] Create a new instance. The color ar-
guments are optional.

setRGB(int red, int green, int blue) [int] Set all three RGB components. Returns MS_SUCCESS or
MS_FAILURE.

setHex(string hexcolor) [int] Set the color to values specified in case-independent hexadecimal notation. Calling
setHex (‘#ffffff") assigns values of 255 to each color component. Returns MS_SUCCESS or MS_FAILURE.

toHex() [string] Complement to setHex, returning a hexadecimal representation of the color components.
errorObj

This class allows inspection of the MapServer error stack. Only needed for the Perl module as the other language
modules expose the error stack through exceptions.

errorObj Attributes

code [int] MapServer error code such as MS_IMGERR (1).
message [string] Context-dependent error message.

routine [string] MapServer function in which the error was set.

6.2. SWIG MapScript APl Reference 143

MapServer Documentation, Release 5.4.2

errorObj Methods

next [errorObj] Returns the next error in the stack or NULL if the end has been reached.

fontSetObj

A fontSetObj is always a ‘fontset’ attribute of a mapObj.

fontSetObj Attributes

filename [string immutable] Path to the fontset file on disk.
fonts [hashTableObj immutable] Mapping of fonts.

numfonts [int immutable] Number of fonts in set.

fontSetObj Methods

None

hashTableObj

A hashTableObj is a very simple mapping of case-insensitive string keys to single string values. Map, Layer, and Class
metadata have always been hash hables and now these are exposed directly. This is a limited hash that can contain no
more than 41 values.

hashTableObj Attributes

numitems [int immutable] Number of hash items.

hashTableObj Methods

clear() [void] Empties the table of all items.

get(string key [, string default=NULL]) [string] Returns the value of the item by its key, or default if the key does
not exist.

nextKey([string key=NULL]) [string] Returns the name of the next key or NULL if there is no valid next key. If
the input key is NULL, returns the first key.

remove(string key) [int] Removes the hash item by its key. Returns MS_SUCCESS or MS_FAILURE.
set(string Kkey, string value) [int] Sets a hash item. Returns MS_SUCCESS or MS_FAILURE.
imageObj

An image object is a wrapper for GD and GDAL images.

144 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

imageObj Attributes

format [outputFormatObj immutable] Image format.

height [int immutable] Image height in pixels.

imagepath [string immutable] If image is drawn by mapObj.draw(), this is the mapObj’s web.imagepath.
imageurl [string immutable] If image is drawn by mapObj.draw(), this is the mapObj’s web.imageurl.

renderer [int] MS_RENDER_WITH_GD, MS_RENDER_WITH_SWF, MS_RENDER_WITH_RAWDATA,
MS_RENDER_WITH_PDF, or MS_RENDER_WITH_IMAGEMAP. Don’t mess with this!

size [int immutable] To access this attribute use the getSize method.

Note: the getSize method is inefficient as it does a call to getBytes and then computes the size of the byte array. The
bytearray is then immediately discarded. In most cases it is more efficient to call getBytes directly.

width [int immutable] Image width in pixels.

imageObj Methods

new imageObj(int width, int height [, outputFormatObj format=NULL [, string filename=NULL]])
[imageObj] Create new instance of imageObj. If filename is specified, an imageObj is created from the
file and any specified width, height, and format parameters will be overridden by values of the image in
filename. Otherwise, if format is specified an imageObj is created using that format. See the format attribute
above for details. If filename is not specified, then width and height should be specified.

getBytes() [binary data] Returns the image contents as a binary buffer. The exact form of this buffer will vary by
mapscript language (eg. string in Python, byte[] array in Java and C#, unhandled in perl)

getSize() [int] Resturns the size of the binary buffer representing the image buffer.

Note: the getSize method is inefficient as it does a call to getBytes and then computes the size of the byte array. The
byte array is then immediately discarded. In most cases it is more efficient to call getBytes directly.

save(string filename [, mapObj parent_map=NULL]) [int] Save image to filename. The optional parent_map
parameter must be specified if saving GeoTIFF images.

write([FILE file=NULL]) [int] Write image data to an open file descriptor or, by default, to stdout. Returns
MS_SUCCESS or MS_FAILURE.

Note: This method is current enabled for Python and C# only. C# supports writing onto a Stream object. User-
contributed typemaps are needed for Perl, Ruby, and Java.

Note: The free() method of imageObj has been deprecated. In MapServer revisions 4+ all instances of imageObj will
be properly disposed of by the interpreter’s garabage collector. If the application can’t wait for garabage collection,
then the instance can simply be deleted or undef’d.

intarray

An intarray is a utility class generated by SWIG wuseful for manipulating map layer draw-
ing order. See mapObj::getLayersDrawingOrder for discussion of mapscript use and see
http://www.swig.org/Doc1.3/Library.html#Library_nn5 for a complete reference.

intarray Attributes

None

6.2. SWIG MapScript APl Reference 145

MapServer Documentation, Release 5.4.2

intarray Methods

new intarray(int numitems) [intarray] Returns a new instance of the specified length.

labelCacheMemberObj

An individual feature label. The labelCacheMemberObj class is associated with labelCacheOb;.

labelCacheMemberObj Attributes

classindex [int immutable] Index of the class of the labeled feature.
featuresize [float immutable] TODO

label [labelObj immutable] Copied from the class of the labeled feature.
layerindex [int immutable] The index of the layer of the labeled feature.
numstyles [int immutable] Number of styles as for the class of the labeled feature.
point [pointObj immutable] Label point.

poly [shapeObj immutable] Label bounding box.

shapeindex [int immutable] Index within shapefile of the labeled feature.
status [int immutable] Has the label been drawn or not?

styles [styleObj immutable] TODO this should be protected from SWIG.
text [string immutable] Label text.

tileindex [int immutable] Tileindex of the layer of the labeled feature.

labelCacheMemberObj Methods

None.

Note: No real scripting control over labeling currently, but there may be some interesting new possibilities if users
have control over labeling text, position, and status.

labelCacheObj

Set of a map’s cached labels. Has no other existence other than as a ‘labelcache’ attribute of a mapObj. Associated
with labelCacheMemberObj and markerCacheMemberOb;j.

e + 1 0..% +—————————--—— +
| LabelCache | ————————~ > | LabelCacheMember |
o + + +
| MarkerCacheMember |
o +

146 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

labelCacheObj Attributes

cachesize [int immutable] TODO
markercachesize [int immutable] TODO
numlabels [int immutable] Number of label members.

nummarkers [int immutable] Number of marker members.
labelCacheObj Methods
freeCache() [void] Free the labelcache.

labelObj

A labelObj is associated with a classObj, a scalebarObj, or a legendOb;.

Fom +0..1 1+ +
| Label | <————————-— | Class |
Fommm + |~ |
| Scalebar |
| = |
| Legend |
Fom +

labelObj Attributes

angle [float] TODO
antialias [int] MS_TRUE or MS_FALSE
autoangle [int] MS_TRUE or MS_FALSE

autofollow [int] MS_TRUE or MS_FALSE. Tells mapserver to compute a curved label for appropriate linear features
(see MS RFC 11: Support for Curved Labels for specifics).

autominfeaturesize: int MS_TRUE or MS_FALSE

backgroundcolor [colorObj] Color of background rectangle or billboard.

backgroundshadowcolor [colorObj] Color of background rectangle or billboard shadow.
backgroundshadowsizex [int] Horizontal offset of drop shadow in pixels.

backgroundshadowsizey [int] Vertical offset of drop shadow in pixels.

buffer [int] Maybe this should’ve been named ‘padding’ since that’s what it is: padding in pixels around a label.
color [colorObj] Foreground color.

encoding [string] Supported encoding format to be used for labels. If the format is not supported, the label will not
be drawn. Requires the iconv library (present on most systems). The library is always detected if present on the
system, but if not the label will not be drawn. Required for displaying international characters in MapServer.
More information can be found at: http://www.foss4g.org/FOSS4G/MAPSERVER/mpsnf-il8n-en.html.

font [string] Name of TrueType font.
force [int] MS_TRUE or MS_FALSE.

6.2. SWIG MapScript APl Reference 147

http://www.foss4g.org/FOSS4G/MAPSERVER/mpsnf-i18n-en.html

MapServer Documentation, Release 5.4.2

maxsize [int] Maximum height in pixels for scaled labels. See symbolscale attribute of layerOb;.
mindistance [int] Minimum distance in pixels between duplicate labels.

minfeaturesize [int] Features of this size of greater will be labeled.

minsize [int] Minimum height in pixels.

offsetx [int] Horizontal offset of label.

offsety [int] Vertical offset of label.

outlinecolor [colorObj] Color of one point outline.

partials [int] MS_TRUE (default) or MS_FALSE. Whether or not labels can flow past the map edges.
position [int] MS_UL, MS_UC, MS_UR, MS_CL, MS_CC, MS_CR, MS_LL, MS_LC, MS_LR, or MS_AUTO.
shadowcolor [colorObj] Color of drop shadow.

shadowsizex [int] Horizontal offset of drop shadow in pixels.

shadowsizey [int] Vertical offset of drop shadow in pixels.

size [int] Annotation height in pixels.

type [int] MS_BITMAP or MS_TRUETYPE.

wrap [string] Character on which legend text will be broken to make multi-line legends.

labelObj Methods

None

layerObj

A layerObj is associated with mapObj. In the most recent revision, an intance of layerObj can exist outside of a
mapObj.

e + 1 O..ox +——————— +

| Layer | <-———————- > | Class |

fo———— + - +

and hashTableObj

N —— + 1 S +

| Layer | ————————-— > | HashTable |

Fomm—— + | - |
| metadata |
e ——— +

148 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

layerObj Attributes

bandsitem [string] The attribute from the index file used to select the source raster band(s) to be used. Normally
NULL for default bands processing.

classitem [string] The attribute used to classify layer data.
connection [string] Layer connection or DSN.

connectiontype [int] See MS_CONNECTION_TYPE in mapserver.h for possible values. When setting the connec-
tion type setConnectionType() should be used in order to initialize the layer vtable properly.

data [string] Layer data definition, values depend upon connectiontype.
debug [int] Enable debugging of layer. MS_ON or MS_OFF (default).

dump [int] Switch to allow mapserver to return data in GML format. MS_TRUE or MS_FALSE. Default is
MS_FALSE.

extent [rectObj] optional limiting extent for layer features.
filteritem [string] Attribute defining filter.

footer [string] TODO

group [string] Name of a group of layers.

header [string] TODO

index [int immutable] Index of layer within parent map’s layers array.
labelangleitem [string] Attribute defining label angle.

labelcache [int] MS_ON or MS_OFF. Default is MS_ON.
labelitem [string] Attribute defining feature label text.
labelmaxscale [float] Maximum scale at which layer will be labeled.
labelminscale [float] Minimum scale at which layer will be labeled.
labelrequires [string] Logical expression.

labelsizeitem [string] Attribute defining label size.

map [mapObj immutable] Reference to parent map.

maxfeatures [int] Maximum number of layer features that will be drawn. For shapefile data this means the first N
features where N = maxfeatures.

maxscale [float] Maximum scale at which layer will be drawn.
metadata [hashTableObj immutable] Layer metadata.

minscale [float] Minimum scale at which layer will be drawn.

name [string] Unique identifier for layer.

numclasses [int immutable] Number of layer classes.

numitems [int immutable] Number of layer feature attributes (items).
numjoins [int immutable] Number of layer joins.

numprocessing [int immutable] Number of raster processing directives.
offsite [colorObj] transparent pixel value for raster layers.

postlabelcache [int] MS_TRUE or MS_FALSE. Default is MS_FALSE.

6.2. SWIG MapScript APl Reference 149

MapServer Documentation, Release 5.4.2

requires [string] Logical expression.

sizeunits [int] Units of class size values. MS_INCHES, MS_FEET, MS_MILES, MS_METERS,
MS_KILOMETERS, MS_DD or MS_PIXELS

status [int] MS_ON, MS_OFF, or MS_DEFAULT.
styleitem [string] Attribute defining styles.
symbolscale [float] Scale at which symbols are default size.

template [string] Template file. Note that for historical reasons, the query attribute must be non-NULL for a layer to
be queryable.

tileindex [string] Layer index file for tiling support.
tileitem [string] Attribute defining tile paths.
tolerance [float] Search buffer for point and line queries.

toleranceunits [int] MS_INCHES, MS_FEET, MS_MILES, MS_METERS, MS_KILOMETERS, MS_DD or
MS_PIXELS

transform [int] Whether or not layer data is to be transformed to image units. MS_TRUE or MS_FALSE. Default is
MS_TRUE. Case of MS_FALSE is for data that are in image coordinates such as annotation points.

transparency [int] Layer opacity percentage in range [0, 100]. The special value of MS_GD_ALPHA (1000) indi-
cates that the alpha transparency of pixmap symbols should be honored, and should be used only for layers that
use RGBA pixmap symbols.

type [int] See MS_LAYER_TYPE in mapserver.h.
units [int] Units of the layer. See MS_UNITS in mapserver.h.

layerObj Methods

new layerObj([mapObj parent_map=NULL]) [layerObj] Create a new layerObj in parent_map. The layer index
of the new layerObj will be equal to the parent_map numlayers - 1. The parent_map arg is now optional and
Layers can exist outside of a Map.

addFeature(shapeObj shape) [int] Add a new inline feature on a layer. Returns -1 on error. TODO: Is this similar
to inline features in a mapfile? Does it work for any kind of layer or connection type?

addProcessing(string directive) [void] Adds a new processing directive line to a layer, similar to the PROCESSING
directive in a map file. Processing directives supported are specific to the layer type and underlying renderer.

applySLD(string sld, string stylelayer) [int] Apply the SLD document to the layer object. The matching between
the sld document and the layer will be done using the layer’s name. If a namedlayer argument is passed (argu-
ment is optional), the NamedLayer in the sld that matchs it will be used to style the layer. See SLD HOWTO
for more information on the SLD support.

applySLDURL(string sld, string stylelayer) [int] Apply the SLD document pointed by the URL to the layer object.
The matching between the sld document and the layer will be done using the layer’s name. If a namedlayer
argument is passed (argument is optional), the NamedLayer in the sld that matchs it will be used to style the
layer. See SLD HOWTO for more information on the SLD support.

clearProcessing() [int] Clears the layer’s raster processing directives. Returns the subsequent number of directives,
which will equal MS_SUCCESS if the directives have been cleared.

clone() [layerObj] Return an independent copy of the layer with no parent map.

close() [void] Close the underlying layer.

150 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

Note: demote() is removed in MapServer 4.4

draw(mapObj map, imageObj image) [int] Renders this layer into the target image, adding labels to the cache if
required. Returns MS_SUCCESS or MS_FAILURE. TODO: Does the map need to be the map on which the
layer is defined? I suspect so.

drawQuery(mapObj map, imageObj image) : Draw query map for a single layer into the target image. Returns
MS_SUCCESS or MS_FAILURE.

execute WFSGetFeature(layer) [string] Executes a GetFeature request on a WFS layer and returns the name of the
temporary GML file created. Returns an empty string on error.

generateSLD() [void] Returns an SLD XML string based on all the classes found in the layers.

getClass(inti) [classObj] Fetch the requested class object. Returns NULL if the class index is out of the legal range.
The numclasses field contains the number of classes available, and the first class is index 0.

getExtent() [rectObj] Fetches the extents of the data in the layer. This normally requires a full read pass through the
features of the layer and does not work for raster layers.

getFeature(int shapeindex [, int tileindex=-1]) [shapeObj] Return the layer feature at shapeindex and tileindex.
getFilterString() [string] Returns the current filter expression.

getFirstMetaDataKey() [string] Returns the first key in the metadata hash table. With getNextMetaDataKey(), pro-
vides an opaque iterator over keys.

getltem(inti) [string] Returns the requested item. Items are attribute fields, and this method returns the item name
(field name). The numitems field contains the number of items available, and the first item is index zero.

getMetaData(string key) [string] Return the value at key from the metadata hash table.

getNextMetaDataKey(string lastkey) [string] Returns the next key in the metadata hash table or NULL if lastkey
is the last valid key. If lastkey is NULL, returns the first key of the metadata hash table.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed in a
future version. Replaced by direct metadata access, see hashTableOb;.

getNumFeatures() [int] Returns the number of inline features in a layer. TODO: is this really only online features or
will it return the number of non-inline features on a regular layer?

getNumResults() [int] Returns the number of entries in the query result cache for this layer.
getProcessing(int index) [string] Return the raster processing directive at index.
getProjection() [string] Returns the PROJ.4 definition of the layer’s projection.

getResult(inti) [resultCacheMemberObj] Fetches the requested query result cache entry, or NULL if the index is
outside the range of available results. This method would normally only be used after issuing a query operation.

Note: getNumResults() and getResult() are deprecated in MapServer 4.4. Users should instead use the new querying
API described in querying-HOWTO.txt. layerObj::getResults() is the entry point for the new APIL

getResults() [resultCacheObj] Returns a reference to layer’s result cache. Should be NULL prior to any query, or
after a failed query or query with no results.

getShape(shapeObj shape, int tileindex, int shapeindex) [int] Get a shape from layer data.
Note: getShape() is deprecated. Users should adopt getFeature() for new applications.

getWMSFeatureInfoURL(mapObj map, int click_x, int click_y, int feature_count, string info_format)
[string] Return a WMS GetFeatureInfo URL (works only for WMS layers) clickX, clickY is the location of
to query in pixel coordinates with (0,0) at the top left of the image. featureCount is the number of results to
return. infoFormat is the format the format in which the result should be requested. Depends on remote server’s

6.2. SWIG MapScript APl Reference 151

MapServer Documentation, Release 5.4.2

332

capabilities. MapServer WMS servers support only “MIME” (and should support “GML.1” soon). Returns
and outputs a warning if layer is not a WMS layer or if it is not queriable.

insertClass(classObj class [, int index=-1]) [int] Insert a copy of the class into the layer at the requested index.
Default index of -1 means insertion at the end of the array of classes. Returns the index at which the class was
inserted.

isVisible() [int] Returns MS_TRUE or MS_FALSE after considering the layer status, minscale, and maxscale within
the context of the parent map.

moveClassDown(int class) [int] The class specified by the class index will be moved up into the array of layers.
Returns MS_SUCCESS or MS_FAILURE. ex. moveClassDown(1) will have the effect of moving class 1 down
to postion 2, and the class at position 2 will be moved to position 1.

moveClassUp(int class) [int] The class specified by the class index will be moved up into the array of layers. Re-
turns MS_SUCCESS or MS_FAILURE. ex. moveClassUp(1) will have the effect of moving class 1 up to
postion 0, and the class at position 0 will be moved to position 1.

nextShape() [shapeObj] Called after msWhichShapes has been called to actually retrieve shapes within a given area
returns a shape object or MS_FALSE

example of usage :

mapObj map = new mapObj ("d:/msapps/gmap-ms40/htdocs/gmap75.map") ;
layerObj layer = map.getLayerByName (' road’);

int status = layer.open();

status = layer.whichShapes (map.extent);
shapeOb]j shape;

while ((shape = layer.nextShape()) != null)

{

}

layer.close();

open() [void] Opens the underlying layer. This is required before operations like getFeature() will work, but is not
required before a draw or query call.

Note: promote() is eliminated in MapServer 4.4.

queryByA ttributes(mapObj map, string qitem, string gstring, int mode) [int] Query layer for shapes that inter-
sect current map extents. gitem is the item (attribute) on which the query is performed, and gstring is the expres-
sion to match. The query is performed on all the shapes that are part of a CLASS that contains a TEMPLATE
value or that match any class in a layer that contains a LAYER TEMPLATE value.

Note that the layer’s FILTER/FILTERITEM are ignored by this function. Mode is MS_SINGLE or
MS_MULTIPLE depending on number of results you want. Returns MS_SUCCESS if shapes were found
or MS_FAILURE if nothing was found or if some other error happened.

queryByFeatures(mapObj map, int slayer) [int] Perform a query set based on a previous set of results from an-
other layer. At present the results MUST be based on a polygon layer. Returns MS_SUCCESS if shapes were
found or MS_FAILURE if nothing was found or if some other error happened

queryByIndex(mapObj map, int shapeindex, int tileindex [, int bAddToQuery=MS_FALSE]) [int] Pop a
query result member into the layer’s result cache. By default clobbers existing cache. Returns MS_SUCCESS
or MS_FAILURE.

queryByPoint(mapObj map, pointObj point, int mode, float buffer) [int] Query layer at point location specified
in georeferenced map coordinates (i.e. not pixels). The query is performed on all the shapes that are part of a
CLASS that contains a TEMPLATE value or that match any class in a layer that contains a LAYER TEMPLATE
value. Mode is MS_SINGLE or MS_MULTIPLE depending on number of results you want. Passing buffer <=0
defaults to tolerances set in the map file (in pixels) but you can use a constant buffer (specified in ground units)

152 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

instead. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other
error happened.

queryByRect(mapObj map, rectObj rect) [int] Query layer using a rectangle specified in georeferenced map co-
ordinates (i.e. not pixels). The query is performed on all the shapes that are part of a CLASS that contains
a TEMPLATE value or that match any class in a layer that contains a LAYER TEMPLATE value. Returns
MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error happened.

queryByShape(mapObj map, shapeObj shape) [int] Query layer based on a single shape, the shape has to be a
polygon at this point. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or
if some other error happened

removeClass(int index) [classObj] Removes the class indicated and returns a copy, or NULL in the case of a failure.
Note that subsequent classes will be renumbered by this operation. The numclasses field contains the number
of classes available.

removeMetaData(string key) [int] Delete the metadata hash at key. Returns MS_SUCCESS or MS_FAILURE.

Note: removeMetaData() is deprecated and will be removed in a future version. Replaced by direct metadata access,
see hashTableOb;.

setConnectionType(int connectiontype, string library_str) [int] Changes the connectiontype of the layer and recre-
ates the vtable according to the new connection type. This method should be used instead of setting the con-
nectiontype parameter directly. In case when the layer.connectiontype = MS_PLUGIN the library_str parameter
should also be specified so as to select the library to load by mapserver. For the other connection types this
parameter is not used.

setExtent(float minx, float miny, float maxx, float maxy) [int] Sets the extent of a layer. Returns MS_SUCCESS
or MS_FAILURE.

setFilter(string filter) [int] Sets a filter expression similarly to the FILTER expression in a map file. Returns
MS_SUCCESS on success or MS_FAILURE if the expression fails to parse.

setMetaData(string key, string value) [int] Assign value to the metadata hash at key. Return MS_SUCCESS or
MS_FAILURE.

Note: setMetaData() is deprecated and will be removed in a future version. Replaced by direct metadata access, see
hashTableOb;.

setProcessingKey(string key, string value) [void] Adds or replaces a processing directive of the form “key=value”.
Unlike the addProcessing() call, this will replace an existing processing directive for the given key value. Pro-
cessing directives supported are specific to the layer type and underlying renderer.

setProjection(string proj4) [int] Set the layer projection using a PROJ.4 format projection definition (ie.
“+proj=utm +zone=11 +datum=WGS84” or “init=EPSG:26911”). Returns MS_SUCCESS or MS_FAILURE.

setWKTProjection(string wkt) [int] Set the layer projection using OpenGIS Well Known Text format. Returns
MS_SUCCESS or MS_FAILURE.

int whichShapes(rectObj rect) [int] Performs a spatial, and optionally an attribute based feature search. The func-
tion basically prepares things so that candidate features can be accessed by query or drawing functions (eg using
nextShape function). Returns MS_SUCCESS or MS_FAILURE.

legendObj

legendObj is associated with mapObj

6.2. SWIG MapScript APl Reference 153

MapServer Documentation, Release 5.4.2

and with labelOb.

e + 1 1 +-——————- +
| Legend | ————————- > | Label |
+——— + o +

legendObj Attributes

height [int] Legend height.

imagecolor [colorObj] Legend background color.

keysizex [int] Width in pixels of legend keys.

keysizey [int] Pixels.

keyspacingx [int] Horizontal padding around keys in pixels.
keyspacingy [int] Vertical padding.

label [labelObj immutable] legend label.

map [mapObj immutable] Reference to parent mapOb.
outlinecolor [colorObj] key outline color.

position [int] MS_UL, MS_UC, MS_UR, MS_LL, MS_LC, or MS_LR.
postlabelcache [int] MS_TRUE or MS_FALSE.

status [int] MS_ON, MS_OFF, or MS_EMBED.

template [string] Path to template file.

width [int] Label width.

legendObj Methods

None

lineObj

A lineObj is composed of one or more pointObj instances.

lineObj Attributes

numpoints [int immutable] Number of points in the line.

154 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

lineObj Methods

add(pointObj point) [int] Add point to the line. Returns MS_SUCCESS or MS_FAILURE.
get(int index) [pointObj] Return reference to point at index.

project(projectionObj proj_in, projectionObj proj_out) [int] Transform line in place from proj_in to proj_out. Re-
turns MS_SUCCESS or MS_FAILURE.

set(int index, pointObj point) [int] Set the point at index to point. Returns MS_SUCCESS or MS_FAILURE.

mapObj

A mapObj is primarily associated with instances of layerObj.

+——— + 1 0..1 +————————————— +
| Map | ——=—=———— > | Legend \
o + [|
| Scalebar |
| —mmmmmmmmms |
| ReferenceMap |
o +
outputFormatObj.
- + 1 1. +—————————— +
| Map | —————————— > | OutputFormat |
+——— + R +

mapObj Attributes

cellsize [float] Pixel size in map units.

configoptions [hashObj immutable] A hash table of configuration options from CONFIG keywords in the .map. Di-
rect access to config options is discouraged. Use the setConfigOption() and getConfigOption() methods instead.

datapattern [string] TODO not sure this is meaningful for mapscript.
debug [int] MS_TRUE or MS_FALSE.

extent [rectObj] Map’s spatial extent.

fontset [fontSetObj immutable] The map’s defined fonts.

height [int] Map’s output image height in pixels.

Note: direct setting of height is deprecated in MapServer version 4.4. Users should set width and height simultane-
ously using setSize().

imagecolor [colorObj] Initial map background color.

imagequality [int] JPEG image quality.

6.2. SWIG MapScript APl Reference 155

MapServer Documentation, Release 5.4.2

Note: map imagequality is deprecated in MapServer 4.4 and should instead be managed through map outputformats.
imagetype [string immutable] Name of the current output format.

interlace [int] Output image interlacing.

Note: map interlace is deprecated in MapServer 4.4 and should instead be managed through map outputformats.
lablecache [labelCacheObj immutable] Map’s labelcache.

legend [legendObj immutable] Reference to map’s legend.

mappath [string] Filesystem path of the map’s mapfile.

maxsize [int] TODO ?

name [string] Unique identifier.

numlayers [int immutable] Number of map layers.

numoutputformats [int] Number of output formats.

outputformat [outputFormatObj] The currently selected output format.

Note: Map outputformat should not be modified directly. Use the selectOutputFormat() method to select named
formats.

outputformatlist [outputFormatObj[]] Array of the available output formats.

Note: Currently only available for C#. A proper typemaps should be implemented for the other languages.
querymap [queryMapObj immutable] TODO should this be exposed to mapscript?

reference [referenceMapObj immutable] Reference to reference map.

resolution [float] Nominal DPI resolution. Default is 72.

scale [float] The nominal map scale. A value of 25000 means 1:25000 scale.

scalebar [scalebarObj immutable] Reference to the scale bar.

shapepath [string] Base filesystem path to layer data.

status [int] MS_OFF, MS_ON, or MS_DEFAULT.

symbolset [symbolSetObj immutable] The map’s set of symbols.

templatepattern [string] TODO not sure this is meaningful for mapscript.

transparent [int] MS_TRUE or MS_FALSE.

Note: map transparent is deprecated in MapServer 4.4 and should instead be managed through map outputformats.
units [int] MS_DD, MS_METERS, etc.

web [webObj immutable] Reference to map’s web definitions.

width [int] Map’s output image width in pixels.

Note: direct setting of width is deprecated in MapServer version 4.4. Users should set width and height simultane-
ously using setSize().

mapObj Methods

new mapObj([string filename=""]) [mapObj] Create a new instance of mapObj. Note that the filename is now
optional.

156 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

appendOutputFormat(outputFormatObj format) [int] Attach format to the map’s output format list. Returns the
updated number of output formats.

applyConfigOptions() [void] Apply the defined configuration options set by setConfigOption().

applySLD(string sldxml) [int] Parse the SLD XML string sldxml and apply to map layers. Returns MS_SUCCESS
or MS_FAILURE.

applySLDURL(string sldurl) [int] Fetch SLD XML from the URL sldurl and apply to map layers. Returns
MS_SUCCESS or MS_FAILURE.

clone() [mapObj] Returns a independent copy of the map, less any caches.
Note: In the Java module this method is named ‘cloneMap’.
draw() [imageObj] Draw the map, processing layers according to their defined order and status. Return an imageObj.

drawLabelCache(imageObj image) [int] Draw map’s label cache on image. Returns MS_SUCCESS or
MS_FAILURE.

drawLegend() [imageObj] Draw map legend, returning an imageQOb;.

drawQuery() [imageObj] Draw query map, returning an imageObj.

drawReferenceMap() [imageObj] Draw reference map, returning an imageObj.

drawScalebar() [imageObj] Draw scale bar, returning an imageOb;.

embedLegend(imageObj image) [int] Embed map’s legend in image. Returns MS_SUCCESS or MS_FAILURE.

embedScalebar(imageObj image) [int] Embed map’s scalebar in image. Returns MS_SUCCESS or
MS_FAILURE.

freeQuery([int qlayer=-1]) [void] Clear layer query result caches. Default is -1, or all layers.
generateSLD() [string] Return SLD XML as a string for map layers.

getConfigOption(string key) [string] Fetches the value of the requested configuration key if set. Returns NULL if
the key is not set.

getFirstMetaDataKey() [string] Returns the first key in the web.metadata hash table. With getNextMetaDataKey(),
provides an opaque iterator over keys.

getLayer(int index) [layerObj] Returns a reference to the layer at index.
getLayerByName(string name) [layerObj] Returns a reference to the named layer.
getLayersDrawingOrder() [int*] Returns an array of layer indexes in drawing order.

Note: Unless the proper typemap is implemented for the module’s language a user is more likely to get back an
unuseable SWIG pointer to the integer array.

getMetaData(string key) [string] Return the value at key from the web.metadata hash table.

getNextMetaDataKey(string lastkey) [string] Returns the next key in the web.metadata hash table or NULL if
lastkey is the last valid key. If lastkey is NULL, returns the first key of the metadata hash table.

getNumSymbols() [int] Return the number of symbols in map.

getOutputFormatByName(string imagetype) [outputFormatObj] Return the output format corresponding to
driver name imagetype or to format name imagetype. This works exactly the same as the IMAGETYPE di-
rective in a mapfile, is case insensitive and allows an output format to be found either by driver (like ‘GD/PNG’)
or name (like ‘PNG24°).

getProjection() [string] Returns the PROJ.4 definition of the map’s projection.

getSymbolByName(string name) [int] Return the index of the named symbol in the map’s symbolset.

6.2. SWIG MapScript APl Reference 157

MapServer Documentation, Release 5.4.2

Note: This method is poorly named and too indirect. It is preferrable to use the getSymbolByName method of
symbolSetObj, which really does return a symbolObj reference, or use the index method of symbolSetObj to get a
symbol’s index number.

insertLayer(layerObj layer [, int nIndex=-1]) [int] Insert a copy of layer into the Map at index nindex. The de-
fault value of nlndex is -1, which means the last possible index. Returns the index of the new Layer, or -1 in the
case of a failure.

loadMapContext(string filename [, int useUniqueNames=MS_FALSE]) [int] Load an OGC map context file to
define extents and layers of a map.

loadOWSParameters(OWSRequest request [, string version=°‘1.1.1’]) [int] Load OWS request parameters
(BBOX, LAYERS, &c.) into map. Returns MS_SUCCESS or MS_FAILURE.

loadQuery(string filename) [int] Load a saved query. Returns MS_SUCCESS or MS_FAILURE.

moveLayerDown(int layerindex) [int] Move the layer at layerindex down in the drawing order array, meaning that
it is drawn later. Returns MS_SUCCESS or MS_FAILURE.

moveLayerUp(int layerindex) [int] Move the layer at layerindex up in the drawing order array, meaning that it is
drawn earlier. Returns MS_SUCCESS or MS_FAILURE.

nextLabel() [labelCacheMemberObj] Return the next label from the map’s labelcache, allowing iteration over labels.
Note: nextLabel() is deprecated and will be removed in a future version. Replaced by getLabel().
getLabel(int labelindex) [labelCacheMemberObj] Return label at specified index from the map’s labelcache.

OWSDispatch(OWSRequest req) [int] Processes and executes the passed OpenGIS Web Services request on the
map. Returns MS_DONE (2) if there is no valid OWS request in the req object, MS_SUCCESS (0) if an OWS
request was successfully processed and MS_FAILURE (1) if an OWS request was not successfully processed.
OWS requests include WMS, WFS, WCS and SOS requests supported by MapServer. Results of a dispatched
request are written to stdout and can be captured using the mslIO services (ie. msIO_installStdoutToBuffer() and
msIO_getStdoutBufferString())

preparelmage() [imageObj] Returns an imageObyj initialized to map extents and outputformat.
prepareQuery() [void] TODO this function only calculates the scale or am I missing something?

processLegendTemplate(string names[], string values[], int numitems) [string] Process MapServer legend tem-
plate and return HTML.

processQueryTemplate(string names[], string values[], int numitems) [string] Process MapServer query tem-
plate and return HTML.

processTemplate(int generateimages, string names|[], string values[], int numitems) [string] Process MapServer
template and return HTML.

Note: None of the three template processing methods will be useable unless the proper typemaps are implemented in
the module for the target language. Currently the typemaps are not implemented.

queryByFeatures(int layerindex) [int] Query map layers, result sets contain features that intersect or are con-
tained within the features in the result set of the MS_LAYER_POLYGON type layer at layerindex. Returns
MS_SUCCESS or MS_FAILURE.

queryByPoint(pointObj point, int mode, float buffer) [int] Query map layers, result sets contain one or more
features, depending on mode, that intersect point within a tolerance buffer. Returns MS_SUCCESS or
MS_FAILURE.

queryByRect(rectObj rect) [int] Query map layers, result sets contain features that intersect or are contained within
rect. Returns MS_SUCCESS or MS_FAILURE.

queryByShape(shapeObj shape) [int] Query map layers, result sets contain features that intersect or are contained
within shape. Returns MS_SUCCESS or MS_FAILURE.

158 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

removeLayer(int index) [int] Remove the layer at index.

removeMetaData(string key) [int] Delete the web.metadata hash at key. Returns MS_SUCCESS or
MS_FAILURE.

removeQutputFormat(string name) [int] Removes the format named name from the map’s output format list. Re-
turns MS_SUCCESS or MS_FAILURE.

save(string filename) [int] Save map to disk as a new map file. Returns MS_SUCCESS or MS_FAILURE.

saveMapContext(string filename) [int] Save map definition to disk as OGC-compliant XML. Returns
MS_SUCCESS or MS_FAILURE.

saveQuery(string filename) [int] Save query to disk. Returns MS_SUCCESS or MS_FAILURE.
saveQueryAsGML(string filename) [int] Save query to disk. Returns MS_SUCCESS or MS_FAILURE.

selectOutputFormat(string imagetype) [void] Set the map’s active output format to the internal format named
imagetype. Built-in formats are “PNG”, “PNG24”, “JPEG”, “GIF”, “GTIFF”.

setConfigOption(string key, string value) [void] Set the indicated key configuration option to the indicated value.
Equivalent to including a CONFIG keyword in a map file.

setExtent(float minx, float miny, float maxx, float maxy) [int] Set the map extent, returns MS_SUCCESS or
MS_FAILURE.

offsetExtent(float x, float y) [int] Offset the map extent based on the given distances in map coordinates, returns
MS_SUCCESS or MS_FAILURE.

scaleExtent(float zoomfactor, float minscaledenom, float maxscaledenom) [int] Scale the map extent using the
zoomfactor and ensure the extent within the minscaledenom and maxscaledenom domain. If minscalede-
nom and/or maxscaledenom is O then the parameter is not taken into account. returns MS_SUCCESS or
MS_FAILURE.

setCenter(pointObj center) [int] Set the map center to the given map point, returns MS_SUCCESS or
MS_FAILURE.

setFontSet(string filename) [int] Load fonts defined in filename into map fontset. The existing fontset is cleared.
Returns MS_SUCCESS or MS_FAILURE.

setImageType(string name) [void] Sets map outputformat to the named format.
Note: setlmageType() remains in the module but it’s use is deprecated in favor of selectOutputFormat().
setLayersDrawingOrder(int layerindexes[]) [int] Set map layer drawing order.

Note: Unless the proper typemap is implemented for the module’s language users will not be able to pass arrays or
lists to this method and it will be unusable.

setMetaData(string key, string value) [int] Assign value to the web.metadata hash at key. Return MS_SUCCESS
or MS_FAILURE.

setOutputFormat(outputFormatObj format) [void] Sets map outputformat.
setProjection(string proj4) [int] Set map projection from PROJ.4 definition string proj4.

setRotation(float rotation_angle) [int] Set map rotation angle. The map view rectangle (specified in EXTENTS)
will be rotated by the indicated angle in the counter- clockwise direction. Note that this implies the rendered
map will be rotated by the angle in the clockwise direction. Returns MS_SUCCESS or MS_FAILURE.

setSize(int width, int height) [int] Set map’s image width and height together and carry out the necessary subse-
quent geotransform computation. Returns MS_SUCCESS or MS_FAILURE.

setSymbolSet(string filename) [int] Load symbols defined in filename into map symbolset. The existing symbolset
is cleared. Returns MS_SUCCESS or MS_FAILURE.

6.2. SWIG MapScript APl Reference 159

MapServer Documentation, Release 5.4.2

setWKTProjection(string wkt) [int] Sets map projection from OGC definition wkt.

zoomPoint(int zoomfactor, pointObj imgpoint, int width, int height, rectObj extent, rectObj maxextent)
[int] Zoom by zoomfactor to imgpoint in pixel units within the image of height and width dimensions and
georeferenced extent. Zooming can be constrained to a maximum maxextent. Returns MS_SUCCESS or
MS_FAILURE.

zoomRectangle(rectObj imgrect, int width, int height, rectObj extent, rectObj maxextent) [int] Zoom to a
pixel coordinate rectangle in the image of width and height dimensions and georeferencing extent. Zooming
can be constrained to a maximum maxextent. Returns MS_SUCCESS or MS_FAILURE.

zoomScale(float scale, pointObj imgpoint, int width, int height, rectObj extent, rectObj maxextent) [int] Like
the previous methods, but zooms to the point at a specified scale.

markerCacheMemberObj

An individual marker. The markerCacheMemberObj class is associated with labelCacheOb;.

markerCacheMemberObj Attributes

id [int immutable] Id of the marker.

poly [shapeObj immutable] Marker bounding box.

markerCacheMemberObj Methods

None.

outputFormatObj

An outputFormatObj is associated with a mapObj

and can also be an attribute of an imageQOb;j.

outputFormatObj Attributes

bands [int] The number of bands in the raster. Only used for the “raw” modes, MS_IMAGEMODE_BYTE,
MS_IMAGEMODE_INT16, and MS_IMAGEMODE_FLOAT32. Normally set via the BAND_COUNT for-
matoption ... this field should be considered read-only.

driver [string] A string such as ‘GD/PNG’ or ‘GDAL/GTiff’.

extension [string] Format file extension such as ‘png’.

160 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

imagemode [int] MS_IMAGEMODE_PC256, MS_IMAGEMODE_RGB, MS_IMAGEMODE_RGBA,
MS_IMAGEMODE_INT16, MS_IMAGEMODE_FLOAT32, MS_IMAGEMODE_BYTE, or
MS_IMAGEMODE_NULL.

mimetype [string] Format mimetype such as ‘image/png’.
name [string] A unique identifier.

renderer [int] MS_RENDER_WITH_GD, MS_RENDER_WITH_SWF, MS_RENDER_WITH_RAWDATA,
MS_RENDER_WITH_PDF, or MS_RENDER_WITH_IMAGEMAP. Normally set internally based on the
driver and some other setting in the constructor.

transparent [int] MS_ON or MS_OFF.

outputFormatObj Methods

new outputFormatObj(string driver [, string name=driver]) [outputFormatObj] Create new instance. If name is
not provided, the value of driver is used as a name.

getOption(string key [, string value="""]) [string] Return the format option at key or value if key is not a valid hash
index.

setExtension(string extension) [void] Set file extension for output format such as ‘png’ or ‘jpg’. Method could
probably be deprecated since the extension attribute is mutable.

setMimetype(string mimetype) [void] Set mimetype for output format such as ‘image/png’ or ‘image/jpeg’.
Method could probably be deprecated since the mimetype attribute is mutable.

setOption(string key, string value) [void] Set the format option at key to value. Format options are mostly driver
specific.

validate() [int] Checks some internal consistency issues, and returns MS_TRUE if things are OK and MS_FALSE if
there are problems. Some problems are fixed up internally. May produce debug output if issues encountered.

OWSRequest

Not associated with other mapscript classes. Serves as a message intermediary between an application and
MapServer’s OWS capabilities. Using it permits creation of lightweight WMS services:

wms_map = mapscript.mapObj (’wms.map’)
wms_request = mapscript.OWSRequest ()

Convert application request parameters (req.args)
for param, value in req.args.items():
wms_request.setParam(param, value)

Map loads parameters from OWSRequest, adjusting its SRS, extents,
active layers accordingly
wms_map.loadWMSRequest ("1.1.0", wms_request)

Render the Map
img = wms_map.draw()

6.2. SWIG MapScript APl Reference 161

MapServer Documentation, Release 5.4.2

OWSRequest Attributes

NumParams [int immutable] Number of request parameters. Eventually should be changed to numparams lowercase
like other attributes.

postrequest [string] TODO
type [int] MS_GET_REQUEST or MS_POST_REQUEST.

OWSRequest Methods

new OWSRequest() [OWSRequest] Create a new instance.
setParameter(string name, string value) [void] Set a request parameter. For example

request.setParameter (' REQUEST’, ’GetMap’)
request.setParameter (' BBOX’, "-107.0,40.0,-106.0,41.0")

Note: MapServer’s OWSRequest supports only single valued parameters.

getName(int index) [string] Return the name of the parameter at index in the request’s array of parameter names.
getValue(int index) [string] Return the value of the parameter at index in the request’s array of parameter values.
getValueByName(string name) [string] Return the value associated with the parameter name.

loadParams() [int] Initializes the OWSRequest object from the cgi environment variables REQUEST_METHOD,
QUERY_STRING and HTTP_COOKIE. Returns the number of name/value pairs collected. Warning: most
errors will result in a process exit!

pointObj

A pointObj instance may be associated with a lineOb.

pointObj Attributes

m [float] Measure. Meaningful only for measured shapefiles. Given value -2e38 if not otherwise assigned to indicate
“nodata”.

x [float] Easting
y [float] Northing

z [float] Elevation

pointObj Methods

new pointObj([float x=0.0, float y=0.0, float z=0.0, float m=-2e38]) [pointObj] Create new instance. Easting,
northing, and measure arguments are optional.

distanceToPoint(pointObj point) [float] Returns the distance to point.

162 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

distanceToSegment(pointObj point1, pointObj point2) [float] Returns the minimum distance to a hypothetical
line segment connecting pointl and point2.

distanceToShape(shapeObj shape) [float] Returns the minimum distance to shape.

draw(mapObj map, layerObj layer, imageObj image, int classindex, string text) [int] Draw the point using the
styles defined by the classindex class of layer and labeled with string text. Returns MS_SUCCESS or
MS_FAILURE.

project(projectionObj proj_in, projectionObj proj_out) [int] Reproject point from proj_in to proj_out. Transfor-
mation is done in place. Returns MS_SUCCESS or MS_FAILURE.

setXY(float x, float y [, float m=2e-38]) [int] Set spatial coordinate and, optionally, measure values simultaneously.
The measure will be set only if the value of m is greater than the ESRI measure no-data value of 1e-38. Returns
MS_SUCCESS or MS_FAILURE.

setXYZ(float x, float y, float z [, float m=-2e38]) [int] Set spatial coordinate and, optionally, measure values si-
multaneously. The measure will be set only if the value of m is greater than the ESRI measure no-data value of
-1e38. Returns MS_SUCCESS or MS_FAILURE.

setXYZM(float x, float y, float z, float m) [int] Set spatial coordinate and, optionally, measure values simultane-
ously. The measure will be set only if the value of m is greater than the ESRI measure no-data value of -1e38.
Returns MS_SUCCESS or MS_FAILURE.

toString() [string] Return a string formatted like
{ 'x": £, 'y': %f, "z’: %f }

with the coordinate values substituted appropriately. Python users can get the same effect via the pointObj
__str__method

>>> p = mapscript.pointObj (1, 1)
>>> str(p)
{ 'x": 1.000000 , "y’: 1.000000, "z’: 1.000000 }

toShape() [shapeObj] Convience method to quickly turn a point into a shapeOb;.

projectionObj
This class is not really fully implemented yet. MapServer’s Maps and Layers have Projection attributes, and these
are C projectionObj structures, but are not directly exposed by the mapscript module. Currently we have to do some

round-a-bout logic like this

point.project (projectionObj (mapobj.getProjection(),
projectionObj (layer.getProjection())

to project a point from map to layer reference system.

projectionObj Attributes

numargs [int immutable] Number of PROJ.4 arguments.

6.2. SWIG MapScript APl Reference 163

MapServer Documentation, Release 5.4.2

projectionObj Methods

new projectionObj(string proj4) [projectionObj] Create new instance of projectionObj. Input parameter proj4 is a
PROJ.4 definition string such as “init=EPSG:4269”.

getUnits() [int] Returns the units of a projection object. Returns -1 on error.

rectODbj

A rectObj may be a lone object or an attribute of another object and has no other associations.

rectObj Attributes

maxx [float] Maximum easting
maxy [float] Maximum northing
minx [float] Minimum easting

miny [float] Minimum northing

rectObj Methods

new rectObj([float minx=-1.0, float miny=-1.0, float maxx=-1.0, float maxy=-1.0, int imageunits=MS_FALSE])
[rectObj] Create new instance. The four easting and northing arguments are optional and default to -1.0. Note
the new optional fifth argument which allows creation of rectangles in image (pixel/line) units which are also
tested for validity.

draw(mapObj map, layerObj layer, imageObj img, int classindex, string text) [int] Draw rectangle into img us-
ing style defined by the classindex class of layer. The rectangle is labeled with the string fext. Returns
MS_SUCCESS or MS_FAILURE.

getCenter() [pointObj] Return the center point of the rectagle.

project(projectionObj proj_in, projectionObj proj_out) [int] Reproject rectangle from proj_in to proj_out.
Transformation is done in place. Returns MS_SUCCESS or MS_FAILURE.

toPolygon() [shapeObj] Convert to a polygon of five vertices.

toString() [string] Return a string formatted like
{ 'minx’: %f , ’'miny’: %$f , 'maxx’: %$f , 'maxy’: %f }

with the bounding values substituted appropriately. Python users can get the same effect via the rectObj __str__
method

>>> r = mapscript.rectObj(0, 0, 1, 1)
>>> str(r)
{ 'minx’: 0 , 'miny’: 0 , 'maxx’: 1 , ’'maxy’: 1 }

164 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

referenceMapObj

A referenceMapObj is associated with mapOby;.

referenceMapObj Attributes

color [colorObj] Color of reference box.

extent [rectObj] Spatial extent of reference in units of parent map.
height [int] Height of reference map in pixels.

image [string] Filename of reference map image.

map [mapObj immutable] Reference to parent mapObj.

marker [int] Index of a symbol in the map symbol set to use for marker.
markername [string] Name of a symbol.

markersize [int] Size of marker.

maxboxsize [int] Pixels.

minboxsize [int] Pixels.

outlinecolor [colorObj] Outline color of reference box.

status [int] MS_ON or MS_OFF.

width [int] In pixels.

referenceMapObj Methods

None

resultCacheMemberObj

Has no associations with other MapScript classes and has no methods. By using several indexes, a resultCacheMem-
berObj refers to a single layer feature.

resultCacheMemberObj Attributes

classindex [int immutable] The index of the layer class into which the feature has been classified.
shapeindex [int immutable] Index of the feature within the layer.

tileindex [int immutable] Meaningful for tiled layers only, index of the shapefile data tile.

resultCacheObj

See querying-HOWTO.txt for extra guidance in using the new 4.4 query APIL.

6.2. SWIG MapScript APl Reference 165

MapServer Documentation, Release 5.4.2

resultCacheObj Attributes

bounds [rectObj immutable] Bounding box of query results.

numresults [int immutable] Length of result set.

resultCacheObj Methods

getResult(inti) [resultCacheObj] Returns the result at index i, like layerObj::getResult, or NULL if index is outside
the range of results.

scalebarObj

A scalebarObj is associated with mapObj.

fom + 0..1 1 +————— +

| Scalebar | <————————-— | Map |

fom + fo———— +
and also with labelObj

o +1 1 +—————- +
| Scalebar | —————————— > | Label |
fo————— + fo———— +

scalebarObj Attributes

backgroundcolor [colorObj] Scalebar background color.
color [colorObj] Scalebar foreground color.

imagecolor [colorObj] Background color of scalebar.
height [int] Pixels.

intervals [int] Number of intervals.

label [labelObj] Scalebar label.

outlinecolor [colorObj] Foreground outline color.
position [int] MS_UL, MS_UC, MS_UR, MS_LL, MS_LC, or MS_LR.
postlabelcache [int] MS_TRUE or MS_FALSE.

status [int] MS_ON, MS_OFF, or MS_EMBED.

style [int] O or 1.

units [int] See MS_UNITS in mapserver.h.

width [int] Pixels.

scalebarObj Methods

None

166 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

shapefileObj

shapefileObj Attributes

bounds [rectObj] Extent of shapes
numshapes [int] Number of shapes

type [int] See mapshape.h for values of type.

shapefileObj Methods

new shapefileObj(string filename [, int type=-1]) [shapefileObj] Create a new instance. Omit the fype argument
or use a value of -1 to open an existing shapefile.

add(shapeObj shape) [int] Add shape to the shapefile. Returns MS_SUCCESS or MS_FAILURE.

get(int i, shapeObj shape) [int] Get the shapefile feature from index i and store it in shape. Returns MS_SUCCESS
or MS_FAILURE.

getShape(inti) [shapeObj] Returns the shapefile feature at index i. More effecient than get.
TODO

shapeObj

Each feature of a layer’s data is a shapeObj. Each part of the shape is a closed lineObyj.

shapeObj Attributes

bounds [rectObj] Bounding box of shape.

classindex [int] The class index for features of a classified layer.
index [int] Feature index within the layer.

numlines [int immutable] Number of parts.

numvalues [int immutable] Number of shape attributes.

text [string] Shape annotation.

tileindex [int] Index of tiled file for tileindexed layers.

type [int] MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON, or MS_SHAPE_NULL.

shapeObj Methods

new shapeObj(int type) [shapeObj] Return a new shapeObj of the specified type. See the type attribute above. No
attribute values created by default. initValues should be explicitly called to create the required number of values.

add(lineObj line) [int] Add line (i.e. a part) to the shape. Returns MS_SUCCESS or MS_FAILURE.

6.2. SWIG MapScript APl Reference 167

MapServer Documentation, Release 5.4.2

boundary() [shapeObj] Returns the boundary of the existing shape. Requires GEOS support. Returns NULL/undef
on failure.

buffer(int distance) [shapeObj] Returns a new buffered shapeObj based on the supplied distance (given in the co-
ordinates of the existing shapeObj). Requires GEOS support. Returns NULL/undef on failure.

contains(pointObj point) [int] Returns MS_TRUE if the point is inside the shape, MS_FALSE otherwise.

contains(shapeObj shape2) [int] Returns MS_TRUE if shape?2 is entirely within the shape. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

convexHull() [shapeObj] Returns the convex hull of the existing shape. Requires GEOS support. Returns
NULL/undef on failure.

copy(shapeObj shape_copy) [int] Copy the shape to shape_copy. Returns MS_SUCCESS or MS_FAILURE.
clone() [shapeObj] Return an independent copy of the shape.

crosses(shapeObj shape2) [int] Returns MS_TRUE if shape2 crosses the shape. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

difference(shapeObj shape) [shapeObj] Returns the computed difference of the supplied and existing shape. Re-
quires GEOS support. Returns NULL/undef on failure.

disjoint(shapeObj shape2) [int] Returns MS_TRUE if shape2 and the shape are disjoint. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

distanceToPoint(pointObj point) [float] Return distance to point.
distanceToShape(shapeObj shape) [float] Return the minimum distance to shape.

draw(mapObj map, layerObj layer, imageObj img) [int] Draws the individual shape using layer. Returns
MS_SUCCESS or MS_FAILURE.

equals(shapeObj shape2) [int] Returns MS_TRUE if the shape and shape2 are equal (geometry only). Returns -1
on error and MS_FALSE otherwise. Requires GEOS support.

fromWKT(char *wkt) [shapeObj] Returns a new shapeObj based on a well-known text representation of a geom-
etry. Requires GEOS support. Returns NULL/undef on failure.

get(int index) [lineObj] Returns a reference to part at index. Reference is valid only during the life of the shapeOb;.
getArea() [double] Returns the area of the shape (if applicable). Requires GEOS support.

getCentroid() [pointObj] Returns the centroid for the existing shape. Requires GEOS support. Returns NULL/undef
on failure.

getLength() [double] Returns the length (or perimeter) of a shape. Requires GEOS support.
getValue(inti) [string] Return the shape attribute at index i.
initValues(int numvalues) [void] Allocates memory for the requested number of values.

intersects(shapeObj shape) [int] Returns MS_TRUE if the two shapes intersect, MS_FALSE otherwise. Note, does
not require GEOS support but will use GEOS functions if available.

intersection(shapeObj shape) [shapeObj] Returns the computed intersection of the supplied and existing shape.
Requires GEOS support. Returns NULL/undef on failure.

overlaps(shapeObj shape2) [int] Returns MS_TRUE if shape2 overlaps shape. Returns -1 on error and MS_FALSE
otherwise. Requires GEOS support.

project(projectionObj proj_in, projectionObj proj_out) [int] Reproject shape from proj_in to proj_out. Trans-
formation is done in place. Returns MS_SUCCESS or MS_FAILURE.

168 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

setBounds [void] Must be called to calculate new bounding box after new parts have been added.
TODO: should return int and set msSetError.
setValue(int i, string value) [int] Set the shape value at index i to value.

symDifference(shapeObj shape) [shapeObj] Returns the computed symmetric difference of the supplied and exist-
ing shape. Requires GEOS support. Returns NULL/undef on failure.

touches(shapeObj shape2) [int] Returns MS_TRUE if the shape and shape2 touch. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

toWKT() [string] Returns the well-known text representation of a shapeObj. Requires GEOS support. Returns
NULL/undef on failure.

Union(shapeObj shape) [shapeObj] Returns the union of the existing and supplied shape. Shapes must be of the
same type. Requires GEOS support. Returns NULL/undef on failure.

within(shapeObj shape2) [int] Returns MS_TRUE if the shape is entirely within shape2. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

styleObj

An instance of styleObj is associated with one instance of classObj.

An instance of styleObj can exist outside of a classObj container and be explicitly inserted into the classObj for use in
mapping.

new_style = new styleObj()
the_class.insertStyle (new_style)

It is important to understand that insertStyle inserts a copy of the styleObj instance, not a reference to the instance
itself.

The older use case

new_style = new styleObj(the_class)

remains supported. These will be the only ways to access the styles of a class. Programmers should no longer directly
access the styles attribute.

styleObj Attributes

angle [double] Angle, given in degrees, to draw the line work. Default is 0. For symbols of Type HATCH, this is the
angle of the hatched lines.

angleitem [string] Attribute/field that stores the angle to be used in rendering. Angle is given in degrees with O
meaning no rotation.

antialias [int] MS_TRUE or MS_FALSE. Should TrueType fonts and Cartoline symbols be antialiased.
backgroundcolor [colorObj] Background pen color.

color [colorObj] Foreground or fill pen color.

6.2. SWIG MapScript APl Reference 169

MapServer Documentation, Release 5.4.2

mincolor [colorObj] Attribute for Color Range Mapping (MS RFC 6: Color Range Mapping of Continuous Feature
Values). mincolor, minvalue, maxcolor, maxvalue define the range for mapping a continuous feature value to a
continuous range of colors when rendering the feature on the map.

minsize [int] Minimum pen or symbol width for scaling styles.

minvalue [double] Attribute for Color Range Mapping (MS RFC 6: Color Range Mapping of Continuous Feature
Values). mincolor, minvalue, maxcolor, maxvalue define the range for mapping a continuous feature value to a
continuous range of colors when rendering the feature on the map.

minwidth [int] Minimum width of the symbol.

maxcolor [colorObj] Attribute for Color Range Mapping (MS RFC 6: Color Range Mapping of Continuous Feature
Values). mincolor, minvalue, maxcolor, maxvalue define the range for mapping a continuous feature value to a
continuous range of colors when rendering the feature on the map.

maxsize [int] Maximum pen or symbol width for scaling.

maxvalue [double] Attribute for Color Range Mapping (MS RFC 6: Color Range Mapping of Continuous Feature
Values). mincolor, minvalue, maxcolor, maxvalue define the range for mapping a continuous feature value to a
continuous range of colors when rendering the feature on the map.

maxwidth [int] Maximum width of the symbol.

offsetx [int] Draw with pen or symbol offset from map data.
offsety [int] Draw with pen or symbol offset from map data.
outlinecolor [colorObj] Outline pen color.

rangeitem [string] Attribute/field that stores the values for the Color Range Mapping (MS RFC 6: Color Range
Mapping of Continuous Feature Values).

size [int] Pixel width of the style’s pen or symbol.

sizeitem [string] Attribute/field that stores the size to be used in rendering. Value is given in pixels.
symbol [int] The index within the map symbolset of the style’s symbol.

symbolname [string immutable] Name of the style’s symbol.

width [int] Width refers to the thickness of line work drawn, in pixels. Default is 1. For symbols of Type HATCH,
the with is how thick the hatched lines are.

styleObj Methods

new styleObj([classObj parent_class]) [styleObj] Returns new default style Obj instance. The parent_class is
optional.

clone [styleObj] Returns an independent copy of the style with no parent class.

setSymbolByName(mapObj map, string symbolname) [int] Setting the symbol of the styleObj given the reference
of the map object and the symbol name.

symbolObj

A symbolObj is associated with one symbolSetOb;.

170 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

A styleObj will often refer to a symbolObj by name or index, but this is not really an object association, is it?

symbolObj Attributes

antialias [int] MS_TRUE or MS_FALSE.

character [string] For TrueType symbols.

filled [int] MS_TRUE or MS_FALSE.

font [string] For TrueType symbols.

gap [int] TODO what is this?

imagepath [string] Path to pixmap file.

linecap [int] TODO unsure about the cartoline attributes.
linejoin [int] TODO

linejoinmaxsize [float] TODO

name [string] Symbol name

numpoints [int immutable] Number of points of a vector symbol.
position [int] TODO ?

sizex [float] TODO what is this?

sizey [float] TODO what is this?

stylelength [int] Number of intervals

transparent [int] TODO what is this?
transparentcolor [int] TODO is this a derelict attribute?

type [int] MS_SYMBOL_SIMPLE, MS_SYMBOL_VECTOR, MS_SYMBOL_ELLIPSE,
MS_SYMBOL_PIXMAP, MS_SYMBOL_TRUETYPE, or MS_SYMBOL_CARTOLINE.

symbolObj Methods

new symbolObj(string symbolname [, string imagefile]) [symbolObj] Create new default symbol named name.
If imagefile is specified, then the symbol will be of type MS_SYMBOL_PIXMAP.

getImage() [imageObj] Returns a pixmap symbol’s imagery as an imageObj.

getPoints() [lineObj] Returns the symbol points as a lineOby;.

setImage(imageObj image) [int] Set a pixmap symbol’s imagery from image.

setPoints(lineObj line) [int] Sets the symbol points from the points of /ine. Returns the updated number of points.

setStyle(int index, int value) [int] Set the style at index to value. Returns MS_SUCCESS or MS_FAILURE.

symbolSetObj

A symbolSetObj is an attribute of a mapObj and is associated with instances of symbolObj.

6.2. SWIG MapScript APl Reference 171

MapServer Documentation, Release 5.4.2

symbolSetObj Attributes

filename [string] Symbolset filename

numsymbols [int immutable] Number of symbols in the set.

symbolSetObj Methods

new symbolSetObj([string symbolfile]) [symbolSetObj] Create new instance. If symbolfile is specified, symbols
will be loaded from the file.

appendSymbol(symbolObj symbol) [int] Add a copy of symbol to the symbolset and return its index.
getSymbol(int index) [symbolObj] Returns a reference to the symbol at index.

getSymbolByName(string name) [symbolObj] Returns a reference to the symbol named name.

index(string name) [int] Return the index of the symbol named name or -1 in the case that no such symbol is found.
removeSymbol(int index) [symbolObj] Remove the symbol at index and return a copy of the symbol.

save(string filename) [int] Save symbol set to a file. Returns MS_SUCCESS or MS_FAILURE.

webObj

Has no other existence than as an attribute of a mapObj. Serves as a container for various run-time web application
definitions like temporary file paths, template paths, etc.

webObj Attributes

empty [string] TODO

error [string] TODO

extent [rectObj] Clipping extent.

footer [string] Path to footer document.

header [string] Path to header document.

imagepath [string] Filesystem path to temporary image location.
imageurl [string] URL to temporary image location.

log [string] TODO

map [mapObj immutable] Reference to parent mapObj.
maxscale [float] Maximum map scale.

maxtemplate [string] TODO

metadata [hashTableObj immutable] metadata hash table.

minscale [float] Minimum map scale.

172 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

mintemplate [string] TODO
queryformat [string] TODO

template [string] Path to template document.

webObj Methods

None.

6.3 PHP MapScript

Author Daniel Morissette

Contact dmorissette at mapgears.com

Author Yewondwossen Assefa

Contact yassefa at dmsolutions.ca

Revision $Revision: 8497 $

Date $Date: 2009-02-04 08:59:31 -0800 (Wed, 04 Feb 2009) $

6.3.1 Introduction

Author Jeff McKenna
Contact jmckenna at gatewaygeomatics.com

Last Updated 2008/07/16

Table of Contents

e Introduction
— Abstract
— Introduction
— How to Get More Information on PHP/MapScript

Abstract

This document describes all of the classes, properties and methods associated with the PHP/MapScript module, and is
the online version of the PHP/MapScript README file from the MapServer source code.

Introduction

PHP MapScript was originally developed for PHP-3.0.14 but after MapServer 3.5 support for PHP3 has been dropped
and as of the last update of this document, PHP 4.1.2 or more recent was required.
The module has been tested and used on Linux, Solaris, *BSD, and WinNT.

This module is constantly under development.

6.3. PHP MapScript 173

MapServer Documentation, Release 5.4.2

How to Get More Information on PHP/MapScript

* The main resource for help is the PHP/MapScript page on MapTools.org.

e The MapServer Wiki might have more information on this module

* For installation questions regarding the PHP/MapScript module, see PHP MapScript Installation.
* Also, see the MapScript, PHP MapScript and the Mapfile

¢ Refer to the main PHP site for their official documentation

6.3.2 By Example

Author Vinko Vrsalovic

Contact el at vinko.cl

Revision $Revision: 8365 $

Date $Date: 2008-12-31 07:49:02 -0800 (Wed, 31 Dec 2008) $
Last Updated 2005/12/12

Contents

* By Example
— Introduction
— MapScript overview
— Our first application
— Conclusions

Introduction

The purpose of this document is to be a step by step explanation of the PHP MapScript with practical examples for
each of them. It is assumed a basic knowledge of MAP and MapServer, and familiarity with the PHP (scripting) and
HTML (markup) languages . This document was originally created for MapServer v4.0, but the examples still apply
to more recent versions.

Let’s Begin...

Hello, kind reader. I am Tut, thank you for downloading me. I am sorry, but I am just a technical manual so I cannot
answer any questions. The maintainer, a handsome, very nice and lazy guy according to what I saw from the other
side of the screen, maybe will be able to answer your question(s). I am currently here to tell you about MapScript in
its PHP incarnation. At my current age, I will be more useful to beginners than advanced users, even though I hope
that some day I will be sufficiently old to be useful to advanced MapScript programmers.

Let’s hope I live long enough... sigh.

But enough with my personal problems, let myself begin. My duty is to familiarize you with MapScript, and in
particular with PHP MapScript. When I end, you are expected to understand what MapScript is, and to be able to
write applications to display and navigate that is, zooming and panning over shapefiles via a web browser.

What follows are the questions you must answer affirmatively before accompanying me through the rest of this journey
(I apologize for my maintainer’s lack of literary taste).

174 Chapter 6. MapScript

http://www.maptools.org/php_mapscript/
http://trac.osgeo.org/mapserver/wiki/PHPMapScript
http://www.php.net
http://www.php.net
http://www.w3.org/MarkUp/

MapServer Documentation, Release 5.4.2

Do you have running somewhere...

* a web server capable of running PHP as a CGI (Apache will do)?
* the PHP language configured as a CGI, version 4.1.2 or higher? I recommend 4.3 onwards.

» PHP MapScript, version 4.0 or later? PHP MapScript Installation

Can you...

* code PHP or are willing to learn how to?
* write and understand HTML documents? (Note that Javascript is a plus)

* tell somebody what on earth is a shapefile [or a PostGIS table]?

Outline of this Document

* A general overview of MapScript, in a language independent way
* A trivial example

* A simple example

* Conclusion

You can also go to each part directly through my table of contents located at the top, if you wish to skip some sections.
MapScript overview
Ok, now I'm at last arriving at a point I will enjoy. This overview intends to clear some common misconceptions

beginners encounter when first facing MapScript and to give a general overview about MapScript’s internals. For now,
just look at the following diagram (I apologize again for the maintainer’s lack of graphic design taste).

6.3. PHP MapScript 175

http://php.net/tut.php
http://www.w3.org/MarkUp/
http://shapelib.maptools.org/
http://postgis.refractions.net/

MapServer Documentation, Release 5.4.2

It all starts as everything on the Web. A browser requests a certain URL through HTTP. The request arrives at the web
server, which, in turn, delivers a file or executes a program and then delivers its output back to the browser. Yes, |
know you knew that, but I have been told to be as complete as possible, and I will try to.

In MapScript’s case, the server executes a certain script, which contains standard language functionality, that is, the
same functionality you would have in that language without MapScript, plus access to almost all of the MapServer C
API, the level of completeness of MapServer API support varies a bit with the language you choose, but I think it is my
duty to tell you almost every available flavor of MapScript is usable. This API, exposed now in your scripting language
through the MapScript module, allows you to do many GIS-like operations on spatial data, including read-write access
to shapefiles, reprojection of data, and many others. For more information on the API, click over the link above. For
other flavors, you can check their own documentation, you will see there is not much difference.

The CGI version of MapServer is not required to run MapScript applications, just as you don’t need a particular
MapScript module to run the CGI. The CGI version has many features out-of-the-box, MapScript is just an API,
so with MapScript you must start from scratch or with some of the examples available. Think of the CGI as of a
MapScript application written directly in C, with direct access to the MapServer C API. Sometimes the out-of-the-box
functionality has some limits which can be surpassed by MapScript, but not embedded within the CGI. In other words,
the CGI is not scriptable, but you can program all the CGI and more with MapScript. This may seem a strange thing
to clarify, but is a common misconception, just check the list archives if you are not inclined to believe me.

As with MapServer itself, MapScript can be configured using only map files, but, unlike the CGI, also includes the

176 Chapter 6. MapScript

http://lists.osgeo.org/pipermail/mapserver-users/

MapServer Documentation, Release 5.4.2

possibility of dynamically create maps or modify existing ones and to (and here is the key to the flexibility that
MapScript has) mix this information with other sources of non GIS data, such as user input, non spatial and spatial
databases, text files, etc. and that you can use every single module your language provides. The power of this
approach is tremendous, and the most restrictive limit is your imagination. As always, flexibility comes with a price,
performance. It’s generally slower to use a scripting language instead of C, but nowadays this shouldn’t be a big worry.
And you can still program directly in C (there are not much documents about how to do it, though you might want to
check the mapserver-dev list) if you would like to.

The input and output formats MapScript can handle are exactly the same as the ones configured when you build
MapServer/MapScript. But one of the most important things to remember is that, basically, you feed geographic data
and relevant user input (for instance clicks over the map image) to MapScript and as a result get one or more file(s),
typically standard image files such as a PNG or JPEG. So you can apply anything you’ve seen in any server side
scripted web application, DHTML, Java applets, CSS, HTML templates, sessions, you name it.

Our first application

In this first example, I will tell you how to display a shapefile on a web page using a map file.

The Map File

Here’s the map file:

NAME "Europe in purple"

SIZE 400 400

STATUS ON

SYMBOLSET "/var/www/html/maps/symbols/symbols.sym"
EXTENT -5696501 1923039 5696501 11022882

UNITS METERS

SHAPEPATH "/var/www/html/maps/data"

WEB
IMAGEPATH "/var/www/html/maps/tmp/"
IMAGEURL "/tmp/"

END

LAYER
NAME "Europe"
TYPE POLYGON
STATUS ON
DATA "europe"
CLASS
STYLE
COLOR 110 50 100
OUTLINECOLOR 200 200 200
SYMBOL O
END
END
END

END

Here I have shown a map with a single layer, where the europe.shp, europe.shx and europe.dbf files must be located in
the subdirectory called data. The symbols are located in the symbols subdirectory. All this locations are relative from
the place the map file is, but better safe than sorry, I guess. The web section is used to define where will the images be
saved and in what URL will they be available.

6.3. PHP MapScript 177

http://lists.osgeo.org/mailman/listinfo/mapserver-dev/

MapServer Documentation, Release 5.4.2

Displaying the map with MapScript

To display a map the following MapScript objects and methods will be used:
* MapObj object
* imageQObj object
MapObj methods:
* The constructor method: MapObj ms_newMapObj(string map_file_name[,string new_map_path])
e The draw method: imageObj draw()
imageObj methods:
* The saveWebImage method: string saveWebImage()
The code looks like this:

1 <?php

2 dl (' php_mapscript.so’);

3 Smap_path="/var/www/html/ms/map_files/";

4 $map = ms_newMapObj (S$Smap_path."europe.map") ;

5 $image=Smap->draw () ;
6 $image_url=$image->saveWebImage () ;

7T 2>

8 <HTML>

9 <HEAD>

10 <TITLE>Example 1: Displaying a map</TITLE>
11 </HEAD>

12 <BODY>

13 <IMG SRC=<?php echo $image_url; ?> >

14 </BODY>

15 </HTML>

The code I will present through the rest of this document will follow the following rule:
¢ Every non empty line is numbered

This code will render an image corresponding to the shapefile europe and display it on a HTML page.

Code Explanation

* In line 2 it is loaded the MapScript extension (you may not need it if your php.ini file is configured to automati-
cally load it).

 Line 3 declares a variable that holds the absolute path for the mapfile.

* Line 4 creates an instance of the MapObj object using the constructor. As you can see, the constructor receives
the location of the map file as its only required parameter, and the map file received the europe.map name.

* Afterwards the draw method of the map object is called to render the image defined by the map file (line 5). The
result (an imageObj) is saved in the $image variable.

178 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

* Line 6 calls the saveWebIlmage method to generate the image file, it returns a string which represents the URL
as defined in the mapfile (in this case, /tmp/filename.png).

* The rest of the lines are pure HTML, except line 13, that defines the source URL of the image will be the value
stored in $image_url.

You should test the application on your system, to check that it really works and to solve the problems that may arise
on your particular configuration before moving on to the more complex examples.

Output

The output (using the europe shapefile) should look like this:

Zooming and Panning

Now I will tell you how to add zoom and pan capabilities to the code.
Here goes the list of new methods and objects called.

New Objects:

6.3. PHP MapScript 179

MapServer Documentation, Release 5.4.2

* pointObj
¢ rectObj
New Methods and Members called:

e The zoompoint method of the map object: void zoompoint(int nZoomFactor, pointObj oPixelPos, int nIm-
ageWidth, int nImageHeight, rectObj oGeorefExt).

 The setextent method of the map object: $map->setextent(double minx, double miny, double maxx, double
maxy);.

¢ The extent, width and height members of the map object.
* The constructors of RectObj and PointObj: $point = ms_newPointObj(); $rect = ms_newRectObj();
* The setXY method of the point object: $point->setXY(double x_coord, double y_coord);

* The setextent method of the rectangle object: $rect->setextent(double minx, double miny, double maxx, double
maxy);

The .map file remains the same as the one presented in the previous example.

PHP/MapScript Code

Here I present the new code.

1 <?php

2 dl (' php_mapscript.so’);

3 // Default values and configuration
Sval_zsize=3;

Scheck_pan="CHECKED";

Smap_path="/var/www/html/ms/map_files/";
Smap_file="europe.map";

~ o U1 W

8 Smap = ms_newMapObj (S$Smap_path.Smap_file);

9 if (isset ($_POST["mapa_x"]) && isset ($_POST["mapa_vy"])

10 && l'isset (S_POST["full"])) {

11 Sextent_to_set = explode(" ",S$_POST["extent"]);

12 Smap->setextent (Sextent_to_set[0], Sextent_to_set[1],

13 Sextent_to_set[2], Sextent_to_set[3]);

14 Smy_point = ms_newpointObij();

15 Smy_point—>setXY ($_POST["mapa_x"],$_POST["mapa_y"]1);

16 Smy_extent = ms_newrectObij();

17 Smy_extent->setextent ($Sextent_to_set[0], $Sextent_to_set[1],
18 Sextent_to_set[2], Sextent_to_set[3]);
19 Szoom_factor = $_POST["zoom"]x$_POST["zsize"];

20 if (Szoom_factor == 0) {

21 Szoom_factor = 1;

180 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

22
23
24
25
26
27
28
29
30
31
32
33

34

35
36

37

38
39

40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Scheck_pan = "CHECKED";
Scheck_zout = "";
Scheck_zin = "";

} else if (S$zoom_factor < 0) {
Scheck_pan = "";
Scheck_zout = "CHECKED";
Scheck_zin = "";

} else {
$check_pan = "";
Scheck_zout = "";
Scheck_zin = "CHECKED";

Sval_zsize = abs ($zoom_factor);

Smap—->zoompoint ($zoom_factor, Smy_point, Smap->width, $Smap->height,
Smy_extent) ;

Simage=Smap->draw () ;
$image_url=$image->saveWebImage () ;

Sextent_to_html = S$map->extent->minx." ".Smap->extent->miny." "
.Smap->extent->maxx." ".Smap->extent->maxy;

7>

<HTML>

<HEAD>

<TITLE>Map 2</TITLE>

</HEAD>

<BODY>

<CENTER>

<FORM METHOD=POST ACTION=<?php echo $HTTP_SERVER_VARS[’/PHP_SELF’]?>>

<TABLE>
<TR>
<TD>
<INPUT TYPE=IMAGE NAME="mapa" SRC="<?php echo $image_url?>">
</TD>
</TR>
<TR>
<TD>
Pan
</TD>
<TD>
<INPUT TYPE=RADIO NAME="zoom" VALUE=0 <?php echo $check_pan?>>
</TD>
</TR>
<TR>
<TD>
Zoom In
</TD>
<TD>
<INPUT TYPE=RADIO NAME="zoom" VALUE=1 <?php echo $check_zin?>>
</TDh>
</TR>
<TR>

6.3. PHP MapScript

MapServer Documentation, Release 5.4.2

73 <TD>

74 Zoom Out

75 </TD>

76 <TD>

77 <INPUT TYPE=RADIO NAME="zoom" VALUE=-1 <?php echo $check_zout?>>
78 </TD>

79 </TR>

80 <TR>

81 <TD>

82 Zoom Size

83 </TD>

84 <TD>

85 <INPUT TYPE=TEXT NAME="zsize" VALUE="<?php echo $val_zsize?>"
86 SIZE=2>

87 </TD>

88 </TR>

89 <TR>

90 <TD>

91 Full Extent

92 </TD>

93 <TD>

94 <INPUT TYPE=SUBMIT NAME="full" VALUE="Go"
95 SIZE=2>

96 </TD>

97 </TABLE>

98 <INPUT TYPE=HIDDEN NAME="extent" VALUE="<?php echo $extent_to_html?>">

99 </FORM>

100 </CENTER>

101 </BODY>

102 </HMTL>

This code will zoom out, zoom in, pan, and restore to full extent the image displayed in the previous example.

It looks much more complicated than it really is, much of the lines are the HTML code, and much of the remaining
PHP code is just to deal with the forms and such.

You should try it and look at how it works first. Try it in your own server by copying and pasting the code.
Now it’s time for you to play with it a little and look at the source in your browser to check how it changes.

Done?, now let’s start the explanation with the HTML part.

Code Explanation - HTML

Line 49 declares a form, and line 53 declares the image generated by MapScript to be part of that form, so when you
click on it, the X and Y coordinates of the click (in pixels) will be sent along with the other data for the PHP code to
process.

If you are familiar with HTML and PHP, the rest of the HTML code should be straightforward for you to understand
with the exception of line 98, that will be explained in due time.

Code Explanation - PHP

Now look at the PHP code, it’s almost the same code used in example 1, with the addition of lines 9 to 37. What do
these lines do?

182 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

Line 9 checks the relevant variables from the form have been setted. ‘mapa_x’ and ‘mapa_y’ represent the X and Y
coordinates of the click over the image, and ‘full’ represents the click on the ‘Full Extent’ button.

The first time the page is displayed the code between the if statement doesn’t get executed, but the rest of the code
does. Lines 40 and 41 set the ‘$extent_to_html’ variable with the values of the extent defined in the map file separated
by spaces; that value will be put in the HTML variable ‘extent’ in line 98.

Now look at line 11 and 12. We are inside the if statement, that means the form has been submitted at least once. We
grab the extent stored in the previous execution (the ‘extent” HTML variable) of the code and set the extent of the map
to be that last extent. This allows to zoom or pan with respect of the previous extent, not the extent that is set in the
map file.

From that last paragraph you can deduce that all the default values are set in the map file, and anything that you change
through MapScript and would like to remain in your code, must be stored somehow. In this case it is done through
hidden variables in a form. For more advanced applications you could use session variables or a database.

Now you should be able to see why the ‘Full Extent’ button works. If you check line 10, it says that if you haven’t
pressed the button, skip the code in the if statement, so the extent is reset to the value that the map file has. You should
also see that it isn’t necessarily a full extent (in case the extent in the map file is not full extent).

Lines 14 and 15 declare a new point object and initialize it with the values the user clicked on. You should not forget
that those values are in pixels, not in georeferenced coordinates.

Lines 16 through 18 create a new rectangle object and set it with the extent of the previous image, just like it is done
on line 12. In fact this would work too: $my_extent = $map->extent;.

To do all the zooming and panning, the zoompoint function in called on line 35, but first the arguments it receives must
be prepared. You can determine the point the user clicked on, and the extent of the image ($my_point and $my_extent,
respectively), but now you have to determine the zoom factor. That’s what lines 19 to 33 do. If you wondered why the
values of the radio buttons where 0, -1, and 1 for pan, zoom in and zoom out, now you will know the reason.

A zoom factor of 1 tells zoompoint that the operation is pan, a negative value indicates zoom out and a positive value
indicates zoom in. So, by means of multiplying the value received for the radio buttons (HTML variable ‘zoom’) by
the size of the zoom the user entered the zoom factor is calculated. If that value is 0, that means the user selected the
pan operation, so ‘$zoom_factor’ is set to 1, otherwise the result of the multiplication is the zoom factor zoompoint
needs to receive. The other lines are to preserve the button the user clicked on the next time. Line 34 tries to preserve
the value of the zoom size the user entered (It doesn’t do that all the time, when and why that line fails? That’s for you
to find out).

And finally, line 34 calls the zoompoint method with the zoom factor obtained, the point built from the pixel coordi-
nates (I insist on that issue because zoompoint is almost the only method that receives the coordinates in pixels, for the
other methods you must convert pixels to georeferenced coordinates on your own), the height and width of the image,
and the extent.

After calling zoompoint, the extent of the image is changed accordingly to the operation performed (or, better put, the
zoom factor). So then the image is drawn and the current extent saved (after the zooming) for use in the next iteration.

Conclusions

Well, it’s time for me to go recharge my batteries. So I will use this last energy to share some final words. The
examples I have managed to present here are very basic but you should now be able to devise ways to improve them
and suit things to your needs. Keep in mind that you can preprocess, store, read, write data from any source you
can usually read through PHP, plus all the sources MapServer can handle for GIS data. You can even process some
GIS data with PHP only if the need would arise (SQL sources are a good example of this). You can also do hybrid
approaches where some script prepares data which is then shown through the CGI interface to MapServer, or create
data on the fly based on input from a GPS, etc, etc. The possibilities are just too many to enumerate completely. As |
already said your imagination is the limit. The next version of this document will include examples that include more

6.3. PHP MapScript 183

MapServer Documentation, Release 5.4.2

than one layer, with different datasources (not just shapefiles) and creation of dynamic layers and classes. If you have
a better idea or would like to see some other thing here first, please drop a note to my maintainer.

In the meantime, if you need bigger examples you can refer to the GMap demo (you can download the source here or
as an MS4W packaged application), or the MapTools site (MapLab, Chameleon). Goodbye, and thanks for reading
this far.

Contents

* PHP MapScript
— Very important notes
— Constants
— Functions
— MapObj Class
— LayerObj Class
— ClassObj Class
— ImageOb;j Class
— LabelObj Class
— webObj Class
— referenceMapObj Class
— ColorObj Class
— PointObj Class
— LineObj Class
— ShapeObj Class
— RectObj Class
— ShapefileObj Class
— ResultCacheMemberObj Class
— ProjectionObj Class
— ScalebarObj Class
— LegendObj Class
— QuerymapObj Class
— StyleObj Class
— OutputformatObj Class
— GridObj Class
— ErrorObj Class
— LabelcacheObj Class
— SymbolObj Class
— OwsrequestObj Class
— hashTableObj Class

This is a PHP module to make MapServer’s MapScript functionalities available in a PHP Dynamically Loadable
Library.

PHP MapScript was originally developed for PHP-3.0.14 but after MapServer 3.5 support for PHP3 has been dropped
and as of the last update of this document, PHP 4.1.2 or more recent was required.

The module has been tested and used on Linux, Solaris, *BSD, and WinNT.
There are documentation and examples for PHP MapScript available via the MapServer documentation

See also the MapServer Wiki for links to more information on this module:
http://trac.osgeo.org/mapserver/wiki/PHPMapScript

184 Chapter 6. MapScript

http://www.mapsherpa.com/gmap/
http://dl.maptools.org/dl/
http://www.maptools.org/ms4w/index.phtml?page=downloads.html
http://www.maptools.org/
http://trac.osgeo.org/mapserver/wiki/PHPMapScript

MapServer Documentation, Release 5.4.2

6.3.3 Very important notes

¢ Constant names and class member variable names are case-sensitive in PHP.

¢ Several MapScript functions (all those that access files in the back end such as ms_newMapObj(), drawMap(),
etc) will affect the value of the current working directory (CWD) in the PHP environment. This will be fixed
eventually but in the meantime you should be careful about these side-effects.

6.3.4 Constants

The following MapServer constants are available:
Boolean values MS_TRUE, MS_FALSE, MS_ON, MS_OFF, MS_YES, MS_NO
Map units MS_INCHES, MS_FEET, MS_MILES, MS_METERS, MS_KILOMETERS, MS_DD, MS_PIXELS

Layer types MS_LAYER_POINT, MS_LAYER LINE, MS_LAYER_POLYGON, MS_LAYER_RASTER,
MS_LAYER_ANNOTATION, MS_LAYER QUERY, MS_LAYER_CIRCLE, MS_LAYER_TILEINDEX,
MS_LAYER_CHART

Layer/Legend/Scalebar/Class Status MS_ON, MS_OFF, MS_DEFAULT, MS_EMBED, MS_DELETE
Layer alpha transparency allows alpha transparent pixmaps to be used with RGB map images MS_GD_ALPHA
Font types MS_TRUETYPE, MS_BITMAP

Label positions MS_UL, MS_LR, MS_UR, MS_LL, MS_CR, MS_CL, MS_UC, MS_LC, MS_CC, MS_AUTO,
MS_XY, MS_FOLLOW

Bitmap font styles MS_TINY , MS_SMALL, MS_MEDIUM, MS_LARGE, MS_GIANT

Shape types MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON, MS_SHAPE_NULL
Shapefile types MS_SHP_POINT, MS_SHP_ARC, MS_SHP_POLYGON, MS_SHP_MULTIPOINT
Query/join types MS_SINGLE, MS_MULTIPLE

Querymap styles MS_NORMAL, MS_HILITE, MS_SELECTED

Connection Types MS_INLINE, @ MS_SHAPEFILE, @ MS_TILED_SHAPEFILE, @ MS_SDE, MS_OGR,
MS_TILED_OGR, MS_POSTGIS, MS_WMS, MS_ORACLESPATIAL, MS_WEFS, MS_GRATICULE,
MS_MYGIS, MS_RASTER, MS_PLUGIN

Error codes MS_NOERR, MS_IOERR, MS_MEMERR, MS_TYPEERR, MS_SYMERR, MS_REGEXERR,
MS_TTFERR, MS_DBFERR, MS_GDERR, MS_IDENTERR, MS_EOFERR, MS_PROJERR,
MS_MISCERR, MS_CGIERR, MS_WEBERR, MS_IMGERR, MS_HASHERR, MS_JOINERR,
MS_NOTFOUND, MS_SHPERR, MS_PARSEERR, MS_SDEERR, MS_OGRERR, MS_QUERYERR,
MS_WMSERR, MS_WMSCONNERR, MS_ORACLESPATIALERR, MS_WFSERR, MS_WFSCONNERR,
MS_MAPCONTEXTERR, MS_HTTPERR, MS_WCSERR

Symbol types MS_SYMBOL_SIMPLE, MS_SYMBOL_VECTOR, MS_SYMBOL_ELLIPSE,
MS_SYMBOL_PIXMAP, MS_SYMBOL_TRUETYPE, MS_SYMBOL_CARTOLINE

Image Mode types (outputFormatObj) MS_IMAGEMODE_PC256, MS_IMAGEMODE_RGB,
MS_IMAGEMODE_RGBA, MS_IMAGEMODE_INT16, MS_IMAGEMODE_FLOAT32,
MS_IMAGEMODE_BYTE, MS_IMAGEMODE_NULL

Style/Attribue binding MS_STYLE_BINDING_SIZE, MS_STYLE_BINDING_ANGLE,
MS_STYLE_BINDING_COLOR, MS_STYLE_BINDING_OUTLINECOLOR,

MS_STYLE_BINDING_SYMBOL

6.3. PHP MapScript 185

MapServer Documentation, Release 5.4.2

Label/Attribute binding MS_LABEL_BINDING_SIZE, MS_LABEL_BINDING_ANGLE,
MS_LABEL_BINDING_COLOR, MS_LABEL_BINDING_OUTLINECOLOR,
MS_LABEL_BINDING_FONT, MS_LABEL_BINDING_PRIORITY

Alignment MS_ALIGN_LEFT, MS_ALIGN_CENTER, MS_ALIGN_RIGHT
OwsRequest MS_GET_REQUEST, MS_POST_REQUEST

6.3.5 Functions
string ms_GetVersion() Returns the MapServer version and options in a string. This string can be parsed to find out
which modules were compiled in, etc.

int ms_GetVersionInt() Returns the MapServer version number (x.y.z) as an integer (x*10000 + y*100 + z). (New
in v5.0) e.g. V5.4.3 would return 50403.

array ms_TokenizeMap(string map_file_name) Preparses a mapfile through the MapServer parser and return an ar-
ray with one item for each token from the mapfile. Strings, logical expressions, regex expressions and comments
are returned as individual tokens.

void ms_ioinstallstdouttobuffer() Installs a mapserver IO handler directing future stdout output to a memory buffer.

void ms_ioinstallstdinfrombuffer() Installs a mapserver 10 handler directing future stdin reading (ie. post request
capture) to come from a buffer.

void ms_iogetstdoutbufferstring() Fetch the current stdout buffer contents as a string. This method does not clear
the buffer.

int ms_iogetStdoutBufferBytes() Writes the current buffer to stdout. The PHP header() function should be used to
set the documents’s content-type prior to calling the function. Returns the number of bytes written if output is
sent to stdout. See MapScript Wrappers for WxS Services for more info.

void ms_ioresethandlers() Resets the default stdin and stdout handlers in place of “buffer” based handlers.

void ms_iostripstdoutbuffercontenttype() Strip the Content-type header off the stdout buffer if it has one, and if a
content type is found it is return. Otherwise return false.

6.3.6 MapObj Class

Constructor
mapObj ms_newMapODbj(string map_file_name [, string new_map_path]) Returns a new object to deal with a
MapServer map file.

mapObj ms_newMapObjFromString(string map_file_string [, string new_map_path]) Construct a new
mapObj from a mapfile string. Returns a new object to deal with a MapServer map file.

Note: By default, the SYMBOLSET, FONTSET, and other paths in the mapfile are relative to the mapfile location. If
new_map_path is provided then this directory will be used as the base path for all the relative paths inside the mapfile.

Members

Type | Name

Continued on next page

186 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

Table 6.1 — continued from previous page

int numlayers (read-only)

string name

int status

int debug

int width (see setSize())

int height (see setSize())

int maxsize

outputformatObj | outputformat

double resolution (pixels per inch, defaults to 72)

rectObj extent;

double cellsize

int units (map units type)

double scaledenom (read-only, set by drawMap())

double scale (Deprecated in v5.0. Use scaledenom instead)

string shapepath

int keysizex

int keysizey

int keyspacingx

int keyspacingy

webObj web

referenceMapObj | reference

colorObj imagecolor

scalebarObj scalebar

legendObj legend

string symbolsetfilename (read-only, set by setSymbolSet())

string fontsetfilename (read-only, set by setFontSet())

labelcacheObj labelcache (no members. Used only to be able to free the the label cache (ex : map->labelcache->free())

projectionObj projection

int transparent (deprecated, use outputFormatObj)

int interlace (deprecated, use outputFormatObj)

int imagetype (deprecated, use outputFormatObj)

int imagequality (deprecated, use outputFormatObj)
Methods

mapObj clone() Returns a handle to a new mapObj which is a clone of the current mapObj. All parameters in the
current mapObj are copied to the new mapObj. Returns NULL (0) on error.

int set(string property_name, new_value) Set map object property to new value. Returns -1 on error.

int getsymbolbyname(string symbol_name) Returns the symbol index using the name.

symbol getsymbolobjectbyid(int symbolid) Returns the symbol object using a symbol id. Refer to the symbol object
reference section for more details.

void preparequery() Calculate the scale of the map and set map->scaledenom.

imageObj prepareImage() Return handle on blank image object.

imageObj draw() Render map and return handle on image object.

imageObj drawQuery() Render a query map and return handle on image object.

imageObj drawLegend() Render legend and return handle on image object.

imageObj drawReferenceMap() Render reference map and return handle on image object.

6.3. PHP MapScript

187

MapServer Documentation, Release 5.4.2

imageObj drawScaleBar() Render scale bar and return handle on image object.

int embedlegend(imageObj image) embeds a legend. Actually the legend is just added to the label cache so you
must invoke drawLabelCache() to actually do the rendering (unless postlabelcache is set in which case it is
drawn right away).

int embedScalebar(imageObj image) embeds a scalebar. Actually the scalebar is just added to the label cache so
you must invoke drawLabelCache() to actually do the rendering (unless postlabelcache is set in which case it is
drawn right away).

int drawLabelCache(imageObj image) Renders the labels for a map. Returns -1 on error.
layerObj getLayer(int index) Returns a layerObj from the map given an index value (O=first layer)

layerObj getLayerByName(string layer_name) Returns a layerObj from the map given a layer name. Returns
FALSE if layer doesn’t exist.

colorObj getcolorbyindex(int iCloIndex) Returns a colorObj corresponding to the color index in the palette

void setExtent(double minx, double miny, double maxx, double maxy) Set the map extents using the georef extents
passed in argument.

int setRotation(double rotation_angle) Set map rotation angle. The map view rectangle (specified in EXTENTS)
will be rotated by the indicated angle in the counter- clockwise direction. Note that this implies the rendered
map will be rotated by the angle in the clockwise direction. Returns MS_SUCCESS or MS_FAILURE.

int setSize(int width, int height) Set the map width and height. This method updates the internal geotransform and
other data structures required for map rotation so it should be used instead of setting the width and height
members directly. Returns MS_SUCCESS or MS_FAILURE.

void zoompoint(int nZoomFactor, pointObj oPixelPos, int nImageWidth, int nImageHeight, rectObj oGeorefExt)
Zoom to a given XY postion.

Parameters are : ¢ Zoom factor : positive values do zoom in, negative values zoom out. Factor of 1 will
recenter.

* Pixel position (pointObj) : x, y coordinates of the click, with (0,0) at the top-left
* Width : width in pixel of the current image.

» Height : Height in pixel of the current image.

* Georef extent (rectObj) : current georef extents.

¢ MaxGeoref extent (rectObj) : (optional) maximum georef extents. If provided then it will be impos-
sible to zoom/pan outside of those extents.

void zoomrectangle(rectObj oPixelExt, int nImageWidth, int nImageHeight, rectObj oGeorefExt) Set the map
extents to a given extents.

Parameters are : ¢ oPixelExt (rect object) : Pixel Extents, with (0,0) at the top-left The rectangle contains
the coordinates of the LL and UR coordinates in pixel. (the maxy in the rect object should be < miny
value)

7777777 UR (values in the rect object : maxx, maxy)

LL (values in the rectobject minx, miny)

* Width : width in pixel of the current image.

» Height : Height in pixel of the current image.

188 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

* Georef extent (rectObj) : current georef extents.

void zoomscale(double nScaleDenom, pointObj oPixelPos, int nImageWidth, int nImageHeight, rectObj oGeorefExt [, rectObj
Zoom in or out to a given XY position so that the map is displayed at specified scale.

Parameters are: ¢ ScaleDenom : Scale denominator of the scale at which the map should be displayed.
* Pixel position (pointObj) : x, y coordinates of the click, with (0,0) at the top-left
» Width : width in pixel of the current image.
* Height : Height in pixel of the current image.
* Georef extent (rectObj) : current georef extents.

* MaxGeoref extent (rectObj) : (optional) maximum georef extents. If provided then it will be impos-
sible to zoom/pan outside of those extents.

int queryByPoint(pointObj point, int mode, double buffer) Query all selected layers in map at point location spec-
ified in georeferenced map coordinates (i.e. not pixels). The query is performed on all the shapes that are part of
a CLASS that contains a Templating value or that match any class in a layer that contains a LAYER TEMPLATE
value. Mode is MS_SINGLE or MS_MULTIPLE depending on number of results you want. Passing buffer -1
defaults to tolerances set in the map file (in pixels) but you can use a constant buffer (specified in ground units)
instead. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other
error happened (note that the error message in case nothing was found can be avoided in PHP using the ‘@’
control operator).

int queryByRect(rectObj rect) Query all selected layers in map using a rectangle specified in georeferenced map
coordinates (i.e. not pixels). The query is performed on all the shapes that are part of a CLASS that con-
tains a Templating value or that match any class in a layer that contains a LAYER TEMPLATE value. Returns
MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error happened
(note that the error message in case nothing was found can be avoided in PHP using the ‘@’ control operator).

int queryByShape(shapeObj shape) Query all selected layers in map based on a single shape, the shape has to be
a polygon at this point. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found
or if some other error happened (note that the error message in case nothing was found can be avoided in PHP
using the ‘@’ control operator).

int queryByFeatures(int slayer) Perform a query based on a previous set of results from a layer. At present the
results MUST be based on a polygon layer. Returns MS_SUCCESS if shapes were found or MS_FAILURE if
nothing was found or if some other error happened (note that the error message in case nothing was found can
be avoided in PHP using the ‘@’ control operator).

int queryByIndex(layerindex, tileindex, shapeindex, addtoquery) Add a specific shape on a given layer to the
query result. If addtoquery (which is a non mandatory argument) is set to MS_TRUE, the shape will be added
to the existing query list. Default behavior is to free the existing query list and add only the new shape.

int savequery(filename) Save the current query in a file. Returns MS_SUCESS or MS_FAILURE. Can be used with

loadquery

int loadquery(filename) Loads a query from a file. Returns MS_SUCESS or MS_FAILURE. To be used with save-
query.

void freequery(layerindex) Frees the query result on a specified layer. If the layerindex is -1, all queries on layers
will be freed.

int save(string filename) Save current map object state to a file. Returns -1 on error. Use absolute path. If a relative
path is used, then it will be relative to the mapfile location.

string getProjection() Returns a string representation of the projection. If no projection is set, MS_FALSE is re-
turned.

6.3. PHP MapScript 189

MapServer Documentation, Release 5.4.2

int setProjection(string proj_params, boolean bSetUnitsAndExtents) Set map projection and coordinate system.
Parameters are given as a single string of comma-delimited PROJ.4 parameters. The argument : bSetUnit-
sAndExtents is used to automatically update the map units and extents based on the new projection. Possible
values are MS_TRUE and MS_FALSE. By defualt it is set at MS_FALSE

int setWKTProjection(string proj_params, boolean bSetUnitsAndExtents) Same as setProjection(), but takes an
OGC WKT projection definition string as input.

Note: setWKTProjection requires GDAL support

int getMetaData(string name) Fetch metadata entry by name (stored in the WEB object in the map file). Returns *”
if no entry matches the name.

Note: getMetaData’s query is case sensitive.

int setMetaData(string name, string value) Set a metadata entry for the map (stored in the WEB object in the map
file). Returns MS_SUCCESS/MS_FAILURE.

int removeMetaData(string name) Remove a metadata entry for the map (stored in the WEB object in the map file).
Returns MS_SUCCESS/MS_FAILURE.

array getLayersIndexByGroup(string groupname) Return an array containing all the layer’s indexes given a group
name.

array getAllGroupNames() Return an array containing all the group names used in the layers.

array getAllLayerNames() Return an array containing all the layer names.

boolean moveLayerUp(int layerindex) Move layer up in the hierarcy of drawing.

boolean moveLayerDown(int layerindex) Move layer down in the hierarcy of drawing.

array getlayersdrawingorder() Return an array containing layer’s index in the order which they are drawn.

boolean setlayersdrawingorder(array layeryindex) Set the layer’s order array. The argument passed must be a
valid array with all the layer’s index. Return TRUE on success or else FALSE.

string processtemplate(array params, boolean generateimages) Process the template file specified in the web ob-
ject and return the result in a buffer. The processing consists of opening the template file and replace all the tags
found in it. Only tags that have an equivalent element in the map object are replaced (ex [scaledenom]). The are
two exceptions to the previous statement :

* [img], [scalebar], [ref], [legend] would be replaced with the appropriate url if the parameter generateimages
is set to MS_TRUE. (Note : the images corresponding to the different objects are generated if the object is
set to MS_ON in the map file)

* the user can use the params parameter to specify tags and their values. For example if the user have a

specific tag call [my_tag] and would like it to be replaced by “value_of_my_tag” he would do

Stmparray["my_tag"] = "value_of_my_tag";
Smap->processtemplate ($Stmparray, MS_FALSE);

string processquerytemplate(array params, boolean generateimages) Process query template files and return the
result in a buffer. Second argument generateimages is not mandatory. If not given it will be set to TRUE.

See Also:

processtemplate

string processlegendtemplate(array params) Process legend template files and return the result in a buffer.
See Also:

processtemplate

190 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

int setSymbolSet(string fileName) Load and set a symbol file dynamically.
int getNumSymbols() Return the number of symbols in map.
int setFontSet(string fileName) Load and set a new FONTSET.

int selectOutputFormat(string type) Selects the output format to be wused in the map. Returns
MS_SUCCESS/MS_FAILURE.

Note: the type used should correspond to one of the output formats declared in the map file. The type argument
passed is compared with the mimetype parameter in the output format structure and then to the name parameter in the
structure.

int saveMapContext(string filename) Available only if WMS support is enabled. Save current map object state
in WMS Map Context format. Only WMS layers are saved in the WMS Map Context XML file. Returns
MS_SUCCESS/MS_FAILURE.

int loadMapContext(string filename [, boolean unique_layer_name]) Available only if WMS support is enabled.
Load a WMS Map Context XML file into the current mapObj. If the map already contains some layers then
the layers defined in the WMS Map context document are added to the current map. The 2nd argument
unique_layer_name is optional and if set to MS_TRUE layers created will have a unique name (unique pre-
fix added to the name). If set to MS_FALSE the layer name will be the the same name as in the context. The
default value is MS_FALSE. Returns MS_SUCCESS/MS_FAILURE.

int applySLD(string sldxml) Apply the SLD document to the map file. The matching between the sld document and
the map file will be done using the layer’s name. See SLD HowTo for more information on the SLD support.

int applySLDURL((string sldurl) Apply the SLD document pointed by the URL to the map file. The matching
between the sld document and the map file will be done using the layer’s name. See SLD HowTo for more
information on the SLD support.

string generateSLD() Returns an SLD XML string based on all the classes found in all the layers.

string getconfigoption(string key) Returns the config value associated with the key. Returns an empty sting if key
not found.

int setconfigoption(string key, string value) Sets a config parameter using the key and the value passed

int applyconfigoptions() Applies the config options set in the map file. For example setting the PROJ_LIB using
the setconfigoption only modifies the value in the map object. applyconfigoptions will actually change the
PROIJ_LIB value that will be used when dealing with projection.

int loadowsparameters(owsrequest request, string version) Load OWS request parameters (BBOX, LAYERS,
&c.) into map. Returns MS_SUCCESS or MS_FAILURE. 2nd argument version is not mandatory. If not
given, the version will be set to 1.1.1

int owsdispatch(owsrequest request) Processes and executes the passed OpenGIS Web Services request on the map.
Returns MS_DONE (2) if there is no valid OWS request in the req object, MS_SUCCESS (0) if an OWS
request was successfully processed and MS_FAILURE (1) if an OWS request was not successfully processed.
OWS requests include WMS, WFS, WCS and SOS requests supported by MapServer. Results of a dispatched
request are written to stdout and can be captured using the msIO services (ie. ms_ioinstallstdouttobuffer() and
ms_iogetstdoutbufferstring())

int insertLayer(layerObj layer [, int nIndex=-1]) Insert a copy of layer into the Map at index nindex. The default
value of nindex is -1, which means the last possible index. Returns the index of the new Layer, or -1 in the case
of a failure.

layerObj removeLayer(int nIndex) Remove a layer from the mapObj. The argument is the index of the layer to be
removed. Returns the removed layerObj on success, else null.

6.3. PHP MapScript 191

MapServer Documentation, Release 5.4.2

6.3.7 LayerObj Class

Constructor

Layer Objects can be returned by the MapObj class, or can be created using:

layerObj ms_newLayerObj (MapObj map [,

layerObj layer])

A second optional argument can be given to ms_newLayerObj() to create the new layer as a copy of an existing layer.
If a layer is given as argument then all members of a this layer will be copied in the new layer created.

Members

Type Name

int numclasses (read-only)

int index (read-only)

int status (MS_ON, MS_OFF, MS_DEFAULT or MS_DELETE)

int debug

string classitem

string classgroup

string name

string group

string data

int type

int dump

double tolerance

int toleranceunits

int sizeunits

double symbolscaledenom

double minscaledenom

double maxscaledenom

double labelminscaledenom

double labelmaxscaledenom

double symbolscale (Deprecated in v5.0, use symbolscaledenom instead)

double minscale (Deprecated in v5.0, use minscaledenom instead)

double maxscale (Deprecated in v5.0, use maxscaledenom instead)

double labelminscale (Deprecated in v5.0, use labelminscaledenom instead)

double labelmaxscale (Deprecated in v5.0, use labelmaxscaledenom instead)

int maxfeatures

colorObj offsite

int annotate

int transform

int labelcache

int postlabelcache

string labelitem

string labelsizeitem

string labelangleitem

string tileitem

string tileindex

string header

string footer

string connection

Continued on next page

192 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

Table 6.2 — continued from previous page

int connectiontype (read-only, use setConnectionType() to set it)
string filteritem

string template

int opacity

int transparency (Deprecated in v5.0. Use opacity instead.)
string styleitem

gridObj grid //only available on a layer defined as grid (MS_GRATICULE)
int num_processing

string requires

string labelrequires

hashTableObj | metadata

projectionObj | projection

Methods

int updateFromString(string snippet) Update a layer from a string snippet. Returns

MS_SUCCESS/MS_FAILURE.

SoLayer—->updateFromString (' LAYER NAME land_fn2 END’); /*modify the name =/

SoLayer->updateFromString (' LAYER CLASS STYLE COLOR 255 255 0 END END END’); /*xadd a new classx/

int set(string property_name, new_value) Set object property to a new value. Returns -1 on error.

int draw(imageObj image) Draw a single layer, add labels to cache if required. Returns -1 on error.

int drawQuery(imageObj image) Draw query map for a single layer.

classObj getClass(int classIndex) Returns a classObj from the layer given an index value (O=first class)

int queryByPoint(pointObj point, int mode, double buffer) Query layer at point location specified in georefer-
enced map coordinates (i.e. not pixels). The query is performed on all the shapes that are part of a CLASS
that contains a TEMPLATE value or that match any class in a layer that contains a LAYER TEMPLATE value.
Mode is MS_SINGLE or MS_MULTIPLE depending on number of results you want. Passing buffer -1 defaults
to tolerances set in the map file (in pixels) but you can use a constant buffer (specified in ground units) instead.
Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error
happened (note that the error message in case nothing was found can be avoided in PHP using the ‘@’ control
operator).

int queryByRect(rectObj rect) Query layer using a rectangle specified in georeferenced map coordinates (i.e. not
pixels). The query is performed on all the shapes that are part of a CLASS that contains a TEMPLATE value
or that match any class in a layer that contains a LAYER TEMPLATE value. Returns MS_SUCCESS if shapes
were found or MS_FAILURE if nothing was found or if some other error happened (note that the error message
in case nothing was found can be avoided in PHP using the ‘@’ control operator).

int queryByShape(shapeObj shape) Query layer based on a single shape, the shape has to be a polygon at this
point. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other
error happened (note that the error message in case nothing was found can be avoided in PHP using the ‘@’
control operator).

int queryByFeatures(int slayer) Perform a query set based on a previous set of results from another layer. At present
the results MUST be based on a polygon layer. Returns MS_SUCCESS if shapes were found or MS_FAILURE
if nothing was found or if some other error happened (note that the error message in case nothing was found can
be avoided in PHP using the ‘@’ control operator).

int queryByAttributes(string gitem, string qstring, int mode) Query layer for shapes that intersect current map ex-
tents. gitem is the item (attribute) on which the query is performed, and gstring is the expression to match. The

6.3. PHP MapScript 193

MapServer Documentation, Release 5.4.2

query is performed on all the shapes that are part of a CLASS that contains a TEMPLATE value or that match
any class in a layer that contains a LAYER TEMPLATE value. Note that the layer’s FILTER/FILTERITEM are
ignored by this function. Mode is MS_SINGLE or MS_MULTIPLE depending on number of results you want.
Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error
happened (note that the error message in case nothing was found can be avoided in PHP using the ‘@’ control
operator).

int setFilter(string expression) Set layer filter expression.
string getFilterString() Returns the expression for this layer.
string getFilter() Deprecated in v5.0, use getFilterString() instead.

string getProjection() Returns a string representation of the projection. If no projection is set, MS_FALSE is re-
turned.

int setProjection(string proj_params) Set layer projection and coordinate system. Parameters are given as a single
string of comma-delimited PROJ.4 parameters.

int setWKTProjection(string proj_params) Same as setProjection(), but takes an OGC WKT projection definition
string as input.

Note: setWKTProjection requires GDAL support
int getNumResults() Returns the number of results from this layer in the last query.

resultCacheMemberObj getResult(int index) Returns a resultCacheMemberObj by index from a layer object with
index in the range 0 to numresults-1. Returns a valid object or FALSE(O) if index is invalid.

int open() Open the layer for use with getShape(). Returns MS_SUCCESS/MS_FAILURE.

int whichshapes(rectobj) Performs a spatial, and optionally an attribute based feature search. The function basically
prepares things so that candidate features can be accessed by query or drawing functions (eg using nextshape
function). Returns MS_SUCCESS or MS_FAILURE.

shapeobj nextShape() Called after msWhichShapes has been called to actually retrieve shapes within a given area
returns a shape object or MS_FALSE

Smap = ms_newmapob]j ("d:/msapps/gmap-ms40/htdocs/gmap75.map") ;
S$layer = Smap->getLayerByName (' road’);
$status = $layer—->open|();
Sstatus = S$layer->whichShapes (Smap->extent) ;
while ($shape = $layer->nextShape())
{
echo $shape->index ."
\n";
}

Slayer—->close () ;

void close() Close layer previously opened with open().

shapeObj getFeature(int shapeindex [, int tileindex = -1]) Retrieve shapeObj from a layer by index. Tileindex is
optional and is used only for tiled shapefiles (you get it from the resultCacheMemberObj returned by getResult()
for instance). Simply omit or pass tileindex = -1 for other data sources.

shapeObj getShape(int tileindex, int shapeindex) Deprecated in v5.0, use getFeature() instead (note that the order
of the arguments is reversed since tileindex is optional in getFeature())

rectObj getExtent() Returns the layer’s data extents. If the layer’s EXTENT member is set then this value is used,
otherwise this call opens/closes the layer to read the extents. This is quick on shapefiles, but can be an expensive
operation on some file formats or data sources. This function is safe to use on both opened or closed layers: it
is not necessary to call open()/close() before/after calling it.

int addFeature(shapeObj shape) Add a new feature in a layer. Returns -1 on error.

194 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

3L

int getMetaData(string name) Fetch layer metadata entry by name. Returns
that the search is case sensitive.

if no entry matches the name. Note

Note: getMetaData’s query is case sensitive.

int setMetaData(string name, string value) Set a metadata entry for the Ilayer Returns
MS_SUCCESS/MS_FAILURE.

int removeMetaData(string name) Remove a metadata entry for the layer. Returns MS_SUCCESS/MS_FAILURE.

string get WMSFeatureInfoURL (int clickX, int clickY, int featureCount, string infoFormat) Return a WMS
GetFeatureInfo URL (works only for WMS layers) clickX, clickY is the location of to query in pixel coordi-
nates with (0,0) at the top left of the image. featureCount is the number of results to return. infoFormat is the
format the format in which the result should be requested. Depends on remote server’s capabilities. MapServer
WMS servers support only “MIME” (and should support “GML.1” soon). Returns **’ and outputs a warning if
layer is not a WMS layer or if it is not queriable.

aString getItems() return a list of items. Must call open function first.

boolean setProcessing(string) Add the string to the processing string list for the layer. The layer->num_processing
is incremented by 1.

SoLayer->setprocessing ("SCALE_1=AUTO");
SoLayer->setprocessing ("SCALE_2=AUTO") ;

aString getProcessing() Returns an array containing the processing strings
boolean clearProcessing() Clears all the processing strings

string executeWFSGetfeature() Executes a GetFeature request on a WFS layer and returns the name of the tempo-
rary GML file created. Returns an empty string on error.

int applySLD(string sldxml, string namedlayer) Apply the SLD document to the layer object. The matching be-
tween the sld document and the layer will be done using the layer’s name. If a namedlayer argument is passed
(argument is optional), the NamedLayer in the sld that matchs it will be used to style the layer. See SLD HowTo
for more information on the SLD support.

int applySLDURL((string sldurl, string namedlayer) Apply the SLD document pointed by the URL to the layer ob-
ject. The matching between the sld document and the layer will be done using the layer’s name. If a namedlayer
argument is passed (argument is optional), the NamedLayer in the sld that matchs it will be used to style the
layer. See SLD HowTo for more information on the SLD support.

string generateSLD() Returns an SLD XML string based on all the classes found in the layers.

int moveclassup(int index) The class specified by the class index will be moved up into the array of layers. Re-
turns MS_SUCCESS or MS_FAILURE. ex layer->moveclassup(1) will have the effect of moving class 1 up to
position 0, and the class at position 0 will be moved to position 1.

int moveclassdown(int index) The class specified by the class index will be moved down into the array of layers.
Returns MS_SUCCESS or MS_FAILURE. ex layer->moveclassdown(0) will have the effect of moving class 0
up to position 1, and the class at position 1 will be moved to position O.

classObj removeClass(int index) Removes the class indicated and returns a copy, or NULL in the case of a failure.
Note that subsequent classes will be renumbered by this operation. The numclasses field contains the number
of classes available.

boolean isVisible() Returns MS_TRUE/MS_FALSE depending on whether the layer is currently visible in the map
(i.e. turned on, in scale, etc.).

int setConenctionType(int connectiontype [,string plugin_library]) Changes the connectiontype of the layer and
recreates the vtable according to the new connection type. This method should be used instead of setting the
connectiontype parameter directly. In case when the layer.connectiontype = MS_PLUGIN the plugin_library

6.3. PHP MapScript 195

MapServer Documentation, Release 5.4.2

parameter should also be specified so as to select the library to load by mapserver. For the other connection
types this parameter is not used.

6.3.8 ClassObj Class

Constructor
Class Objects can be returned by the LayerObj class, or can be created using:

classObj ms_newClassObj(layerObj layer [, classObj class])

The second argument class is optional. If given, the new class created will be a copy of this class.

Members
Type Name
string name
string title
int type
int status (MS_ON, MS_OFF or MS_DELETE)
double minscaledenom
double maxscaledenom
double minscale (Deprecated in v5.0, use minscaledenom instead)
double maxscale (Deprecated in v5.0, use maxscaledenom instead)
string template
labelObj label
int numstyles
string keyimage
string group
hashTableObj | metadata

Methods

int updateFromString(string snippet) Update a class from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

$oClass->updateFromString (/ CLASS STYLE COLOR 255 0 255 END END’); /xset the color =x/

int set(string property_name, new_value) Set object property to a new value. Returns -1 on error.
int setExpression(string expression) Set the expression string for the class object.

string getExpressionString() Returns the expression string for the class object.

string getExpression() Deprecated in v5.0. Use getExpressionString() instead.

int settext(string text) Set the text string for the class object.

string getTextString() Returns the text string for the class object.

int drawLegendIcon(int width, int height, imageObj im, int dstX, int dstY) Draw the legend icon on im object at
dstX, dstY. Returns MS_SUCCESS/MS_FAILURE.

imageObj createLegendIcon(int width, int height) Draw the legend icon and return a new imageOb.

196 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

styleObj getStyle(int index) Return the style object using an index. index >= 0 && index < class->numstyles.
classObj clone() Returns a cloned copy of the class.

int movestyleup(int index) The style specified by the style index will be moved up into the array of classes. Returns
MS_SUCCESS or MS_FAILURE. ex class->movestyleup(1) will have the effect of moving style 1 up to position
0, and the style at position 0 will be moved to position 1.

int movestyledown(int index) The style specified by the style index will be moved down into the array of classes.
Returns MS_SUCCESS or MS_FAILURE. ex class->movestyledown(0) will have the effect of moving style 0
up to position 1, and the style at position 1 will be moved to position 0.

int deletestyle(int index) Delete the style specified by the style index. If there are any style that follow the deleted
style, their index will decrease by 1.

Note: if you are using the numstyles parameter while using the deletestyle function on the class object you need to
refetch a new class object.

Example :

//class has 2 styles
$class = $olLayer—->getclass(0);
Sclass->deletestyle (1) ;
echo $class->numstyles; : will echo 2

Sclass = S$SolLayer->getclass(0);

echo S$class->numstyles; : will echo 1

int getMetaData(string name) Fetch class metadata entry by name. Returns “”
that the search is case sensitive.

if no entry matches the name. Note

Note: getMetaData’s query is case sensitive.

int setMetaData(string name, string value) Set a metadata entry for the class. Returns
MS_SUCCESS/MS_FAILURE.

int removeMetaData(string name) Remove a metadata entry for the class. Returns MS_SUCCESS/MS_FAILURE.

6.3.9 ImageObj Class

Constructor

Instances of ImageObj are always created by the map class methods.

Members
Type | Name
int width (read-only)
int height (read-only)

string | imagepath
string | imageurl

Methods

void free() Destroys resources used by an image object.

6.3. PHP MapScript 197

MapServer Documentation, Release 5.4.2

int saveImage(string filename, MapObj oMap) Writes image object to specified filename. Passing an empty file-

name sends output to stdout. In this case, the PHP header() function should be used to set the document’s
content-type prior to calling savelmage(). The output format is the one that is currently selected in the map
file. The second argument oMap is not manadatory. It is usful when saving to formats like GTIFF that needs
georeference informations contained in the map file. The function returns -1 on error. On success, it returns
either O if writing to an external file, or the number of bytes written if output is sent to stdout.

string saveWebImage() Writes image to temp directory. Returns image URL. The output format is the one that is

currently selected in the map file.

void pasteImage(imageObj srcImg, int transparentColorHex [[, int dstX, int dstY], int angle]) Copy srcImg on

top of the current imageObj. transparentColorHex is the color (in Oxrrggbb format) from srclmg that should
be considered transparent (i.e. those pixels won’t be copied). Pass -1 if you don’t want any transparent color.
If optional dstx,dsty are provided then it defines the position where the image should be copied (dstx,dsty =
top-left corner position). The optional angle is a value between 0 and 360 degrees to rotate the source image
counterclockwise. Note that if an angle is specified (even if its value is zero) then the dstx and dsty coordinates
specify the CENTER of the destination area. Note: this function works only with 8 bits GD images (PNG or
GIF).

6.3.10 LabelObj Class

Constructor

LabelObj are always embedded inside other classes.

Members
Type Name
string font
int type
colorObj | color
colorObj | outlinecolor
int outlinewidth
colorObj | shadowcolor
int shadowsizex
int shadowsizey
colorObj | backgroundcolor
colorObj | backgroundshadowcolor
int backgroundshadowsizex
int backgroundshadowsizey
int size
int minsize
int maxsize
int position
int offsetx
int offsety
double angle
int autoangle
int buffer
int antialias
int wrap
int minfeaturesize
Continued on next page
198 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

Table 6.3 — continued from previous page

int autominfeaturesize
int mindistance
int partials
int force
string encoding
int align
int maxlength
int minlength
int priority
Methods
int updateFromString(string snippet) Update a label from a string snippet. Returns

MS_SUCCESS/MS_FAILURE.
int set(string property_name, new_value) Set object property to a new value. Returns -1 on error.

int setBinding(const labelbinding, string value) Set the attribute binding for a specified label property. Returns true
on success.

Example:

SoLabel->setbinding (MS_LABEL_BINDING_COLOR, "FIELD_NAME_COLOR");

This would bind the color parameter with the data (ie will extract the value of the color from the field called
“FIELD_NAME_COLOR”

string getBinding(const labelbinding) Get the attribute binding for a specified label property. Returns null if there
is no binding for this property.

Example:

SoLabel->setbinding (MS_LABEL_BINDING_COLOR, "FIELD_NAME_COLOR");
echo $oLabel->getbinding (MS_LABEL_BINDING_COLOR); // FIELD_NAME_COLOR

int removeBinding(const labelbinding) Remove the attribute binding for a specfiled style property. Returns true on
success.

Example:

SoStyle->removebinding (MS_LABEL_BINDING_COLOR) ;

6.3.11 webObj Class

Constructor

Instances of webObj are always are always embedded inside the mapOb;.

6.3. PHP MapScript 199

MapServer Documentation, Release 5.4.2

Members
Type Name
string log
string imagepath
string template
string imageurl
string header
string footer
string empty (read-only)
string error (read-only)
string mintemplate
string maxtemplate
double minscaledenom
double maxscaledenom
double minscale (Deprecated in v5.0, use minscaledenom instead)
double maxscale (Deprecated in v5.0, use maxscaledenom instead)
rectObj extent (read-only)
string queryformat
string legendformat
string browseformat
hashTableObj | metadata
Methods

int updateFromString(string snippet) Update
MS_SUCCESS/MS_FAILURE.

snippet. Returns

int set(string property_name, new_value) Set object property to a new value. Returns -1 on error.

6.3.12 referenceMapObj Class

Constructor

Instances of referenceMapObj are always embedded inside the mapOby;.

Members
Type Name
string image
int width
int height
int status

rectObj extent
ColorObj | color
ColorObj | outlinecolor

Methods

int updateFromString(string snippet) Update a referenceMap object from a string snippet. Returns

MS_SUCCESS/MS_FAILURE.

200

Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

int set(string property_name, new_value) Set object property to a new value. Returns -1 on error.

6.3.13 ColorObj Class

Constructor

Instances of ColorObj are always embedded inside other classes.

Members
Type | Name
int red
int green
int blue
Methods

void setRGB(int red, int green, int blue) Set red, green, blue values.

6.3.14 PointObj Class

Constructor

PointObj ms_newPointObij ()

Members
Type Name
double | x
double | y

double | z (used for 3d shape files. set to 0 for other types)
double | m (used only for measured shape files. set to O for other types.)

Methods

int setXY(double x, double y [, double m]) Set X,Y coordinate values. Returns O on success, -1 on error.
Note: the 3rd parameter m is used for measured shape files only. It is not mandatory.

int setXYZ(double x, double y , double z, [, double m]) Set X,Y,Z coordinate values. Returns O on success, -1 on
error.

Note: the 4th parameter m is used for measured shape files only. It is not mandatory.

int draw(mapObj map, layerObj layer, imageObj img, int class_index, string text) Draws the individual point
using layer. The class_index is used to classify the point based on the classes defined for the layer. The text
string is used to annotate the point. Returns MS_SUCCESS/MS_FAILURE.

double distanceToPoint(pointObj poPoint) Calculates distance between two points.

6.3. PHP MapScript 201

MapServer Documentation, Release 5.4.2

double distanceToLine(pointObject p1, pointObject p2) Calculates distance between a point ad a lined defined by
the two points passed in argument.

double distanceToShape(shapeObj shape) Calculates the minimum distance between a point and a shape.

int project(projectionObj in, projectionObj out) Project the point from “in” projection (1st argument) to “out” pro-
jection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

void free() Releases all resources used by the object.

6.3.15 LineObj Class

Constructor

LineObj ms_newLineObj ()

Members

Type Name
int numpoints (read-only)

Methods

int add(pointObj point) Add a point to the end of line.

int addXY(double x, double y [, double m]) Add a point to the end of line. It is not mandatory.
Note: the 3rd parameter m is used for measured shape files only. It is not mandatory.

int addXYZ(double x, double y, double z [, double m]) Add a point to the end of line.

Note: the 4th parameter m is used for measured shape files only. It is not mandatory.

PointObj point(int i) Returns a reference to point number i. Reference is valid only during the life of the lineObj
that contains the point.

int project(projectionObj in, projectionObj out) Project the line from “in” projection (1st argument) to “out” pro-
jection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

void free() Destroys resources used by a line object.

6.3.16 ShapeObj Class

Constructor

ShapeObj ms_newShapeObj(int type)

‘type’ is one of MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON or MS_SHAPE_NULL

ShapeObj ms_shapeObjFromWkt (string wkt)

Creates new shape object from WKT string.

202 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

Members
Type Name
string text
int classindex
int type (read-only)
int numlines (read-only)
int index
int tileindex (read-only)
rectObj | bounds (read-only)
int numvalues (read-only)
array values (read-only)

The values array is an associative array with the attribute values for this shape. It is set only on shapes obtained from
layer->getShape(). The key to the values in the array is the attribute name, e.g.

Spopulation = $shape->values|["Population"];

Methods

int set(string property_name, new_value) Set object property to a new value. Returns -1 on error.
int add(lineObj line) Add a line (i.e. a part) to the shape.

LineObj line(int i) Returns a reference to line number i. Reference is valid only during the life of the shapeObj that
contains the point.

int draw(mapObj map, layerObj layer, imageObj img) Draws the individual shape using layer. Returns
MS_SUCCESS/MS_FAILURE.

boolean contains(pointObj point) Returns MS_TRUE if the point is inside the shape, MS_FALSE otherwise.
boolean intersects(shapeObj shape) Returns MS_TRUE if the two shapes intersect, MS_FALSE otherwise.

[3P)

int project(projectionObj in, projectionObj out) Project the shape from “in” projection (1st argument) to “out”
projection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

pointObj getpointusingmeasure(double m) Apply only on Measured shape files. Given a measure m, retun the
corresponding XY location on the shapeobject.

pointObj getmeasureusingpoint(pointObject point) Apply only on Measured shape files. Given an XY Location,
find the nearest point on the shape object. Return a point object of this point with the m value set.

void free() Destroys resources used by a shape object.
string getvalue(layerObj layer, string filedname) Returns the value for a given field name.

shapeobj buffer(width) Returns a new buffered shapeObj based on the supplied distance (given in the coordinates of
the existing shapeObj). Only available if php/mapscript is built with GEOS library.

shapeobj convexhull() Returns a shape object representing the convex hull of shape. Only available if php/mapscript
is built with GEOS library.

shapeobj boundary() Returns the boundary of the shape. Only available if php/mapscript is built with GEOS library.

int containsShape(shapeobj shape2) Returns true if shape2 passed as argument is entirely within the shape. Else
return false. Only available if php/mapscript is built with GEOS library.

shapeobj union(shapeobj shape) Returns a shape object representing the union of the shape object with the one
passed as parameter. Only available if php/mapscript is built with GEOS library

6.3. PHP MapScript 203

MapServer Documentation, Release 5.4.2

shapeobj union_geos(shapeobj shape) [(Deprecated in v5.2. Use union instead)] Returns a shape object represent-
ing the union of the shape object with the one passed as parameter. Only available if php/mapscript is built with
GEOS library.

shapeobj intersection(shapeobj shape) Returns a shape object representing the intersection of the shape object with
the one passed as parameter. Only available if php/mapscript is built with GEOS library.

shapeobj difference(shapeobj shape) Returns a shape object representing the difference of the shape object with the
one passed as parameter. Only available if php/mapscript is built with GEOS library.

shapeobj symdifference(shapeobj shape) Returns the computed symmetric difference of the supplied and existing
shape. Only available if php/mapscript is built with GEOS library.

int overlaps(shapeobj shape) Returns true if the shape passed as argument overlaps the shape. Else returns false.
Only available if php/mapscript is built with GEOS library.

int within(shapeobj shape2) Returns true if the shape is entirely within the shape2 passed as argument. Else returns
false. Only available if php/mapscript is built with GEOS library.

int crosses(shapeobj shape) Returns true if the shape passed as argument crosses the shape. Else return false. Only
available if php/mapscript is built with GEOS library.

int touches(shapeobj shape) Returns true if the shape passed as argument touches the shape. Else return false. Only
available if php/mapscript is built with GEOS library.

int equals(shapeobj shape) Returns true if the shape passed as argument is equal to the shape (geometry only). Else
return false. Only available if php/mapscript is built with GEOS library.

int disjoint(shapeobj shape) Returns true if the shape passed as argument is disjoint to the shape. Else return false.
Only available if php/mapscript is built with GEOS library.

pointObj getCentroid() Returns a point object representing the centroid of the shape. Only available if php/mapscript
is built with GEOS library.

double getArea() Returns the area of the shape (if applicable). Only available if php/mapscript is built with GEOS
library.

double getLength() Returns the length (or perimeter) of the shape. Only available if php/mapscript is built with
GEOS library.

pointObj getLabelPoint() Returns a point object with coordinates suitable for labelling the shape.
string toWkt() Returns WKT representation of the shape’s geometry.

int setBounds() Updates the bounds property of the shape. Must be called to calculate new bounding box after new
parts have been added. Returns true if successful, else return false.

6.3.17 RectObj Class

Constructor
RectObj are sometimes embedded inside other objects. New ones can also be created with:

RectObj ms_newRectObj ()

Note: the members (minx, miny,maxx,maxy) are initialized to -1;

204 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

Members:

Type Name
double | minx
double | miny
double | maxx
double | maxy

Methods

int set(string property_name, new_value) Set object property to a new value. Returns -1 on error.
void setextent(double minx, double miny, double maxx, double maxy) Set the rectangle extents.

int draw(mapObj map, layerObj layer, imageObj img, int class_index, string text) Draws the individual rectan-
gle using layer. The class_index is used to classify the rectangle based on the classes defined for the layer. The
text string is used to annotate the rectangle. Returns MS_SUCCESS/MS_FAILURE.

double fit(int width, int height) Adjust extents of the rectangle to fit the width/height specified.

[P

int project(projectionObj in, projectionObj out) Project the rectangle from “in” projection (1st argument) to “out”
projection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

void free() Destroys resources used by a rect object.

6.3.18 ShapefileObj Class

Constructor

shapefileObj ms_newShapefileObj(string filename, int type)

Opens a shapefile and returns a new object to deal with it. Filename should be passed with no extension.
To create a new file (or overwrite an existing one), type should be one of MS_SHP_POINT, MS_SHP_ARC,
MS_SHP_POLYGON or MS_SHP_MULTIPOINT. Pass type as -1 to open an existing file for read-only access, and
type=-2 to open an existing file for update (append).

Members
Type Name
int numshapes (read-only)
int type (read-only)
string source (read-only)
rectObj | bounds (read-only)

Methods

shapeObj getShape(int i) Retrieve shape by index.

shapeObj getPoint(int i) Retrieve point by index.

shapeObj getTransformed(mapObj map, int i) Retrieve shape by index.
rectObj getExtent(int i) Retrieve a shape’s bounding box by index.

6.3. PHP MapScript 205

MapServer Documentation, Release 5.4.2

int addShape(shapeObj shape) Appends a shape to an open shapefile.
int addPoint(pointObj point) Appends a point to an open shapefile.

void free() Closes a shape file (and commits all changes in write mode) and releases all resources used by the object.

6.3.19 ResultCacheMemberObj Class

Constructor

Instances of ResultCacheMemberObj are always obtained through layerObj’s getResult() method.

Members
Type Name
int shapeindex (read-only)
int tileindex (read-only)
int classindex (read-only)

6.3.20 ProjectionObj Class

Constructor

ProjectionObjObj ms_newProjectionObj(string projectionstring)
Creates a projection object based on the projection string passed as argument.
$SprojInObj = ms_newprojectionobj("proj=latlong")

will create a geographic projection class.

The following example will convert a lat/long point to an LCC projection:

SprojInObj = ms_newprojectionobj ("proj=latlong");

SprojOutObj = ms_newprojectionob]j ("proj=lcc,ellps=GRS80,lat_0=49,".
"lon_0=-95,lat_1=49,lat_2=77");

SpoPoint = ms_newpointobij () ;

SpoPoint->setXY (-92.0, 62.0);

SpoPoint->project ($projInObj, S$projoutObj);

Methods

int getUnits() Returns the units of a projection object. Returns -1 on error.

6.3.21 ScalebarObj Class

Constructor

Instances of scalebarObj are always are always embedded inside the mapObj.

206 Chapter 6

. MapScript

MapServer Documentation, Release 5.4.2

Members
Type Name
int height
int width
int style
int intervals
colorObj | color
colorObj | backgroundcolor
colorObj | outlinecolor
int units
int status //MS_ON, MS_OFF, MS_EMBED
int position //for embeded scalebars, MS_UL, MS_UC, ...
int transparent
int interlace
int postlabelcache
labelObj | label
colorObj | imagecolor
int align
Methods

int updateFromString(string snippet) Update a scalebar
MS_SUCCESS/MS_FAILURE.

int set(string property_name, new_value) Set object property to a new value. Returns -1 on error.

from

a

string

snippet.

Returns

int setimagecolor(int red, int green, int blue) Sets the imagecolor propery (baclground) of the object. Returns false
on error.

6.3.22 LegendObj Class

Constructor

Instances of legendObj are always are always embedded inside the mapObj.

6.3. PHP MapScript

207

MapServer Documentation, Release 5.4.2

Members
Type Name
int height
int width
int keysizex
int keysizey
int keyspacingx
int keyspacingy
colorObj | outlinecolor //Color of outline of box, -1 for no outline
int status //MS_ON, MS_OFF, MS_EMBED
int position //for embeded legends, MS_UL, MS_UC, ...
int transparent
int interlace
int postlabelcache /MS_TRUE, MS_FALSE
labelObj | label
colorObj | imagecolor
string template
Methods
int updateFromString(string snippet) Update a legend from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.
int set(string property_name, new_value) Set object property to a new value. Returns -1 on error.
6.3.23 QuerymapObj Class
Constructor
Instances of querymapQbj are always are always embedded inside the mapObj.
Members
Type Name
int width
int height
int style MS_NORMAL, MS_HILITE, MS_SELECTED)
colorObj | color
Methods
int updateFromString(string snippet) Update a queryMap object from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.
int set(string property_name, new_value) Set object property to a new value. Returns -1 on error.
208 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

6.3.24 StyleObj Class
Constructor
Instances of styleObj are always embedded inside the classObj.

styleObj ms_newStyleObj(classObj class [, styleObj stylel)

The second argument ‘style’ is optional. If given, the new style created will be a copy of the style passed as argument.

Members

Type Name

int symbol
string symbolname
double size

double minsize
double maxsize

int offsetx

int offsety

int antialias

colorObj | color

colorObj | backgroundcolor
colorObj | outlinecolor
double width

double minwidth

double maxwidth

double angle

string angleitem

string sizeitem

double minvalue

double maxvalue

string rangeitem

int opacity (this parameter is only supported for the AGG driver)
Methods
int updateFromString(string snippet) Update a style from a string snippet. Returns

MS_SUCCESS/MS_FAILURE.
int set(string property_name, new_value) Set object property to a new value. Returns -1 on error.
styleObj clone() Returns a cloned copy of the style.
int setBinding(const stylebinding, string value) Set the attribute binding for a specfiled style property. Returns true

on success. Added in MapServer 5.0.

$SoStyle->setbinding (MS_STYLE_BINDING_COLOR, "FIELD_NAME_COLOR") ;

This would bind the color parameter with the data (ie will extract the value of the color from the field called
“FIELD_NAME_COLOR”

string getBinding(const stylebinding) Get the attribute binding for a specfiled style property. Returns null if there is
no binding for this property.

6.3. PHP MapScript 209

MapServer Documentation, Release 5.4.2

$oStyle—>setbinding (MS_STYLE_BINDING_COLOR, "FIELD_NAME_COLOR") ;
echo S$oStyle->getbinding (MS_STYLE_BINDING_COLOR); // FIELD_NAME_COLOR

int removeBinding(const stylebinding) Remove the attribute binding for a specfiled style property. Returns true on
success. Added in MapServer 5.0.

SoStyle->removebinding (MS_STYLE_BINDING_COLOR) ;

6.3.25 OutputformatObj Class

Constructor

Instance of outputformatObj is always embedded inside the mapOb;. It is uses a read only.

No constructor available (coming soon, see bug 979)

Members

Type | Name
string | name
string | mimetype
string | driver
string | extension

int renderer
int imagemode // MS_IMAGEMODE_* value.
int transparent

Methods

int set(string property_name, new_value) Set object property to a new value.
void setOption(string property_name, string new_value) Add or Modify the format option list. return true on suc-
cess.

SoMap->outputformat->setOption ("OUTPUT_TYPE", "RASTER");

string getOption(string property_name) Returns the associated value for the format option property passed as ar-
gument. Returns an empty string if property not found.

void setFormatOption(string property_name, string new_value) Deprecated. See setOption().

string getFormatOption(string property_name) Deprecated. See getOption().

6.3.26 GridObj Class

Constructor

The grid is always embedded inside a layer object defined as a grid (layer->connectiontype = MS_GRATICULE) (for
more docs : http://trac.osgeo.org/mapserver/wiki/MapServerGrid)

A layer can become a grid layer by adding a grid object to it using : ms_newGridObj(layerObj layer)

210 Chapter 6. MapScript

http://trac.osgeo.org/mapserver/wiki/MapServerGrid

MapServer Documentation, Release 5.4.2

SoLayer = ms_newlayerob] ($oMap) ;
SoLayer—->set ("name", "GRID");

ms_newgridobj ($oLayer) ;

SoLayer->grid->set ("labelformat", "DDMMSS");

Members

Type Name
double | minsubdivide
double | maxsubdivide
double | minarcs
double | maxacrs
double | mininterval
double | maxinterval
string | labelformat

Methods

int set(string property_name, new_value) Set object property to a new value.

6.3.27 ErrorObj Class

Instances of errorObj are created internally by MapServer as errors happen. Errors are managed as a chained list with
the first item being the most recent error. The head of the list can be fetched using ms_GetErrorObj(), and the list can
be cleared using ms_ResetErrorList()

Functions

errorObj ms_GetErrorObj() Returns a reference to the head of the list of errorObj.

void ms_ResetErrorList() Clear the current error list. Note that clearing the list invalidates any errorObj handles
obtained via the $error->next() method.

Members
Type Name
int code //See error code constants above

string | routine
string | message

Method

errorObj next() Returns the next errorObj in the list, or NULL if we reached the end of the list.

Example: This example draws a map and reports all errors generated during the draw() call, errors can potentially
come from multiple layers.

6.3. PHP MapScript 211

MapServer Documentation, Release 5.4.2

ms_ResetErrorList () ;

$img = S$map->draw();
Serror = ms_GetErrorObj () ;
while (Serror && S$Serror—>code != MS_NOERR)

{

printf ("Error in %s: %$s
\n", S$error->routine, S$Serror->message);
(

Serror = Serror->next ();

6.3.28 LabelcacheObj Class

Accessible only through the map object (map->labelcache). This object is only used to give the possiblity to free the
label cache (map->labelcache->free())

Method

boolean free() Free the label cache. Returns true on success or false if an error occurs. Ex : (map->labelcache->free();

6.3.29 SymbolObj Class

Constructor

symboldid = ms_newSymbolObj (mapObj map, string symbolname) ;

Creates a new symbol with default values in the symbolist. Returns the Id of the new symbol. If a symbol with the
same name exists, It’s id will be returned.

To get a symbol object, you need to use a method on the map object:

SoSymbol = S$map->getSymbolObjectById($nId);

212 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

Members
Type Name
string name
type name //Please refer to symbol type constants
int inmapfile If set to TRUE, the symbol will be saved inside the mapfile.
double | sizex
double | sizey
int numpoints (Read-Only)
int filled
int patternlength (Read-Only)
int stylelength (Deprecated in v5.0, use patternlength instead.) (Read-Only)
string | imagepath (Read-Only))
int transparent
int transparentcolor
string | character
int antialias
string | font
int gap
int position
Methods

int set(string property_name, new_value) Set object property to a new value.

int setpoints(array double) Set the points of the symbol. Note that the values passed if an array containing the x and
y values of the points. Example array[0] = 1 : x value of the first point array[1] = 0 : y values of the first point
array[2] = 1 : x value of the 2nd point

int setpattern(array int) Set the pattern of the symbol (used for dash patterns)

array getpointsarray() Returns an array containing the points of the symbol. Refer to setpoints to see how the array
should be interpreted.

array getpatternarray() Returns an array containing the pattern.

int setimagepath(char filename) Loads a pixmap symbol specified by the filename. The file should be of either Gif
or Png format.

int setstyle(array int) Deprecated in v5.0, will be removed in a future release. Use setpattern() instead.
array getstylearray() Deprecated in v5.0, will be removed in a future release. Use getpatternarray() instead.
Example of usage:

1. create a symbol to be used as a dash line

$nId = ms_newsymbolobj ($gpoMap, "mydash");
SoSymbol = $gpoMap->getsymbolobjectbyid($nId);
SoSymbol->set ("filled", MS_TRUE) ;
$SoSymbol->set ("sizex", 1);

SoSymbol->set ("sizey", 1);

SoSymbol->set ("inmapfile", MS_TRUE) ;

SaPoints[0] 1;
$aPoints[1l] = 1;
SoSymbol->setpoints ($aPoints) ;

6.3. PHP MapScript 213

MapServer Documentation, Release 5.4.2

SaPattern[0] = 10;

SaPattern[1l] 5;

SaPattern([2] = 5;

SaPattern[3] 10;
SoSymbol->setpattern ($aPattern);

Sstyle->set ("symbolname", "mydash");
1. Create a TrueType symbol

$nId = ms_newSymbolObj ($gpoMap, "ttfSymbol");
SoSymbol = S$gpoMap->getSymbolObjectById ($nId);
SoSymbol->set ("type", MS_SYMBOL_TRUETYPE) ;
SoSymbol->set ("filled", true);
SoSymbol->set ("character", "D");
SoSymbol->set ("font", "ttfFontName");

6.3.30 OwsrequestObj Class

Constructor

request = ms_newOwsrequestObj () ;

Create a new ows request object.

Members

Type Name
int numparams (read-only)

int type (read-only): MS_GET_REQUEST or MS_POST_REQUEST

Methods

int loadparams() Initializes the OWSRequest object from the cgi environment variables REQUEST_METHOD,
QUERY_STRING and HTTP_COOKIE. Returns the number of name/value pairs collected.

int setparameter(string name, string value) Set a request parameter. For example :
Srequest->setparameter (' REQUEST’, ’GetMap’);

string getname(int index) Return the name of the parameter at index in the request’s array of parameter names.
string getvalue(int index) Return the value of the parameter at index in the request’s array of parameter values.

string getvaluebyname(string name) Return the value associated with the parameter name.

214 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

6.3.31 hashTableObj Class

Constructor
Instance of hashTableObj is always embedded inside the LayerObj, WebObj and ClassObj. It is uses a read only.

ShashTable = $olLayer->metadata;
Skey = null;
while (Skey = $hashTable->nextkey ($key))
echo "Key: ".$key." value: ".ShashTable->get ($key) ."
";

Methods

132

string get(string key) Fetch class metadata entry by name. Returns
search is case sensitive.

if no entry matches the name. Note that the

int set(string key, string value) Set a metadata entry in the hashTable. Returns MS_SUCCESS/MS_FAILURE.
int remove(string key) Remove a metadata entry in the hashTable. Returns MS_SUCCESS/MS_FAILURE.
void clear() Clear all items in the hashTable (To NULL).

string nextkey(string previousKey) Return the next key or first key if previousKey = NULL. Return NULL if no
item is in the hashTable or end of hashTable is reached

6.4 Python MapScript Appendix

Author Sean Gillies
Revision $Revision: 8278 $
Date $Date: 2008-12-23 13:34:31 -0800 (Tue, 23 Dec 2008) $

Contents

» Python MapScript Appendix
— Introduction
— Classes
— Exception Handling

6.4.1 Introduction

The Python MapScript module contains some class extension methods that have not yet been implemented for other
languages.

6.4.2 Classes

References to sections below will be added here as the documentation grows.

6.4. Python MapScript Appendix 215

MapServer Documentation, Release 5.4.2

imageObj

The Python Imaging Library, http://www.pythonware.com/products/pil/, is an indispensible tool for image manipula-
tion. The extensions to imageQObj are all geared towards better integration of PIL in MapScript applications.

imageObj Methods

imageObj(PyObject argl, PyObject arg2 [, PyObject arg3]) [imageObj] Create a new instance which is either

empty or read from a Python file-like object that refers to a GD format image.

The constructor has 2 different modes. In the blank image mode, argl and arg2 should be the desired width and
height in pixels, and the optional arg3 should be either an instance of outputFormatObj or a GD driver name as
a shortcut to a format. In the image file mode, argl should be a filename or a Python file or file-like object. If
the file-like object does not have a “seek” attribute (such as a urllib resource handle), then a GD driver name

must be provided as arg?2.

Here’s an example of creating a 320 pixel wide by 240 pixel high JPEG using the constructor’s blank image

mode:

image = mapscript.imageObj (320, 240, ’'GD/JPEG’)

In image file mode, interesting values of arg! to try are instances of StringlO:
s = StringIO()

pil_image.save (s) # Save an image manipulated with PIL
ms_image = imageObj (s)

Or the file-like object returned from urlopen

url = urllib.urlopen(’'http://mapserver.gis.umn.edu/bugs/ant. jpg’)
ms_image = imageObj(url, ’'GD/JPEG’)

write([PyObject file]) [void] Write image data to a Python file-like object. Default is stdout.

pointObj

pointObj Methods

__str__() [string] Return a string formatted like

{ 'x": £, 'y':
with the coordinate values substituted appropriately. Usage example:

>>> p = mapscript.pointObj (1, 1)
>>> str(p)
{ 'x’: 1.000000 , "y": 1.000000 }

Note that the return value can be conveniently eval’d into a Python dictionary:

>>> p_dict = eval (str(p))
>>> p_dict[’x’]
1.000000

216

Chapter 6

. MapScript

http://www.pythonware.com/products/pil/

MapServer Documentation, Release 5.4.2

rectObj

rectObj Methods

__contains__(pointObj point) [boolean] Returns True if point is inside the rectangle, otherwise returns False.

>>> r = mapscript.rectObj(0, 0, 1, 1)

>>> p = mapscript.pointObj (2, 0) # outside
>>> p in r

False

>>> p not in r

True

__str__() [string] Return a string formatted like
{ "minx’: %f , 'miny’: %f , 'maxx’: %f , ‘maxy’: $f }
with the bounding values substituted appropriately. Usage example:
>>> r = mapscript.rectObj(0, 0, 1, 1)
>>> str(r)

{ 'minx’: 0.000000 , 'miny’: 0.000000 , ’'maxx’: 1.000000 , 'maxy’: 1.000000 }

Note that the return value can be conveniently eval’d into a Python dictionary:

>>> r_dict = eval(str(r))
>>> r_dict['minx’]
0.000000

6.4.3 Exception Handling

The Python MapScript module maps a few MapServer errors into Python exceptions. Attempting to load a non-existent
mapfile raises an ‘IOError’, for example

>>> import mapscript
>>> mapfile = ’/no/such/file.map’
>>> m = mapscript.mapObj (mapfile)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "/usr/lib/python2.3/site-packages/mapscript.py", line 799, in __init_
newobj = _mapscript.new_mapObj(xargs)
IOError: msLoadMap () : Unable to access file. (/no/such/file.map)
>>>

The message of the error is written by ‘msSetError’ and so is the same message that CGI mapserv users see in error
logs.

6.5 Python MapScript Image Generation

Author Sean Gillies
Revision $Revision: 8295 $

6.5. Python MapScript Image Generation 217

MapServer Documentation, Release 5.4.2

Date $Date: 2008-12-26 21:08:04 -0800 (Fri, 26 Dec 2008) $
Last Updated 2008/07/15

Table of Contents

* Python MapScript Image Generation
— Introduction

Imagery Overview

The imageObj Class

Image Output

Images and Symbols

6.5.1 Introduction
The MapScript HOWTO docs are intended to complement the API reference with examples of usage for specific

subjects. All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+ and
found under mapserver/tests.

Pseudocode

All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a
statement. For object attributes and methods we use the dot, ‘., operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.

6.5.2 Imagery Overview

The most common use of MapServer and MapScript is to create map imagery using the built-in GD format drivers:

GD/GIF, GD/PNG, GD/PNG24, and GD/JPEG. This imagery might be saved to a file on disk or be streamed directly
to another device.

6.5.3 The imageObj Class

Imagery is represented in MapScript by the imageObj class. Please see the API Reference (MapScript.txt) for class
attribute and method details.
Creating imageObj from a mapObj

The mapObj class has two methods that return instances of imageObj: ‘draw’, and ‘preparelmage’. The first returns a
full-fledged map image just as one would obtain from the mapserv CGI program

test_map = MapScript.mapObj(’tests/test.map’)
map_image = test_map.draw()

A properly sized and formatted blank image, without any layers, symbols, or labels, will be generated by ‘preparelm-

s

age

blank_image = test_map.preparelmage ()

218 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

Creating a new imageObj
The imageObj class constructor creates new instances without need of a map

format = MapScript.outputFormatObj(’GD/JPEG")
image = MapScript.imageObj (300, 200, format) # 300 wide, 200 high JPEG

and can even initialize from a file on disk

First three args are overriden by attributes of the disk image file
disk_image = MapScript.imageObj (-1, -1, NULL, ’'tests/test.png’)

6.5.4 Image Output
Creating files on disk

Imagery is saved to disk by using the ‘save’ method. By accessing the ‘extension’ attribute of an image’s format, the
proper file extension can be used without making any assumptions

filename = ’"test.’ + map_image.format.extension
map_image.save (filename)

If the image is using a GDAL/GTiff-based format, a GeoTIFF file can be created on disk by adding a mapObj as a
second optional argument to ‘save’

map_image.save (filename, test_map)

Direct Output

An image can be dumped to an open filehandle using the ‘write’ method. By default, the filehandle is ‘stdout’

Send an image to a web browser

print "Content-type: " + map_image.format.mimetype + "\n\n"

map_image.write ()

This method is not fully functional for all SWIG MapScript languages. See the API Reference (MapScript.txt) for
details. The ‘write’ method is new in 4.4.

6.5.5 Images and Symbols

The symbolObj::getimage() method will return an instance of imageQObj for pixmap symbols

symbol = test_map.symbolset.getSymbolByName (" home—-png’)
image = symbol.getImage ()

There is a symmetric ‘setlmage’ method which loads imagery into a symbol, allowing pixmap symbols to be created
dynamically

6.5. Python MapScript Image Generation 219

MapServer Documentation, Release 5.4.2

new_symbol = MapScript.symbolObj ('’ from image’)
new_symbol.type = MapScript.MS_SYMBOL_PIXMAP
new_symbol.setImage (image)

index = test_map.symbolset.appendSymbol (new_symbol)

The get/setlmage methods are new in MapServer 4.4.

6.6 Mapfile Manipulation

Author Sean Gillies
Revision $Revision: 8365 $
Date $Date: 2008-12-31 07:49:02 -0800 (Wed, 31 Dec 2008) $

Contents

* Mapfile Manipulation

— Introduction
Mapfile Overview
The mapObj Class
Children of mapObj
Metadata

6.6.1 Introduction
The MapScript HowTo docs are intended to complement the API reference with examples of usage for specific sub-

jects. All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+ and found
under mapserver/tests.

Pseudocode
All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a

statement. For object attributes and methods we use the dot, ‘., operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.

6.6.2 Mapfile Overview

By “Mapfile” here, I mean all the elements that can occur in (nearly) arbitrary numbers within a MapScript mapObj:
Layers, Classes, and Styles. MapServer 4.4 has greatly improved capability to manipulate these objects.

6.6.3 The mapObj Class

An instance of mapObj is a parent for zero to many layerObj children.

220 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

New instances

The mapfile path argument to the mapscript.mapObj constructor is now optional

empty_map = new mapscript.mapObj

generates a default mapObj with no layers. A mapObj is initialized from a mapfile on disk in the usual manner:

test_map = new mapscript.mapObj(’tests/test.map’)

Cloning
An independent copy, less result and label caches, of a mapObj can be produced by the new mapObj.clone() method:

clone_map = test_map.clone()

Note: the Java MapScript module implements a “cloneMap” method to avoid conflict with the clone method of Java’s
Object class.

Saving
A mapObj can be saved to disk using the save method:

clone_map.save (' clone.map’)

Frankly, the msSaveMap() function which is the foundation for mapObj::save is incomplete. Your mileage may vary.

6.6.4 Children of mapObj

There is a common parent/child object API for Layers, Classes, and Styles in MapServer 4.4.

Referencing a Child

References to Layer, Class, and Style children are obtained by “getChild”-like methods of their parent:
layer_i = test_map.getLayer (i)

class_ij = layer_i.getClass (]j)

style_ijk = class_ij.getStyle (k)

These references are for convenience only. MapScript doesn’t have any reference counting, and you are certain to run
into trouble if you try to use these references after the parent mapObj has been deleted and freed from memory.

Cloning a Child

A completely independent Layer, Class, or Style can be created using the clone method of layerObj, classObj, and
styleObj:

clone_layer = layer_i.clone()

This instance has no parent, and is self-owned.

6.6. Mapfile Manipulation 221

MapServer Documentation, Release 5.4.2

New Children
Uninitialized instances of layerObj, classObj, or styleObj can be created with the new constructors:

new_layer = new mapscript.layerObj
new_class new mapscript.classObj
new_style = new mapscript.styleObj

and are added to a parent object using “insertChild”’-like methods of the parent which returns the index at which the
child was inserted:

1i = test_map.insertlLayer (new_layer)
cl = test_map.getlLayer(li) .insertClass (new_class)
si = test_map.getlayer (li) .getClass(ci) .insertStyle (new_style)

The insert* methods create a completely new copy of the object and store it in the parent with all ownership taken on
by the parent.

see the API reference for more details.
Backwards Compatibility
The old style child object constructors with the parent object as a single argument:

new_layer = new mapscript.layerObj(test_map)
new_class new mapscript.classObj(new_layer)
new_style = new mapscript.styleObj(new_class)

remain in MapServer 4.4.

Removing Children

Child objects can be removed with “removeChild”-like methods of parents, which return independent copies of the
removed object:

following from the insertion example

remove the inserted style, returns a copy of the original new_style
removed_style = test_map.getLayer (1li) .getClass (ci) .removeStyle (si)
removed_class = test_map.getlayer (li).removeClass (ci)

removed_layer = test_map.removelayer (1i)

6.6.5 Metadata

Map, Layer, and Class metadata are the other arbitrarily numbered elements (well, up to the built-in limit of 41) of a
mapfile.

New API

In MapServer 4.4, the metadata attributes of mapObj.web, layerObj, and classObj are instances of hashTableObj, a
class which functions like a limited dictionary

222 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

layer.metadata.set (' wms_name’, ’foo’)
name = layer.metadata.get (' wms_name’) # returns ’foo

14

You can iterate over all keys in a hashTableOb;j like

key = NULL
while (1):
key = layer.metadata.nextKey (key)
if key == NULL:
break
value = layer.metadata.get (key)

See the API Reference (mapscript.txt) for more details.

Backwards Compatibility for Metadata

The old getMetaData and setMetaData methods of mapObj, layerObj, and classObj remain for use by older programs.

6.7 Querying

Author Sean Gillies
Revision $Revision: 8278 $
Date $Date: 2008-12-23 13:34:31 -0800 (Tue, 23 Dec 2008) $

Contents

* Querying
— Introduction
— Querying Overview
— Attribute Queries
— Spatial Queries

6.7.1 Introduction

All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+ and found under
mapserver/tests.

Pseudocode

All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a
statement. For object attributes and methods we use the dot, ‘.’, operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.

6.7. Querying 223

MapServer Documentation, Release 5.4.2

6.7.2 Querying Overview
The Query Result Set

Map layers can be queried to select features using spatial query methods or the attribute query method. Ignoring for
the moment whether we are executing a spatial or attribute query, results are obtained like so:

layer.query () # not an actual method!
results = layer.getResults()

In the case of a failed query or query with zero results, ‘getResults’ returns NULL.

Result Set Members
Individual members of the query results are obtained like:

continued
if results:
for i in range(results.numresults) : # iterate over results
result = results.getResult (1)
This result object is a handle, of sorts, for a feature of the layer, having ‘shapeindex’ and ‘tileindex’ attributes that can

be used as arguments to ‘getFeature’.

Resulting Features
The previous example code can now be extended to the case of obtaining all queried features:

layer.query ()

results = layer.getResults()

if results:
open layer in preparation of reading shapes
layer.open ()

for i in range (results.numresults):
result = results.getResult (i)

layer.getFeature (result.shapeindex, result.tileindex)
do something with this feature

Close when done
layer.close()

Backwards Compatibility
Scripts using the 4.2 API can continue to access query result members through layer methods:

for i in range(layer.getNumResults()) :
result = layer.getResult (0)

but should adopt the new API for use in new work.

224 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

6.7.3 Attribute Queries
By Attributes

queryByAttributes()

6.7.4 Spatial Queries
By Rectangle

queryByRect()
By Point
queryByRect()
By Shape
queryByShape()

By Selection

queryByFeatures()

6.8 MapScript Variables

Author Howard Butler

Contact hobu.inc at gmail.com

Revision $Revision: 8278 $

Date $Date: 2008-12-23 13:34:31 -0800 (Tue, 23 Dec 2008) $

6.8. MapScript Variables

225

MapServer Documentation, Release 5.4.2

Contents

* MapScript Variables

Version

— Logical Control - Boolean Values
— Logical Control - Status Values
— Map Units

— Layer Types

— Font Types

— Label Positions

— Label Size (Bitmap only)

— Shape Types

— Measured Shape Types

— Shapefile Types

— Query Types

— File Types

— Querymap Styles

— Connection Types

— DB Connection Types

— Join Types

— Line Join Types (for rendering)
— Image Types

— Image Modes

— Symbol Types

— Return Codes

— Limiters

— Error Return Codes

6.8.1 Version

Name Type Value
MS_VERSION | character | 5.2

6.8.2 Logical Control - Boolean Values

Name Type Value
MS_TRUE integer | 1
MS_ON integer | 1
MS_YES integer | 1
MS_FALSE | integer | 0
MS_OFF integer | O
MS_NO integer | 0

6.8.3 Logical Control - Status Values

Name Type Value
MS_DEFAULT | integer | 2
MS_EMBED integer | 3
MS_DELETE integer | 4

226

Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

6.8.4 Map Units

Name Type Value
MS_DD integer
MS_FEET integer

MS_INCHES integer
MS_METERS | integer
MS_MILES integer
MS_PIXELS integer

6.8.5 Layer Types

Name Type Value
MS_LAYER_POINT integer
MS_LAYER_LINE integer
MS_LAYER_POLYGON integer
MS_LAYER_RASTER integer
MS_LAYER_ANNOTATION | integer
MS_LAYER_QUERY integer
MS_LAYER_CIRCLE integer
MS_LAYER_TILEINDEX integer

6.8.6 Font Types

Name Type Value
MS_TRUETYPE | integer
MS_BITMAP integer

6.8.7 Label Positions

Name Type Value
MS_UL integer
MS_LL integer
MS_UR integer
MS_LR integer
MS _CL integer

MS_CR integer
MS_UC integer
MS_LC integer
MS_CC integer
MS_AUTO | integer

6.8.8 Label Size (Bitmap only)

Name Type Value
MS_TINY integer
MS_SMALL integer
MS_MEDIUM | integer
MS_LARGE integer
MS_GIANT integer

6.8. MapScript Variables 227

MapServer Documentation, Release 5.4.2

6.8.9 Shape Types

Name Type

MS_SHAPE_POINT integer
MS_SHAPE_LINE integer
MS_SHAPE_POLYGON | integer
MS_SHAPE _NULL integer

Value

6.8.10 Measured Shape Types

Name Type Value
MS_SHP_POINTM integer | 21
MS_SHP_ARCM integer | 23

MS_SHP_POLYGONM integer | 25
MS_SHP_MULTIPOINTM | integer | 28

6.8.11 Shapefile Types

Name Type Value
MS_SHAPEFILE_POINT integer | 1
MS_SHAPEFILE_ARC integer | 3
MS_SHAPEFILE_POLYGON integer | 5
MS_SHAPEFILE_MULTIPOINT | integer | 8
6.8.12 Query Types

Name Type Value
MS_SINGLE integer | 0
MS_MULTIPLE | integer | 1

6.8.13 File Types

Name Type Value

MS_FILE_MAP integer
MS_FILE_SYMBOL | integer

6.8.14 Querymap Styles

Name Type Value
MS_NORMAL integer
MS_HILITE integer
MS_SELECTED | integer

228

Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

6.8.15 Connection Types

Name

MS_INLINE
MS_SHAPEFILE
MS_TILED_SHAPEFILE
MS_SDE

MS_OGR
MS_POSTGIS
MS_WMS
MS_ORACLESPATIAL
MS_WES
MS_GRATICULE
MS_MYGIS
MS_RASTER

Type Value

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

6.8.16 DB Connection Types

Name Type Value
MS_DB_XBASE integer
MS_DB_CSV integer
MS_DB_MYSQL integer
MS_DB_ORACLE integer
MS_DB_POSTGRES | integer

6.8.17 Join Types

Name
MS_JOIN_ONE_TO_ONE

MS_JOIN_ONE_TO_MANY | integer

Type
integer

Value

6.8.18 Line Join Types (for rendering)

Name Type Value
MS_CJC_NONE integer
MS_CIJC_BEVEL integer
MS_CIC_BUTT integer
MS_CIJC_MITER integer
MS_CJC_ROUND integer
MS_CJC_SQUARE integer
MS_CJC_TRIANGLE | integer

6.8. MapScript Variables

229

MapServer Documentation, Release 5.4.2

6.8.19 Image Types

Name Type Value
GD/GIF integer
GD/PNG integer

GD/PNG24 integer
GD/JPEG integer
GD/WBMP | integer

swf integer
imagemap integer
pdf integer

GDAL/GTIiff | integer

6.8.20 Image Modes

Name Type Value
MS_IMAGEMODE_PC256 integer
MS_IMAGEMODE_RGB integer
MS_IMAGEMODE_RGBA integer
MS_IMAGEMODE_INT16 integer
MS_IMAGEMODE_FLOAT32 | integer
MS_IMAGEMODE_BYTE integer
MS_IMAGEMODE_NULL integer
MS_NOOVERRIDE integer
MS_GD_ALPHA integer | 1000

6.8.21 Symbol Types

Name Type Value
MS_SYMBOL_SIMPLE integer
MS_SYMBOL_VECTOR integer
MS_SYMBOL_ELLIPSE integer
MS_SYMBOL_PIXMAP integer
MS_SYMBOL_TRUETYPE integer
MS_SYMBOL_CARTOLINE | integer

6.8.22 Return Codes

Name Type Value
MS_SUCCESS | integer
MS_FAILURE | integer
MS_DONE integer

6.8.23 Limiters

Name Type | Value
MS_MAXSYMBOLS long
MS_MAXVECTORPOINTS | long
MS_MAXSTYLELENGTH | long
MS_IMAGECACHESIZE long

230 Chapter 6. MapScript

MapServer Documentation, Release 5.4.2

6.8.24 Error Return Codes

Name Type | Value
MS_NOERR long | O
MS_IOERR long | 1
MS_MEMERR long | 2
MS_TYPEERR long | 3
MS_SYMERR long | 4
MS_REGEXERR long | 5
MS_TTFERR long | 6
MS_DBFERR long | 7
MS_GDERR long | 8
MS_IDENTERR long | 9
MS_EOFERR long | 10
MS_PROJERR long | 11
MS_MISCERR long | 12
MS_CGIERR long | 13
MS_WEBERR long | 14
MS_IMGERR long | 15
MS_HASHERR long | 16
MS_JOINERR long | 17
MS_NOTFOUND long | 18
MS_SHPERR long | 19
MS_PARSEERR long | 20
MS_SDEERR long | 21
MS_OGRERR long | 22
MS_QUERYERR long | 23
MS_WMSERR long | 24
MS_WMSCONNERR long | 25
MS_ORACLESPATIALERR | long | 26
MS_WFSERR long | 27
MS_WFSCONNERR long | 28
MS_MAPCONTEXTERR long | 29
MS_HTTPERR long | 30
MS_CHILDERR long | 31
MS_WCSERR long | 32
MS_NUMERRORCODES long | 33
MESSAGELENGTH long | 33
ROUTINELENGTH long | 33

6.8. MapScript Variables 231

MapServer Documentation, Release 5.4.2

232 Chapter 6. MapScript

CHAPTER
SEVEN

DATA INPUT

7.1 Vector Data

Date 2008/09/09

Author Tyler Mitchell

Contact tmitchell at osgeo.org

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license,
visit: http://creativecommons.org/licenses/by-sa/2.0/ca/ or send a letter to Creative Commons, 559 Nathan Abbott
Way, Stanford, California 94305, USA.

What is vector data? This quote from is a good description of what vector data is:

Vector: “An abstraction of the real world where positional data is represented in the form of coordinates.
In vector data, the basic units of spatial information are points, lines and polygons. Each of these units
is composed simply as a series of one or more coordinate points. For example, a line is a collection of
related points, and a polygon is a collection of related lines. Vector images are defined mathematically
as a series of points joined by lines. Vector-based drawings are resolution independent. This means that
they appear at the maximum resolution of the output device, such as a printer or monitor. Each object is
self-contained, with properties such as color, shape, outline, size, and position on the screen.”

From: http://coris.noaa.gov/glossary/glossary_1_z.html#v

The rest of this document is the data format guide. This guide is structured to show the fundamentals of each
MapServer supported data format. Each section discusses one format, ranging from one to several pages in length.
The sections typically start with a summary of the most important information about the format, followed by examples
of file listings, connection methods, ogrinfo usage and MapServer map file syntax examples.

Each section has been designed to stand alone, so you may notice that certain warnings and comments are repeated
or redundant. This is intentional. Each format is presented in rough order of popular use, based on a survey of the
MapServer community.

The following formats are included:

7.1.1 Data Format Types

Each type of data is made up of a data source and (one or more) layers. These two definitions apply to MapServer and
OGR.

233

http://creativecommons.org/licenses/by-sa/2.0/ca/
http://coris.noaa.gov/glossary/glossary_l_z.html#v

MapServer Documentation, Release 5.4.2

Data Source - a group of layers stored in a common repository. This may be a file that handles several layers within
it, or a folder that has several files.

Layer - a sub-set of a data source often containing information in one type of vector format (point, line, polygon).

There are three types of data mapping and GIS data formats. Each type is handled differently. Below are the types and
some example formats:

* File-based- Shapefiles, Microstation Design Files (DGN), GeoTIFF images
* Directory-based - ESRI ArcInfo Coverages, US Census TIGER
 Database connections - PostGIS, ESRI ArcSDE, MySQL

File-based Data

File-based data consists of one or more files stored in any arbitrary folder. In many cases a single file is used (e.g.
DGN) but ESRI Shapefiles, for example, consist of at least 3 files each with a different filename extension: SHP, DBF,
SHX. In this case all 3 files are required because they each perform a different task internally.

Filenames usually serve as the data source name and contain layers that may or may not be obvious from the filename.
In Shapefiles, for example, there is one data source per shapefile and one layer which has the same name as that of the
file.

Directory-based Data

Directory-based data consists of one or more files stored in a particular way within a parent folder. In some cases
(e.g. Coverages) they may also require additional folders in other locations in the file tree in order to be accessed. The
directory itself may be the data source. Different files within the directory often represent the layers of data available.

For example, ESRI ArcInfo Coverages consist of more than one file with an ADF file extension, within a folder. The
PAL.ADF file represents the Polygon data. ARC.ADF holds the arc or line string data. The folder holds the data
source and each ADF file is a layer.

Database Connections

Database Connections are very similar to file and directory-based structures in one respect: they provide geographic
coordinate data for MapServer to interpret. That may be oversimplifying what is happening inside MapServer, but in
essence all you need is access to the coordinates making up the vector datasets.

Database connections provide a stream of coordinate data that is temporarily stored (e.g. in memory) and read by
MapServer to create the map. Other attribute or tabular data may also be required, but the focus of this guide is
coordinate data.

One important distinction between databases must be made. The databases discuss here are spatial databases, those
which can hold geographic data in its own data type. This is opposed to strictly tabular databases which cannot hold
geographic coordinates in the same way. It is possible to store some very simple coordinate data in regular tables, but
for anything but the most simple use a spatial database is required. There are spatial extensions to many databases
(open source and commercial). One of the most robust is the PostGIS extension to the PostgreSQL database. This
database not only allows the storage of geographic data, but also allows the manipulation of that data using SQL
commands. The other open source database with spatial capabilities is MySQL.

Connections to databases usually consist of the following pieces of connection information:
Host - Directions to the server or computer hosting the database.

Database name - The name of the database you wish to access that is running on the host.

234 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

User name / passwords - Access privileges are usually restricted by user.

Note: Some databases (e.g. Oracle) use a name service identifier that includes both the host and database names.
Access to specific pieces of coordinate data usually require:

Table/View name - The name of the table or view holding the coordinate data.

Geographic column name - Where the geometry or coordinates are stored.

7.1.2 ESRI Shapefiles (SHP)

Also known as ESRI ArcView Shapefiles or ESRI Shapefiles. ESRI is the company that introduced this format.
ArcView was the first product to use shapefiles.

File listing
Shapefiles are made up of a minimum of three similarly named files, with different suffixes:

Countries_area.dbf
Countries_area.shp
Countries_area.shx

Data Access / Connection Method

Shapefile access is built directly into MapServer. It is also available through OGR, but direct access without OGR
is recommended and discussed here. The path to the shapefile is required. No file extension should be specified.
Shapefiles only hold one layer of data, therefore no distinction needs to be made.

OGRINFO Examples

» The directory can serve as a data source.
 Each shapefile in a directory serves as a layer.
* A shapefile can also be a data source. In this case the layer has the same prefix as the shapefile.

Using ogrinfo on a directory with multiple shapefiles:

> ogrinfo /data/shapefiles/

INFO: Open of ‘/data/shapefiles/’

using driver ‘ESRI Shapefile’ successful.
1: wpg_h20 (Line String)

2: wpg_roads (Line String)

3: wpg_roads_dis (Line String)

4: wpgrestaurants (Point)

Using ogrinfo on a single shapefile:

> ogrinfo /data/shapefiles/Countries_area.shp
Had to open data source read-only.

INFO: Open of ‘Countries_area.shp’

using driver ‘ESRI Shapefile’ successful.

1: Countries_area (Polygon)

7.1. Vector Data 235

MapServer Documentation, Release 5.4.2

Using ogrinfo to examine the structure of the file/layer:

> ogrinfo —-summary /data/shapefiles/Countries_area.shp Countries_area
Had to open data source read-only.

INFO: Open of ‘Countries_area.shp’

using driver ‘ESRI Shapefile’ successful.

Layer name: Countries_area
Geometry: Polygon
Feature Count: 27458

Extent: (-180.000000, -90.000000) - (180.000000, 83.627419)
Layer SRS WKT:
(unknown)

FAC_ID: Integer (5.0)
TILE: Integer (3.0)
ARCLIST: String (254.0)
NAM: String (77.0)
PERIMETER: Real (22.17)
POLYGONCOU: Integer (6.0)
NA2DESC: String (45.0)

Map File Example:

LAYER
NAME my_shapefile
TYPE POLYGON
DATA countries_area
STATUS OFF
CLASS
NAME "Countries"
OUTLINECOLOR 0 0 O
END

END

7.1.3 PostGIS/PostgreSQL

PostGIS/PostgreSQL

PostGIS spatially enables the Open Source PostgreSQL database.

The PostGIS wiki page may include additional information.

Data Access /Connection Method

PostGIS is supported directly by MapServer and must be compiled into MapServer to work.

The PostgreSQL client libraries (libpq.so or libpq.dll) must be present in the system’s path environment for function-
ality to be present.

The CONNECTIONTYPE parameter must be set to POSTGIS.

The CONNECTION parameter is used to specify the parameters to connect to the database. CONNECTION param-
eters can be in any order. Most are optional. dbname is required. user is required. host defaults to localhost, port
defaults to 5432 (the standard port for PostgreSQL).

236 Chapter 7. Data Input

http://postgis.refractions.net/
http://www.postgresql.org/
http://trac.osgeo.org/mapserver/wiki/PostGIS

MapServer Documentation, Release 5.4.2

The DATA parameter is used to specify the data used to draw the map. The form of DATA is “[geometry_column]
from [table_namelsql_subquery] using unique [unique_key] using srid=[spatial_reference_id]”. The “using unique”
and “using srid=" clauses are optional, but using them improves performance.

Here is a simple generic example:

CONNECTIONTYPE POSTGIS
CONNECTION "host=yourhostname dbname=yourdatabasename user=yourdbusername password=yourdbpassword po:
DATA "geometrycolumn from yourtablename"

This example shows specifying the unique key and srid in the DATA line:

CONNECTIONTYPE POSTGIS
CONNECTION "dbname=yourdatabasename user=yourdbusername"
DATA "the_geom from the_database using unique gid using srid=4326"

This example shows using a SQL subquery to perform a join inside the database and map the result in MapServer.
Note the “as subquery” string in the statement — everything between “from” and “using” is sent to the database for
evaluation:

CONNECTIONTYPE POSTGIS
CONNECTION "dbname=yourdatabasename user=yourdbusername"
DATA "the_geom from (select g.gid, g.the_geom, a.attrl, a.attr2 from geotable g Jjoin attrtable a on ¢

This example shows using a geometry function and database sort to limit the number of features and vertices returned
to MapServer:

CONNECTIONTYPE POSTGIS
CONNECTION "dbname=yourdatabasename user=yourdbusername"
DATA "the_geom from (select g.gid, ST_Simplify(g.the_geom, 10.0) as the_geom from geotable g order b

This example shows the use of the |BOX! substitution string to over-ride the default inclusion of the map bounding
box in the SQL. By default the spatial box clause is appended to the SQL in the DATA clause, but you can use !BOX!
to insert it anywhere you like in the statement. In general, you won’t need to use !BOX!, because the PostgreSQL
planner will generate the optimal plan from the generated SQL, but in some cases (complex sub-queries) a better plan
can be generated by placing the !BOX! closer to the middle of the query:

CONNECTIONTYPE POSTGIS
CONNECTION "dbname=yourdatabasename user=yourdbusername"
DATA "the_geom from (select g.gid, ST_Union(g.the_geom, 10.0) as the_geom from geotable g where ST_Ii

OGRINFO Examples

OGRINFO can be used to read out metadata about PostGIS tables directly from the database.

First you should make sure that your GDAL/OGR build contains the PostgreSQL driver, by using the ‘—formats’
command:

>ogrinfo —--formats
Loaded OGR Format Drivers:

-> "PGeo" (readonly)
-> "PostgreSQL" (read/write)
-> "MySQL" (read/write)

7.1. Vector Data 237

MapServer Documentation, Release 5.4.2

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.

Once you have the driver you are ready to try an ogrinfo command on your database to get a list of spatial tables:

>ogrinfo PG:"host=127.0.0.1 user=postgres password=postgres dbname=canada port=5432"
using driver ‘PostgreSQL’ successful.
1: province (Multi Polygon)

Now use ogrinfo to get information on the structure of the spatial table:

>ogrinfo PG:"host=127.0.0.1 user=postgres password=postgres dbname=canada port=5432" province -summa:
INFO: Open of ‘PG:host=127.0.0.1 user=postgres password=postgres dbname=canada’
using driver ‘PostgreSQL’ successful.

Layer name: province
Geometry: Multi Polygon
Feature Count: 1068

Extent: (-2340603.750000, -719746.062500) - (3009430.500000, 3836605.250000)
Layer SRS WKT:
(unknown)

FID Column = gid

Geometry Column = the_geom
area: Real (0.0)

island: String (30.0)
island_e: String (30.0)
island_f: String (30.0)
name: String (30.0)

Mapfile Example

LAYER
NAME "province"
STATUS ON

TYPE POLYGON

CONNECTIONTYPE POSTGIS

CONNECTION "host=127.0.0.1 port=5432 dbname=canada user=postgres password=postgres"
DATA "the_geom from province"

CLASS

END
END

For more info about PostGIS and MapServer see the PostGIS docs: http://postgis.refractions.net/docs/

7.1.4 OGR

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 8597 $

Date $Date: 2009-02-19 07:10:12 -0800 (Thu, 19 Feb 2009) $

238 Chapter 7. Data Input

http://fwtools.maptools.org
http://www.maptools.org
http://postgis.refractions.net/docs/

MapServer Documentation, Release 5.4.2

Table of Contents

* OGR
— Introduction
What is OGR?
Obtaining and Compiling MapServer with OGR Support
Integrating OGR Support with MapServer Applications
STYLEITEM “AUTO” - Rendering Layers Using Style Information from the OGR File
Sample Sites Using OGR/MapServer
FAQ / Common Problems

Introduction

Starting with version 3.5, MapServer included the ability to access vector data sets in formats other than Shapefile
in their native format using the OGR library. The following document describes the process for implementing OGR
support within MapServer applications.

Note: Experimental OGR support was included in MapServer version 3.4 but this initial implementation had some
limitations and is not covered in this document.

This document assumes that you are already familiar with certain aspects of MapServer:
* MapServer application development and especially setting up .map files.

» Some compilation skills if you don’t have ready access to a pre-compiled installation and need to compile your
own copy of MapServer with OGR support.

* access to OGR utilities, such as ogrinfo, which are available in the FWTools and MS4W packages.

Readers should also check out the Vector Data Access Guide, which has lots of examples of how to access specific
vector formats.

What is OGR?

The OGR Simple Features Library is a C++ open source library (and command-line tools) providing read (and some-
times write) access to a variety of vector file formats including ESRI Shapefiles, and MapInfo mid/mif and TAB
formats.

OGR is actually part of the GDAL library, so you will notice that some references point to GDAL (such as the mailing
list).

What Does OGR Add to MapServer?

The OGR Simple Features Library allows MapServer users to display several types of vector data files in their native
formats. For example, MapInfo Mid/Mif and TAB data do not need to be converted to ESRI shapefiles when using
OGR support with MapServer.

What Data Formats are Supported?

See http://www.gdal.org/ogr/ogr_formats.html for the latest list of supported formats. At the date this document was
written, the following formats were supported:

* ArcInfo Binary Coverages

7.1. Vector Data 239

http://fwtools.maptools.org/
http://www.maptools.org/ms4w/
http://www.gdal.org/ogr/ogr_formats.html
http://www.gdal.org/ogr/drv_avcbin.html

MapServer Documentation, Release 5.4.2

Note:

ArcInfo EOO Coverages
Atlas BNA

Comma Separated Value (.csv)
DODS/OPeNDAP

ESRI ArcSDE

ESRI Personal GeoDatabase
ESRI Shapefiles
FMEODbjects Gateway
Géoconcept Export
GeoJSON

GeoRSS

GML

GMT

GRASS

GPX

Informix DataBlade
INGRES

INTERLIS

KML

Maplnfo files

Memory

Microstation DGN files
MySQL

ODBC

OGDI Vectors

Oracle Spatial

PostgreSQL

SDTS

SQLite

UK.NTF (National Transfer Format)
US Census TIGER/Line
VRT - Virtual Datasource
X-Plane/Flighgear aeronautical data

Some of the above formats (e.g. OGDI) have external dependencies and are not always included in the

pre-compiled binary distributions of MapServer with OGR support.*

Note:

Some of the above formats are not well suited for random access by nature, that’s the case of MapInfo MIF/MID

files which is a TEXT format and will give very poor performance for a web application. On the other hand, some

240

Chapter 7. Data Input

http://www.gdal.org/ogr/drv_avce00.html
http://www.gdal.org/ogr/drv_bna.html
http://www.gdal.org/ogr/drv_csv.html
http://www.gdal.org/ogr/drv_dods.html
http://www.gdal.org/ogr/drv_sde.html
http://www.gdal.org/ogr/drv_pgeo.html
http://www.gdal.org/ogr/drv_shapefile.html
http://www.gdal.org/ogr/drv_fme.html
http://www.gdal.org/ogr/drv_geoconcept.html
http://www.gdal.org/ogr/drv_geojson.html
http://www.gdal.org/ogr/drv_georss.html
http://www.gdal.org/ogr/drv_gml.html
http://www.gdal.org/ogr/drv_gmt.html
http://www.gdal.org/ogr/drv_grass.html
http://www.gdal.org/ogr/drv_gpx.html
http://www.gdal.org/ogr/drv_idb.html
http://www.gdal.org/ogr/drv_ingres.html
http://www.gdal.org/ogr/drv_ili.html
http://www.gdal.org/ogr/drv_kml.html
http://www.gdal.org/ogr/drv_mitab.html
http://www.gdal.org/ogr/drv_memory.html
http://www.gdal.org/ogr/drv_dgn.html
http://www.gdal.org/ogr/drv_mysql.html
http://www.gdal.org/ogr/drv_odbc.html
http://www.gdal.org/ogr/drv_ogdi.html
http://www.gdal.org/ogr/drv_oci.html
http://www.gdal.org/ogr/drv_pg.html
http://www.gdal.org/ogr/drv_sdts.html
http://www.gdal.org/ogr/drv_sqlite.html
http://www.gdal.org/ogr/drv_ntf.html
http://www.gdal.org/ogr/drv_tiger.html
http://www.gdal.org/ogr/drv_vrt.html
http://www.gdal.org/ogr/drv_xplane.html

MapServer Documentation, Release 5.4.2

binary formats such as MaplInfo TAB are better suited for random access and will give performance comparable to
native shapefile access in MapServer.*

How to Get More Information on the OGR Project

* More information on the OGR Simple Features Project can be found at http://www.gdal.org/ogr/.

* The GDAL mailing list can be used for OGR related questions. Always search the list archives before sending
new questions.

The GDAL Wiki has lots of good information for users and developers.

The #gdal IRC channel on irc.freenode.net might also be of help. For info on IRC see the MapServer IRC page.

The main developer of the OGR library is Frank Warmerdam and the integration of OGR within MapServer was done
by Daniel Morissette.

Obtaining and Compiling MapServer with OGR Support

* Follow the instructions on the OGR page to compile/install OGR/GDAL.
* Obtain the MapServer source.

For UNIX users, see the README.CONFIGURE file in the MapServer source, or see the UNIX Compilation and
Installation. If GDAL/OGR is normally installed it should be sufficient to add —with-ogr to the configure line before
(re)building MapServer. Linux users might want to try FGS, a Linux installer for MapServer.

For Windows users, it is recommended to look for a pre-compiled binary on the MapServer site (MS4W is recom-
mended). If you want to compile your own then see the README.WIN32 file in the MapServer source.

Integrating OGR Support with MapServer Applications

The only change that is needed to integrate OGR support with a MapServer application is with the .map file.
The LAYER’s DATA parameter is expanded to three parameters (CONNECTIONTYPE OGR, CONNECTION and
DATA).

The syntax for this differs depending on the type of data being used (the Vector Data Access Guide is an excellent
resource for this). In OGR, a data source can be either a set of files that share a common basename (e.g. .shp/.shx/.dbf
for ArcView Shapefiles, or .tab/.map/.dat/.ind/.id for MapInfo TAB files) or a whole directory of files (e.g. TIGER).

Let’s call the former “File-based data sources” and the later “Directory-based data sources”. When accessing a file-
based data source you specify the filename of one of the files in the set (e.g. roads.shp or roads.tab) and when
accessing a directory-based data source you specify the directory name and OGR reads all the files in the directory
as a single data source with potentially several layers (e.g. TIGER files).

Some OGR drivers (e.g. SHP, TAB) can have dual behaviors, that is if they’re pointed to a single file then they behave
as a file-based data source and if they’re pointed to a directory then they will behave as a directory-based data source
and then every file in the directory becomes a new layer in the data source.

See the OGR formats page for more info on the specific file format you’re using. (Click on the format name for more
specific driver info on that format)

Using OGR Data Sources in the Map File

The .map file LAYER definition for file-based sources is as follows:

7.1. Vector Data 241

http://www.gdal.org/ogr/
http://lists.osgeo.org/mailman/listinfo/gdal-dev
http://trac.osgeo.org/gdal/wiki/
http://www.gdal.org/ogr/
http://www.maptools.org/fgs/
http://www.maptools.org/ms4w/
http://www.gdal.org/ogr/ogr_formats.html

MapServer Documentation, Release 5.4.2

LAYER

CONNECTIONTYPE OGR
CONNECTION "<datasource_name>"
DATA "<layer_definition>"

END

<datasource_name> is the name of the datasource to read from and is prefixed by the CONNECTION keyword. The
exact organization depends on the format driver in use. The format driver to use is automatically selected by OGR
based on the nature of the string passed as the datasource, and/or the format of the file referenced by it.

* For file based datasources this is the name of the file, including the extension, using an absolute path, or a relative
path. Relative paths are interpreted relative to the SHAPEPATH first, if not found then we try again relative to
the .map file location.

Note: Before version 4.1 the SHAPEPATH was ignored for OGR datasources.

* For directory based datasources, such as TIGER/Line, or Arc/Info Binary Coverages this is the name of the
directory containing the files. If the path is relative it is interpreted relative to the .map file.

e For virtual datasources such as database systems, and OGDI this is the service connection string
and is generally not related to the filesystem. For instance, for Oracle Spatial this might be
“OCIL:warmerda/Password @ gdal800.velocet.ca”.

<layer_definition> is the name, number or SQL definition of the layer to use from the datasource. It is indicated via
the DATA keyword in the map file.

The

* Layer Name: The (case insenstive) layer name may be used to select a layer.

e Layer Number: The layer number (starting from O for the first layer) may be used to select a layer. Generally
the layer name is preferred to this since it is more self describing.

* Omitted: If no DATA keyword is provided, this is equivalent to selecting layer 0.

e SQL SELECT: If an SQL SELECT statement is used, it is interpreted in a driver specific manner to try and
generate a temporary pseudo-layer. For some formats this a restricted subset of SQL is interpreted within OGR.
For RDBMS based drivers (such as PostGIS and Oracle) this is passed through to the underlying database.

OGRINFO utility can be used to find out the list of layers and their names in a data source.

Examples of Layer Definitions Using OGR

Please see the Vector Data Access Guide for details and examples of each data format supported.

Example 1. MapInfo TAB file

LAYER
NAME "Builtup_Areas_tab"

TYPE POLYGON

CONNECTIONTYPE OGR

CONNECTION "data/tab/092b06_builtup_a.tab"
STATUS ON

CLASS

END

END

242

Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

Example 2. Microstation DGN file using <layer_index>

The entire DGN file is represented in OGR as one layer (see the DGN driver page for more details):

LAYER
NAME "dgn"
TYPE LINE

CONNECTIONTYPE OGR
CONNECTION "dgn/santabarbara02.dgn"
DATA "O"
STATUS ON
STYLEITEM "AUTO"
CLASS
END
END # Layer

Example 3. TIGER/Line file using <layer_name>

LAYER
NAME "Roads_tig"
TYPE line

CONNECTIONTYPE OGR

CONNECTION "full/path/to/tiger/TGR25001"
DATA "CompleteChain"

STATUS ON

CLASS

END
END

Example 4. Directory of Shapefiles using SQL JOIN

LAYER
NAME "Parks cov"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "data/shppoly"
DATA "SELECT eas_id, idlink.Name FROM poly LEFT JOIN idlink ON poly.eas_id = idlink.eas_id"
STATUS ON
CLASSITEM "idlink.Name"
CLASS

END
END

How to Use “OGRINFO”

OGRINFO is part of the GDAL/OGR distribution (it is also included in FWTools and MS4W). It is an executable that
can be used to obtain layer information about OGR supported files. The parameters are:

ogrinfo [-ro] [-q] datasource_name [layer [layer...]]
* -ro opens the file as read only (optional)
* -q executes in quiet mode, only the layer idex line will be returned (optional)

* datasource_name is the filename including extension (eg. roads.tab); for TIGER/Line files, data-
source_name is the directory containing the TIGER files (eg. ogrinfo TGR25001)

7.1. Vector Data 243

http://www.gdal.org/ogr/drv_dgn.html
http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 5.4.2

Example 5. To get the list of layers in a file:

$ ogrinfo popplace.tab

Had to open data source read-only.
INFO: Open of ‘popplace.tab’

using driver ‘MapInfo File’ successful.
1: popplace (Point)

which shows that there is one point layer in the popplace.tab file.

Example 6. To get a dump of a specific layer, including field names, projection, etc:

$ ogrinfo popplace.tab popplace

Had to open data source read-only.
INFO: Open of ‘popplace.tab’
using driver ‘MapInfo File’ successful.

Layer name: popplace
Geometry: Point
Feature Count: 497

Layer SRS WKT: PROJCS["unnamed", GEOGCS["unnamed",DATUM["North ...snipped...

AREA: Real (15.3)
PERIMETER: Real (15.3)
POPPLACE_: Real (11.0)
POPPLACE_I: Real (15.0)
NAME: String (50.0)
OGRFeature (popplace) :1

AREA (Real) = 0.000
PERIMETER (Real) = 0.000
POPPLACE_ (Real) = 1
POPPLACE_I (Real) = 1
NAME (String) = Port Hope Simpson

POINT (2437287.249 1153656.751)

OGRFeature (popplace) :2

AREA (Real) = 0.000
PERIMETER (Real) = 0.000
POPPLACE_ (Real) = 2
POPPLACE_I (Real) = 1
NAME (String) = Hopedale

Example 7. To get a list of layers in a TIGER/Line Directory:

$ ogrinfo TGR25001

Had to open data source read-only.
INFO: Open of ‘TGR25001’

using driver ‘TIGER’ successful.
1: CompleteChain (Line String)

2: AltName (None)

3: FeatureIds (None)

4: ZipCodes (None)

5: Landmarks (Point)

244 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

: Arealandmarks (None)
: KeyFeatures (None)
Polygon (None)

9: EntityNames (Point)
10: IDHistory (None)

11: PolyChainLink (None)
12: PIP (Point)

13: TLIDRange (None)

14: ZipPlus4 (None)

0 J o

The above example shows that there are 14 layers in the TGR25001 directory.

Example 8. To get a summary of a specific TIGER layer, including only field names, projection, and extent

$ ogrinfo TGR25001 Landmarks -summary

Had to open data source read-only.
INFO: Open of ‘TGR25001’
using driver ‘TIGER’ successful.

Layer name: Landmarks

Geometry: Point

Feature Count: 777

Extent: (-70.674324, 41.519817) - (-69.969211, 42.046868)

Layer SRS WKT: GEOGCS["NAD83",DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101]1]1,PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]]

MODULE: String (8.0)

FILE: String (5.0)

STATE: Integer (2.0)

COUNTY: Integer (3.0)

LAND: Integer (10.0)

SOURCE: String (1.0)

CFCC: String (3.0)

LANAME: String (30.0)

Queries Through OGR Format

OGR layers can be queried the same way as regular shapefiles in MapServer.

TILEINDEX with OGR

OGR layers can utilize tile indexes in a similar fashion to Shapefile based layers. The TILEINDEX keyword should
contain the connection string for the tile index file. The tile index file may be any supported OGR format, including
shapefiles.

The TILEITEM keyword in the LAYER definition indicates what attribute from the tile index file should be used as the
datasource location. If omitted, the default TILEITEM value is “location”. The value in the location field should be a
connection string the same as would have been used in the CONNECTION field for OGR layers. The CONNECTION
keyword is not needed (and will be ignored) for layers using the OGR connection type and having the TILEINDEX
keyword.

Tileindex files can be prepared in an external GIS, or using the OGR utility ogrtindex. Details can be found on the
OGR Utilities Page.

7.1. Vector Data 245

http://www.gdal.org/ogr_utilities.html

MapServer Documentation, Release 5.4.2

The following is a simple example of a point layer using a tile index.

LAYER
NAME "ogr_points"
TYPE POINT
CONNECTIONTYPE OGR
TILEINDEX "PIP_ogr_tiles.shp,0"
STATUS ON
CLASS
NAME "points"
STYLE
SYMBOL "default-circle"
COLOR 255 0 O
SIZE 6
END
END
END

OGR tileindex layers should support all normal query and attribute fetching mechanisms, including from MapScript;
however, this has not been heavily tested as of April/2002. Please report problems via the MapServer Trac. If auto
projection support is used for tileindexed OGR layers, the tileindex is read for the projection (not the component tiles).
Problems may (or may not) be encountered if the component tiles have differing schemas (different sets of attributes).

Connection Pooling

For some OGR supported formats, connecting to the dataset is quite expensive in terms of CPU use and amount of
disk IO. For instance, establishing access to an S-57 dataset results in a complete read into memory of the data files.
Connection pooling control aims at reducing this overhead in situations where the same file is used for several different
map layers.

To ensure that an OGR supported dataset is only opened once per map render (instead of separately for each map
LAYER referencing the dataset, use the CLOSE_CONNECTION PROCESSING option. The default value is for
CLOSE_CONNECTION is NORMAL, but if set to DEFER the dataset will be kept open till the map render is
complete. It will be reused by any other layers with using the same datasource.

Example 9. Preserve S-57 connection for two layers

In this example, we are using the same dataset (NO410810.000) for two layers. To avoid re-reading the dataset, we
mark the first layer to defer closing the connection till layer. In the second (or last) layer we request NORMAL
connection handling (though this could have been left out as normal handling is the default).

LAYER
NAME "AdminAreas"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "NO410810.000"
DATA "ADMARE"
PROCESSING "CLOSE_CONNECTION=DEFER"
STATUS ON

END

LAYER
NAME "Land Areas"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "NO410810.000"
DATA "LNDARE"

246 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

PROCESSING "CLOSE_CONNECTION=NORMAL"
STATUS ON

END

1. The text of the CONNECTION keyword must match exactly between layers for the connection to be reused.

2. Some dataset connections are quite memory expensive, and keeping them open may result in increased memory
use.

3. If all layers rendered for a particular connection defer closing the connection, it will remain open till MapServer
terminates. For normal cgi or MapScript use this is likely OK.

4. This use of CLOSE_CONNECTION handling is unique to OGR layers, and may be changed at some point in
the future as part of a broader implementation of connection pooling in MapServer.

STYLEITEM “AUTO” - Rendering Layers Using Style Information from the OGR File
Note: This feature is only supported with MapInfo TAB and Microstation DGN files at the moment, but eventually
other formats that carry colors and styles at the shape-level may also be supported through OGR.*

In MapServer, ArcView, and other shapefile-based applications, colors and styles are usually defined at the layer level.
This means that all the shapes in a given layer are usually rendered using the same color and styles.

On the other hand, some formats supported by OGR such as MapInfo TAB do have color and style information attached
to each shape. OGR adds support for the ‘STYLEITEM “AUTO’” layer parameter which allows you to request that the
shapes in a layer be rendered using colors and styles coming from the data source instead of being driven by CLASSes
as was traditionally done with MapServer.

How to Implement

In order to have a layer rendered using colours and styles coming from the OGR data source, your must do the
following:

* Your layer definition must contain the STYLEITEM “AUTO” parameter.

* Your layer definition needs to contain at least one CLASS (which may be empty) and optionally a CLASSITEM
to match the expressions if your CLASS contains an expression. The empty CLASS in the layer will be updated
dynamically at runtime to contain colours and styles coming from the data source for each shape.

Examples

Example 10. Layer Definition Using STYLEITEM “AUTOQO” without a CLASSITEM

LAYER
NAME "test_dgn"
STATUS ON

TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "../data/dgn/test.dgn"

This enables use of colors and styles from the source file.
STYLEITEM "AUTO"

Define an empty class that will be filled at runtime from the color and

7.1. Vector Data 247

MapServer Documentation, Release 5.4.2

styles read on each shape in the source file.
CLASS
END

END # layer

Example 11. Layer Definition Using STYLEITEM “AUTO” with a CLASSITEM

LAYER
NAME "Builtup_Areas_tab"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "data/tab/092b06_builtup_a.tab"
STATUS ON

This enables use of colors and styles from the source file.
STYLEITEM "AUTO"

Define an empty class that will be filled at runtime from the color and
styles read on each shape in the source file.
CLASSITEM "CATEGORY"
CLASS
EXPRESSION "1"
END
END

Please Note:

CLASS EXPRESSIONS are still working, so it is still possible to query and classify layers that are using STYLEITEM
“AUTO”. The only difference is that instead of using static class definitions, the colors and style will be read from the
data file.

Important Notes

NOTE 1 Even though Maplnfo and other OGR data sources may support layers with mixed geometry
types (e.g. points, lines and polygons in the same file) this is not yet supported in MapServer. So
you still have to define a layer ‘TYPE’ and make sure that all the shapes in the OGR data source
are compatible with that layer type, otherwise MapServer may produce an error about incompatible
geometry types at runtime.

NOTE 2 Due to the dynamic nature of this feature, it is not compatible with the labelcache, so the label-
cache is automatically disabled for layers that make use of ‘STYLEITEM “AUTO””.

NOTE 3 When you use STYLEITEM AUTO, MapServer tries to match symbol names returned by OGR
to names in your symbol file. For a quick solution, try using the following symbol file:

http://www?2.dmsolutions.ca/msapps/yk_demo/etc/symbols_mapinfo.sym

The name of the symbols returned by OGR to MapServer depends on the file format. In the case of Maplnfo files, it
will be:

* For “old-style” symbols (default MapInfo 3.0 symbols numbered 32 to 67) the symbol name will be ‘mapinfo-
sym-##" where ‘## is the symbol number, e.g. ‘mapinfo-sym-32’.

* For “Font Symbols”, the symbol name is also ‘mapinfo-sym-##" where ‘##’ is the symbol number in the font.
In this case, the name of the font itself is ignored by MapServer.

* Maplnfo also supports “custom symbols” (bitmap symbols)... I'm not sure what you would get from OGR for
this, but I'm pretty sure that MapServer doesn’t do anything useful with them.

248 Chapter 7. Data Input

http://www2.dmsolutions.ca/msapps/yk_demo/etc/symbols_mapinfo.sym

MapServer Documentation, Release 5.4.2

The OGRINFO utility can be used to find out exactly which symbol names OGR will return to MapServer. Look at
the “Style” string in the ogrinfo output for each shape that is read.

Mapping of OGR Style Info to the MapServer CLASS Members

Here is the list of style parameters that are currently supported from OGR data sources and how they’re mapped in
MapServer:

Line color The line colour is mapped to CLASS.COLOR

Line thickness The default will be 1 pixel line (as it always is with MapServer). In MapServer, in order to get lines
thicker than 1 pixel, one has to define a circle symbol that will be used to render the line (by applying a size to
the circle symbol).

So if your data source contains lines thicker than 1 pixel then you need to provide a circle symbol in your
symbolset and you must name it “default-circle”. If this symbol is present then the lines will be drawn using
their real thickness, otherwise all lines will be 1 pixel wide.

Polygon fill color Polygon fill color is mapped directly to CLASS.COLOR
Note that at this time, transparent polygons are not supported (they’re always opaque).

Polygon outline If a polygon has an outline color and thickness defined in the data source then the same rule as for
line color and thickness above will apply, except that the outline color is mapped to CLASS.OUTLINECOLOR

Point symbols Point symbol color is directly mapped to CLASS.COLOR Point symbol size is directly mapped to
CLASS.SIZE

If your symbolset contains a symbol called “default-marker” then this symbol will be used, otherwise the default
will be CLASS.SYMBOL=0 (i.e. a 1 pixel dot)

It is also possible (with a bit of work) to control which symbol gets used in rendering point symbols. OGR
provides MapServer with symbol names, and if the symbol name returned by OGR to MapServer matches the
name of one of the symbols in your symbolset then this symbol will be used.

For Maplnfo point symbols (numbered 32 to 67 in the MapInfo MIF spec), the name returned by OGR is
“mapinfo-sym-X" where X should be replaced with the MapInfo symbol number (e.g. “mapinfo-sym-35~ is the
star symbol).

Text labels The text string is mapped to CLASS.TEXT

Text color is mapped to CLASS.LABEL.COLOR

Text background color is mapped to CLASS.LABEL. BACKGROUNDCOLOR

Text height is mapped to CLASS.LABEL.SIZE

Text angle is mapped to CLASS.LABEL.ANGLE

Text font mapping follows the following rules:

1. If TTF fonts are supported:

(a) If the native font name (e.g. “Arial”) is found in your fontset then this font will be used.
(b) If 1a. failed and a font called “default” is present in your fontset then this “default” font will be used.

2. If TTF fonts are not supported or if all above cases failed, then BITMAP MEDIUM font will be used.

7.1. Vector Data 249

MapServer Documentation, Release 5.4.2

Accessing OGR STYLEITEMAUTO Label Styles Through MapScript

OGR STYLEITEMAUTO label styles can be accessed through MapScript, such as PHP/MapScript’s getshape() or
getvalue() methods, by setting the LAYER’s PROCESSING parameter to “GETSHAPE_STYLE_ITEMS=all”. There-
fore, the LAYER may contain:

LAYER
PROCESSING "GETSHAPE_STYLE ITEMS=all"
END
The following label styles are supported:
Label Style Description MapServer Version
Implemented
OGR:LabelFont | Comma-delimited list of fonts names 54
OGR:LabelSize | Numeric value with units 5.2.0
OGR:LabelText | Label text string 5.2.0
OGR:LabelAngle Rotation angle (in degrees) 5.2.0
OGR:LabelFColgrForeground color 54
OGR:LabelBColprBackground color 54
OGR:LabelPlacemElutw is the text drawn relative to the feature’s geometry 54
OGR:LabelAnchprA value from 1 to 12 defining the label’s position relative to the 54
point to which it is attached.
OGR:LabelDx | X offset 54
OGR:LabelDy | Y offset 54
OGR:LabelPerp | Perpendicular offset 54
OGR:LabelBold | Bold text 54
OGR:Labelltalic| Italic text 54
OGR:LabelUnderlidaderlined text 54
OGR:LabelPriorityNumeric value defining the order in which style parts should be 54
drawn.
OGR:LabelStrikgoStrike out text (gdal >= 1.4.0) 54
OGR:LabelStretchStretch factor changes the width of all characters in the font by 54
factor percent. (gdal >= 1.4.0)
OGR:LabelAdjHpHorizontally adjacent text (gdal >=1.4.0) 54
OGR:LabelAdjVerVertically adjacent text (gdal >= 1.4.0) 54
OGR:LabelHColprShadow color (gdal >= 1.4.0) 54
OGR:LabelOColptOutline color (gdal > 1.6.0) 54

Please see the OGR Feature Style Specification document for more details on those specific styles.

Sample Sites Using OGR/MapServer

The following sites use OGR’s STYLEITEM “AUTO” feature:

* http://www?2
* http://www?2
The following site
* http://www?2

The following site

.dmsolutions.ca/msapps/yk_demo/demo_init.html
.dmsolutions.ca/msapps/nfld_demo/demo_init.html

uses OGR, as well as MapInfo’s ‘Seamless Map Layers’ feature:
.dmsolutions.ca/msapps/ro_demo/demo_init.html

uses OGR to display TIGER 2000 files:

250

Chapter 7. Data Input

http://www.gdal.org/ogr/ogr_feature_style.html
http://www2.dmsolutions.ca/msapps/yk_demo/demo_init.html
http://www2.dmsolutions.ca/msapps/nfld_demo/demo_init.html
http://www2.dmsolutions.ca/msapps/ro_demo/demo_init.html

MapServer Documentation, Release 5.4.2

* http://www2.dmsolutions.on.ca/msapps/tig_demo/demo_init.html

FAQ / Common Problems

Q What Does “OGR” Stand For?

A Basically, OGR does not stand for anything. For a detailed explanation of how OGR was named, see
GDAL’s FAQ at http://trac.osgeo.org/gdal/wiki/FAQ.

Q When using STYLEITEM AUTO, what should I have in my .sym symbols file?

A When you use STYLEITEM AUTO, MapServer tries to match symbol names returned by OGR to
names in your symbol file. For a quick solution, try using the following symbol file:

http://www?2.dmsolutions.ca/msapps/yk_demo/etc/symbols_mapinfo.sym

The name of the symbols returned by OGR to MapServer depends on the file format. In the case of
Maplnfo files, it will be:

* For “old-style” symbols (default MapInfo 3.0 symbols numbered 32 to 67) the symbol name
will be ‘mapinfo-sym-##" where ‘##’ is the symbol number, e.g. ‘mapinfo-sym-32°.

e For “Font Symbols”, the symbol name is also ‘mapinfo-sym-## where ‘## is the symbol
number in the font. In this case, the name of the font itself is ignored by MapServer.

* Maplnfo also supports “custom symbols” (bitmap symbols)... I'm not sure what you would get
from OGR for this, but I'm pretty sure that MapServer doesn’t do anything useful with them.

The OGRINFO utility can be used to find out exactly which symbol names OGR will return to
MapServer. Look at the “Style” string in the ogrinfo output for each shape that is read.

7.1.5 Maplnfo
File listing
The following files are also associated with .TAB files: .DAT, .ID, .MAP. An example is:

border .DAT
border.ID
border.MAP
border.TAB

The term MID/MIF refers to files with .MID and .MIF extension.

Data Access / Connection Method

TAB and MID/MIF access is available in MapServer through OGR.
e The CONNECTIONTYPE OGR parameter must be used.
* The path to the (*.tab or *.mif) file is required, and the file extension is needed.
* The path may be relative to the SHAPEPATH

* Maplnfo files already contain styling information. This styling information can be used optionally by specifying
the STYLEITEM “AUTO” parameter in the LAYER object of the map file.

Note: If you use STYLEITEM “AUTO” you must have an empty class in the layer.

7.1. Vector Data 251

http://www2.dmsolutions.on.ca/msapps/tig_demo/demo_init.html
http://trac.osgeo.org/gdal/wiki/FAQ
http://www2.dmsolutions.ca/msapps/yk_demo/etc/symbols_mapinfo.sym

MapServer Documentation, Release 5.4.2

OGRINFO Examples
Using ogrinfo on a single TAB file

> ogrinfo elev5_poly.TAB

Had to open data source read-only.
INFO: Open of ‘elevb_poly.TAB’

using driver ‘MapInfo File’ successful.
1: elevb_poly (Polygon)

Using ogrinfo to examine the structure of the file/layer

> ogrinfo elev5_poly.TAB elev5_poly
Had to open data source read-only.
INFO: Open of ‘elevb_poly.TAB’

using driver ‘MapInfo File’ successful.

Layer name: elev5_poly

Geometry: Polygon

Feature Count: 2236

Extent: (-141.000000, 60.000000) - (-124.403310, 69.300251)

Layer SRS WKT:

GEOGCS ["unnamed",

DATUM["MIF 0",

SPHEROID["WGS 84 (MAPINFO Datum 0)",6378137.01,298.257223563],

TOWGsS841(0,0,0,0,0,0,0]11,

PRIMEM["Greenwich",0],

UNIT["degree",0.0174532925199433]]

AREA: Real (0.0)

PERIMETER: Real (0.0)

ELEV5_: Integer (0.0)

ELEV5_ID: Integer (0.0)

TYPE: Real (4.0)

ELEV5: Real (4.0)

Map File Example

LAYER
NAME Elevation_Poly_5
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "./hypso/elev5_poly.TAB"
STYLEITEM "AUTO"
CLASS
NAME "Elevation Poly 5"
END
END # Layer

7.1.6 WFS

WES is an Open Geospatial Consortium (OGC) specification. For more information about the format itself, see:
http://www.opengeospatial.org/standards/wfs

252 Chapter 7. Data Input

http://www.opengeospatial.org/standards/wfs

MapServer Documentation, Release 5.4.2

WES allows a client to retrieve geospatial data encoded in Geography Markup Language (GML) from multiple Web
Feature Services. GML is built on the standard web language XML.

WES differs from the popular Web Map Service (WMS) specification in that WES returns a subset of the data in valid
GML format, not just a graphic image of data.

Capabilities

Requesting the capabilities using the GetCapabilities request to a WFS server returns an XML document showing
what layers and projections are available, etc. Example of a WFS GetCapabilities URL:

http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?VERSION=1.0.0&SERVICE=wfs&REQUEST=GetCapabilities

Example of the Resulting XML from GetCapabilties:

<FeatureTypeList>
<Operations>
<Query/>
</Operations>
<FeatureType>
<Name>park</Name>
<Title>Parks</Title>
<SRS>EPSG:42304</SRS>
<LatLongBoundingBox minx="-173.433" miny="41.4271" maxx="-13.0481" maxy="83.7466" />
</FeatureType>
<FeatureType>
<Name>road</Name>
<Title>Roads</Title>
<SRS>EPSG:42304</SRS>
<LatLongBoundingBox minx="-148.059" miny="35.882" maxx="-33.7745" maxy="72.5503" />
</FeatureType>
<FeatureType>
<Name>popplace</Name>
<Title>Cities</Title>
<SRS>EPSG:42304</SRS>
<LatLongBoundingBox minx="-172.301" miny="36.3541" maxx="-12.9698" maxy="83.4832" />
</FeatureType>
</FeatureTypeList>

Data Access / Connection Method

* WES access is a core MapServer feature. MapServer currently supports WES version 1.0.0
* The CONNECTIONTYPE WEFS parameter must be used.

* WFS layers can be requested through a layer in a map file, or you can request the GML directly through the
browser with a GetFeature request. You can specify a specific layer with the TypeName request. In a map file
the name/value pairs should be put into a METADATA object.

* You can limit the number of features returned in the GML by using the MaxFeatures option (e.g. &MAXFEA-
TURES=100).

Example of a WFS Request Directly Through the Browser:

The following URL requests the GML for the layer road. (see the GetCapabilities above for the possible layers
available on this test server) . The URL is all one line, broken up here for readability.

7.1. Vector Data 253

MapServer Documentation, Release 5.4.2

http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap
?VERSION=1.0.0

&SERVICE=wfs

&REQUEST=get feature&TYPENAME=road

Map File Example:

LAYER

NAME "wfs_gmap_roads"

STATUS DEFAULT

TYPE LINE

CONNECTIONTYPE WES

CONNECTION "http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?

METADATA
"wfs_version" "1.0.0"
"wfs_srs" "EPSG:42304"
"wfs_typename" "road"

"wfs_request_method" "GET"
"wfs_service" "WES"

END
CLASS
NAME "roads"
STYLE
COLOR 0 0 O
END
END

END # layer

7.1.7 GML

Also known as Geographic Markup Language and GML/XML. GML is a text-based, XML format that can represent
vector and attribute data. This is an Open Geospatial Consortium specification for data interchange. More information
is available at http://www.opengeospatial.org/standards/gml

File listing
GML files are usually a single text file with a GML filename extension. Some may use XML as the filename extension:
coal_dep.gml

XML schema documents often accompany GML files that have been translated from some other format (e.g. using
the ogr2ogr utility).

GML uses sets of nested tags to define attributes and geometry coordinates. Example of text in a GML file:

<gml:featureMember>
<Coal_Deposits fid="1">
<UNKNOWN>0.000</UNKNOWN>
<NA>0.000</NA>
<ID>2</ID>

<ID2>2</1ID2>
<MARK>7</MARK>
<COALKEY>110</COALKEY>
<COALKEY2>110</COALKEY2>

254 Chapter 7. Data Input

http://www.opengeospatial.org/standards/gml

MapServer Documentation, Release 5.4.2

<ogr:geometryProperty>

<gml:Point>
<gml:coordinates>78.531,50.694</gml:coordinates>
</gml:Point>

</ogr:geometryProperty>

</Coal_Deposits>

</gml: featureMember>

Data Access / Connection Method

* GML access is available in MapServer through OGR. More information on OGR GML support is available at
http://www.gdal.org/ogr/drv_gml.html

e The CONNECTIONTYPE OGR parameter must be used.

* The path to the GML file is required, including file extension. There can be multiple layers in a GML file,
including multiple feature types.

OGRINFO Examples
Using ogrinfo on a single GML file:

> ogrinfo /data/gml/coal_dep.gml
Had to open data source read-only.
INFO: Open of ‘coal_dep.gml’

using driver ‘GML’ successful.

1: Coal_Deposits

Using ogrinfo to examine the structure of one layer:

> ogrinfo -summary /data/gml/coal_dep.gml Coal_Deposits
Had to open data source read-only.

INFO: Open of ‘coal_dep.gml’

using driver ‘GML’ successful.

Layer name: Coal_Deposits
Geometry: Unknown (any)
Feature Count: 266

Extent: (23.293650, 37.986340) - (179.272550, 80.969670)
Layer SRS WKT:
(unknown)

UNKNOWN: Real (0.0)

NA: Real (0.0)

ID: Integer (0.0)

ID2: Integer (0.0)
MARK: Integer (0.0)
COALKEY: Integer (0.0)
COALKEY2: Integer (0.0)
LONG: Real (0.0)

LAT: Real (0.0)

Map File Example:

7.1. Vector Data 255

http://www.gdal.org/ogr/drv_gml.html

MapServer Documentation, Release 5.4.2

LAYER

NAME coal_deposits

TYPE POINT

STATUS DEFAULT

CONNECTIONTYPE OGR
CONNECTION "gml/coal_dep.gml"

CLASS
STYLE
COLOR 0 0 O
SYMBOL ’circle’
SIZE 6
END
END
END

7.1.8 Virtual Spatial Data

Table of Contents

* Virtual Spatial Data
— Types of Databases
— Types of Flat Files
— Steps for Display

This is an OGR extension to MapServer. It allows you to connect to databases that do not explicitly hold spatial data,
as well as flat text files. Your data must have an X and a Y column, and the data may be accessed through an ODBC
connection or a direct pointer to a text file.

The original VirtualSpatialData wiki page may contain additional information.

Types of Databases

The VirtualSpatialData OGR extension has been tested with the following databases and should, in theory, support all
ODBC data sources.

* Oracle

* MySQL

* SQL Server

* Access

* PostgreSQL

Types of Flat Files

Comma, tab or custom delimited text/flat files work with VirtualSpatialData.

256 Chapter 7. Data Input

http://trac.osgeo.org/mapserver/wiki/VirtualSpatialData

MapServer Documentation, Release 5.4.2

Steps for Display

1. Create the Datasource Name (DSN)

* Specific notes about creating a DSN on Windows and Linux can be found by searching the MapServer reference
documents site

* On some Windows systems you must create a SYSTEM DSN.

2. Test your Connection

Test your connection with ogrinfo. The syntax for this command is:

> ogrinfo ODBC:user/pass@DSN table

Windows users may not be required to specify a user/password, so the syntax would be:
> ogrinfo ODBC:@DSN table

Example: Accessing a comma separated text file through ODBC using ogrinfo

The following is a snippet of the flat text file coal_dep.txt containing lat/long points:

unknown, na,id, id2,mark, coalkey, coalkey2, long, lat
0.000,0.000,1,1,7,87,87,76.90238,51.07161
0.000,0.000,2,2,7,110,110,78.53851,50.69403
0.000,0.000,3,3,3,112,112,83.22586,71.24420
0.000,0.000,4,4,6,114,114,80.79896,73.41175

If the DSN name is Data_txt, the ogrinfo command to see a list of applicable files in the directory is:

> ogrinfo ODBC:jeff/test@Data_txt
INFO: Open of ‘ODBC:jeff/test@Data_txt’
using driver ‘ODBC’ successful.
coal_dep.csv

coal_dep.txt

coal_dep_nf.txt
coal_dep_trim.txt

Copy of coal_dep.txt
deposit.csv

maruia.asc

oahuGISbathy.csv

9: oahuGISbathy.txt

10: on_pts.txt

11: on_pts_utm.txt

12: test.txt

13: utm_test.txt

QO J oy U1 W N

Username and password may be optional, so the following may also be valid:
> ogrinfo ODBC:@Data_txt

Therefore, the command to see more information about one of the specific layers is:

7.1. Vector Data 257

MapServer Documentation, Release 5.4.2

> ogrinfo ODBC:@Data_txt coal_dep.txt
INFO: Open of ‘ODBC:@Data_txt’
using driver ‘ODBC’ successful.

Layer name: coal_dep.txt
Geometry: Unknown (any)
Feature Count: 266

Layer SRS WKT:

(unknown)

UNKNOWN: String (255.0)
NA: String (255.0)

ID: String (255.0)

ID2: String (255.0)
MARK: String (255.0)
COALKEY: String (255.0)
COALKEY2: String (255.0)
LONG: String (255.0)
LAT: String (255.0)
OGRFeature (coal_dep.txt) :0
UNKNOWN (String) = 0.000

3. Create a Virtual Data File

This is a file with an ovf extension and looks like the following:

<OGRVRTDataSource>
<OGRVRTLayer name="mylayer">
<SrcDataSource>0ODBC:user/pass@DSN</SrcDataSource>
<SrcLayer>tablename</SrcLayer>
<GeometryType>wkbPoint</GeometryType>
<LayerSRS>WGS84</LayerSRS>
<GeometryField encoding="PointFromColumns" x="x" y="y"/>
</OGRVRTLayer>

</OGRVRTDataSource>

More information on ovf files can be found at: http://www.gdal.org/ogr/drv_vrt.html

Example ovf file for coal_dep.txt:

<OGRVRTDataSource>
<OGRVRTLayer name="coal-test">
<SrcDataSource>0ODBC:Data_txt</SrcDataSource>
<SrcLayer>coal_dep.txt</SrcLayer>
<GeometryField encoding="PointFromColumns" x="Long" y="Lat"/>
<GeometryType>wkbPoint</GeometryType>
</OGRVRTLayer>

</OGRVRTDataSource>

4. Test Virtual Data File with ogrinfo

Use ogrinfo to test your new ovf file, such as:

258 Chapter 7. Data Input

http://www.gdal.org/ogr/drv_vrt.html

MapServer Documentation, Release 5.4.2

> ogrinfo coal.ovf coal-test

ERROR 4: Update access not supported for VRT datasources.
Had to open data source read-only.

INFO: Open of ‘myfile.ovf’

using driver ‘VRT’ successful.

Layer name: coal_dep.txt
Geometry: Unknown (any)
Feature Count: 266

Layer SRS WKT:

(unknown)

UNKNOWN: String (255.0)
NA: String (255.0)

ID: String (255.0)

ID2: String (255.0)
MARK: String (255.0)

5. Mapfile Layer

Using an ovf file your layer may look like:

LAYER

CONNECTION "coal.ovf"
CONNECTIONTYPE OGR
DATA "coal-test"

METADATA
"wms_srs" "4326"
"wms_title" "coal-test"
END

NAME "coal-test"
SIZEUNITS PIXELS
STATUS ON
TOLERANCE 0
TOLERANCEUNITS PIXELS
TYPE POINT
UNITS METERS
CLASS
STYLE
COLOR 255 0 0
MAXSIZE 100

MINSIZE 1
SIZE 6
SYMBOL "star"
END
END
END

Or you may specify the ovf contents inline such as:

LAYER
CONNECTION "<OGRVRTDataSource>
<OGRVRTLayer name=’'coal-test’>
<SrcDataSource>0ODBC:@Data_txt</SrcDataSource>
<SrcLayer>coal_dep.txt</SrcLayer>

7.1. Vector Data 259

MapServer Documentation, Release 5.4.2

<GeometryField encoding='PointFromColumns’ x=’Long’ y='Lat’/>

<GeometryType>wkbPoint</GeometryType>

</OGRVRTLayer>

</OGRVRTDataSource>"

CONNECTIONTYPE OGR

DATA "coal-test"

METADATA
"wms_srs" "4326"
"wms_title" "coal-test"

END

NAME "coal-test"

SIZEUNITS PIXELS

STATUS ON

TOLERANCE O

TOLERANCEUNITS PIXELS

TYPE POINT
UNITS METERS
CLASS
STYLE
COLOR 255 0 0
MAXSIZE 100
MINSIZE 1
SIZE 6
SYMBOL "star"
END
END

END

6. Test your Mapfile

The first thing you should try is to use the shp2img utility:
shp2img -m mymapfile.map -o test.png

Once you successfully created a map image, then try your application. Note Windows users may come across a
problem where shp2img works but their application throws an error similar to this:

Warning: [MapServer Error]: msOGRFileOpen(): Open failed for OGR connection ‘coal.ovf’.
Unable to initialize ODBC connection to DSN for Jjeff/test@Data_txt,

[Microsoft] [ODBC Driver Manager] Data source name not found

and no default driver specified in D:\ms4w\Apache\htdocs\quickmap.php on line 40

If that happens you should make sure you have created a System DSN.

7.1.9 Arcinfo

ESRI Arclnfo Coverage Files are also known as simply as Coverages and less commonly as ADF files.

File listing

Coverages are made up of a set of files within a folder. The folder itself is the coverage name. The files roughly
represent different layers, usually representing different types of topology or feature types.

260 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

> 1s /data/coverage/brazil
aat.adf arc.adf arx.adf bnd.adf lab.adf prj.adf tic.adf tol.adf

A folder with the name INFO is also part of the coverage. It sits at the same hierarchical level as the coverage folder
itself. Therefore, to copy a coverage (using regular file system tools) the coverage folder and the INFO folder must
both be copied. The INFO folder holds some catalogue information about the coverage.

> 1s /data/coverage/info
arc0000.dat arc000l.dat arc0002.dat arc.dir
arc0000.nit arc000l.nit arc0002.nit

Data Access / Connection Method

* CONNECTIONTYPE OGR must be used. The ability to use coverages is not built into MapServer.
* The path to the coverage folder name is required.

¢ The layer name (feature type) is specified in the DATA parameter

OGRINFO Examples

The directory is the data source. Layers are found within the directory. Using ogrinfo on a coverage directory:

> ogrinfo /data/coverage/brazil —-summary
INFO: Open of ‘brazil’

using driver ‘AVCBin’ successful.

1: ARC (Line String)

2: CNT (Point)
3: LAB (Point)
4: PAL (Polygon)

Using ogrinfo to examine the structure of a layer:

> ogrinfo /data/coverage/brazil PAL -summary
Had to open data source read-only.

INFO: Open of ‘brazil’

using driver ‘AVCBin’ successful.

Layer name: PAL
Geometry: Polygon
Feature Count: 1

Extent: (1272793.274958, 795381.617050) - (1287078.382785, 807302.747284)
Layer SRS WKT:
(unknown)

ArcIds: IntegerList (0.0)
AREA: Real (18.5)
PERIMETER: Real (18.5)
F_OPER#: Integer (5.0)
F_OPER-ID: Integer (5.0)
OPER: String (2.0)

FCODE: String (10.0)

Map File Example:

7.1. Vector Data 261

MapServer Documentation, Release 5.4.2

LAYER
NAME Brazil_bounds
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "/data/coverage/brazil"
DATA "PAL"
CLASS
NAME "Brazil Admin Areas"
STYLE
OUTLINECOLOR 153 102 0
SIZE 2
END
END
END

7.1.10 ArcSDE

Spatial Database Engine (SDE) is one of ESRI‘s products which enables spatial data to be stored, managed, and
quickly retrieved from leading commercial database management systems like Oracle, Microsoft SQL Server, Sybase,
IBM DB2, and Informix.

Supported ArcSDE Operations

* Versioned queries (query geometry and attributes from a specified version)

* queryByAttributes (select geometry and attributes based on the values of an attribute)

* Limited join support for within-database tables

* queryByRect (select geometry based on an extent)

* Projection on the fly

* SDE for Coverages (a read-only type of SDE for coverage, shapefile, and ArcStorm/ArcLibrarian repositories)
* SDE 8.1, 8.2,8.3,9.0,9.1, and 9.2

* Linux, Windows, and Solaris (platforms that have SDE C API support)

Unsupported ArcSDE Operations
» queryByShape (pass in a shape with MapScript and use it for queries)
* Direct Connect (bypass SDE to connect directly to the database with the SDE C API)

How to make a connection to SDE:

¢ Install the SDE C API client libraries for your platform (preferably matched to the server version you are using,
ie 8.2 client -> 8.2 server, 8.3 client -> 8.3 server)
* Compile MapServer with SDE support MapServer Unix Compilation Howto for specific details)

* Define a LAYER block in a MapFile that uses SDE as the CONNECTIONTYPE

262 Chapter 7. Data Input

http://www.esri.com

MapServer Documentation, Release 5.4.2

LAYER
NAME states
TYPE POLYGON

CONNECTION "sdemachine.iastate.edu,port:5151, sde,username, password"
CONNECTIONTYPE SDE

DATA "HOBU.STATES_LAYER, SHAPE, SDE.DEFAULT"

FILTER "where MYCOLUMN is not NULL"

PROCESSING "QUERYORDER=ATTRIBUTE" # <-- MapServer 4.10 and above

Within database one-to-one join support

MapServer 5.0 and above
PROCESSING "JOINTABLE=SDE_MASTER.GEOSERVWRITE.JOINTABLE"

MapServer 5.0 and above
CLASSITEM "SDE_MASTER.GEOSERVWRITE.JOINTABLE.VAL"

MapServer 5.0 and above
FILTER "SDE_MASTER.GEOSERVWRITE.JOINTABLE.AQ_ TAG=SDE_MASTER.GEOSERVWRITE.JOINTESTLAYER.AQ_ TAG"

ObjectID column manipulation
MapServer 5.0 and above

PROCESSING "OBJECTID=OBJECTID"

TEMPLATE ' /where/the/template/file/is/located’

CLASS
STYLE
SYMBOL ’circle’
SIZE 3
COLOR -1 -1 -1
OUTLINECOLOR O O O
END
END
END

CONNECTION - Order is important!

sdemachine.iastate.edu - The name of the machine you are connecting to. In some instances, this may need
to be the IP address of the machine rather than the name if the server running MapServer is not configured to
cascade DNS lookups

port:5151 - The port number of SDE. The port: is important as SDE expects you to define the service in this
slot, and it can be other names like sde:oracle (for direct connect) or esri_sde (for systems with port 5151
defined as esri_sde in /etc/services)

sde - The database username that the SDE server is using to connect to your database. It is often only important
for SDE setups that are connecting to Oracle (and even then, not so important). Just leave it as sde if you don’t
know what it should be.

username - The username that will be connecting to SDE. This user must have been granted rights to select
the layer that you will be specifying in the DATA directive. You can use ArcCatalog or the SDE command-line
utilities to grant the appropriate rights to layers.

password - Password of the user connecting to SDE. Case Sensitive.

7.1. Vector Data 263

MapServer Documentation, Release 5.4.2

DATA - Order is important!

« HOBU.STATES_LAYER - The layer name you are querying. This the fi/l name of the table in which the layer
resides. If you are using Oracle or Microsoft SQL Server as the DB for SDE, the schema name must also be
supplied.

¢ SHAPE - The column that contains the geometry. SDE technically allows for storage of multiple geometry
types in the same layer, but in practice this isn’t desirable. Also, expect to have problems if there are invalid or
null geometries in the layer (or versions of the layer).

* SDE.DEFAULT - As of MapServer 4.2, you can query against a specific version of the layer. SDE sup-
ports multi-user editing with versions. If a layer has been Registered with the GeoDatabase and Registered
as Versioned (ArcGIS terms), MapServer can query against specified versions of those edits. If not specified,
SDE.DEFAULT will be used for all queries. Case Sensitive.

Note: The version parameter is located in a different spot than MapServer 4.2, which had it on the CONNECTION
string.

TEMPLATE

 /where/the/template/file/is/located - A template directive must be specified (can point to a dummy file) in order
for MapServer to be able to query attributes from SDE. If you are only going to be drawing layers, this directive
is unnecessary and will slow down the query operations of SDE (especially for layers with lots of attribute
columns).

PROCESSING

* PROCESSING “QUERYORDER=ATTRIBUTE” - Allows you to force SDE to use the WHERE clause that
was defined in your FILTER statement first, without attempting to hit the spatial index. Only in very special
cases will you want to do this.

* PROCESSING “OBJECTID=OBJECTID” - If you are having trouble with the SDE driver detecting your
unique ID column, you can override it with this processing parameter. Doing so will also have a slight perfor-
mance benefit because it will save a couple of extra queries to the database.

¢ PROCESSING “ATTRIBUTE_QUALIFIED=TRUE” - User can set this option to always use fully qualified
attribute names.

Within-database Join Support

MapServer’s SDE driver, as of MapServer 5.0, allows you to join a single attribute table that has no geometries to
the layer that you are rendering. This feature allows you to use the data in the joined table much as you would in a
composite query that was made with something like PostGIS or Oracle Spatial. That is, the columns in the right table
of the join are available for CLASSITEM, LABELITEM and so on. The biggest constraint, however, is that fully
qualified names must be used or it most likely will not work. The join support is activated through PROCESSING
options.

* PROCESSING “JOINTABLE=SDE_MASTER.GEOSERVWRITE.JOINTABLE” - The JOINTABLE
processing option tells the driver which table you are joining the current layer to.

* CLASSITEM “SDE_MASTER.GEOSERVWRITE.JOINTABLE.VAL” - A CLASSITEM or LABELITEM
for a joined table using this mechanism must be fully qualified.

264 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

* FILTER “SDE_MASTER.GEOSERVWRITE.JOINTABLE.AQ_TAG=SDE_MASTER.GEOSERVWRITE.JOINTESTL.:
- An important part of the join is defining how the join is to be made. Use a FILTER to do so.

7.1.11 DGN
File listing
Data are encapsulated in a single file, usually with the suffix .dgn.

0824t .dgn

Data Access / Connection Method

* Access is available in MapServer through OGR.
e The CONNECTIONTYPE OGR parameter must be used.
* The path to the dgn file is required, file extension is needed.

¢ All types of features in a DGN file are held in one “layer” of data. The layer is called elements and is the first
and only layer.

* The type of feature to be read from the DGN depends on the TYPE parameter in the map file.
* DGN files typically contain POINT, LINE, POLYGON and ANNOTATION feature types.

* DGN files contain “styling” information - how to color and present the data. This is used, optionally, by speci-
fying the STYLEITEM “AUTO” parameter.

Note: DGN files typically use white as a color for their features and therefore are not visible on maps with white
backgrounds.

OGRINFO Examples
Using ogrinfo on a single DGN file:

> ogrinfo /data/dgn/0824t.dgn

Had to open data source read-only.
INFO: Open of '0842t.dgn’

using driver ‘DGN’ successful.

1: elements

Note: No geometry/feature type for the layer is identified because it can be multiple types.

DGN files are not really GIS data files. They evolved from drafting formats used by computer aided drafting/design
(CADD) programs.

They carry a few key attributes which are usually consistent across all DGN files. Most of the attributes relate to
graphical styling of features for map presentation, such as ColorIndex, Style, etc.

Spatial reference system information is not always encoded into DGN files. This can be a major problem when trying
to adequately reference the DGN data in another mapping program.

Measurement units can be a problem. In some cases the features could be located in kilometres or feet even though
it is not obvious from the output of ogrinfo. Sometimes the only way to identify or correct a problem with units is to
open the file in Microstation software.

Using ogrinfo to examine the structure of the file/layer:

7.1. Vector Data 265

MapServer Documentation, Release 5.4.2

> ogrinfo —-summary /data/dgn/0824t.dgn elements
INFO: Open of ’0824t.dgn’
using driver ’'DGN’ successful.

Layer name: elements
Geometry: Unknown (any)
Feature Count: 22685

Extent: (-513183.050000, 150292.930000) - (-224583.220000,
Layer SRS WKT:
(unknown)

Type: Integer (2.0)

Level: Integer (2.0)
GraphicGroup: Integer (4.0)
ColorIndex: Integer (3.0)
Weight: Integer (2.0)
Style: Integer (1.0)
EntityNum: Integer (8.0)
MSLink: Integer (10.0)
Text: String (0.0)

Map File Example:

LAYER
NAME dgn
TYPE LINE
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "dgn/0824t.dgn"
STYLEITEM "AUTO"
CLASS
END

END # Layer

7.1.12 S57

407463.360000)

Also known as S57. The IHO S-57 format is a vector interchange format used for maritime charts. It was developed by
the International Hydrographic Organisation (IHO). For more information about the IHO see: http://www.iho.shom.fr/

File listing
Individual S57 data files have an extension of *.000. For example:

US1BS02M.000

Data Access / Connection Method

* S57 access in MapServer occurs through OGR, CONNECTIONTYPE OGR must be used.
 Specify a full path or a relative path from the SHAPEPATH to the .000 file for the CONNECTION

* Use the DATA parameter to specify the s57 layer name

266

Chapter 7. Data Input

http://www.iho.shom.fr/

MapServer Documentation, Release 5.4.2

Special Notes

The underlying OGR code requires two files from your GDAL/OGR installation when reading S57 data in
MapServer : s57objectclasses.csv and s57attributes.csv. These files can be found in the /GDAL/data/ folder (unix:
/usr/local/share/gdal windows: /ms4w/gdaldata). If you receive an error in MapServer such as:

msDrawMap () : Image handling error. Failed to draw layer named ’s57’.
msOGRFileOpen () : OGR error. xxx failed for OGR connection

you may have to point MapServer to these files using the CONFIG parameter in the main section of your map file:

CONFIG GDAIL_DATA "C:\ms4w\gdaldata"

OGRINFO Examples
Using ogrinfo on an S57 file to get the layer name:

> ogrinfo uslbs02m.000

ERROR 4: S57 Driver doesn’t support update.
Had to open data source read-only.

INFO: Open of ‘uslbs02m.000”

using driver ‘IHO S-57 (ENC)’ successful.

1: ADMARE (Polygon)

2: CBLSUB (Line String)
3: CTNARE

4: COALNE (Line String)
5: DEPARE

6: DEPCNT (Line String)
7: LNDARE

8: LNDELV

9: LNDRGN

10: LNDMRK

11: LIGHTS (Point)

12: OBSTRN

13: RDOSTA (Point)

14: SEAARE

15: SBDARE

16: SLCONS

17: SOUNDG (Multi Point)
18: UWTROC (Point)
19: WATTUR

20: WRECKS

21: M_COVR (Polygon)
22: M_NPUB (Polygon)
23: M_NSYS (Polygon)
24: M_QUAL (Polygon)
25: C_ASSO (None)

Using ogrinfo to examine the structure of an S57 layer:

> ogrinfo uslbs02m.000 DEPARE -summary
ERROR 4: S57 Driver doesn’t support update.
Had to open data source read-only.

INFO: Open of ‘uslbs02m.000’

using driver ‘IHO S-57 (ENC)’ successful.

7.1. Vector Data 267

MapServer Documentation, Release 5.4.2

Layer name:

Geomet

Feature Count:

Extent
Layer
GEOGCS

DEPARE
ry: Unknown
297
: (165.666667,
SRS WKT:

["WGS 84",

DATUM["WGS_1984™",

SPHEROID["WGS 84",6378137,298.257223563]1],
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]]

GRUP: Integer (3.0)
OBJL: Integer (5.0)
RVER: Integer (3.0)
AGEN: Integer (2.0)
FIDN: Integer (10.0)
FIDS: Integer (5.0)
LNAM: String (16.0)
LNAM_REFS: StringList
DRVALl1: Real (0.0)
DRVAL2: Real (0.0)
QUASOU: String (0.0)
SOUACC: Real (0.0)
VERDAT: Integer (0.0)
INFORM: String (0.0)
NINFOM: String (0.0)
NTXTDS: String (0.0)
SCAMAX: Integer (0.0)
SCAMIN: Integer (0.0)
TXTDSC: String (0.0)
RECDAT: String (0.0)
RECIND: String (0.0)
Map File Example:
LAYER
NAME s57

TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "./s57/uslbs02m.000"

DATA
CLASS
STYLE
COLOR

"DEPARE"

247 237 219

(any)

48.500000)

(16.0)

OUTLINECOLOR 120 120 120

END
END

END # Layer

(180.000000,

7.1.13 ESRI Personal Geodatabase (MDB)

60.750000)

ESRI Personal Geodatabases are basically Microsoft Access files that contain spatial information. For more informa-
tion see the ESRI description page.

268

Chapter 7. Data Input

http://www.esri.com/software/arcgis/geodatabase/index.html

MapServer Documentation, Release 5.4.2

File listing

Similar to other database formats, the mdb file consists of several tables. The geometry is held in a BLOB table
column.

Data Access / Connection Method

Personal geodatabase access is available through OGR. See the OGR driver page for specific driver information. The
driver is standard in any win32 build of GDAL/OGR version 1.3.2 or later. For Linux/Unix, MDBTools ODBC drivers
can be used for this (with some difficulty).

OGR uses the names of spatial tables within the personal geodatabase (tables with a Shape column) as layers.

The CONNECTION parameter must include the mdb extension, and the DATA parameter should be the name of the
spatial table (or OGR layer).

CONNECTIONTYPE ogr
CONNECTION "pgeodatabase.mdb"
DATA "layername"

OGRINFO Examples

First you should make sure that your GDAL/OGR build contains the personal geodatabase “PGeo” driver, by using
the ‘~formats’ command:

>ogrinfo --formats
Loaded OGR Format Drivers:

—-> "ODBC" (read/write)
-> "PGeo" (readonly)
-> "PostgreSQL" (read/write)

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.

Once you have the PGeo driver you are ready to try an ogrinfo command on your database to get a list of spatial tables:

>ogrinfo test.mdb
INFO: Open of ‘test.mdb’
using driver ‘PGeo’ successful.
1: counties

Now use ogrinfo to get information on the structure of the spatial table:

>ogrinfo test.mdb counties —-summary
INFO: Open of ‘test.mdb’
using driver ‘PGeo’ successful.

Layer name: counties
Geometry: Unknown (any)
Feature Count: 67
Extent: (-87.634943, 24.543945) - (-80.031369, 31.000975)
Layer SRS WKT:
GEOGCS["GCS_WGS_1984",
DATUM["WGS_1984",

7.1. Vector Data 269

http://gdal.org/ogr/drv_pgeo.html
http://mdbtools.sourceforge.net/
http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 5.4.2

SPHEROID["WGS_1984",6378137.0,298.25722356311,
PRIMEM["Greenwich",0.0],
UNIT["Degree",0.0174532925199433]]

OBJECTID_1: Integer (10.0)

OBJECTID: Integer (10.0)

NAME: String (32.0)

STATE_NAME: String (25.0)

STATE_FIPS: String (2.0)

CNTY_FIPS: String (3.0)

FIPS: String (5.0)

Note that you can also use an ODBC connection to access all of the tables in your geodatabase:

>ogrinfo ODBC:jeff/pass@testDSN counties -summary
INFO: Open of ‘ODBC:jeff/pass@testDSN’
using driver ‘ODBC’ successful.

counties
counties_Shape_Index
GDB_AnnoSymbols
GDB_AttrRules
GDB_CodedDomains
GDB_DefaultValues
GDB_Domains
GDB_EdgeConnRules
GDB_Extensions
GDB_FeatureClasses
GDB_FeatureDataset
GDB_FieldInfo
GDB_GeomColumns

QO J oy Ul b WD

e el)
w N P O e

Mapfile Example

LAYER
NAME my_geodatabase
TYPE POLYGON
CONNECTIONTYPE ogr
CONNECTION "test.mdb"
DATA "counties"

STATUS ON

CLASS
NAME "counties"
STYLE

COLOR 255 255 120

END

END

END

7.1.14 Inline

Inline features refer to coordinates entered directly into the map file. They are not a file or database format and do not
require any DATA or CONNECTION parameters. Instead they use a FEATURE section to define the coordinates.

270 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

Inline features can be used to define points, lines and polygons as if taken from an external file. This requires direct
entry of coordinate pairs in the map file using a particular syntax.

Data Access / Connection Method

This is a native MapServer option that doesn’t use any external libraries to support it.

Map File Example

Points

e Each FEATURE..END section defines a feature.

* Multiple points can be defined in a FEATURE section. If multiple points are defined in the same layer, they will
have the same CLASS settings, e.g. for colours and styles.

* Coordinates are entered in the units set in the layer’s projection. In this case it is assuming the map file projection
is using decimal degrees.

LAYER
NAME inline_stops
TYPE POINT
STATUS DEFAULT
FEATURE
POINTS
72.36 33.82
END
TEXT "My House"
END
FEATURE
POINTS
69.43 35.15
71.21 37.95
72.02 38.60
END
TEXT "My Stores"
END
CLASS
STYLE

COLOR 0 0 250
SYMBOL ’circle’
SIZE 6
END
END
END

Lines

Lines are simply a list of points strung together, but the layer must be TYPE LINE instead of TYPE POINT.

LAYER
NAME inline_track
TYPE LINE
STATUS DEFAULT

7.1. Vector Data 271

MapServer Documentation, Release 5.4.2

MAXSCALE 10000000
FEATURE
POINTS
72.36 33.82
70.85 34.32
69.43 35.15
70.82 36.08
70.90 37.05
71.21 37.95
END
END
CLASS
STYLE
COLOR 255 10 0
SYMBOL ’circle’
SIZE 2
END
END
END

Polygons

Polygons are the same as the line example, just a list of points. They require the TYPE POLYGON parameter.
Polygons also require the final coordinate pair to be the same as the first, making it a closed polygon.

7.1.15 KML - Keyhole Markup Language

Keyhole Markup Language (KML) is an XML-based language for managing the display of 3D geospatial data.

Data Access / Connection Method

KML access is available through OGR. See the OGR driver page for specific driver information. Read support was
initially added to GDAL/OGR version 1.5.0.

The CONNECTION parameter must include the kml extension, and the DATA parameter should be the name of the

layer.

CONNECTIONTYPE ogr
CONNECTION "myplaces.kml"
DATA "layername"

OGRINFO Examples
First you should make sure that your GDAL/OGR build contains the “KML” driver, by using the ‘~formats’ command:

>ogrinfo —-—-formats
Loaded OGR Format Drivers:

-> "GML" (read/write)
-> "GPX" (read/write)
-> "KML" (read/write)

272 Chapter 7. Data Input

http://www.gdal.org/ogr/drv_kml.html

MapServer Documentation, Release 5.4.2

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.

Once you have the KML driver you are ready to try an ogrinfo command on your file to get a list of available layers:

>ogrinfo myplaces.kml
INFO: Open of ‘myplaces.kml’
using driver ‘KML’ successful.
1: Layer #0 (Point)

Now use ogrinfo to get information on the structure of the layer:

>ogrinfo fountains-hotel.kml "Layer #0" -summary
Had to open data source read-only.
INFO: Open of ‘fountains-hotel.kml’
using driver ‘KML’ successful.

Layer name: Layer #0
Geometry: Point
Feature Count: 1
Extent: (18.424930, -33.919627) - (18.424930, —-33.919627)
Layer SRS WKT:
GEOGCS ["WGS 84",
DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]1,
AUTHORITY ["EPSG", "6326"11,
PRIMEM["Greenwich", O,
AUTHORITY ["EPSG", "8901"1],
UNIT["degree",0.01745329251994328,
AUTHORITY ["EPSG","9122"]],
AUTHORITY["EPSG","4326"]]
Name: String (0.0)
Description: String (0.0)

Mapfile Example

LAYER
NAME kml_places
TYPE POINT
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "kml/fountains—-hotel.kml"
DATA "Layer #0"
LABELITEM "NAME"
CLASS
NAME "My Places"
STYLE
COLOR 250 0 O
OUTLINECOLOR 255 255 255
SYMBOL ’circle’
SIZE 6
END
LABEL
SIZE TINY
COLOR 0 0 O
OUTLINECOLOR 255 255 255

7.1. Vector Data 273

http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 5.4.2

POSITION AUTO
END
END
END

7.1.16 Oracle Spatial

Author Bart van den Eijnden
Last Updated 2005/12/12

Table of Contents

* Oracle Spatial

— What MapServer 5.2 with Oracle Spatial
Binaries
Installation
Two options for using Oracle Spatial with MapServer
Mapfile syntax for native Oracle Spatial support
Using subselects in the DATA statement
Additional keywords - [FUNCTION]
Additional keywords - [VERSION]
More information
Example of a LAYER
Mapfile syntax for OGR Oracle Spatial support

Oracle Spatial is a spatial cartridge for the Oracle database. Remember that all Oracle databases come with Locator,
which has less features than Oracle Spatial. The differences between Locator and Spatial can be found in the Oracle
Spatial FAQ.

You can also see the original OracleSpatial wiki page that this document was based on.

What MapServer 5.2 with Oracle Spatial

* mode=map

* query modes: query, nquery, itemnquery

e MapScript query functions such as querybyattributes

* OGC:WMS: GetCapabilities, GetMap, GetFeaturelnfo, DescribeLayer

OGC:WFS, GetCapabilities, DescribeFeatureType, GetFeature

Binaries

MapServer Windows plugins with Oracle spatial support can be downloaded from //S4W. But you need Oracle client
software in the server on which you are running MapServer. Oracle client software can be obtained for development
purposes from the Oracle website, but you need to register, which by the way is free. The most recent version is
Oracle Database 10g Release 1 Client. The ORACLE TECHNOLOGY NETWORK DEVELOPMENT LICENSE
AGREEMENT applies to this software. The instant client will be satisfactory, and you can download the instant
client. Make sure though your MapServer is compiled against the same version as your Oracle client, for compiling
you need a full client install, not just the instant client.

274 Chapter 7. Data Input

http://www.orafaq.com/faqsdo.htm
http://www.orafaq.com/faqsdo.htm
http://trac.osgeo.org/mapserver/wiki/OracleSpatial
http://www.oracle.com/technology/software/tech/oci/instantclient/index.html
http://www.oracle.com/technology/software/tech/oci/instantclient/index.html

MapServer Documentation, Release 5.4.2

Installation

See Oracle Installation for more configuration and installation information for MapServer’s native Oracle support

Note: If you receive error messages like “Error: .”. It’s likely related to MapServer being unable access or locate the
ORACLE_HOME.

Two options for using Oracle Spatial with MapServer

Oracle Spatial layers in MapServer can be used through 2 interfaces:
* The native built-in support through maporaclespatial.c

* OGR, but watch out: OGR is not compiled with Oracle Spatial support so it won’t work without compiling in
OCI (Oracle client) yourself. This requires both recompiling GDAL/OGR as well as recompiling MapServer
itself against the new GDAL/OGR !!!!

Mapfile syntax for native Oracle Spatial support

The DATA statement for a LAYER of CONNECTIONTYPE oraclespatial can now have 4 options. This change is
backwards compatible, i.e. the old ways of specifying DATA still work. The new options are an extension to the
old DATA statements, as they needed to include identification of the primary key to be used for the query modes
(UNIQUE).

The following options are valid DATA statements:

"[geom_column]
FROM
[table] | [(
SELECT [...]
FROM [table] | [Spatial Operator]
[WHERE condition])]
[USING [UNIQUE column]
| [SRID #srid]
| [FUNCTION]
| [VERSION #version]

Example 1

The most simple DATA statement, in this case you only need to define one geometry column and one table. This
option assumes you do not have an SRID defined.

LAYER

CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE"

END

7.1. Vector Data 275

MapServer Documentation, Release 5.4.2

Example 2

It’s composed of the first option plus the USING UNIQUE parameter. These new features are necessary when you
want to use any query function. When it is used you must pass a numeric column type. This option assumes you do
not have an SRID defined.

LAYER

CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE USING UNIQUE MYTABLE_ID"

END

Example 3

This option is an extension to the first option. In this mode you must define the USING SRID parameter when the
SRID value in your data is different from NULL.

LAYER

CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE USING SRID 90112"

END

Example 4

This option is a combination of examples 2 and 3.
LAYER

CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE USING UNIQUE MYTABLE_ID SRID 90112"

END

Using subselects in the DATA statement

It is possible to define the source of the date as a subselect and not only as a table. As source of data, used in FROM
token, you can define any SQL, table, function, or operator that returns a SDO_GEOMETRY. For example:

DATA "[geom_column] FROM (SELECT [columns] FROM [table] | [Spatial function])"

If the LAYER definition contains a CLASSITEM, LABELITEM or FILTER, it is necessary that the fields used are
returned by the query. When you define CLASSITEM you can use an expression without any problems.

Additional keywords - [FUNCTION]

You can add three keywords to the DATA statement for [FUNCTION] option that influence the query which will be
executed in Oracle:

276 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

USING FILTER

"[geom_column] FROM [table]| ([Subselect]) USING FILTER"

Using this keyword triggers MapServer to use the Oracle Spatial SDO_FILTER operator. This operator executes only
the Oracle Spatial primary filter over your query data. In the Oracle User guide they explain: The primary filter
compares geometric approximations, it returns a superset of exact result. The primary filter therefore should be as

efficient (that is, selective yet fast) as possible. This operator uses the spatial index, so you need to define your spatial
index correctly to retrieve an exact result. If the result of the query is not exact you can try the next option.

USING RELATE

"[geom_column] FROM [table] | ([Subselect]) USING RELATE"
Using this keyword triggers MapServer to use the Oracle Spatial SDO_RELATE operator. This operator applies the

primary and secondary Oracle Spatial filters. It’s performance can be slightly slow but the result is extremely correct.
You can use this mode when you want a perfect result or when you can’t readjust the spatial index.

USING GEOMRELATE

"[geom_column] FROM [table]| ([Subselect]) USING GEOMRELATE"
Using this keyword triggers MapServer to use the geometry function SDO_GEOM.RELATE, a function that searches
the relations between geometries. SDO_GEOM.RELATE does not use the spatial index and your performance is more

slow than operators but it’s very accurate. You can use this mode when you can’t use the spatial index or when it
doesn’t exist.

USING NONE

"[geom_column] FROM [table] | ([Subselect]) USING NONE"

Using this keyword triggers MapServer to don’t use any geometry function or spatial operator. So, the internal SQL
don’t retrict, bases in the extent, the data from source. All the data from source will be returned for MapServer. The
NONE token is very useful when the source of the data don’t contains any spatial index. It’s usually occur when the

source is a function like SDO_BUFFER, SDO_XOR, SDO_INTERSECTION...... So this mode is recomended when
you can’t use the spatial index or when it doesn’t exist.

Additional keywords - [VERSION]

You can define what version of database you are using to improve the internal sql. This is very useful when using
geodetic SRIDs and MapServer functions that retrieve the extent from data.

USING VERSION 8i

"[geom_column] FROM [table] | ([Subselect]) USING VERSION 8i"

7.1. Vector Data 277

MapServer Documentation, Release 5.4.2

This indicates MapServer to use a internal SQL that it’s compatible with Oracle 8i version.

USING VERSION 9i

"[geom_column] FROM [table]| ([Subselect]) USING VERSION 9i"

The second indicates MapServer to use 9i version, is recommended to use this parameter if you are using 9i version
because the internal SQL will use specific spatial functions that is need to retrieve data correctly from 9i Oracle Spatial
versions.

USING VERSION 10g

"[geom_column] FROM [table]| ([Subselect]) USING VERSION 10g"

This indicates MapServer to use a internal SQL that it’s compatible with Oracle 10g version.

More information

* You can define any PROJECTION to your LAYER without problem, can be used for data with or without an
SRID in Oracle.

* The native support for Oracle Spatial supports the defaults definition for SDO_GEOMETRY in database, the
Oracle Spatial SDO package.

¢ Information about the primary and secondary Oracle Spatial filters can be found in the Oracle Spatial User Guide
(the “Query Model” section). Information about the SDO_FILTER and SDO_RELATE operators can be found
in the “Spatial Operators” section, and information about the SDO_GEOM.RELATE function can be found in
the “Geometry Function” section of the Oracle Spatial User Guide.

Example of a LAYER

LAYER
NAME kwadranten
TYPE POLYGON
CONNECTIONTYPE oraclespatial
CONNECTION "user/pwd"
DATA "GEOMETRIE FROM KWADRANTEN USING SRID 90112"
DUMP TRUE
CLASS
STYLE
OUTLINECOLOR 0 0 O
COLOR 0 128 128
END
END
END

You can specify the SID for your database, the SID alias needs to be supplied in the tnsnames.ora file of the Oracle
client, e.g.

Example for tnsnames.ora:

278 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

MYDB =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP) (HOST = server_ip) (PORT = 1521))

)
(CONNECT_DATA =
(SERVICE_NAME = DBI)
)
)

So after this you can define you layer connection as:

CONNECTION "user/pwd@MYDB"

Mapfile syntax for OGR Oracle Spatial support
Syntax for your MAP file:

CONNECTION "OCI:user/pwd@service"
CONNECTIONTYPE OGR
DATA "Tablename"

Note: Make sure you set the wms_extent METADATA for the LAYER, as otherwise the “Getcapabilities” request
takes a lot of time.

7.1.17 MySQL

Revision $Revision: 8472 $
Date $Date: 2009-01-28 13:08:43 -0800 (Wed, 28 Jan 2009) $
Author David Fawcett

Contact david.fawcett at moea.state.mn.us

Contents

* MySQL

— Introduction

— Create .ovf file
Test Connection with ogrinfo
Create MapServer Layer
More Information

Introduction

This method takes advantage of OGR’s MySQL driver and avoids the need to set up an ODBC connection.

This is the primitive MySQL support for point data, not the recently added MySQL spatial support found in
GDAL/OGR 1.3.2.

Support for this functionality is found in GDAL/OGR 1.2.6 and older on Windows and GDAL/OGR 1.3.2 on Linux.

The MySQL wiki page might contain additional information.

7.1. Vector Data 279

http://www.gdal.org/ogr/drv_mysql.html
http://www.gdal.org/ogr/drv_mysql.html
http://trac.osgeo.org/mapserver/wiki/MySQL

MapServer Documentation, Release 5.4.2

Needed
* MySQL database containing a table with fields containing x and y coordinates
 .ovf file, a small xml file you will create

* MapServer compiled with OGR version supporting this functinality

Create .ovf file
Here is the .ovf file named aqidata.ovf

<OGRVRTDataSource>
<OGRVRTLayer name="agidata">
<SrcDataSource>MYSQL:agiTest, user=uuuuu, password=ppppp, host=192.170.1.100, port=3306, tables=t«
<SrcSQL>SELECT arealD, x, y, sampleValue FROM testdata</SrcSQL>
<GeometryType>wkbPoint</GeometryType>
<GeometryField encoding="PointFromColumns" x="x" y="y"/>
</OGRVRTLayer>
</OGRVRTDataSource>

If you look at the connection string in <SrcDataSource>
¢ The MySQL database name is ‘aqiTest’
* ‘testdata’ is the table containing the coordinate data
* host and port are for MySQL server

Use the GeometryField element to tell OGR which fields store the x and y coordinate data. Mine are simply named x
and y.

Test Connection with ogrinfo

usr/local/bin/ogrinfo /maps/agidata.ovf
ogrinfo returns

ERROR 4: Update access not supported for VRT datasources.
Had to open data source read-only.

INFO: Open of ‘/maps/agidata.ovf’

using driver ‘VRT’ successful.

1: agidata (Point)

Don’t worry about the error, this is just telling you that it is a read-only driver. If it really bugs you, call ogrinfo with
the -ro (read only) flag.

To see the actual data

usr/local/bin/ogrinfo /maps/agidata.ovf -al

Create MapServer Layer

280 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

LAYER
NAME "MyAgi"
STATUS DEFAULT
TYPE POINT
CONNECTIONTYPE OGR
CONNECTION "agidata.ovf"
DATA "agidata"

CLASS
NAME "MyClass"
STYLE
SYMBOL ’circle’
SIZE 15
COLOR 0 255 0
END
END

END

DATA in the LAYER definition should be the same as the name attribute of the OGRVRTLayer element in the ovf file.

For this to draw, you need to have a SYMBOLSET defined in your mapfile and have a symbol called ‘circle’ in your
symbols.sym file.

More Information

* OGR

e Vector Data

7.1.18 NTF

NTF files are mostly used by the United Kingdom Ordnance Survey (OS). For more on the Ordnance Survey, see their
website at: http://www.ordnancesurvey.co.uk/oswebsite/

File listing

NTEF files have an NTF extension.

Data Access / Connection Method

* NTF access requires OGR.

* The path to the NTF file is required in the CONNECTION string. It may be relative to the SHAPEPATH setting
in the map file or the full path.

* The DATA parameter is used to specify the layer to use

OGRINFO Examples

Using ogrinfo on an NTF file to retrieve layer names:

7.1. Vector Data 281

http://www.ordnancesurvey.co.uk/oswebsite/

MapServer Documentation, Release 5.4.2

> ogrinfo llcontours.ntf

ERROR 4: NTF Driver doesn’t support update.
Had to open data source read-only.

INFO: Open of ‘llcontours.ntf’

using driver ‘UK .NTF’ successful.

1: LANDLINE_POINT (Point)

2: LANDLINE_LINE (Line String)

3: LANDLINE_NAME (Point)

4: FEATURE_CLASSES (None)

Using ogrinfo to examine the structure of an NTF layer:

> ogrinfo llcontours.ntf LANDLINE_LINE -summary
ERROR 4: NTF Driver doesn’t support update.

Had to open data source read-only.

INFO: Open of ‘llcontours.ntf’

using driver ‘UK .NTF’ successful.

Layer name: LANDLINE_LINE
Geometry: Line String
Feature Count: 491

Extent: (279000.000000, 187000.000000) - (280000.000000, 188000.000000)

Layer SRS WKT:
PROJCS["OSGB 1936 / British National Grid",
GEOGCS["0OSGB 1936",
DATUM["OSGB_1936",

SPHEROID["Airy 1830",6377563.396,299.3249646,

AUTHORITY ["EPSG", "7001"11,
AUTHORITY ["EPSG", "6277"11,
PRIMEM["Greenwich", 0,
AUTHORITY ["EPSG", "8901"11],
UNIT["degree",0.0174532925199433],
AUTHORITY ["EPSG", "4277"11,
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",49],
PARAMETER["central_meridian",-2],
PARAMETER ["scale_factor",0.999601272],
PARAMETER["false_easting",400000],
PARAMETER["false_northing",-100000],
UNIT["metre", 1,
AUTHORITY["EPSG","9001"]1,
AUTHORITY["EPSG","27700"]]
LINE_ID: Integer (6.0)
FEAT_CODE: String (4.0)

Map File Example:

LAYER
NAME ntf_uk
TYPE LINE
CONNECTIONTYPE OGR
CONNECTION "./ntf/llcontours.ntf"
DATA "LANDLINE_LINE"
STATUS DEFAULT
CLASS
NAME "Contours"
STYLE

282

Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

END
END
END

7.1.19 SDTS

COLOR 0 150 200

This is a United States Geological Survey (USGS) format. SDTS has a raster and a vector format. The raster format
is not supported in MapServer. Only the vector formats are supported, including VTP and DLG files.

File listing

» SDTS files are often organized into state-sized pieces. For example, all of the state of Maryland (MD), U.S.A.

* Files are also available for multiple types of features including hydrography, transportation and administrative

boundaries.

This example uses transportation data, which consists of 35 separate files, each with the suffix DDF:

MDTRAHDR.
MDTRDQCG.
.DDF
.DDF
.DDF
.DDF
.DDF
.DDF
.DDF
MDTRARDM.
MDTRDQPA.
.DDF

MDTRNAO3
MDTRAMTF
MDTRDQHL
MDTRNEO3
MDTRARDF
MDTRDQLC
MDTRNOO1

MDTRNOO2

DDF
DDF

DDF
DDF

MDTRARRF
MDTRFFO1
MDTRNOO3
MDTRBEPS

MDTRPCO1

MDTRIREF
MDTRPCO2
MDTRCATD
MDTRLEO1
MDTRPCO3

.DDF
.DDF
.DDF
.DDF
MDTRIDEN.
.DDF
MDTRBMTA.
.DDF
.DDF
.DDF
.DDF
.DDF

DDF

DDF

MDTRCATS.
MDTRLEOQOZ2.
MDTRSPDM.
MDTRCATX.
MDTRLEOQ3.
MDTRSTAT.
MDTRDDSH.
MDTRNAOL.
MDTRXREF .
MDTRDQAA.
MDTRNAOQOZ2.

Data Access / Connection Method

* SDTS access is available in MapServer through OGR.
The CONNECTIONTYPE OGR parameter must be used.

DDF
DDF
DDF
DDF
DDF
DDF
DDF
DDF
DDF
DDF
DDF

» The path (which can be relative) to the catalog file (????CATD.DDF) is required, including file extension.

* There are multiple layers in the SDTS catalog, some of which are only attributes and have no geometries.

* The layer name is specified with the DATA parameter

OGRINFO Examples

Using ogrinfo on a catalog file (note that the first 7 layers do not have geometries):

> ogrinfo /data/sdts/MD/MDTRCATD.DDF
Had to open data source read-only.

INFO: Open of
using driver
(None)
(None)

1: ARDF
2: ARRF

‘SDTS’

‘MDTRCATD .DDFE’
successful.

7.1. Vector Data

283

MapServer Documentation, Release 5.4.2

3: AMTF (None)
4: ARDM (None)
5: BFPS (None)
6: BMTA (None)
7: AHDR (None)
8: NEO3 (Point)
9: NAO1l (Point)
10: NAO2 (Point)
11: NAO3 (Point)
12: NOO1l (Point)
13: NOO2 (Point)
14: NOO3 (Point)

(
(
(
(
(
15: LEO1 (Line String)
(
(
(
(
(

16: LEO2 (Line String)
17: LEO3 (Line String)
18: PCO1l (Polygon)
19: PCO02 (Polygon)
20: PC0O3 (Polygon)

Using ogrinfo to examine the structure of the file/layer:

> ogrinfo /data/sdts/MD/MDTRCATD.DDF LEOl —-summary
Had to open data source read-only.

INFO: Open of ‘MDTRCATD.DDF'

using driver ‘SDTS’ successful.

Layer name: LEO1
Geometry: Line String
Feature Count: 780
Extent: (-80.000289, 36.999774) - (-74.999711, 40.000225)
Layer SRS WKT:
GEOGCS["NAD27",
DATUM["North_American_Datum_1927",
SPHEROID["Clarke 1866",6378206.4,294.978698213901]1],
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]]
RCID: Integer (0.0)
SNID: Integer (0.0)
ENID: Integer (0.0)
ENTITY_LABEL: String (7.0)
ARBITRARY_EXT: String (1.0)
RELATION_TO_GROUND: String (1.0)
VERTICAL_RELATION: String (1.0)
OPERATIONAL_STATUS: String (1.0)
ACCESS_RESTRICTION: String (1.0)
OLD_RAILROAD_GRADE: String (1.0)
WITH_RAILROAD: String (1.0)
COVERED: String (1.0)
HISTORICAL: String (1.0)
LIMITED_ACCESS: String (1.0)
PHOTOREVISED: String (1.0)
LANES: Integer (2.0)
ROAD_WIDTH: Integer (3.0)
BEST_ESTIMATE: String (1.0)
ROUTE_NUMBER: String (7.0)
ROUTE_TYPE: String (9.0)

Map File Example:

284 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

LAYER
NAME sdts_maryland
TYPE LINE
CONNECTIONTYPE OGR

CONNECTION "data/sdts/MD/MDTRCATD.DDE"

DATA "LEOL"
STATUS DEFAULT
CLASS
STYLE
COLOR 0 0 O
END
END
END

7.1.20 USGS TIGER

TIGER/Line files are created by the US Census Bureau and cover the entire US. They are often referred simply as
TIGER files. For more information see: http://www.census.gov/geo/www/tiger/.

File listing

TIGER/Line files are text files and directory-based data sources. For example, one county folder TGR06059 contains

several associated files:

TGRO6059.RT1 TGR06059.RT2 TGRO6059.
TGRO6059.RT6 TGRO6059.RT7 TGRO6059.
TGR06059.RTC TGRO6059.RTH TGRO6059.
TGRO6059.RTR TGR06059.RTS TGR0O6059.

Data Access / Connection Method

RT4
RTS8
RTI
RTT

TGRO6059.RT5
TGRO6059.RTA
TGR06059.RTP
TGRO6059.RTZ

* TIGER/Line access occurs through an OGR CONNECTION

 The full path to the directory containing the associated files is required in the CONNECTION string.

* The feature type is specified in the DATA parameter

OGRINFO Examples

Using ogrinfo on a TIGER directory to retrieve feature types:

> ogrinfo TGR06059
ERROR 4:

(NOTE that this is a directory)
Tiger Driver doesn’t support update.

Had to open

INFO: Open of
using driver
CompleteChain

AltName

ZipCodes

o U W N

FeatureIds

Landmarks
ArealLandmarks

data source read-only.
‘TGR0O6059"

‘TIGER’ successful.
(Line String)
(None)

(None)

(None)

(Point)

(None)

7.1. Vector Data

285

http://www.census.gov/geo/www/tiger/

MapServer Documentation, Release 5.4.2

7: Polygon (None)

8: PolygonCorrections (None)
9: EntityNames (Point)

10: PolygonEconomic (None)
11: IDHistory (None)

12: PolyChainLink (None)
13: PIP (Point)

14: TLIDRange (None)

15: ZeroCellID (None)

16: OverUnder (None)

17: ZipPlus4 (None)

Using ogrinfo to examine the structure of the TIGER feature type CompleteChain:

> ogrinfo TGR06059 CompleteChain -summary
ERROR 4: Tiger Driver doesn’t support update.
Had to open data source read-only.

INFO: Open of ‘TGR06059'

using driver ‘TIGER’ successful.

Layer name: CompleteChain
Geometry: Line String
Feature Count: 123700
Extent: (-118.125898, 33.333992) - (-117.412987, 33.947512)
Layer SRS WKT:
GEOGCS["NAD83",
DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.25722210111],
PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]]
MODULE: String (8.0)
TLID: Integer (10.0)
SIDEl: Integer (1.0)
SOURCE: String (1.0)
FEDIRP: String (2.0)
FENAME: String (30.0)
FETYPE: String (4.0)
FEDIRS: String (2.0)
CFCC: String (3.0)

FRADDL: String (11.0)
TOADDL: String (11.0)
FRADDR: String (11.0)
TOADDR: String (11.0)
FRIADDL: String (1.0)
TOIADDL: String (1.0)
FRIADDR: String (1.0)
TOIADDR: String (1.0)
ZIPL: Integer (5.0)
Map File Example:
LAYER

NAME Complete_Chain

TYPE LINE

STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "/path/to/data/tiger/TGR06059"

286

Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

DATA "CompleteChain"
CLASS
STYLE
COLOR 153 102 O
END
END
END # Layer

7.1.21 GPS Exchange Format (GPX)

GPX (the GPS Exchange Format) is a light-weight XML data format containing GPS data (waypoints, routes, and
tracks). For more information see the official GPX site.

File listing

All waypoints, routes, and tracks are stored in a single .gpx file.

Data Access / Connection Method

* GPX access is available through OGR. See the OGR driver page for specific driver information.
* A relative path to the .gpx file can be used in the mapfile LAYER’s CONNECTION string.

* The feature type is specified in the DATA parameter - the “tracks” feature type will usually be the track
line

— the “track_points” feature type will usually be the points that make up the track line
OGRINFO Examples
First you should make sure that your GDAL/OGR build contains the “GPX” driver, by using the ‘—formats’ command:

>ogrinfo —--formats
Loaded OGR Format Drivers:

—> "Ccsy"r

(read/write)
-> "GML" (read/write)
-> "GPX" (read/write)
-> "KML" (read/write)

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.

Once you have the GPX driver you are ready to try an ogrinfo command on your file to get a list of feature types:

>ogrinfo test.gpx

INFO: Open of ‘test.gpx’

using driver ‘GPX’ successful.

: waypoints (Point)
: routes (Line String)
: tracks (Multi Line String)
: route_points (Point)
: track_points (Point)

g w N

7.1. Vector Data 287

http://www.topografix.com/gpx.asp
http://www.gdal.org/ogr/drv_gpx.html
http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 5.4.2

Now use ogrinfo to get information on one of the feature types:

>ogrinfo test.gpx track_points —-summary
INFO: Open of ‘test.gpx’
using driver ‘GPX’ successful.

Layer name: track_points
Geometry: Point
Feature Count: 661
Extent: (-66.694270, 47.985570) - (-66.675222, 47.990791)
Layer SRS WKT:
GEOGCS["WGS 84",
DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"17,
AUTHORITY ["EPSG","6326"]1],
PRIMEM["Greenwich", 0,
AUTHORITY ["EPSG", "8901"11,
UNIT["degree",0.01745329251994328,
AUTHORITY ["EPSG", "9122"1],
AUTHORITY ["EPSG", "4326"]]
track_fid: Integer (0.0)
track_seg_id: Integer (0.0)
track_seg_point_id: Integer (0.0)
ele: Real (0.0)
time: DateTime (0.0)
magvar: Real (0.0)
geoidheight: Real (0.0)
name: String (0.0)
cmt: String (0.0)
desc: String (0.0)
src: String (0.0)

Mapfile Example
Since you have confirmed that OGR can read your GPX file, now you can create a MapServer layer:

LAYER
NAME gpx
TYPE POINT
STATUS ON
CONNECTIONTYPE OGR
CONNECTION test.gpx
DATA "track_points"
CLASS
NAME "gpx"
STYLE
SYMBOL ’circle’
COLOR 0 119 255
SIZE 2
END
END
END # layer

288 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

7.2 Raster Data

Author Frank Warmerdam

Contact warmerdam at pobox.com

Revision $Revision: 8480 $

Date $Date: 2009-01-29 12:04:25 -0800 (Thu, 29 Jan 2009) $
Last Updated 2007/12/09

Table of Contents

* Raster Data

— Introduction
How are rasters added to a Map file?
Supported Formats
Rasters and Tile Indexing
Raster Warping
24bit RGB Rendering
Special Processing Directives
Raster Query
Raster Display Performance Tips
Preprocessing Rasters
Georeference with World Files

7.2.1 Introduction

MapServer supports rendering a variety of raster file formats in maps. The following describes some of the supported
formats, and what capabilities are supported with what formats.

This document assumes that you are already familiar with setting up MapServer Mapfile, but does explain the raster
specific aspects of mapfiles.

7.2.2 How are rasters added to a Map file?

A simple raster layer declaration looks like this. The DATA file is interpreted relative to the SHAPEPATH, much like
shapefiles.

LAYER
NAME "JacksonvilleNC_CIB"
DATA "Jacksonville.tif"
TYPE RASTER
STATUS ON

END

Though not shown rasters can have PROJECTION, METADATA, PROCESSING, MINSCALE, and MAXSCALE
information. It cannot have labels, CONNECTION, CONNECTIONTYPE, or FEATURE information.

Classifying Rasters

Rasters can be classified in a manner similar to vectors, with a few exceptions.

7.2. Raster Data 289

MapServer Documentation, Release 5.4.2

There is no need to specify a CLASSITEM. The raw pixel value itself (“[pixel]”) and, for paletted images, the red,

green and blue color associated with that pixel value (“[red]”, “[green]” and “[blue]”’) are available for use in classifi-
cations. When used in an evaluated expression the pixel, red, green and blue keywords must be in lower case.

LAYER
NAME "JacksonvilleNC_CIB"
DATA "Jacksonville.tif"
TYPE RASTER
STATUS ON
CLASSITEM "[pixel]l"
class using simple string comparison, equivelent to ([pixel] = 0)
CLASS
EXPRESSION "0O"
STYLE
COLOR 0 0 O
END
END
class using an EXPRESSION using only [pixel].
CLASS
EXPRESSION ([pixel] >= 64 AND [pixel] < 128)
STYLE
COLOR 255 0 0
END
END
class using the red/green/blue values from the palette
CLASS
NAME "near white"
EXPRESSION ([red] > 200 AND [green] > 200 AND [blue] > 200)
STYLE
COLOR 0 255 0
END
END
Class using a regular expression to capture only pixel values ending in 1
CLASS
EXPRESSION /«x1/
STYLE
COLOR 0 0 255
END
END
END

As usual, CLASS definitions are evaluated in order from first to last, and the first to match is used. If a CLASS has
a NAME attribute it may appear in a LEGEND. Only the COLOR, EXPRESSION and NAME parameters within a
CLASS definition are utilized for raster classifications. The other styling or control information is ignored.

Raster classifications always take place on only one raster band. It defaults to the first band in the referenced file, but
this can be altered with the BANDS PROCESSING directive. In particular this means that including even a single
CLASS declaration in a raster layer will result in the raster layer being rendered using the one band classification rules
instead of other rules that might have applied (such as 3 band RGB rendering).

Classifying Non-8bit Rasters

As of MapServer 4.4 support has been added for classifying non-8bit raster inputs. That is input rasters with values
outside the range 0-255. Mostly this works transparently but there are a few caveats and options to provide explicit
control.

Classifying raster data in MapServer is accomplished by pre-classifying all expected input values and using that table

290 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

of classification results to lookup each pixel as it is rendered. This is done because evaluating a pixel value against a
series of CLASS definitions is relatively expensive to do for the hundreds of thousands of pixels in a typical rendered
image.

For simple 8bit inputs, only 256 input values need to be pre-classified. But for non-8bit inputs more values need to be
classified. For 16bit integer inputs all 65536 possible input values are pre-classified. For floating point and other input
data types, up to 65536 values are pre-classified based on the maximum expected range of input values.

The PROCESSING directive can be used to override the range of values to be pre-classified, or the number of val-
ues (aka Buckets) in that range to classify. The SCALE=min,max PROCESSING directive controls the range. The
SCALE_BUCKETS PROCESSING directive controls the number of buckets. In some cases rendering can be accel-
erated considerable by selecting a restricted range of input values and a reduced number of scaling values (buckets).

The following example classifies a floating raster, but only 4 values over the range -10 to 10 are classified. In particular,
the values classified would be -7.5, -2.5, 2.5, and 7.5 (the middle of each “quarter” of the range). So those four value
are classified, and one of the classification results is selected based on which value is closest to the pixel value being
classified.

LAYER
NAME gridl
TYPE raster
STATUS default
DATA data/float.tif
PROCESSING "SCALE=-10,10"
PROCESSING "SCALE_BUCKETS=4"
CLASS
NAME "red"
EXPRESSION ([pixel] < -3)
STYLE
COLOR 255 0 0
END
END
CLASS
NAME "green"
EXPRESSION ([pixel] >= -3 and [pixel] < 3)
STYLE
COLOR 0 255 0
END
END
CLASS
NAME "blue"
EXPRESSION ([pixel] >= 3)
STYLE
COLOR 0 0 255
END
END
END

7.2.3 Supported Formats

What raster formats are supported by MapServer is largely controlled by configuration time options. Some formats
are considered to be built-in while the remainder are handled by the optional GDAL raster library.

More information on GDAL can be found at http://www.gdal.org, including the supported formats list. Some of the
advanced MapServer raster features, such as resampling, RGB color cube generation and automatic projection capture
only work with raster formats used through GDAL. GDAL is normally built and installed separately from MapServer,
and then enabled during the build of MapServer using the —with-gdal configuration switch.

7.2. Raster Data 291

http://www.gdal.org
http://www.gdal.org/formats_list.html

MapServer Documentation, Release 5.4.2

To find out what is built into a particular MapServer executable, use the -v flags to discover what build options are
enabled. To find out what GDAL formats are available, the “gdalinfo —formats” command may be used. For example:

warmerda@gdal2200[124]% mapserv -v
MapServer version 4.4.0-beta2 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
SUPPORTS=WFS_SERVER SUPPORTS=WEFS_CLIENT SUPPORTS=WCS_SERVER SUPPORTS=FASTCGI
INPUT=EPPL7 INPUT=POSTGIS INPUT=0OGR INPUT=GDAL INPUT=SHAPEFILE DEBUG=MSDEBUG
warmerda@gdal2200[18]% gdalinfo —-—-formats
Supported Formats:

GRASS (ro): GRASS Database Rasters (5.7+)

GTiff (rw+): GeoTIFF

NITF (rw+): National Imagery Transmission Format

HFA (rw+): Erdas Imagine Images (.img)

SAR_CEOS (ro): CEOS SAR Image

The following formats are potential builtins:

TIFF/GeoTIFF If built with INPUT=TIFF MapServer will have builtin support for reading TIFF or GeoTIFF files.
The builtin TIFF support has some limitations with regard to the organization of files that can be read (no tiled,
16bit, RGB, or odd color models). This driver supports world files, or simple builtin GeoTIFF coordinates for
georeferencing.

Full featured TIFF/GeoTIFF support is available through GDAL. Note that only GDAL supports tiled TIFF files
and TIFF files with overviews. Tiled TIFF files with overviews pre-built are one of the highest performance
ways of serving large raster images.

GIF If GD is configured with GIF (OUTPUT=GIF) support, then MapServer will also be able to read GIF files for
raster layers. The only way to georeference GIF files is with a world file.

If GD is not configured with GIF support, it may still be available in GDAL.

PNG If GD is configured with PNG (OUTPUT=PNG) support, then MapServer will also be able to read PNG files
for raster layers. The only way to georeference PNG files is with a world file.

If GD is not configured with PNG support, it may still be available in GDAL.

JPEG If MapServer is built with JPEG (INPUT=JPEG) support then greyscale JPEG files may be rendered in raster
layers. RGB files (the more common kind) will not be able to be displayed. Georeferencing is via world files.

If MapServer is not built with native JPEG support, GDAL may still support the format. In this case RGB files
are also supported (via the RGB color cube mechanism). Georeferencing is still via world file.

Erdas .LAN/.GIS If configured with INPUT=EPPL7 (the default) MapServer will support one band eight bit Erdas
LAN/GIS files. The .trl file is read for a colormap, and if not found the layer is treated as greyscale. Georefer-
encing is read from the file.

If MapServer is built with GDAL it is generally better to access all possible formats through GDAL rather than via the
built-in drivers. The built-in drivers are less featureful, and not as well maintained.

7.2.4 Rasters and Tile Indexing

When handling very large raster layers it is often convenient, and higher performance to split the raster image into a
number of smaller images. Each file is a tile of the larger raster mosaic available for display. The list of files forming a
layer can be stored in a shapefile with polygons representing the footprint of each file, and the name of the files. This
is called a TILEINDEX and works similarly to the same feature in vector layers. The result can be represented in the
MAP file as one layer, but MapServer will first scan the tile index, and ensure that only raster files overlapping the
current display request will be opened.

292 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

The following example shows a simple example. No DATA statement is required because MapServer will fetch the
filename of the raster files from the Location attribute column in the hp2.dbf file for records associated with polygons
in hp2.shp that intersect the current display region. The polygons in hp2.shp should be rectangles representing the
footprint of the corresponding file. Note that the files do not have to be all the same size, the formats can vary and they
can even overlap (later files will be drawn over earlier ones); however, they must all be in the same coordinate system
(projection) as the layer.

LAYER
NAME "hpool"
STATUS ON

TILEINDEX "hp2.shp"
TILEITEM "Location"
TYPE RASTER

END

The filenames in the tileindex are searched for relative to the SHAPEPATH or map file, not relative to the tileindex.
Great care should be taken when establishing the paths put into the tileindex to ensure they will evaluate properly
in use. Often it is easiest to place the tileindex in the SHAPEPATH directory, and to create the tileindex with a path
relative to the SHAPEPATH directory. When all else fails, absolute paths can be used in tileindex, but then they cannot
be so easily moved from system to system.

While there are many ways to produce TILEINDEX shapefiles for use with this command, one option is the gdaltindex
program, part of the GDAL utility suite. The gdaltindex program will automatically generate a tile index shapefile from
a list of GDAL supported raster files passed on the command line.

Usage: gdaltindex [-tileindex field_name] index_file [gdal_file]x

)

% gdaltindex dog_index.shp dog/*.tif

Tile Index Notes

» The shapefile (index_file) will be created if it doesn’t already exist.

* The default tile index field is ‘location’.

» Simple rectangular polygons are generated in the same coordinate system as the rasters.
* Raster filenames will be put in the file exactly as they are specified on the commandline.

e Many problems with tile indexes relate to how relative paths in the tile index are evaluated. They should be
evaluated relative to the SHAPEPATH if one is set, otherwise relative to the tileindex file. When in doubt
absolute paths may avoid path construction problems.

The gdaltindex program is built as part of GDAL. Prebuilt binaries for GDAL including the gdaltindex program can
be downloaded as part of the OSGeo4W, FWTools and MS4W distributions.

See Also:

Tile Indexes

7.2.5 Raster Warping
MapServer is able to resample GDAL rasters on the fly into new projections. Non-GDAL rasters may only be up or
down sampled without any rotation or warping.

Raster warping kicks in if the projection appears to be different for a raster layer than for the map being generated.
Warped raster layers are significantly more expensive to render than normal raster layers with rendering time being

7.2. Raster Data 293

http://www.gdal.org/gdal_utilities.html
http://trac.osgeo.org/osgeo4w/
http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 5.4.2

perhaps 2-4 times long than a normal layer. The projection and datum shifting transformation is computed only at
selected points, and generally linearly interpolated along the scanlines (as long as the error appears to be less than
0.333 pixels.

In addition to reprojecting rasters, the raster warping ability can also apply rotation to GDAL rasters with rotational
coefficients in their georeferencing information. Currently rotational coefficients won’t trigger raster warping unless
the map and layer have valid (though matching is fine) projection definitions.

7.2.6 24bit RGB Rendering

Traditionally MapServer has been used to produce 8 bit pseudo-colored map displays generated from 8bit greyscale
or pseudocolored raster data. However, if the raster file to be rendered is actually 24bit (a red, green and blue band)
then additional considerations come into play. Currently rendering of 24bit imagery is only supported via the GDAL
renderer. The built-in PNG, JPEG and other drivers do not support 24bit input images.

If the output is still 8bit pseudo-colored (the IMAGEMODE is PC256 in the associated OUTPUT format declaration)
then the full 24bit RGB colors for input pixels will be converted to a color in the colormap of the output image. By
default a color cube is used. That is a fixed set of 175 colors providing 5 levels of red, 7 levels of green and 5 levels
of blue is used, plus an additional 32 greyscale color entries. Colors in the input raster are mapped to the closest color
in this color cube on the fly. This substantial degrades color quality, especially for smoothly changing images. It also
fills up the colors table, limited to 256 colors, quite quickly.

A variation on this approach is to dither the image during rendering. Dithering selects a color for a pixel in a manner
that “diffuses error” over pixels. In an area all one color in the source image, a variety of output pixel colors would
be selected such that the average of the pixels would more closely approximate the desired color. Dithering also takes
advantage of all currently allocated colors, not just those in the color cube. Dithering requires GDAL 1.1.9 or later, and
is enabled by providing the PROCESSING “DITHER=YES” option in the mapfile. Dithering is more CPU intensive
than using a simple color cube, and should be avoided if possible in performance sensitive situations.

The other new possibility for handling 24bit input imagery in MapServer 4.0 or later, is to produce 24bit output images.
The default “IMAGETYPE png24” or “IMAGETYPE jpeg” declaration may be used to produce a 24bit PNG output
file, instead of the more common 8bit pseudo-colored PNG file. The OUTPUTFORMAT declaration provides for
detailed control of the output format. The IMAGEMODE RGB and IMAGEMODE RGBA options produce 24bit and
32bit (24bit plus 8bit alpha/transparency) for supported formats.

7.2.7 Special Processing Directives

As of MapServer 4.0, the PROCESSING parameter was added to the LAYER of the Mapfile. It is primarily used to
pass specialized raster processing options to the GDAL based raster renderer. The following processing options are
supported in MapServer 4.0 and newer.

DITHER=YES This turns on error diffusion mode, used to convert 24bit images to 8bit with error diffusion to get
better color results.

Example:

PROCESSING "DITHER=YES"

BANDS=red_or_grey[,green,blue[,alpha]] This directive allows a specific band or bands to be selected from a raster
file. If one band is selected, it is treated as greyscale. If 3 are selected, they are treated as red, green and blue. If
4 are selected they are treated as red, green, blue and alpha (opacity).

Example:

PROCESSING "BANDS=4,2,1"

294 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

SCALE[_n]=AUTO or min,max This directive instructs the GDAL reader to pre-scale the incoming raster data. It
is primarily used to scale 16bit or floating point data to the range 0-255, but can also be used to constrast stretch
8bit data. If an explicit min/max are provided then the input data is stretch (or squished) such that the minimum
value maps to zero, and the maximum to 255. If AUTO is used instead, a min/max is automatically computed.
To control the scaling of individual input bands, use the SCALE_1, SCALE_2 and SCALE_3 keywords (for
red, green and blue) instead of SCALE which applies to all bands.

Example:

PROCESSING "SCALE=AUTO"

or
PROCESSING "SCALE_1=409,1203"
PROCESSING "SCALE_2=203,296"
PROCESSING "SCALE_3=339,1004"

LUT[_n]=<lut_spec> This directive (MapServer 4.9+) instructs the GDAL reader to apply a custom LUT (lookup
table) to one or all color bands as a form of on the fly color correction. If LUT is used, the LUT is applied to all
color bands. If LUT _n is used it is applied to one color band (n is 1 for red, 2 for green, 3 for blue, 4 for alpha).

The LUT can be specified inline in the form:
<lut_spec> = <in_value>:<out_value>[,<in_value>:<out_value>]x

This essentially establish particular input values which are mapped to particular output values. The list implicitly
begins with 0:0, and 255:255. An actual 256 entry lookup table is created from this specification, linearly
interpolating between the values. The in values must be in increasing order. The LUT specification may also be
in a text file with the <lut_spec> being the filename. The file contents should be in the same syntax, and the file
is searched relative to the mapfile.

Example:

PROCESSING "LUT_l=red.lut"
PROCESSING "LUT_2=green.lut"
PROCESSING "LUT_3=blue.lut"
or
PROCESSING "LUT=100:30,160:128,210:200"

As a special case there is also support for GIMP format curve files. That is the text files written out by the
Tools->Color->Curves tool. If this is specified as the filename then it will be internally converted into linear
segments based on the curve control points. Note that this will not produce exactly the same results as the
GIMP because linear interpolation is used between control points instead of curves as used in the GIMP. For a
reasonable number of control points the results should be similar. Also note that GIMP color curve files include
an overall “value” curve, and curves for red, green, blue and alpha. The value curve and the appropriate color
curve will be composed internally to produce the final LUT.

Example:

PROCESSING "LUT=munich.crv"

COLOR_MATCH_THRESHOLD=n Alter the precision with which colors need to match an entry in the color
table to use it when producing 8bit colormapped output (IMAGEMODE PC256). Normally colors from a raster
colormap (or greyscale values) need to match exactly. This relaxes the requirement to being within the specified
color distance. So a COLOR_MATCH_THRESHOLD of 3 would mean that an existing color entry within 3
(sum of difference in red, green and blue) would be used instead of creating a new colormap entry. Especially
with greyscale raster layers, which would normally use all 256 color entries if available, this can be a good way
to avoid “stealing” your whole colormap for a raster layer. Normally values in the range 2-6 will give good
results.

7.2. Raster Data 295

MapServer Documentation, Release 5.4.2

Example:

PROCESSING "COLOR_MATCH_THRESHOLD=3"

RESAMPLE=NEAREST/AVERAGE/BILINEAR This option can be used to control the resampling kernel used
sampling raster images. The default (and fastest) is NEAREST. AVERAGE will perform compute the average
pixel value of all pixels in the region of the disk file being mapped to the output pixel (or possibly just a sampling
of them). BILINEAR will compute a linear interpolation of the four pixels around the target location. This topic
is discussed in more detail in MS RFC 4: MapServer Raster Resampling.

Resampling options other than NEAREST result in use of the generalized warper and can dramatically slow
down raster processing. Generally AVERAGE can be desirable for reducing noise in dramatically downsampled
data, and can give something approximating antialiasing for black and white linework. BILINEAR can be
helpful when oversampling data to give a smooth appearance.

Example (chose one):
PROCESSING "RESAMPLE=NEAREST"

PROCESSING "RESAMPLE=AVERAGE"
PROCESSING "RESAMPLE=BILINEAR"

7.2.8 Raster Query

A new feature added in MapServer 4.4 is the ability to perform queries on rasters in a manner similar to queries
against vector layers. Raster queries on raster layers return one point feature for each pixel matching the query. The
point features will have attributes indicating the value of different bands at that pixel, the final rendering color and
the class name. The resulting feature can be directly access in MapScript, or processed through templates much like
normal vector query results. Only raster layers with a query TEMPLATE associated can be queried, even for the query
methods that don’t actually use the query template (much like vector data).

Raster query supports QueryByPoint, QueryByRect, and QueryByShape. QueryByPoint supports single and multiple
result queries. Other query operations such as QueryBylndex, QueryByIndexAdd, QueryByAttributes and Query-
ByFeature are not supported for raster layers.

Raster layers do not support saving queries to disk, nor query maps.
Raster queries return point features with some or all of the following attributes:
x georeferenced X location of pixel.
y georeferenced Y location of pixel.
value_list a comma separated list of the values of all selected bands at the target pixel.

value_n the value for the n’th band in the selected list at this pixel (zero based). There is one value_n
entry for each selected band.

class Name of the class this pixel is a member of (classified layers only).
red red component of the display color for this pixel.

green green component of the display color for this pixel.

blue blue component of the display color for this pixel.

The red, green and blue attribute are intended to be the final color the pixel would be rendered with, but in some subtle
cases it can be wrong (ie. classified floating point results). The selected bands are normally the band that would be
used to render the layer. For a pure query-only layer BANDS PROCESSING directive can be used to select more
bands than could normally be used in a render operation. For instance for a 7 band landsat scene a PROCESSING
“BANDS=1,2,3.4,5,6,7” directive could be used to get query results for all seven bands in results to a query operation.

296 Chapter 7. Data Input

MapServer Documentation, Release 5.4.2

Care should be taken to avoid providing a large query area (selecting alot of pixels) as each selected pixel requires
over 100 bytes of memory for temporary caching. The RASTER_QUERY_MAX_RESULT PROCESSING item can
be used to restrict the maximum number of query results that will be returned. The default is one million which would
take on the order of 100MB of RAM.

Query results can be returned as HTML via the normal substitution into query template HTML. Query results are also
accessible via WMS GetFeaturelnfo calls, and from MapScript. The following example shows executing a feature
query from Python MapScript and fetching back the results:

map = mapscript.Map (’ rquery.map’)
layer = map.getLayer (0)

pnt = mapscript.Point ()
pnt.x = 440780
pnt.y = 3751260

layer.queryByPoint (map, pnt, mapscript.MS_MULTIPLE, 180.0)

layer.open ()

for i in range (1000) :
result = layer.getResult(i)
if result is None:

break
print ' (,)" % (result.shapeindex, result.tileindex)
s = layer.getShape(result.shapeindex, result.tileindex)
for i in range(layer.numitems) :

print '/ : " % (layer.getItem(i), s.getValue(i))

layer.close()

This following is a simple example query TEMPLATE file. The raster pixel attributes will be substituted in before the
query result is returned to the user as HTML.

Pixel:

values=[value_list]

value_0O=[value_0]

value_l=[value_1]

value_2=[value_2]

RGB = [red], [green], [blue]<p>

Class [class]

Internally raster query results are essentially treated as a set of temporary features cached in RAM. Issuing a new
query operation clears the existing query cache on the layer. The transitory in-memory representation of raster query
results is also responsible for the inability to save raster query results since saved query results normally only contain
the feature ids, not the entire features. Some addition information is available in the RasterQuery Wiki topic.

7.2.9 Raster Display Performance Tips

* Build overview levels for large rasters to ensure only a reasonable amount of data needs to be touched to display
an overview of a large layer. Overviews can be implemented as a group of raster layers at different resolutions,
using MINSCALE, and MAXSCALE to control which layers are displayed at different resolutions. Another,
perhaps easier way, is to build overviews for GDAL supported formats using the gdaladdo utility.

7.2. Raster Data 297

http://trac.osgeo.org/mapserver/wiki/RasterQuery
http://www.gdal.org/gdal_utilities.html

MapServer Documentation, Release 5.4.2

* When using tileindexes to manage many raster files as a single file, it is especially important to have an overview
layer that kicks in at high scales to avoid having to open a large number of raster files to fulfill the map request.

* Preprocess RGB images to eightbit with a colormap to reduce the amount of data that has to be read, and the
amount of computation to do on the fly.

* For large images use tiling to reduce the overhead for loading a view of a small area. This can be accomplished
using the TILEINDEX mechanism of the mapfile, or by creating a tiled format file (ie. TIFF with GDAL).

* Ensure that the image is kept on disk in the most commonly requested projection to avoid on-the-fly image
warping which is fairly expensive.

* If you are getting debug output from MapServer in your web server log file, check to see if the message msRe-
sampleGDALToMap in effect appears. If so, the raster layer is being resampled. If you don’t think it should be
resampled carefully review your map file to ensure that the layer projection exactly matches the map projection
or that the layer has no projection definition.

7.2.10 Preprocessing Rasters

The following operations use GDAL commandline utilities, some of which are python scripts. They are generally
available on any GDAL installation with python support.

Producing Tiled Datasets

The TIFF and Erdas Imagine formats support internal tiling within files, and will generally give better display speed
for local map requests from large images. To produce a GeoTIFF file in internally tiled format using the TILED=YES
creation option with the gdal_translate utility:

gdal_translate -co TILED=YES original.tif tiled.tif

Erdas Imagine (HFA) files are always tiled, and can be larger than 4GB (the GeoTIFF limit). Use a command like the
following to translate a raster to Imagine format:

gdal_translate -of HFA original.tif tiled.img

Reducing RGB to 8bit

Rendering and returning 24bit images (especially as PNG) can be quite expensive in render/compress time and band-
width. Pre-reducing raster data to 8bit can save disk space, processing time, and bandwidth. However, such a color
reduction also implicitly reduces the quality of the resulting map. The color reduction can be done on the fly by
MapServer but this requires even more processing. A faster approach is to pre-reduce the colors of 24bit imagery to
8bit. This can be accomplished with the GDAL rgb2pct.py script like this:

rgb2pct.py original.tif 8bit.tif

By default images will be reduced to 256 colors but this can mean there are not enough colors to render other colors
in the map. So it may be desired to reduce to even less colors:

rgb2pct.py —n 200 original.tif 8bit.tif

Downsampling to 8bit should be done before internal tiling and overview building. The rgb2pct.py script tries to
compute an optimal color table for a given image, and then uses error diffusion during the 24bit to 8bit reduction.
Other packages (such as ImageMagick or Photoshop) may have alternative color reduction algorithms that are more
appropriate for some uses.

298 Chapter 7. Data Input

http://www.gdal.org/gdal_utilities.html

MapServer Documentation, Release 5.4.2

Building Internal Overviews

Most GDAL supported raster formats can have overviews pre-built using the gdaladdo utility. However, a few formats,
such as JPEG2000, MrSID, and ECW already contain implicit overviews in the format themselves and will not gener-
ally benefit from external overviews. For other formats (such as GeoTIFF, and Erdas Imagine format) use a command
like the following to build overviews:

gdaladdo tile.tif 2 4 8 16 32 64 128

The above would build overviews at x2 through x128 decimation levels. By default it uses “nearest neighbour”
downsampling. That is one of the pixels in the input downsampled area is selected for each output pixel. For some
kinds of data averaging can give much smoother overview results, as might be generated with this command:

gdaladdo -r average tiled.tif 2 4 8 16 32 64 128

Note that overview building should be done after translating to a final format. Overviews are lost in format conversions
using gdal_translate. Also, nothing special needs to be done to make MapServer use GDAL generated overviews. They
are automatically picked up by GDAL when mapserver requests a reduced resolution map.

Building External Overviews

When working with large collections of raster files using a MapServer tileindex, it is desirable to build reduced reso-
lution overview layers that kick in at high scales (using MINSCALE/MAXSCALE to control which layer activates).
Preparing the overviews can be a somewhat complex process. One approach is to use the gdal_merge.py script to
downsample and mosaic all the images. For instance if we want to produce an overview of many Imeter ortho photos
with 250 meter pixels we might do something like:

gdal_merge.py —-o overview.tif -ps 250 250 ortho_x.tif

The gdal_merge.py utility suffers from a variety of issues, including no support for different resampling kernels. With
GDAL 1.3.2 or later it should be able to accomplish something similar with the more flexible gdalwarp utility:

gdalwarp -rc —-tr 250 250 ortho_x.tif overview.tif

In some cases the easiest way of generating an overview is to let MapServer do it using the shp2img utility. For
instance if the tileindex layer is called “’orthos” we could do something like:

shp2img -m ortho.map -1 orthos -o overview.png

Note that the overview will be generated with the extents and size in the .map file, so it may be necessary to temporarily
adjust the map extents and size values to match the raster extents and the desired output size. Also, if using this method,
don’t leave large files in PNG (or GIF or JPEG) format as they are slow formats to extract subareas from.

7.2.11 Georeference with World Files

World files are a simple mechanism for associating georeferencing (world coordinates) information with raster files.
ESRI was the first company to propagate the use of world files, and they often used with TIFF instead of embedding
georeferencing information in the file itself.

The world file contents look like the following. The first coefficient is the X pixel size. The second and third are
rotational/shear coefficients (and should normally be 0.0). The fourth is the Y pixel size, normally negative indicating
that Y decreases as you move down from the top left origin. The final two values are the X and Y location of the

7.2. Raster Data 299

http://www.gdal.org/gdal_utilities.html

MapServer Documentation, Release 5.4.2

center of the top left pixel. This example is for an image with a 2m x 2m pixel size, and a top left origin at (356800E,
5767999N):

2
0.0000000000
0.0000000000

-2
356800.00
5767999.00

The name of the world file is based on the file it relates to. For instance, the world file for aerial.tif might be aerial.tfw.
Conventions vary for appropriate endings, but with MapServer the extension .wld is always OK for world files.

300 Chapter 7. Data Input

CHAPTER
EIGHT

OUTPUT GENERATION

8.1 AGG Rendering Specifics

Author Thomas Bonfort

Contact thomas.bonfort at gmail

Revision $Revision: 8295 $

Date $Date: 2008-12-26 21:08:04 -0800 (Fri, 26 Dec 2008) $
Last Updated 2008/11/24

Table of Contents

* AGG Rendering Specifics
— Introduction
— Setting the OutputFormat

— New Features
— Modified Behavior

8.1.1 Introduction

MapServer 5.0 released with a new rendering backend. This howto details the changes and new functionality that this
adds to map creation. This howto assumes you already now the basics of mapfile syntax. If not, you should probably
be reading the mapfile syntax.

8.1.2 Setting the OutputFormat
24 bit png (high quality, large file size):

OUTPUTFORMAT
NAME ' AGG’
DRIVER AGG/PNG
IMAGEMODE RGB
END

24 bit png, transparent background:

301

MapServer Documentation, Release 5.4.2

OUTPUTFORMAT
NAME ’AGGA'
DRIVER AGG/PNG
IMAGEMODE RGBA
END

24 bit jpeg (jpeg compression artifacts may appear, but smaller file size):

OUTPUTFORMAT
NAME ’'AGG_JPEG’
DRIVER AGG/JPEG
IMAGEMODE RGB
END

png output, with number of colors reduced with quantization.

OUTPUTFORMAT
NAME ' AGG_0Q’
DRIVER AGG/PNG
IMAGEMODE RGB
FORMATOPTION "QUANTIZE_FORCE=ON"
FORMATOPTION "QUANTIZE_DITHER=OFE"
FORMATOPTION "QUANTIZE_ COLORS=256"
END

8.1.3 New Features

* All rendering is now done antialiased by default. All ANTIALIAS keywords are now ignored, as well as
TRANSPARENCY ALPHA. Pixmaps and fonts are now all drawn respecting the image’s internal alpha channel
(unless a backgroundcolor is specified).

* As with GD in ver. 4.10, using a SYMBOL of type ELLIPSE to draw thick lines isn’t mandatory anymore. To
draw a thick line just use:

STYLE
WIDTH 5
COLOR 0 0 255
END

* A line symbolizer has been added, that works with vector or pixmap symbols, to draw textured lines. This
happens by default if a line’s style is given a symbol of type vector or pixmap. To enable “shield” symbolization,
i.e. a marker placed only on some points of the line, you must add a GAP parameter to your symbol definition.
This GAP value is scaled w.r.t the style’s SIZE parameter. Specify a positive gap value for symbols always
facing north (optionally rotated by the ANGLE of the current style), or a negative value for symbols that should
follow the line orientation

302 Chapter 8. Output Generation

MapServer Documentation, Release 5.4.2

* This happens by default if a line’s style is given a symbol of type vector or pixmap. To enable “shield” sym-
bolization, i.e. a marker placed only on some points of the line, you must add a GAP parameter to your symbol
definition. This GAP value is scaled w.r.t the style’s SIZE parameter - specify a positive gap value for symbols
always facing north (optionally rotated by the ANGLE of the current style), or a negative value for symbols that
should follow the line orientation

 Pixmap and font symbols can now be rotated without loosing their transparency

* For POLYGON layers with no specific SYMBOL, the WIDTH keyword specifies the width of the outline, if
an OUTLINECOLOR was specified. This is a shorthand that avoids having to create multiple styles for basic
rendering, and will provide a marginal performance gain. Note that in this case, the width of the outline is /not/
scale dependent.

8.1.4 Modified Behavior

* When specifying a SYMBOL for a polygon shape, the GAP parameter of the symbol is used as a separation
between each rendered symbol. This works for symbols of type vector, pixmap and ellipse. For example a
symbol defined by

SYMBOL

NAME ’'triangle’
TYPE VECTOR
FILLED TRUE
POINTS

01

.50

11

01

END

GAP 1
END

that is rendered in a class where SIZE is 15 will be rendered like

* layers of type CIRCLE support hatch type symbol filling

» the ENCODING keyword for labels is now enforced. If unset, MapServer will treat your label text byte-by-byte
(resulting in corrupt special characters).

8.2 AntiAliasing with MapServer

Author Pericles Nacionales

Contact naci0002 at umn.edu

Revision $Revision: 8440 $

Date $Date: 2009-01-17 07:39:26 -0800 (Sat, 17 Jan 2009) $
Last Updated 2009/01/17

8.2. AntiAliasing with MapServer 303

MapServer Documentation, Release 5.4.2

Note: For quality antialiased output from mapserver, it is highly recommended to use the AGG rendering. This
document applies only if you whish to stick to the GD rendering, or if you are using a version predating the 5.0 release
of mapserver.

Table of Contents

* AntiAliasing with MapServer
— What needs to be done

8.2.1 What needs to be done

1. Change (or add) IMAGETYPE keyword in MAP object to PNG24 (24-bit PNG output) or JPEG

MAP
IMAGETYPE [P[N]G|24
END

1. Add TRANSPARENCY to the LAYER object and set value to ALPHA

MAP

IMAGETYPE [P[N[G|2a

LAYER
TRANSPARENCY ALPHA

END
END

1. Add ANTIALIAS keyword to the STYLE object within the CLASS object within the LAYER and set value to
TRUE

MAP

IMAGETYPE [P[N[G|2a

LAYER
éﬁANSPARENCY ALPHA
cLass
STYLE
AﬁfIALIAS TRUE

END

END # end class

304 Chapter 8. Output Generation

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

MapServer Documentation, Release 5.4.2

END # end layer
END # end map

Note: Don’t use the SYMBOL or the SIZE keywords within the CLASS object, instead use WIDTH to specify width
of line or polygon outline. Don’t use WIDTH unless you have to. If you must define a SYMBOL, use symbol of type
CARTOLINE or ELLIPSE~it supports antialiasing.

Here’s an example of a real-world mapfile:

MAP
NAME 'ms101’
EXTENT -2198022.00 -2444920.25 2707932.00 1234545.25 # CONUS LAEA (US)
SIZE 640 480
SHAPEPATH ’'data’
SYMBOLSET '’ symbols/symbols.txt’

IMAGETYPE [P [N[G |24

PROJECTION
"init=epsg:2163"
END

The layer below will be rendered as l-pixel wide, antialiased line
If you’d like to change the line thickness add the WIDTH keyword
in the STYLE object with a value of 3 or greater.
LAYER # begin antialiased country boundary (line) layer
NAME ’country_line’
DATA ’shapefile/WorldCountryBorders’
TYPE LINE
STATUS ON
TRANSPARENCY ALPHA

PROJECTION
"init=epsg:4326"
END

CLASS
NAME ’Country Boundary’
STYLE
COLOR 96 96 96
ANTIALIAS TRUE
END
END
END # end country boundary layer

The layer below shows one way to draw a polygon with antialiased outline
LAYER # begin antialiased country boundary (polygon) layer

NAME ’country_line’

DATA ’'shapefile/Countries_area’

TYPE POLYGON

STATUS ON

TRANSPARENCY ALPHA

PROJECTION
"init=epsg:4326"
END

CLASS

8.2. AntiAliasing with MapServer 305

MapServer Documentation, Release 5.4.2

50 NAME ’'Country Boundary’
51 STYLE

52 COLOR 212 212 212

53 OUTLINECOLOR 96 96 96
54 WIDTH 3

55 ANTIALIAS TRUE

56 END

57 END

58 END # end country boundary polygon layer
59

60 # The layer below shows one way to draw a polygon with antialiased outline
6l LAYER # begin antialiased state boundary (line) layer
62 NAME ’'state_line’

63 DATA ’'shapefile/us_states’
64 TYPE LINE

65 STATUS ON

66 TRANSPARENCY ALPHA

67

68 PROJECTION

69 "init=epsg:4326"

70 END

71

7 CLASS

73 NAME ’'State Boundary’

74 STYLE

75 COLOR 144 144 144

76 SYMBOL ’'cartoline’

7 ANTIALIAS TRUE

78 END

79 END

80 END # end state line layer

st END # end of map file
Here’s how the ‘cartoline’ symbol is defined:

SYMBOL
NAME ’'cartoline’
TYPE CARTOLINE
LINECAP "round"
LINEJOIN "round"
LINEJOINMAXSIZE 3
END

Note: The examples provided here are for illustrative purposes only—keep your map file definitions simple. Antialias-
ing adds computing overhead on the server and could slow/degrade its performance. Don’t use it unless you must and
certainly don’t use symbols with it unless you really have to.

8.3 Dynamic Charting

Author Thomas Bonfort

Contact thomas.bonfort at gmail.com

Revision $Revision: 8439 $

Date $Date: 2009-01-17 07:27:10 -0800 (Sat, 17 Jan 2009) $

306 Chapter 8. Output Generation

MapServer Documentation, Release 5.4.2

Last Updated 2009/01/17

Table of Contents

* Dynamic Charting
— Setup
— Adding a Chart Layer to a Mapfile
— Pie Charts
— Bar Graphs

Starting with version 5.0, MapServer included the ability to automatically draw pie or bar graphs whose values are
taken and adjusted from attributes of a datasource.

This document assumes that you are already familiar with MapServer application development and especially setting
up Mapfile s. You can also check out the Vector Data Access Guide, which has lots of examples of how to access
specific data sources.

8.3.1 Setup

Supported Renderers

Dynamic charts are supported solely with the GD and AGG renderers.

Attempting to add a chart layer with any other renderer (e.g. PDF or SWF) will result in an error. Rendering quality
with the GD renderer is less than optimal, especially with small graphs, due to the lack of subpixel rendering functions.

Output from AGG and GD Renderers

MapServer AGG Rendering

MapServer GD Rendering

8.3.2 Adding a Chart Layer to a Mapfile
Layer Type

A new type of layer has been added to the mapfile syntax. To specify a chart layer, use

8.3. Dynamic Charting 307

MapServer Documentation, Release 5.4.2

LAYER
TYPE CHART
END

No other specific keywords have been added in order to keep the number of different keywords to a minimum in the
mapfile syntax, therefore all the chart specific configuration is determined by PROCESSING directives.

Specifying the Size of each Chart

The size of each chart is specified by the CHART_SIZE directive. If two values are given for this parameter, this will
specify the width and height of each chart (this only applies for bar graphs). By default, the charts are 20x20 pixels.

LAYER
TYPE CHART
PROCESSING "CHART_SIZE=21" # specify size of the chart for pie or bar graphs
#PROCESSING "CHART_SIZE=20 10" # specify width and height for bar graphs

END

From version 5.2 and onwards, the diameter of a pie chart can be bound to an attribute,using the
CHART_SIZE_RANGE PROCESSING attribute:

PROCESSING "CHART_SIZE_RANGE = itemname minsize maxsize minval maxval"

where:
* itemname is the name of the attribute that drives the chart size (e.g. total_sales)
* minsize and maxsize are the minimum and maximum chart size values in pixels (e.g. “10 100)

* minval and maxval are the minimum values of the attribute that correspond to chart sizes of minsize and maxsize
(e.g. 10000 1000000).

If the attribute value is smaller than ‘minval’ then the chart size will be minsize pixels, and if the attribute value is
larger than maxval, the chart size will be maxsize pixels.

Specifying the Values to be Plotted

Each value to be plotted (i.e. a slice in a pie chart, or a bar in a par graph) is specified in a CLASS of the chart layer.
The value to be plotted is taken from the SIZE keyword from the first STYLE block of the class. This is semantically
a bit awkward, but keeps the number of different keywords to a minimum in the mapfile syntax. The value given to
the SIZE keyword could of course be given a static value, but dynamic charting really only makes sense with attribute
binding.

LAYER

CLASS
include a NAME keyword 1if you want this class to be included
in the legend
NAME "value 1"
STYLE
specify which value from the data source will be used as the
value for the graph

308 Chapter 8. Output Generation

MapServer Documentation, Release 5.4.2

SIZE [la|t|t|r|i|b|ult|el]]

END
END
CLASS

END
END
At least 2 CLASS blocks must be specified before charting can occur (but you already knew this if you want your
charts to convey at least some information ;)).

Specifying Style

The styling of each value in the charts is specified by the usual MapServer syntax. Only one style per class is supported,
any other STYLE block will be silently ignored. Only a subset of the styling keywords are supported:

STYLE

SIZE [|la|t|t|r|i|lblult|ell

specify the fill color

coror [r] [g] [b]

1f present will draw an outline around the corresponding bar or slice

OUTLINECOLOR [r] [g] [b]

#specify the width of the outline if OUTLINECOLOR is present (defaults to 1)

WIDTH

only for pie charts. ’a’ is the number of pixels the corresponding
slice will be offset relative to the center of the pie. This is useful
for emphasizing a specific value in each chart. ’b’ is required by the
mapfile parser but is ignored.
OFFSET |a |

END

8.3.3 Pie Charts

This is the default type of chart that is rendered. This can also be specifically set with a PROCESSING keyword in the
layer attributes:

PROCESSING "CHART_TYPE=PIE"

For each shape in the layer’s datasource, the STYLE SIZE is used to set the relative size (value) of each pie slice, with
the angles of the slices that are automatically computed so as to form a full pie. For example:

LAYER
NAME "Ages"
TYPE CHART
CONNECTIONTYPE postgis
CONNECTION "blabla"
DATA "the_geom from demo"
PROCESSING "CHART_TYPE=pie"
PROCESSING "CHART_SIZE=30"

8.3. Dynamic Charting 309

MapServer Documentation, Release 5.4.2

STATUS ON

CLASS
NAME "Population Age 0-19"
STYLE

SIZE [[v][1006]

COLOR 255 244 237

END
END
CLASS
NAME "Population Age 20-39"
STYLE
SIZE [[v][1007]
COLOR 255 217 191
END
END
CLASS
NAME "Population Age 40-59"
STYLE
SIZE [[v[1008]
COLOR 255 186 140
END
END

END

In the example above, if for a given shape we have v1006=1000, v1007=600 and v1008=400 then the actual pie slices
for each class will be respectively 50%, 30% and 20% of the total pie size.

8.3.4 Bar Graphs
Bar graph drawing is set with a PROCESSING keyword in the layer attributes:

PROCESSING "CHART_TYPE=BAR"

For each shape in the layer’s datasource, the STYLE SIZE is used to set the relative size (value) of each bar in the
graph. By default, the vertical axis of each bar graph is scaled for the values of the corresponding shape, and will
always include the origin (=0). For example

¢ a shape whose STYLE SIZEs contains values {5,8,10,3} will be plotted on a graph whose vertical axis spans 0
to 10.

* ashape whose STYLE SIZEs contains values {-5,-8,-10,-3} will be plotted on a graph whose vertical axis spans
-10to O.

* a shape whose STYLE SIZEs contains values {-5,-8,10,3} will be plotted on a graph whose vertical axis spans
-8 to 10.

Additional PROCESSING directives are used to optionally specify the bounds of vertical axes so that the graphs for
all the shapes can be plotted with the same scale:

PROCESSING "CHART_BAR_MINVAL=val"
PROCESSING "CHART_BAR_MAXVAL=val"

Values in the datasource that are above CHART_BAR_MAXVAL or below CHART_BAR_MINVAL will be clipped
respectively to these values. If only one of these directives is included, the other will be automatically adjusted for
each shape to include at least the origin, i.e. the graphs for all the shapes will be in the same scale only if all the values
are of the same sign (positive or negative).

310 Chapter 8. Output Generation

MapServer Documentation, Release 5.4.2

8.4 Flash Output

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Author Yewondwossen Assefa

Contact assefa at dmsolutions.ca

Revision $Revision: 8370 $

Date $Date: 2008-12-31 12:32:02 -0800 (Wed, 31 Dec 2008) $
Last Updated 2008/07/15

Table of Contents

* Flash Output

Introduction

Installing MapServer with Flash Support

How to Output SWF Files from MapServer
What is Currently Supported and Not Supported

8.4.1 Introduction

Since MapServer 4.0, MapServer can output Flash files, in SWF format (or “Shockwave Flash Format”). The following
document outlines how to enable Flash output in MapServer.

Links to Flash-Related Information

* Open Source Flash Viewer

* Flash maps demo

8.4.2 Installing MapServer with Flash Support

To check that your mapserv executable includes Flash support, use the “-v”’ command-line switch and look for “OUT-
PUT=SWEF”.

$./mapserv -v

MapServer version 5.2.0-rcl OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
OUTPUT=PDF OUTPUT=SWE OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=AGG
SUPPORTS=FREETYPE SUPPORTS=ICONV SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
SUPPORTS=SOS_SERVER SUPPORTS=FASTCGI SUPPORTS=THREADS

SUPPORTS=GEOS SUPPORTS=RGBA_PNG INPUT=JPEG INPUT=POSTGIS
INPUT=ORACLESPATIAL INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE

Using Pre-compiled Binaries

Windows users can use MS4W, which supports SWF output.

8.4. Flash Output 311

http://aris.cseas.kyoto-u.ac.jp/fmv/
http://mapserver.gis.umn.edu/docs/tutorial/demoflashmap/demoflashmaps
http://www.maptools.org/ms4w/

MapServer Documentation, Release 5.4.2

Compiling MapServer with Flash Support

The library chosen to output SWF files is the Ming library. Ming is a C library for generating SWF (“Flash”) format
movies, and it contains a set of wrappers for using the library from C++ and popular scripting languages like PHP,
Python, and Ruby.

Building on Windows

* download the Ming library (the version currently supported is 0.2a)

¢ as of Ming 0.3 there was no makefile for Windows available in the distribution yet, but you can download a MS
VC++ makefile (makefile.vc) from here (contains makefile and also libming.lib)

 copy makefile.vc under the src directory (ming-0.2/src)

* execute:

nmake /f makefile.vc

* at this point you should have a libming.lib that will be linked with MapServer

¢ edit the nmake.opt in your MapServer directory and uncomment the MING=-DUSE_MING_FLASH flag, and
point MING_DIR to your Ming directory.

* build MapServer as usual

Building on Unix

3

Use the “~with-ming” configure flag to enable MING support on Unix. “~with-ming=dir” will try to find the include

files and library in the indicated directory.

Note: compiling MapServer 4.4.2 with flash support (mingbeta version 0.3) requires
the -DMING_VERSION_O03 option otherwise the make fails. This option should be included
in the configure.in after -DUSE_MING_FLASH as below:

MING ENABLED= "-DUSE_MING_FLASH -DMING_VERSION_03"

8.4.3 How to Output SWF Files from MapServer

SWEF output is specified by using the OUTPUTFORMAT object. There are 2 possible output types:

1. A single movie containing the raster output for all the layers. To enable this, declare the following in the map
file:

OUTPUTFORMAT
NAME swf
MIMETYPE "application/x-shockwave—-flash"
DRIVER swf
IMAGEMODE PC256
FORMATOPTION "OUTPUT_MOVIE=SINGLE"
END

2. A movie for every layer (vector movies for vector layers and raster movies for raster layers). To enable this,
declare the following in the map file:

312 Chapter 8. Output Generation

http://www.libming.org/
http://www.libming.org/
http://www2.dmsolutions.ca/mapserver/dl/ming-0.2a.zip

MapServer Documentation, Release 5.4.2

OUTPUTFORMAT
NAME swf

MIMETYPE "application/x-shockwave-flash"

DRIVER swf

IMAGEMODE PC256

FORMATOPTION
END

Other OutputFormat Options

"OUTPUT_MOVIE=MULTIPLE"

* FORMATOPTION “FULL_RESOLUTION=FALSE”

The FULL_RESOLUTION applies only for vector layers. If set to FALSE, filtering will be applied to the vector
elements. It results in a smaller SWF file. The default value is TRUE.

* FORMATOPTION “LOAD_AUTOMATICALLY=OFF”

Setting this option to OFF will not load the SWF files for each layer. The default value is ON.

Composition of the Resulting SWF Files

Several SWF Files will be produced from a single map file: there will be one SWF file for each layer defined in the
map file and one ‘main’ SWF file containing critical information on the map file and the layers produced.

* The ‘main’ SWF File will contain Action Script (AS) code that gives critical information on the map file and
the SWF layers produced. Basically there will be an object called mapObj containing the height, width, extent,
scale, number of layers, etc. Here is an example (in AS) of the contents of this main movie:

mapObj = new Object ();

mapObj.name = "DEMO_SWE";

mapObj.width = 400;

mapObj.height = 300;

mapObj.extent = "-2594561.353333,3467361.353333,3467361.353333,3840000.000000"; ;
mapObj.numlayers = 4;

mapObj.layers = new Array ();

function LayerObj (name, type, fullname, relativename) {

this.name = name;

this.type = type;

this.fullname = fullname;

this.relativename = relativename;

}

mapObj.layers[0] = new LayerObj ("park", "2", "c:/tmp/ms_tmp/102389536132841_layer_O.swf", "1023
mapObj.layers[l] = new LayerObj ("popplace", "4", "c:/tmp/ms_tmp/102389536132841_layer_1l.swf", "
mapObj.layers[2] = new LayerObj ("rail", "1", "c:/tmp/ms_tmp/102389536132841_layer_2.swf", "1023
mapObj.layers[3] = new LayerObj ("road", "1", "c:/tmp/ms_tmp/102389536132841_ layer_3.swf", "1023

This example is produced based on a mapfile with two layers defined in it. We create a layer class object
containing useful information on a layer. The parameters are:

Name : the name found in the map file

Relative name : Relative Name

Fullname : Full name of the file with path included

Type : the type of layer (0 = Point Layer; 1=Line; 2=Polygon; 3=Raster; 4=Annotation; 6=Circle)

8.4. Flash Output

313

MapServer Documentation, Release 5.4.2

For example you can use mapObj.layers[0].name to extract the name of the first layer.

Note: All map parameters from MapServer are not exported at this time. We should come up with a list of
information of what we want to output. Note that this information can be used in a Flash application to load the
SWEF file, to build a legend, to build a scale bar, etc.

* SWEF Files for each layer

Each layer defined in the mapfile will have an associated SWF file created. The names of these SWF files are
based on the name of the main file with an addition of ‘layer_X’ at the end of the name (where X is the layer

index).

These SWF files will contain vector and raster data as well as some Action Script depending on the layer and
some configurations in the map file. We will see these configurations in detail in the following section.

Exporting Attributes

Exporting attributes works on a layer basis (it is only available for Vector Layers). To be able to export attributes to
the SWF files, you have to define a metadata item called SWFDUMPATTRIBUTES in the layer section of the mapfile.
Here is an example :

LAYER
NAME park
METADATA

"DESCRIPTION""Parks"
"RESULT_FIELDS" "NAME_E YEAR_EST AREA_KMSQ"
"SWEFDUMPATTRIBUTES" "NAME_E, AREA_KMSQ "

END

TYPE POLYGON
STATUS ON
DATA park

In the above example, the values for the attributes NAME_E and AREA_KMSQ will be exported for each element in

the layer.

The resulting SWF File will have the values of these attributes (written in Action Script). Here is an example related
to the above layer:

nAttributes= 2;

Attributes = new Array();

Attributes[0] = "NAME_E";

Attributes[1] = "AREA_KMSQ";

Element = new Array ();

Element [0] = new Array();

Element [0] [0] = "Ellesmere Island National Park Reserve";
Element [0] [1] = "1500";

Element [1][0] = " Aulavik National park";

Element [1][1] = "1500";

Events and Highlights

Here is what is currently implemented concerning events (events here refer to mouse events happening on an element.
The available events are MOUSEUP, MOUSEDOWN, MOUSEOVER, MOUSEOUT):

314

Chapter 8. Output Generation

MapServer Documentation, Release 5.4.2

» Events are only available for layers that have defined attributes exported (using SWFDUMPATTRIBUTES).
This is like defining that a certain layer is queryable.

* When a mouse event happens on one of the elements, there is an Action Script call that is made:
_root.ElementSelecetd(Layerld, Shapeld, Event) . The Flash application who wants to receive these events
should define the function ElementSelected and use the information received to do actions like retrieving the
attribute values from the specific SWF for the specified shape and display it.

In order to have highlighting, it has to be defined when the SWF is produced (basically highlighting means that the
shape is redrawn using a different color).

As of MapServer 5.0, highlighting is available on queryable layers by using the QueryMap object in the map file to
extract the color and do a highlight when on MOUSEOVER. The current implementation will highlight all objects that
are in a layer that uses SWFDUMPATTRIBUTES, using the COLOR set in the QueryMap object in the mapfile.

Before MapServer 5.0, all objects that are in a layer that uses SWFDUMPATTRIBUTES are highlighted using a red
color.

Fonts

Ming uses a special type of font called FDB files. It does not yet support Truetype fonts. Please refer to ming
documentation on how to produce FDB files.

Outputting Raster SWF for Vector Layers

One mechanism would be to use the metadata for layer objects to define a raster output for vector layers. We could
use something like “SWFOUTPUT” “RASTER”. If this sounds desirable, please file an enhancement ticket with this
request, specifying the “Output-SWF” component.

8.4.4 What is Currently Supported and Not Supported

1. Vector layers

e Layer Point (case MS_LAYER_POINT) : done
— msDrawMarkerSymbol
— msDrawLabel

* Layer line (case MS_LAYER_LINE) : done
— msDrawLineSymbol
— msDrawLabel

* Layer circle (case MS_LAYER_CIRCLE) : not done (should be done easily but missing data for testing)
— omsCircleDrawLineSymbol
— omsCircleDrawShadeSymbol

* Layer annotation (case MS_LAYER_ANNOTATION): done
— omsDrawMarkerSymbol
— omsDrawLabel

» Layer Polygon (MS_SHAPE_POLYGON): done
— omsDrawShadeSymbol

8.4. Flash Output 315

http://www.opaque.net/wiki/index.php?MingFAQ
http://trac.osgeo.org/mapserver/

MapServer Documentation, Release 5.4.2

— omsDrawLineSymbol
— omsDrawLabel
* Vector Low Level functions

— omsDrawMarkerSymbol
% case(MS_SYMBOL_TRUETYPE) : done
x case(MS_SYMBOL_PIXMAP) : done
x case(MS_SYMBOL_ELLIPSE) : done
* case(MS_SYMBOL_VECTOR) : done

— omsDrawLineSymbol
* case : simple line : done

 drawing with the symbols : not done

omsDrawShadeSymbol
x case : solid fill polygon : done

% case : filled with symbols : cannot be implemented for now (tried to create a GD image to fill the
shape but files created were huge)

omsCircleDrawLineSymbol : not done

omsCircleDrawShadeSymbol : not done

omsDrawLabel : done

omsDrawLabelCache : done

obillboard (shadow for texts) : not done
2. Raster Layer

* msDrawRasterLayer: done
3. WMS Layer

* msDrawWMSLayer: done

4. Surround components (Legend, scalebar) : not supported

8.5 HTML Legends with MapServer

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 8278 $

Date $Date: 2008-12-23 13:34:31 -0800 (Tue, 23 Dec 2008) $
Last Updated 2006/01/09

316 Chapter 8. Output Generation

MapServer Documentation, Release 5.4.2

Contents

* HTML Legends with MapServer
— Introduction
— Sample Site Using the HTML Legend

8.5.1 Introduction

The HTML legend is an alternative to the traditional GIF legend in MapServer. The following document describes
the process for implementing an HTML legend in MapServer CGI applications (NOTE: MapServer version > 3.5 is
required).

This document assumes that you are already familiar with certain aspects of MapServer:

* Setting up MapServer mapfiles and templates.

Implementation

Key components for generating HTML legends are 1) a template parameter in the legend object, 2) a CGI [legend] tag
in the HTML file, and 3) an HTML legend template file. So that means that if the HTML page has the CGI [legend]
parameter set, and the mapfile has a LEGEND object with its TEMPLATE set to a valid HTML legend file then an
HTML legend will be returned. The following sections discuss these components.

Legend Object of Mapfile

The HTML legend is enabled by a new TEMPLATE parameter in the Legend Object of the mapfile. If TEMPLATE
is set in the Legend Object, then the HTML legend template file is read and used to generate an HTML legend which
will be inserted at the location of the [legend] tag in the main HTML template. Similar to other MapServer templates,
the HTML legend template filename MUST end with an “.html” extension.

Example 1. Sample Legend Object with the new TEMPLATE parameter

LEGEND object
LEGEND
STATUS ON
KEYSIZE 18 12
LABEL object
LABEL
TYPE BITMAP
SIZE MEDIUM
COLOR 0 0 89
END
TEMPLATE "legend.html" ### HTML template file
END

If TEMPLATE is not set, then the [legend] tag produces a regular image in a GIF/PNG image (the traditional be-
haviour).

8.5. HTML Legends with MapServer 317

MapServer Documentation, Release 5.4.2

CGl [legend] tag

The traditional CGI [legend] tag returns the URL of an image, so it is usually used inside an tag
in the HTML file. The new HTML [legend] tag returns a block of HTML, so when converting an existing application
template from using a traditional image legend to the new HTML legend, you have to remove the IMG tag in the
main application template. Also note that if legend mode is specified in the URL, then MapServer will return a gif
containing the whole legend if no template is specified.

See the CGI Reference doc for more information on CGI parameters.

Example 2. [legend] tag in the main HTML template (with TEMPLATE set)
Legend
<HR>[legend]<HR>
Example 3. [legend] tag in the main HTML template (with TEMPLATE not set)

Legend
<HR><HR>

HTML Legend Template File

The HTML legend template file is a separate file that contains 0 or 1 of each of the following tags that define blocks
of HTML to use in building the legend:

[leg_group_html] ... [/leg_group_html]

[leg_layer_html <OPTIONAL PARAMS>] ... [/leg_layer_html]
[leg_class_html <OPTIONAL PARAMS>] ... [/leg_class_html]
Note

Any text or HTML tags outside the [leg_*_html] tag pairs in the legend template file are ignored by the template
parser.

The following example shows what an HTML legend TEMPLATE file could look like:
Example 4. An HTML legend TEMPLATE file

[leg_group_html]
<tr>
<td colspan=3 bgcolor=#cccccc>[leg_group_name]</td>
</tr>
[/leg_group_html]

[leg_layer_html order_metadata=legend_order opt_flag=5]

<tr>
<td>
<input type=checkbox name="map_[leg_layer_name]_status"
value=1 [if name=layer_status oper=eq value=2]CHECKED[/if]>
</td>
<td colspan=2>
[metadata name=layer_title]
</td>
</tr >

[/leg_layer_html]

318 Chapter 8. Output Generation

MapServer Documentation, Release 5.4.2

[leg_class_html]

<tr>
<td width=15> </td>
<td>

</td>
<td>
[leg_class_name]
</td>
</tr>

[/leg_class_html]

Supported Tags for the TEMPLATE file:

HEADER block

Tag [leg_header_html]...[/leg_header_html]
Description HTML block to use as the header of the legend.

FOOTER block

Tag [leg_footer_html]...[/leg_footer_html]

Description HTML block to use as the footer of the legend.
Example 5. HTML Legend File Using Header/Footer Blocks
[leg_header_html]

<p>my header</p>
[/leg_header_html]

[leg_layer_html]
[/leg_layer_html]

[leg_footer_html]
<p>my footer</p>
[/leg_footer_html]

GROUP block

Tag [leg_group_html <OPTIONAL PARAMS>]...[/leg_group_html]

Description HTML block to use for layer group headers if layers should be grouped in the legend. If not
set then layers are not grouped in the legend.

When the [leg_group_html] tag is used, then layers that don’t belong to any group (i.e. LAYER GROUP not set in
the mapfile) and their classes will not show up at all in the legend. The group list is decided by the order_metadata
parameter, which is explained later.

SUPPORTED PARAMETERS:

Parameter opt_flag=<bit_mask>

8.5. HTML Legends with MapServer 319

MapServer Documentation, Release 5.4.2

Description Control the group’s display, by adding the following values (default is 15). The opt_flag is
applied on all layers in the group. If at least one layer matches the flag, the group will show up in
the legend.

1 If set, show group even if all layers in group are out of scale (default: hide
groups out of scale).

2 If set, show group even if all layers in group have status OFF (default: hide
groups with STATUS OFF).

4 If set, show group even if all layers in group are of type QUERY (default: hide
group of TYPE QUERY)

8 If set, show group even if all layers in group are of type ANNOTATION (default:
hide groups of TYPE ANNOTATION)

e.g. opt_flag=12 (shown below) means show all layer types, including QUERY and AN-
NOTATION layers (4 + 8)

[leg_group_html opt_flag=12]
[/leg_group_html]

SUPPORTED TAGS:
Tag [leg_group_name]
Description Returns the group’s name.
Tag [layer_status]
Description Returns the status of the first layer in the group.
Tag [leg_icon width=<optional_width> height=<optional_height>]

Description In the group context, the [leg_icon] tag returns the URL of a legend icon for the first class
in the first layer that’s part of this group.

Tag [metadata name=<metadata_field_to_display>]

Description Returns specified metadata value from web’s metadata.
e.g. the group block below simply displays the name of the group in the legend:
[leg_group_html]

<tr><td colspan=2>[leg_group_name]</td></tr>
[/leg_group_html]

LAYER block

Tag [leg_layer_html <OPTIONAL PARAMS>] ... [/leg_layer_html]

Description HTML block to use for layer header. If not set then no layer headers are displayed (could
allow a legend with only classes in it).

SUPPORTED PARAMETERS:
Parameter order_metadata=<field_to_order_by>

Description Specifies that the value of the layer metadata <field_to_order_by> controls the order and
visibility of the layers in the legend.

320 Chapter 8. Output Generation

MapServer Documentation, Release 5.4.2

 Layers with <field_to_order_by> >= 0 are sorted in order of this value, with multiple layers with
same value being accepted, in which case the map layer orderapplies between those layers.

» Layers with <field_to_order_by> < 0 are always hidden in the legend.
Parameter opt_flag=<bit_mask>

Description Control the layer display process. Add the values below to acquire the desired options
(default is 15):

1 If set, show layer even if out of scale (default: hide layers out of scale).
2 If set, show layer even if status is OFF (default: hide layers with STATUS OFF).
4 If set, show layer even if type is QUERY (default: hide layers of TYPE QUERY)

8 If set, show layer even if type is ANNOTATION (default: hide layers of TYPE
ANNOTATION)

e.g. opt_flag=14 (shown below) means do not show layers in the legend that are out of

scale.

[leg_layer_html opt_flag=14]
[/leg_layer_html]

SUPPORTED TAGS:
Tag [leg_layer_group]
Description Returns the group name of the layer. This was added to MapServer v4.8.
Tag [leg_layer_index]

Description Returns the mapfile index value of the layer, which is useful for ordering. This was added to
MapServer v4.8.

Tag [leg_layer_maxscale]

Description Returns the maximum scale set for the layer. This was added to MapServer v4.8.
Tag [leg_layer_minscale]

Description Returns the minimum scale set for the layer. This was added to MapServer v4.8.
Tag [leg_layer_name]

Description Returns the current LAYER NAME value.

Tag [leg_icon width=<optional_width> height=<optional_height>]

Description In the layer context, the [leg_icon] tag returns the URL of a legend icon for the first class in
this layer.

Tag [metadata name=<metadata_field_to_display>]

Description Returns specified metadata value from this layer’s metadata and web’s metadata.
e.g. the layer block below simply displays an icon of the layer’s class and the layer name:
[leg_layer_html]

<tr><td>[leg_layer_name]</td></tr>
[/leg_layer_html]

8.5. HTML Legends with MapServer 321

MapServer Documentation, Release 5.4.2

CLASS block

Tag [leg_class_html <OPTIONAL PARAMS>] ... [/leg_class_html]

Description HTML block to use for classes. If not set then no classes are displayed (could allow a legend
with only layer headers in it). Note that classes with NULL (i.e. empty) NAME:s are not displayed.

SUPPORTED PARAMETERS:
Parameter opt_flag=<bit_mask>

Description Control the layer (i.e. class) display process. Add the values below to acquire the desired
options (default is 15). Note that using this parameter for the CLASS block has the same effect as
using the opt_flag parameter in the LAYER block.

1 If set, show layer even if out of scale (default: hide layers out of scale).
2 If set, show layer even if status is OFF (default: hide layers with STATUS OFF).
4 If set, show layer even if type is QUERY (default: hide layers of TYPE QUERY)

8 If set, show layer even if type is ANNOTATION (default: hide layers of TYPE
ANNOTATION)

e.g. opt_flag=14 (shown below) means do not show classes in the legend that are out of

scale.

[leg_class_html opt_flag=14]
[/leg_class_html]

SUPPORTED TAGS:
Tag [leg_class_index]

Description Returns the mapfile index value of the class, which is useful for ordering and legend icon
creation. This was added to MapServer v4.8.

Tag [leg_class_maxscale]

Description Returns the maximum scale set for the class. This was added to MapServer v4.8.
Tag [leg_class_minscale]

Description Returns the minimum scale set for the class. This was added to MapServer v4.8.
Tag [leg_class_name]

Description Returns the CLASS NAME value.

Tag [leg_class_title]

Description Returns the CLASS TITLE value.

Tag [leg_layer_name]

Description Returns the parent layer name. This was added to MapServer v4.8.

Tag [leg_icon width=<optional_width> height=<optional_height>]

Description In the layer context, the [leg_icon] tag returns the URL of a legend icon for the first class in
this layer.

Tag [metadata name=<metadata_field_to_display>]

322 Chapter 8. Output Generation

MapServer Documentation, Release 5.4.2

Description Returns specified metadata value from the metadata of the layer to which this class belongs
and web’s metadata.

e.g. the class block below simply displays an icon of the layer’s class and the class name:
[leg_class_html]

<tr><td>[leg_class_name]</td></tr>
[/leg_class_html]

CONDITIONAL text

[if] tags can be used in any of the [leg_*_html] tags above to place conditional text. The syntax is:
[1f name=<field_to_check> oper=<eqg|neqg|isset|isnull> value=<to_compare_with_field>] ... [/if]

Note:

Nested IF’s are supported. Parameter “oper” can be “eq” for equal, “neq” for not equal, “isset” (self-explanatory), or
“isnull” (self-explanatory). The default value is equal.

Example 6. [if] tag can be used to maintain the state of a layer checkbox

[leg_layer_html order_metadata=legend_order opt_flag=5]
<tr>
<td>
<input type=checkbox name="map_[leg_layer_name]_status"
value=1 [if name=layer_status oper=eq value=2]CHECKED[/if] >
</td>
<td colspan=2>
[metadata name=layer_title]
</td>
</tr >
[/leg_layer_html]

The possible values that can be tested in an [if] tag depend on the context in which the [if] tag is used. At the moment,
the number of values that can be tested is limited, but new values may be added as needed.

Note that the order of the items in the following [if] contexts are listed by their order of precedence. The rule is always
that special keywords have top priority (e.g. layer_status, etc.), followed by layer-level metadata, and ending with
map-level metadata. The possible values that can be tested are as follows:

In a [leg_group_html] context:
e [if name=layer_status value=...] ... [/if]

value is the layer status of the first layer that belongs to the group in integer format: 0=OFF, 1=ON,
2=DEFAULT

e [if name=layer_visible value=...] ... [/if]

value is the visibility of the first layer in the group: 0=NOT VISIBLE, 1=VISIBLE
¢ [if name=group_name value=...] ... [/if]
e [if name=any_layer_metadata value=...] ... [/if]

Uses metadata value from the first layer in the mapfile that belongs to that group

* [if name=any_web_metadata value=...] ... [/if]

8.5. HTML Legends with MapServer 323

MapServer Documentation, Release 5.4.2

In a [leg_layer_html] context:
e [if name=layer_status value=...] ... [/if]
value is the layer’s status in integer format: 0=OFF, 1=ON, 2=DEFAULT
e [if name=layer_type value=...] ... [/if]

value is the layer’s type in integer format: 0=POINT, 1=LINE, 2=POLYGON, 3=RASTER, 4=AN-
NOTATION, 5=QUERY, 6=CIRCLE

e [if name=layer_name value=...] ... [/if]
value is the layer’s name in string format
e [if name=layer_group value=...] ... [/if]
value is the layer’s group name in string format
¢ [if name=layer_visible value=...] ... [/if]
value is the visibility of the layer: 0=NOT VISIBLE, 1=VISIBLE
e [if name=any_layer_metadata value=...] ... [/if]
e [if name=any_web_metadata value=...] ... [/if]
In a [leg_class_html] context:
e [if name=layer_status value=...] ... [/if]
value is the status of the layer in which the class is located
¢ [if name=layer_type value=...] ... [/if]

value is the layer’s type in integer format: O=POINT, 1=LINE, 2=POLYGON, 3=RASTER, 4=AN-
NOTATION, 5=QUERY, 6=CIRCLE

e [if name=layer_name value=...] ... [/if]
value is the layer’s name in string format
e [if name=layer_group value=...] ... [/if]
value is the layer’s group name in string format
e [if name=layer_visible value=...] ... [/if]
value is the visibility of the layer: 0=NOT VISIBLE, 1=VISIBLE
e [if name=class_name value=...] ... [/if]
e [if name=any_layer_metadata value=...] ... [/if]

e [if name=any_web_metadata value=...] ... [/if]

8.5.2 Sample Site Using the HTML Legend

http://www2.dmsolutions.ca/msapps/itasca_legend/demo_init.html

This demo is based on the MapServer Itasca demo and contains several variations of HTML Legends, some of which
are listed below:

e “HTML Legend 1” - displays classes only, similar to the traditional legends:

324 Chapter 8. Output Generation

http://www2.dmsolutions.ca/msapps/itasca_legend/demo_init.html

MapServer Documentation, Release 5.4.2

[leg_class_html opt_flag=15]
 [leg_class_name]

[/leg_class_html]

* “HTML Legend 2” - displays layer titles with HREF links and classes:

[leg_layer_html order_metadata=WMS_ORDER visibility_flag=15]
[metadata name=WMS_TITLE]

[/leg_layer_html]

[leg_class_html visibility_flag=15]
 [leg_class_name]

[/leg_class_html]

e “HTML Legend 3” - displays layers by group, with checkboxes to turn layers on/oft:

[leg_group_html]
<tr><td colspan=2>[leg_group_name]</td></tr>

[/leg_group_html]

[leg_layer_html order_metadata=WMS_ORDER opt_flag=15]
<tr>
<td><input type=checkbox name=layer value=[leg_layer_name]
[if name=layer_status value=1]CHECKED[/if]>
[if name=layer_type value=4]

[/1f]

[if name=layer_type oper=neq value=4][/if]
</td>
<td>

[metadata name=WMS_TITLE]
</td>

</tr>
[/leg_layer_html]

8.6 HTML Imagemaps

Author David Fawcett

Contact david.fawcett at gmail.com

Revision $Revision: 8370 $

Date $Date: 2008-12-31 12:32:02 -0800 (Wed, 31 Dec 2008) $
Last Updated 2008/10/08

8.6. HTML Imagemaps 325

MapServer Documentation, Release 5.4.2

Contents

* HTML Imagemaps

— Introduction
Mapfile Layer Definition
Templates
Request URL
Additional Notes
More Information

8.6.1 Introduction

The shpxy method of creating imagemaps uses MapServer query functionality to build a html imagemap. Just like a
regular MapServer query, you send a query request and MapServer uses the templates to build a block of html that it
sends back to the browser. The first example shows you how to build an imagemap based on a point layer. An example
template for a polygon layer is also included.

Components
* MapServer mapfile
e query template file
* query header template

* query footer template

8.6.2 Mapfile Layer Definition

Here is a simple mapfile for our example

MAP
NAME "myMapFile
STATUS ON

SIZE 200 200
EXTENT 178784 4804000 772653 5483346

UNITS METERS

STATUS ON

SHAPEPATH "/web/maps/data"
IMAGECOLOR 255 255 255

WEB
IMAGEPATH "/web/maps/tmp/"
IMAGEURL "/maps/tmp/"

END

QUERYMAP
STATUS ON
STYLE NORMAL

END

LAYER
NAME "sites"
STATUS DEFAULT
TYPE point

326 Chapter 8. Output Generation

MapServer Documentation, Release 5.4.2

DATA ’"agiAreas’
TEMPLATE "bodytemplate.html"
HEADER "imapheader.html"
FOOTER "imapfooter.html"
END
END

You can see that we have a mapfile with one point layer, and that it contains references to three query templates.

8.6.3 Templates

In MapServer, the query header and footers get processed only once. The main query template, ‘bodytemplate.html’
in this example, gets processed once for each record in the record set returned by the query.

Point Layers

Here is the query header, ‘imapheader.html’. It creates the opening tag for your html imagemap.

<map id="mymap" name="mymap">

Here is the query template, ‘bodytemplate.html’. It creates the body of the html imagemap.

<area shape="circle" coords="[shpxy precision=0 proj=image yf=",7" xf=","]" href="http://my.url/mypac

This template is used to create circular imagemap elements for a point layer. NAME is a fieldname in the data source,
the value for NAME for each individual record gets substituted as the template is processed. The href specifies the
URL link if the element is clicked. Title and alt will display the value when an element is moused over.

The resulting html element looks like

<area shape="circle" coords="80,103,7" href="http://my.url/mypage.cfm?region=Northern" >
The key part here is
coords="[shpxy precision=0 proj=image xf=",6" yf=",7"]"

This is where MapServer will substitute the image coordinates for that query record. With Precision=0, the coordinates
will be integers.

You also see shpxy template formatting options ‘xf” and ‘yf’. ‘xf=",’ tells MapServer to place a comma after the x
coordinate. ‘yf=",7" after the y coordinate. This is done to specify a radius of 7 pixels for the circle. More options can
be found in the Template Reference.

The query footer template simply adds the closing tag for the html imagemap

</map>

Polygon Layers
Here is a query template for a polygon layer

<area shape="poly" coords="[shpxy precision=0 proj=image]" href="http://my.url/mypage.cfm?ID=[SITE_TII

8.6. HTML Imagemaps 327

MapServer Documentation, Release 5.4.2

8.6.4 Request URL
To get the imagemap, you need to send a GET or POST request to MapServer with several URL variables defined. The
below URL tells MapServer where the mapfile is located, what layer we are querying, and that we are using nquery

mode to return multiple results.

http://myurl/cgi-bin/mapserv?map=/web/maps/demoimap.map&glayer=sites&mode=nquery&searchmap=true

8.6.5 Additional Notes

If you use separate map files to generate your imagemap and your map image, make sure that the EXTENT and SIZE
specified in both mapfiles are identical. If they are not, your features will not align properly.

8.6.6 More Information

Steve Lime’s SHPXY Example

8.7 PDF Output

Author Yewondwossen Assefa

Contact yassefa at dmsolutions.ca

Revision $Revision: 8278 $

Date $Date: 2008-12-23 13:34:31 -0800 (Tue, 23 Dec 2008) $
Last Updated 2006/01/12

Table of Contents

* PDF Output
— Introduction
— What is currently supported and not supported
— Implementing PDF Output
— PHP/MapScript and PDF Output

8.7.1 Introduction

PDF output support was added to MapServer 3.7. Previous versions of MapServer had support for pdf output using a
utility program (shp2pdf) to output a pdf file given a MapServer mapfile.

The difference in this new version is that the output to PDF can now be directly specified in the mapfile using the
IMAGETYPE or the OUTPUTFORMAT parameters in the mapfile. Additionally, raster layers are now supported for
pdf output.

328 Chapter 8. Output Generation

http://maps.dnr.state.mn.us/cgi-bin/mapserv48?map=/usr/local/www/docs_maps/eco/rsg/search/search_example.map&qlayer=county&mode=nquery&searchmap=true

MapServer Documentation, Release 5.4.2

8.7.2 What is currently supported and not supported

1. Vector Layers
* Layer Point: supported
* Layer Line: supported
* Layer Polygon: supported
» Layer Circle : not supported
* Layer Annotation: supported
Note: Note: Dashed lines are supported with PDFlib version 6 or greater.
Note: Polygons filled with symbols are not supported.
1. Raster Layers

Raster layers are supported. Note that at this point all raster layers are transformed to jpeg format
before being written to the PDF file.

2. WMS Layers

Not yet supported
3. Surround components

Legend, scalebar are not supported.
4. Fonts

Standard PostScript fonts are supported. For use of other fonts (such as truetype), see the pdflib
documentation for use of UPR description files (some notes on it are here).

8.7.3 Implementing PDF Output

Note that the following instructions were developed for MapServer 3.7 and pdflib 4.0.3, but the general steps should
be similar for recent versions of both.

Build the PDF Library

In order to have access to the PDF support in MapServer, you should download and build the PDF library from
http://www.pdflib.com/products/pdflib/. Please follow the instructions on the PDFLib site to build on your specific
platforms.

Here are some quick notes on how to build on windows:
* download and extract the source code from http://www.pdflib.com/products/pdflib/
* open the project PDFlib.dsw in MS Visual C++
* build the project pdflib_dll
* after a sucessful build, you should have a pdflib.lib and pdblib.dll under the pdflib directory
* copy the pdflib.dll under your system directory (ex : c:/winnt/system32)

the pdflib.lib will be used while building mapserver with the PDF support

8.7. PDF Output 329

http://www.modwest.com/help/kb5-261.html
http://www.pdflib.com/products/pdflib/
http://www.pdflib.com/products/pdflib/

MapServer Documentation, Release 5.4.2

Build MapServer with PDF support

Windows platform

Edit the makefile.vc and uncomment the following lines (make sure that the paths are adapted to your installation):

PDF_LIB=../pdflib-4.0.3/pdflib/pdflib.1lib
PDF_INC=-I../pdflib-4.0.3/pdflib
PDF=-DUSE_PDF

See the Windows Compilation document for general MapServer compile instructions.
Unix platforms
Add with-pdf to your configure command line before compiling.

See the Unix Compilation document for general MapServer compile instructions.

Mapfile definition
The IMAGETYPE parameter in the Mapfile should be set to pdf in order to output to PDF:

NAME pdf-test
STATUS ON

IMAGETYPE pdf

WEB
ENb..
LAYER
ENb‘.
END

You can also specify the output using the OUTPUTFORMAT tag (this tag was introduced in mapserver 3.7) :

OUTPUTFORMAT

NAME pdf

MIMETYPE "application/x-pdf"

DRIVER pdf

FORMATOPTION "OUTPUT_TYPE=RASTER" ##not mandatory
END

If the OUTPUT_TYPE=RASTER all the layers will be rendered as rasters. Note that when WMS layers are in-
cluded in the mapfile, this option should be set since there is a problem with transparency and wms layers. See the
OUTPUTFORMAT object in the Mapfile reference for parameter explanations.

Testing

The easiest way to test your pdf output mapfile is with the MapServer shp2img utility. Windows users can find this
utility in MS4W, as well as FWTools.

330 Chapter 8. Output Generation

http://www.maptools.org/ms4w/
http://fwtools.maptools.org/

MapServer Documentation, Release 5.4.2

You simply pass a mapfile to the executable and a name for the output pdf, and a pdf file is generated:

shp2img -m gmap_pdf.map -o test.pdf

Possible Errors

PDFlib I/O error: Resource configuration file ’'pdflib.upr’ not found

This is related to fonts. If you remove the LABEL object from your mapfile you will see this error go away. The pdf
error is described here. Basically, until this issue is ‘fixed’, if you want to use a font other than the included standard
PostScript fonts in pdf output (such as truetype fonts), consult the PDFlib documentation.

8.7.4 PHP/MapScript and PDF Output

MapServer can render to PDF directly, another option is to render to a PNG and insert that into a PDF document. This
is not the only way to create a PDF document of course. You will need to have support for PDFLib compiled into your
PHP install.

This example shows the key parts of the process, you will need to furnish parts of the script yourself (depending on
your app) and repeat the process for each map element that you want to include.

Refer to the PHP/MapScript Reference wherever necessary.
How does it work?

In brief, we will pass parameters required to render a map to a PHP script that will:
* create a PDF document
 render a PNG view at a suitably higher resolution
* insert the PNG
* buffer it and send it to the user
Create the PDF document

Here is an example similiar to the one given on the PHP website to create a new PDF document:

Smy_pdf = pdf_new();
Get this stage and section 4.5 working before you try inserting MapServer elements.

Render PNG views at a suitable resolution

Work back from the assumption that you will need no more than 300 dpi on your page for your map to look presentable.
For an A4 map, I am using 150 dpi for an 8’ x 8’ main map, which is 1200 x 1200 pixels.

Smap->set (width,1200) ;
Smap->set (height,1200) ;

8.7. PDF Output 331

http://www.modwest.com/help/kb5-261.html
http://www.pdflib.com/products/pdflib/
http://www.php.net/manual/en/ref.pdf.php

MapServer Documentation, Release 5.4.2

Of course, our map will not be very useful unless it is zoomed in to the extent our user requested, and the layers they
selected are switched on. Maintain arrays in your application that record:

— The current extent (say Sext[])
- Layer status (say S$layer(])

Open your map file and pass these back through to set the map file into the state the user is expecting, something like:

Smap->setextent ($ext [0], Sext[1l], S$Sext[2], S$ext[3]);
while($layer[]) |
$layer=Smap->getLayer ($n) ;
if ($layer[Sn]==1) {
Slayer—->set (status, 1) ;
} else {
Slayer—->set (status, 0);

}

Now you will need to save a rendered view to a PNG file.

$img = S$map->draw();
Surl = $img->saveWebImage (MS_PNG, 0, 0, 0);

Use the same method for all your map elements, such as drawReferenceMap?(), drawScaleBar?() and drawLegend().

Insert the PNG elements into your PDF document
This is really easy, use the pdf_open_image_file() function to import the map elements into your PDF document:

Selement = pdf_open_image_file (Smy_pdf, "png", "Swebroot/Surl");
pdf_place_image (my_pdf, Selement, $xpos, S$ypos);
pdf_close_image (my_pdf, Selement);

Repeat as needed for any map elements you created.

Buffer the PDF and send it to the user

Assuming we have been creating the document $my_pdf, when we are done, we merely buffer it and send it to the
user using echo():

<?php

pdf_close ($my_pdf) ;

Sdata = pdf_get_buffer (Smy_pdf);

header (' Content-type: application/pdf’);

header (' Content-disposition: inline; filename=my_pdf.pdf’);
header (' Content-length: ’ . strlen($data));

echo $data;

?>

332 Chapter 8. Output Generation

MapServer Documentation, Release 5.4.2

Gotcha: remember that you cannot send headers if you have at any stage outputed text to the browser.

Additional stuff to try
Rendering everything as PNG can look ugly, so I step through the key and extract labels so I can render them using
PDF’s text functions.

This can be done for other map element, such as map titles, layer descriptions, or anything else that can be read from
the mapfile.

8.8 SVG

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 8365 $

Date $Date: 2008-12-31 07:49:02 -0800 (Wed, 31 Dec 2008) $
Last Updated 2005/12/13

Table of Contents

* SVG
— Introduction
— Feature Types and SVG Support Status
— Testing your SVG Output
- goSVG

8.8.1 Introduction

SVG (or Scalable Vector Graphics) is a standardized XML language for describing 2D graphics via vector graphics,
text and raster graphics. As of version 4.5, MapServer can output SVG v1.1 maps. The following documentation is
based on the World Wide Web Consortium’s (W3C) Scalable Vector Graphics (SVG) 1.1 Specification.

This document assumes that you are already familiar with certain aspects of MapServer:

* MapServer application development and setting up map files.

Links to SVG-Related Information

SVG 1.1 specification
* SVG Discussion Paper
* G-XML Project Page

* SVG Tiny Profile

MapFile Reference Doc

8.8. SVG 333

http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/
http://www.carto.net/papers/svg/index_e.shtml
http://gisclh.dpc.or.jp/gxml/contents-e/index.htm
http://www.w3.org/TR/2003/REC-SVGMobile-20030114/

MapServer Documentation, Release 5.4.2

8.8.2 Feature Types and SVG Support Status

Annotation Layers

Annotation layers are supported (see the Text Features section below for details).

Circle Layers

Circle layers are not yet supported.

Line Layers

The following items describe how line layers are handled by MapServer for SVG output:

* Lines are converted to SVG polyline elements.

The STYLE object’s WIDTH parameter is used for SYMBOL O for line thickness.

The STYLE object’s SIZE parameter is used for other symbols for line thickness.
 All lines are drawn without symbols - only line thickness changes.

* If a style uses a symbol and this symbol has a dashed style, it will be transformed into an SVG stroke-dasharray
element.

Point Layers

The following items describe how point layers are handled by MapServer for SVG output:
e VECTOR, ELLIPSE, and TRUETYPE symbols are supported.
* PIXMAP symbols are not currently supported.

 Labels attached with the symbols are supported (see the Text Features section below for details).

Polygon Layers

The following items describe how polygon layers are handled by MapServer for SVG output:
 Polygons are converted to SVG polygon elements.
* The STYLE’s COLOR is used for the fill.
* The STYLE’s OUTLINECOLOR is used for the stroke.

* SVG patterns are not currently supported.

Raster Layers

The following items describe how raster layers are handled by MapServer for SVG output:
» Temporary image is created through the GD library, and GD functions are used to draw the layer.
* You must have at least PNG or JPEG support compiled in MapServer.
* You must have the WEB object’s IMAGEPATH and IMAGEURL set properly in your mapfile.

334 Chapter 8. Output Generation

http://www.w3.org/TR/SVG/shapes.html#PolylineElement
http://www.w3.org/TR/SVG/painting.html
http://www.w3.org/TR/SVG/shapes.html#PolygonElement
http://www.w3.org/TR/SVG/pservers.html#Patterns

MapServer Documentation, Release 5.4.2

Text Features

The following items describe how text features are handled by MapServer for SVG output:
 Text is converted to SVG text element.
* Only TRUETYPE fonts are supported.
* Supports labels with ENCODING (output as UTF-8 hexadecimal values).

* The FONT name used in MapServer is parsed to form the SVG font-family, font-style, and font-weight.

WMS Layers

WMS layers are not yet supported.
Setting up a Mapfile for SVG Output
* You must have valid IMAGEPATH and IMAGEURL parameters set in the WEB object of the mapfile.

* To be able to output a valid SVG file, the user needs to define an OUTPUTFORMAT object in the map file and
set the IMAGETYPE parameter to svg. Here is an example:

MAP
IMAGETYPE svg

OUTPUTFORMAT
NAME svg
MIMETYPE "image/svg+xml"
DRIVER svg
FORMATOPTION "COMPRESSED_OUTPUT=TRUE"
FORMATOPTION "FULL_RESOLUTION=TRUE"
END
WEB
IMAGEPATH "/tmp/ms_tmp/"

IMAGEURL "/ms_tmp/"
END

LAYER
END
END

Note:

If FORMATOPTION “COMPRESSED_OUTPUT=TRUE” is set MapServer will produce a compressed SVG
file (svgz). By default this option is FALSE. Note that to be able to create compressed output, MapServer must
be built with the compile flag USE_ZLIB.

If FORMATOPTION “FULL_RESOLUTION=TRUE” is set MapServer will not eliminate duplicate points and
collinear lines when outputting SVG. By default this option is set to FALSE.

8.8.3 Testing your SVG Output

* The easiest way to test your SVG mapfile is to use MapServer CGI. For example, you might enter the following
URL in a browser:

8.8. SVG 335

http://www.w3.org/TR/SVG/text.html#TextElement
http://www.w3.org/TR/SVG/text.html#FontFamilyProperty
http://www.w3.org/TR/SVG/text.html#FontStyleProperty
http://www.w3.org/TR/SVG/text.html#FontWeightProperty

MapServer Documentation, Release 5.4.2

http://127.0.0.1/cgi-bin/mapserv.exe?map=my/path/to/my-svg.map&émode=map&layers=layerl layer?2
* You can also use PHP/MapScript to test your SVG mapfile. Your php file might look like the following:
<?php

dl ("php_mapscript_45.d11");

SoMap = ms_newmapObj ("my/path/to/my-svg.map") ;
$img = $oMap->draw () ;
header ("Content-type: image/svg+xml");
Surl = $img->savelImage ("");

2>

An SVG file should be created in your IMAGEPATH directory. If you open the SVG file in a text editor you can see
that it is an XML file. Below is a sample SVG file of a point layer with labels:

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.o0rg/Graphics/SVG/1.1/DTD/svgll-flat.dt
<svg version="1.1" width="400" height="300" xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://wi

<!-- START LAYER popplace ——>

<ellipse cx="252" cy="130" rx="3" ry="3" £fill="4#000000" />

<ellipse cx="37" cy="227" rx="3" ry="3" £ill="#000000" />

<ellipse cx="127" cy="239" rx="3" ry="3" £fill="#000000" />

<ellipse cx="255" cy="282" rx="3" ry="3" £fill="4#000000" />

<polygon f£ill="#000000" stroke-width="1" points=" 267,263 270,263 271,260 272,263 275,263 273,265
<ellipse cx="288" cy="247" rx="3" ry="3" fill="4#000000" />

<ellipse cx="313" cy="243" rx="3" ry="3" fill="4#000000" />

<ellipse cx="328" cy="233" rx="3" ry="3" £ill="#000000" />

<ellipse cx="331" cy="245" rx="3" ry="3" £fill="#000000" />

<ellipse cx="366" cy="196" rx="3" ry="3" fill="4#000000" />

<ellipse cx="161" cy="246" rx="3" ry="3" £ill="#000000" />

<ellipse cx="92" cy="208" rx="3" ry="3" £ill="#000000" />

<ellipse cx="40" cy="125" rx="3" ry="3" £ill="#000000" />

<ellipse cx="108" cy="146" rx="3" ry="3" £ill="#000000" />

<text x="40" y="143" font-family="fritgat" font-size="8pt" £i11="#000000" stroke="#ffffff" stroke:
<text x="43" y="121" font-family="fritgat" font-size="8pt" £i11="#000000" stroke="#ffffff" stroke:
<text x="34" y="205" font-family="fritgat" font-size="8pt" £i11="#000000" stroke="#ffffff" stroke:
<text x="164" y="258" font-family="fritgat" font-size="8pt" £fill="4#000000" stroke="#ffffff" stroke
<text x="316" y="190" font-family="fritgat" font-size="8pt" £i11="#000000" stroke="#ffffff" stroke
<text x="334" y="258" font-family="fritgat" font-size="8pt" £i11="4#000000" stroke="#ffffff" stroke
<text x="249" y="230" font-family="fritgat" font-size="8pt" £fill="4#000000" stroke="#ffffff" stroke
<text x="241" y="242" font-family="fritgat" font-size="8pt" £fi11="#000000" stroke="#ffffff" stroke
<text x="223" y="260" font-family="fritgat-italic" font-size="8pt" fill="#£f£f0000" stroke="#ffffff
<text x="210" y="279" font-family="fritgat" font-size="8pt" £fill="4#000000" stroke="#ffffff" stroke
<text x="82" y="234" font-family="fritgat" font-size="8pt" £i11="#000000" stroke="#ffffff" stroke-
<text x="40" y="223" font-family="fritgat" font-size="8pt" £i11="#000000" stroke="#ffffff" stroke:
<text x="214" y="125" font-family="fritgat" font-size="8pt" £fill="4#000000" stroke="#ffffff" stroke
</svg>

You can now view the SVG file in a supported browser (see the official list of SVG implementations for possible SVG
viewers). The Adobe Viewer plugin is very popular.

336 Chapter 8. Output Generation

http://www.w3.org/Graphics/SVG/SVG-Implementations
http://www.adobe.com/svg/viewer/install/main.html

MapServer Documentation, Release 5.4.2

8.8.4 goSVG

2oSVG is now supported as a vector output format in MapServer 4.5 (and later).

Definition

This definition of goSVG was obtained from here.

goSVG is short for “G-XML over SVG” and “g-contents over SVG”. This is a subset for mobiles specified within
the G-XML (a Japanese Spatial Information Format which is an XML based protocol with the ability to describe,
communicate and exchange Spatial Information and Electric Maps), and is a Spatial Information Exchanging format
that determines the method to expand spatial information and connect to the backend system(G-XML standard mark
format). goSVG is an expanded SVG Tiny profile (a Mobile profile of SVG 1.1. suited for cellular phones) that adds
functions that are useful for Spatial Information Services (SVG Map Service).

Support for Specific goSVG Elements

* Name space extension: supported
* Content Area Definition (bounding box): supported
* Geographic Coordinate System: supported

* Map Request Protocol: supported

Setting up a Mapfile for goSVG Output

Requirements

* A valid MapServer Mapfile.
* Valid IMAGEPATH and IMAGEURL parameters set in the WEB object of the mapfile.
* A PROJECTION object defined beneath the MAP object, using an EPSG code. For example:
MAP
WEB
IMAGEPATH "/tmp/ms_tmp/"

IMAGEURL "/ms_tmp/"
END

PROJECTION
"init=epsg:42304"
END
LAYER
END
END

8.8. SVG 337

http://www.svgopen.org/2004/papers/goSVGauthoringtool-1/
http://gisclh.dpc.or.jp/gxml/contents-e/index.htm
http://www.w3.org/TR/2003/REC-SVGMobile-20030114/
http://www.w3.org/TR/SVG/

MapServer Documentation, Release 5.4.2

Setting the OUTPUTFORMAT

To be able to output a valid goSVG file, you must define an OUTPUTFORMAT object in the mapfile and set the
IMAGETYPE to svg. Here is an example:

MAP
IMAGETYPE svg

OUTPUTFORMAT
NAME svg
MIMETYPE "image/svg+xml"
DRIVER svg
FORMATOPTION "GOSVG=TRUE"
FORMATOPTION "GOSVG_ZoomInTH=20"
FORMATOPTION "GOSVG_ZoomOutTH=40"
FORMATOPTION "GOSVG_ScrollTH=60"
END

WEB
IMAGEPATH "/tmp/ms_tmp/"

IMAGEURL "/ms_tmp/"
END

PROJECTION
"init=epsg:42304"
END

LAYER
END

END

Specific FORMATOPTIONs Related to goSVG

GOSVG should be set to TRUE. The default is false.

GOSVG_ZoomInTH controls the zoomin threshold when outputting the Map Request Protocol. If it is not defined
the default value is set to 70.

GOSVG_ZoomOutTH controls the zoomout threshold when outputting the Map R equest Protocol. If it is not
defined the default value is set to 100.

GOSVG_ScrollTH controls the scrolling threshold when outputting the Map Request Protocol. If it is not defined
the default value is set to 10.

Testing your goSVG Output

Refer to the section Testing your SVG Output to generate and test your goSVG output. goSVG can be read by regular
SVG viewers (they will just ignore the goSVG headers).

Sample goSVG File Produced by MapServer

Below is a sample goSVG file of a point layer with labels:

338 Chapter 8. Output Generation

MapServer Documentation, Release 5.4.2

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.o0rg/Graphics/SVG/1.1/DTD/svgll-flat.dtc
<svg version="1.1" width="400" height="300" xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://w
<title>DEMO</title>

<metadata>
<rdf:RDF xmlns:rdf = "http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#"
xmlns:crs = "http://www.ogc.org/crs" xmlns:svg="http://wwww.w3.0rg/2000/svg">

<rdf:Description>

<crs:CoordinateReferenceSystem svg:transform="matrix (0.000066,0.000000,0.000000,-0.000066,171.243002,
rdf:resource="http://www.opengis.net/gml/srs/epsg.xml#42304"/>

</rdf:Description>

</rdf :RDF>
<au:lbs protocol="maprequest">
<au:zoomin th="20" xlink:href="."/>
<au:zoomout th="40" xlink:href="."/>
<au:scroll th="60" xlink:href="."/>
</au:lbs>
</metadata>
<!-— START LAYER popplace —-->

<ellipse cx="252" cy="130" rx="3" ry="3" £ill="#000000" />
<ellipse cx="37" cy="227" rx="3" ry="3" £il1="#000000" />
<ellipse cx="127" cy="239" rx="3" ry="3" £fill="4#000000" />
<ellipse cx="255" cy="282" rx="3" ry="3" £ill="#000000" />
<polygon fill="#000000" stroke-width="1" points=" 267,263 270,263 271,260 272,263 275,263 273,265
<ellipse cx="288" cy="247" rx="3" ry="3" £fill="4#000000" />
<ellipse cx="313" cy="243" rx="3" ry="3" £ill="#000000" />
<ellipse cx="328" cy="233" rx="3" ry="3" fill="4#000000" />
<ellipse cx="331" cy="245" rx="3" ry="3" £ill="4#000000" />
<ellipse cx="366" cy="196" rx="3" ry="3" £ill="#000000" />
<ellipse cx="161" cy="246" rx="3" ry="3" fill="4#000000" />
<ellipse cx="92" cy="208" rx="3" ry="3" £ill="#000000" />
<ellipse cx="40" cy="125" rx="3" ry="3" £il1l="#000000" />
<ellipse cx="108" cy="146" rx="3" ry="3" £fill="#000000" />

<text x="40" y="143" font-family="fritgat" font-size="8pt" £i11="#000000" stroke="#ffffff" stroke:
<text x="43" y="121" font-family="fritgat" font-size="8pt" £i11="#000000" stroke="#ffffff" stroke:
<text x="34" y="205" font-family="fritgat" font-size="8pt" £i11="#000000" stroke="#ffffff" stroke:
<text x="164" y="258" font-family="fritgat" font-size="8pt" £fi11="#000000" stroke="#ffffff" stroke
<text x="316" y="190" font-family="fritgat" font-size="8pt" £i11="4#000000" stroke="#ffffff" stroke
<text x="334" y="258" font-family="fritgat" font-size="8pt" £fill="4#000000" stroke="#ffffff" stroke
<text x="249" y="230" font-family="fritgat" font-size="8pt" £fi11="#000000" stroke="#ffffff" stroke
<text x="241" y="242" font-family="fritgat" font-size="8pt" £i11="4#000000" stroke="#ffffff" stroke
<text x="223" y="260" font-family="fritgat-italic" font-size="8pt" fill="#£f£f0000" stroke="#ffffff
<text x="210" y="279" font-family="fritgat" font-size="8pt" £fil11="#000000" stroke="#ffffff" stroke
<text x="82" y="234" font-family="fritgat" font-size="8pt" £i11="#000000" stroke="#ffffff" stroke:
<text x="40" y="223" font-family="fritgat" font-size="8pt" £i11="#000000" stroke="#ffffff" stroke:
<text x="214" y="125" font-family="fritgat" font-size="8pt" £fil11="#000000" stroke="#ffffff" stroke
</svg>

8.9 Tile Mode

Author Paul Ramsey
Contact pramsey at cleverelephant.ca

Revision $Revision: 8287 $

8.9. Tile Mode 339

MapServer Documentation, Release 5.4.2

Date $Date: 2008-12-26 07:25:23 -0800 (Fri, 26 Dec 2008) $
Last Updated 2008/04/30

Table of Contents

 Tile Mode
— Introduction
— Configuration
— Utilization

8.9.1 Introduction

MapServer can feed tile-based map clients directly using the CGI “tile mode”. Tile-based map clients work by dividing
the map of the world up into a discrete number of zoom levels, each partitioned into a number of identically sized
“tiles”. Instead of accessing a map by requesting a bounding box, a tile client builds a map by accessing individual
tiles.

8.9.2 Configuration

Tile requests are handled by the ‘mapserv’ CGI program. In order to return tiles in the correct projection, MapServer
must be built with the —use-proj option turned on. You can check if your version of ‘mapserv’ has projection support
by running it with the ‘-v’ option and looking for ‘SUPPORTS=PROJ’.

Example 1. On Unix:

$./mapserv -v

MapServer version 4.6.1 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP OUTPUT=PDF
OUTPUT=SWF OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER

SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WES_CLIENT SUPPORTS=WCS_SERVER
INPUT=JPEG INPUT=POSTGIS INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE DEBUG=MSDEBUG

Example 2. On Windows:

C:\apache\cgi-bin> mapserv -v

MapServer version 4.6.1 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP OUTPUT=PDF
OUTPUT=SWEF OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WEFS_CLIENT SUPPORTS=WCS_SERVER
INPUT=JPEG INPUT=POSTGIS INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE DEBUG=MSDEBUG

MapServer requires that each LAYER in your map file have a valid PROJECTION block to support reprojection.
Because the tile mode uses reprojection, you will have to ensure each LAYER has a valid PROJECTION block.

Configuration checklist:
* MapServer compiled with PROJ support
* Map file with a PROJECTION defined for every LAYER

8.9.3 Utilization

The MapServer tile support adds three new directives to the CGI interface:

» mode=tile tells the server to generate tiles based on the other tile mode parameters

340 Chapter 8. Output Generation

MapServer Documentation, Release 5.4.2

* tilemode=gmap tells the server use the Google Maps tile scheme for the tiles
* tile=x+y+z tells the server what tile you want to retrieve, using the Google Maps tile addressing system

* tilemode=ve tells the server use the Virtual Earth tile naming scheme for the tiles

tile=10231 tells the server what tile you want to retrieve, using the Virtual Earth tile addressing system

About Spherical Mercator

Spherical Mercator (also called “web mercator” by some) is a world projection. All the major tile-based map interfaces
(Google Maps, Microsoft Virtual Earth, Yahoo Maps, OpenLayers) use the spherical mercator system to address tiles.

A spherical mercator set of tiles has the following properties:
* The map has been reprojected to mercator using a spherical mercator algorithm
¢ There is one tile in the top zoom level, zoom level zero
 Each successive zoom level (z) has 2”7 tiles along each axis
* Tiles are 256x256 in size

Google Maps and Virtual Earth both use spherical mercator as their underlying tile projection, but use different formats
to address the individual tiles.

[T L T L Y

Google Maps uses an “x”, “y”, “zoom” format. The zoom indicates which level to pull tiles from, and the “x” and “y”
indicate while tile in that zoom level to pull.

Virtual Earth uses a single string to address each tile. The top zoom level in Virtual Earth has four tiles (equivalent
to Google’s zoom level 1). The top left tile in the Virtual Earth top zoom level is addessed as “0”, top right as “1”,
bottom left as “2” and bottom right as “3”. Each tile the next level is addressed by first referencing the top level tile
that contains it, then its address relative to that tile. So the top left tile in the second zoom level is “00” and the bottom
right one is “33”. See the Virtual Earth site for more details: http://msdn.microsoft.com/en-us/library/bb545006.aspx

Using Google Maps

The Google Maps API includes support for using alternative tile sets as overlays, or as alternate base maps. Here is an
example of an GTileLayerOverlay

<!DOCTYPE html
PUBLIC "-//W3C//DTID XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1l/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8"/>

<title>Google/MapServer Tile Example</title>

<script src="http://maps.google.com/maps?file=apisv=2&key=[YOUR KEY HERE]"

type="text/javascript"></script>
<script type="text/javascript">

function load() {
if (GBrowserIsCompatible()) {
var urlTemplate = ’'http://localhost/cgi-bin/mapserv?’;
urlTemplate += 'map=/var/map.mapé&’;
urlTemplate += ’layers=layerl layer2&’;
urlTemplate += 'mode=tiles&’;
urlTemplate += ’tilemode=gmapé&’;
urlTemplate += 'tile={X}+{Y}+{Z}’;

8.9. Tile Mode 341

http://msdn.microsoft.com/en-us/library/bb545006.aspx
http://code.google.com/apis/maps/
http://code.google.com/apis/maps/documentation/reference.html#GTileLayer

20

21

22

23

24

25

26

27

28

29

30

20

21

22

23

24

25

26

27

28

29

30

MapServer Documentation, Release 5.4.2

var myLayer = new GTilelLayer (null, 0,18, {
tileUrlTemplate:urlTemplate,
isPng:true,
opacity:1.0 });
var map = new GMap2 (document.getElementById("map"));
map.addControl (new GLargeMapControl());
map.addControl (new GMapTypeControl ());
map.setCenter (new GLatLng(35.35, -80.55), 15);
map.addOverlay (new GTileLayerOverlay (myLayer));

</script>
</head>
<body onload="load ()" onunload="GUnload()">
<div id="map" style="width: 500px; height: 500px"></div>
</body>
</html>

Note the format of the tileUrlTemplate: a valid URL, with {X}, {Y} and {Z} substitution tokens that Google Maps
will replace with the tile coordinates and zoom level on the fly to retrieve tiles from your server.

You can also use a MapServer tile layer as an alternate base map:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8"/>

<title>Google/MapServer Tile Example</title>

<script src="http://maps.google.com/maps?file=api&v=2&key=[YOUR KEY HERE]"

type="text/javascript"></script>
<script type="text/javascript">

function load() {
if (GBrowserIsCompatible()) {

var urlTemplate = ’'http://localhost/cgi-bin/mapserv?’;
urlTemplate += ’'map=/var/map.mapé&’;
urlTemplate += ’layers=layerl layer2&’;
urlTemplate += 'mode=tiles’;
urlTemplate += ’tilemode=gmapé&’;
urlTemplate += "tile={X}+{Y}+{Z};

var myLayer = new GTilelLayer (null, 0,18, {

tileUrlTemplate:urlTemplate,

isPng:true,

opacity:0.3 });
var map = new GMap2 (document.getElementById("map"));
map.addControl (new GLargeMapControl());
map.addControl (new GMapTypeControl());
map.setCenter (new GLatLng(35.35, -80.55), 15);

var myMapType = new GMapType ([myLayer], new GMercatorProjection(18), ’'MapServer’);

map.addMapType (myMapType) ;

</script>
</head>

342

Chapter 8. Output Generation

35

36

37

38

20

21

22

23

24

25

26

27

28

29

30

31

32

MapServer Documentation, Release 5.4.2

<body onload="load ()" onunload="GUnload() ">
<div id="map" style="width: 500px; height: 500px"></div>

</body>
</html>

The only change from the previous example is that we don’t create a GTileLayerOverlay, we create a GMapType, and
use addMapType(), instead of addOverlay().

Using Virtual Earth

The Virtual Earth API also includes support for using alternative tile sets as overlays, or as alternate base maps. Here
is an example:

<!DOCTYPE

html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtmll/DTD/xhtmll-str:

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>Virtual Earth Example</title>

<script type="text/javascript" src="http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=6.1">

<script

type="text/javascript">

var map = null;

function OnLoadMap () {

map
map

var
url
url
url
url
url

var

= new VEMap ("myMap") ;
.LoadMap () ;

url = "http://localhost/cgi-bin/mapserv?";
+= "map=/var/map.map&";

+= "mode=tile&";

+= "layers=layerl layer2&";

+= "tilemode=ves&";

+= "tile=%4";

tileSourceSpec = new VETileSourceSpecification("myLayer", url);

tileSourceSpec.Opacity = 0.3;

map

.AddTileLayer (tileSourceSpec, true);

</script>

</head>

<body onload="OnLoadMap () ;">

<div id
</body>
</html>

="myMap" style="position:relative; width:500px; height:500px; "></div>

8.9. Tile Mode

343

http://dev.live.com/virtualearth/sdk/

MapServer Documentation, Release 5.4.2

344 Chapter 8. Output Generation

CHAPTER
NINE

OGC SUPPORT AND CONFIGURATION

Interoperability is increasingly becoming a focus point for organizations that distribute and share data over the In-
ternet. The Open Geospatial Consortium (OGC) focuses on the development of publicly available geospatial web
standards. MapServer supports numerous OGC standards, allowing users to publish and consume data and services in
an application neutral implementation manner.

9.1 WMS Server

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 8907 $

Date $Date: 2009-04-14 06:38:45 -0700 (Tue, 14 Apr 2009) $

Table of Contents

* WMS Server

Introduction

Setting Up a WMS Server Using MapServer
WMS 1.3.0 Support

Reference Section

FAQ / Common Problems

9.1.1 Introduction

A WMS (or Web Map Server) allows for use of data from several different servers, and enables for the creation of a
network of Map Servers from which clients can build customized maps. The following documentation is based on the
Open Geospatial Consortium’s (OGC) Web Map Server Interfaces Implementation Specification v1.1.1.

MapServer v3.5 or more recent is required to implement WMS features. At the time this document was written,
MapServer supports the following WMS versions: 1.0.0, 1.0.7, 1.1.0 (a.k.a. 1.0.8), 1.1.1 and 1.3.0

This document assumes that you are already familiar with certain aspects of MapServer:
* MapServer application development and setting up .map files.

¢ Familiarity with the WMS spec would be an asset. A link to the WMS specification document is included in the
“WMS-Related Information” section below.

345

http://www.opengeospatial.org/
http://portal.opengeospatial.org/files/?artifact_id=1081&version=1&format=pdf

MapServer Documentation, Release 5.4.2

Links to WMS-Related Information

* MapServer WMS Client Howto

* WMS 1.1.1 specification

* WMS 1.3.0 specification

* Open Geospatial Consortium (OGC) home page

* WMS-Dev mailing list and archive

* WMS Cookbook

* MapServer OGC Web Services Workshop package
* MapServer Styled Layer Descriptor (SLD) Howto

* MapServer WMS Time Support Howto

How does a WMS Work
WMS servers interact with their clients via the HTTP protocol. In most cases, a WMS server is a CGI program. This
is also the case with MapServer.

The WMS specification defines a number of request types, and for each of them a set of query parameters and associ-
ated behaviors. A WMS-compliant server MUST be able to handle at least the following 2 types of WMS requests:

1. GetCapabilities: return an XML document with metadata of the Web Map Server’s information
2. GetMap: return an image of a map according to the user’s needs.
And support for the following types is optional:

1. GetFeaturelnfo: return info about feature(s) at a query (mouse click) location. MapServer supports 3 types of
responses to this request:

* text/plain output with attribute info.

* text/html output using MapServer query templates specified in the CLASS template parameter. The
MIME type returned by the Class templates defaults to text/html and can be controlled using the meta-
data “wms_feature_info_mime_type”.

* application/vnd.ogc.gml, GML.1 or GML for GML features.
2. DescribeLayer: return an XML description of one or more map layers. To execute this:

« for vector layers: to have a valid return the user needs to setup wfs_onlineresource (or ows_onlineresource)
metadata either at the map level or at the layer level (the layer level metadata is the one which is used if
both are defined)

« for raster layers: the metadata is wcs_onlineresource with the same logic as above.

3. GetLegendGraphic: returns a legend image (icon) for the requested layer, with label(s). More information on
this request can be found in the GetLegendGraphic section later in this doc.

With respect to MapServer specifically, it is the “mapserv”’ CGI program that knows how to handle WMS requests.
So setting up a WMS server with MapServer involves installing the mapserv CGI program and a setting up a mapfile
with appropriate metadata in it. This is covered in the rest of this document.

346 Chapter 9. OGC Support and Configuration

http://portal.opengeospatial.org/files/?artifact_id=1081&version=1&format=pdf
http://portal.opengeospatial.org/files/index.php?artifact_id=4756&version=1&format=pdf
http://www.opengeospatial.org/
http://lists.eogeo.org/mailman/listinfo/wms-dev
http://www.intl-interfaces.com/cookbook/WMS/
http://ms-ogc-workshop.maptools.org/

MapServer Documentation, Release 5.4.2

9.1.2 Setting Up a WMS Server Using MapServer

Install the Required Software

WMS requests are handled by the mapserv CGI program. Not all versions of the mapserv program do include WMS
support (it is included by default when you compile together with the PROJ library), so the first step is to check that
your mapserv executable includes WMS support. One way to verify this is to use the “-v”’ command-line switch and
look for “SUPPORTS=WMS_SERVER”.

(Unix users should refer to the Compiling on Unix document for any compiling instructions, and Windows users might
want to use MS4W, which comes ready with WMS/WES support)

Example 1. On Unix:

$./mapserv -v

MapServer version 4.6.1 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP OUTPUT=PDF
OUTPUT=SWF OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER

SUPPORTS=WMS_CLIENT SUPPORTS=WES_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
INPUT=JPEG INPUT=POSTGIS INPUT=0OGR INPUT=GDAL INPUT=SHAPEFILE DEBUG=MSDEBUG

Example 2. On Windows:

C:\apache\cgi-bin> mapserv -v

MapServer version 4.6.1 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP OUTPUT=PDF
OUTPUT=SWE OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WEFS_CLIENT SUPPORTS=WCS_SERVER
INPUT=JPEG INPUT=POSTGIS INPUT=0OGR INPUT=GDAL INPUT=SHAPEFILE DEBUG=MSDEBUG

Setup a Mapfile For Your WMS

Each instance of WMS server that you setup needs to have its own mapfile. It is just a regular MapServer mapfile in
which some parameters and some metadata entries are mandatory. Most of the metadata is required in order to produce
a valid GetCapabilites output.

Here is the list of parameters and metadata items that usually optional with MapServer, but are required (or strongly
recommended) for a WMS configuration:

At the MAP level:
* Map NAME
* Map PROJECTION
* Map Metadata (in the WEB Object):
— wms_title
— wms_onlineresource
— wms_srs (unless PROJECTION object is defined using “init=epsg:...”")
And for each LAYER:
* Layer NAME
* Layer PROJECTION
* Layer METADATA
— wms_title

— wms_srs (optional since the layers inherit the map’s SRS value)

9.1. WMS Server 347

http://www.maptools.org/ms4w/

MapServer Documentation, Release 5.4.2

» Layer STATUS

— Layers set to STATUS DEFAULT will always be sent to the client.

— Layers set to STATUS ON or STATUS OFF can be requested by the client.
* Layer TEMPLATE (required for GetFeaturelnfo requests)
* Layer DUMP TRUE (only required for GetFeatureInfo GML requests)

Let’s go through each of these paramters in more detail:

¢ Map Name and wms_title:

WMS Capabilities requires a Name and a Title tag for every layer. The Map’s NAME and wms_title metadata
will be used to set the root layer’s name and title in the GetCapabilities XML output. The root layer in the WMS
context corresponds to the whole mapfile.

¢ Layer Name and wms_title metadata:

Every individual layer needs its own unique name and title. Layer names are also used in GetMap and GetFea-
tureInfo requests to refer to layers that should be included in the map output and in the query. Layer names must
start with a letter when setting up a WMS server (layer names should not start with a digit or have spaces in
them).

¢ Map PROJECTION and wms_srs metadata:

WMS servers have to advertise the projection in which they are able to serve data using EPSG projection codes
(see http://www.epsg.org/ for more background on EPSG codes). Recent versions of the PROJ4 library come
with a table of EPSG initialization codes and allow users to define a projection like this:

PROJECTION
"init=epsg:4269"
END

(Note that “epsg” has to be in lowercase when used in the PROJ4 ‘init’ directive.)

If the MAP PROJECTION block is provided in the format “init=epsg:xxxx” then MapServer will also use this
information to generate a <BoundingBox> tag for the top-level layer in the WMS capabilities document. Note
that the BoundingBox is an optional element of WMS capabilities, but it is good practice to allow MapServer to
include it when possible.

The above is sufficient for MapServer to recognize the EPSG code and include it in SRS tags in the capabilities
output (wms_srs metadata is not required in this case). However, it is often impossible to find an EPSG code
to match the projection of your data. In those cases, the “wms_srs” metadata is used to list one or more EPSG
codes that the data can be served in, and the PROJECTION object contains the real PROJ4 definition of the
data’s projection.

Here is an example of a server whose data is in an Lambert Conformal Conic projection (42304). It’s capabilities
output will advertize EPSG:4269 and EPSG:4326 projections (lat/lon), but the PROJECTION object is set to
the real projection that the data is in:

NAME "DEMO"

WEB
METADATA
"wms_title" "WMS Demo Server"
"wms_onlineresource" "http://my.host.com/cgi-bin/mapserv?map=wms.map&"
"wms_srs" "EPSG:4269 EPSG:4326"
END

348

Chapter 9. OGC Support and Configuration

http://www.epsg.org/

MapServer Documentation, Release 5.4.2

END

PROJECTION
"init=epsg:42304"
END

END

In addition to EPSG:xxxx projections, a WMS server can advertize projections in the AUTO:xxxx namespace.
AUTO projections 42001 to 42005 are internally supported by MapServer. However, AUTO projections are
useful only with smart WMS clients, since the client needs to define the projection parameters in the WMS

requests to the server. For more information see Annex E of the WMS 1.1.1 specification and section 6.5.5.2 of
the same document. See also the FAQ on AUTO projections at the end of this document.

e Layer PROJECTION and wms_srs metadata:

By default layers inherit the SRS of their parent layer (the map’s PROJECTION in the MapServer case). For
this reason it is not necessary (but still strongly recommended) to provide PROJECTION and wms_srs for every
layer. If a layer PROJECTION is not provided then the top-level map projecion will be assumed.

Layer PROJECTION and wms_srs metadata are defined exactly the same way as the map’s PROJECTION and
wms_srs metadata.

For vector layers, if a PROJECTION block is provided in the format “init=epsg:xxxx” then MapServer will also
use this information to generate a <BoundingBox> tag for this layer in the WMS capabilities document. Note
that the BoundingBox is an optional element of WMS capabilities, but it is good practice to allow MapServer to
include it when possible.

¢ “wms_onlineresource’’ metadata:

The wms_onlineresource metadata is set in the map’s web object metadata and specifies the URL that should
be used to access your server. This is required for the GetCapabilities output. If wms_onlineresource is not
provided then MapServer will try to provide a default one using the script name and hostname, but you shouldn’t
count on that too much. It is strongly recommended that you provide the wms_onlineresource metadata.

See section 6.2.2 of the WMS 1.1.1 specification for the whole story about the online resource URL. Basically,
what you need is a complete HTTP URL including the http:// prefix, hostname, script name, potentially a
“map=""parameter, and and terminated by “?” or “&”.

Here is a valid online resource URL:
http://my.host.com/cgi-bin/mapserv?map=mywms .map&

By creating a wrapper script on the server it is possible to hide the “map=" parameter from the URL and then
your server’s online resource URL could be something like:

http://my.host.com/cgi-bin/mywms?

This is covered in more detail in the section “More About the Online Resource URL” below.
* Configuring for GetFeatureInfo Requests:

You must set the layer TEMPLATE parameter for the layer to be queryable by GetFeaturelnfo requests. For
requests of type “text/html” you should also set the layer HEADER and FOOTER parameters.

For GetFeatureInfo requests of GML you must set the layer to DUMP TRUE in the mapfile. As of MapServer
4.6 you must also set the gml_* metadata for the layer attributes to be served (see the Layer Object metadata in
the Reference Section later in this document).

9.1. WMS Server 349

http://portal.opengeospatial.org/files/?artifact_id=1081&version=1&format=pdf
http://portal.opengeospatial.org/files/?artifact_id=1081&version=1&format=pdf
http://

MapServer Documentation, Release 5.4.2

Here are working examples of GetFeaturelnfo requests: text/plain / text/html / gml (for gml, your browser might
ask you to save the file, if so save it locally as a .gml file and view it in a text editor)

Test Your WMS Server

Validate the Capabilities Metadata

OK, now that we’ve got a mapfile, we have to check the XML capabilities returned by our server to make sure nothing
is missing.

Using a web browser, access your server’s online resource URL to which you add the parameters “SER-
VICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities” to the end, e.g.
http://my.host.com/cgi-bin/mapserv?map=mywms.map&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities
Here is a working GetCapabilities request (note that the SERVICE parameter is required for all GetCapabilities re-

quests):

http://www?2.dmsolutions.ca/cgi-bin/mswms_gmap?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities

This should return a document of MIME type application/vnd.ogc.wms_xml, so your browser is likely going to prompt
you to save the file. Save it and open it in a text editor (Emacs, Notepad, etc.), and you will see the returned XML
from the WMS server.

If you get an error message in the XML output then take necessary actions. Common problems and solutions are listed
in the FAQ at the end of this document.

If everything went well, you should have a complete XML capabilities document. Search it for the word “WARN-
ING”... MapServer inserts XML comments starting with “<!-WARNING: ” in the XML output if it detects missing
mapfile parameters or metadata items. If you notice any warning in your XML output then you have to fix all of them
before you can register your server with a WMS client, otherwise things are likely not going to work.

Note that when a request happens, it is passed through WMS, WFS, and WCS in MapServer (in that order) until one
of the services respond to it.

Test With a GetMap Request

OK, now that we know that our server can produce a valid XML GetCapabilities response we should test the GetMap
request. MapServer only checks for a few of the required GetMap parameters, so both of the minimum MapServer
parameters and a valid GetMap request will be explained below.

The following is a list of the required GetMap parameters according to the WMS spec:
VERSION=version: Request version
REQUEST=GetMap: Request name

LAYERS=layer_list: Comma-separated list of one or more map layers. Optional if SLD parameter is
present.

STYLES=style_list: Comma-separated list of one rendering style per requested layer. Optional if SLD
parameter is present. NOTE that MapServer does not support named styles, so most times you would
specify “STYLES=" with an empty value. MapServer does support STYLES when used with an SLD.

SRS=namespace:identifier: Spatial Reference System.
BBOX=minx,miny,maxx,maxy: Bounding box corners (lower left, upper right) in SRS units.

WIDTH=output_width: Width in pixels of map picture.

350 Chapter 9. OGC Support and Configuration

http://www2.dmsolutions.ca/cgi-bin/mswms_gmap?&SERVICE=wms&VERSION=1.1.1&REQUEST=getfeatureinfo&LAYERS=popplace&QUERY_LAYERS=popplace&x=305&y=200&INFO_FORMAT=text/plain
http://www2.dmsolutions.ca/cgi-bin/mswms_gmap?&SERVICE=wms&VERSION=1.1.1&REQUEST=getfeatureinfo&LAYERS=popplace&QUERY_LAYERS=popplace&x=305&y=200&INFO_FORMAT=text/html
http://www2.dmsolutions.ca/cgi-bin/mswms_gmap?&SERVICE=wms&VERSION=1.1.1&REQUEST=getfeatureinfo&LAYERS=popplace&QUERY_LAYERS=popplace&x=305&y=200&INFO_FORMAT=gml
http://www2.dmsolutions.ca/cgi-bin/mswms_gmap?SERVICE=WMS&VERSION=1.1.1&REQUEST=GetCapabilities

MapServer Documentation, Release 5.4.2

HEIGHT=output_height: Height in pixels of map picture.
FORMAT=output_format: Output format of map.
Note: WMS Servers only advertise supported formats that are part of the gd / gdal libraries.

A valid example would therefore be:

http://my.host.com/cgi-bin/mapserv?map=mywmns.map&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=pro

Here is a working valid request.

Test with a Real Client

If you have access to a WMS client, then register your new server’s online resource with it and you should be off and
running.

If you don’t have your own WMS client installed already, here are a few pointers:
* MapServer itself can be used as a WMS client, see the MapServer WMS Client Howto.
¢ Quantum GIS is a full GIS package which includes WMS client support. (recommended)
* OpenJUMP is a desktop GIS package which includes WMS client support.
» uDig is a desktop package that allows users to add WMS layers.
* Deegree provides a WMS client.
» owsview Viewer Client Generator is an online application that allows users to add WMS layers.

This list is not exhaustive, there are several Open Source or proprietary packages that offer WMS support and could
be used to interact with your new MapServer WMS server instance.

More About the Online Resource URL

As mentioned in the section “Setup a Mapfile / wms_onlineresource metadata” above, the following Online Resource
URL is perfectly valid for a MapServer WMS according to section 6.2.2 or the WMS 1.1.1 specification:

http://my.host.com/cgi-bin/mapserv?map=mywns.map&

However, some people will argue that the above URL contains mandatory vendor-specific parameters and that this is
illegal. First we would like to point that “map=...” is not considered a vendor-specific parameter in this case since it
is part of the Online Resource URL which is defined as an opaque string terminated by “?” or “&” (See WMS 1.1.1
section 6.2.2).

But anyway, even if it’s valid, the above URL is still ugly. And you might want to use a nicer URL for your WMS
Online Resource URL. Here are some suggestions:

1. On Unix servers, you can setup a wrapper shell script that sets the MS_MAPFILE environment variable and
then passes control to the mapserv executable... that results on a cleaner OnlineResource URL:

#! /bin/sh
MS_MAPFILE=/path/to/demo.map
export MS_MAPFILE
/path/to/mapserv

9.1. WMS Server 351

http://www2.dmsolutions.ca/cgi-bin/mswms_gmap?SERVICE=WMS&VERSION=1.1.1&REQUEST=getmap&layers=park,popplace&STYLES=&SRS=EPSG:4326&BBOX=-173.537,35.8775,-11.9603,83.8009&WIDTH=400&HEIGHT=300&FORMAT=image/png
http://www.qgis.org/
http://www.openjump.org
http://udig.refractions.net/
http://www.deegree.org/
http://devgeo.cciw.ca/owsview
http://portal.opengeospatial.org/files/?artifact_id=1081&version=1&format=pdf
http://portal.opengeospatial.org/files/?artifact_id=1081&version=1&format=pdf

MapServer Documentation, Release 5.4.2

1. Another option is to use the “setenvif” feature of Apache: use symbolic links that all point to a same mapserv
binary, and then for each symbolic link test the url, and set the MAP environment accordingly.

For Windows and Apache users the steps are as follows (this requires Apache 1.3 or newer):
* Copy mapserv.exe to a new name for your WMS, such as “mywms.exe”.

¢ In httpd.conf, add:
SetEnvIf Request_URI "/cgi-bin/mywms" MS_MAPFILE=/path/to/mymap.map

2. On IIS servers (Windows), you can use the following ASP script:

Note: The script below, while functional, is intended only as an example of using ASP to filter
MapServer requests. Using ASP in a production WMS server will likely require additional ASP
especially in the area of error handling and setting timeouts.*

<%
.ScriptTimeout = 360
.ServerVariables ("REQUEST_METHOD")
"GET" strRequest = .QueryString
"POST" strRequest = .Form
strURL = "http://myserver/cgi-bin/mapserv.exe?map=C:\Inetpub\wwwroot\workshop\itasca.map&"
obJHTTP
ObJHTTP = .CreateObject ("MSXML2.ServerXMLHTTP")

ObjHTITP.open "GET", strURL, false
ObjHTTP.send ""

.ContentType = obJHTTP.getResponseHeader ("content-type")
.BinaryWrite objHTTP.responseBody

obJHTTP =
>

oe

3. Some OGC services (WFS, SOS) support both GET and POST requests. Here, you can use a minimal MapScript
WxS wrapper. Here’s a Python example:

#!/usr/bin/python

import mapscript

req = mapscript.OWSRequest ()
reqg.loadParams ()

map = mapscript.mapObj(’/path/to/config.map’)
map.OWSDispatch (req)

GetLegendGraphic Request

This request returns a legend image (icon) for the specified layer. The request will draw an icon and a label for all
classes defined on the layer.

352 Chapter 9. OGC Support and Configuration

&

S

MapServer Documentation, Release 5.4.2

Requirements

The following are required in the WMS server mapfile to enable this request:
* a LEGEND object.
* a CLASS object for each layer.
* a NAME in the CLASS object.
* the STATUS of each LAYER must be set to ON.

Parameters

The following are valid parameters for this request:

* LAYER - (Required) Name of the WMS layer to return the legend image of. Note that this is the <Name>
parameter of the Layer in the GetCapabilities.

¢ FORMAT - (Required) Format of the legend image (e.g. “image/png”).

*« WIDTH - (Optional) Width of the legend image. Note that the Width parameter is only used when the Rule
parameter is also used in the request.

* HEIGHT - (Optional) Height of the legend image. Note that the Height parameter is only used when the Rule
parameter is also used in the request.

e SLD - (Optional) The URL to the SLD. Applies the SLD on the layer and the legend is drawn after the SLD is
applied (using the classes specfied by the SLD). Note here that you need to put a <Name>class1</Name> inside
the Rule element so that a class name is created from the SLD and therefore a correct legend image.

e SLD_BODY - (Optional) The body (code) of the SLD, instead of specifying a URL (as in the ‘SLD’ parameter).
* SCALE - (Optional) Specify a scale so that only layers that fall into that scale will have a legend.

* RULE - (Optional) Specify the name of the CLASS to generate the legend image for (as opposed to generating
an icon and label for ALL classes for the layer).

Note: All rules that are used to draw the legend in normal CGI mode apply here. See the CGI Reference doc if
necessary.

The CLASS object’s KEYIMAGE parameter can also be used to specify a legend image for a CLASS. See the MapFile
Reference doc if necessary. Example Request

An example request might look like:
http://127.0.0.1/cgi-bin/mapserv.exe?SERVICE=WMS&VERSION=1.1.1&layer=parké&

REQUEST=getlegendgraphic&FORMAT=image/png

9.1.3 WMS 1.3.0 Support

MapServer 5.4 adds support for WMS 1.3.0. Although the general mechanism in Mapserver to support this new
specification are the same, there are some notable upgrades.

9.1. WMS Server 353

MapServer Documentation, Release 5.4.2

Major features related to the WMS 1.3.0 support

* Support WMS 1.3.0 basic operations: GetCapabilities, GetMap and GetFeatureInfo.

* Implement the Styled Layer Descriptor profile of the Web Map Service Implementation Specification. This
specification extends the WMS 1.3.0 and allows to advertise styling capabilities (Styled Layer Descriptor (SLD)
support). It also defines two addition operations GetLegendGraphic and DescribeLayer

* Implement the Symbology Encoding Implementation Specification, which is the new version of the SLD. Read
support was added for Point, Line, Polygon, Raster symbolizers

e Upgrade the generation of SLD to version 1.1.0 (SLD generated through through the GetStyles operation or
through MapScript)

Coordinate Systems and Axis Orientation

The most notable changes introduced in WMS 1.3.0 are the:
* the axis changes
* the introduction of new coordinate reference systems
* the use of CRS parameter (instead of SRS)

The axis order in previous versions of the WMS specifications was to always use easting (x or lon) and northing (y or
lat). WMS 1.3.0 specifies that, depending on the particular CRS, the x axis may or may not be oriented West-to-East,
and the y axis may or may not be oriented South-to-North. The WMS portrayal operation shall account for axis order.
This affects some of the EPSG codes that were commonly used such as ESPG:4326. The current implementation
makes sure that coordinates passed to the server (as part of the GetMap BBOX parameter) as well as those advertised
in the capabilities document reflect the inverse axe orders for EPSG codes between 4000 and 5000.

In addition, the WMS 1.3.0 defines a series of new coordinate system. These are the once that are currently supported
in MapServer:

* CRS:84 (WGS 84 longitude-latitude)

CRS:83 (NADB83 longitude-latitude)

CRS:27 (NAD27 longitude-latitude)
AUTO2:420001 (WGS 84 / Auto UTM)
AUTO2:420002 (WGS 84 / Auto Tr. Mercator)
AUTO2:420003 (WGS 84 / Auto Orthographic)
AUTO2:420004 (WGS 84 / Auto Equirectangular)
AUTO2:420005 (WGS 84 / Auto Mollweide)

Example of requests
Users can use the CRS:84 coordinate system and order the BBOX coordinates as long/lat: -
...&CRS=CRS:84&BB0X=-180.0,-90.0,180.0,90.0&...

Users can also use the ESPG:4326 coordinates and use the axis odering of lat/long: - ...&EPSG:4326&BB0X=-90.0,-
180.0,90,180.0&...

354 Chapter 9. OGC Support and Configuration

http://portal.opengeospatial.org/files/index.php?artifact_id=22364
http://portal.opengeospatial.org/files/index.php?artifact_id=16700

MapServer Documentation, Release 5.4.2

Some Missing features

* WMS 1.3.0 Post request should be an XML document containing the different operations and parameters.

¢ SLD documents containing elements form the Feature Encoding 1.1 specification could potentially use ESPG
projections with some filters. It is not yet clear nor implemented if the axis ordering should be taken into account
in these specific cases.

OCG compliance tests

As of version 5.4, MapServer passes all the basic and query tests of the OGC CITE test suite for WMS 1.3.0.

9.1.4 Reference Section

The following metadata are available in the setup of the mapfile:

(Note that each of the metadata below can also be referred to as ‘ows_*’ instead of ‘wms_*’. MapServer tries the
‘wms_*’ metadata first, and if not found it tries the corresponding ‘ows_*’ name. Using this reduces the amount of
duplication in mapfiles that support multiple OGC interfaces since “ows_*" metadata can be used almost everywhere
for common metadata items shared by multiple OGC interfaces.)

Web Object Metadata

ows_http_max_age

* Description: (Optional) an integer (in seconds) to specify how long a given map response should be con-
sidered new. Setting this directive allows for aware WMS clients to use this resulting HTTP header
value as a means to optimize (and minimize) requests to a WMS Server. More info is available at
http://www.mnot.net/cache_docs/#CACHE-CONTROL

ows_updatesequence

* Description: (Optional) The updateSequence parameter can be used for maintaining the consistency of a client
cache of the contents of a service metadata document. The parameter value can be an integer, a timestamp in
[ISO 8601:2000] format, or any other number or string.

ows_sld_enabled

* Description: (Optional) A value (true or false) which, when set to “false”, will ignore SLD and SLD_BODY
parameters in order to disable remote styling of WMS layers. Also, SLD is not advertised in WMS Capabilities
as a result

ows_schemas_location

* Description: (Optional) (Note the name ows_schemas_location and not wms_... this is because all OGC Web
Services (OWS) use the same metadata) Root of the web tree where the family of OGC WMS XMLSchema files
are located. This must be a valid URL where the actual .xsd files are located if you want your WMS output to
validate in a validating XML parser. Default is http://schemas.opengeospatial.net. See http://ogc.dmsolutions.ca
for an example of a valid schema tree.

wms_abstract

e WMS TAG Name: Abstract (WMSI1.1.1, sect. 7.1.4.2)

* Description: (Optional) A blurb of text providing more information about the WMS server.
wms_accessconstraints

e WMS TAG Name: AccessConstraints (WMS1.1.1, sect. 7.1.4.2)

9.1. WMS Server 355

http://www.mnot.net/cache_docs/#CACHE-CONTROL
http://schemas.opengeospatial.net
http://ogc.dmsolutions.ca

MapServer Documentation, Release 5.4.2

* Description: (Optional) Access constraints information. Use the reserved word “none” if there are no access
constraints.

wms_addresstype, wms_address, wms_city, wms_stateorprovince, wms_postcode, wms_country

* WMS TAG Name: ContactAddress and family (WMS1.1.1, sect. 7.1.4.2)

* Description: Optional contact address information. If provided then all six metadata items are required.
wms_attribution_logourl_format

* Description: (Optional) The MIME type of the logo image. (e.g. “image/png”). Note that the other
wms_attribution_logourl_* metadata must also be specified.

* refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.
wms_attribution_logourl_height

* Description: (Optional) Height of the logo image in pixels. Note that the other wms_attribution_logourl_*
metadata must also be specified.

* refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.
wms_attribution_logourl_href

* Description: (Optional) URL of the logo image. Note that the other wms_attribution_logourl_* metadata must
also be specified.

* refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.
wms_attribution_logourl_width

* Description: (Optional) Width of the logo image in pixels. Note that the other wms_attribution_logourl_*
metadata must also be specified.

* refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.
wms_attribution_onlineresource

* Description: (Optional) The data provider’s URL.

* refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.
wms_attribution_title

* Description: (Optional) Human-readable string naming the data provider.

* refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.
wms_contactelectronicmailaddress

e WMS TAG Name: ContactElectronicMailAddress (WMSI1.1.1, sect. 7.1.4.2)

* Description: Optional contact Email address.
wms_contactfacsimiletelephone

* WMS TAG Name: ContactFacsimileTelephone (WMSI1.1.1, sect. 7.1.4.2)

* Description: Optional contact facsimile telephone number.
wms_contactperson, wms_contactorganization, wms_contactposition

e WMS TAG Name: ContactInformation, ContactPerson, ContactOrganization, ContactPosition (WMS1.1.1, sect.
7.14.2)

* Description: Optional contact information. If provided then all three metadata items are required.

wms_contactvoicetelephone

356 Chapter 9. OGC Support and Configuration

MapServer Documentation, Release 5.4.2

* WMS TAG Name: ContactVoiceTelephone (WMSI1.1.1, sect. 7.1.4.2)

* Description: Optional contact voice telephone number.
wms_encoding

* WMS TAG Name: Encoding

* Description: Optional XML capabilities encoding type. The default is ISO-8859-1.
wms_feature_info_mime_type

e WMS TAG Name: Feature_info_mime_type

* Description:

— Used to specify an additional MIME type that can be used when responding to the GetFeature request.

For example if you want to use the layer’s HTML template as a base for its response, you need to add
“WMS_FEATURE_INFO_MIME_TYPE” “text/html”. Setting this will have the effect of advertizing
text/html as one of the MIME types supported for a GetFeature request. You also need to make sure that the
layer points to a valid html template. The client can then call the server with INFO_FORMAT=text/html.

— If not specified, MapServer by default has text/plain and GML implemented.
— Note that for GML to be returned the layer in the wms-server mapfile must be set to DUMP TRUE.
wms_fees
e WMS TAG Name: Fees (WMSI1.1.1, sect. 7.1.4.2)
* Description: (Optional) Fees information. Use the reserved word “none” if there are no fees.
wms_keywordlist
* WMS TAG Name: KeywordList (WMSI1.1.1, sect. 7.1.4.2)

* Description: (Optional) A comma-separated list of keywords or keyword phrases to help catalog searching. As
of WMS 1.1.0 no controlled vocabulary has been defined.

wms_onlineresource
e WMS TAG Name: OnlineResource (WMS1.1.1, sect. 6.2.2)

* Description: (Recommended) The URL that will be used to access this WMS server. This value is used in the
GetCapabilities response.

* See Also: sections “Setup a Mapfile / wms_onlineresource metadata” and “More About the Online Resource
URL” above.

Wms_resx, wms_resy
* WMS TAG Name: BoundingBox (WMSI1.1.1, sect. 6.5.6)

* Description: (Optional) Used in the BoundingBox tag to provide info about spatial resolution of the data, values
are in map projection units.

wms_service_onlineresource

* Description: (Optional) Top-level onlineresource URL. MapServer uses the onlineresource metadata (if pro-
vided) in the following order:

1. wms_service_onlineresource
2. ows_service_onlineresource
3. wms_onlineresource (or automatically generated URL, see the onlineresource section of this document)

WIms_Srs

9.1. WMS Server 357

MapServer Documentation, Release 5.4.2

* WMS TAG Name: SRS (WMS1.1.1, sect. 6.5.5)

* Description: (Recommended) Contains a list of EPSG projection codes that should be advertized as being
available for all layers in this server. The value can contain one or more EPSG:<code> pairs separated by spaces
(e.g. “EPSG:4269 EPSG:4326”) This value should be upper case (EPSG:42304.....not epsg:42304) to avoid
problems with case sensitive platforms.

* See Also: section “Setup a Mapfile / Map PROJECTION and wms_srs metadata” above.
wms_timeformat

* Description: The time format to be used when a request is sent. (e.g. “wms_timeformat” “%Y-%m-%d %H,
%Y-%m-%d %H:%M”). Please see the WMS Time Support Howto for more information.

wms_title
e WMS TAG Name: Title (WMS1.1.1, sect. 7.1.4.1)

* Description: (Required) A human-readable name for this Layer.

Layer Object Metadata

gml_exclude_items

¢ Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of items to
exclude. As of MapServer 4.6, you can control how many attributes (fields) you expose for your data layer with
metadata. The previous behaviour was simply to expose all attributes all of the time. The default is to expose
no attributes at all. An example excluding a specific field would be:

"gml_include_items" "all"
"gml_exclude_items" "Phonenum"
gml_groups

* Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of group names
for the layer.

gml_[group name]_group
* Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of attributes in

the group. Here is an example:

"gml_include_items" "all"
"gml_groups" "display"
"gml_display_group" "Name_e,Name_f"

gml_include_items

* Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of items to
include, or keyword “all”. As of MapServer 4.6, you can control how many attributes (fields) you expose for
your data layer with this metadata. The previous behaviour was simply to expose all attributes all of the time.
You can enable full exposure by using the keyword “all”, such as:

"gml_include_items" "all"
You can specify a list of attributes (fields) for partial exposure, such as:
"gml_include_items" "Name, ID"

The new default behaviour is to expose no attributes at all.

358 Chapter 9. OGC Support and Configuration

MapServer Documentation, Release 5.4.2

gml_[item name]_alias
* Description: (Optional, applies only to GetFeatureInfo GML requests) An alias for an attribute’s name. The
served GML will refer to this attribute by the alias. Here is an example:

"gml_province_alias" "prov"

gml_[item name]_type

* Description: (Optional, applies only to GetFeatureInfo GML requests) Specifies the type of the attribute. Valid
values are Integer|ReallCharacter/DatelBoolean.

gml_xml_items

* Description: (Optional, applies only to GetFeatureInfo GML requests) A comma delimited list of items that
should not be XML-encoded.

wms_abstract
» Same as wms_abstract in the Web Object.
wms_attribution_logourl_format

* Description: (Optional) The MIME type of the logo image. (e.g. “image/png”). Note that the other
wms_attribution_logourl_* metadata must also be specified.

* refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.
wms_attribution_logourl_height

* Description: (Optional) Height of the logo image in pixels. Note that the other wms_attribution_logourl_*
metadata must also be specified.

* refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.
wms_attribution_logourl_href

* Description: (Optional) URL of the logo image. Note that the other wms_attribution_logourl_* metadata must
also be specified.

* refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.
wms_attribution_logourl_width

* Description: (Optional) Width of the logo image in pixels. Note that the other wms_attribution_logourl_*
metadata must also be specified.

* refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.
wms_attribution_onlineresource

* Description: (Optional) The data provider’s URL.

* refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.
wms_attribution_title

* Description: (Optional) Human-readable string naming the data provider.

* refer to section 7.1.4.5.11 of the WMS 1.1.1 spec.
wms_dataurl_format

* Description: (Optional) Non-standardized file format of the metadata. The layer metadata wms_dataurl_href
must also be specified.

* refer to section 7.1.4.5.14 of the WMS 1.1.1 spec.

9.1. WMS Server 359

MapServer Documentation, Release 5.4.2

wms_dataurl_href

* Description: (Optional) The URL to the layer’s metadata. The layer metadata wms_dataurl_format must also
be specified.

* refer to section 7.1.4.5.14 of the WMS 1.1.1 spec.

wms_extent

* WMS TAG Name: BoundingBox (WMSI1.1.1, sect. 6.5.6)

* Description: (Optional) Used for the layer’s BoundingBox tag for cases where it is impossible (or very ineffi-
cient) for MapServer to probe the data source to figure its extents. The value for this metadata is “minx miny
maxx maxy”’ separated by spaces, with the values in the layer’s projection units. If wms_extent is provided then
it has priority and MapServer will NOT try to read the source file’s extents.

For Rasters served through WMS, MapServer can now use the wms_extent metadata parameter to register the
image. If a .wld file cannot be found, MapServer will then look for the wms_extent metadata parameter and use
the extents of the image and the size of the image for georegistration.

wms_group_abstract

* Description: (Optional) A blurb of text providing more information about the group. Only one layer for the
group needs to contain wms_group_abstract, MapServer will find and use the value. The value found for the
first layer in the group is used. So if multiple layers have wms_group_abstract set then only the first value is
used.

wms_group_title

* WMS TAG Name: Group_title (WMSI1.1.1, sect. 7.1.4.1)

* Description: (Optional) A human-readable name for the group that this layer belongs to. Only one layer for the
group needs to contain wms_group_title, MapServer will find and use the value. The value found for the first
layer in the group is used. So if multiple layers have wms_group_title set then only the first value is used.

wms_keywordlist

¢ Same as wms_keywordlist in the Web Object .

wms_layer_group

* Description: (Optional) Can be used to assign a layer to a number of hierarchically nested groups. This grouped
hierarchy will be expressed in the capabilities.

WMS_LAYER_GROUP is different from the GROUP keyword in that it does not publish the name of the
group in the capabilities, only the title. As a consequence the groups set with WMS_LAYER_GROUP can
not be requested with a GetMap or GetFeatureInfo request (see section 7.1.4.5.2 of the WMS implementation
specification version 1.1.1. (OGC 01-068r2)). Another difference is that GROUP does not support nested
groups. The purpose of this metadata setting is to enable making a WMS client aware of layer grouping.

All group names should be preceded by a forward slash (/). It is not allowed to use both the
WMS_LAYER_GROUP setting and the GROUP keyword for a single layer.

LAYER
NAME "mylayer"
DATA "mylayer"
TYPE LINE
CLASS
STYLE
COLOR 100 100 255
END
END
METADATA

360

Chapter 9. OGC Support and Configuration

MapServer Documentation, Release 5.4.2

"WMS_LAYER_GROUP" "/rootgroup/subgroup"
END
END

wms_metadataurl_format

* Description: (Optional) The file format MIME type of the metadata record (e.g. “text/plain”). The layer
metadata wms_metadataurl_type and wms_metadataurl_href must also be specified.

* refer to section 7.1.4.5.10 of the WMS 1.1.1 spec.
wms_metadataurl_href

* Description: (Optional) The URL to the layer’s metadata. The layer metadata wms_metadataurl_format and
wms_metadataurl_type must also be specified.

* refer to section 7.1.4.5.10 of the WMS 1.1.1 spec.
wms_metadataurl_type

* Description: (Optional) The standard to which the metadata complies. Currently only two types are valid:
“TC211” which refers to [ISO 19115], and “FGDC” which refers to [FGDC-STD-001-1988]. The layer meta-
data wms_metadataurl_format and wms_metadataurl_href must also be specified.

* refer to section 7.1.4.5.10 of the WMS 1.1.1 spec.
wms_opaque
* WMS TAG Name: Opaque (WMS1.1.1, sect. 7.1.4.6.3)

» Description: (Optional) Set this metadata to “1” to indicate that the layer represents an area-filling coverage of
space (e.g. a bathymetry and elevation layer). This should be taken by the client as a hint that this layer should
be placed at the bottom of the stack of layers.

Wms_Srs

» Same as wms_srs in the Web Object .

wms_style
* Description: (Optional) The LegendURL style name. Requires the following meta-
data: wms_style_<style’s_name>_width, wms_style_<style’s_name>_legendurl_height,

wms_style_<style’s_name>_legendurl_format, wms_style_<style’s_name>_legendurl_href
* refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.
wms_style_<style’s_name>_legendurl_height

* Description: (Optional) The height of the legend image in pixels. Requires the following
metadata: wms_style_<style’s_name>_width, wms_style, wms_style_<style’s_name>_legendurl_format,
wms_style_<style’s_name>_legendurl_href.

* refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.
wms_style_<style’s_name>_legendurl_href

* Description: (Optional) The URL to the layer’s legend. Requires the following
metadata: wms_style_<style’s_name>_width, wms_style_<style’s_name>_legendurl_height,
wms_style_<style’s_name>_legendurl_format, wms_style.

* refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.

wms_style_<style’s_name>_legendurl_format

9.1. WMS Server 361

MapServer Documentation, Release 5.4.2

e Description: (Optional) The file format MIME type of the legend image. Requires the follow-

ing metadata: wms_style_<style’s_name>_width, wms_style_<style’s_name>_legendurl_height, wms_style,
wms_style_<style’s_name>_legendurl_href.

* refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.

wms_style_<style’s_name>_legendurl_width

e Description: ~ (Optional) The width of the legend image in pixels. Requires the following

metadata: wms_style_<style’s_name>_format, wms_style_<style’s_name>_legendurl_height, wms_style,
wms_style_<style’s_name>_legendurl_href.

* refer to section 7.1.4.5.4 of the WMS 1.1.1 spec.

wms_timedefault

* Description: (Optional for Time Support) This value is used if it is defined and the Time value is missing in the
request. Please see the WMS Time Support Howto for more information.

wms_timeextent

* Description: (Mandatory for Time Support) This is used in the capabilities to return the valid time values for
the layer. The value defined here should be a valid time range. Please see the WMS Time Support Howto for
more information.

wms_timeitem

* Description: (Mandatory for Time Support) This is the name of the field in the DB that contains the time values.
Please see the WMS Time Support Howto for more information.

wms_title

e Same as wms_title in the Web Object.

Sample WMS Server Mapfile

The

following is a very basic WMS Server mapfile:

NAME "WMS-test"

STA
SIZ

TUS ON
E 400 300

svmsovser .. /[e[t[c]/[s[y[n[b[o]1]s].[s]v]n]

EXTENT -2200000 -712631 3072800 3840000
UNITS METERS
SHAPEPATH "../data"

IMAGECOLOR 255 255 255

FONTSET ../|e|t|c|/|flo|n|t|s|.|t|x]|t
WEB
IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"
METADATA
"wms_title" "WMS Demo Server" ##required
"wms_onlineresource" "http://yourpath/cgi-bin/mapserv.exe?" ##required
"wms_srs" "EPSG:42304 EPSG:42101 EPSG:4269 EPSG:4326" ##recommended
END
END
PROJECTION
"init=epsg:42304" ##required
END
362 Chapter 9. OGC Support and Configuration

24

25

26

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

64

65

66

67

68

69

70

MapServer Documentation, Release 5.4.2

#
Start of layer definitions
#

LAYER
NAME "park"
METADATA
"wms_title" "Parks" ##required
END
TYPE POLYGON
STATUS OFF
pata [pa [z]k
PROJECTION
"init=epsg:42304" ##recommended
END
CLASS
NAME "Parks"
STYLE
COLOR 200 255 0
OUTLINECOLOR 120 120 120
END
END
END # Layer

LAYER o
NAME p|olp|p|l]alc|e
METADATA
"wms_title"
END
TYPE POINT
STATUS ON o
DATA |p|lo|p|p|lfalc|e
PROJECTION
"init=epsg:42304" ##recommended
END
CLASS
NAME "Cities"
STYLE
SYMBOL 2
SIZE 8
COILOR 0O 0 O
END
END
END # Layer

"Cities" ##required

END # Map File

9.1.5 FAQ/ Common Problems

Q How can I find the EPSG code for my data’s projection?

A If you know the parameters of your data’s projection, then you can browse the “epsg” file that comes
with PROJ4 and look for a projection definition that matches your data’s projection. It’s a simple
text file and the EPSG code is inside brackets (<...>) at the beginning of every line.

The “epsg” file is usually located in /usr/local/share/proj/ on Unix systems and in C:/PROJ/ or

9.1. WMS Server

363

MapServer Documentation, Release 5.4.2

C:/PROJ/NAD in Windows systems (depending on the installation). MS4W users will find the epsg
file in /MS4W/proj/mad/.

Q My WMS server produces the error “msProcessProjection(): no system list, errno: ..””

A That’s likely PROJ4 complaining that it cannot find the “epsg” projection definition file. Make sure
you have installed PROJ 4.4.3 or more recent and that the “epsg” file is installed at the right location.
On Unix it should be under /ust/local/share/proj/, and on Windows PROJ looks for it under C:/PROJ/
or C:/PROJ/NAD (depending on the installation). You should also check the error documentation to
see if your exact error is discussed.

If you don’t have the “epsg” file then you can get it as part of the PROJ4 distribution at
http://trac.osgeo.org/proj/ or you can download it at http://www.maptools.org/dl/proj4-epsg.zip.

Q How do AUTO projections work?

A When a WMS client calls a WMS server with an auto projection, it has to specify the SRS in the form:
AUTO: proj_id,unit_id,lon0,lat0 where:

e proj_id is one of 42001, 42002, 42003, 42004, or 42005 (only five auto projections are currently
defined).

e unit_id is always 9001 for meters. (It is uncertain whether anyone supports any other units.)
¢ lon0 and lat0 are the coordinates to use as the origin for the projection.

When using an AUTO projection in WMS GetCapabilities, you include only the “AUTO:42003”
string in your wms_srs metadata, you do not include the projection parameters. Those are added by
the application (client) at runtime depending on the map view. For example:

NAME "DEMO"

WEB

METADATA
"wms_title" "WMS Demo Server"
"wms_onlineresource" "http://my.host.com/cgi-bin/mapserv?map=wms.mapé&"
"wms_srs" "AUTO:42001 AUTO:42002"

END

END

The above server advertises the first two auto projections.

9.2 WMS Client

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 8371 $

Date $Date: 2008-12-31 12:44:04 -0800 (Wed, 31 Dec 2008) $
Last Updated 2008/07/15

364 Chapter 9. OGC Support and Configuration

http://trac.osgeo.org/proj/
http://www.maptools.org/dl/proj4-epsg.zip

MapServer Documentation, Release 5.4.2

Table of Contents

* WMS Client
— Introduction
— Compilation / Installation
— MapFile Configuration
— Limitations/TODO

9.2.1 Introduction

A WMS (or Web Map Server) allows for use of data from several different servers, and enables for the creation
of a network of Map Servers from which clients can build customized maps. The following document contains
information about using MapServer’s WMS connection type to include layers from remote WMS servers in MapServer
applications.

This document assumes that you are already familiar with certain aspects of MapServer:
* MapServer application development and setting up .map files.

 Familiarity with the WMS spec would be an asset. A link to the WMS specification document is included below.

WMS-Related Information

* MapServer WMS Server HowTo
e WMS 1.1.1 specification

* MapServer OGC Web Services Workshop package

9.2.2 Compilation / Installation

The WMS connection type is enabled by the —with-wmsclient configure switch. It requires PROJ4, libcurl version
7.10.1 or more recent, and optionally GDAL (see below). Windows users who do not want to compile MapServer
should use MS4W (which comes ready for WMS/WES client and server use), or check for the availability of other
Windows binaries with WMS support.

¢ For PROJ4 and GDAL installation, see the MapServer Compilation HowTo (Compiling on Unix | Compiling on
Win32)

* For libcurl, make sure you have version 7.10.1 or more recent installed on your system. You can find out your
libcurl version using curl-config —version. (if your system came with an older version of libcurl preinstalled
then you MUST uninstall it prior to installing the new version)

You might want to also include GDAL support if you want your application to be able to reproject map slides received
from remote servers. This is because raster resampling works only together with the GDAL library in MapServer.
If GDAL is not included in your MapServer build then your application can only serve maps in the subset of the
projections supported by all the remote servers (this should be sufficient for most applications). If you compile with
GDAL then make sure that your GDAL includes GIF and/or PNG support, depending on which image format you
request from remote servers.

Once the required libraries are installed, then configure MapServer using the —with-wmsclient switch (plus all the other
switches you used to use) and recompile. This will give you a new set of executables (and possibly php_mapscript.so
if you requested it). See the MapServer Compilation HowTo (links above) for installation details.

9.2. WMS Client 365

http://www.opengeospatial.org/docs/01-068r2.pdf
http://ms-ogc-workshop.maptools.org/
http://www.maptools.org/ms4w/
http://curl.haxx.se/libcurl/c/

MapServer Documentation, Release 5.4.2

Check your MapServer executable

To check that your mapserv executable includes WMS support, use the “-v”” command-line switch and look for “SUP-
PORTS=WMS_CLIENT"”.

Example 1. Mapserv Version Info on Unix:

$./mapserv -v

MapServer version 5.2.0-rcl OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
OUTPUT=PDF OUTPUT=SWE OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=AGG
SUPPORTS=FREETYPE SUPPORTS=ICONV SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER
SUPPORTS=SOS_SERVER SUPPORTS=FASTCGI SUPPORTS=THREADS

SUPPORTS=GEOS SUPPORTS=RGBA_PNG INPUT=JPEG INPUT=POSTGIS
INPUT=ORACLESPATIAL INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE

Example 2. Mapserv Version Info on Windows:

C:\ms4w\apache\cgi-bin> mapserv -v

MapServer version 5.2.0-rcl OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
OUTPUT=PDF OUTPUT=SWEF OUTPUT=SVG SUPPORTS=PROJ SUPPORTS=AGG
SUPPORTS=FREETYPE SUPPORTS=ICONV SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
SUPPORTS=WFS_SERVER SUPPORTS=WEFS_CLIENT SUPPORTS=WCS_SERVER
SUPPORTS=SOS_SERVER SUPPORTS=FASTCGI SUPPORTS=THREADS

SUPPORTS=GEOS SUPPORTS=RGBA_PNG INPUT=JPEG INPUT=POSTGIS
INPUT=ORACLESPATIAL INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE

Install Optional PROJ4 EPSG Codes

(Note: installing these PROJ4 codes is optional, install only if you need them)

Some Canadian WMS servers will use some non-standard projection codes not included in the default distribution
(e.g. EPSG:42304, etc.). If you are planning to use MapServer to connect to Canadian WMS servers then you might
want to download a custom Canadian epsg file with those codes, and unzip it in the /usr/local/share/proj directory (or
/ms4w/proj/nad/ for MS4W users).

Finally, ESRI WMS servers also come with their own series of non-standard codes. If you are planning to connect
to ESRI WMS servers then you might want to get a custom epsg file that contains the canadian codes and the ESRI
codes, allowing you to connect to any server. Download the custom ESRI epsg file and unzip it in /ust/local/share/proj
(or /ms4w/proj/mad/ for MS4W users).

Q But why not always install and distribute the proj4-epsg-with-42xxx-and-esri.zip file then since it’s
more complete?

A You should install only the epsg projection codes that you need, the epsg file with all ESRI codes in it
is 20% larger than the default one, so it comes with extra overhead that you may not need. Also note
that when creating WMS servers, in order to be really interoperable, only EPSG codes that are part
of the standard EPSG list should be used. i.e. it is a bad idea for interoperability to use the custom
canadian codes or the custom ESRI codes and we do not want to promote their use too much.

9.2.3 MapFile Configuration

Note: A PROJECTION must be set in the mapfile for the MAP unless you are sure that all your WMS layers support
only a single projection which is the same as the PROJECTION of the map. The MAP PROJECTION can be set using
“init=epsg:xxxx”’ codes or using regular PROJ4 parameters. Failure to set a MAP PROJECTION may result in blank

366 Chapter 9. OGC Support and Configuration

http://www.maptools.org/dl/proj4-epsg-with-42xxx.zip
http://www.maptools.org/dl/proj4-epsg-with-42xxx-and-esri.zip

MapServer Documentation, Release 5.4.2

maps coming from remote WMS servers (because of inconsistent BBOX+SRS combination being used in the WMS
connection URL).

Storing Temporary Files

You have to set the IMAGEPATH value in the WEB object of your mapfile to point to a valid and writable directory.
MapServer will use this directory to store temporary files downloaded from the remote servers. The temporary files
are automatically deleted by MapServer so you won’t notice them... but a valid IMAGEPATH is still required.

Example 3. Setting IMAGEPATH Parameter in Mapfile
MAP
WEB
IMAGEPATH "/tmp/ms_tmp/"
IMAGEURL ...
END

END

If you want to keep this temporary file for debugging purposes, you should add the following statement to the LAYER
object of your mapfile:

LAYER
DEBUG ON

END

Adding a WMS Layer

WMS layers are accessed via the WMS connection type in the Mapfile. Here is an example of a layer using this
connection type:

LAYER
NAME "prov_bound"
TYPE RASTER
STATUS ON
CONNECTION "http://www2.dmsolutions.ca/cgi-bin/mswms_gmap?"
CONNECTIONTYPE WMS

METADATA
"wms_srs" "EPSG:42304"
"wms_name" "prov_bound"
"wms_server_version" "1.1.1"
"wms_format" "image/gif"
END
END

Required Layer Parameters and Metadata

* CONNECTIONTYPE WMS

¢ CONNECTION - this is the remote server’s online resource URL, just the base URL without any of the WMS
parameters. The server version, image format, layer name, etc. will be provided via metadata, see below.

9.2. WMS Client 367

MapServer Documentation, Release 5.4.2

Note: Note that if the CONNECTION parameter value is not set the the value of the “wms_onlineresource” metadata
will be used. If both CONNECTION and “wms_onlineresource” are set then the “wms_onlineresource” metadata
takes precedence.

* “wms_format” metadata - the image format to use in GetMap requests.

Note: If wms_formatlist is provided then wms_format is optional and MapServer will pick the first supported format
in wms_formatlist for use in GetMap requests. If both wms_format and wms_formatlist are provided then wms_format
takes precedence. Also note that WMS Servers only advertize supported formats that are part of the GD/GDAL
libraries.

* “wms_name” metadata - comma-separated list of layers to be fetched from the remote WMS server. This
value is used to set the LAYERS and QUERY_LAYERS WMS URL parameters.

* “wms_server_version” metadata - the version of the WMS protocol supported by the remote WMS server and
that will be used for issuing GetMap requests.

e “wms_srs” metadata - space-delimited list of EPSG projection codes supported by the remote server. You
normally get this from the server’s capabilities output. This value should be upper case (EPSG:4236.....not
epsg:4236) to avoid problems with case sensitive platforms. The value is used to set the SRS WMS URL
parameter.

Optional Layer Parameters and Metadata

« MINSCALE, MAXSCALE - if the remote server’s capabilities contains a ScaleHint value for this layer then
you might want to set the MINSCALE and MAXSCALE in the LAYER object in the mapfile. This will allow
MapServer to request the layer only at scales where it makes sense

* PROJECTION object - it is optional at this point. MapServer will create one internally if needed.

* “wms_auth_username’ metadata - msEncrypt-style authorization string. Empty strings are also accepted.

METADATA
"wms_auth_username" "foo"
"wms_auth_password" "{FF88CFDAAEIASE33}"
END

* “wms_auth_type” metadata - Authorization type. Supported types include:

— basic

digest

ntlm

any (the underlying http library picks the best among the opotions supported by the remote server)

anysafe (the underlying http library picks only safe methods among the options supported by the remote
server)

METADATA
"wms_auth_type" "ntlm"
END

* “wms_connectiontimeout” metadata - the maximum time to wait for a remote WMS layer to load, set in
seconds (default is 30 seconds). This metadata can be added at the layer level so that it affects only that
layer, or it can be added at the map level (in the web object) so that it affects all of the layers. Note that
wms_connectiontimeout at the layer level has priority over the map level.

368 Chapter 9. OGC Support and Configuration

MapServer Documentation, Release 5.4.2

METADATA
"wms_connectiontimeout" "60"
END

¢ “wms_exceptions_format” metadata - set the format for exceptions (as of MapServer 4.6). MapServer de-
faults to application/vnd.ogc.se_inimage (the exception will be in a picture format). You can check the GetCa-
pabilities of the server to see what formats are available for exceptions. The application/vnd.ogc.se_inimage
exception format is actually a non-required exception format in the WMS 1.1.1 spec, so there are servers out
there which don’t support this format. In that case you would use:

LAYER
METADATA
"wms_exceptions_format "Eijp‘p\l_ i[c]a t|ijon/[v]n]d|.[o]g]c Js”ehjjixﬂm{zw"
END
END

Which would return this xml exception in the MS_ERRORFILE:

Tue Jan 17 18:05:13 2006 - msDrawWMSLayerLow () : WMS server error. WMS GetMap

request got XML exception for layer ’‘prov_bound’: <?xml version='1.0’
encoding="I1S0-8859-1" standalone="no" ?><!DOCTYPE ServiceExceptionReport

SYSTEM "http://schemas.opengeospatial.net/wms/1.1.1/exception_1_1_1.dtd">
<ServiceExceptionReport version="1.1l.1"><ServiceException code="LayerNotDefined">
msWMSLoadGetMapParams () : WMS server error. Invalid layer(s) given in the LAYERS parameter.
</ServiceException>

</ServiceExceptionReport>

* “wms_force_separate_request” metadata - set this to “1” to force this WMS layer to be requested using its
own separate GetMap request. By default MapServer will try to merge multiple adjacent WMS layers from the
same server into a single multi-layer GetMap request to reduce the load on remote servers and improve response
time. This metadata is used to bypass that behavior.

e “wms_formatlist” metadata - comma-separated list of image formats supported by the remote WMS server.
Note that wms_formatlist is used only if wms_format is not set. If both wms_format and wms_formatlist are
provided then wms_format takes precedence.

* “wms_latlonboundingbox’ metadata - the bounding box of this layer in geographic coordinates in the format
“lon_min lat_min lon_max lat_max”. If it is set then MapServer will request the layer only when the map view
overlaps that bounding box. You normally get this from the server’s capabilities output.

METADATA
"wms_latlonboundingbox" "-124 48 -123 49"
END

* “wms_proxy_auth_type” metadata - the authorization type to use for a proxy connection. Supported types
include:

basic

digest

ntlm

any (the underlying http library picks the best among the opotions supported by the remote server)

9.2. WMS Client 369

MapServer Documentation, Release 5.4.2

— anysafe (the underlying http library picks only safe methods among the options supported by the remote
server)

METADATA
"wms_proxy_auth_type" "ntlm"
END

“wms_proxy_host” metadata - the hostname of the proxy to use, in “dot-quad” format, with an optional port
component (e.g. ‘192.168.2.10:8080").

METADATA
"wms_proxy_host" "192.168.2.10"
END

‘“wms_proxy_port” metadata - the port to use for a proxy connection.

METADATA
"wms_proxy_port" "8080"
END

“wms_proxy_type” metadata - the type of the proxy connection. Valid values are ‘http’ and ‘socks5’, which
are case sensitive.

METADATA
"wms_proxy_type" "http"
END

‘“wms_proxy_username’ metadata - msEncrypt-style string for a proxy connection. Empty strings are also
accepted.

METADATA
"wms_proxy_username" "foo"
"wms_proxy_password" "{FF88CFDAAEIASE33}"
END

“wms_sld_body” metadata - can be used to specify an inline SLD document.
“wms_sld_url” metadata - can be used to specify a link to an SLD document.
“wms_style” metadata - name of style to use for the STYLES parameter in GetMap requests for this layer.

“wms_style_<stylename>_sld”” metadata URL of a SLD to use in GetMap requests. Replace <stylename> in
the metadta name with the name of the style to which the SLD applies.

METADATA
"wms_style" "mystyle"
"wms_style_mystyle_sld" "http://my.host.com/mysld.xml"
END

For more information on SLDs in MapServer see the SLD HowTo document.

“wms_time” metadata - value to use for the TIME parameter in GetMap requests for this layer. Please see the
WMS Time HowTo for more information.

‘“wms_bgcolor”’ metadata - specifies the color to be used as the background of the map. The general format of
BGCOLOR is a hexadecimal encoding of an RGB value where two hexadecimal characters are used for each of
Red, Green, and Blue color values. The values can range between 00 and FF for each (0 and 255, base 10). The

370

Chapter 9. OGC Support and Configuration

MapServer Documentation, Release 5.4.2

format is 0XRRGGBB:; either upper or lower case characters are allowed for RR, GG, and BB values. The “0x”

9

prefix shall have a lower case “x”.

* “wms_transparent” metadata - specifies whether the map background is to be made transparent or not.
TRANSPARENT can take on two values, “TRUE” or “FALSE”. If not specified, MapServer sets default to
“TRUE”

Note: Note that each of the above metadata can also be referred to as ‘ows_*’ instead of ‘wms_*’. MapServer tries
the ‘wms_*" metadata first, and if not found it tries the corresponding ‘ows_*’ name. Using this reduces the amount of
duplication in mapfiles that support multiple OGC interfaces since “ows_*" metadata can be used almost everywhere
for common metadata items shared by multiple OGC interfaces.

Old CONNECTION parameter format from version 3.5 and 3.6 (deprecated)

In MapServer version 3.5 and 3.6, the CONNECTION parameter had to include at a minimum the VERSION, LAY-
ERS, FORMAT and TRANSPARENT WMS parameters. This mode of operation is still supported but is deprecated
and you are encouraged to use metadata items for those parameters as documented in the previous section above.

Here is an example of a layer definition using this deprecated CONNECTION parameter format:

LAYER
NAME "bathymetry"
METADATA
"wms_title" "Elevation/Bathymetry"
"wms_srs" "EPSG:4269 EPSG:4326"
END
TYPE RASTER
STATUS ON
CONNECTIONTYPE WMS
CONNECTION "http://www2.dmsolutions.ca/cgi-bin/mswms_gmap?VERSION=1.1.0&LAYERS=bathymetry&FORMAT=1m:
PROJECTION
"init=epsg:4236"
END
END

9.2.4 Limitations/TODO

1. GetFeaturelnfo is not fully supported since the output of getFeaturelnfo is left to the discretion of the remote
server. A method layer.getWMSFeatureInfoURL() has been added to MapScript for applications that want to
access featureInfo results and handle them directly.

2. MapServer does not attempt to fetch the layer’s capabilities. Doing so at every map draw would be extremely
inefficient. And caching that information does not belong in the core of MapServer. This is better done at
the application level, in a script, and only the necessary information is passed to the MapServer core via the
CONNECTION string and metadata.

9.3 WMS Time

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 8295 $

Date $Date: 2008-12-26 21:08:04 -0800 (Fri, 26 Dec 2008) $

9.3. WMS Time 371

MapServer Documentation, Release 5.4.2

Last Updated 2006/06/26

Table of Contents

* WMS Time
— Introduction
— Enabling Time Support in MapServer
— Future Additions
— Limitations and Known Bugs

9.3.1 Introduction
A WMS server can provide support to temporal requests. This is done by providing a TIME parameter with a time

value in the request. MapServer 4.4 and above provides support to interpret the TIME parameter and transform the
resulting values into appropriate requests.

Links to WMS-Related Information

* MapServer WMS Server HowTo
* MapServer WMS Client HowTo

WMS 1.1.1 specification
* MapServer OGC Web Services Workshop

9.3.2 Enabling Time Support in MapServer

Time Patterns

WMS specifies that the basic format used for TIME requests is based on the ISO 8601:1988(E) “extended” format.
MapServer supports a limited set of patterns that are defined in the ISO 8601 specifications, as well as few other
patterns that are useful but not compliant to ISO 8601. Here is a list of patterns currently supported:

Table 1. Supported Time Patterns

Time Patterns Examples
YYYYMMDD 20041012
YYYY-MM-DDTHH:MM:SSZ | 2004-10-12T13:55:20Z
YYYY-MM-DDTHH:MM:SS 2004-10-12T13:55:20
YYYY-MM-DD HH:MM:SS 2004-10-12 13:55:20
YYYY-MM-DDTHH:MM 2004-10-12T13:55
YYYY-MM-DD HH:MM 2004-10-12 13:55
YYYY-MM-DDTHH 2004-10-12T13
YYYY-MM-DD HH 2004-10-12 13
YYYY-MM-DD 2004-10-12
YYYY-MM 2004-10
YYYY 2004
THH:MM:SSZ T13:55:20Z
THH:MM:SS T13:55:20

372 Chapter 9. OGC Support and Configuration

http://www.opengeospatial.org/docs/01-068r2.pdf
http://ms-ogc-workshop.maptools.org/

MapServer Documentation, Release 5.4.2

Setting Up a WMS Layer with Time Support

To have a valid WMS layer with time support, the user has to define the following metadata at the layer level:

* wms_timeextent: (Mandatory) this is used in the capabilities document to return the valid time values for the
layer. The value defined here should be a valid time range. (more on this in ‘Specifying Time Extents’ below)

* wms_ timeitem: (Mandatory) this is the name of the field in the DB that contains the time values.

* wms_timedefault: (Optional) this value is used if it is defined and the TIME value is missing in the request.

Specifying Time Extents

Time Extents can be declared with the following syntax for the wms_timeextent metadata (see Annex C.3 in the WMS
1.1.1 specification document for a full description):

1. value - a single value. This is not directly supported in MapServer but there is an easy workwound by specifying
the same value as min and max.

2. valuel,value2,value3,... - a list of multiple values.

3. min/max/resolution - an interval defined by its lower and upper bounds and its resolution. This is supported in
MapServer (note that the resolution is not supported however).

4. minl/maxl1/resl,min2/max2/res2,... - a list of multiple intervals.
Example WMS-Server Layer

LAYER

NAME "earthqgquakes"

METADATA
"wms_title" "Earthquakes"
"wms_timeextent" "2004-01-01/2004-02-01"
"wms_timeitem" "TIME"
"wms_timedefault" "2004-01-01 14:10:00"

END

TYPE POINT

STATUS ON

DATA "quakes"

CLASS

END
END

GetCapabilities Output

If your layer is set up properly, requesting the capabilities on the server outputs a Dimension element. Here is an
example of a GetCapabilities result for a layer configured for time support:

<Layer queryable="0" opaque="0" cascaded="0">
<Name>earthquakes</Name>
<Title>Earthquakes</Title>
<SRS>EPSG:4326</SRS>
<LatLonBoundingBox minx="-131.02" miny="24.84" maxx="-66.59" maxy="48.39" />
<BoundingBox SRS="EPSG:4326"

9.3. WMS Time 373

http://www.opengeospatial.org/docs/01-068r2.pdf
http://www.opengeospatial.org/docs/01-068r2.pdf

MapServer Documentation, Release 5.4.2

minx="-131.02" miny="24.84" maxx="-66.59" maxy="48.39" />
<Dimension name="time" units="IS08601"/>
<Extent name="time" default="2004-01-01 14:10:00" nearestValue="0">2004-01-01/2004-02-01</Extent:
</Layer>

Supported Time Requests

When sending a request with the TIME parameter, different types of time values can be specified. The following are
supported by MapServer:

* single value: for example: ...&TIME=2004-10-12&...

* multiple values: for example: ...&TIME=2004-10-12, 2004-10-13, 2004-10-14&...

o single range value: for example: ...&TIME=2004-10-12/2004-10-13&...

» multiple range values: for example: ...&TIME=2004-10-12/2004-10-13, 2004-10-15/2004-10-16&...

Interpreting Time Values

When MapServer receives a request with a TIME parameter, it transforms the time requests into valid expressions that
are assigned to the filter parameter on layers that are time-aware. Here are some examples of how different types of
requests are treated (wms_timeitem is defined here as being “time_field”):

* single value (2004-10-12) transforms to (‘[time_field] eq 2004-10-12°)

* multiple values (2004-10-12, 2004-10-13) transform to (‘[time_field]‘ eq ‘2004-10-12° OR ‘[time_field]‘ eq
2004-10-13%)

* single range : 2004-10-12/2004-10-13 transforms to ((‘[time_field]‘ ge “2004-10-12°) AND (‘[time_field]‘ le
2004-10-139))

e multiple ranges (2004-10-12/2004-10-13, 2004-10-15/2004-10-16) transform to ((‘[time_field]‘ ge ‘2004-10-
12° AND ‘[time_field]‘ le ‘2004-10-13°) OR (‘[time_field]‘ ge ‘2004-10-15° AND °‘[time_field]‘ le “2004-10-
16°))

As shown in the above examples, all fields and values are written inside back tics () - this is the general way of
specifying time expressions inside MapServer.

Exceptions to this rule:

1. When dealing with layers that are not Shapefiles nor through OGR, the expression built has slightly different
syntax. For example, the expression set in the filter for the first example above would be ([time_field] = 2004-
10-12%).

2. For PostGIS/PostgreSQL layers, the time expression built uses the date_trunc function available in PostgreSQL.
For example, if the user passes a time value of “2004-10-12’, the expression set in the filter is date_trunc(‘day’,
time_field) = 2004-10-12°. The use of the date_trunc function allows requests to use the concept of time
resolution. In the example above, for a request of ‘2004-10-12°, MapServer determines that the resolution is
“day” by parsing the time string and the result gives all records matching the date 2004-10-12 regardless of the
values set for Hours/Minutes/Seconds in the database. For more information on the date_trunc function, please
refer to the PostgreSQL documentation.

Limiting the Time Formats to Use

The user has the ability to define the time format(s) to be used when a request is sent, in metadata at the WEB level.
For example, the user can define the following two formats:

374 Chapter 9. OGC Support and Configuration

http://www.postgresql.org/docs/8.1/static/functions-datetime.html

MapServer Documentation, Release 5.4.2

"wms_timeformat" "YYYY-MM-DDTHH, YYYY-MM-DDTHH:MM"

Another example is for a WMS layer that is based on time data that contains precise time values taken every minute
(e.g., 2004-10-12T13:55, 2004-10-12T13:56, 2004-10-12 T13:57, ...). Normally, a valid request on such a layer
would require the time value to be as complete as the data underneath. By defining a set of patterns to use, MapServer
introduces the notion of resolution to be used when doing a query. Using the example above, a request TIME= 2004-
10-12T13:55 would be valid and a request TIME= 2004-10-12T13 would also be valid and would return all elements
taken for that hour.

Note that this functionality is only available on layers based on Shapefiles and OGR.

Example of WMS-T with PostGIS Tile Index for Raster Imagery

This example currently requires latest 4.9 CVS build!

Here is an example mapfile snippet for a raster WMS-T instance using a PostGIS tileindex. This ex-
ample shows US Nexrad Base Reflectivity running at Iowa State U at http://mesonet.agron.iastate.edu/cgi-
bin/wms/nexrad/nOr.cgi?SERVICE=WMS &request=GetCapabilities

1 # Tile Index

> LAYER

3 STATUS ON

4 NAME "time_idx"
5 TYPE POLYGON

6 DATA "the_geom from nexrad_nOr_tindex"

7 METADATA

8 "wms_title" "TIME INDEX"

9 "wms_srs" "EPSG:4326"

10 "wms_extent" "-126 24 -66 50"

1 "wms_timeextent" "2003-08-01/2006-12-31/P5M"

12 "wms_timeitem" "datetime" #column in postgis table of type timestamp
13 "wms_timedefault" "2006-06-23T03:10:002Z"

14 END

15 CONNECTION "dbname=postgis host=10.10.10.20"
16 CONNECTIONTYPE postgis
17 END

9 # raster layer

20 LAYER

21 NAME "nexrad-nOr-wmst"
2 TYPE RASTER

23 STATUS ON

24 DEBUG ON

25 DUMP TRUE

2 PROJECTION

27 "init=epsg:4326"

28 END

29 METADATA

30 "wms_title" "NEXRAD BASE REF WMS-T"

31 "wms_srs" "EPSG:4326"

32 "wms_extent" "-126 24 -66 50"

33 "wms_timeextent" "2003-08-01/2006-12-31/P5M"

34 "wms_timeitem" "datetime" #datetime is a column in postgis table of type timestamp
35 "wms_timedefault" "2006-06-23T03:10:00z"

36 END

37 OFFSITE 0 0 O

9.3. WMS Time 375

http://mesonet.agron.iastate.edu/cgi-bin/wms/nexrad/n0r.cgi?SERVICE=WMS&request=GetCapabilities
http://mesonet.agron.iastate.edu/cgi-bin/wms/nexrad/n0r.cgi?SERVICE=WMS&request=GetCapabilities

38

40

MapServer Documentation, Release 5.4.2

TILEITEM "filepath" #filepath is a column in postgis table with varchar of the filepath to each ima

TILEINDEX "time_idx"
END

You can find more information on Time and tileindexes in the WCS documentation.

9.3.3 Future Additions

* Support for a special time value: “current”.

9.3.4 Limitations and Known Bugs

 Pattern “YYYYMMDD” does not work on Windows. (Bug#970)

9.4 Map Context

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 8493 $

Date $Date: 2009-02-03 15:22:33 -0800 (Tue, 03 Feb 2009) $
Last Updated 2008/03/20

Contents

* Map Context
— Introduction
— Implementing a Web Map Context

9.4.1 Introduction

The term ‘map context’ comes from the Open Geospatial Constortium’s (OGC) Web Map Context Specification v1.0.0,
which coincides with the OGC Web Map Server Specification (WMS) v1.1.1. A map context is a XML document
that describes the appearance of layers from one or more WMS servers, and can be transferred between clients while
maintaining startup views, the state of the view (and its layers), and storing additional layer information.

Support for OGC Web Map Context was added to MapServer in version 3.7/4.0. This allows client applications to load
and save a map configuration in a standard XML format. MapServer can read context documents of versions 0.1.2,
0.1.4,0.1.7, 1.0.0, 1.1.0 and can export contents in versions 0.1.4, 0.1.7, 1.0.0, 1.1.0. Web Map Context 1.1.0 support
was added to MapServer 4.10

This document assumes that you are already familiar with certain aspects of MapServer:
* MapServer application development and setting up mapfiles.

* Familiarity with the WMS spec would be an asset. Please see the following section for links to associated
sources.

376 Chapter 9. OGC Support and Configuration

http://trac.osgeo.org/mapserver/ticket/970
http://www.opengeospatial.org/docs/03-036r2.pdf
http://www.opengeospatial.org/docs/01-068r2.pdf

MapServer Documentation, Release 5.4.2

Links to WMS / Map Context Related Information

* MapServer WMS Client HowTo

* Open Geospatial Consortium (OGC) home page
e WMS 1.1.1 specification

* Map Context 1.0.0 specification

* MapServer OGC Web Services Workshop

9.4.2 Implementing a Web Map Context
Special Build Considerations

Map Context support requires PROJ4, GDAL/OGR and PHP support libraries.

Build/install the above libraries on your system and then build MapServer with the ‘“—with-wmsclient —with-proj —with-
ogr —with-gdal —with-php’ configure options. Also make sure that your build uses the USE_WMS_LYR and USE_OGR
flags. For more details on MapServer compilation see the appropriate HowTo: Unix / Windows

Windows users can use MS4W, which is ready for Map Context use.

Map Context Mapfile

A map context document can ONLY contain WMS layers (e.g. CONNECTIONTYPE WMS). Please refer to the
MapServer WMS Client HowTo for more information on declaring WMS layers.

MapFile Metadata

The following mapfile metadata are used by MapServer to handle map context information:

(Note that some parameters have width, height, format, and href, and some only have format and href. This is because
width and height are only used for images and parameters that do not have them are text or html. For consistency with
the spec MapServer supports height and width for all parameters, but they should only be used for images)

Web Object Metadata

* ows_schemas_location : Location of XML schema document. Default is http://schemas.opengeospatial.net. See
http://ogc.dmsolutions.ca for an example of a valid schema tree.

* wms_abstract : A blurb of text providing more information about the WMS server.

* wms_address : If provided must also then provide wms_addresstype, wms_city, wms_stateorprovince,
wms_postcode, and wms_country)

* wms_addresstype : If provided must also then provide wms_address, wms_city, wms_stateorprovince,
wms_postcode, and wms_country)

e wms_city : If provided must also then provide wms_address, wms_addresstype, wms_stateorprovince,
wms_postcode, and wms_country)

e wms_contactelectronicmailaddress : contact Email address.

* wms_contactfacsimiletelephone : contact facsimile telephone number.

9.4. Map Context 377

http://www.opengeospatial.org/
http://www.opengeospatial.org/docs/01-068r2.pdf
http://www.opengeospatial.org/docs/03-036r2.pdf
http://ms-ogc-workshop.maptools.org/
http://www.maptools.org/ms4w/
http://schemas.opengeospatial.net
http://ogc.dmsolutions.ca

MapServer Documentation, Release 5.4.2

wms_contactorganization :

WIS_Contactperson :

wms_contactposition :

wms_contactvoicetelephone : contact voice telephone number.

wms_context_fid : the feature id of the context. Set to 0 when saving if not specified.
wms_context_version : the version of the map context specification.

wms_country : If provided must also then provide wms_address, wms_city, wms_stateorprovince,
wms_postcode, and wms_addresstype.

wms_descriptionurl_format : Format of the webpage which contains relevant information to the view.
wms_descriptionurl_href : Reference to a webpage which contains relevant information to the view.
wms_keywordlist : A comma-separated list of keywords or keyword phrases to help catalog searching.
wms_logourl_width : Width of the context logo.

wms_logourl_height : Height of the context logo.

wms_logourl_format : Format of the context logo.

wms_logourl_href : Location of the context logo.

wms_postcode : If provided must also then provide wms_address, wms_city, wms_stateorprovince,
wms_addresstype, and wms_country.

wms_stateorprovince : If provided must also then provide wms_address, wms_city, wms_addresstype,
wms_postcode, and wms_country.

wms_title : (Required) A human-readable name for this Layer (this metadata does not exist beyond version
0.1.4)

Layer Object Metadata

wms_abstract : A blurb of text providing more information about the WMS server.

wms_dataurl_href : Link to an online resource where data corresponding to the layer can be found.
wms_dataurl_format : Format of the online resource where data corresponding to the layer can be found.
wms_dimension : Current dimension used. New in version 4.10.

wms_dimensionlist : List of available dimensions. New in version 4.10.

wms_dimension_%s_default : Default dimension value. = MapServer will check for wms_time and
wms_timedefault metadata when this is not specified. %s = the name of the dimension. New in version 4.10.

wms_dimension_%s_multiplevalues : Multiple dimension values. %s = the name of the dimension. New in
version 4.10.

wms_dimension_%s_nearestvalue : Nearest dimension value. The default value is 0. %s = the name of the
dimension. New in version 4.10.

wms_dimension_Y%s_units : Units for the dimension values. The default value is ISO8601. %s = the name of
the dimension. New in version 4.10.

wms_dimension_%s_unitsymbol : Symbol for dimension units. The default value is t. %s = the name of the
dimension. New in version 4.10.

378

Chapter 9. OGC Support and Configuration

MapServer Documentation, Release 5.4.2

wms_dimension_%s_uservalue : User dimension value. MapServer will check for wms_time and
wms_timedefault metadata when this is not specified. %s = the name of the dimension. New in version 4.10.

wms_format : Current format used.

wms_formatlist : List of available formats for this layer.

wms_metadataurl_href : Link to an online resource where descriptive metadata of the corresponding layer can

be found.

wms_metadataurl_format : Format of the online resource where descriptive metadata of the corresponding layer

can be found.

wms_name : Name of the WMS layer on the server.

wms_onlineresource : Required URL to access the server.

wms_server_version : The version of the web map server specification.

wms_server-_title : The title of the web map server.

wms_stylelist : Current style used.

wms_style_%s_legendurl_width : Width of an image describing the style. %s = the name of the style.

wms_style_%s_legendurl_height : Height of an image describing the style. %s = the name of the style.

wms_style_%s_legendurl_format : Format of an image describing the style. %s = the name of the style.

wms_style_%s_legendurl_href : Location of an image describing the style. %s = the name of the style.
wms_style_%s_sld : URL to the SLD document of this style. %s = the name of the style.
wms_style_%s_sld_body : SLD_BODY document of this style. %s = the name of the style.
wms_style_%s_title : Title of the layer. %s = the name of the style.

wms_title : (Required) A human-readable name for this Layer.

Sample Map Context Mapfile

NAME (W |M s}j_c O.NTEXT

STATUS ON

SIZE 400 300

swmorser .. /[e]c[c)/[s]y[m]b o] 1[5 [s]y]m]
EXTENT -2200000 -712631 3072800 3840000
UNITS METERS

SHAPEPATH "../data"

IMAGECOLOR 255 255 255

FONTSET ../[e|t[c]/|f[o]n]t[s].[t[x]t

WEB

IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

METADATA
"wms_abstract" "Demo for map context document. Blah blah..."
"wms_title" "Map Context demo" #### REQUIRED
END
END
PROJECTION

"init=epsg:42304"

9.4.

Map Context

379

MapServer Documentation, Release 5.4.2

2 END

23

2 LAYER

25 NAME "prov_bound"

2 TYPE RASTER

27 STATUS ON

28 CONNECTION "http://www2.dmsolutions.ca/cgi-bin/mswms_gmap?"
29 CONNECTIONTYPE WMS

30 METADATA

31 "wms_name" "prov_bound"

32 "wms_server_version" "1.1.1"

33 "wms_server_title" "GMap WMS Demo Server"

34 "wms_format" "image/gif"

35 "wms_srs" "EPSG:42304"

36 "wms_title" "Canadian boundaries" #### REQUIRED
37 "wms_onlineresource" "http://www2.dmsolutions.ca/cgi-bin/mswms_gmap?" #### REQUIRED
38 "wms_dimensionlist" "time, width"

39 "wms_dimension" "time"

40 "wms_dimension_time_unitsymbol" "t"

41 "wms_dimension_time_units" "IS08601"

o) "wms_dimension_time_uservalue" "1310"

43 "wms_dimension_time_default" "1310"

44 "wms_dimension_time_multiplevalues"™ "1310,1410"

45 "wms_dimension_time_nearestvalue" "0"

46 END

47 END

48

49 LAYER o

50 NAME plo|p|p|lfalc|e

51 TYPE RASTER

52 STATUS ON

53 CONNECTIONTYPE WMS

54 CONNECTION "http://www2.dmsolutions.ca/cgi-bin/mswms_gmap?"
55 METADATA

56 "wms_name" "popplace”

57 "wms_server_version" "1.1.1"

58 "wms_server_title" "GMap WMS Demo Server"

59 "wms_format" "image/png"

60 "wms_srs" "EPSG:42304"

61 "wms_title" "Canadian Cities" #### REQUIRED
12 "wms_onlineresource" "http://www2.dmsolutions.ca/cgi-bin/mswms_gmap?" #### REQUIRED
63 END

¢« END # Layer
65
66 END # Map File

Testing Map Context Support

1. The first thing to do is to save your mapfile using the saveMapContext function available from the
PHP/MapScript library. An example script is shown below:

<?php
dl ("php_mapscript.dl1l");
SoMap = ms_newMapObj ("gmap_wms_context.map") ;
SoMap->saveMapContext ("gmap_wms_context_output.xml") ;
?>

380 Chapter 9. OGC Support and Configuration

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

41

MapServer Documentation, Release 5.4.2

2. Scan the XML output to look for </— WARNING: ... —> comments. Then make the necessary changes to fix
every warning that you encounter. At the end of this you should have a mapfile compatible with the Map Context
specification.

3. Now you can load your new Map Context document into an application using the loadMapContext function
from the PHP/MapScript library.

Sample Map Context Document
The following is a sample Map Context document:

<?xml version='1.0" encoding="IS0-8859-1" standalone="no" ?>

<ViewContext version="1.1.0" id="WMS_CONTEXT" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instan

<General>
<Window width="400" height="300"/>
<!-- Bounding box corners and spatial reference system ——>

<BoundingBox SRS="EPSG:42304" minx="-2200000.000000" miny="-712631.000000" maxx="3072800.000

<!-- Title of Context —-—->
<Title>Map Context demo</Title>
<Abstract>Demo for map context document. Blah blah...</Abstract>
<ContactInformation>
</ContactInformation>
</General>
<LayerList>
<Layer queryable="0" hidden="0">
<Server service="OGC:WMS" version="1.1.1" title="Canadian boundaries">

<OnlineResource xlink:type="simple" xlink:href="http://www2.dmsolutions.ca/cgi-bin/mswms_

</Server>
<Name>prov_bound</Name>
<Title>Canadian boundaries</Title>
<SRS>EPSG:42304</SRS>
<FormatList>
<Format current="1">image/gif</Format>
</FormatList>
<DimensionList>

<Dimension name="time" units="IS08601" unitSymbol="t" userValue="1310" default="1310"

</DimensionList>
</Layer>
<Layer queryable="0" hidden="0">
<Server service="OGC:WMS" version="1.1.1" title="Canadian Cities">

<OnlineResource xlink:type="simple" xlink:href="http://www2.dmsolutions.ca/cgi-bin/mswms_

</Server>
<Name>popplace</Name>
<Title>Canadian Cities</Title>
<SRS>EPSG:42304</SRS>
<FormatList>
<Format current="1">image/png</Format>
</FormatList>
</DimensionList>
</Layer>
</LayerList>
</ViewContext>

9.4. Map Context 381

MapServer Documentation, Release 5.4.2

Map Context Support Through CGI

MapServer CGI allows you to load a map context through the use of a CONTEXT parameter, and you can point
this parameter to a locally stored context file or a context file accessible through a URL. For more information on
MapServer CGI see the CGI Reference.

Support for Local Map Context Files

There is a new cgi parameter called CONTEXT that is used to specify a local context file. The user can then use
MapServer to request a map using the following syntax:

http://localhost/mapserver.cgi?MODE=map&MAP=/path/to/mapfile.map&CONTEXT=
/path/to/contextfile.xml&LAYERS=layer_namel layers_name2

Note: All layers created from a context file have their status set to ON. To be able to display layers, the user needs to
add the LAYERS argument in the URL.

Support for Context Files Accessed Through a URL

The syntax of using a web accessible context file would be similar to accessing a local context file:

http://localhost/mapserver.cgi?MODE=map&MAP=/path/to/mapfile.map&CONTEXT=
http://URL/path/to/contextfile.xml&LAYERS=layers_namel layer_name?2

Due to security concerns loading a file from a URL is disabled by default. To enable this functionality, the user needs
to set a CONFIG parameter called CGI_CONTEXT_URL in the default mapfile that will allow this functionality. Here
is an example of a map file with the CONFIG parameter:

Start of map file

NAME "map-context"

STATUS ON

SIZE 400 300

EXTENT -2200000 -712631 3072800 3840000
UNITS METERS

IMAGECOLOR 255 255 255

IMAGETYPE png

CONFIG "CGI_CONTEXT_URL" "1"

WEB
END
LAYER

END

END

Default Mapfile

To smoothly run a MapServer CGI application with a Map Context, the application administrator needs to provide a
default mapfile with at least the basic required parameters that will be used with the Context file. This default mapfile

382 Chapter 9. OGC Support and Configuration

MapServer Documentation, Release 5.4.2

can contain as little information as the imagepath and imageurl or contain a list of layers. Information coming from
the context (e.g.: layers, width, height, ...) would either be appended or will replace values found in the mapfile.

Here is an example of a default map file containing the minimum required parameters:

NAME "CGI-CONTEXT-DEMO"

STATUS ON

SIZE 400 300

EXTENT -2200000 -712631 3072800 3840000
UNITS METERS

IMAGECOLOR 255 255 255

IMAGETYPE png

#
Start of web interface definition
#
WEB
MINSCALE 2000000
MAXSCALE 50000000
#
On Windows systems, /tmp and /tmp/ms_tmp/ should be created at the root
of the drive where the .MAP file resides.
#

IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

END

END # Map File

Map Context Support Through WMS

MapServer can also output your WMS layers as a Context document. MapServer extends the WMS standard by adding
a request=GetContext operation that allows you to retrieve a context for a WMS-based mapfile with a call like:

http://localhost/mapserver.cgi?map=/path/to/mapfile.map&service=WMS&
request=GetContext&version=1.1.0

The VERSION parameter controls the version of context document to return.

GetContext is disabled by default because it could be considered a security issue: it could publicly expose the URLSs
of WMS layers used (cascaded) by a mapfile.

To enable it, set the “wms_getcontext_enabled” web metadata to “1” in your WMS server’s mapfile.

9.5 WFS Server

Author Jean-Francois Doyon

Contact jdoyon at nrcan.gc.ca

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 8376 $

Date $Date: 2009-01-02 07:13:17 -0800 (Fri, 02 Jan 2009) $
Last Updated 2006/10/13

9.5. WFS Server 383

MapServer Documentation, Release 5.4.2

Contents

e WEFS Server
— Introduction
— Configuring your MapFile to Serve WES layers
— Reference Section
— To-do Items and Known Limitations

9.5.1 Introduction

A WFS (Web Feature Service) publishes feature-level geospatial data to the web. This means that instead of re-
turning an image, as MapServer has traditionally done, the client now obtains fine-grained information about specific
geospatial features of the underlying data, at both the geometry AND attribute levels. As with other OGC specifica-
tions, this interface uses XML over HTTP as it’s delivery mechanism, and, more precisely, GML (Geography Markup
Language), which is a subset of XML.

WFS-Related Information

Here are some WEFS related links (including a newly added OGC services workshop with MapServer). Since these
are highly detailed technical specifications, there is no need to read through them in their entirety to get a MapServer
WES up and running. It is still recommended however to read them over and get familiar with the basics of each of
them, in order to understand how it all works:

* The OGC Web Feature Service Implementation Specification.
* The Geography Markup Language Implementation Specification.
* MapServer OGC Web Services Workshop package.

Working knowledge of MapServer is of course also required.

Software Requirements

In order to enable MapServer to serve WES, it MUST be compiled against certain librairies:
* PROJ.4: The reprojection library. Version 4.4.3 or greater is required.
* GDAL/OGR: I/O support libraries. Version 1.1.8 or greater is required.

Please see the MapServer UNIX Compilation and Installation HowTo for detailed instructions on compiling mapserver
with support for these libraries and features. For Windows users, the MS4W installer comes ready to serve both WFS
and WMS.

Version of GML Supported
MapServer can output both GML2 and GML3. By default MapServer serves GML2. You can test this by adding an
‘OUTPUTFORMAT’ parameter to a GetFeature request, such as:

* GML2 request output

e GML3 request output

For a detailed discussion on the versions supported, see bug#884.

384 Chapter 9. OGC Support and Configuration

https://portal.opengeospatial.org/files/?artifact_id=7176
https://portal.opengeospatial.org/files/?artifact_id=7174
http://ms-ogc-workshop.maptools.org/
http://www.maptools.org/ms4w/
http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?SERVICE=WFS&VERSION=1.0.0&REQUEST=getfeature&TYPENAME=park&maxfeatures=1&OUTPUTFORMAT=gml2
http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?SERVICE=WFS&VERSION=1.0.0&REQUEST=getfeature&TYPENAME=park&maxfeatures=1&OUTPUTFORMAT=gml3
http://trac.osgeo.org/mapserver/ticket/884

MapServer Documentation, Release 5.4.2

9.5.2 Configuring your MapFile to Serve WFS layers

Much as in the WMS support, WFS publishing is enabled by adding certain magic METADATA keyword/value pairs
to a MapFile.

MapServer will serve and include in its WFS capabilities only the layers that meet the following conditions:

 Data source is of vector type (Shapefile, OGR, PostGIS, SDE, SDO, ...)

LAYER NAME must be set. Layer names must start with a letter when setting up a WFS server (layer names
should not start with a digit or have spaces in them).

LAYER TYPE is one of: LINE, POINT, POLYGON
LAYER DUMP parameter set to TRUE

e The “wfs_onlineresource” metadata:

The wfs_onlineresource metadata is set in the map’s web object metadata and specifies the URL that should be
used to access your server. This is required for the GetCapabilities output. If wfs_onlineresource is not provided
then MapServer will try to provide a default one using the script name and hostname, but you shouldn’t count
on that too much. It is strongly recommended that you provide the wfs_onlineresource metadata.

See section 12.3.3 of the WFS 1.0.0 specification for the whole story about the online resource URL. Basically,
what you need is a complete HTTP URL including the http:// prefix, hostname, script name, potentially a
“map=""parameter, and and terminated by “?” or “&”.

Here is a valid online resource URL:
http://my.host.com/cgi-bin/mapserv?map=mywfs.mapé&

By creating a wrapper script on the server it is possible to hide the “map=" parameter from the URL and then
your server’s online resource URL could be something like:

http://my.host.com/cgi-bin/mywfs?

This is covered in more detail in the “More About the Online Resource URL” section of the WMS Server
document.

Example WFS Server Mapfile
The following is an example of a bare minimum WFS Server mapfile. Note the comments for the required parameters.

NAME "WES_server"

STATUS ON

SIZE 400 300

svsorseT ../t [c)/[s[v[n[blo[1]s][s[v]n]
EXTENT -2200000 -712631 3072800 3840000
UNITS METERS

SHAPEPATH "../data"

IMAGECOLOR 255 255 255

FONTSET ../[e|t[c]/|f[o]n]t[s].[t[x]t

WEB
IMAGEPATH "/msdw/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

METADATA
"wfs_title" "GMap WFS Demo Server" ## REQUIRED
"wfs_onlineresource" "http://127.0.0.1/cgi-bin/mapserv.exe?" ## Recommended

9.5. WFS Server 385

https://portal.opengeospatial.org/files/?artifact_id=7176
http://

MapServer Documentation, Release 5.4.2

"wfs_srs" "EPSG:42304 EPSG:42101 EPSG:4269 EPSG:4326" ## Recommended
"ows_schemas_location" "http://ogc.dmsolutions.ca" ## Optional
END
END

PROJECTION
"init=epsg:42304"
END

LAYER
NAME "province"
METADATA
"wfs_title" "Provinces" ## REQUIRED
"gml_featureid" "ID" ## REQUIRED
"gml_include_items" "all" ## Optional (serves all attributes for layer)
END
TYPE POLYGON
STATUS ON o
DATA [p[rfofv]ifn]c]|e]
PROJECTION
"init=epsg:42304"
END
DUMP TRUE ## REQUIRED
CLASS
NAME "Canada"
STYLE
COLOR 200 255 0
OUTLINECOLOR 120 120 120
END
TEMPLATE "ttt _query.html"
END
END # Layer

END # Map File

Rules for Handling SRS in MapServer WFS

Contrary to WMS, the OGC WEFS specification doesn’t allow a layer (feature type) to be advertised in more than one
SRS. Also, there is no default SRS that applies to all layers by default in the OGC WEFS spec. However, it is possible
to have every layer in a WFS server advertised in a different SRS.

Here is how MapServer decides the SRS to advertise and use for each layer in your WFS:

* If a top-level map SRS is defined* then this SRS is used and applies to all layers (feature types) in this WES. In
this case the SRS of individual layers is simply ignored even if it’s set.

* If there is no top-level map SRS defined* then each layer is advertised in its own SRS in the capabilities.

* By “SRS is defined”, we mean either the presence of a PROJECTION object defined using an EPSG code, or of
a “wfs_srs” metadata at this level.

Note that at the map top-level the “wfs_srs” metadata value takes precedence over the contents of the PROJECTION
block.

At the layer level, if both the wfs_srs metadata and the PROJECTION object are set to different values, then the
wfs_srs metadata defines the projection to use in advertising this layer (assuming there is no top-level map SRS), and
the PROJECTION value is assumed to be the projection of the data. So this means that the data would be reprojected
from the PROJECTION SRS to the one defined in the wfs_srs metadata before being served to WFES clients.

386 Chapter 9. OGC Support and Configuration

MapServer Documentation, Release 5.4.2

Confusing? As a rule of thumb, simply set the wfs_srs at the map level (in web metadata) and never set the wfs_srs
metadata at the layer level and things will work fine for most cases.

Test Your WFS Server

Validate the Capabilities Metadata

OK, now that we’ve got a mapfile, we have to check the XML capabilities returned by our server to make sure nothing
is missing.

Using a web browser, access your server’s online resource URL to which you add the parameter “RE-
QUEST=GetCapabilities” to the end, e.g.

http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?SERVICE=WFS&VERSION=1.0.0&REQUEST=getcapabilities

If everything went well, you should have a complete XML capabilities document. Search it for the word “WARN-
ING”... MapServer inserts XML comments starting with “<!-WARNING: ” in the XML output if it detects missing
mapfile parameters or metadata items. If you notice any warning in your XML output then you have to fix all of them
before you can register your server with a WES client, otherwise things are likely not going to work.

Note that the SERVICE parameter is required for all WES requests. When a request happens, it is passed through
WMS, WES, and WCS in MapServer (in that order) until one of the services respond to it.

Test With a GetFeature Request

OK, now that we know that our server can produce a valid XML GetCapa-
bilities response = we should test the GetFeature request. Simply adding “SER-
VICE=WFS&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=yourlayernamel,yourlayername2” to
your server’s URL should return the GML associated with those layers.

http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?SERVICE=WFS & VERSION=1.0.0&REQUEST=getfeature&TYPENAME=park

Test with a Real Client

If you have access to a WES client, then register your new server’s online resource with it and you should be off and
running.

If you don’t have your own WES client installed already, here are a few pointers:
* MapServer itself can be used as a WES client, see the WF'S Client HowTo.
* Deegree provides a WFS client.
* uDig can add layers from WMS/WES servers.

* The owsview Viewer Client Generator is an online application that allows users to validate WFS Capabilities
XML (it does not allow you to view WES data).

Support for GET and POST Requests

Starting from version 4.2 MapServer supports XML-encoded POST requests and GET requests. The default in
MapServer is POST.

9.5. WFS Server 387

http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?SERVICE=WFS&VERSION=1.0.0&REQUEST=getcapabilities
http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?SERVICE=WFS&VERSION=1.0.0&REQUEST=getfeature&TYPENAME=park
http://deegree.sourceforge.net/
http://udig.refractions.net/confluence/display/UDIG/Home
http://devgeo.cciw.ca/owsview

MapServer Documentation, Release 5.4.2

Support for Filter Encoding

Starting from version 4.2 MapServer supports Filter Encoding (FE) in WFS GetFeature requests. For more information
on the server side of Filter Encoding see the Filter Encoding HowTo.

9.5.3 Reference Section

The following metadata are available in the setup of the WFS Server mapfile:
Note

Each of the metadata below can also be referred to as ‘ows_*’ instead of ‘wfs_*’. MapServer tries the ‘wfs_*’
metadata first, and if not found it tries the corresponding ‘ows_*’ name. Using this reduces the amount of duplication
in mapfiles that support multiple OGC interfaces since “ows_*” metadata can be used almost everywhere for common
metadata items shared by multiple OGC interfaces.

Web Object Metadata

ows_updatesequence

* Description: (Optional) The updateSequence parameter can be used for maintaining the consistency of a client
cache of the contents of a service metadata document. The parameter value can be an integer, a timestamp in
[ISO 8601:2000] format, or any other number or string.

ows_schemas_location

* Description: (Optional) (Note the name ows_schemas_location and not wfs/_... this is because all OGC Web
Services (OWS) use the same metadata) Root of the web tree where the family of OGC WFS XMLSchema files
are located. This must be a valid URL where the actual .xsd files are located if you want your WFS output to
validate in a validating XML parser. Default is http://schemas.opengeospatial.net. See http://ogc.dmsolutions.ca
for an example of a valid schema tree.

wfs_abstract

e WFS TAG Name: Abstract (WFS 1.0.0, sect. 12.3.3)

* Description: (Optional) Descriptive narrative for more information about the server.
wfs_accessconstraints

e WFS TAG Name: Accessconstraints (WFES 1.0.0, sect. 12.3.3)

* Description: (Optional) Text describing any access constraints imposed by the service provider on the WES or
data retrieved from this service.

wfs_encoding

* Description: (Optional) XML encoding for all XML documents returned by the server. The default is ISO-
8859-1.

wfs_fees
e WFS TAG Name: Fees (WFS 1.0.0, sect. 12.3.3)

* Description: (Optional) Any fees imposed by the service provider for usage of this service or for data retrieved
from the WFS.

wfs_keywordlist
* WFS TAG Name: Keyword (WFS 1.0.0, sect. 12.3.3)

* Description: (Optional) List of words to aid catalog searching.

388 Chapter 9. OGC Support and Configuration

http://schemas.opengeospatial.net
http://ogc.dmsolutions.ca

MapServer Documentation, Release 5.4.2

wfs_maxfeatures

* Description: (Optional) The number of elements to be returned by the WFS server. This has priority over the
‘maxfeatures’ parameter passed by the user. If the not set the current behaviour is not changed.

wfs_namespace_prefix

* Description: (Optional) User defined namespace prefix to be used in the response of a WFES GetFeature request.
e.g. “wfs_namespace_prefix” “someprefix”.

wfs_namespace_uri

* Description: (Optional) User defined namespace URI to be used in the response of a WFS GetFeature request.
e.g. “wfs_namespace_uri” “http://somehost/someurl*.

wfs_onlineresource

e WFS TAG Name: Onlineresource (WFS 1.0.0, sect. 12.3.3)

* Description: (Recommended) The URL prefix for HTTP GET requests.
wfs_service_onlineresource

* Description: (Optional) Top-level onlineresource URL. MapServer uses the onlineresource metadata (if pro-
vided) in the following order:

1. wfs_service_onlineresource
2. ows_service_onlineresource
3. wfs_onlineresource (or automatically generated URL, see the onlineresource section of this document)
wfs_title
e WFS TAG Name: Title (WFS 1.0.0, sect. 12.3.3)
* Description: (Required) Human readable title to identify server.
wis_srs

* Description: (Recommended) The SRS to use for all layers in this server. (e.g. EPSG:4326) See the notes below
about the SRS rules in the WFS.

wfs_feature_collection

* Description: Replaces the default name of the feature-containing element (<msFeatureCollection>) with a user-
defined value.

Layer Object

gml_exclude_items

* Description: (Optional) A comma delimited list of items to exclude. As of MapServer 4.6, you can control how
many attributes (fields) you expose for your data layer with metadata. The previous behaviour was simply to
expose all attributes all of the time. The default is to expose no attributes at all. An example excluding a specific

field would be:
"gml_include_items" "all"
"gml_exclude_items" "Phonenum"

gml_featureid

* Description: (Required for MapServer 4.10) Field to be used for the ID of the feature in the output GML.
wfs_featureid or ows_feature_id can be specified instead.

9.5. WFS Server 389

http://somehost/someurl

MapServer Documentation, Release 5.4.2

gml_groups
* Description: (Optional) A comma delimited list of group names for the layer.
gml_[group name]_group

* Description: (Optional) A comma delimited list of attributes in the group. Here is an example:

"gml_include_items" "all"
"gml_groups" "display"
"gml_display_group" "Name_e,Name_f"

gml_include_items

* Description: (Optional) A comma delimited list of items to include, or keyword “all”. As of MapServer 4.6,
you can control how many attributes (fields) you expose for your data layer with this metadata. The previous

behaviour was simply to expose all attributes all of the time. You can enable full exposure by using the keyword
“all”, such as:

"gml_include_items" "all"
You can specify a list of attributes (fields) for partial exposure, such as:
"gml_include_items" "Name, ID"

The new default behaviour is to expose no attributes at all.

gml_[item name]_alias

* Description: (Optional) An alias for an attribute’s name. The served GML will refer to this attribute by the alias.
Here is an example:

"gml_province_alias" "prov"

gml_[item name]_type

* Description: (Optional) Specifies the type of the attribute. Valid values are Integer/ReallCharacter|DatelBoolean.
gml_xml_items

* Description: (Optional) A comma delimited list of items that should not be XML-encoded.
gml_geometries

* Description: provides a name other than the default “msGeometry” for geometry elements. The value is speci-
fied as a string to be used for geometry element names.

gml_[name]_type

* Description: When employing gml_geometries, it is also necessary to specify the geometry type of the layer.
This is accomplished by providing a value for gml_[name]_type, where [name] is the string value specified for
gml_geometries, and a value which is one of:

— point

multipoint

line

multiline

polygon

multipolygon

390 Chapter 9. OGC Support and Configuration

MapServer Documentation, Release 5.4.2

gml_[name]_occurances

* Description: MapServer applies default values of 0 and 1, respectively, to the “minOccurs” and “maxOccurs”
attributes of geometry elements, as can be seen in the preceding examples. To override these defaults, a value is
assigned to a gml_[name]_occurances layer metadata item, where again [name] is the string value specified for
gml_geometries, and the value is a comma-delimited pair containing the respective lower and upper bounds.

wfs_abstract
» Same as wfs_abstract in the Web Object.
wfs_extent

* Description: (Optional) Used for the layer’s BoundingBox tag for cases where it is impossible (or very ineffi-
cient) for MapServer to probe the data source to figure its extents. The value for this metadata is “minx miny
maxx maxy’” separated by spaces, with the values in the layer’s projection units. If wfs_extent is provided then
it has priority and MapServer will NOT try to read the source file’s extents.

wfs_featureid

* Description: (Required for MapServer 4.10) Field to be used for the ID of the feature in the output GML.
gml_featureid or ows_feature_id can be specified instead.

wfs_keywordlist
* Same as wfs_keywordlist in the Web Object.
wfs_metadataurl_format

* Description: (Optional) The file format of the metadata record. Valid values are “XML”, “SGML”, or “HTML".
The layer metadata wfs_metadataurl_type and wfs_metadataurl_href must also be specified.

« refer to section 12.3.5 of the WES 1.0.0 spec.
wfs_metadataurl_href

* Description: (Optional) The URL to the layer’s metadata. The layer metadata wfs_metadataurl_type and
wfs_metadataur]l_format must also be specified.

* refer to section 12.3.5 of the WES 1.0.0 spec.
wfs_metadataurl_type

* Description: (Optional) The standard to which the metadata complies. Currently only two types are valid:
“TC211” which refers to [ISO 19115], and “FGDC” which refers to [FGDC CSDGM]. The layer metadata
wfs_metadataurl_format and wfs_metadataurl_href must also be specified.

* refer to section 12.3.5 of the WES 1.0.0 spec.
wis_srs

* Description: If there is no SRS defined at the top-level in the mapfile then this SRS will be used to advertize
this feature type (layer) in the capabilities. See the note below about the SRS rules in the WFS.

wfs_title

» Same as wfs_title in the Web Object.

9.5.4 To-do ltems and Known Limitations

* This is just a basic WFS (read-only): transaction requests are not supported and probably never will given the
nature of MapServer. GeoServer is recommended for those needing WFS-T support.

9.5. WFS Server 391

https://portal.opengeospatial.org/files/?artifact_id=7176
https://portal.opengeospatial.org/files/?artifact_id=7176
https://portal.opengeospatial.org/files/?artifact_id=7176
http://docs.codehaus.org/display/GEOS/Home

MapServer Documentation, Release 5.4.2

* WFS spec. seems to require that features of a given feature type must all be of the same geometry
type (point, line, polygon). This works fine for shapefiles, but some data source formats supported by
MapServer allow mixed geometry types in a single layer and this goes against the WFS spec. Sugges-
tions on how to handle this are welcome (send suggestions to the MapServer-dev list, which you can join at
http://lists.umn.edu/archives/mapserver-dev.html).

9.6 WFS Client

Author Jean-Francgois Doyon

Contact jdoyon at nrcan.gc.ca

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 8371 $

Date $Date: 2008-12-31 12:44:04 -0800 (Wed, 31 Dec 2008) $
Last Updated 2006/05/02

Contents

e WEFS Client
— Introduction
— Setting up a WFS-client Mapfile
— TODO / Known Limitations

9.6.1 Introduction

MapServer can retrieve and display data from a WFS server. The following document explains how to display data
from a WFS server using MapServer.

A WFS (Web Feature Service) publishes feature-level geospatial data to the web. This means that it is possible to
use this data as a data source to render a map. In effect, this is not unlike having a shapefile accessible over the web,
only it’s not a shapefile, it’s XML-Encoded geospatial data (GML to be exact), including both geometry AND attribute
information.

WFS-Related Information

Although in-depth understanding of WFS and GML is neither necessary nor required in order to implement a
MapServer application that reads remote WFS data, it is recommended to at least get aquainted with the concepts and
basic functionality of both. Here are the official references (including a newly added OGC workshop with MapServer):

* OGC Web Feature Service Implementation Specification.
* Geography Markup Language Implementation Specification.

* MapServer OGC Web Services Workshop package.

392 Chapter 9. OGC Support and Configuration

http://lists.umn.edu/archives/mapserver-dev.html
https://portal.opengeospatial.org/files/?artifact_id=7176
https://portal.opengeospatial.org/files/?artifact_id=7174
http://ms-ogc-workshop.maptools.org/

MapServer Documentation, Release 5.4.2

Software Requirements

In order to enable MapServer to serve WES, it MUST be compiled against certain libraries:
e PROJ.4: The reprojection library. Version 4.4.3 or greater is required.
* GDAL/OGR: I/O support librairies. Version 1.1.8 or greater is required.
* LibCURL: Used to help MapServer act as an HTTP client. Version 7.10 or greater is required.

Please see the MapServer UNIX Compilation and Installation HOWTO for detailed instructions on compiling
mapserver with support for these librairies and features. For Windows users, look on the MapServer website to
see if there are any binaries available that meet these requirements.

9.6.2 Setting up a WFS-client Mapfile

Storing Temporary Files

You must set the IMAGEPATH parameter in your mapfile since MapServer uses this directory to store temporary files
downloaded from the remote WFS server.

MAP
WEB
IMAGEPATH "/tmp/ms_tmp/"

IMAGEURL ...
END

END

WFS Layer

A WES layer is a regular mapfile layer, which can use CLASS objects, with expressions, etc.

As of MapServer 4.4, the suggested method to define a WFS Client layer is through the CONNECTION parameter
and the layer’s METADATA. The necessary mapfile parameters are defined below:

* CONNECTIONTYPE: must be “wfs”

* CONNECTION: The URL to the WEFS Server. e.g. http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?
The path to the mapfile on the WEFS server is required if it was required in the GetCapabilities re-
quest e.g. you would have to specify the MAP parameter in the CONNECTION for the following
server: http://map.ns.ec.gc.ca/MapServer/mapserv.exe?’MAP=/mapserver/services/envdat/config.map &SER-
VICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities

* METADATA: The LAYER’s must contain a METADATA object with the following parameters:

— wfs_connectiontimeout (optional): The maximum time to wait for a remote WFS layer to load, set in
seconds (default is 30 seconds). This metadata can be added at the layer level so that it affects only that
layer, or it can be added at the map level (in the web object) so that it affects all of the layers. Note that
wfs_connectiontimeout at the layer level has priority over the map level.

— wfs_filter: This can be included to include a filter encoding parameter in the getFeature request (see the
Filter Encoding Howto for more information on filtering). The content of the wfs_filter is a valid filter
encoding element.

9.6. WFS Client 393

http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap
http://map.ns.ec.gc.ca/MapServer/mapserv.exe?MAP=/mapserver/services/envdat/config.map&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities
http://map.ns.ec.gc.ca/MapServer/mapserv.exe?MAP=/mapserver/services/envdat/config.map&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities
http://map.ns.ec.gc.ca/MapServer/mapserv.exe?MAP=/mapserver/services/envdat/config.map&SERVICE=WFS&VERSION=1.0.0&REQUEST=GetCapabilities

MapServer Documentation, Release 5.4.2

METADATA

"wifs_filter" "<PropertylIsGreaterThan><PropertyName>POP_RANGE</PropertyName><Literal>4
</[ulilefel=Tal2p</p[zTo[p er]e]y[z[s]c[rTela[t e[z]T[n[aTn]>"
END

— wfs_latlongboundingbox (optional): The bounding box of this layer in geographic coordinates in the for-
mat “lon_min lat_min lon_max lat_max”. If it is set then MapServer will request the layer only when the
map view overlaps that bounding box. You normally get this from the server’s capabilities output.

— wfs_maxfeatures (optional): Limit the number of GML features to return.

— wfs_request_method (optional): Can be set to “GET” to do a Get request to WEFS servers that do not
support Post requests. The default method in MapServer is Post.

METADATA

"wfs_filter" "GET"

END
— wfs_typename (required): the <Name> of the layer found in the GetCapabil-
ities. An example GetCapabilities request is: http://www?2.dmsolutions.ca/cgi-

bin/mswfs_gmap?SERVICE=WFS&VERSION=1.0.0&REQUEST=getcapabilities
— wfs_version (required): WFS version, currently “1.0.0”

Note: Each of the above metadata can also be referred to as ‘ows_*’ instead of ‘wfs_*’. MapServer tries the ‘wfs_*’
metadata first, and if not found it tries the corresponding ‘ows_*’ name. Using this reduces the amount of duplication
in mapfiles that support multiple OGC interfaces since “ows_*” metadata can be used almost everywhere for common
metadata items shared by multiple OGC interfaces.

Example WFS Layer

LAYER
NAME "park"
TYPE POLYGON
STATUS ON
CONNECTIONTYPE WE'S
CONNECTION "http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?"

METADATA
"wfs_typename" "park"
"wfs_version" "1.0.0"
"wfs_request_method" "GET"
"wfs_connectiontimeout" "60"
"wfs_maxfeatures" "
END
PROJECTION
"init=epsg:42304"
END
CLASS
NAME "Parks"
STYLE

COLOR 200 255 O
OUTLINECOLOR 120 120 120
END

394 Chapter 9. OGC Support and Configuration

http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?SERVICE=WFS&VERSION=1.0.0&REQUEST=getcapabilities
http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?SERVICE=WFS&VERSION=1.0.0&REQUEST=getcapabilities

MapServer Documentation, Release 5.4.2

END
END # Layer

Connection - deprecated

As of MapServer v4.4 the method of specifying all of the connection information in the CONNECTION parameter has
beendeprecated. The preferred method is mentioned above. If the metadata is not provided, VERSION, SERVICE,
and TYPENAME will be fetched from the CONNECTION, as shown below

CONNECTION "http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?SERVICE=WFS&VERSION=1.0.0&TYPENAME=park!

9.6.3 TODO / Known Limitations

1. Temporary WES (gml) files are written to the IMAGEPATH directory, but this could become a security concern
since it makes the raw GML data downloadable by someone who could guess the gml filename. We should
consider having a “wfs_cache_dir” metadata that, if it is set will define a directory where temp files should be
written. The default would still be to use the value of IMAGEPATH if “wfs_tmpdir” is not set.

2. Xerces is an annoying dependency for GML support in OGR. There have been discussions about modifying the
OGR GML driver to use in internal XML parser by default. This would save us from the Xerces dependency.
There is no formal plan for when this would happen yet.

9.7 WFS Filter Encoding

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Author Yewondwossen Assefa

Contact assefa at dmsolutions.ca

Revision $Revision: 8479 $

Date $Date: 2009-01-29 11:56:34 -0800 (Thu, 29 Jan 2009) $
Last Updated 2005/09/23

Table of Contents

* WES Filter Encoding

Introduction

Currently Supported Features

Get and Post Requests

Use of Filter Encoding in MapServer
Limitations

Tests

9.7. WFS Filter Encoding 395

MapServer Documentation, Release 5.4.2

9.7.1 Introduction
This document describes the procedures for taking advantage of the Filter Encoding (FE) support in WFS GetFeature
requests, which was added to MapServer in version 4.2.
This document assumes that you are already familiar with the following aspects of MapServer:
* MapServer application development and setting up .map files.

» Familiarity with the WES specification would be an asset. Links to the MapServer WFS documents are included
in the next section.

Links to SLD-related Information

* Filter Encoding Implementation Specification.
* MapServer WFS Client Howto.

* MapServer WFS Server Howto.

e MapServer OGC Web Services Workshop.

* Open GIS Consortium (OGC) home page.

9.7.2 Currently Supported Features

The following table lists the currently supported features for FE.

Table 1. Currently Supported Features

Feature Set Feature
Spatial Capabilities

Equals
Disjoint
Touches
Within
Overlaps
Crosses
Intersects
Contains
DWithin
BBOX
Scalar Capabilities

Logical Operators
And
Or
Not
Comparison Operators
PropertylsEqualTo (=)
PropertylsNotEqualTo (<>)
PropertylsLessThan (<)
PropertylsGreaterThan (>)
PropertylsLessThanOrEqualTo (<=)
PropertylsGreaterThanOrEqualTo (>=)
PropertylsLike

PropertylsBetween (range)

396 Chapter 9. OGC Support and Configuration

http://www.opengeospatial.org/docs/02-059.pdf
http://ms-ogc-workshop.maptools.org/
http://www.opengeospatial.org

23

24

25

26

MapServer Documentation, Release 5.4.2

9.7.3 Get and Post Requests

MapServer already has the capability to receive and parse Get requests and URL-encoded Post requests. The ability
for MapServer to be able to receive Post requests with XML-encoded information sent in the body of the request has

been added. Also, the ability to generate XML-encoded Post requests for WES layers has been added.
Both Get and Post request are now supported for all WFS requests:

* GetCapabilities

* GetFeatures

* DescribeFeatureType

Supporting these WES requests in Post was implemented to keep consistency between all supported WFS requests.

When sending requests, the default request method used is Post. To change this behavior, we have introduced a layer

level meta data, wfs_request_method, which can be set to “GET”.

9.7.4 Use of Filter Encoding in MapServer

This section describes how to use FE on both the server and client sides.

Server Side

To be able to use Filter Encoding, you need to create a valid WFS server using MapServer. Please refer to the WFS

Server HOWTO for specifics.

There is nothing special that should be added to a WFS server for Filter Encoding, but you should note that, when
requesting the capabilities of your WFS server, the document returned should contain the supported filters. Here is

part of a Capabilities document as well as the Post support:

<?xml version='1.0" encoding="IS0O-8859-1" 2>
<WFS_Capabilities
version="1.0.0"
updateSequence="0"
xmlns="http://www.opengis.net/wfs"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.opengis.net/wfs http://ogc.dmsolutions.ca/wfs/1.0.0/WFS—capabilitic

<!-— MapServer version 4.1 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
OUTPUT=PDF OUTPUT=SWF SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER
SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER SUPPORTS=WFS_CLIENT INPUT=POSTGIS
INPUT=OGR INPUT=GDAL INPUT=SHAPEFILE —-—>

<Service>
<Name>MapServer WEFS</Name>
<Title>GMap WMS Demo Server</Title>
<OnlineResource>http://localhost/cgi-bin/mapserv.exe?map=
c:/msapps/wfs_filter/htdocs/ns_wfsserver .map</0nlineResource>
</Service>

<Capability>
<Request>
<GetCapabilities>
<DCPType>
<HTTP>

9.7.