open source web mapping

s,
,g\MapServer

MapServer Documentation
Release 6.0.3

The MapServer Team

November 14, 2012

Contents

1 About 3
2 An Introduction to MapServer 5
2.1 MapServer OVEIVIEW L L e e e e e e e 5
2.2 Anatomy of a MapServer Applicationo e 6
2.3 Installation and Requirements 8
2.3.1 Windows Installation L 8

2.3.2 Hardware Requirements i it it e e e e e e e 13

2.3.3 Software Requirements L e 13

234 SKillsS . . e e 14

2.4 Introduction to the Mapfile o e e e e e e e e e 14
241 MAPODJECt o e e e 15

242 LAYERODJECt o it e e e e e e e e e e 16
Raster Layers o o e e e e 16

Vector Layers e 16

243 CLASS and STYLE ODJECts o v v v i i i e e e e e e e e e e e e e e 16

244 SYMBOLso e e 17

245 LABEL e e 19

2.4.6 CLASS EXPTresSSIONS v v v v v v i it e e e e e e e e e e e e e e e e e 20

247 INCLUDE e e e e e 21

24.8 GetMapServer Running Lo e 22

249 GetDemoRunning 22

2.5 Makingthe Site Your OWn o o i i e e e e e e e e e e e e e 22
2.5.1 AddingDatato Your Site L. e e e e e e e e e e 22

252 VectorData e e 23

253 RasterData e e e 23

254 Projections e e e e e e e 23

2.6 Enhancin@ yoursSitet i i e 23
2.6.1 Adding Query Capability e e e 23

2.6.2 Attribute qUETIES L. e e e e e e e e e 23

2.6.3 Spatial qUETIES L . e e e e e e e e e e e e e 24

2.6.4 Interfaces L e e 24

2.6.5 Data Optimization v v v v it e e e e e e e e e e e e e e e e e e 24

2.7 HowdolgetHelp?. e e e e e 24
27.1 Documentation u . e e e e e e e e e e e e e e e e 24

272 UsersMailing List e 25

273 IRC . e e e 25

2774 Reporting bugs 25

27.5 Gallery . ..o e 25

27.6 Tutorial e e e e e e 25

277 TestSuite e e e 25

27.8 BOOKS e e 25

3 MapServer Tutorial 27
3.1 Tutorial background L L e e e e e e e 27
3.1.1 Tutorial Timeframe L e e e e e 27

3.1.2 Tutorial Datao e e e e e e e 27

3.1.3 Before Using the Tutorial 28

3.1.4 Windows, UNIX/Linux ISSues 0 0 i i e e e e e e e e e 28

Paths e 28

Executable e 29

3.1.5 OtherResources. o 0 e e e e e e e e 29

3.2 Section I: Static Mapsand the MapFile o ... 29
3.3 Section 2: CGI variables and the User Interface 30
33.1 HTML Templates o v v ot e e e e e e e e e e e e e e e e e e e 30
Variables L e 30

332 Examples e 30

3.4 Section 3: Query and more about HTML Templates 30
3.5 Section 4: Advanced User Interfaces L e 31
4 Installation 33
4.1 Compilingon Unixo L e e e e 33
4.1.1 Introductionl e e e e 33

4.1.2 Obtaining the necessary software o it e e e 34
Required External Libraries e 34

Highly Recommended Libraries 34

Optional External Libraries e 34

4.1.3 libgd . . . o e 35
Minimum libgd Versions e e e e e e e e 35

libiconv oL e 35
Pre-packaged/system libraries L. oL 35

MacOSX . . . e e 35

FreeType support o o o o e e e e e e e e e 35

Ipx Anti-Aliasing and segfaults e 36

Curved Iabel support o e e e e e e e 36

4.1.4 Anti-Grain Geometry SUPPOIt e e e e e e e 36

4.1.5 OGC Support o e e 36
WMS SUPPOrt o o e e e e e e e e e 36

WES support o e e e e e e e e e e e e 37

4.1.6 Spatial Warehousing L e e e e e 38
PostGIS e 38

ArcSDE . . e 38

Oracle Spatial e 38

4.1.7 Compiling oo e 38

4.1.8 Installation L e e e e e 40
MapServer binary e e e e e e e e e e e 40

Common problems e e e e e e e e 40

4.2

4.3

4.4

4.5

Where to go once you've gotitcompiled oL 40

Compiling on Win32 e e e e e e e e e 41
4.2.1 Introduction e e e e 41
422 Compiling 41
423 SetupaProjectDirectory 42
4.2.4 Download MapServer Source Code and Supporting Libraries 42
42,5 TheMapServer source code v vt it e e e e e e e e e e e 42
Required Libraries e 42
Optional Libraries e 43
4.2.6 SetCompilation Options L e 43
COMMENESt vttt e e e e e e e e e e e e e e e e 44
4277 Compilethe Libraries e 45
Compiling libcurl o e e e e 45
42.8 Compile MapServer. e e e e e e 45
4.2.9 Compiling MapServer with PostGIS support 45
4.2.10 Common Compiling Errors e 46
42,11 Installation e e e e e 46
4.2.12 Other Helpful Information 47
4.2.13 Acknowledgements e e e e e e e e e e 47
PHP MapScript Installation e 47
43.1 Introduction e e e e e e e e e e 48
Which version of PHP is supported? L 48
How to Get More Information on the PHP/MapScript Module for MapServer 48
4.3.2 Obtaining, Compiling, and Installing PHP and the PHP/MapScript Module 48
Download PHP and PHP/MapScript o 48
Setting Up PHP on Your Server 48
Build/Install the PHP/MapScript Module 49
Installing PHP/MapScript o o e e 49
Example Steps of a Full Windows Installation 50
433 FAQ/Common Problems e 51
Questions Regarding Documentation Lo 51
Questions About Installation e 52
NET MapScript Compilation 0 e e 53
4.4.1 Compilation e e e e e e e e e e e e e 54
Win32 compilation targeting the MS.NET framework 1.1 54
Win32 compilation targeting the MS.NET framework 2.0 54
Win32 compilation targeting the MONO framework 54
Alternative compilation methods on Windows L. 55
Testing the compilation e e e e 55
Linux compilation targeting the MONO framework 55
OSX compilation targeting the MONO framework 55
442 Installation e e e e e e 56
443 KNOWNISSUES . . . o o v v vt i e e e e e e e e e e e e e e 56
Visual Studio 2005 requires a manifest file to load the CRT native assembly wrapper 56
Manifests for the dll-s must be embedded as aresource 57
Issue with regex and Visual Studio 2005 L o 57
C# MapScript library name mapping with MONO 57
Localization issues with MONO/LInUX 0o vttt 58
4.4.4 MoStfrequent IrorS e e e e e e e e e e e e e 58
Unable to load dll (MapScript) o o it e e e e e 58
445 BUZTEPOILS . o v v v o i e 59
IIS Setup for MapServer o e e e e e 59
45.1 Baseconfigurationl e e e e 59
452 Phpinifile.o e 59

453 Internet Services Manager it e e e e e e e e e e e e 60

4.5.4 Under the tree for your new website - add virtual directoriesfor 60
455 TestPHP e 61
45.6 MapfilesforIIS 61
4.5.7 Configuration files: e 61
4.6 Oracle Installation e e e 61
4.6.1 Preface 61
4.6.2 System ASSUMPLONS v v v v e i e e e e e e e e e e e e e e e e e e 62
4.6.3 Compile MapServer. L e e 62
4.6.4 SetEnvironment Variables 63
System Variables L e 63
Setting the Apache Environment e 63

Create mapfile e e e e e e 64
Testing & Errorhandling 64

5 Mapfile 67
5.1 Cartographical Symbol Construction with MapServer 67
S.LL 0 ADbStracto e e e e e 68
5.1.2 Introductiono e e e e e e e e e e e e 69
Multiple Rendering and Overlay oo 69
Symbol Scaling e e e e e e e e 70
MapServer and symbol specification L e 70

5.1.3 Using Cartographical Symbols in MapServer 71
Output formats e e e e e e e e e e e 72
Symbol units e e e e 72
Scaling of Symbols 72

5.1.4 Construction of Point Symbols e 72
Symbols of TYPE vector and ellipse o v i i i it e e 72
Symbols of TYPE truetype o o i i i e e e e e e e e e 73
Symbols of TYPE pixmap 0 i i e e e e e e e e e e 74
Symbol definitions for the figure that demonstrates point symbols 74
Combining symbols e e e e e e e e e e e e 78

5.1.5 Construction of Line Symbols e 80
Overlaying lines o o e e e e e e e 80

Use of the PATTERN and GAP parameterso v vt i oo 80

Use of the OF FSET parameter o v v v v v vttt e e e e e e e 87
Asymmetrical line styling with point symbols oL 89

5.1.6 AreaSymbols L e e e e e e e e 89
Hatch fill e 90
Polygon fills with symbols of TYPE pixmap 92
Polygon fills with symbols of TYPE vector 94
Polygonoutlines e e e e 105

5.1.7 Examples (MapServer4) i e e e e e e e e e e e 105
Basic Symbols e e e e 106
Complex Symbols e e 108

5018 Tricks . . . o o e e 110
Changing the center of a point symbol L o 110

5.1.9 Mapfile changes related to symbols L e 114
5.1.10 Current Problems /Open Issues i i ittt 114
GAP - PATTERN incompatibility o 114

S5.I.11 TheEnd o . . e 114
5.2 CLASS . . . 115
53 CLUSTER o 117
53,1 DesCription v v it e 118

5.4

5.5

5.6
5.7

5.8

59

5.10

5.3.2 Supported Layer TYpes o o i i i e e e e e e e 118

5.3.3 Mapfile Parameters L. e e e e e e e e e e e 118
534 Mapfile Snippet e e e e e e e e e e 118
5.3.5 Feature attributes L. e 119
53.6 PHPMapScript Usage oo ittt i it e 119
5.3.7 Example: Clustering Railway Stations 119
Mapfile Layer o o e e e e e e e e e e e 119
MapImage e e e e e 121
Display of International Characters in MapServer, 121
5401 Credit . . . oo v e e e e 122
542 Related Links oL 122
543 Requirementso v vttt e e e e e e e e e e e 122
544 HowtoEnablein Your Mapfile e 122
Step 1: Verify ICONV Support and MapServer Version 122
Step 2: Verify That Your Files’ Encoding is Supported by ICONV 123
Step 3: Add ENCODING Parameter to your LABEL Object 123
Step 4: Test with the shp2imgutility o 124
5.4.5 Example Using PHP MapScript e 124
546 NOES . . . oo e 125
EXpressions e e e e 125
55.1 Introduction L e e e e e e 126
String qUOtAtION v v o e e e e e e e e e e e e e 126
Quotes escaping iN SIHNES . . . v v v v v v o e 126
Using attributes o o e e e e e e e e e e e e e e 127
Characterencoding e 127
5.52 Expression Types o e e e e e e e e e 127
String comparison (equality)o 128
Regular expression Comparisonottt i e e e e e e e 128
5.5.3 “MapServer exXpressions” o h e e e e e e e e e e e e e e e e e e 129
Logical eXpressionsot i i e e e e e e e e e 130
String expressions that return a logical value 0000 130
Arithmetic expressions that return a logical value, 131
Spatial expressions that return a logical value (GEOS) 132
String operations that return a String o i e e e e e e e e e e e e e e 132
Functions thatreturn a string o o i e e e e e e e e e 132
String functions that returnanumber oL o oo L oL 132
Arithmetic operations and functions that returnanumber 133
Spatial functions that return a number (GEOS) 133
Spatial functions that return a shape (GEOS) 133
Temporal eXpressions . . . v v v v v vt e e e e e e e e e e e e e e e e e e e 134
FEATURE e 135
FONTSET . . . o e e e e e e e 135
5.7.1 Formatofthe fontsetfile 136
GRID . . . 137
5.8.1 DesCription v v it e 137
5.8.2 Mapfile Parameters: L e e e e e e e 137
5.8.3 Examplel: Grid Displaying Degrees 137
5.8.4 Example2: Grid Displaying Degrees with Symbol 138
5.8.5 Example2: Grid Displayed in Other Projection (Google Mercator) 139
INCLUDE e e e 140
S5O0 NoOtes . ..o i 141
5.92 Example e e e e e 141
JOIN 142
5.10.1 DesCription v vttt e e e e e e e e e e e e e e 142

5.11
5.12
5.13
5.14
5.15
5.16

5.17
5.18
5.19
5.20
5.21
5.22

5.23

5.24

5.10.3 Mapfile Parameters: oL e e e e e e e e e e e e 142
5.10.4 Example 1: Join from Shape datasetto DBFfile 143
Mapfile Layer e 143
Ogrinfo L e 143
Template L e e e 144
5.10.5 Example 2: Join from Shape dataset to PostgreSQL table 144
Mapfile Layer o o e e e e e e e 144
Ogrinfo e e e e e e e 144
Template e 145
5.10.6 Example 3: Join from Shape datasetto CSVfile, 145
Mapfile Layer o o e e e e e e e e e 145
CSV File Structure o e 145
Ogrinfo e e e e e e e e 146
Template (prov.html) oL 146
5.10.7 Example 4: Join from Shape datasetto MySQL L. 146
Mapfile Layer o o e e e e e e 146
LABEL o e 147
LAYER . . . o e 151
LEGEND o e e e 159
MAP . 160
OUTPUTFORMAT e e e e e e e e 163
PROJECTION e e e e e e e e e e e 167
5.16.1 Important NOES o v o vt e 168
5.16.2 ForMore Information e 168
QUERYMARP . . . e 168
REFERENCE e e 168
SCALEBAR 169
STYLE . . . 170
SYMBOL . . . 174
Symbology Examples e 176
5.22.1 Example 1. Dashed Line 176
5.22.2 Example 2. TrueType font marker symbol 177
5.22.3 Example 3. Vector triangle marker symbol L oL oL 177
5.22.4 Example 4. Non-contiguous vector marker symbol (Cross) 177
5.22.5 Example 5. Circle vectorsymbol oL o 178
5.22.6 Example 6. Downward diagonal fill oL oo oL 178
5.22.7 Example 7. Using the Symbol Type HATCH (newin4.6) 178
5.22.8 Example 8. Styled linesusing GAP e 179
Templating o e e e e e e e e e e 179
5.23.1 Introduction L e e e e 180
NOES . . o o e e e e e e e 180
5232 Format. e e e 180
General 181
File Reference 181
Image Geometry o . i e e e e e e e e e e e 182
Map Geometry e e e e e e 182
Layer e 185
ZOOM . o it i e e e e e e e e e e 185
QUETY . . v o e e e e e e e e e e e e e 185
5.23.3 Example Template o L e e e e e e 188
Union Layer o e e e e e e 189
5241 Description e e e 190
5242 Requirementsttt i e e e e e e e e e e e e 190

vi

5.24.3 Mapfile Configuration L. e e e e e e e e e e e 190

5.24.4 Feature attributes L. L e e e e e 191
5245 Classesand Styles. L. e 191
524.6 Projectionsl e e e e e 191
52477 Examples e 191
Mapfile Example e 191

PHP MapScript Example e e e e e 193

5.25 Variable Substitution L L e e e e e 194
526 WEB e 194
527 XML Mapfile support e e 196
5.27.1 Enabling the support 196
5272 USAZE: .« v v v e e e e e e e e e e e e e e e e e e e 196

528 NOES . . v v v e e e e e e e e e 197
MapSecript 199
6.1 Introduction e e e 199
6.1.1 Appendices L e e e e e e 199

6.1.2 Documentation Elements L e 199

6.1.3 fooObj e 199
fooObj Attributes 199

fooObj Methods e e e e e e 200

6.1.4 Additional Documentation L. oL 200

6.2 SWIG MapScript API Reference e 200
6.2.1 Introduction L e e e e e e e e e e e e 201
AppendiCes L. e e e e e e 201
Documentation Elements L e 202

fooObj . . . o e e 202

Additional Documentationo 202

6.2.2 MapScript Functions L e 202

6.2.3 MapScript Classes e 203
classObj o e e 203

colorODb] e e e e e e e e 205

errorODb] e e e e e e 206

fontSetObj e 206
hashTableObj o . e 206

IMageObj L e e e 207

INLAITAY . . 0 v v o o e 208
labelCacheMemberObj e e e 208
labelCacheObj o e e e e e 209

labelObj o e 209

layerObj o e 211

legendODbj L L e 217

lineObj e e 218

mapObj e e e e e e e e e e 218
markerCacheMemberObj L e 224
outputFormatObj e 224
OWSReqUuest o e e e e 225

pointOb] L e e e e e e e e e e e e e e 226
projectionObj L L e e e e e e e e e e e e e 227

rectOb] . . . L e e e e e 228
referenceMapObj e 228
resultCacheMemberObj e 229
resultCacheODbj e e e e e e e 229

scalebarObj e e e e e e e 230

vii

6.3

6.4

6.5

shapefileObj e e e e e e 230

shapeObj e e e e e e e 231
styleObj . . . L e 233
symbolObj e 235
symbolSetObj e e 236
webOb] . . . e 236
PHP MapScript o o e e e e e e e e e e e e e 237
6.3.1 Introduction L e e e e e 238
6.3.2 Versions Supported e e e 238
6.3.3 How to Get More Information on PHP MapScript 239
6.3.4 Important Note e 239
6.3.5 Constants e e e e e 239
6.3.6 Functions e e e 240
6.3.7 Classes ot e e e e 240
classObj o e e e e 241
clusterODbj o e 242
colorODb] e e e e e e e 242
errorODb] e e e e e e e 243
eridObj e e 244
hashTableObj e 244
imageObj L e 245
labelcacheMemberObj e 245
labelcacheObj e e e e e e 246
labelObj o e e 246
layerObj o e e e e e e e e 248
legendObj L L 252
LineObj o e 253
mapObj e e e e e e e e e e e e e 254
outputformatOb] L e e e e e e 260
OwsrequestOb] o o o e e e e e e e e e e 260
pointObj e e 261
projectionObj e e e e e e 262
querymapObj L e e e e e 262
reCtOb] . . . e e e e e e e e e 263
referenceMapObj e e e e e 264
resultOb] L 264
scalebarObj e 265
shapefileObj L e 266
shapeObj e e e e e e e e 266
styleObj . . . L e e 268
symbolObj e e e e e 270
webObj e 272
6.3.8 Memory Managementol e e e e e e e 272
Python MapScript Appendix e e e e e e e e e e e 273
6.4.1 Introduction e e e e e 273
6.4.2 Classes v v i i e e e e 273
imageObj e 273
pointObj L e e 274
rectOb] . . . L e e 274
6.43 ExceptionHandling e e e 275
Python MapScript Image Generation e e e 275
6.5.1 Introduction L e 276
Pseudocode e 276
6.5.2 Imagery OVEeIVIEW o it i i e e e e e e e e e 276

viii

6.5.3 TheimageObj Class o o v i i e e e e e e e e e e e 276

Creating imageObj fromamapObj e 276
Creatinganew imageObj L 276
6.54 ImageOutput e 277
Creating filesondisk 277
Direct Output o e e e e e e e e 277
6.5.5 Imagesand Symbols L e e e 277
Mapfile Manipulation e e e e e e e e e 278
6.6.1 Introduction L L e 278
Pseudocode e 278
6.6.2 Mapfile OVerview e e e e e 278
6.6.3 ThemapObj Class i i i i e e e e e e e e e e 278
New INSANCES . . . v v v v v vt et e 278
Cloning o o e e e e e e e e 279
SaVING . .. 279
6.6.4 Childrenof mapObj 279
Referencinga Child e e e e 279
Cloninga Child e e e e e e e e 279
New Children e e e 279
Backwards Compatibility L 280
Removing Children 0 oL 280
6.6.5 Metadata e e e 280
New APL . . . o e e 280
Backwards Compatibility for Metadata, 281
QUETYING . . . o o o e e e e e e e e 281
6.7.1 Introduction e e e e e e e e e e e 281
Pseudocode 281
6.7.2 Querying OVEIVIEW o v v i i e 281
The Query Result Set e e e e 281
Result Set Members e e 281
Resulting Features L 282
Backwards Compatibility L 282
6.7.3 Attribute QUEries e e e e e e e e e e 282
By Attributes e e e e e e e e e e e e 282
6.7.4 Spatial QUETies e e e e e e e e e e e 282
By Rectangle e 282
ByPoint e 283
By Shape 283
By Selection e e e e e e 283
MapScript Variableso e e e e e e e 283
6.8.1 Version e e e 284
6.8.2 Logical Control - Boolean Values 284
6.8.3 Logical Control - Status Values e 284
6.8.4 MapUnits o it e e e e e e e e e e e e e e e 284
6.8.5 Layer TYPES . . . v v i i e e e e e e e e e e e e 284
6.8.6 FontTypes o o i e e e e e e 285
6.8.7 Label Positions e e e e e e e 285
6.8.8 Label Size (Bitmaponly) e 285
6.8.9 Shape TYPes o i i i e e e e 285
6.8.10 Measured Shape TyPES v o v v i i e e e e e e e e e e e e 285
6.8.11 Shapefile Types o o v i e e e e e e e e e 286
6.8.12 Query Types o e e 286
6.8.13 FileTypes e 286
6.8.14 Querymap Styles L e 286

6.8.15 Connection TYPES o v o v v i i e e e e e e e e e e e e e e e e 286
6.8.16 DB Connection TYPes v v v v v i i e e e e e e e e e e e e e e e 287
6.8.17 JoInTYpes o o e e e e e e e e e 287
6.8.18 Line Join Types (forrendering) e 287
6.8.19 Image Types. e 287
6.8.20 ImageModes e e 288
6.8.21 Symbol Types o o o e e e e e e e e e e 288
6.8.22 Return Codes oo e e e e e e 288
6.8.23 LIMILEIS« o vt it e 288
6.8.24 Error Return Codes e e e e e e 288
7 Data Input 291
7.1 VectorData e e e e e e e e e 291
7.1.1 DataFormat Types e 292
File-based Data o e e e e e e e e e 292
Directory-based Data e e e e e 292
Database Connections o v vt i e e e e e e e e e e e e e 292

712 ArcInfo . .. L e e e e 293
Filelisting e 293

Data Access / Connection Method 293

713 ArcSDE . . . e e e e e e e 294
Supported ArcSDE Operations o . i e e e e e e 294
Unsupported ArcSDE Operations i 295

How to make a connectionto SDE: 295

T.1.4 DGN . e e e e 297
File listing o e e e e e 297

Data Access / Connection Method e 297
OGRINFO Examples oo e e e e e e e e e e e 298

7.1.5 ESRIFile Geodatabase it 299
Filelisting e 299

Data Access / Connection Method 299
OGRINFO Examples oo e e e e e e e e e e e e e e 299
Mapfile Example e e e e e e 300

7.1.6 ESRI Personal Geodatabase (MDB) 300
Filelisting e 301

Data Access / Connection Method 301
OGRINFO Examples oo e e e e e e e e e e e e e e e e 301
Mapfile Example o e e e e e e e e 302

7.1.7 ESRIShapefiles (SHP) e 303
File listing o e 303

Data Access / Connection Method 303
OGRINFO Examples o o e e e e e e e e e e e e e e 303

T8 GML . . e e e e e e 304
File listing 0 o e e e e e e e e e 304

Data Access / Connection Method, 305
OGRINFO Examples e 305

7.1.9 GPS Exchange Format (GPX) 306
File listing 0 o e e e e e e e e e e 306

Data Access / Connection Method e 306
OGRINFO Examples o o e e e e e e e e e 306
Mapfile Example e 307

T1.10 Inline o o e e e e e e e e e e e e e e 307
Data Access / Connection Method 307

Map File Example e e e e e 308

7.1.11 KML - Keyhole Markup Language i .. 309

Links to KML-Related Information 309
Data Access / Connection Method 309
Example 1: Displayinga KMLfile 310
Example 2: Displayinga KMZfile 311
7.1.12 MapInfo 312
File listing o o e e e e e e e e e 312
Data Access / Connection Method L o 312
OGRINFO Examples o o e e e e e e e e e e 313
Map File Example e 313
7.1.13 MSSQL . . e 314
Introduction L e e e e e 314
Creating Spatial Data Tables in MSSQL 2008 314
Connecting to Spatial Datain MSSQL 2008 315
More Informationo e e e 317
7.1.14 MySQL . . . e 317
Introduction L e e e e e 318
Connecting to Spatial Datain MySQL 318
Connecting to non-Spatial Datain MySQL 320
More Information L e e 321
7115 NTF . oo e 321
File listing o e e e e 321
Data Access / Connection Method L 322
OGRINFO Examples oo e e e e e e e e e e e e e e 322
7.1.16 OGR o e 323
Introduction e e e e 323
Whatis OGR? e 324
Obtaining and Compiling MapServer with OGR Support 325
Integrating OGR Support with MapServer Applications 326
STYLEITEM “AUTO” - Rendering Layers Using Style Information from the OGR File . . . 331
Sample Sites Using OGR/MapServer 335
FAQ/Common Problems 335
7.1.17 Oracle Spatial e e e e e e e e e e 336
What MapServer 5.2 with Oracle Spatial 336
Binaries e 337
Installation L e e e e e 337
Two options for using Oracle Spatial with MapServer 337
Mapfile syntax for native Oracle Spatial support. 337
Using subselects in the DATA statement v v v v vt v et e oo 338
Additional keywords - [FUNCTION] et e e 339
Additional keywords - [VERSION] 339
More information e e e e e e e e e 340
Example of a LAYER e e e 340
Mapfile syntax for OGR Oracle Spatial support 341
7.1.18 PostGIS/PostgreSQL e e e e e 341
PostGIS/PostgreSQL L L 341
Data Access /Connection Method L L 342
OGRINFO Examples oo o e e e e e s e e e 343
Mapfile Example e e e e e e e e e e e 343
Support for SQL/MM CUIVES v v v o e e e e e e e e e e e e e e e e e e 344
7.1.19 SDTS .« . e e 349
File listing o o o e e e e 349
Data Access / Connection Method L o 349
OGRINFO Examples e 349

xi

TL20 S57 oo o e 351

File listing o o e e e e e e e e 351

Data Access / Connection Method L 351
OGRINFO Examples e e 351

7.1.21 Spatialliteo e e e e e 353
File listing o o e e e e e 353

Data Access / Connection Method L 353
OGRINFO Examples oo e e e e e e e e e e e e e e 353
Mapfile Example e e e 355

7.1.22 USGSTIGER 356
File listing o e e 356

Data Access / Connection Method L 356

7.1.23 Virtual Spatial Data e e e e e 358
Typesof Databases e 358
Typesof Flat Files 0 e 359
Stepsfor Display e 359

7124 WES © o e 362
Capabilities o o e e e e e e e e 362

Data Access / Connection Method L oo 363

Map File Example o e e 363

7.2 RasterData L e e e e 364
7.2.1 Introductionl e e e e 364
7.2.2 How arerasters addedtoaMapfile? e 365
Classifying Rasters o o i e e e e e e e e e 365

7.23 Supported Formats L e 367
724 Rastersand TileIndexing L oo 368
Tile Index Notes o o o o e e e e e 368

7.2.5 Raster Warping o o e e e e e e e e e e e e 369
7.2.6 24bitRGB Rendering e e e e 369
7.2.77 Special Processing Directives L e 370
7.2.8 RasterQuery e 372
7.29 Raster Display Performance Tips o 373
7.2.10 Preprocessing Rasters 373
Producing Tiled Datasets o i i e e e e e e e 374
Reducing RGB to 8bit e e e 374
Building Internal Overviews L e 374
Building External Overviews oL e 375

7.2.11 Georeference with World Files o 375
8 Output Generation 377
8.1 AGG Rendering Specifics L 377
. 1.1 Introduction e e e e e 377
8.1.2 Setting the OutputFormat e e e e e 377
8.1.3 NewPFeatures e 378
8.1.4 Modified Behavior e 379
8.2 AntiAliasing with MapServer oL 379
8.2.1 Whatneedstobedone 380
8.3 Dynamic Charting e e e e e e e e e e e e 383
831 Setup e e 383
Supported Renderers 383
Output from AGGand GD Renderers 383

8.3.2 AddingaChart LayertoaMapfile 384
Layer Type . . . o o o o e e e e e e e e e e e 384
Specifying the Size of each Chart 384

xii

8.4

8.5

8.6

8.7

8.8

Specifying the Valuestobe Plotted 384

Specifying Style L e e e e e e e 385
833 PieCharts e e e 385
834 BarGraphs e 386
Stacked bar Graphs L e e 387
Flash Output e e 387
8.4.1 Introduction e 387
Links to Flash-Related Information 387
8.4.2 Installing MapServer with Flash Support 388
Using Pre-compiled Binaries oL 388
Compiling MapServer with Flash Support 388
8.4.3 How to Output SWF Files from MapServer 389
Other OutputFormat Options i vt et e e e e e e e e 389
Composition of the Resulting SWF Files 389
Exporting Attributes L. 390
Events and Highlights 391
Fonts 391
Outputting Raster SWF for Vector Layers 391
8.4.4 Whatis Currently Supported and Not Supported 391
HTML Legends with MapServer e 393
8.5.1 Introduction e e e e e e e e e 393
Implementation e e e e 393
Legend Objectof Mapfile e 393
CGIflegend] tag o i i e e e e e e 394
HTML Legend Template File 394
8.5.2 Sample Site Using the HTML Legend 401
HTML Imagemaps o v vt v e e e et e e e e e e e e e e e e 401
8.6.1 Introduction e 402
8.6.2 Mapfile Layer Definition e e 402
8.6.3 Templates e e e e e e e e e e e 403
PointLayers e 403
Polygon Layers e e e 403
8.6.4 RequestURL e e e e e 404
8.6.5 Additional Notes e 404
8.6.6 MoreInformation L e 404
OGROutputo e e 404
8.7.1 Introduction e e e e e e e e e e 404
8.72 OUTPUTFORMAT Declarations« .o v v v i it it e e i 404
873 LAYERMetadata e 406
874 MAP/WEBMetadata 407
8.7.5 Geometry Types Supported 407
8.7.6 Attribute Field Definitions L 407
8.7.7 ReturnPackaging L 407
8.7.8 TestSuite Example e e e e 408
PDF Output e e e e e e e e e 408
8.8.1 Introduction L e 408
8.8.2 Whatis currently supported and not supported oL 409
8.8.3 Implementing PDF Output e 409
Buildthe PDF Library o e e 409
Build MapServer with PDF support e 410
Mapfile definition L e e e e e e 410
TeStNG . . . v e e e e e e e e e e e 411
Possible Errors oL e e e 411
8.8.4 PHP/MapScriptand PDF Output 411

8.9

8.10

8.11

8.12

How does it work? e e e e 411

Create the PDFdocument 411
Render PNG views at a suitable resolution 412
Insert the PNG elements into your PDFdocument 412
Buffer the PDF and send ittotheuser 412
Additional stufftotry oL e 413
SVG 413
89.1 Introduction e 413
Links to SVG-Related Information Lo 414
8.9.2 Feature Types and SVG Support Status oL 414
Annotation Layerso e 414
Circle Layers o o i e e e e e e e e e e e e e e 414
Line Layers o o o e e e e e e e e 414
Point Layers e e e e 414
Polygon Layers o e e e e e 414
Raster Layers o e e e 415
Text Features 0 o e 415
WMS Layers o o e e e e e e e e e e e e e e 415
8.9.3 Testingyour SVG OUtput L i e e e e e e e e 416
8.9.4 goSVG . . . L e e 417
Definition e e e e 417
Support for Specific goSVG Elements oo 417
Setting up a Mapfile for goSVG Output e 417
Testing your goSVG Output o o i e e e e e e e 418
Sample goSVG File Produced by MapServer 419
Tile Mode e e e e e e 419
8.10.1 Introduction o o e e e e 420
8.10.2 Configurationt i e e e e e e e e e e e e e e e e e e e 420
8.10.3 Utilization o e e e e e e e e e 421
About Spherical Mercator e e e 421
Using Google Maps o o e e e e e e 421
Using Virtual Earth 000 00 423
Template-Driven OUtput o . i ot e e e e e e e e e e e e e e 424
111 Introduction oot iieeeee 424
8.11.2 OUTPUTFORMAT Declarations v v i i i it e it i e 424
8.11.3 Template Substitution Tags e 425
8.11.4 Examples e 425
KmlOutput o e 429
8.12.1 Introduction oo e e 429
8.12.2 General Functionnality e e e e e 429
8.12.3 Outputformat L e e e e e e e e e e e e 429
8.12.4 Build e 430
8.12.5 Limiting the number of features 430
8.12.6 Map e 430
BA2.7 Layers v v e e e e e e e e e e e e e e e e 431
General noteson layers L. e 433
PointLayers e 434
LineLayers o o e e e e 434
Polygon Layers o e e e e 434
Annotation Layers e e e e e e e e e e e 434
Raster Layers o o e e e e e e 434
8.12.8 Styling. L e 434
PointLayers e 435
LineLayers o i e e e e e e 435

xiv

Polygon Layers o o i e e e e e e e e e e e e 435

8.12.9 Attributes L L e e e e 435
8.12.10 Coordinate SYySeM v v v v e i e e e e e e e e e e e e e e e e e e e 435
8.12.11 Warning and Error Messages o . i e e 435
9 OGC Support and Configuration 437
9.1 MapServer OGC Specification support oo e e 437
0.2 WMS Server o o i e e e e e e e e 437
9.2.1 Introduction e e 438
Links to WMS-Related Information 438
Howdoesa WMS Work 438

9.2.2 Setting Up a WMS Server Using MapServer 439
Install the Required Software L 439

Setup a Mapfile For Your WMS 440

Test Your WMS Server o .0 e e e e 442
GetLegendGraphic Request e 444

9.2.3 Changing the Online Resource URL 445
Apache ReWrite rules (using Apache mod_rewrite) 445
Apache environment variables - MS_MAPFILE 446
Apache SetEnvIf 446

ASP script (IS - Microsoft Windows) o i e e 446
MapsCript WIapPeT . . . v v v v v e 447
Wrapper script (Unix) oo 000 e e e e 447

924 WMS 1.3.0Support o e e 447
Major features related to the WMS 1.3.0 support 447
Coordinate Systems and Axis Orientation oo v vt e 447
Example of requests e e e e e e e e e e 448

Other notable changes e e 448

Some Missing features L. 448

OCG compliance tests it e 449

9.2.5 Reference Section e 449
Web Object Metadata o i i i e e e e e e e e e e e 449

Layer Object Metadata o i i it e e e e e e 453
Vendor specific WMS parameters 0oL 458
Sample WMS Server Mapfile o 458

9.2.6 FAQ/Common Problems 460
0.3 WMSCHent e e e e 461
9.3.1 Introduction e e e e 461
WMS-Related Information L. o 461

9.3.2 Compilation /Installation L 461
Check your MapServer executable 462

Install Optional PROJ4 EPSG Codes o o i it e e e e e e e 462

9.3.3 MapFile Configuration e e e e e e e e 463
Storing Temporary Files e 463
Addinga WMS Layer e e 463

9.3.4 Limitations/TODO e e 468
0.4 WMSTIME oo e e 468
9.4.1 Introduction e e e e 468
Links to WMS-Related Information 468

9.4.2 Enabling Time Supportin MapServer 469
Time Patterns L e e e 469
Setting Up a WMS Layer with Time Support 469
GetCapabilities Output o e e e e e e e e e e e e 470
Supported Time Requests e e e 470

XV

9.5

9.6

9.7

9.8

9.9

Interpreting Time Values 0 e e e 470

Limiting the Time FormatstoUse ittt e et 471
Example of WMS-T with PostGIS Tile Index for Raster Imagery 471
9.43 Future Additions L e e e 472
944 Limitationsand Known Bugs 472
Map CONteXt v v v v e it e e e e e e e e e 472
9.5.1 Introduction e e e e e e 473
Links to WMS / Map Context Related Information 473
9.5.2 Implementinga Web Map Context 473
Special Build Considerations o 473
Map Context Mapfile e 473
Testing Map Context SUPPOrt o v v i i e e e e e e e e e e e 477
Sample Map Context Document i e e e 477
Map Context Support Through CGI 478
Map Context Support Through WMS o . o o 479
WES Server e e e 479
9.6.1 Introduction L e e e e 480
WES-Related Information L 480
Software Requirements L L e e e e e e e 480
Versions of GML Supported L 480
9.6.2 Configuring your MapFile to Serve WFS layers 481
Example WFS Server Mapfile e 481
Rules for Handling SRS in MapServer WES o 482
Axis Orientationin WES 1.1 0000 483
Test Your WES Server o e 483
9.6.3 Reference Section L L e e 484
Web Object Metadata oo e e e 485
Layer Object o i e e e e e e e e e e 486
9.6.4 To-do Items and Known Limitations 488
WESClient e e e 488
9.7.1 Introduction o . e e e e e e e e e e 489
WES-Related Information 489
Software Requirements e e e e e e e e e e e e 489
9.7.2 Settingupa WFS-client Mapfile e 489
Storing Temporary Files e 489
WES Layer o e 490
Example WES Layer 0 491
Connection - deprecated L. 491
9.7.3 TODO/Known Limitations i e 491
WES Filter Encoding o e e e e e 492
9.8.1 Introduction L. e e 492
Links to SLD-related Information 492
9.8.2 Currently Supported Features o oo 492
Units Of MEASUIE v v v vt e 493
9.8.3 Getand Post Requests e e e 493
9.8.4 Useof Filter Encodingin MapServer 494
Server Side L L e e e e 494
Client Side e e 495
9.8.5 Limitations e e e e e 496
9.8.6 Tests e e 496
SLD . . e e 499
9.9.1 Introduction e e e 500
Links to SLD-related Information 500
9.9.2 Server Side Support L e e 500

XVi

9.10

9.11

9.12

General Information e e e e e 500

Specific SLD Elements Supported e e e 502
9.9.3 Client Side Support o o i e e e e e e e e e e e 507
PHP/MapScript Example that Generates an SLD froma Mapfile 508
9.9.4 Named Styles support L e 508
9.9.5 OtherItems Implemented 509
9.9.6 Issues Found During Implementation, 509
WOCS Server o oo e e 509
9.10.1 Introduction e e 510
Links to WCS-Related Information 510
Software Requirements oL e 510
9.10.2 Configuring Your Mapfile to Serve WCS Layers 511
Example WCS Server Mapfile e 511
Output Formats o e e e e e e e 512
9.10.3 Test Your WCS 1.0 Server 0 i i i e e e 513
Validate the Capabilities Metadata 513
Test With a DescribeCoverage Request 513
Test With a GetCoverage Request i ittt 514
9.10.4 WCS 1.1.0+Issues o it e e e e e e 514
GetCapabilities e 514
DescribeCoverage o v v it i e e e e e e 515
GetCOoVerage . . . v v v v v e e e e e e e e e e 515
URNS . . e 516
9.10.5 WCS 2.0 e e 516
OVEIVIEW o o o e e e 516
Changes to previous VErsions u it e 518
Specifying coverage specific metadata oo 518
New band related metadataentries oo 519
9.10.6 HTTP-POST support o o i e e e e e e e e e e e e e e e e 521
9.10.7 Reference Section L e e e 522
Web Object Metadata L 522
Layer Object Metadata e 523
9.10.8 Rules for handling SRS in a MapServer WCS 525
9.10.9 Spatio/Temporal Indexes i e e e e 525
Building Spatio-Temporal Tile Indexes 526
9.10.10 WCS 2.0 Application Profile - Earth Observation (EO-WCS) 526
9.10.11 To-do Items and Known Limitations 526
WCS Use Cases . . . v v v v o it e e e e e e e e e e e e e e e 527
9.11.1 Landsat e e 527
9.11.2 SPOT . . . o e e 528
9.11.3 DEM . . . 529
9.11.4 NetCDF o e e e e e 529
SOS Server o o e e 532
9.12.1 Introduction L . e e e e e e 532
Links to SOS-Related Information 532
Relevant Definitions e 533
9.12.2 Setting Up an SOS Server Using MapServer 533
Install the Required Software 533
Configure a Mapfile For SOS 533
Example SOS Server Mapfile e 534
Test Your SOS Servero e 536
9.12.3 Limitations/ TODO e 538
9.12.4 Reference Section L L e e e e e e 538
Web Object Metadata oo e e e e e 538

Layer Object Metadata 0 i i i e e e e e e e e e e 540

9.12.5 Use of sos_procedure and sos_procedure_item 542
GetCapabilities o o e e e e e e e e e 542
DescribeSensoro 543
GetObServation o it e e e e e e e e 543

9.13 How to set up MapServer as a client to access a serviceover https 543

9.13.1 Introduction e e 544

0.13.2 ReqUIrEMENtS v v v v v et e 544

9.13.3 Default Installation (with apt-get install, rpm, manual,etc) 544

9.13.4 Non-Standard Installation (common with ms4w and fgs) 544

9.13.5 Remote Server with a Self-Signed SSL Certificate 545

9.14 MapScript Wrappers for WxS Services o e e e 545

9.14.1 Introduction e e 546

9.142 Python Examples e 546

9.143 PerlExample e 547
More Perl examplecode L 548

9.14.4 JavaExample e e e e e e e e e 550

9.14.5 PHPExample e e e e e e e 551

9.14.6 Use in Non-CGI Environments (mod_php,etc) 552

9.14.7 Post Processing Capabilities L oo o 552

10 Optimization 555
10.1 Debugging MapServer e e e e e 555

10.1.1 Introduction o i i e e e e e e e e e e e e e 555
Links to Related Information L 555

10.1.2 Steps to Enable MapServer Debugging oo 556
Step 1: Set the MS_ERRORFILE Variable 556
Step 2: Set the DEBUG Level e e 557
Step 3: Turn on CPL_DEBUG (optional) 558
Step 4: Turn on PROJ_DEBUG (optional) 558
Step 5: Testyour Mapfile L 558
Step 6: Check your Web Server Logs e 561
Step 7: Verify your Application Settings e 563

10.1.3 Debugging MapServer using Compiler Debugging Tools 563
Running MapServer in GDB (Linux/Unix), 563

10.1.4 Debugging Older Versions of MapServer (before 5.0) 565

10.2 FastCGL. o e e e e 566

10.2.1 Introduction 566

10.2.2 Obtaining the necessary software oo 566

10.2.3 Configuration e e e e e e e e e e e 567

10.2.4 Common Problems e 568
File permissions o e e e e e e e e e e e e e 568

10.2.5 FastCGlon WiIn32 e 568
MSAW USEIS . . v v v oo o i i e e e e e e e e 568
Building fcgi-2.4.0 L e e e e e 568
Binary IOPatch. L 568
Building libfegi o Lo 569
OtherIssues o i i e e 569

103 Mapfile L 569

103.1 Introduction L . e e e e e e e 569
L. Projections 569
2.LAyers oL oL e e 570
3.Symbols ... e e e e e e e e e e 571
4 Fonts . . . L 571

Xviii

104 RaASter o o o e e e e e e 571
1041 OVEIVIEWS . . . o v v v o e e e e e e e e e e e e e e e e e 572

10.4.2 Tileindexes and Internal Tiling L o 572

10.4.3 Imageformats L e 572
10.4.4 Remote WMS o . L e 572

105 TileIndexes o o i i e e e e e 573
10.5.1 Introduction o o i e e e e 573

10.5.2 Whatis atileindex and how doImakeone? 573
10.5.3 Using the tileindex in yourmapfile oo oL, 573
10.5.4 Tileindexes may make yourmap faster oL oL, 574

10.6 VeCtOor o o o e e e 574
10.6.1 Splitting yourdata e e e e e e e e e e e e e 575
10.6.2 Shapefiles o L e e e e e e e 575

10.6.3 PostGIS e 575
10.6.4 Databases in General (PostGIS, Oracle, MySQL) 575

11 Utilities 577
T1.L legend o o o e e e e e e e e e 577
IT.1LT Purpose e 577
T112 SyntaX . . . oo v v e e e 577

T1.2 MSENCIYPL . o o v v o o e 577
T1.2.1 PUIPOSE . o o v v o e i e 577

I1.2.2 Syntax o o o e e e e e e e e e e e e 577

11.23 UseinMapfile 0 e 578
Example L e 578

11.3 scalebar o L e e e e e 579
T1.3.1 PUIPOSE . . o v v o e 579

[1.3.2 Syntax oo e e e e e 579

11.4 shp2img e e 579
I1.4.1 Purpose e 579
8 4 11 579
Example #1 o e e e e e e e e 580

Example #2 L e e e e 580

Example #3 L e e e e 580

11.5 shptree o o L e e 581
T1.5.1 Purpose o o i e 581
11.5.2 DesCription v v v i e 581

I11.53 Syntax o o e e e e e e 581
11.54 Mapfile Notes o o o e e e e 581

11.6 shptreetst e e e 582
11.6.1 Purpose i e 582
11.6.2 SyntaX oottt e e e 582

1.7 Shptreevis o . o o e e e e e e e e e e e e e e 583
T1.7.1 PUIPOSE .« o v v o e 583
T1.7.2 Syntaxo 0o e e e 583
Example oL 583

11.8 sortshp o o e e e 584
I1.9 Sym2img o o e e e e e e e e e e e e e 586
T1.9.1 PUurpose o o v v i e e e e e e e e e e e e e e e e e 586
11.9.2 Syntax o o e e e e e e e e e e 586
1110 tilledms . . . o o o e e e e e e 587
T1.10.1 Purpose o o i e 587
11.10.2 DesCription v v v v e 587
T1.10.3 Syntax . . . o v o e e e e e e e e e e e e e e e e e e 587

Xix

11.10.4 Short Example e e e e e e e e e e e e 587

11.10.5 Long Example o . e e e e e e e e e e 588

I1.11 Batch Scripting o o o e e e e 591
IT1LT WIndows o 0o o e 591
TTAL2 LinUX ..o o e e e e e e e e e e e e e 591

11.12 File Management L oot e e e e e e e e 591
11.12.1 File Placement ittt e 591
11.12.2 Temporary Files o e e e e e e e 591
WIndows e 592

12 CGI 593
12.1 MapServer CGIL Introduction 0 e e e e e e 593
12,11 NOtes . . . o o o e e 593
12.1.2 Changes o e 593

From MapServer version 4.Xx to version 5.X o oo oo 593

From MapServer version 3.X to Version 4.X e 594

122 MAPSEIV . . v v o it e e e e e e e e e e e e e e e e e e e 594
123 Map Context Files o e 594
12.3.1 Support for Local Map Context Files 594
12.3.2 Support for Context Files Accessed Througha URL 594

12.3.3 Default Map File o e e e e e e e 595

12.4 MapServer CGLControls o v e e e e e e e e e e e e 595
12.4.1 Variables e 595
12.4.2 Changing map file parameters viaaformoraURL 598
Using MapServer version >=5 i e e e e e e e e e e 599

Using MapServer version <5 oL e e e e e e e e e 599

12.4.3 Specifying the location of mapfiles using an Apache variable 599
12.4.4 ROSA-Applet Controls o o i o e e e e e 600

12.5 Run-time Substitution e 600
12.5.1 Introduction oL e e e e e e e e e 600

12.5.2 BasicExample 601
12.5.3 Parameters Supported e e e e e e e e e e e e 601
FILTERS e e e e e 601

12.5.4 Default values if not providedinthe URL 602
12.5.5 VALIDATION e e e e e e 602
12.5.6 Magicvalues e e 603

12.6 A Simple CGI Wrapper SCript o . o i e e e e e e e e e e e e 603
12.6.1 Introduction 603

12.6.2 Script Information oL e 603
Alternative 1 L L e e e e e 603

Alternative 2 . . . L L . e e e e e e e e e 604

13 Community Activities 605
13.1 IRC . e e e 605
13.1.1 Server and Channel Information o 605
13.1.2 Why IRC? . . . o 605

13.1.3 How doljoin? e e e e e e e e e e 605

13.2 Mailing Lists o e e e e e e e e e 606
13.2.1 mapserver-annouNCe ¢t vttt e e e e e e e e e e e e e e 606
13.2.2 MaPSEIVEI-USEIS . . « « v v v v v e e e e e e e e e e e e e e e e e e e 606

1323 mapserver-devl e e e e e e e e 606
13.2.4 MapServer mailing lists in languages other than English 607

13.2.5 Downloading listarchives e e e 607

13.3 MapServer Wiki Pages e 607

XX

13.4 MapServer Service Providers e e e e e 607
14 Development 609
4.1 Sponsors e e 609
14.2 MapServer Release Plans o e e e e e 610
142.1 6.0ReleasePlan. L 610
Background L e e e 610

New Features and Major Bug Fixes 610

6.2Wishlist e e 612

Planned Dates L e e e e e 612

Release Manager o v v i i i e e e e e e e e e e e e e e e 612

SVN Tags/Branches e e e e 612

Trac Conventions i e e e e 613

Q/A 613

143 ANNOUNCEMENLS . . .« v v v v vt v e e e e e e et e e e e e e e e e 613
14.3.1 6.0 ANNOUNCemMENt L. e e e e e e e e e e e e e e e e e 613

Core Changes in MapServer 6.0 Which Could Affect Existing Applications 614

New Features and Notable Enhancements in MapServer 6.0 614

Migration Guideo e 614

Source Code Download 615

Binary Distributions e e e e e e e 615
Documentation L e e e e e 615

14.4 MapServer Changelogs e e 615
14.4.1 MapServer 6.2.0 beta2 Changelog Lo L. 615
14.4.2 MapServer 6.2.0 beta3 Changelog 617
14.4.3 MapServer 6.2.0 beta4 Changelog e 619
14.4.4 MapServer 6.2.0 RCI1 Changelog i i i e e 620

14.5 Bug Submission e e e e e e e e e 621
14.6 Subversion e e 622
14.6.1 Code Developer’s Subversion Accesso oo 622
14.6.2 Support Libraries oo e e e 622
14.6.3 How to Obtain Commit ACCESS « ¢ v v v v v v e et e e e e e e e 622
14.6.4 Subversion Web View L 622

147 Documentation Development Guide L 622
14.7.1 Background e 623
14.7.2 General Guidelines L 623
14.7.3 reStructuredText Reference Guides o 623
14.7.4 reStructuredText Formatting o e e 623
14.7.5 Installing and Using Sphinx for rst-html Generation 624
14.7.6 How translationsare handled L 625
14.7.7 Reference Labels e 626
Regenerating the reference labels L Lo 631

14.8 Testing o v v i o e e e e e e e e e e e e e e e e e 631
14.8.1 Regression Testing o v v v v i i e e e e e e e e e e e e e 631
Getting msautotestl e e e e e e e e 632

Running msautotest oL e 632

Checking Failures e 633

Background L e e e e 633

Result CompariSons v o i i e e e e e e e 634

REQUIRES - Handling Build Options 634
RUN_PARMS: Tests not using shp2img 635

Result File Preprocessing o o0 o e 635

What If A Test Fails? e e 635

TODO . . e e 636

XXi

Adding New Tests o v v i e e e e e e e e e e e e e e e 636

14.8.2 MapScript Unit Testing o v v i i e e e e e e e e e e e e e 636
Test Driven Development e 636
Aboutthe tests e e e e e e 637
Status e e e 637

149 Requestfor Comments oo e e e e e e 638

14.9.1 MS RFC 1: Technical Steering Committee Guidelines 638
SUMMAry e e e e e e e e e e e e e 638
Detailed Process 638
When is Vote Required? L 639
Boundaries of “Technical” 639
ODbServations o i i i e e e e e e 639
Bootstrapping e e e e e e e e e 639

14.9.2 MS RFC 2: Creating line features and/or shapes using WKT 639
Files affected e 640
Backwards compatabilty issues L. 640
Implementation Details e e e e e 640
BugID e 641
Voting history o e e e e e e e e e e 642

14.9.3 MS RFC 3: Feature Layer Plug-in Architecture 642
Abstract Solution e e e e e 642
Technical Solution e 642
Files and objects affected e e 646
Backwards compatibility iSSUes L. e e e e e 646
Implementation Issues oL 646
BugID . . e 646
Voting history o o o e e e e 647
Open QUESLIONS .+« & v v v v v e 647

14.9.4 MS RFC 4: MapServer Raster Resampling 647
OVEIVIEW o o o e e e e 647
Technical Details o . . e e e 647
Mapfile Implications e e e e e 648
MapScript Implications e e e e e e e e e 648
Documentation Implications e e e 648
TestPlan oL 648
Staffing / Timeline e 648

14.9.5 MS RFC 5: MapServer Horizon Reprojection Improvements 648
Purpose L e 648
Approach e e e e e e e e 649
Point Features e 649
Line Features L e e 649
Area Features oL e e e 649
Tolerances e e e e e e 649
Caveats e 650
Mapfile Implications L e e e e e e e e e 650
MapScript Implications L 650
Backward Compatibility Issues L 650
Staffing and Timeline e 650

14.9.6 MS RFC 6: Color Range Mapping of Continuous Feature Values 650
Background e e e e e e 651
Current Syntax Problems e 651
Proposed New Syntax L e e 651
Proposed Legend Format L 652
MapScript ISSUeso e e e 652

xxii

Files affected e e e e 652

Backwards compatabilty isSues L e e e e e e 653
Multiple Mapping Methods 653
BugID . . . 653
Voting history o o e e e e e 653
14.9.7 MS RFC 7: MapServer CVS Commit Management 653
Purpose e e e e 654
Election to CVS Commit ACCESS . . .« v v v v v vt e e e e et e e e e e e e e 654
Committer Tracking e 654
CVS AdminiStrator o o oot e it e e e e e e e e e e e e e e e 654
CVS Commit Practices i i e 655
14.9.8 MS RFC 7.1: MapServer SVN Commit Management 655
Purpose e e e e e e 655
Election to SVN Commit ACCESS« v v v v vt e ettt e e e e 656
Committer Tracking e 656
SVN Administrator oo vttt e e e e e e e e e 656
SVN Commit Practices 656
Legal e e e e 657
Voting History o o o e e e e e e e e e e e 658
14.9.9 MS RFC 7.2: MapServer Git Push Management 658
Purpose L e 658
Election to Git Push Access e 658
Committer Tracking o e e e e e e 658
Git Administrator o e e e e e e e e e 659
Git Commit Practices 659
Legal o e 660
Voting History o o o e e e e e 660
14.9.10 MS RFC 8: Pluggable External Feature Layer Providers 660
Purpose e e e e e 661
Abstract Solutionl e e e 661
Technical Solution L e e e e e 661
Files and objects affected 662
Backwards compatibility issueso Lo e 662
Implementation Issues L e e e e e e e 662
BugID . . . e e e 662
Voting history o o o e e e e e e 662
Open qUeStionS e 662
Working Notes o o e e e 662
14.9.11 MS RFC 9: Item tag for query templates o v i v v i 663
Filesaffected 663
Backwards compatibility issues Lo 663
Implementation Details L o 663
Examples o . e e 664
NOES . . o o o e 664
BugID . . . e e 664
Voting history L e e e e e e e e e e e 664
14.9.12 MS RFC 10: Joining the Open Source Geospatial Foundation 664
ADSITaCto e e e e 664
MapServer’s Participation in the Foundation. 665
Expected Benefits of OSGeo to the MapServer Project 665
DecidingtoJoin o . e e e e e e 665
Considerations L e 665
Voting history e 666
14.9.13 MS RFC 11: Support for Curved Labels 666

OVEIVIEW . . v v e e e e e e e e e e e e e e e e e e 666

Technical Details 666
Mapfile Implications e 667
Support for Non-GD Renderers 667
Bug Tracking L 667
Voting History o o o e e e e 667
149.14 MSRFC 12: Ccode Unittestso ittt e 667
OVEIVIEW v v ottt e e e e e 667
Example e e 668
Unit testing software L 668
Usage recommendationsot L e e e e e e e e e 668
Testing specific functionalities e e e e 669
Running unit tests and functional tests (Continuos integration) 669
14.9.15 MS RFC 13: Support of Sensor Observation Service in MapServer 670
OVEIVIEW . . . o o o i e e e e e e e e e e e e e e e e e 670
UserInterface o L e e 670
Changes in MapServer o it i e e e e e e 670
Mapscript implications e e e e e e e e e e e e 671
Additional librarieso o e 671
Testing e e 671
Bug Tracking e 671
Voting History o o o e e e e e 671
Annexe A : Sensor Observation System (SOS) support in MapServer 671
14.9.16 MS RFC 14: Relative Coordinates for INLINE features 675
CStructural Changes e 675
Mapfile Changes e 675
Files affected e 676
TeStNG . . v v e e e e e e e e e e e e e e e e e e e 676
Backwards compatabilty issues oL e e e e e 676
BugID . . . e 676
Voting history e 676
14.9.17 MS RFC 15: Support for thread neutral operation of MapServer/MapScript 676
LOVeIVIEW . . o o o o o e e e e e e e e e e e 677
2.PUIPOSE . . . e e e e e e e e e e e 677
2. General principles of the solution e 677
2.1 Not changing the code (Considering as safe withoutlocks) 677
2.2 Retaining the variable, but reconsidering the initializationcode 677
2.3 Rewriting the code to eliminate the need of the global variable 678
2.4 Using thread local variable instead of the globalone 678
2.5 Not changing the code (Marking as safe with locks, will be reconsidered later) 678
2.6 Not changing the code (Marking as unsafe, will be deprecated and unsupported) 678
3. Issues of the MapServer /Mapscriptcode 678
3. Issues of the related libraries 684
4. Considerations for the future development 684
5. Backwards compatibility issues oL e e e e 684
BugID . . e e e 684
Voting history e 684
14.9.18 MS RFC 16: MapScript WxS Services oo i v ittt 684
Purpose e e e e e e 684
Technical Solution e 685
WXSFunctions o e 685
OWSRequest o o e e e e e e e e e 685
IOHooking e 686
gdBuffer e 687

XXiv

Files and objects affected L 687

Backwards compatibility iSSUES L. . e e e e e e e 687
Implementation Issues L 687
Testsuite o o o e e e e e e e e 688
Example 688
BugID . . e e 688
Voting hiStory o o e e e e e e e e e e e e e 688
Open QUESLIONS .« . v v v v v e 688
14.9.19 MS RFC 17: Dynamic Allocation of layers, styles, classes and symbols 689
Purposeo e 689
MS_MAXSYMBOLS e 689
MS_MAXLAYERS . . . e 689
MS_MAXCLASSES e e 690
MS_MAXSTYLES e e e 690
Files and objects affected 690
Backwards compatibility issues 691
Testsuite o o o e e 691
BugID 691
Voting history o e e e e e e e e e e 691
Comments/Questions from the review period oL L. 691
14.9.20 MS RFC 18: Encryption of passwords inmapfiles 692
OVEIVIEW . . . o o ittt e e e e e e e e e e 692
Technical Solution e 692
Encryption key o e e e e e e 692
New “msencrypt” command-line utility L. 693
Encoding of encrypted strings L. oL 693
Modifications to the source codel 693
Filesaffected e 694
Backwards compatibility iSSUES L. e e e e e 694
BugID . . . e 694
Voting history e 694
Comments from the review period o o 694
14.9.21 MS RFC 19: Style & Label attribute binding 695
C Structural Changes o ot e e e e e e e e e e e e e 695
Mapfile/MapScript Changes o e e e e e 695
Files Affected L e 696
Testing L e 696
Backwards compatabilty issues L 696
BugID . . . 696
Voting history o e e e e e e e e e 697
14.9.22 MS RFC 21: MapServer Raster Color Correction 697
OVEIVIEW . . . o o o i e e e e e e e e e e e e e e e 697
Technical Details e e 697
Other Curve Formats e 698
Mapfile Implications L e e e e e e e e e 698
MapScript Implications L 698
Documentation Implications L. oL e 698
TestPlan oL e e e 698
Staffing / Timeline e 698
Tracking Bug e e e e 698
14.9.23 MS RFC 22a: Feature cache for long running processes and query processing 698
LLOVEIVIEW L o o o e e e e 699
2.Purpose ... e 699
3. General principles of the solution oo 699

XXV

3.1 Feature caching provider 0 i e e e e e 700

3.1.1 Shape retrieval OptionS o e e e e e e e e e e e 700
3.12Ttems selection Ll 701
3.1.3 Support for the STYLEITEM “AUTO” option 701
3.1.4 Support for the attribute filtero 701
3.2 Geometry transformation provider Lo 701
3201 Items selection L e 701
3.2.2 Applying the transformations L. oL 702
3.3 Layer filter provider L 702
4. Putting the things together (example) oL . 702
4.1 Adding the feature cache forthe layers 704
4.2 Applying transformations on the counties oL 705
4.3 Using the transformed shape as the selectionshape 706
5. Modifying the mapservercore oL 708
5.1 Hashtable implementation 708
5.2 Extending the layerObj structure to support nesting the layers (map.h) 708
5.3 Adding a new built in data connection types (map.h) 709
5.4 Support for destroying the persistent data of the providers (map.h, maplayer.c) 709
5.5 Vtable initialization for the new data providers (maplayer.c) 709
6. Filesaffected L 710
7. Backwards compatibility issues Lo oo o o 710
8. BugID e 710
9. Voting history o o e e e e e e e e e e e e 710
14.9.24 MS RFC 23: Technical Steering Committee Guidelines 710
SUMMATY o o e e e e e e e e e e e 711
Detailed Process o e e 711
When is Vote Required? e 712
ODbSEervations i i i e e e e e 712
Committee Membership e e e 712
Membership Responsibilities o o 712
Bootstrappingo e 713
Updates o o e e e e 713
14.9.25 MS RFC 25: Align MapServer pixel and extent models with OGC models 714
OVEIVIEW . . . o v ot o o e e e e e e 714
Technical Details 714
Mapfile Implications L 715
MapScript Implications oL 715
Documentation Implications L 715
TestPlan L 715
Staffing / Timeline e e e 716
14.9.26 MS RFC 26: Version 5 Terminology Cleanup 716
TRANSPARENCY o e e 716
SCALE . . . o 717
PATTERN 718
14.9.27 MS RFC 27: Label Priority i e et e e e e e e e e 718
OVEIVIEW oottt o e e 718
Technical Solution L e e e e 719
Support for attribute binding L. 719
Modifications to the source code L. 719
MapScript Implications L. e e e e e e 719
Filesaffected 720
Backwards compatibility issues L. Lo oL 720
BugID . . . 720
Voting history o o o e e e e 720

XXVi

Questions/Comments from the review period 720

14.9.28 MS RFC 28: Redesign of LOG/DEBUG output mechanisms 720
OVEIVIEW o o o e e e e e 721
Inventory of existing mechanisms oL oL 721
QUESHIONS e e e e e e 721
Technical Solution e 721
Setting MS_ERRORFILE 722
DEBUG levels e e 722
The MS_DEBUGLEVEL environment variable 723
MapScript Implicationso 723
Files affected o e e 723
Backwards compatibility iSSUES e e e e e e 723
BugID . . . e 723
Voting history L . e e e e e e e 723
Questions/Comments from the review period 0. 724

14.9.29 MS RFC 29: Dynamic Charting Capability 724
OVEIVIEW . . . o oot o e e e e e e e e e e 724
Technical Solution e e e 724
Issues and limitations L e 725
MapScript Implications e 725
Files affected e e 725
Backwards compatibility issues Lo e 726
BugID . . e 726
Documentation L e e e e e e e e 726
Voting history L e e e e e e e e e 726
Questions/Comments from the review period 0oL 726

14.9.30 MS RFC 30: Support for WMS 1.3.0. oo i i 726
OVEIVIEW . . . o vt o i e e e e e e e 727
Coordinate Systems and Axis Orientation 0 i i vt hee 727
WMSand SLD o e e 728
HTTP Post supporto e e e e 728
OCG compliance testS v v v v v e e e e e e e e e e 728
Other NOtes o e e e 728
MapScript Implications L. e e e e e e 728
Filesaffected e 728
Backwards compatibility issues L. L oL 729
BugID . . . 729
Voting history o o o e e 729
Questions/Comments from the review period 729

14.9.31 MS RFC 31: Loading MapServer Objects from Strings 729
Current State e e e e e e e e e 729
CAPIChanges e 730
MapScript o o e e e e e 730
URL . . e 730
Backwards Compatibility e e e 731
Post Implementation Notes e 731
BuglIDs e 732
Voting history o o e e e e e e 732

14.9.32 MS RFC 32: Support for Anti-Grain Geometry (AGG) Rendering Engine 732
OVEIVIEW . . . o vttt e e e e e e e e e 732
Technical Solution e 733
CAPIChanges o o e e e e 733
MapScript L e e 733
Mapfiles e e 733

Issues and Caveats e e e e e e e 734

BugID . . . e 734
Voting history o o e e e e e e e e e e 734
14.9.33 MS RFC 33: Removing msLayerWhichltems() from maplayer.c 734
OVEIVIEW . . . o o o i e e e e e e e e e e e e e e 734
Technical Solution e 735
General C APIChanges i i i e e e e e e e e e e e 735
Input Driver Changes o o e e e e e 735
MapScript L e e e e e e e e 735
Mapfiles L. 736
Backwards Compatibility Issues e 736
BugID . . e e 736
Voting HiStory o o o o e e e e e e e e e e e e 736
14.9.34 MS RFC 34: MapServer Release Manager and Release Process 736
OVEIVIEW . . . o o o i e e e e e e e e e e e e e e e e e 736
The MapServer Release Manager Role, 736
The MapServer Release Process i e 737
MapServer Version Numbering i it e e e e e 738
Voting history o e e e e e e e e e e 738
14.9.35 MS RFC 35: Standards Compliance Enforcement 738
OVEIVIEW . . . o o o i e e e e e e e e e e e e e e e 738
OWS_COMPLIANCE METADATA e e e e e e e e 739
msOWSLookupMetadata() o o it e e e e e e e e e 739
MapServer 5.0.1 L e e e e e 739
MapServer 5.1 L e e e e e 739
Documentation e e e e e e e 740
Implementation e e e e e e e 740
MapScript o o e e e e e e e e e e e e 740
Backwards Compatibility Issues e 740
BugID . . . e 740
Voting History o e 740
14.9.36 MS RFC 36: Simplified template support for query output 740
OVEIVIEW . . . ot ittt e e e e e e e e e e e e 741
Additional Mapfile Changes e e e e 743
Documentation 743
Implementation e 743
MapScript L e e e e e e 744
Backwards Compatibility Issues e 744
BugID . . e e 744
Voting HiStory o o o e e e e e e e e e e 744
14.9.37 MS RFC 37: MapServer Spatial Reference Improvements and Additions 744
Purpose oL e 745
The History of Spatial References in MapServer 745
Specification Features L e e e e e e e 746
Implementation Details e e e e 746
Files Affected e 747
Backward Compatibility Issues o 747
Documentation e e e e e e e 747
14.9.38 MS RFC 38: Native Microsoft SQL Server 2008 Driver for MapServer. 748
Purpose e e e e e e 748
Background e e 748
Usage Details L o e e e e 748
Files Affected L e 749
Backward Compatibility Issues L 749

XXViii

Documentation e e e e e e e e e 749

Intellectual Property o o e e e e e e e 749
14.9.39 MS RFC 39: Support of WMS/SLD Named Styles 749
OVEIVIEW L o e e 749
Proposed Changes e e e 750
Affected/Added functionalities in MapServer oL 750
Other Considerations o v v v vt ittt s e e e e e e e 751
Files Affected e 751
MapScript L e e e e e e e e 752
Backwards Compatibility L 752
Documentation e e e e e e e e 752
TeStNG . & v v e e e e e e e e e e e e e e e e e 752
BugID . . . e 752
Voting History o . o e e e e e e e e 752
Discussions on mailing listo o oL 752
14.9.40 MS RFC 40: Support Label Text Transformations 752
OVEIVIEW . . . o oot o e e e e e e e e e e 753
Line Wrapping o o e e e e e e e e e e 753
Line Centering o o v i i e e e e e e e e e 753
Modifications to the source codel e 753
MapScript Implicationso e e e 754
Files affected o L e 754
Backwards compatibility iSSues e e e e e e 754
BugID e 754
Voting history L e e e e e e e e e 754
Questions/Comments from the review period 0oL 754
14.9.41 MS RFC 41: Support of WCS 1.1.x Protocol 754
OVEIVIEW . . . o vt o i e e e e e e e 755
Implementation Methodology e e e 755
WCS 1.1 Protocol Limitations e 755
Metadata Mapping e e e 755
URNSs / Coordinate Systems and Axis Orientation 755
MapScript e e e e e e e e e e e e 756
Backwards Compatibility e e e 756
Documentation L e e e e e e 756
Implementation Resources L 756
Testing L e 756
BugID . . e 756
Voting History o e e e e e e e e e e e e e 756
14.9.42 MS RFC 42: Support of Cookies Forwarding 757
OVEIVIEW o o o e e e e 757
Implementation Methodology L 757
Implementation Issues e 758
Modifications to the Source Code L 758
MapScript o . e e e e e e e e e 758
File Affected« o o e 758
Backwards Compatibility oL 759
BugID . . . e 759
Voting History o o o e e e e e e 759
14.9.43 MS RFC 43: Direct tile generation for Google Maps and Virtual Earth APT 759
OVEIVIEW o ottt s e e e e e e 759
Technical Solution e 759
MapScript Implications oL e 761
Files Affected o e 761

Backwards Compatibility Issues e e e 761

BugID 761
Voting History o o o e e e e e e e e 761
References e e 761
14.9.44 MS RFC 44: Restore URL modification of mapfiles to pre-5.01levels 762
Proposed Changes e e 762
Files Affected o 762
Mapfile Changes o o e e e e e e e e e 763
MapScript Changes e e e e e e e e 763
Backwards Compatibility Issues oL oo 763
Post-Implementation Notes e 763
BugID . . . 763
Voting HiStory o o o o e e e e e e e e e e e e 763
14.9.45 MS RFC 45: Symbology, Labeling, and Cartography Improvements 763
Scale Dependent Rendering L oo 764
Precise Symbol Placement 764
Keywords moved from SYMBOL to STYLE 765
add MINSCALEDENOM/MAXSCALEDENOM parameters to styleObj 766
add LABELMETHOD to layerObj e e e e e 766
add LABEL tolayersObj 766
add OUTLINEWIDTH to styleObj i i 766
add TYPE to styleObj for line and polygon types 767
Files Affected o 767
Bug IDs . . . o e e e e e e e e 767
14.9.46 MS RFC 46: Migrate Website to OSGeo i o 767
Purpose e 768
Failures of the Current Website 768
Administrative Failures L 768
SUIVEY . . o e e e e e e e e e e 768
Goals 768
Make it easy for folks to find thedocs oL oo 768
Stay the out of developers’ way 769
Allow documenters to get theirjobdone oL 769
Allow limited user-contributed information in the form of wiki pages 769
Have a gallery that works better e 769
Move off of UMN computing and integrate within OSGeo’s infrastructure 769
Implementation e 769
14.9.47 MS RFC 47: Move IGNORE_MISSING_DATA to run-time configuration 770
OVEIVIEW . . . o v vt o e e e e e e e e e 770
Technical Solution e 770
Mapscript Implications oL e 771
Files Affected e 771
Backwards Compatibility Issues L 771
BugID . . . 771
Voting HiStory o o o e e e e e e e e e e e 771
References 771
14.9.48 MS RFC 48: GEOTRANSFORM Geometry operations 771
SUMMAry L e e e e e e e e e e e e e 772
Detailed functionality 772
Implementation Details e e e 772
Affected Files o o 773
Limitations o e e e e e e e 773
MapScriptimplications oL e 773
Documentation e e e e e e e e 773

XXX

Backwards Incompatibility Issues e 773

BugID . . . e 773
Voting History o o o e e e e e e e e 774
14.9.49 MS RFC 49: Symbology, Labeling, and Cartography Improvements 774
Purpose e 774
Fractional values for SIZEand WIDTH 774
MINSCALEDENOM / MAXSCALEDENOM for STYLEs and LABELS 774
OUTLINEWIDTH on line layers ittt 774
add LABEL tolayersObj e 775
Affected Files o L e 775
Documentation e e e e e e e e 775
MapsCriPt « . v v o e 775
Backwards Incompatibility L e e 775
Comments from Review period L 776
Voting History e 776
14.9.50 MS RFC 50: OpenGL Rendering Support oot 776
OVEIVIEW . . . o o ittt e e e e e e e e e e e e e 776
Technical Solution e e e 77
CAPIChanges o i e e e e e e e e e e 777
Mapfiles L e e e e e 777
Issues . . . o e e e 778
Documentation e e e e e e e e e e e 778
Backwards Incompatibility e 778
BugID e 778
14951 MSRFCS51: XML Mapfile Format. 778
OVEIVIEW . . . o o o i e e et e e e e e e e e e e e e 778
Technical Solution e 779
Mapfiles e e e e e e 779
Future Enhancement L e 780
Documentation e e e e e 780
Backwards Incompatibility oL o 780
BugID . . . e e 780
14.9.52 MS RFC 52: One-pass qUery processing« v v v v v v v v v v v e e e e 780
OVEIVIEW . . . o o ittt s e e e e e e e e e e e e e 780
Technical Solution e 781
Backwards Compatability Issues L 781
Query File Support L 782
FilesImpacted e e e 782
Unknowns e e e e e e e e 783
Voting HiStory o o o e e e e e e e e e e 783
14.9.53 MS RFC 53: Guidelines for MapScript method return values 783
OVEIVIEW . . . o o o i e e e e e e e e e e e e e e e 783
Technical Solution e 783
Backwards Compatability Issues e 784
Ticket Id L e e 784
Voting History o o . o e e e e e e e 784
14.9.54 MS RFC 54: Rendering Interface APT 784
Purpose L e 784
Low Level Rendering API 785
High Level Usage of the rendering API 788
Image I/O o o e e e e e e 790
Miscelaneouso e e 791
Affected Files o L e 792
Documentation e e e e e e e e 792

MapsCript . . v v v e 792

Backwards Incompatibility L. e e e 792
Comments from Review period L 792
Voting History e 792
14.9.55 MS RFC 55: Improve control of output resolution 792
OVEIVIEW . . . o i ot e e e e e e e e e e e e 793
Technical Solution e 793
Usage example i i e e e e e e e e e e 794
Backwards Compatibility Issues L e 794
Documentation nOtes L L e e e e e e e e e e e e e 794
FilesImpacted e 794
TicketId L L 795
Voting HiStory o o o o e e e e e e e e e e e e 795
14.9.56 MS RFC 56: Tighten control of access to mapfiles and templates 795
OVEIVIEW . . . o o o i e e e e e e e e e e e e e e e e e 795
Technical Solution e e 795
Enforce the requirement for the MAP and SYMBOLSET keywords 796
Require a Magic String at the beginning of all MapServer templates 796
MS_MAP_PATTERN Environment Variable 797
MS_MAP_NO_PATH Environment Variable 797
Backwards Compatibility Issues oL o 797
FilesImpacted e 797
TicketId L L 798
Voting HiStory o o o e e e e e e e 798
14.9.57 MS RFC 57: Labeling enhancements: ability to repeat labels along a line/multiline 798
OVEIVIEW . . . o o o i e e et e e e e e e e e e e e e 798
Enhancement 1: Label all the lines in MultiLine shape 798
Enhancement 2: Ability to repeat labels alongaline 798
Technical Solution e 799
Usage example o i e e e e e e e e e e 799
Backwards Compatibility Issues L o 799
FilesImpacted e 799
Ticket Id L L e 800
Images e e e e e e e 800
Voting History o o o e e e e e e e e e 800
14.9.58 MSRFCS58: Kml Output ettt e e e e e s 800
Purpose L e 800
General Functionnality e 800
Output format o e e e e e e e e e e e e e e 801
Build e 801
Map . . . e e e 801
Layers o o o e 802
Styling e e e 805
Atributeso e e 805
Coordinate SYSteIM v v vt e 806
Warning and Error Messages e e 806
Testing L e e 806
Documentation e e e e e e e 806
Comments from Review period e 806
Voting History o o e e e e e e e e e 806
14.9.59 MS RFC 59: Add Variable Binding to Database Connection Types 806
Purpose L e e 807
Implementation Details oL oo 807
Backward Compatibility Issues 807

XXXii

Documentation e e e e e e e e e 807

FilesImpacted e e e e e e 808
Comments from Review period L 808
Voting History e 808
14.9.60 MS RFC 60: Labeling enhancement: ability to skip ANGLE FOLLOW labels with too much
characteroverlap 808
OVEIVIEW . . . o v v o o i e e e e e e e 808
Background e e e e 808
Experiments e e e e 809
Technical Solution L e e e e 809
Usageexampleo e 809
Backwards Compatibility Issues o e e 810
FilesImpacted e e e e e e e 810
Ticket Id L L e 810
Voting History e 810
14.9.61 MS RFC 61: Enhance MapServer Feature Style Support 811
Background e 811
Proposed New Syntax 0 e e e e e e e e e e 811
Supported Style Representations e 811
Implementation Details L 812
MapScript ISSues e e e e e e 812
Files affected o L e 812
Backwards Compatibilty Issues e e 812
Further Considerations e 812
BugID . . e e 813
Voting history e 813
14.9.62 MS RFC 62: Support Additional WFS GetFeature Output Formats 813
WES GetFeature Changes i i v i e e e e e e e e 813
WES GetCapabilities Changes o v i it e e e e e e e 813
outputFormatObj e e e e e 814
OGR OUTPUTFORMAT Declarationsot 814
OGR Renderer Implementation e 815
Geometry Types Supportedo e e 815
Attribute Field Definitions L 815
gmI_types auto e e e e e e e e e e e e 816
Use of CPL Services i e 816
Backwards Compatibilty Issues oL o 816
Security Implications e e e e 816
Further Considerations e 816
Outstanding Issues o e e e e e e 817
TeStNg . . . v e e e e e e e e e e e e e 817
Documentation e e e e e e 817
TicketId L 817
Voting hiStory o o e e e e e e e e e e e e e e e e 817
14.9.63 MS RFC 63: Built-in OpenLayers map VIEWEr v v v v v v v v v e e e e e o e o 817
OVEIVIEW v vttt e e e e 818
Implementation Details oL 818
OpenLayers Dependency 819
Files affected o e 819
Further Considerations e 819
BugID . . . e 819
Voting history L . e e e e e e e e 819
14.9.64 MS RFC 64 - MapServer Expression Parser Overhaul 819
OVEIVIEW . . . o ittt e e e e e e e e e e e 820

XXXiii

Existing Expression Parsing o 820

Proposed Technical Changes 0 i i v ittt e e e e e 820
Expression Use Elsewhere e 822
Query Impact 823
Backwards Compatibility Issues e 823
Security ISSUES L. e e 823
Todo’s . . . L L 823
BugID e 824
Voting history L . e e e e e e e e e 824
14.9.65 MS RFC 65 - Single-pass Query Changesfor 6.0 824
OVEIVIEW . . . o ittt e e e e e e e e e e e 824
Drivers that Implement msLayerResultsGetShape() 825
Proposed Techincal Changes i i ittt e 825
BugID . . e 826
Voting history e 826
14.9.66 MS RFC 66: Better handling of temporary files 826
OVEIVIEW . . . o oot o e e e e e e e e e e 826
Proposed Solution L e e e e e e 826
Purposes of temporary files 826
Filesaffected L e 827
Future enhancement Lo 827
BugID . . e 827
References e 827
Voting history o o e e e e e e e e e e 827
14.9.67 MS RFC 67: Enable/Disable Layers in OGC Web Services 828
OVEIVIEW . . . o o o i e e et e e e e e e e e e e e e 828
USECaSES .« v v v v v e e e e e e e e e e e 828
Proposed Solution L e e e e e e e 828
Inheritance e 829
Implementation notes 829
Improved handling of wms_layer_group asreal layers 830
Backwards Compatibilty Issues L 830
Tickets . . . o o e e e 830
Voting hiStory o o e e e e e e e e e e e e 830
14.9.68 MS RFC 68: Support for combining features from multiple layers 830
LLOVEIVIEW o o oo e e e e 831
2. The proposed solution L e 831
2.1 Handling the layer attributes (items)o e 832
2.2 ProjeCtions v v i e 832
2.3 Handling classes and styles e e e 832
24 QUery processing oo it e e e e e e e e e e e e 832
3. Implementation Details L o 832
3.1 Filesaffected 832
32 MapScript ISSUES o e e e e e e e e e e e e 832
3.3 Backwards Compatibilty Issues e 833
4. BugID . . . e e e 833
S5.Voting historyo 833
14.9.69 MS RFC 69: Support for clustering of features in point layers 833
LOVeIVIEW . . o o o o i e e e e e e e e e e 833
3. The proposed SOULION o v v it e e e e e e e e e e e e 833
3.1 The concept of the implementation. i 835
3.2 Handling the feature attributes (items) o e 835
3.3 Handling classesand styleso 836
34 QUery proCcessing v v it i e e e e e e e e e e e e e 836

XXXiv

4. Implementation Details e e e 836

4.1 Files affected L e e 836
42 MapScriptIssues e e e 836
4.3 Backwards Compatibilty Issues oL o L 836
5.BugID ..o e 837
6. Voting history o L e e e 837
14.9.70 MS RFC 70: Integration of TinyOWS in MapServer project. 837
LLOVEIVIEW . . o o o o ot e e e e e e e e e 837
2. The proposed solution L e 837
2.1 Keeping the cycle release independant 0. 837
22SVN L e 837
2.3 A common MapFile as configfile 838
2.4 Perspective: Packaged build system oo 838
3.Solution Detailso 838
30Naming L 838
3.1 Documentation oo e e e e e e e e e e e 838
B32LICeNCE . . . o o e e 838
B3Tickets . . . o o o 838
34 Developpers & PSC L e e 839
35SVNImport.o oo e 839
3.6 Code Convention v v v vttt e e e e e e e e e e e e e e 839
37 Redirections e e e e e e 839
3.8 Project Maturity o o e e e e e e e e e e e e e e e e e 839
4. TinyOWS Code Review o e e e e e e 839
41Code Origin. o e e e e e e e e e 839
42Code Quality 840
4.3 Security Audit e e e e 840
4.4 0GC WFS-Tcompliancy o v i i e i e e e e e e e e e e e e 840
4.5 External Dependancieso e e e e e e e e 840
4.6 MapFile notions not yetaddressed oo 840
47 Build systemo e e 841
48 Roadmap and visionl 841
5.Voting historyo e e e e 841
14.9.71 MS RFC 71: Integration of Mod-Geocache in the MapServer project 841
LLOVEIVIEW . . . o o o o e e e e e e e e e 841
1.1 The need for a tile caching solution 842
1.2 The mod-geocache project 842
1.3 Integration OVEIVIEW v b v v i ittt e e e e e e e e e 843
2. GOVEINANCE .+« v v v v v e 843
20 FindingaName L e e e e e 843
22Release Cycles o o e 843
2.3 Source Code Location i i e e e e e 843
2.4 RFCs and Decision Process 843
25L0cence e e 843
2.6Tickets . . . o o e e e 843
27SVNIMPOIt o o o o e e e e e e e e e e e e 844
3 A common MapFile as configfile 0 oL 844
3.1 LibMapfile APT o o 844
3.2 Configuration Directives L e 844
3.3 Documentationo e e e e e e e e e e e e e e e e e e 844
4.Code Review o o e e e e e 844
41Code Origin. o e e e 844
42Code Quality 844
4.3 Security Audito e e e e e 844

XXXV

4.4 External Dependancies e e e e e e e e 845

45Buildsystem e e e e e e e e e e e e e e 845
4.6IP and Patent overview L. e e e e 845
5.Voting history e 845
14.9.72 MS RFC 72: Layer and Label-Level Geomtransforms 845
LOVEIVIEW . . o o o o et e e e e e e e e e e e e 845
2. The proposed solution o i e e e e e e e 846
3. Implementation Details e 846
3.1 Filesaffected e 846
32MapScriptIssues e 846
33 Security Issues e e 847
3.4 Backwards Compatibilty Issues e 847
4.BugID . . e 847
5. Voting history L. e e e e e e e e 847
14.9.73 MS RFC 73: Improved SVG symbols support 847
OVEIVIEW . . . o ittt e e e e e e e e e e e 847
Technical Solution e 847
Existing Partial Implementation oL 848
Usageexample o i e e e e e e e e e e 848
Backwards Compatibility Issues L 848
Affected Files o L 848
Ticket Id L L e 848
Voting History o o e e e e e e e e e e e e e e 848
14.9.74 MS RFC 74: Includes from non-file connections (eg Databases) 849
LLOVEIVIEW o oo i e e e e e e e 849
2. The proposed solution L e 849
25USECASES « v v v v e e e e e e e e e e e e 850
3. Implementation Details e e e 850
3.1 Filesaffected 850
32MapScriptIssues e 850
33 Security Issues e 850
3.4 Backwards Compatibility Issues 850
4.BugID . . o e 850
5. Voting history e e e e e e e e e 850
14.9.75 MS RFEC 75: INSPIRE view Service sSupport« v v v v v v v v v v e e e oo e e 851
LLOVEIVIEW o o oo e e e e 851
2. Activation of INSPIRE support L 851
3. Multi-language support for certain capabilities fields 852
4. Provision of INSPIRE specific metadata 853
5. Named group layers L e e e e e e e 854
6. Style section for root layer and possibly existing group layers 854
7. Implementation details 0oL Lo 856
7.1 Files affected L 856
T2MapSCriptiSSUCS . o v v v v v v e 857
7.3 Backwards compatibility issueso o e e e e e 857
8.Solution e 857
0. TestS . . o e e e e e e 858
10. Voting history o o i e e 858
14.9.76 MS RFC 76: Adding License Metadata to Output Images 858
LLOVEIVIEW . . . o o o o e 858
2. Proposed Technical Change e 859
2.1.Driver SUPpOrt e e e e 859
2.2. Map File Configuration 859
2.3. Build Configurationo e e e 861

XXXVi

3. Implementation Details e e e 861

3.1.Files Affected e e 861
32.BuglID .. 861
33.Documentation e e e e e e e 861
4.Enhancements e e e e e e 861
5.Voting history e e e e 861
14.9.77 MS RFC 77: Support for Multiple Label Objects WithinaClass 862
LLOVEeIVIEW . . . o o o oo e 862
2. Proposed Technical Change 862
2.1 Core Object Changes i it 862
2.2 Label Rendering Changes i 863
2.2.1 Pointand Polygon Labels e 863
222LineLabels e 863
23 MapSCript. . . o o e e e e e e e e e e e 863
3. Implementation Details L o 863
3.1. Files Affected oL 863
3.2 Documentation Changes L e e 864
33BuglID ..o 864
4 Configuration Examples L. e 864
5. Backwards Compatibility 864
5.1 Relationship to Other Outstanding Label Bugs 864
6. Enhancements L e e 865
7. Voting history e e e e e e e e e e e e e 865
14.9.78 MS RFC 78: Vector Field Rendering (CONNECTIONTYPE UVRASTER) 865
LLOVEervIEeW . . . o o o oo e 865
2. The proposed solution L e 866
3. Implementation Details e 867
3.1 Filesaffected e 867
B32MapSCript. . o o o e e e e e e e e e e e e 867
3.4 Backwards Compatibilty Issues L 867
4.BuglID . . . 868
5.Voting history e e e 868
14.9.79 MS RFC 79: Layer Masking ittt 868
LLOVEIVIEW . . . o o oo e 868
2. Proposed solution e e e e 868
3. Implementation Details 869
3.1 Filesaffected 869
B2MapSCript . . . o o e e e e e e 870
3.4 Backwards Compatibilty Issues e 870
4.LIMItAtionso e e e 870
S.ErrorHandling e e 870
6.BugID e e 870
7.Voting history e e e e 870
14.9.80 MS RFC 80: Font Fallback Support i 870
O 1 871
2. Proposed Technical Change 871
2.1 Core Object Changes i ittt e 871
2.2 Label Rendering Changes 871
2.3 MapSCript. . o o e e e e e e e e e e e e e e e e e e e 871
3. Implementation Details e e e 871
3.1.Files Affected e 872
32BuglID . . e e 872
4. Backwards compatibility issues Lo oL 872
S.Errorreportingo e e e e e e 872

XXXVii

6. Example Usage i i e e e e e e e e e e 873

7.Voting history e e e e e e e e 873
14.9.81 MS RFC 81: Offset Labels with Leader Lines 873
LLOVEIVIEW o oo i e e e 873

2. Proposed Technical Change 874

20 EXpected iSSUCS « . . v v v i e e e e e e e e e e e e 876

3. Implementation Details e e e 876
3.1.Files Affected e 876
32BuglID . . e e e 876

4. Backwards compatibility issues Lo oL 877
S.Errorreportingo e e e e e e 877

6. Example Usage i e e e e e e e e e e 877
7.Voting history e e e e e e e e e 877
14.9.82 MS RFC 82: Support for Enhanced Layer Metadata Management 877
OVEIVIEW . . . o o o i e e e e e e e e e e e e e e e e e 877
Technical Solution e e 878
Testing e e e e e e 879
Documentation e e 879
Backwards Compatibility Issues o 879
Affected Files o L 879
TicketId L 880
Voting History o o o e e e e e 880
14.9.83 MS RFC 83: Source tree reorganization v v v v v v v v e e e e 880
LLOVEeIVIEW . . . o o oo o e 880

2. Current directory StrUCtUI®t v v it e e e e e e e e e 880

3. New proposed directory Structure oo 881

4. Backwards Compatibilty Issues L 882
S.BuglID ..o 882

6. Voting history o L e e e e e e e e 882
14.9.84 MS RFC 84: Migrate project repository fromsvntogit 882
LLOVEIVIEW . . o o o i ot e e e e e e e e e e e e e e e e e e e 883

2. Github hosting e 883
3.GIEWorflows . . L e e 884

4. Upgrade path for SVN USers o o i e e e e e e e 884
S.Tasks .« oo o 885

6. BugID e 885

6. Voting history L 885

14.10 Mapfile Editing L e 885
14.10.1 VIM Syntax o ittt e e e et e e e e e e e e e 885
General remarks 886
Installation e 886
Folding e 886
Closing Remarks e 887

14.11 External Links o e e 887
15 Download 889

15.1 Source

15.2

.. 889
15.1.1 Current Release(S) o 0 e e e e e e e e 889
15.1.2 Development Releases i i i e e e e 889
15.1.3 PastReleases e e e e e e e e e e e e e e e e 889
15.1.4 Development Source e 889
Documentation e e e e e e e e e e e 890
152.1 CurrentRelease e e e e e 890
15.2.2 PreviousReleases e e e e e 890

XXXViii

153 BINaries o o v o e e e e e e e e e 890

1531 WINdows o e 890
1532 LinUXo e e e e 890
1533 MacOS X . . . o oo e e e e e 891
15.4 Demo Application L L e e e 891
16 Environment Variables 893
17 Glossary 897
18 Errors 901
18.1 drawEPP(): EPPL7 supportisnotavailable 901
18.1.1 Explanation v e e e e e e e e e e e e e e e e 901
18.2 loadLayer(): Unknown identifier. Maximum number of classes reached 901
18.3 loadMaplnternal(): Given map extentisinvalid oL 902
18.3.1 Howto getafile’s EXTENT values? 902
18.4 msGetLabelSize(): Requested fontnotfound oL oL 903
18.5 msLoadFontset(): Error opening fontset e 903
18.6 msLoadMap(): Failedtoopenmapfile 903
18.7 msProcessProjection(): no options found in ‘init’ fileo 903
18.8 msProcessProjection(): No such file or directory oL oo 904
18.8.1 Setting the location of theepsgfile 904
18.9 msProcessProjection(): Projection library error.major axis or radius =0notgiven 904
18.9.1 Valid Examples o . e e e e e e e e e e 904
18.10 msQueryByPoint: search returned noresults Lo oL 905
18.11 msReturnPage(): Web application error. Malformed template name 905
18.12 msSavelmageGD(): Unable toaccessfile 906
18.13 msWMSLoadGetMapParams(): WMS server error. Image Size out of range, WIDTH and HEIGHT
must be between 1 and 2048 pixels L. e e e e 906
18.14 Unable to load dIl (MapScript) o o e e e e e e e e e e e 906
18.14.1 C#t-specificinformation L e 906
19 FAQ 907
19.1 Where is the MapServer log file? e e 907
19.2 What books are available about MapServer? L 0. 907
19.3 How do I compile MapServer for Windows? 907
19.4 What do MapServer version numbers mean?t 907
19.5 TIs MapServer Thread-safe? o e e e e e 908
19.6 What does STATUS meanina LAYER? 909
19.7 How can I make my maps run faster? L. 909
19.8 What does Polyline mean in MapServer? 909
19.9 Whatis MapScript? e e e 910
19.10 Does MapServer support reverse geocoding? L. oo 910
19.11 Does MapServer support geocoding? L e e e e e e e 910
19.12 How do I'set line width in my maps? 910
19.13 Why do my JPEG input images look crappy via MapServer? 911
19.14 Which image format should Tuse? L 911
19.15 Why doesn’t PIL (Python Imaging Library) open my PNGs? 911
19.16 Why do my symbols look poor in JPEG output? 912
19.17 How do I add a copyright notice on the cornerof my map? 912
19.17.1 Example Layer e 912
19.17.2 Result o oo e e e e e e 913
19.18 How do I have a polygon that has both a fill and an outline witha width? 913
19.19 How can I create simple antialiased line features? 914
19.20 Which OGC Specifications does MapServer support? v v v vt v v 915

19.21 Why does my requested WMS layer not align correctly? 915

19.22 When I do a GetCapabilities, why does my browser want to download mapserv.exe/mapserv? 916
19.23 Why do my WMS GetMap requests return exception using MapServer 5.07 916
19.24 Using MapServer 6.0, why don’t my layers show up in GetCapabilities responses or are not found
ANYMOTE? L oL L e e e 917
19.25 Wheredo I find my EPSG code? o o i i i i it 917
19.26 How can I reproject my data using 0gr208r? o v v i v v e e e e e e e 917
19.27 How can I help improve the documentation on this site? 918
19.28 What’s with MapServer’s logo? L 918
20 License 919
21 Credits 921
Bibliography 923
Index 925

x|

MapServer Documentation, Release 6.0.3

I
Note: The entire documentation is also available as a single PDF document = and ePub document

If you plan on upgrading to the MapServer 6.0 release, be sure to review the MapServer Migration Guide.

Table 1: Quick Links

An Introduction to MapServer Installation Mapfile

MapScript Data Input Output Generation

OGC Support and Configuration | Optimization | Utilities

Development Glossary Errors

genindex About Community Activities
Contents

MapServer Documentation, Release 6.0.3

2 Contents

CHAPTER 1

About

MapServer is an Open Source geographic data rendering engine written in C. Beyond browsing GIS data, MapServer
allows you create “geographic image maps”, that is, maps that can direct users to content. For example, the Minnesota
DNR Recreation Compass provides users with more than 10,000 web pages, reports and maps via a single application.
The same application serves as a “map engine” for other portions of the site, providing spatial context where needed.

MapServer was originally developed by the University of Minnesota (UMN) ForNet project in cooperation with
NASA, and the Minnesota Department of Natural Resources (MNDNR). Later it was hosted by the TerraSIP project,
a NASA sponsored project between the UMN and a consortium of land management interests.

MapServer is now a project of OSGeo, and is maintained by a growing number of developers (nearing 20) from
around the world. It is supported by a diverse group of organizations that fund enhancements and maintenance,
and administered within OSGeo by the MapServer Project Steering Committee made up of developers and other
contributors.

* Advanced cartographic output

Scale dependent feature drawing and application execution

Feature labeling including label collision mediation

Fully customizable, template driven output

TrueType fonts

Map element automation (scalebar, reference map, and legend)

Thematic mapping using logical- or regular expression-based classes
* Support for popular scripting and development environments
— PHP, Python, Perl, Ruby, Java, and .NET
* Cross-platform support
— Linux, Windows, Mac OS X, Solaris, and more
* Support of numerous Open Geospatial Consortium (OGC) standards

— WMS (client/server), non-transactional WES (client/server), WMC, WCS, Filter Encoding, SLD, GML,
SOS, OM

¢ A multitude of raster and vector data formats

— TIFF/GeoTIFF, EPPL7, and many others via GDAL

http://www.opensource.org
http://www.dnr.state.mn.us/maps/compass.html
http://www.osgeo.org

MapServer Documentation, Release 6.0.3

— ESRI shapfiles, PostGIS, ESRI ArcSDE, Oracle Spatial, MySQL and many others via OGR
* Map projection support

— On-the-fly map projection with 1000s of projections through the Proj.4 library

4 Chapter 1. About

CHAPTER 2

An Introduction to MapServer

Revision $Revision$

Date $Date$

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com
Author David Fawcett

Contact david.fawcett at moea.state.mn.us
Author Howard Butler

Contact hobu.inc at gmail.com

Contents

* An Introduction to MapServer

— MapServer Overview
Anatomy of a MapServer Application
Installation and Requirements
Introduction to the Mapfile
Making the Site Your Own
Enhancing your site
How do I get Help?

2.1 MapServer Overview

MapServer is a popular Open Source project whose purpose is to display dynamic spatial maps over the Internet. Some
of its major features include:

* support for display and querying of hundreds of raster, vector, and database formats
* ability to run on various operating systems (Windows, Linux, Mac OS X, etc.)
* support for popular scripting languages and development environments (PHP, Python, Perl, Ruby, Java, .NET)

* on-the-fly projections

MapServer Documentation, Release 6.0.3

* high quality rendering
« fully customizable application output
* many ready-to-use Open Source application environments

In its most basic form, MapServer is a CG/ program that sits inactive on your Web server. When a request is sent to
MapServer, it uses information passed in the request URL and the Mapfile to create an image of the requested map.
The request may also return images for legends, scale bars, reference maps, and values passed as CGI variables.

See Also:
The Glossary contains an overview of many of the jargon terms in this document.

MapServer can be extended and customized through MapScript or templating. It can be built to support many different
vector and raster input data formats, and it can generate a multitude of ouput formats. Most pre-compiled MapServer
distributions contain most all of its features.

See Also:
Compiling on Unix and Compiling on Win32

Note: MapScript provides a scripting interface for MapServer for the construction of Web and stand-alone appli-
cations. MapScript can be used independently of CGI MapServer, and it is a loadable module that adds MapServer
capability to your favorite scripting language. MapScript currently exists in PHP, Perl, Python, Ruby, Tcl, Java, and
.NET flavors.

This guide will not explicitly discuss MapScript, check out the MapScript Reference for more information.

2.2 Anatomy of a MapServer Application

A simple MapServer application consists of:

* Map File - a structured text configuration file for your MapServer application. It defines the area of your map,
tells the MapServer program where your data is and where to output images. It also defines your map layers,
including their data source, projections, and symbology. It must have a .map extension or MapServer will not
recognize it.

See Also:
MapServer Mapfile Reference

* Geographic Data - MapServer can utilize many geographic data source types. The default format is the ESRI
Shape format. Many other data formats can be supported, this is discussed further below in Adding data to your
site.

See Also:
Vector Input Reference and Raster Input Reference

« HTML Pages - the interface between the user and MapServer . They normally sit in Web root. In it’s simplest
form, MapServer can be called to place a static map image on a HTML page. To make the map interactive, the
image is placed in an HTML form on a page.

CGI programs are ‘stateless’, every request they get is new and they don’t remember anything about the last time
that they were hit by your application. For this reason, every time your application sends a request to MapServer,
it needs to pass context information (what layers are on, where you are on the map, application mode, etc.) in
hidden form variables or URL variables.

A simple MapServer CGI application may include two HTML pages:

6 Chapter 2. An Introduction to MapServer

MapServer Documentation, Release 6.0.3

Figure 2.1: The basic architecture of MapServer applications.

2.2. Anatomy of a MapServer Application 7

MapServer Documentation, Release 6.0.3

— Initialization File - uses a form with hidden variables to send an initial query to the web server and
MapServer. This form could be placed on another page or be replaced by passing the initialization infor-
mation as variables in a URL.

— Template File - controls how the maps and legends output by MapServer will appear in the browser. By
referencing MapServer CGI variables in the template HTML, you allow MapServer to populate them with
values related to the current state of your application (e.g. map image name, reference image name, map
extent, etc.) as it creates the HTML page for the browser to read. The template also determines how the
user can interact with the MapServer application (browse, zoom, pan, query).

See Also:
Templating

* MapServer CGI - The binary or executable file that receives requests and returns images, data, etc. It sits in the
cgi-bin or scripts directory of the web server. The Web server user must have execute rights for the directory that
it sits in, and for security reasons, it should not be in the web root. By default, this program is called mapserv

* Web/HTTP Server - serves up the HTML pages when hit by the user’s browser. You need a working Web
(HTTP) server, such as Apache or Microsoft Internet Information Server, on the machine on which you are
installing MapServer.

2.3 Installation and Requirements

2.3.1 Windows Installation
0OSGeo4W is a new Windows installer that downloads and/or updates MapServer, add-on applications, and also other
Open Source geospatial software. The following steps illustrate how to use OSGeo4W:

1. Download OSGeo4W http://download.osgeo.org/osgeo4w/osgeodw-setup.exe

2. Execute (double-click) the .exe

3. Choose “Advanced” install type

8 Chapter 2. An Introduction to MapServer

http://httpd.apache.org
http://download.osgeo.org/osgeo4w/osgeo4w-setup.exe

MapServer Documentation, Release 6.0.3

0SGeod W Setup =5 EoR| =%

05Geod4W Net Release Setup Program

This setup program ig used for the initial installation of the 05GeodW environment as
well as all subsequent updates. Make sure to remember where you saved it.

The pages that follow will guide you through the installation. Please note that
05GeodW consists of a large number of packages spanning a wide variety of
purposes. We only install a base set of packages by default. You can always run
thiz program at any time in the future to add, remove, or upgrade packages as
nEecessary.

@ Express Install

(71 Advanced Install

()

(u1]

)
X

| Ned> || Cancel

Note: Express contains options for higher-level packages such as MapServer, GRASS, and uDig. Advanced
gives you full access to choosing commandline tools and applications for MapServer that are not included in the
Express install

4. Select packages to install

2.3. Installation and Requirements 9

MapServer Documentation, Release 6.0.3

£

Select Packages
Select packages to install

[O5GecdW Setup - Select Packages

ESEa
&

TikKeep T)Prev @ Cur O Bep Categnr'_.f

m

Category New B. 5. BSize Package
Commandline_Ltilties 4% Default
Desktop 4% Default
Libs &¥ Default
B Web 4% Defauk
&2 281 njia 1.59% apache: Apache Web Server
&% Skip nin nfa ? apache-manual: Apache Web Server (manual)
5021 O 543k mapserver: A CGl Web Map Server, including a vanety of 0 —
&% Skip nin nin 7 mapserverdev: A CGl Web Map Server, including a variety
45251 njin 6,287 php: PHP Interpreter for Apache)
5021 njin 73 php_mapscript: Mapscript extension for PHP
& Skip nja nfa ? php_mapscript-dev: Mapscript exdension for PHP {dev)
B Web_Applications &% Default
&% Skip nja - nfa ? chameleon: Chameleon Application Development Environme
&*1.0.31 nja B2 M fusion: Fusion MapServer Demo
& 501 njn 2 756k gmap: GMap PHP/MapScript demo application
4| B m - o = B 3
Hide obsolete packages

| <Back || MNet> | [cancel

Note: Click on the “Default” text beside the higher-level packages (such as Web) to install all of Web’s sub-
packages, or click on the “Skip” text beside the sub-package (such as MapServer) to install that package and all

of its dependencies.

5. Let the installer fetch the packages.

10

Chapter 2. An Introduction to MapServer

MapServer Documentation, Release 6.0.3

4% - Cygwin Setup =N [EER (X .

Progress)
This page displays the progress of the download ar installation. ¥,

Downloading...
gdal-1.5.0-3 tar bzZ from http://download osgeo org/osgeodw, ...
41 % (876k/2136k) 99.4 kb/s

Package: — |
Tatal: " .

Diske: L] I

< Back Next

6. Run the apache-install.bat script to install the Apache Service.

Note: You must run this script under the “OSGeo4W Shell”. This is usually available as a shortcut on your
desktop

Note: An apache-uninstall.bat script is also available to remove the Apache service installation.

7. Start Apache from the OSGeo4W shell and navigate to http://127.0.0.1

apache-restart.bat

2.3. Installation and Requirements 11

http://127.0.0.1

MapServer Documentation, Release 6.0.3

& 05GecdW - 05Geo for Windows - Mazilla Firefox =n e =

File Edit View History Bookmarks Tools Help

@ D @ L @ [0 ooy [~[] [Glcoc: oy
- 1

%J/OSGeo

0SGeodW - OSGeo for Windows

Installed Web Applications and Features
There are currently 5 osgeodw applications installed.
Apache 2.2.8:
Manual
Fusion MapServer Demo

Fusion MapSenver Demo

OpenLayers 2.5:

Examples

m

Done

8. Verify that MapServer is working

12

Chapter 2. An Introduction to MapServer

MapServer Documentation, Release 6.0.3

/2 btk 120,00, fcgi-bin/mapsery.exe - Windows Intermet Explorers =10 x|

—

Ko = [vpeiiien.00.1jcg-bnjmapsery exe =] % % £ -
r »

W Ehpeif127.0.0.1 fog-binjmapssrv.exe | | fi -) - = - - Page = () Todk ~

No query mformation to decode. QUERY_STRING is set, but empty.

[v G Imernat A0 -

2.3.2 Hardware Requirements

MapServer runs on Linux, Windows, Mac OS X, Solaris, and more. To compile or install some of the required pro-
grams, you may need administrative rights to the machine. People commonly ask questions about minimum hardware
specifications for MapServer applications, but the answers are really specific to the individual application. For devel-
opment and learning purposes, a very minimal machine will work fine. For deployment, you will want to investigate
Optimization of everything from your data to server configuration.

2.3.3 Software Requirements

You need a working and properly configured Web (HTTP) server, such as Apache or Microsoft Internet Information
Server, on the machine on which you are installing MapServer. OSGeo4W contains Apache already, but you can
reconfigure things to use IIS if you need to. Alternatively, MS4W can be used to install MapServer on Windows.

If you are on a Windows machine, and you don’t have a web server installed, you may want to check out MS4W, which
will install a pre-configured web server, MapServer, and more. The FGS Linux Installer provides similar functionality
for several Linux distributions.

This introduction will assume you are using pre-compiled OSGeo4W Windows binaries to follow along. Obtaining
MapServer or Linux or Mac OS X should be straightforward. Visit Download for installing pre-compiled MapServer
builds on Mac OS X and Linux.

You will also need a Web browser, and a text editor (vi, emacs, notepad, homesite) to modify your HTML and mapfiles.

2.3. Installation and Requirements 13

http://httpd.apache.org/
http://www.maptools.org/ms4w/index.phtml
http://www.maptools.org/ms4w/index.phtml
http://www.maptools.org/fgs/

MapServer Documentation, Release 6.0.3

2.3.4 Skills

In addition to learning how the different components of a MapServer application work together and learning Map File
syntax, building a basic application requires some conceptual understanding and proficiency in several skill areas.

You need to be able to create or at least modify HTML pages and understand how HTML forms work. Since the
primary purpose of a MapServer application is to create maps, you will also need to understand the basics of geographic
data and likely, map projections. As your applications get more complex, skills in SQL, DHTML/Javascript, Java,
databases, expressions, compiling, and scripting may be very useful.

2.4 Introduction to the Mapfile

The .map file is the basic configuration file for data access and styling for MapServer. The file is an ASCII text file,
and is made up of different objects. Each object has a variety of parameters available for it. All .map file (or mapfile)
parameters are documented in the mapfile reference. A simple mapfile example displaying only one layer follows, as
well as the map image output:

MAP
NAME "sample"
STATUS ON
SIZE 600 400
SYMBOLSET "../etc/symbols.txt"
EXTENT -180 -90 180 90
UNITS DD
SHAPEPATH "../data"
IMAGECOLOR 255 255 255
FONTSET "../etc/fonts.txt"

#
Start of web interface definition
#
WEB
IMAGEPATH "/msdw/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"
END # WEB

#
Start of layer definitions
#
LAYER
NAME ’'global-raster
TYPE RASTER
STATUS DEFAULT
DATA |b|l|u|le|m|a|r|bj|le.gif
END # LAYER
END # MAP

Note:
* Comments in a mapfile are specified with a ‘#° character

* MapServer parses mapfiles from top to bottom, therefore layers at the end of the mapfile will be drawn last
(meaning they will be displayed on top of other layers)

* Using relative paths is always recommended

* Paths should be quoted (single or double quotes are accepted)

14 Chapter 2. An Introduction to MapServer

http://www.w3.org/MarkUp/Guide/

MapServer Documentation, Release 6.0.3

Figure 2.2: Rendered Bluemarble Image

* The above example is built on the following directory structure:

— The mapfile could be placed anywhere, as long as it is accessible to the web server. Normally, one
would try to avoid placing it at a location that makes it accessible on the web. Let us say it is placed
in /home/msuser/mapfiles/

— The location of the font file is given relative to the map file, in this case: /home/msuser/etc/fonts.txt

— The location of the datasets (bluemarble.gif) is given relative to the map file, in this case:
/home/msuser/data/

— The location of the symbol file is given relative to the map file, in this case: /home/msuser/etc/symbols.txt

— The files generated by MapServer will be placed in the directory /ms4w/tmp/ms_tmp/. The web
server must be able to place files in this directory. The web server must make this directory avail-
able as /ms_tmp (if the web server is on www.ms.org, the web address to the directory must be:
httpd://www.ms.org/ms_tmp/.

2.4.1 MAP Object

MAP
NAME "sample"
EXTENT -180 -90 180 90 # Geographic
SIZE 800 400
IMAGECOLOR 128 128 255
END # MAP

¢ EXTENT is the output extent in the units of the output map
 SIZE is the width and height of the map image in pixels
* IMAGECOLOR is the default image background color

2.4. Introduction to the Mapfile 15

MapServer Documentation, Release 6.0.3

Note: MapServer currently uses a pixel-center based extent model which is a bit different from what GDAL or WMS
use.

2.4.2 LAYER Object

* starting with MapServer 5.0, there is no limit to the number of layers in a mapfile
* the DATA parameter is relative to the SHAPEPATH parameter of the MAP object

* if no DATA extension is provided in the filename, MapServer will assume it is ESRI Shape format (.shp)

Raster Layers

LAYER

NAME "bathymetry"

TYPE RASTER

STATUS DEFAULT

DATA "bath_mapserver.tif"
END # LAYER

See Also:

Raster Data

Vector Layers

Vector layers of TYPE point, line, or polygon can be displayed. The following example shows how to display only
lines from a TYPE polygon layer, using the OUTLINECOLOR parameter:

LAYER
NAME "world_poly"
DATA ’shapefile/countries_area.shp’
STATUS ON
TYPE POLYGON
CLASS
NAME ’'The World’
STYLE
OUTLINECOLOR O 0 O
END # STYLE
END # CLASS
END # LAYER

See Also:

Vector Data

2.4.3 CLASS and STYLE Objects

* typical styling information is stored within the CLASS and STYLE objects of a LAYER
* starting with MapServer 5.0, there is no limit to the number of classes or styles in a mapfile

* the following example shows how to display a road line with two colors by using overlayed STYLE objects

16 Chapter 2. An Introduction to MapServer

MapServer Documentation, Release 6.0.3

Figure 2.3: Rendered Bluemarble image with vector boundaries

CLASS
NAME "Primary Roads"
STYLE
SYMBOL "circle"
COLOR 178 114 1

SIZE 15
END # STYLE
STYLE

SYMBOL "circle"
COLOR 254 161 0
SIZE 7
END # STYLE
END # CLASS

2.4.4 SYMBOLs

* can be defined directly in the mapfile, or in a separate file
¢ the separate file method must use the SYMBOLSET parameter in the MAP object:

MAP
NAME "sample"
EXTENT -180 -90 180 90 # Geographic
SIZE 800 400
IMAGECOLOR 128 128 255
SYMBOLSET "../etc/symbols.txt"
END # MAP

where symbols.txt might contain:

SYMBOL
NAME "ski"

2.4. Introduction to the Mapfile 17

MapServer Documentation, Release 6.0.3

Figure 2.4: Rendered Bluemarble image with styled roads

18 Chapter 2. An Introduction to MapServer

MapServer Documentation, Release 6.0.3

TYPE PIXMAP
IMAGE "ski.png"
END # SYMBOL

and the mapfile would contain:

LAYER
CLASS
NAME "Ski Area"
STYLE
SYMBOL "ski"
END # STYLE

END # CLASS
END # LAYER

Figure 2.5: Rendered Bluemarble image with skier symbol

See Also:

Cartographical Symbol Construction with MapServer, Symbology Examples, and SYMBOL

2.4.5 LABEL

¢ defined within a CLASS object

* the LABELITEM parameters in the LAYER object can be used to specify an attribute in the data to be used for
labeling. The label is displayed by the FONT, declared in the FONTSET file (set in the MAP object). The

2.4. Introduction to the Mapfile

19

MapServer Documentation, Release 6.0.3

FONTSET file contains references to the available font names. ENCODING describes which encoding is used
in the file (see Display of International Characters in MapServer).

An example LABEL object that references one of the above fonts might look like:

LABEL

FONT "sans—-bold"

TYPE truetype

ENCODING "UTE-8"

SIZE 10

POSITION LC

PARTIALS FALSE

COLOR 100 100 100

OUTLINECOLOR 242 236 230
END # LABEL

Figure 2.6: Rendered Bluemarble image with skier symbol and a label

See Also:
LABEL, FONTSET

2.4.6 CLASS Expressions

MapServer supports three types of CLASS Expressions in a LAYER (CLASSITEM in LAYER determines the attribute
to be used for the two first types of expressions):

1. String comparisons

20 Chapter 2. An Introduction to MapServer

MapServer Documentation, Release 6.0.3

EXPRESSION "africa"
2. Regular expressions

EXPRESSION /"~9]710/

3. Logical expressions

EXPRESSION ([POPULATION] > 50000 AND ’ [LANGUAGE]’ eqg ’'FRENCH’)

Note: Logical expressions should be avoided wherever possible as they are very costly in terms of drawing time.

See Also:

Expressions

2.4.7 INCLUDE

Added to MapServer 4.10, any part of the mapfile can now be stored in a separate file and added to the main mapfile
using the INCLUDE parameter. The filename to be included can have any extension, and it is always relative to the
main .map file. Here are some potential uses:

* LAYERs can be stored in files and included to any number of applications

e STYLEs can also be stored and included in multiple applications
The following is an example of using mapfile includes to include a layer definition in a separate file:
If ‘shadedrelief.lay’ contains:

LAYER

NAME ’'shadedrelief’

STATUS ON

TYPE RASTER

DATA ’'GLOBALeb3colshade. jpg’
END # LAYER

therefore the main mapfile would contain:

MAP
INCLUDE "shadedrelief.lay"
END # MAP

The following is an example of a mapfile where all LAYER s are in separate .lay files, and all other objects (WEB,
REFERENCE, SCALEBAR, etc.) are stored in a ”.ref” file:

MAP
NAME "base"
#
include reference objects
#
INCLUDE "../templates/template.ref"
#
Start of layer definitions
#
INCLUDE "../layers/usa/usa_outline.lay"
INCLUDE "../layers/canada/base/lm/provinces.lay"

2.4. Introduction to the Mapfile 21

MapServer Documentation, Release 6.0.3

INCLUDE "../layers/canada/base/lm/roads_atlas_of_canada_lm.lay"
INCLUDE "../layers/canada/base/Ilm/roads_atlas_of_canada_lm_shields.lay"
INCLUDE "../layers/canada/base/lm/populated_places.lay"

END # MAP

Warning: Mapfiles must have the .map extension or MapServer will not recognize them. Include files can have
any extension you want, however.

See Also:
INCLUDE

2.4.8 Get MapServer Running

You can test if MapServer is working by running the MapServer executable (mapserv) with the -v parameter on the
command line (./mapserv -v). Depending on your configuration, the output could be something like this:

MapServer version 6.0.1 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG
SUPPORTS=PROJ SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=ICONV
SUPPORTS=WMS_SERVER INPUT=SHAPEFILE

You can also send a HTTP request directly to the MapServer CGI program without passing any configuration vari-
ables (e.g. http://your.domain.name/cgi-bin/ms4/mapserv.exe). If you receive the message, ‘No query information to
decode. QUERY_STRING not set.’, your installation is working.

2.4.9 Get Demo Running

Download the MapServer Demo. UnZip it and follow the directions in ReadMe.txt. You will need to move the demo
files to their appropriate locations on your web server, and modify the Map File and HTML pages to reflect the paths
and URLs of your server. Next, point your browser to init.html and hit the ‘initialize button’. If you get errors, verify
that you have correctly modified the demo files.

2.5 Making the Site Your Own

Now that you have a working MapServer demo, you can use the demo to display your own data. Add new LAYERS to
your Map file that refer to your own geographic data layers (you will probably want to delete the existing layers or set
their status to OFF).

Unless you are adding layers that fall within the same geographic area as the demo, modify MAP EXTENT to match
the extent of your data. To determine the extent of your data, you can use ogrinfo. If you have access to a GIS, you
could use that as well. The MAP EXTENT needs to be in the units of your output projection.

If you add geographic data layers with different geographical reference systems, you will need to modify your Map
File to add a PROJECTION block to the MAP (defines the output projection / geographical reference system) and each
of the LAYERs (defines the geographical reference system of the layer dataset).

2.5.1 Adding Data to Your Site

MapServer supports several data input formats ‘natively’, and many more if it is compiled with the open source
libraries GDAL and OGR.

22 Chapter 2. An Introduction to MapServer

http://your.domain.name/cgi-bin/ms4/mapserv.exe
http://maps.dnr.state.mn.us/mapserver_demos/workshop-5.4.zip
http://www.gdal.org/ogrinfo.html

MapServer Documentation, Release 6.0.3

2.5.2 Vector Data

Vector data includes features made up of points, lines, and polygons. MapServer support the ESRI Shape format by
default, but it can be compiled to support spatially enabled databases such as PostgreSQL-PostGIS, and file formats
such as Geography Markup Language (GML), Maplnfo, delimited text files, and more formats with OGR.

See the Vector Data reference for examples on how to add different geographic data sources to your MapServer project.

2.5.3 Raster Data

Raster data is image or grid data. By default, MapServer supports Tiff/GeoTiff, and EPPL7. With GDAL, it supports
GRASS, Jpeg2000, ArcInfo Grids, and more formats. If you do compile MapServer with GDAL, which includes tiff
support, do not compile with native tiff support, as this will cause a conflict. More specific information can be found
in the Raster Data reference.

2.5.4 Projections

Because the earth is round and your monitor (or paper map) is flat, distortions will occur when you display geographic
data in a two-dimensional image. Projections allow you to represent geographic data on a flat surface. In doing
so, some of the original properties (e.g. area, direction, distance, scale or conformity) of the data will be distorted.
Different projections excel at accurately portraying different properties. A good primer on map projections can be
found at the University of Colorado.

With MapServer, if you keep all of your spatial data sets in the same projection (or unprojected Latitude and Longi-
tude), you do not need to include any projection info in your Map File. In building your first MapServer application,
this simplification is recommended.

On-the-fly projection can be accomplished when MapServer is compiled with Proj.4 support. Instructions on how to
enable Proj.4 support on Windows can be found on the Wiki.

2.6 Enhancing your site

2.6.1 Adding Query Capability

There are two primary ways to query spatial data. Both methods return data through the use of templates and CGI
variable replacement. A QUERYMAP can be used to map the results of the query.

To be queryable, each mapfile LAYER must have a TEMPLATE defined, or each CLASS within the LAYER must have a
TEMPLATE defined. More information about the CGI variables used to define queries can be found in the MapServer
CGI Reference.

2.6.2 Attribute queries

The user selects features based on data associated with that feature. ‘Show me all of the lakes where depth is greater
than 100 feet’, with ‘depth’ being a field in the Shape dataset or the spatial database. Attribute queries are accomplished
by passing query definition information to MapServer in the URL (or form post). Mode=itemquery returns a single
result, and mode=itemnquery returns multiple result sets.

The request must also include a QLAYER, which identifies the layer to be queried, and a QSTRING which contains
the query string. Optionally, QITEM, can be used in conjunction with QSTRING to define the field to be queried.
Attribute queries only apply within the EXTENT set in the map file.

2.6. Enhancing your site 23

http://postgis.refractions.net/
http://en.wikipedia.org/wiki/Geography_Markup_Language
http://www.mapinfo.com/
http://www.gdal.org/
http://www.gdal.org/formats_list.html
http://www.colorado.edu/geography/gcraft/notes/mapproj/mapproj_f.html
https://github.com/mapserver/mapserver/wiki/WindowsProjHowto

MapServer Documentation, Release 6.0.3

2.6.3 Spatial queries

The user selects features based on a click on the map or a user-defined selection box. Again the request is passed
through a URL or form post. By setting mode=QUERY, a user click will return the one closest feature. In
mode=NQUERY, all features found by a map click or user-defined selection box are returned. Additional query
options can be found in the CG/ documentation.

2.6.4 Interfaces

See: OpenLayers http://openlayers.org

2.6.5 Data Optimization

Data organization is at least as important as hardware configuration in optimizing a MapServer application for perfor-
mance. MapServer is quite efficient at what it does, but by reducing the amount of processing that it needs to do at the
time of a user request, you can greatly increase performance. Here are a few rules:

Index Your data - By creating spatial indexes for your Shape datasets using shptree. Spatial indexes should
also be created for spatially aware databases such as PostGIS and Oracle Spatial.

Tile Your Data - Ideally, your data will be ‘sliced up’ into pieces about the size in which it will be displayed.
There is unnecessary overhead when searching through a large Shape dataset or image of which you are only
going to display a small area. By breaking the data up into tiles and creating a tile index, MapServer only
needs to open up and search the data files of interest. Shape datasets can be broken into smaller tiles and then a
tileindex Shape dataset can be created using the file4ms utility. A tileindex Shape dataset for raster files can also
be created.

Pre-Classify Your Data - MapServer allows for the use of quite complex EXPRESSIONSs to classify data.
However, using logical and regular expressions is more resource intensive than string comparisons. To increase
efficiency, you can divide your data into classes ahead of time, create a field to use as the CLASSITEM and
populate it with a simple value that identifies the class, such as 1,2,3, or 4 for a four class data set. You can then
do a simple string comparison for the class EXPRESSION.

Pre-Process Your Images - Do resource intensive processing up front. See the Raster Data reference for more
info.

Generalize for Overview - create a more simple, generalized data layer to display at small scales, and then use
scale-dependent layers utilizing LAYER MINSCALE and LAYER MAXSCALE to show more detailed data layers
as the user zooms in. This same concept applies to images.

See Also:

Optimization

2.7

How do | get Help?

2.7.1 Documentation

Official MapServer documentation lives here on this site.

User contributed documentation exists on the MapServer Wiki.

24

Chapter 2. An Introduction to MapServer

http://openlayers.org
https://github.com/mapserver/mapserver/wiki/

MapServer Documentation, Release 6.0.3

2.7.2 Users Mailing List

Register and post questions to the MapServer Users mailing list. Questions to the list are usually answered quickly
and often by the developers themselves. A few things to remember:

1. Search the archives for your answer first, people get tired of answering the same questions over and over.

2. Provide version and configuration information for your MapServer installation, and relevant snippets of your
map and template files.

3. Always post your responses back to the whole list, as opposed to just the person who replied to your question.

2.7.3 IRC

MapServer users and developers can be found on Internet Relay Chat. The channel is #mapserver on irc.freenode.net.

2.7.4 Reporting bugs

Bugs (software and documentation) are reported on the MapServer issue tracker.

2.7.5 Gallery

See examples (currently shut down) of existing MapServer applications.

2.7.6 Tutorial

Perry Nacionales built a great Tutorial on how to build a MapServer application (MapServer version 5).

2.7.7 Test Suite

Download the MapServer Test Suite for a demonstration of some MapServer functionality.

2.7.8 Books

Web Mapping Illustrated, a book by Tyler Mitchell that describes well and provides real-world examples for the use
of Web mapping concepts, Open Source GIS software, MapServer, Web services, and PostGIS.

Mapping Hacks, by Schuyler Erle, Rich Gibson, and Jo Walsh, creatively demonstrates digital mapping tools and
concepts. MapServer only appears in a handful of the 100 hacks, but many more are useful for concepts and inspiration.

Beginning MapServer: Opensource GIS Development, by Bill Kropla. According to the publisher, it covers in-
stallation and configuration, basic MapServer topics and features, incorporation of dynamic data, advanced topics,
MapScript, and the creation of an actual application.

2.7. How do | get Help? 25

http://lists.osgeo.org/mailman/listinfo/mapserver-users/
http://n2.nabble.com/MapServer-f1969210.html
http://trac.osgeo.org/mapserver
http://gallery.osgeo.org
http://biometry.gis.umn.edu/tutorial/
http://noah.dnr.state.mn.us/mapserver_demos/tests46/
http://www.oreilly.com/catalog/webmapping/
http://www.oreilly.com/catalog/mappinghks/
http://www.apress.com/book/bookDisplay.html?bID=443

MapServer Documentation, Release 6.0.3

26

Chapter 2. An Introduction to MapServer

CHAPTER 3

MapServer Tutorial

Author Pericles S. Nacionales

Contact pnaciona at gmail.com

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com
Updated 2010-04-07

This tutorial was designed to give new users a quick (relatively speaking) introduction to the concepts behind
MapServer. It is arranged into four sections with each section having one or more examples and increasing in com-
plexity. Users can jump to any section at any time although it is recommended that absolute beginners work on the
first three sections sequentially.

Section one focuses on basic MapServer configuration concepts such as layer and class ordering, using vector and
raster data, projections and labeling. Section two provides examples on how to use HTML templates to create a simple
interface for an interactive web mapping application. Section three introduces the use of HTML templates to provide
a “query” interface. Finally, section four introduces some advanced user interface concepts.

3.1 Tutorial background

3.1.1 Tutorial Timeframe

While some users can go through this tutorial in one day, those who work on each example in detail can probably
expect to finish in one week.

3.1.2 Tutorial Data

The dataset used in this tutorial was taken from the U.S. Department of the Interior’s National Atlas of the United
States. You can visit their web site at http://www.nationalatlas.gov. The dataset was clipped to the upper great lakes
region (Minnesota, Michigan, and Wisconsin) to reduce storage size. Additional raster images were added courtesy
of the TerraSIP project at the University of Minnesota. When using this tutorial, you are encouraged to use your own
dataset.

Like MapServer itself, this tutorial is open and customizable to anyone. This was done in the hope that someone (or
some folks) will help design and develop it further.

27

http://www.nationalatlas.gov

MapServer Documentation, Release 6.0.3

Download the data (and all html files) for this tutorial at http://download.osgeo.org/mapserver/docs/mapserver-
tutorial.zip.

3.1.3 Before Using the Tutorial

There are some prerequisites to using this tutorial:

1. Users will need to have a web server installed and running on their computer. This web server has to have
support for common gateway interface (CGI) programs.

2. Users should have a basic understanding of web servers and internet security. A poorly configured web server
can easily be attacked by malicious people. At the very least your software installation will be corrupted and
you’ll lose hours of productivity, at worst your computer can be used to attack other computers on the internet.

3. It is recommended that users of this tutorial read the Introduction to MapServer before proceeding with this
tutorial.

4. To use this tutorial, users will need to have a MapServer CGI program (mapserv or mapserv.exe) installed in
their systems. MapServer source code is available for download /ere. Documentation exists on how to compile
and install MapServer:

e for UNIX users, please read the MapServer UNIX Compilation and Installation HOWTO.
* Windows users should read the MapServer Win32 Compilation and Installation HOWTO

In addition, precompiled binaries exist for a number of platform (see the download page).

3.1.4 Windows, UNIX/Linux Issues

Paths

This tutorial was created on Linux/UNIX but should work with minimal changes on Windows platform. The main
differences are the paths in the map files. Windows users need to specify the drive letter of the hard disk where their
tutorial files reside. Here’s an example:

A UNIX map file might include a parameter like this:

SHAPEPATH "/data/projects/tutorial/data"

In Windows, the same parameters might look like this:

SHAPEPATH "C:/data/projects/tutorial/data"

or:

SHAPEPATH "C:\data\projects\tutoriall\data".

Notice that either slash or backslash works in Windows. The usual backslash may work well for you if you want to
make a distinction between virtual (as in URLs or web addresses) and local paths in your map file. However, if you
plan to move your application to UNIX at some point, you’ll have the tedious task of switching all backslashes to
slashes.

While we’re on the subject of paths, keep in mind that paths in mapfiles are typically relative to the system’s root
directory: the slash (“/”) in UNIX or some drive letter (“C:”) in Windows. This is true except when specifi-
cally asked to enter a URL or when referencing a URL. When working with HTML template files, paths are rel-
ative to the web server’s root directory. i.e., “/tutorial/” is relative to “http://demo.mapserver.org/”. Please read
http://www.alistapart.com/articles/slashforward/ for a few insights on URLs.

28 Chapter 3. MapServer Tutorial

http://download.osgeo.org/mapserver/docs/mapserver-tutorial.zip
http://download.osgeo.org/mapserver/docs/mapserver-tutorial.zip
http://demo.mapserver.org/
http://www.alistapart.com/articles/slashforward/

MapServer Documentation, Release 6.0.3

Executable

Another issue is that UNIX executable files don’t require a .EXE or .COM extensions, but they do in Windows. If
you are using Windows, append .exe to all instances of “/cgi-bin/mapserv” or *“/cgi-bin/mapserv50” to make it “/cgi-
bin/mapserv.exe” or “/cgi-bin/mapserv50.exe”.

3.1.5 Other Resources

Other documentation exist to give you better understanding of the many customizations MapServer offer. Please visit
the MapServer documentation page at http://www.mapserver.org. There you will find several HOWTO documents,
from getting started to using MapScript, a scripting interface for MapServer.

Back to Tutorial home | Proceed to Section 1

3.2 Section 1: Static Maps and the MapFile

» Take a Shapefile dataset. Any Shapefile dataset. We can use MapServer to display that Shapefile dataset in a
web browser. Look...

— Example 1.1 - A map with a single layer

* We can display the same Shapefile dataset repeatedly. We can display the polygon attributes in one LAYER and
the line attributes in another...

— Example 1.2 - A map with two layers
* And we can select which parts of the Shapefile dataset to display. We do this using the CLASS object...
— Example 1.3 - Using classes to make a “useful” map
* We can also label our maps...
— Example 1.4 - Labeling layers and label layers
* Or add raster data such as satellite images, aerial photographs, or shaded reliefs...
— Example 1.5 - Adding a raster layer
* We can reproject our data from just about any projection to just about any... Yeah, check it out!
— Example 1.6 - Projection/Reprojection
* And we can use layers from other map servers on the Internet (for example WMS servers)...
— Example 1.7 - Adding a WMS layer
e MapServer can output to various formats such as PDF and GeoTIFF.
— Example 1.8 - A different output format
* MapServer not only generates static maps, it can also create interactive maps...

— Example 1.9 - The difference between map mode and browse mode

Back to Tutorial home | Proceed to Section 2

3.2. Section 1: Static Maps and the MapFile 29

http://www.mapserver.org
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example1-9.map&layer=states&layer=modis

MapServer Documentation, Release 6.0.3

3.3 Section 2: CGl variables and the User Interface

So far we have only looked at the mapfile when creating maps. In creating web mapping applications, it is usually
our intention to make maps that can be changed by the user (of the application) interactively. That is, a user should be
able to change the content of (or the information in) the map. To accomplish this interactivity, we use the MapServer
HTML templates.

3.3.1 HTML Templates

A MapServer HTML template is essentially an HTML file with a few MapServer specific tags. These tags are the
MapServer CGI variables and are enclosed in square brackets “[]”. When the MapServer CGI program processes an
application, it first parses the query string and the mapfile, and produces the necessary output. Some of this output
will need to be written to the HTML template file which you would have to also specify in the mapfile using the web
template keyword (or in a separate HTML initialization file). The CGI program will replace all the variables in the
HTML template with the proper value before sending it back to the web browser. If you are to directly view an HTML
template in a web browser, there won’t be any maps rendered and you will instead get blank images and other junk.

Variables

MapServer provides several variables for web mapping: the “img” variable which you’ve seen in Example 1.9 is but
one example. There area few core CGI variables originally designed as part of the mapping interface but practically
all the mapfile parameters can be defined as variables. The definitive reference to the MapServer CGI variables can be
found here.

We can also define our own variables, which MapServer will pass along to our application. For example, we can create
a variable called “root” to represent the root directory of this tutorial, the value for “root” will then be “/tutorial”.
When the MapServer CGI program processes our HTML template, it will replace every instance of he “[root]” tag
with “/tutorial”. You will see this in action for each of the following examples.

3.3.2 Examples

So, let’s build an interactive interface for our application...

e Users of a web mapping application should be able to pan and zoom on the map: Example 2.1 - Pan and Zoom
Controls

* They also should be able to turn on and off layers on a map: Example 2.2 - Layer Control
* A map should always include a scalebar. Example 2.3 - Adding a Scalebar

* If users are to navigate through the map, a reference map should be provided: Example 2.4 - Adding a Reference
Map

* The map should include a legend. Example 2.5- Adding a Legend

Back to Section I index | Proceed to Section 3

3.4 Section 3: Query and more about HTML Templates

To learn more about query and HTML templates with MapServer, see examples 3.1 to 3.4 in the Tutorial Viewer.

30 Chapter 3. MapServer Tutorial

http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-1.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-1.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-2.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-3.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-4.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-4.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-5.html
http://demo.mapserver.org/tutorial/section3.html

MapServer Documentation, Release 6.0.3

Back to Section 2 index | Proceed to Section 4

3.5 Section 4: Advanced User Interfaces

To learn more about advanced navigation such as pan and rubber-band zoom with Javascript and MapServer CGI, see
examples 4.1 to 4.4 in the Tutorial Viewer.

Back to Section 3 index | Tutorial home

Begin tutorial

3.5. Section 4: Advanced User Interfaces 31

http://demo.mapserver.org/tutorial/section4.html

MapServer Documentation, Release 6.0.3

32

Chapter 3. MapServer Tutorial

CHAPTER 4

Installation

4.1 Compiling on Unix

Author J.F. Doyon

Contact jdoyon at nrcan.gc.ca
Author Howard Butler
Contact hobu.inc at gmail.com
Revision $Revision$

Date $Date$

Table of Contents

* Compiling on Unix
— Introduction
— Obtaining the necessary software
- libgd
— Anti-Grain Geometry Support
— OGC Support
— Spatial Warehousing
— Compiling
— Installation

4.1.1 Introduction

The University of Minnesota’s MapServer is an open-source and freely available map rendering engine for the web.
Due to its open-source nature, it can be compiled on a wide variety of platforms and operating systems. We will focus
on how to obtain, compile and install MapServer on UNIX-like platforms.

You might also check the MapServerCompilation wiki page for additional information.

33

http://trac.osgeo.org/mapserver/wiki/MapServerCompilation

MapServer Documentation, Release 6.0.3

4.1.2 Obtaining the necessary software

You can obtain the MapServer source code as well as the demo package from the Download section.

You can also get the latest MapServer source code from Subversion.

Required External Libraries

libpng: libpng should be on your system by default. 1.2.12 is the current release with security patches, although
versions all the way back to 1.2.7 should work.

freetype: Version 2.x or above is required by GD.

GD: libgd is used by MapServer for rendering images. Version 2.0.28 or greater required. Version 2.0.29 or
later is required to use curved (following) labels, and version 2.0.34 is required for antialiasing (1 pixel wide
lines/outlines).

zlib: Zlib should be on your system by default. 1.2.1 is the current release with security patches.

Highly Recommended Libraries

libproj: libproj provides projection support for MapServer. Version 4.4.6 or greater is required.

libcurl: libcurl is the foundation of OGC (WFS/WMS/WCS) client and server support. Version 7.10 or greater
is required

OGR: OGR provides access to at least 18 different vector formats.
GDAL: GDAL provides access to at least 42 different raster formats.

AGG: AGG (Anti-Grain Geometry) is an optional dependency to enable high quality antialiased output for
vector data. Currently versions 2.4 and 2.5 are identical featurewise, and only vary in their licence (2.4 is BSD,
2.5is GPL)

Optional External Libraries

libtiff: libtiff provides TIFF (Tagged Image File Format) reading support to MapServer.
libgeotiff libgeotiff provides support to read GeoTIFF files (TIFF files with geographic referencing).

libjpeg: libjpeg allows MapServer to render images in JPEG format. A sufficient version should be installed by
default on your system. Version 6b is the current version and dates back to 1998.

GEOS: GEOS allows MapServer to do spatial predicate and algebra operations (within, touches, etc & union,
difference, intersection). Requires version 4.10 or greater.

libxml: libxml is required to use OGC SOS support in MapServer (versions 4.10 and greater).

SDE Client Library: The client libraries for your platform should be part of the ArcSDE media kit. They are not
publicly available for download.

Oracle Spatial OCI: The client libraries for your platform are available for download from Oracle’s website.
Ideally, your client library matches the database you are querying from, but this is not a hard requirement.

libpq: libpq is required to support the use of PostGIS geometries within the PostgreSQL database. Ideally, your
client library matches the database you are querying from.

pdflib (lite): PDFlib Lite is the Open Source version of PDFlib that allows MapServer to produce PDF output.
Version 4.0.3 or greater is required.

34

Chapter 4. Installation

http://www.libpng.org/pub/png/libpng.html
http://www.freetype.org/
http://www.libgd.org/
http://www.gzip.org/zlib/
http://trac.osgeo.org/proj/
http://curl.haxx.se/libcurl/
http://www.gdal.org/ogr/
http://www.gdal.org/
http://antigrain.com
http://www.libtiff.org/
http://trac.osgeo.org/geotiff/
http://www.ijg.org/
http://trac.osgeo.org/geos/
http://xmlsoft.org
http://www.esri.com/software/arcgis/arcsde/index.html
http://www.oracle.com/technology/products/spatial/index.html
http://www.postgresql.org/
http://www.pdflib.com/products/pdflib-family/pdflib-lite/

MapServer Documentation, Release 6.0.3

e libming: libming provides Macromedia Flash output to MapServer. Version 0.2a is required. Later versions are
not known to work.

4.1.3 libgd

There are a number of issues that you should be aware of when using GD in combination with MapServer.

Minimum libgd versions

MapServer aggressively takes advantage of new features and bug fixes in the latest versions of libgd. The minimum
required version to run MapServer is 2.0.29. Upgrading to at least 2.0.34 is advised as it includes an important bug
fix for antialiased lines. Configure should detect which version of libgd you have installed, but you can quickly check
yourself by issuing the following command:

gdlib-config —-version

libiconv

If you intend to use international character sets, your version of libgd must be compiled against the GNU iconv
libraries. If you are using a pre-packaged version, it is very likely that this is the case. To check for yourself, issue the
following command and look for ‘-liconv’ in the output:

gdlib-config —-1libs

Pre-packaged/system libraries

If you intend to use your system’s libgd, ensure that you have the development package also installed so MapServer
can find and use the appropriate headers.

MacOSX

A useful FAQ on for libgd on OSX is available at http://www.libgd.org/DOC_INSTALL_OSX

FreeType support

The GD you compile MapServer against MUST be compiled against the FreeType library in order to use TrueType
fonts. MapServer no longer uses it’s own interface to FreeType, using it through GD instead.

When you run your “configure” script, look for the following output:

using GD (—-DUSE_GD_GIF -DUSE_GD_PNG -DUSE_GD_JPEG
-DUSE_GD_WBMP -DUSE_GD_TTF -DGD_HAS_GDIMAGEGIFPTR) from system libs.

If your GD is built against FreeType, you will see either “-DUSE_GD_TTF” (Or “-DUSE_GD_FT” for Freetype 2.x)
part. If it’s missing, you will need to recompile your GD to make sure you include FreeType support. See the GD
documentation for more information.

Also note that the configure script looks for the FreeType library separately as well, generating output looking some-
what like this:

4.1. Compiling on Unix 35

http://www.libming.org
http://www.libgd.org/DOC_INSTALL_OSX

MapServer Documentation, Release 6.0.3

checking where FreeType is installed...
checking for FT_Init_FreeType in -lfreetype... yes
using libfreetype -lfreetype from system libs.

Even though you have FreeType installed on your system and the configure script finds it, does NOT mean you will
have TrueType font support. GD MUST be compiled against FreeType either way.

1px Anti-Aliasing and segfaults

Versions of libgd earlier than 2.0.34 contain a one very significant bug and will always cause a segfault if you attempt
to do one pixel wide antialiasing. You can manually patch older gd’s, or better yet upgrade to at least GD 2.0.34.

In gd.c, function gdlmageSetA APixelColor() change:

int dr,dg,db,p,r,qg,b;
p = gdImageGetPixel (im, x,vVy);

to

int dr,dg,db,p,r,qg,b;
if (!gdImageBoundsSafeMacro (im, x, y)) return;
p = gdImageGetPixel (im, x,Vy);

More detail about this patch (if you need any) was described by Steve Lime in a post to mapserver-users.

Curved label support

ANGLE FOLLOW, a new feature that allows MapServer to draw curved labels about a linear feature like a road,
requires libgd 2.0.29 and TrueType font support. Configure should autodetect if you have a sufficient libgd and
TrueType support to be able to use this feature.

4.1.4 Anti-Grain Geometry Support

Since version 5.0 MapServer supports the AGG rendering backend. Download the 2.4 tarball from the antigrain
website and just type make in the root directory. If you intend on using mapscript, you must beforehand tweak the agg
makefile to add -fPIC to the compiler options.

4.1.5 OGC Support

MapServer provides support for many OGC specifications. At 4.2.3, it provides support for WMS (Web Mapping
Service), SLD (Styled Layer Descriptor), WES (Web Feature Service), and experimental support for WCS (Web
Coverage Service).

WMS support

WMS Server

Support for this specification is automatically enabled when you include PROJ.4 support. (—with-proj) You can check
this yourself by looking for the following in your “configure” output:

checking whether we should include WMS support...
OGC WMS compatibility enabled (-DUSE_WMS) .

36 Chapter 4. Installation

http://article.gmane.org/gmane.comp.gis.mapserver.user/17766
http://www.opengeospatial.org

MapServer Documentation, Release 6.0.3

If, for some reason you DON’T want WMS support, you can force it off by passing “—without-wms” to your configure
script.

More information on using this feature is available in the WMS Server HOWTO available on the MapServer website.

WMS Client

Cascading is also supported. This allows mapserver to transparently fetch remote layers over WMS, basically acting
like a client, and combine them with other layers to generate the final map.

In order to enable this feature, you will need to pass the “~with-wmsclient” option to the configure script. MapServer
will automatically look for libcurl, which is also required.

To verify that the WMS Client feature is enabled, check the output from the configure script:

checking whether we should include WMS Client Connections support...
OGC WMS Client Connections enabled (-DUSE_WMS_LYR) .

Note that this feature is disabled by default, you have to specifically request it.

More information on using this feature is available in the WMS Client HOWTO available on the MapServer website.

WFS support

WFS Server

Support for this specification is enabled by passing the configure script the “—with-wfs” option. OGR and PROJ.4
support is required.

You can check this yourself by looking for the following in your “configure” output:

checking whether we should include WFS Server support...
OGC WFS Server support enabled (-DUSE_WFS_SVR) .

Note that this feature is disabled by default, you have to specifically request it.

More information on using this feature is available in the WFS Server HOWTO available on the MapServer website.

WEFS Client

MapServer can also act as a WES client. This effectively means that MapServer reads it’s data from a remote server’s
WES output and renders it into a map, just like it would when reading data from a shapefile.

In order to enable this feature, you will need to make sure you include OGR (Built with Xerces support) and PROJ.4
support, and pass the “—~with-wfsclient” option to your configure script. MapServer will automatically look for libcurl,
which is also required.

To verify that the WFS Client feature is enabled, check the output from the configure script:

checking whether we should include WFS Client Connections support...
OGC WFS Client Connections enabled (-DUSE_WFS_LYR) .

Note that this feature is disabled by default, you have to specifically request it.

More information on using this feature is available in the WFS Client HOWTO available on the MapServer website.

4.1. Compiling on Unix 37

MapServer Documentation, Release 6.0.3

4.1.6 Spatial Warehousing
MapServer can use a wide variety of sources of data input. One of the solutions growing in popularity is to use spatially
enabled databases to store data, and to use them directly to draw maps for the web.

Here you will find out how to enable mapserver to talk to one of these products. Please refer to the MapFile reference
for more details on how to use these. This section only details how to compile MapServer for their use.

PostGIS

PostGIS adds support for geographic objects to the PostgreSQL object-relational database. In effect, PostGIS “spa-
tially enables” the PostgreSQL server, allowing it to be used as a backend spatial database for geographic information
systems (GIS), much like ESRI’s SDE or Oracle’s Spatial extension. PostGIS is included in many distributions’
packaging system, but you can also roll your own if needed.

MapServer can use PostGIS as a data source. In order to do so simply use “~with-postgis” when running your configure
script.

-—with-postgis=/usr/local/pgsql/bin/pg_config

ArcSDE

MapServer allows you to use SDE as a data source both for geometry and attributes. In order to achieve this, you must
have the SDE client librairies at your disposition, and have them installed on the machine running MapServer.

In order to enable SDE support in MapServer, you have to compile it with two options specified:

——with-sde=/opt/sdeexe90
—-—with-sde-version=90

Oracle Spatial

Oracle’s Spatial Warehousing cartridge is also supported by MapServer. In order to connect to it, you will need to
compile MapServer against the Oracle libraries by passing the “—with-oraclespatial” argument to your configure script.
You will very likely need an ORACLE_HOME environment variable set to have it configure things correctly.

--with-oraclespatial=/opt/oracle

4.1.7 Compiling

First prepare the ground by making sure all of your required and/or recommended libraries are installed before at-
tempting to compile MapServer. This will make your life much less complicated ;). Here is the order that I usually
use:

1. Compile GD. This often means acquiring libjpeg, libpng, zlib, and freetype before actually compiling the library.
You shouldn’t have too much trouble finding binaries of the libraries that GD requires, and often, they will
already be installed with your system. On unix, I've had very little luck finding pre-compiled binaries of the
required GD library. See libgd section for notes about patching libgd if you plan to use antialiasing.

2. Compile GDAL/OGR. Describing how to compile GDAL/OGR is beyond the scope of this document. If you
have requirements for lots of different formats, make sure to install those libraries first. I often find that building
up a GDAL/OGR library often takes as long as compiling MapServer itself!

3. Compile Proj.4. Proj.4 is a straight-forward configure/make/make install library.

38 Chapter 4. Installation

http://postgis.refractions.net
http://www.postresql.org

MapServer Documentation, Release 6.0.3

4. Compile libcurl. libcurl is a straight-forward configure/make/make install library.

5. Compile/install optional libraries. These might include SDE, PostGIS, Oracle Spatial, AGG, Ming, PDFlib, or
MyGIS. Mix and match as you need them.

6. Unpack the MapServer tarball and cd into the mapserver directory:

[user@host user]$ tar —-zxvf mapserver-X.Y.Z.tar.gz

7. Configure your environment using “configure”. I often place my configure command in its own file and changes
its mode to be executable (+x) to save typing and have a record of how MapServer was configured.

./configure ——with-sde=/usr/sde/sdeexe90 \
—--with-sde-version=90 \
-—with-ogr=/usr/local/bin/gdal-config \
—--with—-gdal=/usr/local/bin/gdal-config \
--with-httpd=/usr/sbin/httpd \

——with-wfsclient \

——with-wmsclient \

—-—-enable-debug \
—-—with-curl-config=/usr/bin/curl-config \
——with-proj=/usr/local \

——with-tiff \

——with-gd=/usr/local/ \

——with—jpeg \

—-with-freetype=/usr/ \
—--with-oraclespatial=/usr/oracle \

——with—threads \

——with-wcs \
—-with-postgis=/usr/local/database/bin/pg_config \
——with-libiconv=/usr \ # new in 4.8
—--with-geos=/usr/local/bin/geos-config \ # new in 4.8
—-with-libiconv=/usr \ # new in 4.8
——with-xml2-config=/usr/bin/xml2-config \ # new in 4.10
—-with-sos \ # new in 4.10
--with-agg=/path/to/agg-2.4

8. Now that you have configured your build options and selected all the libraries you wish mapserver to use, you’re
ready to compile the source code into an executable.
This is actually quite simple, just execute “make”:

[user@host mapserver]$ make

9. There is no make install step in the installation of MapServer. The output of the compilation of MapServer is a
binary executable that you can use in a CGI execution environment.

To make sure all went well, look for the file called mapserv

[user@host mapserver]$ ls —-al mapserv
—IrWXr—Xr—x 1 user user 351177 Dec 21 11:38 mapserv

A simple test is to try and run it:

[user@host mapserver]$./mapserv

This script can only be used to decode form results and
should be initiated as a CGI process via a httpd server.
[user@host mapserver]$

The message above is perfectly normal, and means exactly what it says. If you get anything else, something
went terribly wrong.

4.1. Compiling on Unix 39

MapServer Documentation, Release 6.0.3

4.1.8 Installation

MapServer binary
The MapServer program itself consists of only one file, the “mapserv” binary executable. This is a CGI executable,
meant to be called and run by your web server.

In this section, we will assume you are running Apache under its default directory structure in /usr/local/apache. You
may need to have privileges to edit your httpd.conf (the main apache configuration file), or have someone (such as
your webmaster) help you with the configuration details.

The main goal is to get the “mapserv” binary installed in a publicly accessible directory that is configured to run CGI
programs and scripts.

The basic install

Under a default configuration, the CGI directory is ‘/usr/local/apache/cgi-bin” (RedHat users will use
“/home/httpd/cgi-bin”). Placing the mapserv file in this directory makes it accessible by the following URL:
“http://yourhostname.com/cgi-bin/mapserv”’. When accessing this URL through your web client, you should expect
the following output if all has worked well: “No query information to decode. QUERY_STRING is set, but empty.”
If you get this message, you’re done installing MapServer.

Common problems

File permissions

The most common problem one is likely to encounter when attempting to install the binary are permissions issues:

* You do not have write permissions into your web server’s CGI Directory. Ask your webmaster to install the file
for you.

* The web server gives you a “403 Permission denied” error. Make sure the user the web server runs as (usually
“nobody”) has execute permission on the binary executable. Making the file world executable is perfectly fine
and safe:

[user@host cgi-bin]$ chmod o+x mapserv

Apache errors

You may receive a few different type of errors as well if your web server configuration isn’t right:

¢ 500 Internal server error: This is a fairly generic error message. All it basically tells you is that the web server
was unsuccessful in running the program. You will have to consult the web server’s error log to find out more,
and may need to enlist the help of your webmaster/system administrator.

Where to go once you’ve got it compiled

The An Introduction to MapServer document provides excellent coverage of getting started with MapServer.

40 Chapter 4. Installation

http://yourhostname.com/cgi-bin/mapserv

MapServer Documentation, Release 6.0.3

4.2 Compiling on Win32

Author Pericles Nacionales
Contact pnaciona at gmail.com
Revision $Revision$

Date $Date$

Table of Contents

* Compiling on Win32
— Introduction
— Compiling
— Set up a Project Directory
— Download MapServer Source Code and Supporting Libraries
— The MapServer source code
— Set Compilation Options
— Compile the Libraries
— Compile MapServer
— Compiling MapServer with PostGIS support
— Common Compiling Errors
— Installation
— Other Helpful Information
— Acknowledgements

4.2.1 Introduction

This document provides a simple set of compilation procedures for MapServer on Win32 platforms.

If you’ve made it this far, chances are you already know about MapServer and are at least tempted to try compiling it
for yourself. Pre-compiled binaries for MapServer are available from a variety of sources. Refer to Windows. Building
MapServer for win32 platforms can be a daunting task, so if existing binaries are sufficient for your needs, it is strongly
advised that they be used in preference to trying to build everything from source.

However, there can be a variety of reasons to want to build MapServer from source on win32. Reasons include the
need to enable specific options, to build with alternate versions of support libraries (such as GDAL), the desire for
MapScript support not part of the core builds, the need to debug and fix bugs or even to implement new features in
MapServer. To make it easy for users and developers, I’ve made a list of steps to compile MapServer. Background
information is provided in each step, along with examples. Each example is a continuation of the previous one and in
the end will produce the MapServer DLL (libmap.dll), the CGI program (the mapserv.exe), and utility programs.

Warning: This document may refer to older library versions. You may want to try to use more recent library
versions for your build.

4.2.2 Compiling

If you are new to Windows programming, please follow this document carefully. The compilation steps are fairly
simple but I’ve added a few blurbs in each step to help you understand how MapServer compiles. For the more
experienced programmers, perhaps reading the README.Win32 that accompanies the MapServer source code would
be more useful. For those who are antsy, compiling MapServer involves download and unpacking the source codes,

4.2. Compiling on Win32 41

MapServer Documentation, Release 6.0.3

editing the make files, and invoking Microsoft’s Visual C++ compiler from the command prompt. The resulting
mapserv.exe is the CGI program that installs in the cgi-bin directory of your web server.

For those who are willing to take the time, the compilation steps follow.

4.2.3 Set up a Project Directory

Before you start to compile MapServer, I recommend creating a directory called “projects” where you can put the
source code for MapServer and its supporting libraries. Since you will be working with DOS-style commands, you
might as well get used to the Windows command prompt. For Windows 95/98 users the command processor would be
called command.com. For Windows N'T/2000/XP, it would be cmd.exe. So fire up the old command prompt and go to
the drive where you want to create the project directory.

Here is an example of how to create a directory called projects on the C: drive:

C:\Users> mkdir C:\Projects

To go to that directory:

C:\Users> cd \Projects
C:\Projects>

From the projects directory, you can extract the source codes for MapServer and its libraries. Now you’re ready to
download the source codes.

4.2.4 Download MapServer Source Code and Supporting Libraries

After creating a project directory, download the MapServer source code and the codes for the supporting libraries and
save the source code packages in the newly created “projects” directory. These source codes are usually packaged as
ZIP, or as UNIX TAR and GZIP files. You’ll need a software that can unzip these packages. 7-Zip is an example of
software that can handle these files.

Cygwin is a free, open-source software package which is a port of these tools on Windows. You can use the gzip and
tar utilities from this tool collection. Cygwin is available from http://www.cygwin.com.

In order to compile the MapServer CGI program, you must download a few required and optional libraries. At
its simplest configuration, MapServer only requires the GD (to provide the image output) and REGEX (to provide
regular expression support) libraries. This configuration allows the developer/data provider to use shapefiles as input
and, depending on the version of GD library used, GIF or PNG images as output. Additional libraries are needed for
input data in alternative formats. The libraries that work with MapServer are listed below.

4.2.5 The MapServer source code

The MapServer source code can be downloaded from the download page. If you’d like to get the current development
version of the software, following the nightly snapshot link under the Interim Builds title. The absolute latest copy of
the source code can be obtained from SVN; however, the SVN respository does not contain several important source
files (maplexer.c, mapparser.c and mapparser.h) normally generated on unix, so if possible, using a nightly snaphot is
substantially easier than working directly from Subversion.

Required Libraries

GD Library: MapServer uses the GD graphics library for rendering map images in GIF, PNG and JPEG format.
These map images are displayed in web browser clients using the MapServer CGI. The current official version
of GD is 2.0.33. The distributed makefiles are setup to use the prebuilt GD Win32 DLL binaries which include

42 Chapter 4. Installation

http://www.7-zip.org/
http://www.cygwin.com
http://www.libgd.org/

MapServer Documentation, Release 6.0.3

GD, libjpeg, libpng, libz, libgif and FreeType 2 all within one DLL. This package is generally listed as “Windows
DLL .zip” and the latest version is normally available at http://www.boutell.com/gd/http/gdwin32.zip.

Regex: Regex is the regular expression library used by MapServer. It can be downloaded at http://ftp.gnu.org/old-
gnu/regex/regex-0.12.tar.gz

Optional Libraries

JPEG library: This library is required by GD to render JPEG images, if building GD from source. You may down-
load this library at http://www.ijg.org/files/jpegsrc.v6b.tar.gz

PNG library: This library is required by GD to render PNG images, if building GD from source. You may download
this library at http://sourceforge.net/projects/libpng/

Zlib: This library is required by libpng to provide graphics compression support. It can be downloaded along with
the PNG library, or at http://www.gzip.org/zlib.zip .

FreeType 2: FreeType provides TrueType support in MapServer via GD. We only need to build FreeType seperately
if building GD from source. It can be downloaded at http://gnuwin32.sourceforge.net/packages/freetype.htm .

PROJ.4: Proj.4 provides on-the-fly projection support to MapServer. Users whose data are in different projection
systems can use this library to reproject into a common projection. It is also required for WMS, WES or WCS
services.

GDAL/OGR: The GDAL/OGR library allows MapServer to read a variety of geospatial raster formats (GDAL) and
vector formats (OGR). It can be downloaded at http://www.gdal.org/.

ArcSDE: ArcSDE is an ESRI proprietary spatial database engine. Most users will not have access to it but if you
have ArcSDE license, you can use its libraries to give MapServer access to SDE databases.

EPPL7: This library allows MapServer to read EPPL7 datasets, as well as the older Erdas LAN/GIS files. This library
is set as a default library in MapServer so there’s no special source code to download.

Now that you have reviewed the libraries that provide support to MapServer, it is time to decide which ones to compile
and use. We will work with the pre-built GD distributed on Boutell.com with PNG, GIF, JPEG, and FreeType “built
in”. If you want to provide OGC Web Services (ie. WMS, WES) or want to perform on the fly reprojection then the
PROJ 4 library will be needed. If you need additional raster and vector data sources consider including GDAL/OGR
support. GDAL is also required for WCS service.

Our example calls for the required libraries and on-the-fly projection support so we need to download GD, regex, and
Proj.4 libraries. Go ahead and get those libraries.

4.2.6 Set Compilation Options

MapServer, like many of it’s support libraries, comes with a Visual C++ makefile called Makefile.vc. It includes the
file nmake.opt which contains many of the site specific definitions. We will only need to edit the nmake.opt file to
configure the build for our local site options, and support libraries. The Makefile.vc, and nmake.opt template file have
been provided by Assefa Yewondwossen, and the DM Solutions folks.

As of MapServer 4.4, the default MapServer build options only include GD, and regex. MapServer is built using the
/MD option (which means MSVCRT.DLL should be used), so if any support libraries are being built statically (rather
than as DLLs) we need to use /MD when building them as well. By default modern PROJ.4 builds use /MD so we
should be able to use the default PROJ.4 build without tweaking.

The example will compile with the GDWin32 pre-built DLL as well as regex-0.12, and PROJ.4. The PROJ.4 support
will ensure we can enable MapServer OGC-WMS compatibility. Use notepad or another text editor to open the
nmake.opt file and make the following changes.

4.2. Compiling on Win32 43

http://www.boutell.com/gd/http/gdwin32.zip
http://ftp.gnu.org/old-gnu/regex/regex-0.12.tar.gz
http://ftp.gnu.org/old-gnu/regex/regex-0.12.tar.gz
http://www.ijg.org/
http://www.ijg.org/files/jpegsrc.v6b.tar.gz
http://www.libpng.org/pub/png/
http://sourceforge.net/projects/libpng/
http://www.gzip.org/zlib/
http://www.gzip.org/zlib.zip
http://www.freetype.org/
http://gnuwin32.sourceforge.net/packages/freetype.htm
http://trac.osgeo.org/proj/
http://www.gdal.org/
http://www.gdal.org/
http://www.esri.com/software/arcgis/arcsde/
http://www.lmic.state.mn.us/resource.html?Id=3603

MapServer Documentation, Release 6.0.3

Comments

Use the pound sign (#) to comment out the lines that you want to disable, or remove the pound sign to enable an
option for NMAKE.

A. Enable PROJ.4 support, and update the path to the PROJ.4 directory. Uncomment the PROJ= line, and the
PROJ_DIR= line as follows, and update the PROJ_DIR path to point to your PROJ build.

Reprojecting.

If you would like mapserver to be able to reproject data from one
geographic projection to another, uncomment the following flag
Proj.4 distribution (cartographic projection routines). PROJ.4 is
also required for all OGC services (WMS, WFS, and WCS).

H= o o S H

For PROJ_DIR use full path to Proj.4 distribution
PROJ=-DUSE_PROJ -DUSE_PROJ_API_H
PROJ_DIR=c:\projects\proj-4.4.9

If you look down later in the file, you can see that once PROJ is enabled, MapServer will be linked with proj_i.lib, the
PROJ 4 stub library, meaning that MapServer will be using the PROJ.DLL as opposed to statically linking in PROJ.4.

2. Uncomment the WMS option.

Use this flag to compile with WMS Server support.

To find out more about the OpenGIS Web Map Server Specification go to
http://www.opengis.org/

WMS=-DUSE_WMS_SVR

3. Update to use GD. Here’s what it should look like in our example.

GD_DIR=c:/projects/gdwin32
GD_LIB=$ (GD_DIR) /bgd.1lib

Note: As distributed the GDWin32 binary build does not include the bgd.lib stub library. It is necessary to run the
makemsvcimport.bat script in the gdwin32 directory first.

D. Make sure the regex path is set correctly. In order for the “delete” command in the “nmake /f makefile.vc clean”
target to work properly it is necessary to use backslashes in the REGEX_DIR definition.

REGEX Libary

VC++ does not include the REGEX library... so we must provide our one.

The following definitions will try to build GNU regex-0.12 located in the
regex—0.12 sub-directory.

If it was not included in the source distribution, then you can get it from:

ftp://ftp.gnu.org/pub/gnu/regex/regex-0.12.tar.gz

Provide the full path to the REGEX project directory

You do not need this library if you are compiling for PHP mapscript.
In that case the PHP regex library will be used instead

! TFNDEF PHP

REGEX_DIR=c:\projects\regex-0.12

'ENDIF

Your Makefile is now set.

44 Chapter 4. Installation

MapServer Documentation, Release 6.0.3

4.2.7 Compile the Libraries

Before compiling MapServer, you must first compile its supporting libraries. How this is done varies for each library.
For the PROJ.4 library a nmake /f makefile.ve command in the proj-4.4.9src directory should be sufficient. The
regex-0.12 code is actually built by the MapServer build process, so you don’t need to do anything there.

Compiling libcurl

Previously, curl libraries can be compiled using the following command:

nmake /f makefile.vc6 CFG=release

This creates a static library, libcurl.lib, to which you compile against. Versions newer than version 7.10.x should be
compiled as dynamic library. This is accomplished using the command:

nmake /f makefile.vc6 CFG=release-dll

You will then need to edit MapServer’s nmake.opt to replace the CURL_LIB variable with this line:

CURL_LIB = $(CURL_DIR)/lib/libcurl_imp.lib

4.2.8 Compile MapServer

Once you have compiled the supporting libraries successfully, you are ready to take the final compilation step. If
you have not already done so, open a command prompt and set the VC++ environment variables by running the
vevars32.bat usually located in C:Program FilesMicrosoft Visual StudioVC98binvcvars32.bat.

C:\Users> cd \projects\mapserver
C:\Projects\mapserver&> C:\Program Files\Microsoft Visual Studio\VC98\Bin\vcvars32.bat"
C:\Projects\mapserver>

Setting environment for using Microsoft Visual C++ tool.
C:\Projects\mapserver>

Now issue the command: nmake /f Makefile.ve and wait for it to finish compiling. If it compiles successfully, you
should get mapserver.lib, libmap.dll, mapserv.exe, and other .EXE files. That’s it for the compilation process. If you
run into problems, read section 4 about compiling errors. You can also ask for help from the helpful folks in the
MapServer-dev e-mail list.

4.2.9 Compiling MapServer with PostGIS support

To compile PostGIS support into MapServer, here’s what you need to do:
1. download the PostgreSQL 8.0.1 (or later) source from: ftp://ftp.heanet.ie/pub/postgresql/source/
2. I extracted them to C:projectspostgresql-8.0.1
3. download the Microsoft Platform SDK otherwise you get link errors on shfolder.lib.
4. compile libpq under C:projectspostgresql-8.0.1srcinterfaceslibpq using the win32.mak makefile

5. copy everything from C:projectspostgresql-8.0.1srcinterfaceslibpqrelease to C:projectspostgresql-
8.0.1srcinterfaceslibpq as the MapServer makefile will try to find it there

6. Define the following in the nmake.opt for MapServer: POSTGIS =-DUSE_POSTGIS POSTGIS_DIR
=c:/projects/postgresql-8.0.1/src

4.2. Compiling on Win32 45

ftp://ftp.heanet.ie/pub/postgresql/source/
http://www.microsoft.com/downloads/details.aspx?familyid=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en

MapServer Documentation, Release 6.0.3

7. nmake /f makefile.vc

8. don’t forget to copy libpq.dll (from C:projectspostgresql-8.0.1srcinterfaceslibpqgrelease) into a location where
MapServer can find it.

4.2.10 Common Compiling Errors

Following are a few common errors you may encounter while trying to build MapServer.
¢ Visual C++ Tools Not Properly Initialized.

C:\projects\mapserver> nmake —-f /makefile.vc
"nmake’ is not recognized as an internal or external command,
operable program or batch file.

This occurs if you have not properly defined the path and other environment variables required to use MS
VisualC++ from the command shell. Invoke the VCVARS32.BAT script, usually with the command C:Program
FilesMicrosoft Visual StudioVC98binvcvars32.bat or something similar if visual studio was installed in an
alternate location. To test if VC++ is available, just type “nmake” or “cl” in the command shell and ensure it is
found.

* Regex Build Problems.

regex.obj : error LNK2001l: unresolved external symbol _printchar
libmap.dll : fatal error LNK1120: 1 unresolved externals

NMAKE : fatal error U1077: ’link’ : return code ’0x460’

Stop.

This occurs if you use the stock regex-0.12 we referenced. I work around this by commenting out the “extern”
statement for the printchar() function, and replacing it with a stub implementation in regex-0.12regex.c.

//extern void printchar ();
void printchar(int i) {}

* GD Import Library Missing.

LINK : fatal error LNK1104: cannot open file ’c:/projects/gdwin32/bgd.lib’
NMAKE : fatal error Ul1077: ’"1link’ : return code ’0x450’
Stop.

If you are using the pre-built GD binaries, you still need to run the makemsvcimport.bat script in the gdwin32
directory to create a VC++ compatible stub library (bgd.lib).

4.2.11 Installation

The file we are most interested in is mapserv.exe. The other executable files are the MapServer utility programs.
See Also:

MapServer Utilities

to learn more about these utilities.

To test that the CGI program is working, type mapserv.exe at the command prompt. You should see the following
message:

This script can only be used to decode form results and
should be initiated as a CGI process via a httpd server.

46 Chapter 4. Installation

MapServer Documentation, Release 6.0.3

You may instead get a popup indicating that a DLL (such as bgd.dll) is missing. You will need to copy all the required
DLLs (ie. bgd.dll, and proj.dll) to the same directory as the mapserv.exe program.

Now type mapserv -v at the command prompt to get this message:

MapServer version 4.4.0-beta3 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER INPUT=SHAPEFILE
DEBUG=MSDEBUG

This tells us what data formats and other options are supported by mapserv.exe. Assuming you have your web server
set up, copy mapserv.exe, libmap.dll, bgd.dll, proj.dll and any other required DLLs to the cgi-bin directory.

You are now ready to download the demo application and try out your own MapServer CGI program. If you wish,
you can also create a directory to store the utility programs. I’d suggest making a subdirectory called “bin” under
the directory “projects” and copy the executables to that subdirectory. You might find these programs useful as you
develop MapServer applications.

4.2.12 Other Helpful Information

The MapServer Unix Compilation and Installation HOWTO has good descriptions of some MapServer compilation
options and library issues. I will write more about those options and issues on the next revision of this HOWTO.

The README documents of each of the supporting libraries provide compilation instructions for Windows.

The MapServer User community has a collective knowledge of the nuances of MapServer compilation. Seek their
advice wisely.

4.2.13 Acknowledgements

Thanks to Assefa Yewondwossen for providing the Makefile.vc. I would not have been able to write this HOWTO
without that file.

Thanks to Bart van den Eijnden for the libcurl and PostGIS compilation info.

Thanks to the Steve Lime for developing MapServer and to the many developers who contribute time and effort in
order to keep the MapServer project successful.

4.3 PHP MapScript Installation

Author Jeff McKenna
Contact jmckenna at gatewaygeomatics.com
Revision $Revision$

Date $Date$

Table of Contents

* PHP MapScript Installation
— Introduction
— Obtaining, Compiling, and Installing PHP and the PHP/MapScript Module
— FAQ / Common Problems

4.3. PHP MapScript Installation 47

MapServer Documentation, Release 6.0.3

4.3.1 Introduction
The PHP/MapScript module is a PHP dynamically loadable module that makes MapServer’s MapScript functions and
classes available in a PHP environment.

The original version of MapScript (in Perl) uses SWIG, but since SWIG does not support the PHP language, the
module has to be maintained separately and may not always be in sync with the Perl version.

The PHP module was developed by DM Solutions Group and is currently maintained by Mapgears.
This document assumes that you are already familiar with certain aspects of your operating system:
¢ For Unix/Linux users, a familiarity with the build environment, notably make.

» For Windows users, some compilation skills if you don’t have ready access to a pre-compiled installation and
need to compile your own copy of MapServer with the PHP/MapScript module.

Which version of PHP is supported?
PHP MapScript was originally developed for PHP-3.0.14 but after MapServer 3.5 support for PHP3 has been dropped
and as of the last update of this document, PHP 4.3.11 or more recent was required (PHPS5 is well supported).
The best combinations of MapScript and PHP versions are:
e MapScript 4.10 with PHP 5.2.1 and up
* MapScript 4.10 with PHP 4.4.6 and up

How to Get More Information on the PHP/MapScript Module for MapServer
* For a list of all classes, properties, and methods available in the module see the PHP MapScript reference
document.
* More information on the PHP/MapScript module can be found on the PHP/MapScript page on MapTools.org.
* The MapServer Wiki also has PHP/MapScript build and installation notes and some php code snippets.

* Questions regarding the module should be forwarded to the MapServer mailing list.

4.3.2 Obtaining, Compiling, and Installing PHP and the PHP/MapScript Module
Download PHP and PHP/MapScript

¢ The PHP source or the Win32 binaries can be obtained from the PHP web site.

* Once you have verified that PHP is installed and is running, you need to get the latest MapServer source and
compile MapServer and the PHP module.

Setting Up PHP on Your Server

Unix
* Check if you have PHP already installed (several Linux distributions have it built in).
* If not, see the PHP manual’s “Installation on Unix systems” section.

Windows

48 Chapter 4. Installation

http://www.swig.org/
http://www.dmsolutions.ca/
http://www.mapgears.com
http://www.maptools.org/php_mapscript/
http://trac.osgeo.org/mapserver/wiki/PHPMapScript
http://www.php.net/
http://php.net/manual/en/install.unix.php

MapServer Documentation, Release 6.0.3

e MS4W (MapServer For Windows) is a package that contains Apache, PHP, and PHP/MapScript ready to use in
a simple zipfile. Several Open Source applications are also available for use in MS4W.

* Windows users can follow steps in the Installing Apache, PHP and MySQL on Windows tutorial to install
Apache and PHP manually on their system.

* Window users running PWS/IIS can follow php.net’s howto for installing PHP for PWS/IIS 3, PWS 4 or newer,
and IIS 4 or newer.

Note: When setting up PHP on Windows, make sure that PHP is configured as a CGI and not as an Apache module
because php_mapscript.dll is not thread-safe and does not work as an Apache module (See the Example Steps of a Full
Windows Installation section of this document).

Build/Install the PHP/MapScript Module

Building on a Linux Box

NOTE: For UNIX users, see the README.CONFIGURE file in the MapServer source, or see the Compiling on Unix
HowTo.

* The main MapServer configure script will automatically setup the main makefile to compile php_mapscript.so
if you pass the —with-php=DIR argument to the configure script.

¢ Copy the php_mapscript.so library to your PHP extensions directory, and then use the dI() function to load the
module at the beginning of your PHP scripts. See also the PHP function extension_loaded() to check whether
an extension is already loaded.

o The file mapscript/php3/examples/phpinfo_mapscript.phtml will test that the php_mapscript module is properly
installed and can be loaded.

e If you get an error from PHP complaining that it cannot load the library, then make sure that you recompiled
and reinstalled PHP with support for dynamic libraries. On RedHat 5.x and 6.x, this means adding “-rdynamic”
to the CLDFLAGS in the main PHP3 Makefile after running ./configure Also make sure all directories in the
path to the location of php_mapscript.so are at least r-x for the HTTPd user (usually ‘nobody’), otherwise dl()
may complain that it cannot find the file even if it’s there.

Building on Windows

» For Windows users, it is recommended to look for a precompiled binary for your PHP version on the MapServer
download page or on MapTools.org.

« If for some reason you really need to compile your own Windows binary then see the README.WIN32 file in
the MapServer source (good luck!).

Installing PHP/MapScript

Simply copy the file php4_mapscript.dll to your PHP4 extensions directory (pathto/php/extensions)
Using phpinfo()

To verify that PHP and PHP/MapScript were installed properly, create a ‘.php’ file containing the following code and
try to access it through your web server:

<HTML>
<BODY>

<?php
if (PHP_OS == "WINNT" || PHP_OS == "WIN32")

4.3. PHP MapScript Installation 49

http://www.maptools.org/ms4w/
http://www.php-mysql-tutorial.com/install-apache-php-mysql.php
http://www.php.net/manual/en/install.iis.php
http://www.php.net/manual/en/function.extension-loaded.php
http://www.maptools.org/php_mapscript/index.phtml?page=downloads.html

MapServer Documentation, Release 6.0.3

{
dl ("php_mapscript.dll");
}

else

{
dl ("php_mapscript.so");
}
phpinfo () ;
?>

</BODY>
</HTML>

If PHP and PHP/MapScript were installed properly, several tables should be displayed on your page, and ‘MapScript’
should be listed in the ‘Extensions’ table.

Example Steps of a Full Windows Installation

Using MS4W (MapServer for Windows)
1. Download the latest MS4W base package.
2. Extract the files in the archive to the root of one of your drives (e.g. C:/ or D:/).
3. Double-click the file /ms4w/apache-install.bat to install and start the Apache Web server.
4

. In a web browser goto http://127.0.0.1. You should see an MS4W opening page. You are now running PHP,
PHP/MapScript, and Apache.

5. You can now optionally install other applications that are pre-configured for MS4W, which are located on the
MS4W download page.

Manual Installation Using Apache Server
1. Download the Apache Web Server and extract it to the root of a directory (eg. D:/Apache).
2. Download PHP4 and extract it to your Apache folder (eg. D:/Apache/PHP4).

3. Create a temp directory to store MapServer created GIFs. NOTE: This directory is specified in the IMAGEPATH
parameter of the WEB Object in the Mapfile reference. For this example we will call the temp directory
“ms_tmp” (eg. E:/tmp/ms_tmp).

4. Locate the file httpd.conf in the conf directory of Apache, and open it in a text viewer (eg. TextPad, Emacs,
Notepad).

In the Alias section of this file, add aliases to the ms_tmp folder and any other folder you require (for this
example we will use the msapps folder):

Alias /ms_tmp/ "path/to/ms_tmp/"
Alias /msapps/ "path/to/msapps/"

In the ScriptAlias section of this file, add an alias for the PHP4 folder.

ScriptAlias /cgi-php4/ "pathto/apache/php4/"

In the AddType section of this file, add a type for php4 files.

AddType application/x-httpd-php4 .php

In the Action section of this file, add an action for the php.exe file.

50 Chapter 4. Installation

http://www.maptools.org/ms4w/index.phtml?page=downloads.html
http://127.0.0.1
http://www.maptools.org/ms4w/index.phtml?page=downloads.html
http://httpd.apache.org/
http://www.php.net/

MapServer Documentation, Release 6.0.3

7.

Action application/x-httpd-php4 "/cgi-php4/php.exe"
Copy the file php4.ini-dist located in your Apache/php4 directory and paste it into your WindowsNT folder (eg.
c:/winnt), and then rename this file to php.ini in your WindowsNT folder.

If you want specific extensions loaded by default, open the php.ini file in a text viewer and uncomment the
appropriate extension.

Place the file php_mapscript.dll into your Apache/php4/extensions folder.

Installation Using Microsoft’s IIS

(please see the /1S Setup for MapServer document for uptodate steps)

L.
2.
3.
4.

® N oW

10.

11.

12.
13.

Install IIS if required (see the IIS 4.0 installation procedure).
Install PHP and PHP/MapScript (see above).
Open the Internet Service Manager (eg. C/WINNT/system32/inetsrv/inetmgr.exe).

Select the Default web site and create a virtual directory (right click, select New/Virtual directory). For this
example we will call the directory msapps.

In the Alias field enter msapps and click Next.
Enter the path to the root of your application (eg. “c:/msapps”) and click Next.
Set the directory permissions and click Finish.

Select the msapps virtual directory previously created and open the directory property sheets (by right clicking
and selecting properties) and then click on the Virtual directory tab.

Click on the Configuration button and then click the App Mapping tab.

Click Add and in the Executable box type: path/to/php4/php.exe %s %s. You MUST have the %s %s on the
end, PHP will not function properly if you fail to do this. In the Extension box, type the file name extension to
be associated with your PHP scripts. Usual extensions needed to be associated are phtml and php. You must
repeat this step for each extension.

Create a temp directory in Explorer to store MapServer created GIFs.

Note: This directory is specified in the IMAGEPATH parameter of the WEB Object in the Mapfile. For this
example we will call the temp directory ms_tmp (eg. C:/tmp/ms_tmp).

Open the Internet Service Manager again.

Select the Default web site and create a virtual directory called ms_tmp (right click, select New/Virtual direc-
tory). Set the path to the ms_tmp directory (eg. C:/tmp/ms_tmp) . The directory permissions should at least be
set to Read/Write Access.

4.3.3 FAQ/ Common Problems

Questions Regarding Documentation

Q Is there any documentation available?

A The main reference document is the PHP MapScript reference, which describes all of the current
classes, properties and methods associated with the PHP/MapScript module.

To get a more complete description of each class and the meaning of their member variables, see the
MapScript reference and the MapFile reference.

4.3. PHP MapScript Installation 51

http://support.microsoft.com/support/iis/install/install_iis4.asp

MapServer Documentation, Release 6.0.3

The MapServer Wiki also has PHP/MapScript build and installation notes and some php code snip-
pets.

Q Where can I find sample scripts?

A Some examples are included in directory mapserver/mapscript/php3/examples/ in the MapServer
source distribution. A good one to get started is fest_draw_map.phtml: it’s a very simple script
that just draws a map, legend and scalebar in an HTML page.

A good intermediate example is the PHP MapScript By Example guide (note that this document was
created for an earlier MapServer version but the code might be still useful).

The next example is the GMap demo. You can download the whole source and data files from the
MapTools.org download page.

Questions About Installation

Q How can I tell that the module is properly installed on my server?
A Create a file called phpinfo.phtml with the following contents:

<?php dl("php_mapscript.so");
phpinfo();
?>

Make sure you replace the php_mapscript.so with the name under which you installed it, it could be
php_mapscript_46.so on Unix, or php_mapscript_46.dll on Windows

You can then try the second test page mapserver/mapscript/php3/examples/test_draw_map.phtml.
This page simply opens a MapServer .map file and inserts its map, legend, and scalebar in an HTML
page. Modify the page to access one of your own MapServer .map files, and if you get the expected
result, then everything is probably working fine.

Q I try to display my .phtml or .php page in my browser but the page is shown as it would it
Notepad.

A The problem is that your PHP installation does not recognize ~.phtml” as a PHP file extension. As-
suming you’re using PHP4 under Apache then you need to add the following line with the other
PHP-related AddType lines in the httpd.conf:

AddType application/x-httpd-php .phtml

For a more detailed explanation, see the Example Steps of a Full Windows Installation section of
this document.

Q Iinstalled the PROJ.4, GDAL, or one of the support libraries on my system, it is recognized by
MapServer’s “configure’ as a system lib but at runtime I get an error: “libproj.so.0: No such
file or directory”.

A You are probably running a RedHat Linux system if this happened to you. This happens because the
libraries install themselves under /usr/local/lib but this directory is not part of the runtime library
path by default on your system.

(I'm still surprised that “configure” picked proj.4 as a system lib since it’s not in the system’s lib
path...probably something magic in autoconf that we’ll have to look into)

There are a couple of possible solutions:

52

Chapter 4. Installation

http://trac.osgeo.org/mapserver/wiki/PHPMapScript
http://www.mapsherpa.com/gmap/
http://www.maptools.org/dl/

MapServer Documentation, Release 6.0.3

1. Add a “setenv LD_LIBRARY_PATH” to your httpd.conf to contain that directory

2. Edit /etc/ld.so.conf to add /ust/local/lib, and then run “/sbin/ldconfig”. This will permanently
add /usr/local/lib to your system’s runtime lib path.

3. Configure MapServer with the following options:
--with-proj=/usr/local --enable-runpath

and the /ust/local/lib directory will be hardcoded in the exe and .so files

I (Daniel Morissette) personally prefer option #2 because it is permanent and applies to everything
running on your system.

Q Does PHP/MapScript have to be setup as a CGI? If so, why?
A Yes, please see the PHP/MapScript CGI page in the MapServer Wiki for details.

Q I have compiled PHP as a CGI and when PHP tries to load the php_mapscript.so, I get an
“undefined symbol: _register_list_destructors” error. What’s wrong?

A Your PHP CGI executable is probably not linked to support loading shared libraries. The MapServer
configure script must have given you a message about a flag to add to the PHP Makefile to enable
shared libs.

Edit the main PHP Makefile and add “-rdynamic” to the LDFLAGS at the top of the Makefile, then
relink your PHP executable.

Note: The actual parameter to add to LDFLAGS may vary depending on the system you’re running
on. On Linux it is “-rdynamic”, and on *BSD it is “-export-dynamic”.

Q What are the best combinations of MapScript and PHP versions?
A The best combinations are:

* MapScript 4.10 with PHP 5.2.1 and up

* MapScript 4.10 with PHP 4.4.6 and up

Q I am dynamically loading gd.so and php_mapscript.so and running into problems, why?

A The source of the problems could be a mismatch of GD versions. The PHP GD module compiles its
own version of libgd, and if the GD library is loaded before the mapscript library, mapscript will
use the php-specific version. Wherever possible you should use a gd.so built with the same GD as
PHPMapScript. A workaround is to load the php_mapscript module before the GD module.

4.4 .NET MapScript Compilation

Author Tamas Szekeres
Contact szekerest at gmail.com
Revision $Revision$

Date $Date$

4.4. .NET MapScript Compilation 53

http://old-mapserver.gis.umn.edu/cgi-bin/wiki.pl?PHPMapScriptCGI

MapServer Documentation, Release 6.0.3

4.4.1 Compilation

Before compiling C# MapScript you should compile MapServer with the options for your requirements. For more
information about the compilation of MapServer please see Win32 Compilation and Installation Guide. It is highly
recommended to minimize the library dependency of your application, so when compiling MapServer enable only the
features really needed. To compile the C# binding SWIG 1.3.31 or later is required.

Warning: This document may refer to older library versions. You may want to try to use more recent library
versions for your build.

Win32 compilation targeting the MS.NET framework 1.1

You should compile MapServer, MapScript and all of the subsequent libraries using Visual Studio 2003. Download
and uncompress the latest SWIGWIN package that contains the precompiled swig.exe Open the Visual Studio .NET
2003 Command Prompt and step into the /mapscript/csharp directory. Edit makefile.vc and set the SWIG variable to
the location of your swig.exe

Use:

nmake —-f makefile.vc

to compile mapscript.dll and mapscript_csharp.dll.

Win32 compilation targeting the MS.NET framework 2.0

You should compile MapServer, MapScript and all of the subsequent libraries using Visual Studio 2005. Download
and uncompress the latest SWIGWIN package that contains the precompiled swig.exe Open the Visual Studio 2005
Command Prompt and step into the /mapscript/csharp directory Edit makefile.vc and set the SWIG variable to the
location of your swig.exe.

Use:

nmake —-f makefile.vc

to compile mapscript.dll and mapscript_csharp.dll.

Win32 compilation targeting the MONO framework

Before the compilation you should download and install the recent mono Win32 setup package (eg. mono-1.1.13.2-
gtksharp-2.8.1-win32-1.exe) Edit makefile.vc and set the CSC variable to the location of your mcs.exe. Alternatively
you can define:

MONO = YES

in your nmake.opt file.

You should use the same compiler for compiling MapScript as the compiler has been used for the MapServer compi-
lation. To compile MapScript open the Command Prompt supplied with your compiler and use:

nmake —-f makefile.vc

to compile mapscript.dll and mapscript_csharp.dll.

54 Chapter 4. Installation

MapServer Documentation, Release 6.0.3

Alternative compilation methods on Windows

Beginning from MapServer 4.8.3 you can invoke the C# compilation from the MapServer directory by uncommenting
DOT_NET in nmake.opt:

.NET will of course only work with MSVC 7.0 and 7.1. Also note that
you will definitely want USE_THREAD defined.

and invoking the compilation by:

nmake -f makefile.vc csharp

You can also use:

nmake —-f makefile.vc install

for making the compilation an copying the targets into a common output directory.

Testing the compilation

For testing the compilation and the runtime environment you can use:

nmake —-f makefile.vc test

within the csharp directory for starting the sample applications compiled previously. Before making the test the
location of the corresponding libraries should be included in the system PATH.

Linux compilation targeting the MONO framework

Before the compilation you should download and install the recent mono Linux package. Some distributions have pre-
compiled binaries to install, but for using the latest version you might want to compile and install it from the source.
Download and uncompress the latest SWIG release. You should probably compile it from the source if pre-compiled
binaries are not available for your platform.

Before compiling MapScript, MapServer should be configured and compiled. Beginning from MapServer 4.8.2 during
configuration the mapscript/csharp/Makefile will be created according to the configuration options. Edit this file and
set the SWIG and CSC for the corresponding executable pathes if the files could not be accessed by default. To compile
at a console step into the /mapscript/csharp directory use:

make

to compile libmapscript.so and mapscript_csharp.dll.
For testing the compilation and the runtime environment you can use:

make test

for starting the sample applications compiled previously.

OSX compilation targeting the MONO framework

Beginning from 4.10.0 the csharp/Makefile supports the OSX builds. Before making the build the recent MONO
package should be installed on the system.

4.4. .NET MapScript Compilation 55

MapServer Documentation, Release 6.0.3

Before compiling MapScript, MapServer should be configured and compiled. Beginning from MapServer 4.8.2 during
configuration the mapscript/csharp/Makefile will be created according to the configuration options. Edit this file and
set the SWIG and CSC for the corresponding executable pathes if the files could not be accessed by default. To compile
at a console step into the /mapscript/csharp directory use:

make

to compile libmapscript.dylib and mapscript_csharp.dll.
For testing the compilation and the runtime environment you can use:

make test

for starting the sample applications compiled previously.

To run the applications mapscript_csharp.dll.config is needed along with the mapscript_csharp.dll file. This file is
created during the make process

4.4.2 Installation

The files required for your application should be manually installed. It is highly recommended to copy the files into
the same folder as the executable resides.

4.4.3 Known issues

Visual Studio 2005 requires a manifest file to load the CRT native assembly wrapper

If you have compiled MapServer for using the CRT libraries and you are using the MS.NET framework 2.0 as the
execution runtime you should supply a proper manifest file along with your executable, like:

<?xml version="1.0" encoding="utf-8"7?>

<assembly xsi:schemalocation="urn:schemas-microsoft-com:asm.vl
assembly.adaptive.xsd" manifestVersion="1.0"
xmlns:asmvl="urn:schemas-microsoft-com:asm.v1l"
xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#"
xmlns="urn:schemas-microsoft-com:asm.v1l"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<assemblyIdentity name="drawmap.exe" version="1.0.0.0" type="win32" />

<dependency>

<dependentAssembly asmv2:dependencyType="install"
asmv2:codebase="Microsoft.VC80.CRT.manifest" asmv2:size="522">

<assemblyIdentity name="Microsoft.VC80.CRT" version="8.0.50608.0"
publicKeyToken="1fc8b3b%lel8e3b" processorArchitecture="x86"
type="win32" />

<hash xmlns="urn:schemas-microsoft-com:asm.v2">

<dsig:Transforms>

<dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />

</dsig:Transforms>

<dsig:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal” />

<dsig:DigestValue>UMOlhUBGeKRrrg9DaaPNgyhRjyM=</dsig:DigestValue>

</hash>

</dependentAssembly>

</dependency>

</assembly>

56 Chapter 4. Installation

MapServer Documentation, Release 6.0.3

This will inform the CLR that your exe depends on the CRT and the proper assembly wrapper is to be used. If you are
using the IDE the manifest file could be pregenerated by adding a reference to Microsoft. VC80.CRT.manifest within
the /Microsoft Visual Studio 8/VC/redist/x86/Microsoft. VC80.CRT directory.

Manifests for the dll-s must be embedded as a resource

According to the windows makefile the MapScript compilation target (mapscript.dll) is linked with the /MD option. In
this case the VS2005 linker will generate a manifest file containing the unmanaged assembly dependency. The sample
contents of the manifest file are:

<?xml version='1.0’" encoding='UTF-8’ standalone=’'yes’?>

<assembly xmlns='urn:schemas-microsoft-com:asm.v1l’ manifestVersion="1.0">
<dependency>

<dependentAssembly>

<assemblyIdentity type=’'win32’ name=’'Microsoft.vC80.CRT’
version=’8.0.50608.0" processorArchitecture=’'x86’
publicKeyToken=’1fc8b3b9%lel8e3b’ />

</dependentAssembly>

</dependency>

</assembly>

Like previously mentioned if you are creating a windows application the common language runtime will search for a
manifest file for the application. The name of the manifest file should be the same as the executable append and end
with the .manifest extension. However if the host process is not controlled by you (like web mapping applications using
aspnet_wp.exe as the host process) you will not be certain if the host process (.exe) will have a manifest containing a
reference to the CRT wrapper. In this case you may have to embed the manifest into the dll as a resource using the mt
tool like:

mt /manifest mapscript.dll.manifest /outputresource:mapscript.dll;#2

the common language runtime will search for the embedded resource and load the CRT assembly properly.

Normally it is enough to load the CRT with the root dll (mapscript.dll), but it is not harmful embedding the manifest
into the dependent libraries as well.

Issue with regex and Visual Studio 2005
When compiling with Microsoft Visual Studio 2005 variable name collision may occur between regex.c and crtdefs.h.
For more details see:

http://trac.osgeo.org/mapserver/ticket/1651

C# MapScript library name mapping with MONO

Using the MapScript interface created by the SWIG interface generator the communication between the C# wrapper
classes (mapscript_csharp.dll) and the C code (mapscript.dll) takes place using platform invoke like:

[DllImport ("mapscript", EntryPoint="CSharp_new_mapObj")]
public static extern IntPtr new_mapObj(string jargl);

The DllImport declaration contains the library name, however to transform the library name into a file name is platform
dependent. On Windows the library name is simply appended with the .dll extension (mapscript.dll). On the Unix
systems the library file name normally starts with the lib prefix and appended with the .so extension (libmapscript.so).

4.4. .NET MapScript Compilation 57

http://trac.osgeo.org/mapserver/ticket/1651

MapServer Documentation, Release 6.0.3

Mapping of the library name may be manually controlled using a dll.config file. This simply maps the library file
the DllImport is looking for to its unix equivalent. The file normally contains the following information (map-
script_csharp.dll.config):

<configuration>
<dllmap dll="mapscript" target="libmapscript.so" />
</configuration>

and with the OSX builds:

<configuration>
<dllmap dll="mapscript" target="libmapscript.dylib" />
</configuration>

The file should be placed along with the corresponding mapscript_csharp.dll file, and created by default during the
make process. For more information see:

http://trac.osgeo.org/mapserver/ticket/1596 http://www.mono-project.com/Interop_with_Native_Libraries

Localization issues with MONO/Linux

According to http://trac.osgeo.org/mapserver/ticket/1762 MapServer may not operate equally well on different locale
settings. Especially when the decimal separator is other than ”.” inside the locale of the process may cause parse errors
when the mapfile contains float numbers. Since the MONO process takes over the locale settings of the environment

it is worth considering to set the default locale to “C” of the host process, like:

LC_ALL=C mono ./drawmap.exe ../../tests/test.map test_csharp.png

4.4.4 Most frequent errors

This chapter will summarize the most frequent problems the user can run into. The issues were collected mainly from
the -users list and the IRC.

Unable to load dll (MapScript)

You can get this problem on Windows and in most cases it can be dedicated to a missing or an unloadable shared
library. The error message talks about mapscript.dll but surely one or more of the dll-s are missing that libmap.dll
depends on. So firstly you might want to check for the dependencies of your libmap.dll in your application directory.
You can use the Visual Studio Dependency Walker to accomplish this task. You can also use a file monitoring tool
(like SysInternal’s filemon) to detect the dll-s that could not be loaded. I propose to store all of the dll-s required by
your application in the application folder. If you can run the drawmap C# sample application with your mapfile your
compilation might be correct and all of the dlls are available.

You may find that the MapScript C# interface behaves differently for the desktop and the ASP.NET applications.
Although you can run the drawmap sample correctly you may encounter the dll loading problem with the ASP.NET
applications. When creating an ASP.NET project your application folder will be ‘Inetpubwwwroot[YourApp]bin’
by default. The host process of the application will aspnet_wp.exe or w3wp.exe depending on your system. The
application will run under a different security context than the interactive user (under the context of the ASPNET
user by default). When placing the dll-s outside of your application directory you should consider that the PATH
environment variable may differ between the interactive and the ASPNET user and/or you may not have enough
permission to access a dll outside of your application folder.

58 Chapter 4. Installation

http://trac.osgeo.org/mapserver/ticket/1596
http://www.mono-project.com/Interop_with_Native_Libraries
http://trac.osgeo.org/mapserver/ticket/1762

MapServer Documentation, Release 6.0.3

4.4.5 Bug reports

If you find a problem dedicated to the MapScript C# interface feel free to file a bug report to the Issue Tracker.

4.5

IIS Setup for MapServer

Author Debbie Paqurek
Last Updated 2005/12/12

Table of Contents

* IIS Setup for MapServer

— Base configuration

Php.ini file

Internet Services Manager

Under the tree for your new website - add virtual directories for
Test PHP

Mapfiles for IIS

Configuration files:

Some help on how to set up MapServer/Chameleon/PhpPgAdmin on Microsoft IIS (v5.0). Contains note on changes
to the php.ini file and necessary changes to the MapServer mapfiles. Please contribute or make changes as required.

4.5.1 Base configuration

Windows 2000

11S 5.0

MS4w 1.2.1

Chameleon 2.2

PHP 4.3.11

MapServer 4.7

PhpPgAdmin 3.5.4 (if using postgresql/postgis)
Postgres 8.0.3 (if using postgresql/postgis)
Postgis 1.0.3 (if using postgresql/postgis)

This setup assumes that MS4W was unzipped to form c:\ms4w\ directory.

4.5.2 Php.ini file

session.save_path (absolute path to your tmp directory)
extension_dir (relative path to your php/extensions directory)
cgi.force_redirect = O

enable the pg_sql extension (php_pgsql.dll) (for Postgresql)

4.5. IS Setup for MapServer

59

https://github.com/mapserver/mapserver/issues

MapServer Documentation, Release 6.0.3

4.5.3 Internet Services Manager

Under your website tree, create a new website (e.g. msprojects). View the properties for the new website.
Web Site Tab

* set the IP address and under the Advanced tab put the complete Host Header name (e.g.msprojects.gc.ca).
Home Directory Tab

» content should come from: A directory located on this computer.

* Local Path: c:\ms4w\Apache\htdocs

* Read access + whatever else you need

* Execute Permissions: Scripts only

e Configuration button - App Mappings (Add extensions .php and .phtml, Executable is
c:\ms4w\Apache\cgi-bin\php.exe,select All verbs, Script Engine, and check that file exists

Documents Tab
* Add index.phtml and index.html
¢ Directory Security Tab
— Anonymous access amd authentication control
— Select Anonymous access and the edit button should indicate the IUSR_account
Server Extensions Tab

» Enable authoring is selected and client scripting says Javascript

4.5.4 Under the tree for your new website - add virtual directories for

cgi-bin Under Properties, virtual directory tab Local Path should point to c:\ms4w\apache\cgi-bin. Select Read.
Execute Permissions should say “scripts and executables”

ms_tmp Under Properties, virtual directory tab Local Path should point to c:\ms4w\tmp\ms_tmp. Select Read, Write.
Execute Permissions should say “scripts only”. This is where temporary images are written to so in the File
system Security tab (use windows explorer), the c:\ms4w\tmp\ms_tmp directory should have permissions set
for the Internet Guest Account (Read and execute, Read, Write, List Folder Contents).

tmp Under Properties, virtual directory tab Local Path should point to c:\ms4w\tmp. Select Read, Write. Execute
Permissions should say “scripts only”. This is where chameleon writes sessions to so in the File system Secu-
rity tab (use windows explorer), the c:\\ms4w\tmp directory should have permissions set for the Internet Guest
Accounnt (Read and execute, Read, Write, List Folder Contents).

chameleon Under Properties, virtual directory tab Local Path should point to C:\ms4w\apps\chameleon\htdocs. Select
Read. Execute Permissions should say “scripts only”. Under the Chameleon tree, you can add virtual directories
for admin (c:\ms4w\apps\chameleon\admin\htdocs), samples (c:\ms4w\apps\chameleon\samples\htdocs), cwc2
(c:\ms4w\apps\chameleon\cwc2\htdocs)

phppgadmin If using postgresql/postgis, under Properties, virtual directory tab Local Path should point to
C:\ms4w\Apache\htdocs\phpPgAdmin. Select Read, Write. Execute Permissions should say “scripts and ex-
ecutables”. Under Documents - add index.php.

Note: We had to unzip the phppgadmin package into this directory in order to get phppgadmin to show us the login
page at http://yourserver/phppgadmin/index.php. You might want additional security on this directory.

60 Chapter 4. Installation

http://yourserver/phppgadmin/index.php

MapServer Documentation, Release 6.0.3

gmap Good for testing purposes. Remember to change your mapfiles as discussed in Mapfiles for IIS below. Under
Properties, virtual directory tab Local Path should point to C:\ms4w\apps\gmap\htdocs. Select Read. Execute
Permissions should say “scripts only”.

4.5.5 Test PHP

In a command line window, navigate to c:\ms4w\apache\cgi-bin and run php -i. This should return the out-
put that the phpinfo() function returns. I got an error about how it couldn’t find ntwdblib.dll. I found this in
c:\ms4w\apache\php\dlls and I copied it to the cgi-bin directory.

4.5.6 Mapfiles for lIS

* Add a config line to the MAP level of the mapfile

CONFIG PROJ_LIB "c:\msd4w\proj\nad\"

 change the IMAGEPATH to be an absolute path to your tmp/ms_tmp folder

IMAGEPATH "c:\msd4w\tmp\ms_tmp"

4.5.7 Configuration files:

For Chameleon

C:\ms4w\apps\chameleon\config\chameleon.xml
C:\ms4w\apps\chameleon\config\cwc2.xml

For phppgadmin: (if using postgresql/postgis)
C:\ms4w\apps\phpPgAdmin\conf\config.inc.php

4.6 Oracle Installation

Author Till Adams
Last Updated 2007/02/16

Table of Contents

* Oracle Installation
— Preface
— System Assumptions
— Compile MapServer
— Set Environment Variables

4.6.1 Preface

This document explains the whole configuration needed to get the connect between MapServer CG/ and an Oracle
database server on a linux (Ubuntu) box. The aim of this document is just to put a lot of googled knowledge in ONE
place. Hopefully it will preserve many of people spending analog amount of time than I did!

4.6. Oracle Installation 61

MapServer Documentation, Release 6.0.3

This manual was written, because I spent several days googling around to get my UMN having access to an oracle
database. I'm NOT an oracle expert, so the aim of this document is just to put a lot of googled knowledge in ONE
place. Hopefully it will preserve many of people spending analog amount of time than I did! (Or: If you have the
choice: Try PostGIS ;-))

Before we start, some basic knowledge, I didn’t know before:

* MapServer can access oracle spatial as well as geodata from any oracle locator installation! Oracle locator
comes with every oracle instance, there is no need for an extra license.

* There is no need for further installation of any packages beside oracle/oracle OCI

4.6.2 System Assumptions
We assume that Oracle is already installed, there is a database and there is some geodata in the database. The following
paths should be known by the reader:

e ORACLE_HOME

* ORACLE_SID

* ORACLE_BASE

 LD_LIBRARY_PATH

We also assume that you have installed apache2 (our version was 2.0.49) and you are used to work with Linux/UNIX
systems. We also think you are able to handle the editor vi/vim.

We ensure that the Oracle user who later accesses the database has write-access to the oracle_home directory.
We also assume, that you already have setup the tnsnames.ora file. It should look like that:

MY_ORACLE =
(DESCRIPTION
(ADDRESS = (PROTOCOL = TCP) (HOST = host) (PORT = 1521))
(CONNECT_DATA =
(SERVICE_NAME = your_name)

)
)

It is important that you know the NAME of the datasource, in this example this is “MY_ORACLE” and will be used
further on. Done that, you’re fine using User/Password@MY_ORACLE in your mapfile to connect to the oracle
database. But first we have to do some more stuff.

4.6.3 Compile MapServer
Compile as normal compilation and set this flag:
--with-oraclespatial=/path/to/oracle/home/</p>

If MapServer configure and make runs well, try

./mapserv -v

This should at least give this output:

INPUT=ORACLESPATIAL

If you got that, you’re fine from the MapServer point of view.

62 Chapter 4. Installation

MapServer Documentation, Release 6.0.3

4.6.4 Set Environment Variables

It is important to set all environment variables correctly. There are one the one hand system-wide environment vari-
ables to be set, on the other hand there should be set some for the cgi-directory in your Apache configuration.

System Variables

On Ubuntu (and on many other systems) there is the file “/etc/profile” which sets environment variables for all users
on the system (you may also dedicate user-specific environment variables by editing the users ”.profile” file in their
home directory, but usually the oracle database users are not users of the system with their own home)

Set the following variables:

$ cd /etc

$ echo export ORACLE_HOME=/path/to/oracle/home >> /etc/profile

%+ (e.g. ORACLE_HOME=/app/oracle/oralOg)

$ echo export ORACLE_BASE=path/to/oracle >> /etc/profile

x*x(e.g. ORACLE_HOME=/app/oracle)

$ echo export ORACLE_SID=MY_ORACLE >> /etc/profile

$ echo export LD_LIBRARY_PATH=path/to/oracle/home/lib >> /etc/profile
xx(e.g. ORACLE_HOME=/app/oracle/orallg/lib)

The command comes silent, so there is no system output if you didn’t mistype anything!

Setting the Apache Environment

Sometimes it is confusing WHERE to set WHAT in the splitted apache2.conf-files. In the folder
“/etc/apache2/sites_available” you find your sites-file. If you did not do sth. Special e.g. installing virtual hosts,
the file is named “default”. In this file, the apache cgi-directory is defined. Our file looks like this:

ScriptAlias /cgi-bin/ /var/www/cgi-bin/
<Directory "/var/www/cgi-bin">
AllowOverride None
Options ExecCGI -MultiViews +SymLinksIfOwnerMatch
Order allow,deny
Allow from all
</Directory></p>

In this file, the local apache environment variables must be set. We did it within a location-block like this:

<Location "/cgi-bin/">
SetEnv ORACLE_HOME "/path/to/oracle/home"
</Location></p>

Where /cgi-bin/ in the opening location block refers to the script alias /cgi-bin/ and the TNS_ADMIN directory point
to the location of the tnsnames.ora file.

Then restart apache:

4.6. Oracle Installation 63

MapServer Documentation, Release 6.0.3

$ /etc/init.d/apache2 force-reload

Create mapfile
Before we start creating our mapfile ensure that you have a your access data (User/Password) and that you know the
Oracle SRID, which could be different from the proj-EPSG!
The data access parameters:
* CONNECTIONTYPE oraclespatial
* CONNECTION ‘user/password@MY_ORACLE'*
e DATA ‘GEOM FROM MY_LAYER USING SRID 82032’
[...]
Where:
* GEOM is the name of the geometry column
¢ MY_LAYER the name of the table
* 82032 is equivalent to the EPSG code 31468 (German projection system)

Testing & Error handling

So you are fine now. Load the mapfile in your application and try it. If everything goes well: Great, if not, possibly this
ugly error-emssage occurs (this one cmae by querying MapServer through the WMS interface as a GetMap-request):

<ServiceExceptionReport version="1.0.1">
<ServiceException>
msDrawMap () : Image handling error. Failed to draw layer named ’'testl’.
msOracleSpatiallLayerOpen(): OracleSpatial error. Cannot create OCI Handlers.
Connection failure. Check the connection string. Error:
</ServiceException>
</ServiceExceptionReport>

This points us towards, that there might be a problem with the connection to the database. First of all, let’s check, if
the mapfile is all right. Therefore we use the MapServer utility program shp2img.

Let’s assume you are in the directory, where you compiled MapServer and run shp2img:

$ cd /var/src/mapserver_version/
$ shp2img -m /path/to/mapfile/mapfile.map —-i png -o /path/to/output/output.png

The output of the command should look like this:

[Fri Feb 2 14:32:17 2007].522395 msDrawMap(): Layer 0 (testl), 0.074s
[Fri Feb 2 14:32:17 2007].522578 msDrawMap () : Drawing Label Cache, 0.000s
[Fri Feb 2 14:32:17 2007].522635 msDrawMap() total time: 0.075s

If not, this possibly points you towards any error in your mapfile or in the way to access the data directly. In this
case, take a look at Oracle Spatial. If there is a problem with your oracle connect, the same message as above
(MsDrawMap() ...) occurs. Check your mapfile syntax and/or the environment settings for Oracle.

For Debian/Ubuntu it’s worth also checking the file “/etc/environment” and test-wise to add the system variables
comparable to System Variables

64 Chapter 4. Installation

mailto:'user/password@MY_ORACLE

MapServer Documentation, Release 6.0.3

If the output is OK, you may have a look at the generated image (output.png). Then your problem reduces to the access
of apache to oracle home directory. Carefully check your apache configuration. Please note, that the apache.config file
differs in several linux-distributions. For this paper we talk about Ubuntu, which should be the same as Debian.

4.6. Oracle Installation 65

MapServer Documentation, Release 6.0.3

66

Chapter 4. Installation

CHAPTER 5

Mapfile

Author Steve Lime

Contact steve.lime at dnr.state.mn.us
Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com
Author Jean-Frangois Doyon

Contact jdoyon at ccrs.nrcan.gc.ca

The Mapfile is the heart of MapServer. It defines the relationships between objects, points MapServer to where data
are located and defines how things are to be drawn.

The Mapfile consists of a MAP object, which has to start with the word MAP.

There are some important concepts that you must understand before you can reliably use mapfiles to configure
MapServer. First is the concept of a LAYER. A layer is the combination of data plus styling. Data, in the form of
attributes plus geometry, are given styling using CLASS and STYLE directives.

See Also:

An Introduction to MapServer for “An Introduction to the Mapfile”

5.1 Cartographical Symbol Construction with MapServer

Author Peter Freimuth

Contact pf at mapmedia.de

Author Arnulf Christl

Contact arnulf.christl at wheregroup.com
Author Havard Tveite

Contact havard.tveite at umb.no
Revision $Revision$

Date $Date$

67

MapServer Documentation, Release 6.0.3

Table of Contents

 Cartographical Symbol Construction with MapServer
— Abstract
Introduction
* Multiple Rendering and Overlay
% Symbol Scaling
+* MapServer and symbol specification
Using Cartographical Symbols in MapServer
* Output formats
* Symbol units
% Scaling of Symbols
Construction of Point Symbols
x Symbols of TYPE vector and ellipse
* Symbols of TYPE truetype
* Symbols of TYPE pixmap
* Symbol definitions for the figure that demonstrates point symbols
% Combining symbols
Construction of Line Symbols
* Overlaying lines
* Use of the PATTERN and GAP parameters
* Use of the OFFSET parameter
% Asymmetrical line styling with point symbols
Area Symbols
* Hatch fill
% Polygon fills with symbols of TYPE pixmap
* Polygon fills with symbols of TYPE vector
* Polygon outlines
Examples (MapServer 4)
* Basic Symbols
* Complex Symbols
Tricks
* Changing the center of a point symbol
Mapfile changes related to symbols
Current Problems / Open Issues
* GAP - PATTERN incompatibility
The End

5.1.1 Abstract

This Document refers to the syntax of map and symbol files for MapServer 6. The first version of the document
was based on the results of a project carried out at the University of Hannover, Institute of Landscape and Nature
Conservation. It was initiated by Mr. Dipl. Ing. Roland Hachmann. Parts have been taken from a study carried
through by Karsten Hoffmann, student of Geography and Cartography at the FU Berlin. In the context of a hands-on
training in the company GraS GmbH Mr. Hoffman mainly dealed with the development of symbols. (Download study
report in German) His degree dissertation will also concern this subject.

The document has been heavily revised for MapServer 6.

68 Chapter 5. Mapfile

http://www.mapmedia.de/fileadmin/user_upload/dokumente/umn_signaturen_howto/Praktikumsarbeit.zip
http://www.mapmedia.de/fileadmin/user_upload/dokumente/umn_signaturen_howto/Praktikumsarbeit.zip

MapServer Documentation, Release 6.0.3

5.1.2 Introduction

A map is an abstract representation that makes use of point, line and area symbols. Bertin (1974) created a clear and
logical symbol scheme in which symbols can be varied referring to graphical variables. The following graphical vari-
ables can be used within MapServer: FORM, SIZE, PATTERN, COLOR and LIGHTNESS. Point and area symbols
as well as text fonts (ttf) can additionally be displayed with a frame which we call OUTLINE.

The following figure shows the theoretical structure of cartographical symbols, which is also used in MapServer:

Structure of Cartographic Symbols

“_ ¥

COLOR +

?

POINT Features

Geometry LINE Features

Internal Variation \

Symbol

AREA Features
SATTERN

s = i

-
FORM A OUTLINE Size

Figure 5.1: Structure of Cartographical Symbols*

external Variation

Multiple Rendering and Overlay

Say you want to display a highway with a black border line, two yellow lanes and a red center lane. This calls for a
combination of signatures.

Complex cartographical effects can be achieved by rendering the same vector data with different symbols, sizes and
colours on top of each other. This can be done using separate LAYERs. This could, however, have performance effects
for the application, as every rendering process of the same geometry will take up additional processor time. The
preferred solution is to use multiple STYLES to create complex symbols by overlay.

To create the highway symbol mentioned above with a total width of 9 units, the lowest STYLE (in drawing order) will
be a broad black line with a width of 9 units. The second level STYLE will be a yellow line with a width of 7 units,
and the topmost STYLE will be a red line with a width of 1 unit. That way each yellow coloured lane will have a width
of (7-1)/2 = 3 units.

5.1. Cartographical Symbol Construction with MapServer 69

MapServer Documentation, Release 6.0.3

Combining symbols can be a solution for many kinds of cartographical questions. A combination of different geometry
types is also possible. A polygon data set can be rendered as lines to frame the polygons with a line signature. It can
also be rendred as polygons with a symbol filling the polygon. When the polygon fill is rendered on top of the lines,
the inner part of the underlying outline is covered by the fill symbol of the polygon. What is observed here is a clipping
effect tha in will result in an asymmetric symbol for the boundary line. To present the outline without clipping, just
reorder the LAYERs or STYLEs and put the outline presentation on top of the fill.

Yet another way to construct advanced line signatures for framed polygons is to tamper with the original geometries
by buffering or clipping the original geometry such that the new objects lie inside the original polygons or grow over
the borders. PostGIS can help achieve a lot of effects.

The OPACITY parameter of LAYER and STYLE can be used to achieve transparency (making lower symbols “shine”
through upper symbols).

Symbol Scaling
There are two basically different ways of handling the display size of symbols and cartographical elements in a map
at different scales. The size of cartographical elements is either set in screen pixels or in real world units.

* If the size is set in real world units (for example meters), the symbol will shrink and grow according to the scale
at which the map is displayed.

« If the size is set in screen pixels, symbols look the same at all scales.

The default behaviour of MapServer is to implement the “screen pixels” size type for displaying cartographical ele-
ments.

“Real world units”, as described above, can be achieved using either the SIZEUNITS or the SYMBOLSCALEDENOM
parameter of the LAYER.

e When SIZEUNITS is set (and is not pixels), symbol sizes are specified in real world units (for instance meters).
For available units, see the SIZEUNIT documentation.

* When SYMBOLSCALEDENOM is set, the given symbols size is used for the map scale 1:SYMBOLSCALEDE-
NOM, for other scales, the symbols are scaled proportionally.

STYLE MAXSIZE and MINSIZE limits the scaling of symbols.

MapServer and symbol specification

In a MapServer application, SYMBOL parameters are organised in the map file as follows:

* Each LAYER has a TYPE parameter that defines the type of geometry (point, line or polygon). The symbols are
rendered at points, along lines or over areas accordingly.

* Basic symbols are defined in SYMBOL elements, using the parameters TYPE, POINTS, IMAGE, FILLED, and
more (SYMBOL elements can be collected in separate symbol files for reuse).

 Colour, lightness, size and outline are defined inside the STYLE sections of a CLASS section using the parameters
COLOR, SIZE, WIDTH and OUTLINECOLOR.

* Patterns for styling lines and polygons are defined in STYLE sections using GAP and PATTERN.
* Several basic elements can be combined to achieve a complex signature using several STYLESs inside one CLASS.

The following example shows the interaction of some of these elements and explains the configuration in the LAYER
and the SYMBOL sections necessary for rendering a cartographical point symbol (a red square with a 1 pixel wide
black outline and a smaller blue circle inside):

70 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

Figure 5.2: The generated overlay symbol

Table 5.1: Commented LAYER and SYMBOL sections.

LAYER section of the map file

SYMBOL (from a separate symbol file or in-line in
the map file)

Start of layer definition
LAYER
Name of the layer
NAME "mytest"
TYPE POINT # Point geometries
STATUS DEFAULT # Always draw
Use the dataset test.shp
paTA [t [e[s]t]
Start of a Class definition
CLASS
Start of the first Style
STYLE
Symbol to be used (reference)
SYMBOL "square"
Size of the symbol in pixels
SIZE 16
Colour (RGB)
COLOR 255 0 O
Outline colour (RGB)
OUTLINECOLOR 0O 0 O
END # end of STYLE
Start of the second Style

- red

- black

STYLE
Symbol to be used (reference)
SYMBOL "circle"
Size of the symbol in pixels
SIZE 10

Colour (RGB) - blue
COLOR O 0O 255
END # end of STYLE
END # end of CLASS

END # end of LAYER

Start of symbol definition
SYMBOL
Symbol name (referenced in STYLEs)
NAME "square"
TYPE vector # Type of symbol
Start of the symbol geometry
POINTS
0 0

1
1
0

o - P O

0
END # end of POINTS
The symbol should be filled
FILLED true

END # end of SYMBOL

Start of symbol definition

SYMBOL
Symbol name (referenced in STYLES)
NAME "circle"

TYPE ellipse # Type of symbol
Start of the symbol geometry
POINTS
11

END # end of POINTS
The symbol should be filled
FILLED true

END # end of SYMBOL

5.1.3 Using Cartographical Symbols in MapServer

Vectors, truetype fonts and raster images are basic graphical elements that are defined by the TYPE parameter in the
STYLE element. This and the following sections explain how these elements can be combined to create complex
cartographical symbols, and they describes some other important aspects of map rendering in MapServer .

5.1. Cartographical Symbol Construction with MapServer 71

MapServer Documentation, Release 6.0.3

Output formats

MapServer support raster output formats (e.g. PNG, JPEG and GIF) and vector output formats (e.g. PDF, SVG). The
raster formats (except for GIF) use anti-aliasing. See OUTPUTFORMAT (and MAP IMAGETYPE) for more.

Symbol units

The units used for specifying dimensions is defined in the SIZEUNITS parameter of the LAYER. The available units
are listed there. The default unit is pixels.

The MAP element’s RESOLUTION and DEFRESOLUTION parameters will determine the resolution of the resulting
map and hence the size in pixels of the symbols on the map. DEFRESOLUTION is by default 72 dpi (dots per inch). If
RESOLUTION is set to 144 (and DEFRESOLUTION is 72), all dimensions specified in the map file will be multiplied
by 144/72 = 2. This can be used to produce higher resolution images.

Dimensions can be specified using decimals.

Scaling of Symbols

The SYMBOLSCALEDENOM parameter in the LAYER section specifies the scale at which the symbol or text label is
displayed in exactly the dimensions defined in the STYLEs (for instance using SIZE and WIDTH). Observe that all the
parameters concerned with the symbol dimensions (SIZE, WIDTH, ...) are tightly connected to the SYMBOLSCALE-
DENOM parameter. The MAXSIZE and MINSIZE parameters inside the STYLE element limit the scaling of symbols
to the maximum and minimum size specified here (but does not affect the size calculations).

When symbols are scaled as the scale changes, the elements (defined in STYLES) of a composite cartographical symbol
may change their positions relative to each other. This is due to rounding effects when creating the image. The effect
is most noticable at small scales (large scale denominators), when the symbols get small. Due to the same effects,
symbols can also slightly change their shape when they get small.

It is not possibile to define the display intervals with MINSCALEDENOM and MAXSCALEDENOM in the STYLE-
section, so this kind of tuning has to be solved at the LAYER level. To do this, create several LAYERs with the same
geometries for different scale levels.

Always observe that cartographical symbols depend a lot on the scale! So be careful with the interaction of content,
symbols and scale. All three parameters heavily interact and have to be coordinated to produce a good map.

5.1.4 Construction of Point Symbols

In the figure below, point symbols of TYPE truetype, pixmap, ellipse and vector are demonstrated. The precise position
of the point for which the symbol is rendered is shown with a small red dot. A small blue dot is used to show an offset
position.

All point symbols can be rotated using the ANGLE parameter.

Symbols of TYPE vector and ellipse

For symbols of TYPE vector and ellipse the shape of the symbol by setting X and Y values in a local two dimensional
coordinate system with X values increasing to the right and Y values increasing downwards. The coordinates defining
the symbol is listed in the POINTS parameter, which is explicitly ended using END.

» TYPE ellipse is used to create ellipses (and circles). The shape of the ellipse is defined in the POINTS parameter
(X - size in the horizontal direction, Y - size in the vertical direction). To create a circle, let X and Y have the
same value.

72 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

—_ L= —_
Lo Ty] =] 1= =]
_— =— L] =] (=]
] = L]
D = Qo QDo QF PaY @gs 2=
! ™ Me Meg MZ @ME- M5 O
a a o= = == o= =
™ 2 = = HEE MYy HE
= gl Ny Moy M5 N5 N5 g M
= 7] ho Wmo wWo ®wWo=Z moc W=
L] L] L] L] L] L] L] L]

pixmap » . .

o
28
=y
m.m
truetypes P Q P Q P P .

vector - polygons v v A v A v V
vector - lines W \/ A \/ A \/ v

ellipse» o

A4

Figure 5.3: Basic point symbol TYPESs, showing effects of size, offset, angle and outlinecolor

» TYPE vector is used to define advanced vector symbols. The shape of the symbol is defined in the POINTS
parameter. A vector symbol can consist of several elements. The coordinates -99 -99 are used to separate the
elements.

To create a polygon vector symbol, the SYMBOL FILLED parameter must be set to frue. If the end point is not
equal to the start point of a polygon geometry, it will be closed automatically.

The maximum number of points is 100, but this can be increased by changing the parameter
MS_MAXVECTORPOINTS in the file mapsymbols.h before compilation.

When creating symbols of TYPE vector you should observe some style guidelines.
— Avoid downtilted lines in area symbols, as they will lead to heavy aliasing effects.
— Do not go below a useful minimum size. This is relevant for all types of symbols.

— Keep in mind that for pixel images, every symbol of TYPE vector has to be rendered using pixels.

Note: The bounding box of a vector symbol has (0,0) as its upper left corner. This can be used to precisely
control symbol placement.

Symbols of TYPE truetype

You can use symbols from truetype fonts. The symbol settings are defined in the SYMBOL element. Specify the
character or the ASCII number of the character to be used in the CHARACTER parameter. The FONT parameter is
used to specify the font to be used (the alias name from the font file - often “fonts.list”). The FONTSET parameter of
the MAP element must be set for fonts to work.

5.1. Cartographical Symbol Construction with MapServer 73

MapServer Documentation, Release 6.0.3

For gif output (GD renderer), you can define that you want to apply antialiasing to the characters by using the parameter
ANTIALIAS. Tt is recommended to do this especially with more complex symbols and whenever they don’t fit well into
the raster matrix or show a visible pixel structure.

Colours for truetype symbols can be specified in LAYER CLASS STYLE (as with symbols of the TYPE vector and
ellipse). You can specify both fill colour and outline colour.

To find out the character number of a symbol use one of the following options:
* Use the software FontMap (Shareware, with free trial version for download, thanks Till!).
* Use the MS Windows truetype map.
e Trial and Error. :-)

Please note that the numbering of the so-called “symbol fonts” starts at 61440! So if you want to use character T,
you have to use 61440 + 84 = . (ain’t that a pain!!)

You can also place truetype characters and strings on the map using LABEL. Then you can control the placing of the
text by using the POSITION parameter [ullucluriclicclerlllllcllr], that specifies the position relative to the geometric
origin of the geometry.

Symbols of TYPE pixmap

Symbols of the TYPE pixmap are simply small raster images. The file name of the raster image is specified in the
IMAGE parameter of the SYMBOL element. MapServer supports the raster formats GIF and PNG for pixmaps.

Observe the colour depth of the images and avoid using 24 bit PNG symbols displayed in 8 bit mode as this may cause
unexpected colour leaps.

When using raster images, the colour cannot be modified in the SYMBOL element subsequently.

You can specify a colour with the TRANSPARENT parameter which will not be displayed - i.e. it will be transparent.
As a result, underlying objects and colours are visible.

The SIZE parameter defines the height of pixmap symbols when rendered. The pixel structure will show when the
SIZE grows too large. If you are using symbol scaling (LAYER SYMBOLSCALEDENOM is set or LAYER SIZEUNITS
is not pixels) and want to prevent this from happening, you should set the STYLE MAXSIZE parameter.

Symbol definitions for the figure that demonstrates point symbols

This code was used to produce the symbols in the point symbol figure.
First, the symbol definitions:

SYMBOL

NAME "o-flag-trans"

TYPE pixmap

IMAGE "o-flag-trans.png"
END # SYMBOL

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
10 10
END # POINTS
END # SYMBOL

74 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

SYMBOL
NAME "pP"
TYPE truetype
FONT "arial"
CHARACTER "P"
END # SYMBOL

SYMBOL
NAME "v-line"
TYPE vector
FILLED false
POINTS
0 O
5 10
10 0
END # POINTS
END # SYMBOL

SYMBOL
NAME "v-poly"
TYPE vector
FILLED true
POINTS
0 O
8

O R WU 3w

5
0
2
.5 4
8
0
END # POINTS
END # SYMBOL

Then, the LAYERs and STYLEs used for producing the polygon V symbols in the point symbol figure:

LAYER # Vector v - polygon
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
10 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR 0O 0 O
END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 0
SIZE 4
END # STYLE
END # CLASS
END # LAYER

LAYER # Vector v — polygon, size
STATUS DEFAULT
TYPE POINT

5.1. Cartographical Symbol Construction with MapServer

75

MapServer Documentation, Release 6.0.3

FEATURE
POINTS
20 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR O 0 O

SIZE 30
END # STYLE
STYLE

SYMBOL "circlef"
COLOR 255 0 O
SIZE 4
END # STYLE
END # CLASS
END # LAYER

LAYER # Vector v - polygon, size, angle
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
30 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COILOR 0 0 0
SIZE 30
ANGLE 60
END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 0
SIZE 4
END # STYLE
END # CLASS
END # LAYER

LAYER # Vector v - polygon, size, offset
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
40 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR 0 0 0
SIZE 30
OFFSET 0 15
END # STYLE
STYLE

76 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

SYMBOL "circlef"
COLOR 255 0 0
SIZE 4
END # STYLE
END # CLASS
END # LAYER

LAYER # Vector v - polygon, size, angle, offset
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
50 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COILOR 0 0 0
SIZE 30
ANGLE 60
OFFSET 0 15
END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 O
SIZE 4
END # STYLE
END # CLASS
END # LAYER

LAYER # Vector v - polygon, size outline
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
60 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COILOR 0 0 0
SIZE 30
OUTLINECOLOR 0 255 0
END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 O
SIZE 4
END # STYLE
END # CLASS
END # LAYER

LAYER # Vector v - polygon, size, outline, width
STATUS DEFAULT
TYPE POINT
FEATURE

5.1. Cartographical Symbol Construction with MapServer

77

MapServer Documentation, Release 6.0.3

POINTS
70 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR O 0 O
SIZE 30
OUTLINECOLOR 0 255 0
WIDTH 4
END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 O
SIZE 4
END # STYLE
END # CLASS
END # LAYER

LAYER # Vector v - polygon, size, outline, no color
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
80 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
SIZE 30
OUTLINECOLOR 0 255 0
END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 O
SIZE 4
END # STYLE
END # CLASS
END # LAYER

Combining symbols

The following figure shows how to combine several basic symbols to create a complex point symbol. The combination
is achieved by adding several STYLEs within one LAYER. Each STYLE element references one SYMBOL element. All
the basic symbols are centered and overlayed when rendered.

Notice that the SIZE parameter in the STYLE element refers to the height of the symbol (extent in the Y direction).
A standing rectangle will thus display with a smaller area than a lying rectangle, although both have the same SIZE
parameter and the same maximum Y value in the SYMBOL element. When combining several basic point symbols on
top of each other, they will not always be centered correctly due to the integer mathematics required when rendering
raster images. It is recommended not to combine elements with even and odd numbered SIZE parameters, as this tends
to produce larger irregularities.

78 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

LAYER-Section in the Map-File: Symboldefinitions in the Symbolfile:
LAYER
NAME s(i)gnalun Point L S;mg!;qua srat
TYPEPOINT — Point Layer
STATUS ON ve TYPE VECTOR
DATA..... P(?(')NTS

CLASS 01 - .
STYLE 10
00

SYMBOL "quadrat”

SIZE 40 END
COLOR 00 255 FILLED TRUE
OUTLINECOLOR 000 END
END
SYMBOL
STYLE NAME "punkt’
SYMBOL "punkt” » TYPE ELLIPSE — which symbol type is used
SIZE 30 POINTS
COLOR 204 204 255 11 —— Length of X and Y radius of the Ellipse
END END
FILLEDTRUE ——> @
STYLE END
SYMBOL "kreuz2"
SIZE 16 \ SYMBOL
COLOROOO NAME “kreuz2"
END TYPE VECTOR
POINTS
END 00 \
END 11 X
-99-99
01 — Megative values can be used
10 to separate singles vectorlines
END (also called pen-up command)

.i -

Visual appearance of the final result

Figure 5.4: Construction of Point Symbols

5.1. Cartographical Symbol Construction with MapServer 79

MapServer Documentation, Release 6.0.3

5.1.5 Construction of Line Symbols

For displaying line geometries, you specify the width of the lines using the WIDTH parameter and the colour using the
COLOR parameter. If no colour is specified, the line will not be rendered. If no width is specified, a thin line (one unit
(pixel) wide) will be rendered. The LINECAP, LINEJOIN and LINEJOINMAXSIZE parameters are used to specify
how line ends and corners are to be rendered.

Overlaying lines

When combining several styles / symbols on a line, they will be positioned on the baseline which is defined by the
geometry of the object. In most cases MapServer correctly centers symbols. The combination of a line displayed in 16
units width and overlayed with a 10 unit width line, results in a line symbol with a 3 unit border. If the cartographical
symbol is to contain a centered line with a width of 1 pixel, then the widths should be reconfigured, for example to 11
and 17 units. As a rule of thumb don’t combine even numbered and odd numbered widths.

Use of the PATTERN and GAP parameters

The PATTERN and GAP parameters can be used to produce styled lines in MapServer.

To create line patterns, use the PATTERN parameter of the STYLE. Here you define dashes by specifying the length of
the first dash, followed by the length of the first gap, then the length of the second dash, followed by the second gap,
and so on. This pattern will be repeated as many times as that pattern will fit into the line. LINECAP can be used to
control how the ends of the dashes are rendered. LINEJOIN can be used to control how sharp bends are rendered. In
the left column of the figure, you will find three examples where PATTERN has been used. Number 2 from below uses
LINECAP butt, number 3 from below uses LINECAP round (and LINEJOIN miter) and number 4 from below uses
LINECAP butt (and is overlayed over a wider, dark grey line). To produce dots, use O for dash length with LINECAP
‘round’.

Styled lines can be specified using GAP and a symbol for styling. In the figure, you will find examples where GAP has
been used (in the right column). At the bottom a SYMBOL of TYPE ellipse has been used, then a SYMBOL of TYPE
vector, then a SYMBOL of TYPE font and then a SYMBOL of TYPE pixmap.

Note: It is currently not possible to specify an offset (start gap) when creating asymmetrical patterns.

The following figure shows how to use styles to define different kinds of line symbols.

Note: For the styled lines in the right column, if center to center distance had been used for gap, the red dots would
have coincided with the black dots. But currently GAP is not implemented that way.

Below you will find the SYMBOLs and STYLESs that were used to produce the line symbols in “Construction of Line
Symbols”. The LAYERs are ordered from bottom to top of the figure.

Styles and symbols for lines

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
11
END # POINTS
END # SYMBOL

SYMBOL

80 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

= o0POLO

Figure 5.5: Construction of Line Symbols

5.1. Cartographical Symbol Construction with MapServer 81

MapServer Documentation, Release 6.0.3

NAME "P"

TYPE truetype

FONT "arial"

CHARACTER "P"
END # SYMBOL

SYMBOL
NAME "vertline"
TYPE vector
FILLED true
POINTS
05
10
.4 10
.45
5
END # POINTS
END # SYMBOL

O = = O

SYMBOL
NAME "o-flag-trans"
TYPE pixmap

IMAGE "o-flag-trans.png"

END # SYMBOL

######## Left column ##########A####

LAYER # Simple line
STATUS DEFAULT
TYPE LINE
FEATURE

POINTS
55
25 10
45 10
35 5
END # Points
END # Feature
CLASS
STYLE
COILOR 0 0 0
WIDTH 6.5
END # STYLE
END # CLASS
END # LAYER

LAYER # Dashed line
STATUS DEFAULT
TYPE LINE
FEATURE

POINTS
5 15
25 20
45 20
35 15
END # Points
END # Feature
CLASS

82

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

STYLE
COLOR 0 0 O
WIDTH 5.0
PATTERN 40 10 END
END # STYLE
END # CLASS
END # LAYER

LAYER # Dashed line,
STATUS DEFAULT
TYPE LINE
FEATURE

POINTS
5 25
25 30
45 30
35 25
END # Points
END # Feature
CLASS
STYLE
COLOR O 0 O
WIDTH 5.0
LINECAP round #[butt|round|/square/triangle]
LINEJOIN miter #/[round/miter|bevel]
LINEJOINMAXSIZE 3
PATTERN 40 17 0 17 0 17 0 17 END
END # STYLE
END # CLASS
END # LAYER

varying

LAYER # Line dash overlay
STATUS DEFAULT
TYPE LINE
FEATURE

POINTS
5 35
25 40
45 40
35 35
END # Points
END # Feature
CLASS
STYLE
COLOR 102
WIDTH 4.0
END # STYLE
STYLE
COLOR 255
WIDTH 2.0
LINECAP BUTT
PATTERN 8 12
END # STYLE
END # CLASS
END # LAYER

102 102

255 255

END

LAYER # Line overlay - 2
STATUS DEFAULT

5.1. Cartographical Symbol Construction with MapServer

83

MapServer Documentation, Release 6.0.3

TYPE LINE
FEATURE
POINTS
5 45
25 50
45 50
35 45
END # Points
END # Feature
CLASS
STYLE
COLOR O 0 O
WIDTH 16.0
END # STYLE
STYLE
COLOR 209 66 0
WIDTH 10.0
END # STYLE
END # CLASS
END # LAYER

LAYER # Line overlay - 3
STATUS DEFAULT
TYPE LINE
FEATURE

POINTS
5 55
25 60
45 60
35 55
END # Points
END # Feature
CLASS
STYLE
COLOR 0O 0 O
WIDTH 17.0
END # STYLE
STYLE
COLOR 209 66 0
WIDTH 11.0
END # STYLE
STYLE
COLOR 0 0 0
WIDTH 1.0
END # STYLE
END # CLASS
END # LAYER

######## right column ###########4#

LAYER # Line — ellipse overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
50 5
70 10
90 10

84 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

80 5
END # Points
END # Feature
CLASS
STYLE
COLOR O 0 O
WIDTH 3.6
END # STYLE
STYLE
COLOR O 0 O
SYMBOL "circlef"
SIZE 10
GAP 42
END # STYLE
STYLE
COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 42
END # STYLE
END # CLASS
END # LAYER

LAYER # Line - symbol overlay
STATUS DEFAULT
TYPE LINE
FEATURE

POINTS
50 15
70 20
90 20
80 15
END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 O
WIDTH 2.8
END # STYLE
STYLE
COILOR 0O 0 O
SYMBOL "vertline"
SIZE 20.0
ANGLE 30
GAP -50
END # STYLE
END # CLASS
END # LAYER

LAYER # Line - font overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
50 25
70 30
90 30
80 25

5.1. Cartographical Symbol Construction with MapServer 85

MapServer Documentation, Release 6.0.3

END # Points
END # Feature
CLASS

STYLE

COLOR 0 0 O
WIDTH ©
END # STYLE
STYLE
COLOR 102 0 0
SYMBOL "p"
SIZE 20
GAP -30

END # STYLE

END # CLASS
END # LAYER

LAYER # Line - pixmap overlay
STATUS DEFAULT
TYPE LINE
FEATURE

POINTS
50 35
70 40
90 40
80 35
END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 6
END # STYLE
STYLE
COLOR 102 0 O
SYMBOL "o-flag-trans"
SIZE 20
GAP -30
END # STYLE
END # CLASS
END # LAYER

LAYER # Line - pixmap overlay
STATUS DEFAULT
TYPE LINE
FEATURE

POINTS
50 45
70 50
90 50
80 45
END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 O
WIDTH 6
END # STYLE
STYLE

86 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

COLOR 102 0 O
SYMBOL "o-flag-trans"
SIZE 20
GAP -30
OFFSET -10 -99
END # STYLE
END # CLASS
END # LAYER

LINECAP

By default, all lines (and patterns) will be drawn with rounded ends (extending the lines slightly beyond their ends).
This effect gets more obvious the larger the width of the line is. It is possible to alter this behaviour using the LINECAP
parameter of the STYLE. LINECAP butt will give butt ends (stops the line exactly at the end), with no extension of the
line. LINECAP square will give square ends, with an extension of the line. LINECAP round is the default.

LINEJOIN

The different values for the parameter LINEJOIN have the following visual effects. Default is round. miter will follow
line borders until they intersect and fill the resulting area. none will render each segment using linecap butt. The figure
below illustrates the different linejoins.

Figure 5.6: Different kinds of linejoins

LINEJOINMAXSIZE (only relevant for LINEJOIN miter)

Specify the maximum length of m (see the figure below). The value is a multiplication factor (default 3).

The max length of the miter join is calculated as follows (d is the line width, specified with the WIDTH parameter of
the STYLE):

m _max = d x LINEJOINMAXSIZE

If m > m_max, then the connection length will be set to m_max.

Use of the OFFSET parameter

In STYLE, an OFFSET parameter can be set to shift symbols in the X and Y direction. The displacement is not
influenced by the direction of the line geometry. Therefore the point symbols used for styling are all shifted in the
same direction, independent of the direction of the line (as defined in style number 2 in the map file example below -
red line in the map image). A positive X value shifts to the right. A positive Y value shifts downwards.

5.1. Cartographical Symbol Construction with MapServer 87

MapServer Documentation, Release 6.0.3

Miter

Figure 5.7: Miter linejoin

To generate lines that are shifted relative to the original lines, -99 has to be used for the Y value of the OFFSET. Then
the X value defines the distance to the line from the original geometry (perpendicular to the line). A positive X value
will shift to the right (when viewed in the direction of the line), a negative X value will shift to the left.

The example below shows how OFFSET works with the use of -99 (blue and green lines) and without the use of -99
(red line). The thin black line shows the location of the line geometry.

Figure 5.8: Use of the OFFSET parameter with lines - map image

88 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

Use of the OF FSET parameter with lines - Map file excerpt

LAYER #
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
20 20
280 160
280 20
160 20
160 60
END # Points
END # Feature

CLASS
STYLE # no offset
COLOR O 0 O # black
WIDTH 1

END # STYLE

STYLE # simple offset left and down
COLOR 255 0 0 # red
WIDTH 2
OFFSET -8 12

END # STYLE

STYLE # left offset rel. to line direction
COLOR 0 0 255 # blue
WIDTH 5
OFFSET -16 -99

END # STYLE

STYLE # right offset rel. to line direction
COLOR 0 255 0 # green
WIDTH 5
OFFSET 16 -99

END # STYLE

END # CLASS
END # LAYER

Asymmetrical line styling with point symbols

Line number 2 and 5 from the bottom in the right column of the “Construction of Line Symbols” figure are examples
of asymmetrical line styling using a point symbol. This can be achieved either by using an OFFSET (with a 'Y value of
-99), or by using an asymmetrical point symbol of TYPE vector, as described in the tricks section below. Line number
2 from the bottom is produced using an asymmetrical point symbol - this is the best method for placing symbols
on lines. Line number 5 from the bottom is produced using STYLE OFFSET. As can be seen, the symbols are here
rendered on the offset line, meaning that at sharp bends, some symbols will be placed far away from the line.

5.1.6 Area Symbols

Areas (polygons) can be filled with full colour. Areas can also be filled with symbols to create for instance hatches
and graticules.

5.1. Cartographical Symbol Construction with MapServer 89

MapServer Documentation, Release 6.0.3

The symbols are by default used as tiles, and rendered (without spacing) one after the other in the x and y direction,
filling the whole polygon.

If the SIZE parameter is used in the STYLE, the symbols will be scaled to the specified height.
The GAP parameter of the STYLE can be used to increase the spacing of the symbols.

The AGG renderer uses anti-aliasing by default, so edge effects around the symbols can occure.

Hatch fill

Simple line hatches (e.g. horizontal, vertical and diagonal) can be created by filling the polygon with a hatch symbol.

Figure 5.9: Hatch examples

The SIZE parameter in the STYLE that uses a SYMBOL of type hatch specifies the distance from center to center
between the lines (the default is 1). The WIDTH parameter specifies the width of the lines in the hatch pattern (default
is 1). The ANGLE parameter specifies the direction of the lines (default is O - horizontal lines).

The figure demonstrates the use of SIZE (bottom left), WIDTH (bottom right), ANGLE (top left) and overlay (top
right) of hatches.

The code below shows excerpts of the map file that was used to produce the figure.
First, the SYMBOL definition:

SYMBOL
NAME "hatchsymbol"
TYPE hatch

END

Then the CLASS definitions:

90 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

Table 5.2: Hatches

CLASS definitions

LAYER # hatch
CLASS
STYLE
SYMBOL "hatchsymbol"
COLOR 0O 0 O
SIZE 10
END # STYLE

END # CLASS
END # LAYER

LAYER # hatch with angle
CLASS
STYLE
SYMBOL "hatchsymbol"
COILOR O 0 0
SIZE 10
ANGLE 45
END # STYLE

END # CLASS
END # LAYER

LAYER # hatch with wide lines
CLASS
STYLE
SYMBOL "hatchsymbol"
COLOR 0O 0 O
SIZE 10
WIDTH 5
END # STYLE

END # CLASS
END # LAYER

LAYER # cross hatch
CLASS
STYLE
SYMBOL "hatchsymbol"
COLOR 255 153 0
SIZE 10
WIDTH 4
END # STYLE
STYLE
SYMBOL "hatchsymbol"
COLOR 0 0 255
SIZE 20
ANGLE 90
END # STYLE

END # CLASS
END # LAYER

5.1. Cartographical Symbol Construction with MapServer

91

MapServer Documentation, Release 6.0.3

Polygon fills with symbols of TYPE pixmap

Polygons can be filled with pixmaps.

Note: If the STYLE SIZE parameter is different from the image height of the pixmap, there can be rendering artefacts
around the pixmaps (visible as a grid with the “background” colour).

Pixmap symbols can be rotated using the ANGLE parameter, but for polygon fills, this produces strange effects, and is
not recommended.

To create complex area symbols, e.g. with defined distances between single characters or hatches with broad lines,
pixmap fill is probably the best option. Depending on the desired pattern you have to generate the raster image with
high precision using a graphical editor. The figure below is an example of how to obtain a regular allocation of symbols
with defined spacing.

B=2x

y/2

H=2y

x/2 X x/2

Figure 5.10: Raster image for a regular symbol fill

You can use other shapes than circles. B defines the width and H the height of the raster image. For a regular
arrangment of symbols in a 45 degree angle B = H. For symbols, which are regularly arranged in parallel and without
offset between each other one centered symbol with the same x and y distances to the imageborder is enough.

The following figure shows an example of how you can design a pixmap to produce a hatch with wide lines.
To create a 45 degree hatch use:

B =Hand x =y

Note: When using the MapServer legend, observe that each raster pixmap is displayed only once in the original size
in the middle of the legend box.

The example below shows some pixmap symbols which can be used as area symbols with transparency. The raster
images were created using FreeHand, finished with Photoshop and exported to PNG with special attention to the colour
palette.

92 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

Figure 5.11: Raster image for a hatched fill

Table 5.3: Construction of a horizontally arranged area symbol

CLASS section SYMBOL definition
CLASS SYMBOL
STYLE NAME "in_the star"
COLOR 255 255 0 TYPE PIXMAP
END IMAGE "stern.png"
STYLE TRANSPARENT 8

SYMBOL "in_the_ star"
END
STYLE
OUTLINECOLOR 0O 0 O
WIDTH 1
END
END

END

*

Figure 5.12: Polygon fill - regular grid pattern

5.1. Cartographical Symbol Construction with MapServer

93

MapServer Documentation, Release 6.0.3

Table 5.4: Construction of a diagonally arranged area symbol

SYMBOL "in_pointl"
END

CLASS section SYMBOL definition
CLASS SYMBOL
STYLE NAME "in_pointl"

TYPE PIXMAP
IMAGE "flaechel_ 1.png"

STYLE TRANSPARENT 13
OUTLINECOILOR 0 0 O END
WIDTH 1 L
END »
END
- - -
L] L]
- - -
L] L]
F F
Figure 5.13: Polygon fill - diagonal pattern
Table 5.5: Construction of a hatch
CLASS section SYMBOL definition
CLASS SYMBOL
STYLE NAME "in_hatch"
COLOR 255 255 0 TYPE PIXMAP
END IMAGE "schraffur.png"
STYLE TRANSPARENT 2
SYMBOL "in_hatch" END
END ‘,'l
STYLE Fl
OUTLINECOILOR 0 0 O
WIDTH 1
END
END

/
/.

Figure 5.14: Polygon fill - hatch

Polygon fills with symbols of TYPE vector

Polygons can be filled with symbols of TYPE vector. As for the other symbol fills, the pattern will be generated by
using the specified symbol for the tiles. The bounding box of the symbol is used when tiling.

94 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

The upper left corner of the bounding box of a symbols of TYPE vector is always (0, 0). The lower right corner of the
bounding box is determined by the maximum x and y values of the symbol definition (POINTS parameter).

Creating vector symbols for polygon fills is done in much the same way as for pixmap symbols. Precision is necessary
to get nice symmetrical symbols.

Both polygon (FILLED true) and line (FILLED false) vector symbols can be used. For line symbols, the WIDTH
parameter of the STYLE will give the line width and the SIZE parameter will specify the height of the symbol.

Note: For vector line symbols (FILL off), if a width greater than 1 is specified, the lines will grow to extend outside
the original bounding box of the symbol. The parts that are outside of the bounding box will be cut away.

STYLE ANGLE can be used for polygon fills, but will only rotate each individual symbol, not the pattern as a whole.
It is therefore quite demanding to generate rotated patterns.

Below you will find some examples of vector symbols used for polygon fills. The polygon fill is accompanied by the
vector symbol used for the fill. The centre of the vector symbol is indicated with a red dot.

N

Figure 5.15: Polygon fills - vector

Excerpts from the map file for the polygon fill vector examples above

First, the LAYERs

5.1. Cartographical Symbol Construction with MapServer 95

MapServer Documentation, Release 6.0.3

LAYER # chess board
STATUS DEFAULT
TYPE POLYGON
FEATURE

POINTS
55
5 25
45 25
45 5
55
END # Points
END # Feature
CLASS
STYLE
SYMBOL "chess"
COLOR O 0 O
SIZE 35
END # STYLE
END # CLASS
END # LAYER

LAYER # x — line
STATUS DEFAULT
TYPE POLYGON
FEATURE

POINTS
5 30
5 50
45 50
45 30
5 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "x-1ine"
COILOR 0 0 O
WIDTH 5
SIZE 35
END # STYLE
END # CLASS
END # LAYER

LAYER # v polygon
STATUS DEFAULT
TYPE POLYGON
FEATURE

POINTS
5 55
5 75
45 175
45 55
5 55
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"

96

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

COLOR 0 0 O
SIZE 35
END # STYLE
END # CLASS
END # LAYER

LAYER # Circles
STATUS DEFAULT
TYPE POLYGON
FEATURE

POINTS
5 80
5 100
45 100
45 80
5 80
END # Points
END # Feature
CLASS
STYLE
SYMBOL "circlef"
COLOR O 0 O
SIZE 20
GAP 18
END # STYLE
END # CLASS
END # LAYER

LAYER # x polygon
STATUS DEFAULT
TYPE POLYGON
FEATURE

POINTS
55 5
55 25
95 25
95 5
55 5
END # Points
END # Feature
CLASS
STYLE
COILOR 0 0 0
SYMBOL "x-poly-fill"
SIZE 35
END # STYLE
END # CLASS
END # LAYER

LAYER # indistinct marsh

STATUS DEFAULT

TYPE POLYGON

FEATURE

POINTS

55 30
55 50
95 50
95 30

5.1. Cartographical Symbol Construction with MapServer

97

MapServer Documentation, Release 6.0.3

55 30
END # Points
END # Feature
CLASS
STYLE
COLOR 0O 0 255

SYMBOL "ind_marsh_poly"

SIZE 25
END # STYLE
END # CLASS
END # LAYER

LAYER # diagonal circles
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
55 55
55 75
95 75
95 55
55 55
END # Points
END # Feature
CLASS
STYLE
COLOR 255 230 51
SYMBOL "diag_dots"
SIZE 30
END # STYLE
END # CLASS
END # LAYER

LAYER # diagonal holes in yellow

STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
55 80
55 100
95 100
95 80
55 80
END # Points
END # Feature
CLASS
STYLE
SYMBOL "diag_holes"
SIZE 30
COLOR 250 220 102
END # STYLE
END # CLASS
END # LAYER

LAYER # v line + circle
STATUS DEFAULT
TYPE POLYGON

98

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

FEATURE
POINTS
100 5
100 25
140 25
140 5
100 5
END # Points
END # Feature
CLASS
STYLE
COLOR 255 0 0
SYMBOL "circlef"
SIZE 30
GAP 45
END # STYLE
STYLE
COILOR 0 0 0
SYMBOL "v-line"
LINEJOIN miter
LINECAP butt
SIZE 35
WIDTH 10
GAP 45
END # STYLE
END # CLASS
END # LAYER

LAYER # indistinct marsh + diagonal holes in yellow
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
100 30
100 50
140 50
140 30
100 30
END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 255
SYMBOL "ind _marsh poly"
SIZE 25
END # STYLE
STYLE
SYMBOL "diag_holes"
SIZE 30
COLOR 250 220 O
OPACITY 75
END # STYLE
END # CLASS
END # LAYER

LAYER # x line + circle
STATUS DEFAULT
TYPE POLYGON

5.1. Cartographical Symbol Construction with MapServer 99

MapServer Documentation, Release 6.0.3

FEATURE
POINTS
100 55
100 75
140 75
140 55
100 55
END # Points
END # Feature
CLASS
STYLE
COLOR 0O 0 255
SYMBOL "circle"
WIDTH 5
SIZE 20
GAP 30
END # STYLE
STYLE
COLOR 0 204 0
SYMBOL "x—-line"
SIZE 10
WIDTH 3
GAP 30
END # STYLE
END # CLASS
END # LAYER

Then the SYMBOLs:

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
10 10
END # POINTS
END # SYMBOL

SYMBOL
NAME "circle"
TYPE ellipse
FILLED false
POINTS
10 10
END # POINTS
END # SYMBOL

SYMBOL
NAME "v-line"
TYPE vector
POINTS
0 O
5 10
10 0
END
END

SYMBOL
NAME "v-poly"

100

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

TYPE vector
FILLED false
FILLED true
POINTS

0

O R W U 3w

END
END

SYMBOL
NAME

POIN
0
1

0
8

O oo Ul N O O
IS

"x—1line"
TYPE vector

TS
0
1

-99 -99

0

1

END
END

SYMBOL
NAME

POIN
0
10
10
0
0

1
0

"chess"
TYPE vector
FILLED true

TS
0
0
10
10
0

-99 -99

10
20
20
10
10
END
END

SYMBOL
NAME

10
10
20
20
10

"x-poly-fill"

TYPE vector
FILLED true
POINTS

0

0O W W = O

.131
.566

.131
.131
.697

1.131

w o O

.434

o O

1.131
4.566

5.1. Cartographical Symbol Construction with MapServer

101

MapServer Documentation, Release 6.0.3

9.131 8

9.131 9.131
8 9.131
4.566 5.697
1.131 9.131
0 9.131
0 8

3.434 4.566
0 1.131

END # POINTS
END # SYMBOL

SYMBOL
NAME "ind_marsh_poly"
TYPE vector
FILLED true
POINTS
Half line

O O b O
w U1 0N
w N

2
-99 -99
Half line
7 2
11.5 2
11.5 3
73
7 2
-99 -99
Hole line
1.25 5
10.25 5
10.25 6
1.25 6
1.25 5

END
END

SYMBOL
NAME "diag_dots"
TYPE vector
FILLED true

POINTS
Central circle:
0.7450 0.4500
0.7365 0.5147
0.7115 0.5750
0.6718 0.6268
0.6200 0.6665
0.5597 0.6915
0.4950 0.7000
0.4303 0.6915
0.3700 0.6665
0.3182 0.6268
0.2785 0.5750
0.2535 0.5147
102

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

O O O O O OO OO oo o o
IS
Nej
[€)]
o

O R P O OOOoO OO
[ee]
[e)}
1SN
Nej

|
e
(@3N}
|
e
e

.0647
.1250
.1768
.2165
.2415
.25

O O O O O O o o o

END
END

SYMBOL

O O O O O OO OO oo oo

= O O O O O

O, P OOOOOoOOo

O O O O O O o o o

O O O O O O

.4500
.3853
.3250
L2732
.2335
.2085
.2000
.2085
.2335
L2732
.3250
.3853
.4500

.0647
.1250
.1768
.2165
.2415
.25

.2415
.2165
.1768
.1250
.0647

.9252
.8649
.8132
L7734
.7485

.74

.7485
L7734
.8132
.8649
.9252

.74

NAME "diag_holes"

5.1. Cartographical Symbol Construction with MapServer

103

MapServer Documentation, Release 6.0.3

TYPE vector
FILLED true

POINTS
0.0 0.0
Left half circle
0.0 0.24
0.0647 0.2485
0.1250 0.2734
0.1768 0.3132
0.2165 0.3649
0.2415 0.4252
0.25 0.5
0.2415 0.5647
0.2165 0.6250
0.1768 0.6768
0.1250 0.7165
0.0647 0.7415
0.0 0.75
0.0 1.0
Bottom half circle
0.24 1
0.2485 0.9252
0.2734 0.8649
0.3132 0.8132
0.3649 0.7734
0.4252 0.7485
0.5 0.74
0.5647 0.7485
0.6250 0.7734
0.6768 0.8132
0.7165 0.8649
0.7415 0.9252
0.75 1
1.0 1.0
Right half circle
1 0.75
0.9252 0.7415
0.8649 0.7165
0.8132 0.6768
0.7734 0.6250
0.7485 0.5647
0.74 0.5
0.7485 0.4252
0.7734 0.3649
0.8132 0.3132
0.8649 0.2734
0.9252 0.2485
1 0.24
1.0 0.0
Top half circle
0.75 0.0
0.7415 0.0647
0.7165 0.1250
0.6768 0.1768
0.6250 0.2165

104

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

0.5647 0.2415
0.5 0.25
0.4252 0.2415
0.3649 0.2165
0.3132 0.1768
0.2734 0.1250
0.2485 0.0647
0.24 0.0
0.0 0.0

END

END

Polygon outlines

Polygon outlines can be created by using OUTLINECOLOR in the STYLE. WIDTH specifies the width of the outline.

STYLE
OUTLINECOLOR 0 255 0
WIDTH 3

END # STYLE

Dashed polygon outlines can be achieved by using OUTLINECOLOR, WIDTH and PATTERN (together with
LINECAP, LINEJOIN and LINEJOINMAXSIZE). For more information on the use of PATTERN, see Use of the PAT-
TERN and GAP parameters.

STYLE
OUTLINECOLOR 0 255 0
WIDTH 3
PATTERN
10 5
END # PATTERN
LINECAP BUTT
END # STYLE

For some symbol types, it is even possible to style polygon outlines using OUTLINECOLOR, SYMBOL and GAP.

STYLE
OUTLINECOLOR 0 255 0
SYMBOL ’'circle’
SIZE 5
GAP 15
END # STYLE

5.1.7 Examples (MapServer 4)

The examples in this section were made for MapServer 4.

Note: Many of these symbols will not work with later versions of MapServer , but they contain a lot of useful symbol
definitions and are therefore provided as reference.

The symbols were created with map files and symbol files (download_old_symbols). If you want to use these MAP
files please note, that your MapServer must at least be able to handle 50 symbols. Otherwise you will get an error
while loading the symbol files.

5.1. Cartographical Symbol Construction with MapServer 105

http://www.mapmedia.de/fileadmin/user_upload/dokumente/umn_signaturen_howto/vortrag_demo.zip

MapServer Documentation, Release 6.0.3

Basic Symbols

Graphic Primitives for Point-Symbolizers located in the defined Symbolfile symbols.sym

-
punkt

dreieck

quadrat

|

kreuzl

haus

U

O

kreis

dreieck-leer

"

quadrat-quer

X

kreuz2

sechseck

ellipse-flach

dreieck-kopf

rechteck-quer

4’»

kreuz3

achteck

ellipse-hoch

A

zelt

rechteck-hoch

+

kreuz4

Do

stern

Synboldefinitions fron TrueTypeFont-Files

S

5

T

T

H

Lt

sonne

106

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

Graphic Primitives for Line-Suymbolizers located in the defined Symbolfile sumbols.sym

linie-gestr2

linie-gestr3

linie-gestr4

linie-gépunktl

.lihieLge}uﬁkti

li.nie-ge.punkt3.

rechteck-bahn

5.1. Cartographical Symbol Construction with MapServer 107

MapServer Documentation, Release 6.0.3

Graphical Primitives for Polygon-Symbolizers located in the defined Symbolfile symbols.sym

diagonal-auf diagonal-ab linie-vertikal
linie=horizontal linie-vertikal und kreuzl
linie-horizontal
ettt DOOOOOOOCOOCOOCOECOOCICOCC
R olslslslslolelolololololslslslsls o elolelololsls]
peletetete’s! eleielelelelele s Ivielele]e s ieielel0l0le]elelule]
I, DOQOOOOOCICIOOCOICIOOCICOC
L A, DOQOOOOOCCOOOOICIOOCIOOCC
SIS DOQOOOOOCICIOOCOICIOOCICOC
Setsttetetetets 20000000000COCOCO0OCO0O00
ey DOQOOOOOCICIOOCOICIOOCICOC
KRR AR DOQOOOOOCCOOOOICIOOCIOOCC
RS Slstalatsiatalslalelaioleiolololotolotelototetore
S BSSBS, ploieieislslslololoieicislslslsloloielelslsleloe]
kreuz2 punkt kreis
dreiec kreuz4 ’ quadrat-quer
Complex Symbols
Examples of Point-Symbolizers varying some graphical Attributes
Varying Size and Color
= = + A A A
Yariationen mit quadcat Yariationen mit dreieck
: x x X X
Yariationen mit punkt Yariationen mit kreuzZ
= = = N
Yariationen mit rechteck-guer Yariationen mit rechteck-hoch
Exanples for conbinations of several Basetypes
Signaturla Signaturza Signatur3a Signaturda SignaturSa SignaturGa Signatur?a
Sighaturlb Sighaturzh Sighatur3b Signaturdb SighaturSh Sighaturéh Sighatur7h
108 Chapter 5. Mapfile

Signaturic Signaturzc Signatur3c

MapServer Documentation, Release 6.0.3

Examples of combined Line-Symbolizers varying some graphical Attributes

Grenzen

" & & & & 8 & & e

Strasse in Planung

Strasse

Autobahn
ﬂsgnnekrlc ELne-ggnEollzers T

Asynnetric Line-Synbolizers 1

5.1. Cartographical Symbol Construction with MapServer 109

MapServer Documentation, Release 6.0.3

Examples of Polygon-Symbolizers varying some graphical Attributes
Hatching with different Colors and Distances; this is replaced in 4,6 by the new HATCH Style

Layer Flaechel bis Flaeched

Layer FlaecheS bis FlaecheS

Polygon-Synbolizer based on VectorSynbols

=
=
=

Layer Flaeched bis FlaechelZ

Polygon-Synbolizers based on TrueTypeFonts

I R R R R AR R AR
SIS
LIS
I R R R R AR
R AR AR R AR R R AR

SRR
)
RSN
)
)
AR
)
AR
)
SRR
)
NRRRRNANS
)
N
SRR
)
AR

)

-

ayer Flaechel3 bis Flaecheld

Polygon-Synbolizers based on FIXHAP Synbols
v o

L e o o 0o s 0o e lfoo oo oo 0 07 * * k k k k * *x % A
'-.-.-.-.-.-.-.- oooooooooooooooo *********,‘
I.l.l.l.....l.l. 0000000000000000 *********-’

e e e ete et et 00 0 0 0" 0" 0 /) X * K %k kK x Kk

Layer Flaechel? bis FlaecheZO

ooooooooooo

ooooo

Layer FlaecheZl und FlascheZZ

5.1.8 Tricks

Changing the center of a point symbol

MapServer does all transformations (offset, rotation) with respect to the symbol center point. The center point is
calculated from the symbol’s bounding box. In some cases it can be useful to change the center point of a symbol.

Currently there is no way of explicitly specifying the center point of a SYMBOL. A mechanism for this (a new keyword
in SYMBOL that specifies the symbol center point) has been suggested in RFC45, but has not been implemented so
far.

When determining the position of the symbol center point, the lower x and y values of the bounding box is always set
to 0.

Here are some examples of what can be achieved by taking advantage of this for point symbols and decorated lines.
There are three examples in the illustration, and each example shows the result with and without the offset trick. At
the top arrows are added to lines using GEOMTRANSFORM start / end. In the middle, tags are added to lines using
GAP and ANGLE. At the bottom, a point symbol is shifted and rotated. The red dots represent the center points, and
the blue dots the offsets.

Below you will find three tables that contain the SYMBOLs and the STYLE mechanisms that were used to generate the
shifted symbols in the illustration.

110 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

VoS A
\/l\:/g

Figure 5.16: Shifting trick

5.1. Cartographical Symbol Construction with MapServer 111

MapServer Documentation, Release 6.0.3

Table 5.6: Symbol tricks - shift - arrows

SYMBOLs

LAYER STYLEs

SYMBOL
NAME "arrow-offset—-end"
TYPE vector
FILLED true
POINTS
-5 0.4
-2 0.4
-2 0
0 0.8
-2 1.6
-2 1.2
-5 1.2
-5 0.4
END # POINTS
END # SYMBOL
SYMBOL
NAME "arrow-offset-start"
TYPE vector
FILLED true
POINTS
5 0.4
8 0.4
0
0 0.8

o1 U1 O 0O - o

1.6
1.2
1.2
0.4
END # POINTS
END # SYMBOL

LAYER # Line
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
20 65
40 70
60 70
70 65
END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 O
WIDTH 15
LINECAP butt
END # STYLE
STYLE
GEOMTRANSFORM "start"
COLOR 0 255 0
SYMBOL "arrow-offset-start"
SIZE 15.0
ANGLE AUTO
END # STYLE
STYLE
GEOMTRANSFORM "start"
COLOR 255 0 O
SYMBOL "circlef"

SIZE 3
END # STYLE
STYLE

GEOMTRANSFORM "end"
COLOR 0 255 0
SYMBOL "arrow-offset—-end"
SIZE 15.0
ANGLE AUTO

END # STYLE

STYLE
GEOMTRANSFORM "end"
COLOR 255 0 O
SYMBOL "circlef"
SIZE 3

END # STYLE

END # CLASS
END # LAYER

112

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

Table 5.7: Symbol tricks - shift - asymmetrical tags

SYMBOLs

LAYER STYLEs

SYMBOL
NAME "fence-tag"
TYPE vector
POINTS
0 5
0 10
END # POINTS
END # SYMBOL

SYMBOL
NAME "vert-line"
TYPE vector
POINTS
00
0 10
END # POINTS
END # SYMBOL

LAYER # Line - symbol overlay
STATUS DEFAULT
TYPE LINE
FEATURE

POINTS
20 50
40 55
60 55
70 50
END # Points
END # Feature
CLASS
STYLE
COIOR 0 0 O
WIDTH 4
END # STYLE
STYLE
COILOR 0 0 O
SYMBOL "fence—-tag"
SIZE 40.0
WIDTH 3
ANGLE 30
GAP -50
END # STYLE
STYLE
COLOR 255 0 O
SYMBOL "circlef"
SIZE 1
GAP -50
END # STYLE
END # CLASS
END # LAYER

5.1. Cartographical Symbol Construction with MapServer 113

MapServer Documentation, Release 6.0.3

Table 5.8: Symbol tricks. Unshifted symbol v-line, shifted symbol v-line-offs

SYMBOLs

SYMBOL
NAME "v-line"
TYPE vector
POINTS
0 0
5 10
10 0O
END # POINTS
END # SYMBOL

SYMBOL
NAME "v-line-offg"
TYPE vector
POINTS
0 10
5 20
10 10
END # POINTS
END # SYMBOL

5.1.9 Mapfile changes related to symbols
In version 6.0, parameters related to styling was moved from the SYMBOL element to the STYLE element of CLASS
(in LAYER):

PATTERN (introduced in 5.0, previously called STYLE), GAP, LINECAP, LINEJOIN, LINEJOINMAX-
SIZE

The SYMBOL TYPE cartoline is no longer needed, and therefore not available in version 6.0.

5.1.10 Current Problems / Open Issues

GAP - PATTERN incompatibility

Creating advanced line symbols involving dashed lines is difficult due to the incompatibility of the dashed line mecha-
nisms (PATTERN) and the symbol on line placement mechanisms (GAP). A solution could be to allow GAP to be a list
instead of a single number (perhaps renaming to GAPS or DISTANCES), but it would also be necessary to introduce
a new parameter to specify the distance to the first symbol on the line (INTIALGAP has been implemented in the
development version - 6.2).

GAP does not support two dimensions (relevant for polygon fills), so the same gap will have to be used for for the x
and the y directions. The introduction of new parameters - GAPX and GAPY could be a solution to this.

5.1.11 The End

We hope that this document will help you to present your data in a cartographically nice manner with MapServer and
explains some basics and possibilities of the concept of MapServer as well as some weaknesses. It would be great to

114 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

put together a cartographical symbols library for the profit of everyone. This especially concerns truetype fonts, which
have been developed for some projects and contain some typical signatures for cartographical needs.

You can also view the discussion paper for the improvement of the MapServer Graphic-Kernel (German only).

5.2 CLASS

BACKGROUNDCOLOR [r] [g] [b] Color to use for non-transparent symbols.
COLOR [r] [g] [b] Color to use for drawing features.

DEBUG [onloff] Enables debugging of the class object. Verbose output is generated and sent to the standard error
output (STDERR) or the MapServer logfile if one is set using the LOG parameter in the WEB object.

See Also:
MS RFC 28: Redesign of LOG/DEBUG output mechanisms
EXPRESSION [string]

Four types of expressions are now supported to define which class a feature belongs to: String compar-
isons, regular expressions, logical expressions, and string functions (see Expressions). If no expression is
given, then all features are said to belong to this class.

» String comparisons are case sensitive and are the fastest to evaluate. No special delimiters are
necessary although strings must be quoted if they contain special characters. (As a matter of good
habit, it is recommended that you quote all strings). The attribute to use for comparison is defined
in the LAYER CLASSITEM parameter.

» Regular expression are limited using slashes (/regex/). The attribute to use for comparison is defined
in the LAYER CLASSITEM parameter.

* Logical expressions allow the building of fairly complex tests based on one or more attributes and
therefore are only available with shapefiles. Logical expressions are delimited by parentheses “(ex-
pression)”. Attribute names are delimited by square brackets “[ATTRIBUTE]”. Attribute names are
case sensitive and must match the items in the shapefile. For example:

EXPRESSION ([[p|o[P[Uu|L[a[T[I]oN] > 50000 AND ' [LANGUAGE]’ eq ’FRENCH’)

The following logical operators are supported: =, >, <, <=, >=, =, or, and, It, gt, ge, le, eq, ne, in, ~,
~*. As one might expect, this level of complexity is slower to process.

— One string function exists: length(). It computes the length of a string:
EXPRESSION (length(’ [NAME_E]’) < 8)
String comparisons and regular expressions work from the classitem defined at the layer level. You may

mix expression types within the different classes of a layer.

GROUP [string] Allows for grouping of classes. It is only used when a CLASSGROUP at the LAYER level is set.
If the CLASSGROUP parameter is set, only classes that have the same group name would be considered at
rendering time. An example of a layer with grouped classes might contain:

LAYER
CLASSGROUP "groupl"
CLASS
NAME "namel"

5.2. CLASS 115

http://www.mapmedia.de/fileadmin/user_upload/dokumente/umn_signaturen_howto/DiskussionsPaper-UMNGraphikKernel.pdf

MapServer Documentation, Release 6.0.3

GROUP "groupl"

END

CLASS
NAME "name?2"
GROUP "group2"

END

CLASS
NAME "name3"
GROUP "groupl"

ENl.D. '
END # layer
KEYIMAGE ([filename] Full filename of the legend image for the CLASS. This image is used when building a legend
(or requesting a legend icon via MapScript or the CGI application).
LABEL Signals the start of a LABEL object.

MAXSCALEDENOM [double] Minimum scale at which this CLASS is drawn. Scale is given as the denominator
of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer
5.0, to replace the deprecated MAXSCALE parameter.

See Also:
Map Scale

MAXSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MAXSCALEDENOM in-
stead. The deprecated MAXSCALE is the minimum scale at which this class is drawn. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Deprecated
since version 5.0.

MAXSIZE [integer] Maximum size in pixels to draw a symbol. Default is 50. See LAYER SYMBOLSCALEDENOM.

MINSCALEDENOM [double] Maximum scale at which this CLASS is drawn. Scale is given as the denominator of
the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer
5.0, to replace the deprecated MINSCALE parameter.

See Also:
Map Scale

MINSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MINSCALEDENOM in-
stead. The deprecated MINSCALE is the maximum scale at which this CLASS is drawn. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Deprecated
since version 5.0.

MINSIZE [integer] Minimum size in pixels to draw a symbol. Default is 0. See LAYER SYMBOLSCALEDENOM.
NAME [string] Name to use in legends for this class. If not set class won’t show up in legend.

OUTLINECOLOR [r] [g] [b] Color to use for outlining polygons and certain marker symbols. Line symbols do not
support outline colors.

SIZE [integer] Height, in pixels, of the symbol/pattern to be used. Only useful with scalable symbols. For vector
(and ellipse) SYMBOL TYPEs the default size is based on the range of Y values in the POINTS defining the
symbol. For symbols of type pixmap, the default is the vertical size of the image. Default size is 1 for TTF
symbols.

STATUS [onloff] Sets the current display status of the class. Default turns the class on.

116 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

STYLE Signals the start of a STYLE object. A class can contain multiple styles. Multiple styles can be used create

complex symbols (by overlay/stacking). See Cartographical Symbol Construction with MapServer for more
information on advanced symbol construction.

SYMBOL [integerlstringlfilename] The symbol name or number to use for all features if attribute tables are not used.

The number is the index of the symbol in the symbol file, starting at 1, the 5th symbol in the file is therefore
symbol number 5. You can also give your symbols names using the NAME parameter in the symbol definition
file, and use those to refer to them. Default is 0, which results in a single pixel, single width line, or solid
polygon fill, depending on layer type.

You can also specify a gif or png filename. The path is relative to the location of the mapfile.

See Cartographical Symbol Construction with MapServer for more information on advanced symbol construc-
tion.

TEMPLATE [filename] Template file or URL to use in presenting query results to the user. See Templating for more

info.

TEXT [stringlexpression] Text to label features in this class with. This overrides values obtained from the LAYER

LABELITEM. The string can contain references to feature attributes. This allows you to concatenate multiple
attributes into a single label. You can for example concatenate the attributes FIRSTNAME and LASTNAME
like this:

TEXT ' [FIRSTNAME] [LASTNAME]’

More advanced Expressions can be used to specify the labels. Since version 6.0, there are functions available
for formatting numbers:

TEXT ("Area is: " + tostring([area]," DY)

VALIDATION Signals the start of a VALIDATION block.

As of MapServer 5.4.0, VALIDATION blocks are the preferred mechanism for specifying validation patterns for
CGI param runtime substitutions. See Run-time Substitution.

Although the recommended way of making stacked symbols to achieve interesting effects is to use STYLEs, you can
also “stack” 2 symbols without using STYLEs. You define the second symbol, which effectively sits “on top” of the
first symbol (as defined above).

The following parameters allow you to define the second symbol, and they are equivalent to their non-overlay coun-
terparts:

5.3

OVERLAYBACKGROUNDCOLOR
OVERLAYCOLOR
OVERLAYOUTLINECOLOR
OVERLAYSIZE
OVERLAYMINSIZE
OVERLAYMAXSIZE
OVERLAYSYMBOL

CLUSTER

5.3. CLUSTER 117

MapServer Documentation, Release 6.0.3

Table of Contents

* CLUSTER
— Description
Supported Layer Types
Mapfile Parameters
Mapfile Snippet
Feature attributes
PHP MapScript Usage
Example: Clustering Railway Stations

5.3.1 Description

Since version 6.0, MapServer has the ability to combine multiple features from a point layer into single (aggregated)
features based on their relative positions. Only POINT layers are supported. This feature was added through MS RFC
69: Support for clustering of features in point layers.

5.3.2 Supported Layer Types

POINT

5.3.3 Mapfile Parameters

MAXDISTANCE [double] Specifies the distance of the search region (rectangle or ellipse) in pixel positions.

REGION [string] Defines the search region around a feature in which the neighbouring features are negotiated. Can
be ‘rectangle’ or ‘ellipse’.

BUFFER [double] Defines a buffer region around the map extent in pixels. Default is 0. Using a buffer allows that
the neighbouring shapes around the map are also considered during the cluster creation.

GROUP [string] This expression evaluates to a string and only the features that have the same group value are ne-
gotiated. This parameter can be omitted. The evaluated group value is available in the ‘Cluster:Group’ feature
attribute.

FILTER [string] We can define the FILTER expression filter some of the features from the final output. This expres-
sion evaluates to a boolean value and if this value is false the corresponding shape is filtered out. This expression
is evaluated after the the feature negotiation is completed, therefore the ‘Cluster:FeatureCount’ parameter can
also be used, which provides the option to filter the shapes having too many or to few neighbors within the
search region.

5.3.4 Mapfile Snippet

LAYER
NAME "my-cluster"
TYPE POINT
CLUSTER
MAXDISTANCE 20 # in pixels

REGION "ellipse" # can be rectangle or ellipse
GROUP (expression) # an expression to create separate groups for each value

118 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

FILTER (expression) # a logical expression to specify the grouping condition
END
LABELITEM "Cluster:FeatureCount"
CLASS

LABEL
END
END

END

5.3.5 Feature attributes

The clustered layer itself provides the following aggregated attributes:
1. Cluster:FeatureCount - count of the features in the clustered shape
2. Cluster:Group - The group value of the cluster (to which the group expression is evaluated)

These attributes (in addition to the attributes provided by the original data source) can be used to configure the labels
of the features and can also be used in expressions. The ITEMS processing option can be used to specify a subset of
the attributes from the original layer in the query operations according to the user’s preference.

We can use simple aggregate functions (Min, Max, Sum, Count) to specify how the clustered attribute should be
calculated from the original attributes. The aggregate function should be specified as a prefix separated by ‘:’ in the
attibute definition, like: [Max:itemname]. If we don’t specify aggregate functions for the source layer attributes, then
the actual value of the cluster attribute will be non-deterministic if the cluster contains multiple shapes with different

values. The Count aggregate function in fact provides the same value as Cluster:FeatureCount.

5.3.6 PHP MapScript Usage

The CLUSTER object is exposed through PHP MapScript. An example follows:
Smap = ms_newMapobj ("/var/www/vhosts/mysite/httpdocs/test.map");

Slayerl=S$map->getLayerByName ("testl");
$layerl->cluster;

5.3.7 Example: Clustering Railway Stations

The following example uses a point datasource, in this case in KML format, to display clusters of railway stations.
Two classes are used: one to style and label the cluster, and one to style and label the single railway station.

Note: Since we can’t declare 2 labelitems, for the single railway class we use the TEXT parameter to label the station.

Mapfile Layer

#H###AF A HA A EAAAAE
Lightrail Stations
#tHE#AF A HAF A RAFAAES
SYMBOL

NAME "lightrail"

5.3. CLUSTER 119

MapServer Documentation, Release 6.0.3

TYPE PIXMAP
IMAGE "../etc/lightrail.png"

END

LAYER

NAME "lightrail"
GROUP "default"
STATUS DEFAULT
TYPE POINT
CONNECTIONTYPE OGR

CONNECTION "lightrail-stations.kml"

DATA "lightrail-stations"
LABELITEM "Cluster:FeatureCount"
CLASSITEM "Cluster:FeatureCount"
idadazdadasdadasdddaddadadsi
Define the cluster object
#tH###A# A AR AR RAA A RAFAAS
CLUSTER

MAXDISTANCE 50

REGION "ellipse"
END
FHAFHFHAFAAHAFAAHAFAAHAF A EAFAAE
Classl: For the cluster symbol
dadatdadasdadasdadaddadaddddddsi
CLASS

NAME "Clustered Lightrail Stations"
EXPRESSION (" [Cluster:FeatureCount]"

STYLE
SIZE 30
SYMBOL "citycircle"
COLOR 255 0 O
END
LABEL
TYPE TRUETYPE
SIZE 8
COLOR 255 255 255
ALIGN CENTER
PRIORITY 10
BUFFER 1
PARTIALS TRUE
POSITION cc
END
END
tHA#H AR AR AR AR F AR F A A
Class2: For the single station
dddazdzdazaddasaddadaadadaddada
CLASS
NAME "Lightrail Stations"
EXPRESSION "1"

STYLE
SIZE 30
SYMBOL "lightrail"
END
TEXT " [Name]"
LABEL

TYPE TRUETYPE
SIZE 8

"1")

120

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

COLOR O 0 O
OUTLINECOLOR 255 255 255
ALIGN CENTER
PRIORITY 9
BUFFER 1
PARTIALS FALSE
POSITION ur
END
END
the following is used for a query
TOLERANCE 50
UNITS PIXELS

| B e =

o e |

HEADER "../htdocs/templates/cluster_header.html"
FOOTER "../htdocs/templates/cluster_footer.html"
TEMPLATE "../htdocs/templates/cluster_query.html"
Map Image
. odd |
' e i
HEZE] eS| i
T HHHH ; :
[T e [T i HHHHH
| T H I - —'I
|f FHH HITTIT Eli 1||-L fi _‘."i_ =]
. ﬁ::gj—:—:: s, I,f—j:_ N T
¥ T & T) LTI L] T
B sia ===, HiH ! i iE R EREERE
S = =SS T A apEsanlll|maannaa] HA :
T [e = Z I T
1 H1 S — T
L i]
iEEE HH
LLITH " =5 T jasaRsucel
N g Bl FRARR RS
Sloanis EEHHHH RS e HI [1= E-)u':k.ﬁit--
lEke =11 - 1& Had LakE'F’él{l?_
ARE | EE ;
|
BTTTE e ERIRE R
estcpifaz dvanus, o= rL ||u:§:[|| :
RO A [T
il I
TP I ML, i R T i
||| 1 o et e | 1T L mi Il EEE 111 |

levard

i
=
E
%
u%.

it ==y s
H| |1 I = =0 b T

i N A

! IJL—{_: = l i 1 NAlamoF'laciilz' I El E]’{lj””
e il e == RN NG R | et S i EEISERISES gl
HE BB _i ‘\‘\'\ N I i I] - It,_J_H l]l
! I

4 i
- ”IIIJIIIIIG_W Et
NE eI B aays | B O I b s [=1k

5.4 Display of International Characters in MapServer

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Revision $Revision: 12506 $

Date $Date: 2011-08-29 14:26:49 +0200 (Mon, 29 Aug 2011) $

5.4. Display of International Characters in MapServer 121

MapServer Documentation, Release 6.0.3

Table of Contents

* Display of International Characters in MapServer
— Credit
Related Links
Requirements
How to Enable in Your Mapfile
x Step 1: Verify ICONV Support and MapServer Version
* Step 2: Verify That Your Files” Encoding is Supported by ICONV
% Step 3: Add ENCODING Parameter to your LABEL Object
* Step 4: Test with the shp2img utility
Example Using PHP MapScript
— Notes

5.4.1 Credit

The following functionality was added to MapServer 4.4.0 as a part of a project sponsored by the Information-
technology Promotion Agency (IPA), in Japan. Project members included: Venkatesh Raghavan, Masumoto Shinji,
Nonogaki Susumu, Nemoto Tatsuya, Hirai Naoki (Osaka City University, Japan), Mario Basa, Hagiwara Akira, Niwa
Makoto, Mori Toru (Orkney Inc., Japan), and Hattori Norihiro (E-Solution Service, Inc., Japan).

5.4.2 Related Links

* MapServer ticket:858

5.4.3 Requirements

* MapServer >=4.4.0

* MapServer compiled with the libiconv library

5.4.4 How to Enable in Your Mapfile

The mapfile LABEL object’s parameter named ENCODING can be used to convert strings from its original encoding
system into one that can be understood by the True Type Fonts. The ENCODING parameter accepts the encoding
name as its parameter.

MapServer uses GNU’s libiconv library (http://www.gnu.org/software/libiconv/) to deal with encodings. The libiconv
web site has a list of supported encodings. One can also use the “iconv -1” command on a system with libiconv installed
to get the complete list of supported encodings on that specific system.

So, theoretically, every string with an encoding system supported by libiconv can be displayed as labels in MapServer
as long as it has a matching font-set.

Step 1: Verify ICONV Support and MapServer Version

Execute “mapserv -v’ at the commandline, and verify that your MapServer version >= 4.4.0 and it includes ’SUP-
PORTS=ICONV’‘, such as:

122 Chapter 5. Mapfile

http://trac.osgeo.org/mapserver/ticket/858/
http://www.gnu.org/software/libiconv/

MapServer Documentation, Release 6.0.3

> mapserv -—-v

MapServer version 5.6.5 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG
OUTPUT=WBMP OUTPUT=PDF OUTPUT=SWE OUTPUT=SVG SUPPORTS=PROJ
SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=ICONV SUPPORTS=FRIBIDI
SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT SUPPORTS=WES_SERVER
SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER
SUPPORTS=FASTCGI SUPPORTS=THREADS SUPPORTS=GEOS SUPPORTS=RGBA_PNG
SUPPORTS=TILECACHE INPUT=JPEG INPUT=POSTGIS INPUT=OGR INPUT=GDAL
INPUT=SHAPEFILE

Step 2: Verify That Your Files’ Encoding is Supported by ICONV

Since MapServer uses the libiconv library to handle encodings, you can check the list of supported encodings here:
http://www.gnu.org/software/libiconv/

Unix users can also use the iconv -l command on a system with libiconv installed to get the complete list of supported
encodings on that specific system.

Step 3: Add ENCODING Parameter to your LABEL Object

Now you can simply add the ENCODING parameter to your mapfile LAYER object, such as:
MAP
LAYER
CLASS
LABEL
ENCODING "SHIFT_JIS"
END
END

END
END

One of the benefits of having an “ENCODING” parameter within the LABEL object is that different LAYERS with
different encoding systems can be combined together and display labels within a single map. For example, labels
from a Layer using Shapefile as it source which contains attributes in SHIFT-JIS can be combined with a Layer from
a PostGIS database server with EUC-JP attributes. A sample Mapfile can look like this:

LAYER
NAME "chimei"
pata [c]n |1 [m[e]i]
STATUS DEFAULT
TYPE POINT
LABELITEM "NAMAE"
CLASS
NAME "CHIMEI"
STYLE
COLOR 10 100 100
END
LABEL
TYPE TRUETYPE

FONT.ochi—gothic

COLOR 220 20 20

5.4. Display of International Characters in MapServer 123

http://www.gnu.org/software/libiconv/

MapServer Documentation, Release 6.0.3

SIZE 10
POSITION CL
PARTIALS FALSE

BUFFER O
ENCODING (S |H|I|F TE’J IS
END
END
END
LAYER

NAME "chimeipg"
CONNECTION "user=username password=password dbname=gis host=localhost port=5432"
CONNECTIONTYPE postgis
DATA "the_geom from chimei"
STATUS DEFAULT
TYPE POINT
LABELITEM "NAMAE"
CLASS
NAME "CHIMEI PG"
STYLE
COLOR 10 100 100
END
LABEL
TYPE TRUETYPE
FONT .o clh|il-ml|i|n c-
COLOR 20 220 20
SIZE 10
POSITION CL
PARTIALS FALSE

BUFFER 0
ENCODING [EJuc{J[P]
END
END
END

Step 4: Test with the shp2img utility

e see shp2img commandline utility

5.4.5 Example Using PHP MapScript
For PHP Mapscript, the Encoding parameter is included in the LabelObj Class, so that the encoding parameter of a
layer can be modified such as:

// Loading the php_mapscript library
dl ("php_mapscript.so");

// Loading the map file
Smap = ms_newMapObj ("example.map") ;

// get the desired layer
$layer = Smap->getLayerByName ("chimei");

// get the layer’s class object
Sclass = $layer->getClass (0);

124 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

// get the class object’s label object
Sclabel= $class—->label;

// get encoding parameter
Sencode_str = $clabel->encoding;

print "Encoding = ".$encode_str."\n";

// set encoding parameter
Sclabel->set ("encoding", "UTF-8") ;

5.4.6 Notes

Note: During initial implementation, this functionality was tested using the different Japanese encoding systems:
Shift-JIS, EUC-JP, UTF-8, as well as Thai’s TIS-620 encoding system.

Examples of encodings for the Latin alphabet supported by libiconv are: ISO-8859-1 (Latin alphabet No. 1 - also
known as LATIN-1 - western European languages), ISO-8859-2 (Latin alphabet No. 2 - also known as LATIN-2 -
eastern European languages), CP1252 (Microsoft Windows Latin alphabet encoding - English and some other Western

languages).

5.5 Expressions

Author Dirk Tilger

Contact dirk at MIRIUP.DE

Author Umberto Nicoletti

Contact umberto.nicoletti at gmail.com
Revision $Revision$

Date $Date$

Last Updated 2011/06/30

5.5. Expressions

125

MapServer Documentation, Release 6.0.3

Contents

» Expressions
— Introduction
% String quotation
* Quotes escaping in strings
* Using attributes
* Character encoding
— Expression Types
% String comparison (equality)
* Regular expression comparison
— “MapServer expressions”
* Logical expressions
String expressions that return a logical value
Arithmetic expressions that return a logical value
Spatial expressions that return a logical value (GEOS)
String operations that return a string
Functions that return a string
String functions that return a number
Arithmetic operations and functions that return a number
Spatial functions that return a number (GEOS)
Spatial functions that return a shape (GEOS)
Temporal expressions

¥ OX ¥ X K K K X X ¥

5.5.1 Introduction

As of version 6.0, expressions are used in four places:
» In LAYER FILTER to specify the features of the dataset that are to be included in the layer.
e In CLASS EXPRESSION to specify to which features of the dataset the CLASS applies to.
e In CLASS TEXT to specify text for labeling features.
e In STYLE GEOMTRANSFORM.

String quotation

Strings can be quoted using single or double quotes:

"This is a string’
"And this is also a string"

Quotes escaping in strings

Note: Quotes escaping is not supported in MapServer versions lower than 5.0.

Starting with MapServer 5.0, if your dataset contains double-quotes, you can use a C-like escape sequence:

"National \"hero\" statue"

To escape a single quote use the following sequence instead:

126 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

"National \’"hero\’ statue"

Starting with MapServer 6.0 you don’t need to escape single quotes within double qouted strings and you don’t need
to escape double quotes within single quoted strings. In 6.0 you can also write the string as follows:

"National "hero" statue’

To escape a single quote use the following sequence instead:

"National ’'hero’ statue"

Using attributes
Attribute values can be referenced in the Map file and used in expressions. Attribute references are case sensitive and
can be used in the following types of expressions:

e In LAYER FILTER

e In CLASS EXPRESSION

e In CLASS TEXT

Referencing an attribute is done by enclosing the attribute name in square brackets, like this: [ATTRIBUTENAME].
Then, every occurrence of “[ATTRIBUTENAME]” will be replaced by the actual value of the attribute “ATTRIBUTE-
NAME”.

Example: The data set of our layer has the attribute “BUILDING_NAME”. We want the value of this attribute to
appear inside a string. This can be accomplished as follows (single or double qoutes):

"The [BUILDING_NAME] building’

For the building which has its BUILDING_NAME attribute set to “Historical Museum”, the resulting string is:

"The Historical Museum building’

For Raster Data layers special attributes have been defined that can be used for classification, for example:
e [PIXEL] ... will become the pixel value as number

* [RED], [GREEN], [BLUE] ... will become the color value for the red, green and blue component in the pixel
value, respectively.

Character encoding

With MapServer there is no way to specify the character encoding of the mapfile or the layer data sources, so
MapServer can’t do the character encoding translation. If the character encoding of the data source is not the same as
the character encoding of the map file, they could be converted to a common encoding.

5.5.2 Expression Types
Expression are used to match attribute values with certain logical checks. There are three different types of expressions
you can use with MapServer:

 String comparisons: A single attribute is compared with a string value.

* Regular expressions: A single attribute is matched with a regular expression.

» Logical “MapServer expressions”: One or more attributes are compared using logical expressions.

5.5. Expressions 127

MapServer Documentation, Release 6.0.3

String comparison (equality)
String comparison means, as the name suggests, that attribute values are checked if they are equal to some value.
String comparisons are the simplest form of MapServer expressions and the fastest option.

To use a string comparison for filtering a LAYER, both FILTERITEM and FILTER must be set. FILTERITEM is set to
the attribute name. FILTER is set to the value for comparison. The same rule applies to CLASSITEM in the LAYER
object and EXPRESSION in the CLASS object.

Example for a simple string comparison filter

FILTER "2005"
FILTERITEM "year"
would match all records that have the attribute “year” set to “2005”. The rendered map would appear as if the dataset

would only contain those items that have the “year” set to “2005”.

Similarly, a classification for the items matched above would be done by setting the CLASSITEM in the LAYER and
the EXPRESSION in the CLASS:

LAYER
NAME "example"
CLASSITEM "year"

CLASS
NAME "year-2005"
EXPRESSION "2005"

END
END

For reasons explained later, the values for both CLASSITEM and FILTERITEM should start with neither a ‘/° nor a (*
character.

Regular expression comparison

Regular expressions are a standard text pattern matching mechanism from the Unix world. The functionality of regular
expression matching is provided by the operating system on UNIX systems and therefore slightly operating system
dependent. However, their minimum set of features are those defined by the POSIX standard. The documentation of
the particular regular expression library is usually in the “regex” manual page (“man regex”) on Unix systems.

Regular expression with MapServer work similarly to string comparison, but allow more complex operation. They
are slower than pure string comparisons, but might be still faster than logical expression. As for string comparison,
when using a regular expressions, FILTERITEM (LAYER FILTER) or CLASSITEM (CLASS EXPRESSION) has to be
defined if the items are not included in the LAYER FILTER or CLASS EXPRESSION.

A regular expression typically consists of characters with special meanings and characters that are interpreted as they
are. Alphanumeric characters (A-Z, a-z and 0-9) are taken as they are. Characters with special meanings are:

* . will match a single character.

* [and] are used for grouping. For example [A-Z] would match the characters A,B,C,....X,Y,Z.

¢ {, }, and * are used to specify how often something should match.

 ~ matches the beginning, $ matches the end of the value.

* The backslash \ is used to take away the special meaning. For example \$ would match the dollar sign.

MapServer supports two regex operators:

128 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

* ~ case insensitive regular expression
* ~* case sensitive regular expression

The following LAYER configuration would have all records rendered on the map that have “hotel” in the attribute
named “placename”

LAYER
NAME 'regexp-example’
FILTERITEM ’'placename’
FILTER /hotel/

END

Note: For FILTER, the regular expression is case-sensitive, thus records having “Hotel” in them would not have
matched.

Example: Match records that have a value from 2000 to 2010 in the attribute “year’:

FILTERITEM "year"
FILTER /~20[0-9][0-9]/

Example: Match all the records that are either purely numerical or empty
FILTER /"[0-9]1x$S/

99 ¢

Example: Match all the features where the name attribute ends with “by”, “BY”, “By” or “bY” (case insensitive
matching):

EXPRESSION ('’ [name]’ ~x ’'byS$’)

Example: Match all the features where the rdname attribute starts with “Main”.

LAYER

CLASSITEM ' rdname’
CLASS

EXPRESSION /”“Main.xS$/

Note: If you experience frequently segmentation faults when working with MapServer and regular expressions, it
might be that your current working environment is linked against more than one regular expression library. This can
happen when MapServer is linked with components that bring their own copy, like the Apache httpd or PHP. In these
cases the author has made best experiences with making all those components using the regular expression library of
the operating system (i.e. the one in libc). That involved editing the build files of some of the components, however.

5.5.3 “MapServer expressions”

MapServer expressions are the most complex and depending how they are written can become quite slow. They can
match any of the attributes and thus allow filtering and classification depending on more than one attribute. Besides
pure logical operations there are also expressions that allow certain arithmetic, string and time operations.

To be able to use a MapServer expression for a FILTER or EXPRESSION value, the expression has to finally become
a logical value.

5.5. Expressions 129

MapServer Documentation, Release 6.0.3

Logical expressions

Syntactically, a logical expression is everything encapsulated in round brackets. Logical expressions take logical
values as their input and return logical values. A logical expression is either ‘true’ or ‘false’.

e ((Expressionl) AND (Expression2))

((Expressionl) && (Expression2))

returns true when both of the logical expressions (Expressionl and Expression2) are true.

e ((Expressionl) OR (Expression2))

((Expressionl) Il (Expression2))

returns true when at least one of the logical expressions (Expressionl or Expression2) is true.

* NOT (Expressionl)

! (Expressionl)

returns true when Expressionl is false.

String expressions that return a logical value

Syntactically, a string is something encapsulated in single or double quotes.

e (“Stringl” eq “String2”)

(“String1” == “String2”) - deprecated since 6.0

(“String1” = “String2”)

returns true when the strings are equal. Case sensitive.

(“String1” =* “String2”)

returns true when the strings are equal. Case insensitive.

(“String1” != “String2”")

(“String1” ne “String2”)

returns true when the strings are not equal.

(“String1” < “String2”)

(“String1” It “String2”)

returns true when “String1” is lexicographically smaller than “String2”
(“String1” > “String2”)

(“String1” gt “String2”)

returns true when “String1” is lexicographically larger than “String2”.
(“String1” <= “String2”)

(“String1” le “String2”)

returns true when “String1” is lexicographically smaller than or equal to “String2”
(“String1” >= “String2”)

(“String1” ge “String2”)

returns true when “String1” is lexicographically larger than or equal to “String2”.

130

Chapter 5

. Mapfile

MapServer Documentation, Release 6.0.3

e (“Stringl” IN “tokenl,token?2,...,tokenN"")

returns true when “String1” is equal to one of the given tokens.

Note: The separator for the tokens is the comma. That means that there can not be unnecessary white space in
the list and that tokens that have commas in them cannot be compared.

e (“Stringl” ~ “regexp”)

returns true when “String1” matches the regular expression “regexp”. This operation is identical to the regular
expression matching described earlier.

e (“Stringl” ~* “regexp”)

returns true when “String1”” matches the regular expression “regexp” (case insensitive). This operation is iden-
tical to the regular expression matching described earlier.

Arithmetic expressions that return a logical value
The basic element for arithmetic operations is the number. Arithmetic operations that return numbers will be covered
in the next section.
* (nleqn2)
(nl ==n2) - deprecated since 6.0
(nl=n2)
returns true when the numbers are equal.
(nl!=n2)
(nlnen2)

returns true when the numbers are not equal.
(nl<n2)
(nlltn2)

returns true when n1 is smaller than n2.
(nl>n2)
(nl gtn2)

returns true when nl is larger than n2.
(nl<=n2)
(nllen2)

returns true when nl is smaller than or equal to n2.

(nl>=n2)

(nl gen2)

returns true when nl is larger than or equal to n2.

(nl IN “numberl,number2,...,numberN"")

returns true when nl is equal to one of the given numbers.

5.5. Expressions 131

MapServer Documentation, Release 6.0.3

Spatial expressions that return a logical value (GEOS)

* (shapel eq shape2)
returns true if shapel and shape?2 are equal
* (shapel intersects shape?2)
returns true if shapel and shape2 intersect New in version 6.0.
* (shapel disjoint shape?2)
returns true if shapel and shape2 are disjoint New in version 6.0.
* (shapel touches shape2)
returns true if shapel and shape2 touch New in version 6.0.
* (. shapel overlaps shape?2)
returns true if shapel and shape2 overlap New in version 6.0.
* (shapel crosses shape2)
returns true if shapel and shape2 cross New in version 6.0.
* (shapel within shape?2)
returns true if shapel is within shape2 New in version 6.0.
* (shapel contains shape2)
returns true if shapel contains shape2 New in version 6.0.
* (shapel dwithin shape2)
returns true if the distance between shapel and shape2 is equal to O New in version 6.0.
 (shapel beyond shape2)

returns true if the distance between shapel and shape?2 is greater than 0 New in version 6.0.
String operations that return a string
e “Stringl” + “String2’
returns “String1String2”, that is, the two strings concatenated to each other.

Functions that return a string

e tostring (nl, “Format1”)
uses “Format1” to format the number nl (C style formatting - sprintf). New in version 6.0.
e commify (“Stringl”)

adds thousands separators (commas) to a long number to make it more readable New in version 6.0.

String functions that return a number

e length (“Stringl™)

returns the number of characters of “String1”

132 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

Arithmetic operations and functions that return a number

round (nl,n2)

returns nl rounded to a multiple of n2: n2 * round(n1/n2) New in version 6.0.

nl +n2

returns the sum of nl and n2
nl - n2

returns n2 subtracted from nl
nl *n2

returns nl multiplicated with n2
nl / n2>

returns nl divided by n2

-nl

returns nl negated

nl An2

returns nl to the power of n2

Note: When the numerical operations above are used like logical operations, the following rule applies: values equal
to zero will be taken as ‘false’ and everything else will be ‘true’. That means the expression

(

6 + 5)

would return true, but

(

5 -5

would return false.

Spatial functions that return a number (GEOS)

Spatial functions that return a shape (GEOS)

e area (shapel)

returns the area of shapel New in version 6.0.

 fromtext (“Stringl”)

returns the shape corresponding to Stringl (WKT - well known text)

fromText (Y POINT (500000 5000000) ")

New in version 6.0.

* buffer (shapel , nl)

returns the shape that results when shapel is buffered with bufferdistance n1 New in version 6.0.

5.5. Expressions

133

MapServer Documentation, Release 6.0.3

* difference (shapel , shape?2)

returns the shape that results when the common area of shapel and shape?2 is subtracted from shapel New in

version 6.0.

Temporal expressions

MapServer uses an internal time type to do comparison. To convert a string into this time type it will check the list
below from the top and down to check if the specified time matches, and if so, it will do the conversion. The following
are integer values: YYYY - year, MM - month, DD - date, hh - hours, mm - minutes, ss - seconds. The following
are character elements of the format: - (dash) - date separator, : (colon) - time separator, T - marks the start of the
time component (ISO 8601), space - marks the end of the date and start of the time component, Z - zulu time (0 UTC
offset).

For temporal values obtained this way, the following operations are supported:

* YYYY-MM-DDThh:mm:ssZ
* YYYY-MM-DDThh:mm:ss
* YYYY-MM-DD hh:mm:ss
* YYYY-MM-DDThh:mm

* YYYY-MM-DD hh:mm

* YYYY-MM-DDThh

* YYYY-MM-DD hh

* YYYY-MM-DD

* YYYY-MM

* YYYY

e Thh:mm:ssZ

e Thh:mm:ss

° (tleqt2)

(tl ==12) - deprecated since 6.0

(tl=t2)

returns true when the times are equal.
e (tl!=12)

(tlnet2)

returns true when the times are not equal.
e (tl<t2)

(t11te2)

returns true when tl is earlier than t2
e (t1>1t2)

(tl gtt2)

returns true when tl is later than t2.

134

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

e (tl<=1t2)

(tllet2)

returns true when tl is earlier than or equal to t2
o (tl>=12)

(tlget2)

returns true when tl is later than or equal to t2.

5.6 FEATURE

POINTS A set of xy pairs terminated with an END, for example:

POINTS 1 1 50 50 1 50 1 1 END

Note: POLYGON/POLYLINE layers POINTS must start and end with the same point (i.e. close the feature).

ITEMS Comma separated list of the feature attributes:

ITEMS "valuel;value2;value3"

Note: Specifying the same number of items is recommended for each features of the same layer. The item
names should be specified as a PROCESSING option of the layer.

TEXT [string] String to use for labeling this feature.

WKT [string] A geometry expressed in OpenGIS Well Known Text geometry format. This feature is only supported
if MapServer is built with OGR or GEOS support.

WKT "POLYGON((500 500, 3500 500, 3500 2500, 500 2500, 500 500))"
WKT "POINT (2000 2500)"

Note: Inline features should be defined as their own layers in the mapfile. If another CONNECTIONTYPE is
specified in the same layer, MapServer will always use the inline features to draw the layer and ignore the other
CONNECTIONTYPE:s.

5.7 FONTSET

Author Kari Guerts

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com
Revision $Revision$

Date $Date$

Last Updated 2008/10/08

5.6. FEATURE 135

MapServer Documentation, Release 6.0.3

Contents

 FONTSET

— Format of the fontset file

FONTSET is a MAP parameter. The syntax is:

FONTSET [filename]

Where filename gives the location of the fontset file of the system. The location of the system fontset file could for
instance be /ust/share/fonts/truetype/font.list (Debian). The location can be specified using a relative or absolute path.

5.7.1 Format of the fontset file

The format of the fontset file is very simple. Each line contains 2 items: An alias and the name/path of the font
separated by white space. The alias is simply the name you refer to the font as in your Mapfile (eg. times-bold). The
name is the actual name of the TrueType file. If not full path then it is interpreted as relative to the location of the
fontset. Here’s the fontset I use (the font.list file and all .ttf files are stored in the same sub-directory).

Note: Aliases are case sensitive. Excellent reference information about the TrueType format and online font resources

is available from the FreeType.

arial

arial-bold
arial-italic
arial-bold-italic
arial_black
comic_sans
comic_sans-bold
courier
courier-bold
courier—-italic
courier-bold-italic
georgia
georgia-bold
georgia-italic
georgia-bold-italic
impact
monotype.com
recreation_symbols
times

times-bold
times-italic
times-bold-italic
trebuchet_ms
trebuchet_ms-bold
trebuchet_ms—-italic

trebuchet_ms-bold-italic

verdana
verdana-bold
verdana-italic
verdana-bold-italic

arial.ttf
arialbd.ttf
ariali.ttf
arialbi.ttf
ariblk.ttf
comic.ttf
comicbd.ttf
cour.ttf
courbd.ttf
couri.ttf
courbi.ttf
georgia.ttf
georgiab.ttf
georgiai.ttf
georgiaz.ttf
impact.ttf
monotype.ttf
recreate.ttf
times.ttf
timesbd.ttf
timesi.ttf
timesbi.ttf
trebuc.ttf
trebucbd.ttf
trebucit.ttf
trebucbi.ttf
verdana.ttf
verdanab.ttf
verdanai.ttf
verdanaz.ttf

136

Chapter 5. Mapfile

http://www.freetype.org/

MapServer Documentation, Release 6.0.3

5.8 GRID

5.8.1 Description

The GRID object can be used to add labeled graticule lines to your map. Initially developed in 2003 by John Novak, the
GRID object is designed to be used inside a LAYER object to allow multiple GRID objects for a single map (allowing
for example: a lat/long GRID, a State Plane GRID, and a UTM GRID to be displayed on the same map image).

5.8.2 Mapfile Parameters:

LABELFORMAT [DDIDDMMIDDMMSSIC format string] Format of the label. “DD” for degrees, “DDMM” for
degrees minutes, and “DDMMSS” for degrees, minutes, seconds. A C-style formatting string is also allowed,
such as “%g°” to show decimal degrees with a degree symbol. The default is decimal display of whatever SRS
you’re rendering the GRID with.

MINARCS [double] The minimum number of arcs to draw. Increase this parameter to get more lines. Optional.
MAXARCS [double] The maximum number of arcs to draw. Decrease this parameter to get fewer lines. Optional.

MININTERVAL [double] The minimum number of intervals to try to use. The distance between the grid lines, in
the units of the grid’s coordinate system. Optional.

MAXINTERVAL [double] The maximum number of intervals to try to use. The distance between the grid lines, in
the units of the grid’s coordinate system. Optional.

MINSUBDIVIDE [double] The minimum number of segments to use when rendering an arc. If the lines should be
very curved, use this to smooth the lines by adding more segments. Optional.

MAXSUBDIVIDE [double] The maximum number of segments to use when rendering an arc. If the graticule should
be very straight, use this to minimize the number of points for faster rendering. Optional, default 256.

5.8.3 Example1: Grid Displaying Degrees

LAYER
NAME "grid"
METADATA
"DESCRIPTION" "Grid"
END
TYPE LINE
STATUS ON
CLASS
NAME "Graticule"
COLOR 0 0 0
LABEL
COLOR 255 0 0
FONT "sans"
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE
BUFFER 2
OUTLINECOLOR 255 255 255
END
END
PROJECTION
"init=epsg:4326"

5.8. GRID 137

MapServer Documentation, Release 6.0.3

END
GRID
LABELFORMAT "DD"
END
END # Layer

-150 -125% -100 S -10 -25 0 25 10 15 100 125 150

5.8.4 Example2: Grid Displaying Degrees with Symbol

LAYER
NAME "grid"
METADATA
"DESCRIPTION" "Grid"
END
TYPE LINE
STATUS ON
CLASS
NAME "Graticule"
COLOR 0 0 O
LABEL
COLOR 255 0 O
FONT "sans"
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE
BUFFER 2
OUTLINECOLOR 255 255 255
END

138 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

END
PROJECTION
"init=epsg:4326"
END
GRID
LABELFORMAT ' 50°'
END
END # Layer

'1'.'!I:I- 175° 1I.'|I:qu ?IEn 5|Uu 25= o° 25° Er!uu :r!-n 1qo® 145“ 13
Loo- 2 £ > 3 1 100°

I | I I
-1?0“ -125° -100° -75° -EF“ -EF“ 3 i 140“ 1%5“ 140“

=
W
FJ

ur
1]
Ln
—E
o
]
N
[

5.8.5 Example2: Grid Displayed in Other Projection (Google Mercator)

LAYER
NAME "grid"
METADATA
"DESCRIPTION" "Grid"
END
TYPE LINE
STATUS ON
CLASS
NAME "Graticule"
COLOR 0 0 0
LABEL
COLOR 255 0 O
FONT "sans"
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE

5.8. GRID 139

MapServer Documentation, Release 6.0.3

BUFFER 2
OUTLINECOLOR 255 255 255
END
END
PROJECTION
"init=epsg:3857"
END
GRID
LABELFORMAT ' 2. 0fm’
MININTERVAL 5000000
END
END # Layer

| I
-150060000m -10000 000 000m 10000000m 15000000m

*® !é . " 15000000m

15000000m

-S000000m

-150060000m -IUUUMDUW-SUU a0m Cll'n 5000000m ‘IUUUCUUUm 15000000m

Note: Pay attention to the values you use for the INTERVAL parameter; it is possible to confuse/overload MapServer
by telling it to draw a graticule line every meter (MININTERVAL 1).

5.9 INCLUDE

When this directive is encountered parsing switches to the included file immediately. As a result the included file can
be comprised of any valid mapfile syntax. For example:

INCLUDE ’'myLayer.map’
Performance does not seem to be seriously impacted with limited use, however in high performance instances you

may want to use includes in a pre-processing step to build a production mapfile. The C pre-processor can also be used
(albeit with a different syntax) and is far more powerful.

140 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

5.9.1 Notes

* Supported in versions 4.10 and higher.
* The name of the file to be included MUST be quoted (single or double quotes).
* Includes may be nested, up to 5 deep.
* File location can be given as a full path to the file, or (in MapServer >=4.10.1) as a path relative to the mapfile.
* Debugging can be problematic because:
1. the file an error occurs in does not get output to the user

2. the line number counter is not reset for each file. Here is one possible error that is thrown when the include
file cannot be found:

msyylex () : Unable to access file. Error opening included file "parks_include.map"

5.9.2 Example

MAP
NAME "include_mapfile"
EXTENT O O 500 500
SIZE 250 250

INCLUDE "test_include_symbols.map"
INCLUDE "test_include_layer.map"
END

where test_include_symbols.map contains:

SYMBOL

NAME ’square’

TYPE VECTOR

FILLED TRUE

POINTS 0O 0 0 1 1 1 1 0 O 0O END
END

and test_include_layer.map contains:

LAYER
TYPE POINT
STATUS DEFAULT
FEATURE
POINTS 10 10 40 20 300 300 400 10 10 400 END
END
CLASS
NAME ’Church’
COLOR 0O 0 O
SYMBOL '’ square’
SIZE 7
STYLE
SYMBOL "square"
SIZE 5
COLOR 255 255 255
END
STYLE
SYMBOL "square"
SIZE 3

5.9. INCLUDE 141

MapServer Documentation, Release 6.0.3

COLOR 0 0 255
END
END
END

5.10 JOIN

5.10.1 Description

Joins are defined within a LAYER object. It is important to understand that JOINs are ONLY available once a query
has been processed. You cannot use joins to affect the look of a map. The primary purpose is to enable lookup tables
for coded data (e.g. 1 => Forest) but there are other possible uses.

5.10.2 Supported Formats

* DBF/XBase files

* CSV (comma delimited text file)
* PostgreSQL tables

* MySQL tables

5.10.3 Mapfile Parameters:
CONNECTION [string] Parameters required for the join table’s database connection (not required for DBF or CSV
joins). The following is an example connection for PostgreSQL:

CONNECTION "host=127.0.0.1 port=5432 user=postgres password=postgres dbname=somename"
CONNECTIONTYPE POSTGRESQL

CONNECTIONTYPE [csvimysqllpostgresql] Type of connection (not required for DBF joins). For PostgreSQL
use postgresql, for CSV use csv, for MySQL use mysql.

FOOTER [filename] Template to use after a layer’s set of results have been sent. In other words, this header HTML
will be displayed after the contents of the TEMPLATE HTML.

FROM [item] Join item in the dataset. This is case sensitive.

HEADKER [filename] Template to use before a layer’s set of results have been sent. In other words, this header HTML
will be displayed before the contents of the TEMPLATE HTML.

NAME [string] Unique name for this join. Required.

TABLE [filenameltablename] For file-based joins this is the name of XBase or comma delimited file (relative to the
location of the mapfile) to join TO. For PostgreSQL support this is the name of the PostgreSQL table to join
TO.

TEMPLATE [filename] Template to use with one-to-many joins. The template is processed once for each record
and can only contain substitutions for items in the joined table. Refer to the column in the joined table in your
template like [joinname_columnname], where joinname is the NAME specified for the JOIN object.

TO [item] Join item in the table to be joined. This is case sensitive.

TYPE [ONE-TO-ONEIONE-TO-MANY] The type of join. Default is one-to-one.

142 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

5.10.4 Example 1: Join from Shape dataset to DBF file

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120
COLOR 255 255 0
END
END

TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"

JOIN
NAME "test"
TABLE "../data/lookup.dbf"
FROM "ID"
TO "IDENT"
TYPE ONE-TO-ONE

END

END # layer

Ogrinfo

>ogrinfo lookup.dbf lookup -summary
INFO: Open of ‘lookup.dbf’

using driver ‘ESRI Shapefile’ successful.

Layer name: lookup
Geometry: None
Feature Count: 12
Layer SRS WKT:
(unknown)

IDENT: Integer (2.0)
VAL: Integer (2.0)

>ogrinfo prov.shp prov —summary
INFO: Open of ‘prov.shp’

using driver ‘ESRI Shapefile’ successful.

Layer name: prov

Geometry: Polygon

Feature Count: 12

Extent: (-2340603.750000, -719746.062500)
Layer SRS WKT:

(unknown)

NAME: String (30.0)

ID: Integer (2.0)

(3009430.500000, 3836605.250000)

5.10. JOIN

143

MapServer Documentation, Release 6.0.3

Template

<tr bgcolor="#EFEFEF">

<td align="left">[NAME]</td>

<td align="left">[test_VAL]</td>
</tr>

5.10.5 Example 2: Join from Shape dataset to PostgreSQL table
Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120
COLOR 255 255 0
END
END
TOLERANCE 20
TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"
JOIN
NAME "test"
CONNECTION "host=127.0.0.1 port=5432 user=postgres password=postgres dbname=join"
CONNECTIONTYPE postgresqgl
TABLE "lookup"
FROM "ID"
TO "ident"
TYPE ONE-TO-ONE
END
END # layer

Ogrinfo

>ogrinfo -ro PG:"host=127.0.0.1 port=5432 user=postgres password=postgre
dbname=join" lookup -summary
INFO: Open of ‘PG:host=127.0.0.1 port=5432 user=postgres password=postgres
dbname=join’
using driver ‘PostgreSQL’ successful.

Layer name: lookup
Geometry: Unknown (any)
Feature Count: 12
Layer SRS WKT:
(unknown)

ident: Integer (0.0)
val: Integer (0.0)

144 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

Template

<tr bgcolor="#EFEFEF">

<td align="left">[NAME]</td>

<td align="left">[test_val]l</td>
</tr>

5.10.6 Example 3: Join from Shape dataset to CSV file

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120
COLOR 255 255 0
END
END
TOLERANCE 20

TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"

JOIN
NAME "test"
CONNECTIONTYPE CSV

TABLE "../data/lookup.csv"
FROM "ID"
#TO "IDENT" # see note below
TO "1" # see note below
TYPE ONE-TO-ONE

END

END # layer

CSV File Structure

" IDENT" , llVAL "
1,12

5.10. JOIN

145

MapServer Documentation, Release 6.0.3

Note: The CSV driver currently doesn’t read column names from the first row. It just uses indexes (1, 2, ... n) to
reference the columns. It’s ok to leave column names as the first row since they likely won’t match anything but they
aren’t used. Typically you’d see something like TO “1” in the JOIN block. Then in the template you’d use [name_1],
[name_2], etc...

Ogrinfo

>ogrinfo lookup.csv lookup -summary
INFO: Open of ‘lookup.csv’
using driver ‘CSV’ successful.

Layer name: lookup
Geometry: None
Feature Count: 12
Layer SRS WKT:
(unknown)

IDENT: String (0.0)
VAL: String (0.0)

Template (prov.html)

Ideally this the template should look like this:

<!-- MapServer Template —-->
<tr bgcolor="#EFEFEF">

<td align="left">[NAME]</td>

<td align="left">[test_VAL]</td>
</tr>

But since attribute names are not supported for CSV files (see note above), the following will have to be used:

<!-- MapServer Template —->
<tr bgcolor="#EFEFEF">
<td align="left">[NAME]</td>
<td align="left">[test_2]</td>
</tr>

5.10.7 Example 4: Join from Shape dataset to MySQL

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120
COLOR 255 255 0
END # style
END # class

146 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

TOLERANCE 20

TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"

JOIN

NAME "mysgl-join"
CONNECTIONTYPE MYSQL
CONNECTION ’'server:user:password:database’
TABLE "mysgl-tablename"
FROM "ID"
TO "mysgl-column"
TYPE ONE-TO-ONE

END # join

END # layer

5.11 LABEL

ALIGN [leftlcenterlright] Specifies text alignment for multiline labels (see WRAP) Note that the alignment algo-
rithm is far from precise, so don’t expect fabulous results (especially for right alignment) if you’re not using a
fixed width font. New in version 5.4.

ANGLE [doublelautolfollowlattribute]
* Angle, given in degrees, to draw the label.
¢ AUTO allows MapServer to compute the angle. Valid for LINE layers only.

* FOLLOW was introduced in version 4.10 and tells MapServer to compute a curved label for appropriate
linear features (see MS RFC 11: Support for Curved Labels for specifics).

e [Artribute] was introduced in version 5.0, to specify the item name in the attribute table to use for an-
gle values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named
“MYANGLE” that holds angle values for each record, your LABEL object might contain:

LABEL
COLOR 150 150 150
OUTLINECOLOR 255 255 255
FONT "sans"
TYPE truetype
SIZE 6
ANGLE [MYANGLE]
POSITION AUTO
PARTIALS FALSE
END

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.

ANTIALIAS [truelfalse] Should text be antialiased? Note that this requires more available colors, decreases drawing
performance, and results in slightly larger output images. Only useful for GD (gif) rendering. Default is false.
Has no effect for the other renderers (where anti-aliasing can not be turned off).

BACKGROUNDCOLOR [r] [g] [b] Color to draw a background rectangle (i.e. billboard). Off by default.

Note: Removed in 6.0. Use a LABEL STYLE object with GEOMTRANSFORM labelpoly and COLOR.

BACKGROUNDSHADOWCOLOR [r] [g] [b] Color to draw a background rectangle (i.e. billboard) shadow. Off
by default.

5.11. LABEL 147

MapServer Documentation, Release 6.0.3

Note: Removed in 6.0. Use a LABEL STYLE object with GEOMTRANSFORM labelpoly, COLOR and
OFFSET.

BACKGROUNDSHADOWSIZE [x][y] How far should the background rectangle be offset? Default is 1.

Note: Removed in 6.0. Use a LABEL STYLE object with GEOMTRANSFORM labelpoly, COLOR and
OFFSET.

BUFFER [integer] Padding, in pixels, around labels. Useful for maintaining spacing around text to enhance read-
ability. Available only for cached labels. Default is 0.

COLOR [r] [g] [b] | [attribute]
¢ Color to draw text with.

* [Attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for color
values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MY-
COLOR?” that holds color values for each record, your LABEL object might contain:

LABEL
COLOR [MYCOLOR]
OUTLINECOLOR 255 255 255
FONT "sans"
TYPE truetype
SIZE ©
POSITION AUTO
PARTIALS FALSE
END

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.

ENCODING [string] Supported encoding format to be used for labels. If the format is not supported, the label will
not be drawn. Requires the iconv library (present on most systems). The library is always detected if present on
the system, but if not the label will not be drawn.

Required for displaying international characters in MapServer. More information can be found in the Label
Encoding document.

FONT [namelattribute]
 Font alias (as defined in the FONTSET) to use for labeling.
e [Attribute] was introduced in version 5.6 to specfify the font alias.

FORCE [truelfalse] Forces labels for a particular class on, regardless of collisions. Available only for cached labels.
Default is false. If FORCE is true and PARTIALS is false, FORCE takes precedence, and partial labels are
drawn.

MAXLENGTH [integer] This keyword interacts with the WRAP keyword so that line breaks only occur after the
defined number of characters.

148 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

Table 5.9: Interaction with WRAP keyword

maxlength =0 maxlength > 0 maxlength < 0
wrap = | always wrap at the | newline at the first WRAP character | hard wrap (always break at
‘char’ WRAP character after MAXLENGTH characters exactly MAXLENGTH
characters)
no no processing skip label if it contains more than hard wrap (always break at
wrap MAXLENGTH characters exactly MAXLENGTH
characters)

The associated RFC document for this feature is MS RFC 40: Support Label Text Transformations. New in
version 5.4.

MAXOVERLAPANGLE [double] Angle threshold to use in filtering out ANGLE FOLLOW labels in which char-
acters overlap (floating point value in degrees). This filtering will be enabled by default starting with MapServer
6.0. The default MAXOVERLAPANGLE value will be 22.5 degrees, which also matches the default in
GeoServer. Users will be free to tune the value up or down depending on the type of data they are dealing
with and their tolerance to bad overlap in labels. As per RFC 60, if MAXOVERLAPANGLE is set to 0, then we
fall back on pre-6.0 behavior which was to use maxoverlapangle = 0.4*MS_PI (40% of 180 degrees = 72degree).

The associated RFC document for this feature is MS RFC 60: Labeling enhancement: ability to skip ANGLE
FOLLOW labels with too much character overlap.

MAXSIZE [double] Maximum font size to use when scaling text (pixels). Default is 256. Starting from version 5.4,
the value can also be a fractional value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MINDISTANCE [integer] Minimum distance between duplicate labels. Given in pixels.

MINFEATURESIZE [integerlauto] Minimum size a feature must be to be labeled. Given in pixels. For line data
the overall length of the displayed line is used, for polygons features the smallest dimension of the bounding box
is used. “Auto” keyword tells MapServer to only label features that are larger than their corresponding label.
Auvailable for cached labels only.

MINSIZE [double] Minimum font size to use when scaling text (pixels). Default is 4. Starting from version 5.4, the
value can also be a fractional value (and not only integer). See LAYER SYMBOLSCALEDENOM.

OFFSET [x][y] Offset values for labels, relative to the lower left hand corner of the label and the label point. Given
in pixels. In the case of rotated text specify the values as if all labels are horizontal and any rotation will be
compensated for. See LAYER SYMBOLSCALEDENOM.

OUTLINECOLOR [r] [g] [b] | [attribute]
* Color to draw a one pixel outline around the characters in the text.

e [attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for color
values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MY-
OUTCOLOR?” that holds color values for each record, your LABEL object might contain:

LABEL
COLOR 150 150 150
OUTLINECOLOR [MYOUTCOLOR]
FONT "sans"
TYPE truetype
SIZE 6
POSITION AUTO
PARTIALS FALSE
END

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.

5.11. LABEL 149

MapServer Documentation, Release 6.0.3

OUTLINEWIDTH [integer] Width of the outline if OUTLINECOLOR has been set. Defaults to 1. Currently only
the AGG renderer supports values greater than 1, and renders these as a ‘halo’ effect: recommended values are
3orS.

PARTIALS [truelfalse] Can text run off the edge of the map? Default is true. If FORCE is true and PARTIALS is
false, FORCE takes precedence, and partial labels are drawn.

POSITION [ulluclurlcllcclerillllclirlauto] Position of the label relative to the labeling point (layers only). First letter
is “Y” position, second letter is “X” position. “Auto” tells MapServer to calculate a label position that will not
interfere with other labels. With points, MapServer selects from the 8 outer positions (i.e. excluding cc). With
polygons, MapServer selects from cc (added in MapServer 5.4), uc, Ic, cl and cr as possible positions. With
lines, it only uses Ic or uc, until it finds a position that doesn’t collide with labels that have already been drawn.
If all positions cause a conflict, then the label is not drawn (Unless the label’s FORCE a parameter is set to
“true”). “Auto” placement is only available with cached labels.

PRIORITY [integer]l[item_name]l[attribute] The priority parameter takes an integer value between 1 (lowest) and
10 (highest). The default value is 1. It is also possible to bind the priority to an attribute (item_name) using
square brackets around the [item_name]. e.g. “PRIORITY [someattribute]”

Labels are stored in the label cache and rendered in order of priority, with the highest priority levels rendered
first. Specifying an out of range PRIORITY value inside a map file will result in a parsing error. An out of range
value set via MapScript or coming from a shape attribute will be clamped to the min/max values at rendering
time. There is no expected impact on performance for using label priorities.

[Attribute] was introduced in version 5.6. New in version 5.0.

REPEATDISTANCE [integer] The label will be repeated on every line of a multiline shape and will be repeated
multiple times along a given line at an interval of REPEATDISTANCE pixels.

The associated RFC document for this feature is MS RFC 57: Labeling enhancements: ability to repeat labels
along a line/multiline. New in version 5.6.

SHADOWCOLOR [r] [g] [b] Color of drop shadow. A label with the same text will be rendered in this color before
the main label is drawn, resulting in a shadow effect on the the label characters. The offset of the renderered
shadow is set with SHADOWSIZE.

SHADOWSIZE [x][y]l[attribute][attribute]l[x][attribute]l[attribute][y] Shadow offset in pixels, see SHADOW-
COLOR.

[Attribute] was introduced in version 6.0, and can be used like:

SHADOWSIZE 2 2

SHADOWSIZE [shadowsizeX] 2
SHADOWSIZE 2 [shadowsizeY]
SHADOWSIZE [shadowsize] [shadowsize]

SIZE [double]l[tinylsmalllmediumllargelgiant]I[attribute]

» Text size. Use a number to give the size in pixels of your TrueType font based label, or any of the other 5
listed keywords for bitmap fonts.

When scaling is in effect (SYMBOLSCALEDENOM is specified for the LAYER), SIZE gives the size of the
font to be used at the map scale 1:SYMBOLSCALEDENOM.

« Starting from version 5.4, the value can also be a fractional value (and not only integer).

* [Attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for size val-
ues. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MYSIZE”
that holds size values for each record, your LABEL object might contain:

LABEL
COLOR 150 150 150

150 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

OUTLINECOLOR 255 255 255
FONT "sans"
TYPE truetype
SIZE [MYSIZE]
POSITION AUTO
PARTIALS FALSE
END

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.
STYLE The start of a STYLE object.
Label specific mechanisms of the STYLE object are the GEOMTRANSFORM options:
GEOMTRANSFORM [labelpntllabelpoly] Creates a geometry that can be used for styling the label.

* labelpnt draws a marker on the geographic position the label is attached to. This corresponds to the
center of the label text only if the label is in position CC.

* labelpoly generates the bounding rectangle for the text, with 1 pixel of padding added in all directions.
The resulting geometries can be styled using the mechanisms available in the STYLE object.

Example - draw a red background rectangle for the labels (i.e. billboard) with a “shadow” in
gray:

STYLE
GEOMTRANSFORM ' labelpoly’
COLOR 153 153 153
OFFSET 3 2

END # STYLE

STYLE
GEOMTRANSFORM '’ labelpoly’
COLOR 255 0 O

END # STYLE

New in version 6.0.

TYPE [bitmapltruetype] Type of font to use. Generally bitmap fonts are faster to draw then TrueType fonts. How-
ever, TrueType fonts are scalable and available in a variety of faces. Be sure to set the FONT parameter if you
select TrueType.

Note: Bitmap fonts are only supported with the AGG and GD renderers.

WRAP [character] Character that represents an end-of-line condition in label text, thus resulting in a multi-line label.
Interacts with MAXLENGTH for conditional line wrapping after a given number of characters

5.12 LAYER

CLASS Signals the start of a CLASS object.

Inside a layer, only a single class will be used for the rendering of a feature. Each feature is tested against each
class in the order in which they are defined in the mapfile. The first class that matches the its min/max scale
constraints and its EXPRESSION check for the current feature will be used for rendering.

CLASSGROUP [string] Specify the class’s group that would be considered at rendering time. The CLASS object’s
GROUP parameter must be used in combination with CLASSGROUP.

5.12. LAYER 151

MapServer Documentation, Release 6.0.3

CLASSITEM [attribute] Item name in attribute table to use for class lookups.
CLUSTER Signals the start of a CLUSTER object.

The CLUSTER configuration option provides to combine multiple features from the layer into single (aggre-
gated) features based on their relative positions. Supported only for POINT layers.

See Also:
MS RFC 69: Support for clustering of features in point layers

CONNECTION [string] Database connection string to retrieve remote data.

An SDE connection string consists of a hostname, instance name, database name, username and password
separated by commas.

A PostGIS connection string is basically a regular PostgreSQL connection string, it takes the form of
“user=nobody password=****** dbname=dbname host=localhost port=5432"

An Oracle connection string: user/pass[@db]
See Also:

See Vector Data for specific connection information for various data sources.

CONNECTIONTYPE [locallogrloraclespatiallpluginlpostgisisdelunionlwfslwms] Type of connection. Default is

local. See additional documentation for any other type.
See Also:

See Vector Data for specific connection information for various data sources. See Union Layer for combining
layers, added in MapServer 6.0

Note: mygis is another connectiontype, but it is deprecated; please see the MySQL section of the Vector Data
document for connection details.

DATA [filename]l[sde parameters][postgis table/column][oracle table/column] Full filename of the spatial data to

process. No file extension is necessary for shapefiles. Can be specified relative to the SHAPEPATH option from
the Map Object.

If this is an SDE layer, the parameter should include the name of the layer as well as the geometry column, i.e.
“mylayer,shape,myversion”.

If this is a PostGIS layer, the parameter should be in the form of “<columnname> from <tablename>", where
“columnname” is the name of the column containing the geometry objects and “tablename” is the name of the
table from which the geometry data will be read.

For Oracle, use “shape FROM table” or “shape FROM (SELECT statement)” or even more complex Oracle
compliant queries! Note that there are important performance impacts when using spatial subqueries however.
Try using MapServer’s FILTER whenever possible instead. You can also see the SQL submitted by forcing an
error, for instance by submitting a DATA parameter you know won’t work, using for example a bad column
name.

See Also:

See Vector Data for specific connection information for various data sources.

DEBUG [offlonl0I1121314I5] Enables debugging of a layer in the current map.

Debugging with MapServer versions >= 5.0:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer errorfile if one
is set using the “MS_ERRORFILE” environment variable. You can set the environment variable by using the
CONFIG parameter at the MAP level of the mapfile, such as:

152

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"

You can also set the environment variable in Apache by adding the following to your httpd.conf:

SetEnv MS_ERRORFILE "/msdw/tmp/ms_error.txt"

Once the environment variable is set, the DEBUG mapfile parameter can be used to control the level of debug-
ging output. Here is a description of the possible DEBUG values:

* DEBUG O or OFF - only msSetError() calls are logged to MS_ERRORFILE. No msDebug() output at
all. This is the default and corresponds to the original behavior of MS_ERRORFILE in MapServer 4.x

¢ DEBUG 1 or ON - includes all output from DEBUG 0 plus msDebug() warnings about common pitfalls,
failed assertions or non-fatal error situations (e.g. missing or invalid values for some parameters, missing
shapefiles in tileindex, timeout error from remote WMS/WES servers, etc.)

* DEBUG 2 - includes all output from DEBUG 1 plus notices and timing information useful for tuning
mapfiles and applications

¢ DEBUG 3 - all of DEBUG 2 plus some debug output useful in troubleshooting problems such as WMS
connection URLs being called, database connection calls, etc. This is the recommended level for debug-
ging mapfiles.

* DEBUG 4 - DEBUG 3 plus even more details...

* DEBUG 5 - DEBUG 4 plus any msDebug() output that might be more useful to the developers than to the
users.

You can also set the debug level by using the “MS_DEBUGLEVEL” environment variable.

The DEBUG setting can also be specified for the entire map, by setting the DEBUG parameter in the MAP
object.

For more details on this debugging mechanism, please see MS RFC 28: Redesign of LOG/DEBUG output
mechanisms.

Debugging with MapServer versions < 5:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer logfile if one is
set using the LOG parameter in the WEB object. Apache users will see timing details for drawing in Apache’s
error_log file. Requires MapServer to be built with the DEBUG=MSDEBUG option (-with-debug configure
option).

DUMP [truelfalse] Since 6.0, DUMP is not used anymore. LAYER METADATA is used instead.

Switch to allow MapServer to return data in GML format. Useful when used with WMS GetFeaturelnfo opera-
tions. “false” by default. Deprecated since version 6.0: LAYER METADATA is used instead.

See Also:
WMS Server

EXTENT [minx] [miny] [maxx] [maxy] The spatial extent of the data. In most cases you will not need to specify
this, but it can be used to avoid the speed cost of having MapServer compute the extents of the data. An
application can also possibly use this value to override the extents of the map.

FEATURE Signals the start of a FEATURE object.

FILTER [string] This parameter allows for data specific attribute filtering that is done at the same time spatial filter-
ing is done, but before any CLASS expressions are evaluated. For OGR and shapefiles the string is simply a
mapserver regular expression. For spatial databases the string is a SQL WHERE clause that is valid with respect
to the underlying database.

For example: FILTER ([type]="road’ and [size]<2)

5.12. LAYER 153

MapServer Documentation, Release 6.0.3

FILTERITEM [attribute] Item to use with simple FILTER expressions. OGR and shapefiles only.
FOOTER [filename] Template to use after a layer’s set of results have been sent. Multiresult query modes only.
GRID Signals the start of a GRID object.

GROUP [name] Name of a group that this layer belongs to. The group name can then be reference as a regular layer
name in the template files, allowing to do things like turning on and off a group of layers at once.

If a group name is present in the LAYERS parameter of a CGI request, all the layers of the group are returned
(the STATUS of the LAYERs have no effect).

HEADER [filename] Template to use before a layer’s set of results have been sent. Multiresult query modes only.
JOIN Signals the start of a JOIN object.

LABELANGLEITEM [attribute] (As of MapServer 5.0 this parameter is no longer available. Please see the LABEL
object’s ANGLE parameter) For MapServer versions < 5.0, this is the item name in attribute table to use for
class annotation angles. Values should be in degrees. Deprecated since version 5.0.

LABELCACHE [onloff] Specifies whether labels should be drawn as the features for this layer are drawn, or whether
they should be cached and drawn after all layers have been drawn. Default is on. Label overlap removal, auto
placement etc... are only available when the label cache is active.

LABELITEM [attribute] Item name in attribute table to use for class annotation (i.e. labeling).

LABELMAXSCALEDENOM [double] Minimum scale at which this LAYER is labeled. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented
in MapServer 5.0, to replace the deprecated LABELMAXSCALE parameter.

See Also:
Map Scale

LABELMAXSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is LABELMAXS-
CALEDENOM instead. The deprecated LABELMAXSCALE is the minimum scale at which this LAYER is
labeled. Scale is given as the denominator of the actual scale fraction, for example for a map at a scale of
1:24,000 use 24000. Deprecated since version 5.0.

LABELMINSCALEDENOM [double] Maximum scale at which this LAYER is labeled. Scale is given as the de-
nominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in
MapServer 5.0, to replace the deprecated LABELMINSCALE parameter.

See Also:
Map Scale

LABELMINSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is LABELMIN-
SCALEDENOM instead. The deprecated LABELMINSCALE is the maximum scale at which this LAYER
is labeled. Scale is given as the denominator of the actual scale fraction, for example for a map at a scale of
1:24,000 use 24000. Deprecated since version 5.0.

LABELREQUIRES [expression] Sets context for labeling this layer, for example:
LABELREQUIRES "! [orthoquads]"
means that this layer would NOT be labeled if a layer named “orthoquads” is on. The expression consists of

a boolean expression based on the status of other layers, each [layer name] substring is replaced by a 0 or a 1
depending on that layer’s STATUS and then evaluated as normal. Logical operators AND and OR can be used.

LABELSIZEITEM [attribute] (As of MapServer 5.0 this parameter is no longer available. Please see the LABEL
object’s SIZE parameter) For MapServer versions < 5.0, this is the item name in attribute table to use for class
annotation sizes. Values should be in pixels. Deprecated since version 5.0.

154 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

MAXFEATURES [integer] Specifies the number of features that should be drawn for this layer in the CURRENT
window. Has some interesting uses with annotation and with sorted data (i.e. lakes by area).

MAXGEOWIDTH [double] Maximum width, in the map’s geographic units, at which this LAYER is drawn. If
MAXSCALEDENOM is also specified then MAXSCALEDENOM will be used instead. (added in MapServer
5.4.0)

The width of a map in geographic units can be found by calculating the following from the extents:
[maxx] - [minx]
MAXSCALEDENOM [double] Minimum scale at which this LAYER is drawn. Scale is given as the denominator

of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer
5.0, to replace the deprecated MAXSCALE parameter.

See Also:
Map Scale

MAXSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MAXSCALEDENOM in-
stead. The deprecated MAXSCALE is the minimum scale at which this LAYER is drawn. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Deprecated
since version 5.0.

METADATA This keyword allows for arbitrary data to be stored as name value pairs. This is used with OGC WMS
to define things such as layer title. It can also allow more flexibility in creating templates, as anything you put
in here will be accessible via template tags.

Example:

METADATA
"title" "My layer title"
"author" "Me!"

END

MINGEOWIDTH [double] Minimum width, in the map’s geographic units, at which this LAYER is drawn. If
MINSCALEDENOM is also specified then MINSCALEDENOM will be used instead. (added in MapServer
5.4.0)

The width of a map in geographic units can be found by calculating the following from the extents:

[maxx] - [minx]

MINSCALEDENOM [double] Maximum scale at which this LAYER is drawn. Scale is given as the denominator
of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer
5.0, to replace the deprecated MINSCALE parameter.

See Also:
Map Scale

MINSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MINSCALEDENOM in-
stead. The deprecated MINSCALE is the maximum scale at which this LAYER is drawn. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Deprecated
since version 5.0.

NAME [string] Short name for this layer. This name is the link between the mapfile and web interfaces that refer to
this name. They must be identical. The name should be unique, unless one layer replaces another at different
scales. Use the GROUP option to associate layers with each other. It is recommended that the name not contain
spaces, special characters, or begin with a number (which could cause problems through interfaces such as OGC
services).

OFFSITE [r] [g] [b] Sets the color index to treat as transparent for raster layers.

5.12. LAYER 155

MapServer Documentation, Release 6.0.3

OPACITY [integerlalpha] Sets the opacity level (or the inability to see through the layer) of all classed pixels for
a given layer. The value can either be an integer in the range (0-100) or the named symbol “ALPHA”. A
value of 100 is opaque and O is fully transparent. Implemented in MapServer 5.0, to replace the deprecated
TRANSPARENCY parameter.

The “ALPHA” symbol directs the MapServer rendering code to honor the indexed or alpha transparency of
pixmap symbols used to style a layer. This is only needed in the case of RGB output formats, and should be
used only when necessary as it is expensive to render transparent pixmap symbols onto an RGB map image.

PLUGIN [filename] Additional library to load by MapServer, for this layer. This is commonly used to load specific
support for SDE and Microsoft SQL Server layers, such as:

CONNECTIONTYPE PLUGIN

CONNECTION "hostname, port:xxx,database,username, password"
PLUGIN "C:/ms4w/Apache/specialplugins/msplugin_sde_92.d11"
DATA "layername, geometrycolumn, SDE.DEFAULT"

POSTLABELCACHE [truelfalse] Tells MapServer to render this layer after all labels in the cache have been drawn.
Useful for adding neatlines and similar elements. Default is false.

PROCESSING [string] Passes a processing directive to be used with this layer. The supported processing directives
vary by layer type, and the underlying driver that processes them.

¢ Attributes Directive - The ITEMS processing option allows to specify the name of attributes for inline
layers or specify the subset of the attributes to be used by the layer, such as:

PROCESSING "ITEMS=itemnamel, itemname?2, itemname3"

* Connection Pooling Directive - This is where you can enable connection pooling for certain layer layer
types. Connection pooling will allow MapServer to share the handle to an open database or layer con-
nection throughout a single map draw process. Additionally, if you have FastCGI enabled, the connection

handle will stay open indefinitely, or according to the options specified in the FustCGI configuration.
Oracle Spatial, ArcSDE, OGR and PostG1S/PostgreSQL currently support this approach.

PROCESSING "CLOSE_CONNECTION=DEFER"
* Label Directive - The LABEL_NO_CLIP processing option can be used to skip clipping of shapes when
determining associated label anchor points. This avoids changes in label position as extents change be-

tween map draws. It also avoids duplicate labels where features appear in multiple adjacent tiles when
creating tiled maps.

PROCESSING "LABEL_NO_CLIP=True"

* OGR Styles Directive - This directive can be used for obtaining label styles through MapScript. For more
information see the MapServer’s OGR document.
PROCESSING "GETSHAPE_STYLE_ITEMS=all"

» Raster Directives - All raster processing options are described in Raster Data. Here we see the SCALE
and BANDs directives used to autoscale raster data and alter the band mapping.

PROCESSING "SCALE=AUTO"
PROCESSING "BANDS=3,2,1"

PROJECTION Signals the start of a PROJECTION object.
REQUIRES [expression] Sets context for displaying this layer (see LABELREQUIRES).

SIZEUNITS [feetlincheslkilometersimetersimilesinauticalmileslpixels] Sets the unit of CLASS object SIZE values
(default is pixels). Useful for simulating buffering. Nauticalmiles was added in MapServer 5.6.

156 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

STATUS [onloffldefault] Sets the current status of the layer. Often modified by MapServer itself. Default turns the
layer on permanently.

Note: In CGI mode, layers with STATUS DEFAULT cannot be turned off using normal mechanisms. It is
recommended to set layers to STATUS DEFAULT while debugging a problem, but set them back to ON/OFF in
normal use.

Note: For WMS, layers in the server mapfile with STATUS DEFAULT are always sent to the client.

Note: The STATUS of the individual layers of a GROUP has no effect when the group name is present in the
LAYERS parameter of a CGI request - all the layers of the group will be returned.

STYLEITEM [<attribute>lauto] Item to use for feature specific styling. The style information may be represented
by a separate attribute (style string) attached to the feature. MapServer supports the following style string
representations:

* MapServer STYLE definition - The style string can be represented as a MapServer STYLE block accord-
ing to the following example:

STYLE BACKGROUNDCOLOR 128 0 O COLOR 0O O 208 END

* MapServer CLASS definition - By specifying the entire CLASS instead of a single style allows to use
further options (like setting expressions, label attributes, multiple styles) on a per feature basis.

¢ OGR Style String - MapServer support rendering the OGR style string format according to the OGR -
Feature Style Specification documentation. Currently only a few data sources support storing the styles
along with the features (like Maplnfo, AutoCAD DXF, Microstation DGN), however those styles can
easily be transferred to many other data sources as a separate attribute by using the ogr2ogr command line
tool as follows:

ogr2ogr —-sgl "select %, OGR_STYLE from srclayer" "dstlayer" "srclayer"

The value: AUTO can be used for automatic styling.

* Automatic styling can be provided by the driver. Currently, only the OGR driver supports automatic
styling.

* When used for a Union Layer, the styles from the source layers will be used.

SYMBOLSCALEDENOM [double] The scale at which symbols and/or text appear full size. This allows for dy-
namic scaling of objects based on the scale of the map. If not set then this layer will always appear at the
same size. Scaling only takes place within the limits of MINSIZE and MAXSIZE as described above. Scale is
given as the denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.
Implemented in MapServer 5.0, to replace the deprecated SYMBOLSCALE parameter.

See Also:
Map Scale

SYMBOLSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is SYMBOLSCALEDE-
NOM instead. The deprecated SYMBOLSCALE is the scale at which symbols and/or text appear full size. This
allows for dynamic scaling of objects based on the scale of the map. If not set then this layer will always appear
at the same size. Scaling only takes place within the limits of MINSIZE and MAXSIZE as described above.
Scale is given as the denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use
24000. Deprecated since version 5.0.

TEMPLATE [filelurl] Used as a global alternative to CLASS TEMPLATE. See Templating for more info.

5.12. LAYER 157

http://www.gdal.org/ogr/ogr_feature_style.html
http://www.gdal.org/ogr/ogr_feature_style.html
http://www.gdal.org/ogr2ogr.html

MapServer Documentation, Release 6.0.3

TILEINDEX [filenamellayername] Name of the tileindex file or layer. A tileindex is similar to an ArcInfo library

index. The tileindex contains polygon features for each tile. The item that contains the location of the tiled data
is given using the TILEITEM parameter. When a file is used as the tileindex for shapefile or raster layers, the
tileindex should be a shapefile. For CONNECTIONTYPE OGR layers, any OGR supported datasource can be
a tileindex. Normally the location should contain the path to the tile file relative to the shapepath, not relative to
the tileindex itself. If the DATA parameter contains a value then it is added to the end of the location. When a
tileindex layer is used, it works similarly to directly referring to a file, but any supported feature source can be
used (ie. postgres, oracle).

Note: All files in the tileindex should have the same coordinate system, and for vector files the same set of
attributes in the same order.

TILEITEM [attribute] Item that contains the location of an individual tile, default is “location”.

TOLERANCE [double] Sensitivity for point based queries (i.e. via mouse and/or map coordinates). Given in TOL-

ERANCEUNITS. If the layer is a POINT or a LINE, the default is 3. For all other layer types, the default is 0.
To restrict polygon searches so that the point must occur in the polygon set the tolerance to zero.

TOLERANCEUNITS [pixelsifeetlincheslkilometersimetersimilesinauticalmilesldd] Units of the TOLERANCE

value. Default is pixels. Nauticalmiles was added in MapServer 5.6.

TRANSPARENCY [integerlalpha] - deprecated Since MapServer 5.0 the proper parameter to use is OPACITY.

The deprecated TRANSPARENCY parameter sets the transparency level of all classed pixels for a given layer.
The value can either be an integer in the range (0-100) or the named symbol “ALPHA”. Although this parameter
is named “transparency”’, the integer values actually parameterize layer opacity. A value of 100 is opaque and O
is fully transparent.

The “ALPHA” symbol directs the MapServer rendering code to honor the indexed or alpha transparency of
pixmap symbols used to style a layer. This is only needed in the case of RGB output formats, and should be
used only when necessary as it is expensive to render transparent pixmap symbols onto an RGB map image.
Deprecated since version 5.0.

See Also:
OPACITY

TRANSFORM [truelfalse ulluclurllclccllrillilcllr] Tells MapServer whether or not a particular layer needs to be

transformed from some coordinate system to image coordinates. Default is true. This allows you to create
shapefiles in image/graphics coordinates and therefore have features that will always be displayed in the same
location on every map. Ideal for placing logos or text in maps. Remember that the graphics coordinate system
has an origin in the upper left hand corner of the image, contrary to most map coordinate systems.

Version 4.10 introduces the ability to define features with coordinates given in pixels (or percentages, see
UNITS), most often inline features, relative to something other than the UL corner of an image. That is what
‘TRANSFORM FALSE’ means. By setting an alternative origin it allows you to anchor something like a copy-
right statement to another portion of the image in a way that is independent of image size.

TYPE [annotationlchartlcirclellinelpointlpolygonlrasterlquery] Specifies how the data should be drawn. Need not

be the same as the shapefile type. For example, a polygon shapefile may be drawn as a point layer, but a point
shapefile may not be drawn as a polygon layer. Common sense rules. Annotation means that a label point
will be calculated for the features, but the feature itself will not be drawn although a marker symbol can be
optionally drawn. this allows for advanced labeling like numbered highway shields. Points are labeled at that
point. Polygons are labeled first using a centroid, and if that doesn’t fall in the polygon a scanline approach
is used to guarantee the label falls within the feature. Lines are labeled at the middle of the longest arc in the
visible portion of the line. Query only means the layer can be queried but not drawn.

In order to differentiate between POLYGONs and POLYLINEs (which do not exist as a type), simply respec-
tively use or omit the COLOR keyword when classifying. If you use it, it’s a polygon with a fill color, otherwise

158

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

it’s a polyline with only an OUTLINECOLOR.

A circle must be defined by a a minimum bounding rectangle. That is, two points that define the smallest square
that can contain it. These two points are the two opposite corners of said box.

The following is an example using inline points to draw a circle:

LAYER
NAME ’'inline_circles’
TYPE CIRCLE
STATUS ON
FEATURE
POINTS
74.01 -53.8
110.7 -22.16
END
END
CLASS
STYLE
COLOR 0 0 255
END
END
END

See Also:
For CHART layers, see the Dynamic Charting HowTo.

UNITS [ddlIfeetlincheslkilometersimetersimilesinauticalmilesipercentageslpixels] Units of the layer. percentages
(in this case a value between 0 and 1) was added in MapServer 4.10 and is mostly geared for inline features.
nauticalmiles was added in MapServer 5.6.

VALIDATION Signals the start of a VALIDATION block.

As of MapServer 5.4.0, VALIDATION blocks are the preferred mechanism for specifying validation patterns for
CGI param runtime substitutions. See Run-time Substitution.

5.13 LEGEND

The size of the legend image is NOT known prior to creation so be careful not to hard-code width and height in the
 tag in the template file.

IMAGECOLOR [r] [g] [b] Color to initialize the legend with (i.e. the background).

INTERLACE [onloff] Default is [on]. This keyword is now deprecated in favor of using the FORMATOPTION
“INTERLACE=0ON" line in the OUTPUTFORMAT declaration. Deprecated since version 4.6.

KEYSIZE [x][y] Size of symbol key boxes in pixels. Default is 20 by 10.

KEYSPACING [x][y] Spacing between symbol key boxes ([y]) and labels ([x]) in pixels. Default is 5 by 5.
LABEL Signals the start of a LABEL object

OUTLINECOLOR [r] [g] [b] Color to use for outlining symbol key boxes.

POSITION [ulluclarillilellr] Where to place an embedded legend in the map. Default is Ir.

POSTLABELCACHE [truelfalse] Tells MapServer to render this legend after all labels in the cache have been
drawn. Useful for adding neatlines and similar elements. Default is false.

STATUS [onlofflembed] Is the legend image to be created.

5.13. LEGEND 159

MapServer Documentation, Release 6.0.3

TEMPLATE [filename] HTML legend template file.
See Also:
HTML Legends with MapServer

TRANSPARENT [onloff] Should the background color for the legend be transparent. This flag is now deprecated in
favor of declaring transparency within OUTPUTFORMAT declarations. Default is off. Deprecated since version
4.6.

5.14 MAP

Note: The map object is started with the word MAP, and ended with the word END.

ANGLE [double] Angle, given in degrees, to rotate the map. Default is 0. The rendered map will rotate in a clockwise
direction. The following are important notes:

* Requires a PROJECTION object specified at the MAP level and for each LAYER object (even if all layers
are in the same projection).

* Requires MapScript (SWIG, PHP MapScript). Does not work with CGI mode.

e If using the LABEL object’s ANGLE or the LAYER object’s LABELANGLEITEM parameters as well, these
parameters are relative to the map’s orientation (i.e. they are computed after the MAP object’s ANGLE).
For example, if you have specified an ANGLE for the map of 45, and then have a layer LABELANGLEITEM
value of 45, the resulting label will not appear rotated (because the resulting map is rotated clockwise 45
degrees and the label is rotated counter-clockwise 45 degrees).

* More information can be found on the MapRotation Wiki Page.

CONFIG [key] [value] This can be used to specify several values at run-time, for both MapServer and GDAL/OGR
libraries. Developers: values will be passed on to CPLSetConfigOption(). Details on GDAL/OGR options
are found in their associated driver documentation pages (GDAL/OGR). The following options are available
specifically for MapServer:

CGI_CONTEXT_URL [value] This CONFIG parameter can be used to enable loading a map context from a
URL. See the Map Context HowTo for more info.

MS_ENCRYPTION_KEY [filename] This CONFIG parameter can be used to specify an encryption key that
is used with MapServer’s msencypt utility.

MS_ERRORFILE [filename] This CONFIG parameter can be used to write MapServer errors to a file (as of
MapServer 5.0). With MapServer 5.x, a full path (absolute reference) is required, including the filename.
Starting with MapServer 6.0, a filename with relative path can be passed via this CONFIG directive, in
which case the filename is relative to the mapfile location. Note that setting MS_ERRORFILE via an
environment variable always requires an absolute path since there would be no mapfile to make the path
relative to. For more on this see the DEBUG parameter below.

MS_NONSQUARE [yeslno] This CONFIG parameter can be used to allow non-square pixels (meaning that
the pixels represent non-square regions). For “MS_NONSQUARE” “yes” to work, the MAP, and each
LAYER will have to have a PROJECTION object.

Note: Has no effect for WMS.

ON_MISSING_DATA [FAILILOGIIGNORE] This CONFIG parameter can be used to tell MapServer how
to handle missing data in tile indexes (as of MapServer 5.3-dev, r8015). Previous MapServer versions
required a compile-time switch (“IGNORE_MISSING_DATA”), but this is no longer required.

160 Chapter 5. Mapfile

https://github.com/mapserver/mapserver/wiki/MapRotation
http://www.gdal.org/formats_list.html
http://www.gdal.org/ogr/ogr_formats.html

MapServer Documentation, Release 6.0.3

FAIL This will cause MapServer to throw an error and exit (to crash, in other words) on a missing file in
a tile index. This is the default.

CONFIG "ON_MISSING_DATA"™ "FAIL"

LOG This will cause MapServer to log the error message for a missing file in a tile index, and continue
with the map creation. Note: DEBUG parameter and CONFIG “MS_ERRORFILE” need to be set for
logging to occur, so please see the DEBUG parameter below for more information.

CONFIG "ON_MISSING_DATA" "LOG"

IGNORE This will cause MapServer to not report or log any errors for missing files, and map creation
will occur normally.

CONFIG "ON_MISSING_DATA"™ "IGNORE"

PROJ_LIB [path] This CONFIG parameter can be used to define the location of your EPSG files for the
Proj.4 library. Setting the [key] to PROJ_LIB and the [value] to the location of your EPSG files will force
PROJ .4 to use this value. Using CONFIG allows you to avoid setting environment variables to point to
your PROJ_LIB directory. Here are some examples:

1. Unix

CONFIG "PROJ_LIB" "/usr/local/share/proj/"

2. Windows

CONFIG "PROJ_LIB" "C:/somedir/proj/nad/"

DATAPATTERN [regular expression] This defines a regular expression to be applied to requests to change DATA
parameters via URL requests (i.e. map_layername_data=...). If a pattern doesn’t exist then web users can’t
monkey with support files via URLs. This allows you to isolate one application from another if you desire, with
the default operation being very conservative. See also TEMPLATEPATTERN.

DEBUG [offlonl011121314I5] Enables debugging of all of the layers in the current map.
Debugging with MapServer versions >= 5.0:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer errorfile if one
is set using the “MS_ERRORFILE” environment variable. You can set the environment variable by using the
CONFIG parameter at the MAP level of the mapfile, such as:

CONFIG "MS_ERRORFILE" "/msdw/tmp/ms_error.txt"

You can also set the environment variable in Apache by adding the following to your httpd.conf:

SetEnv MS_ERRORFILE "/msdw/tmp/ms_error.txt"

Once the environment variable is set, the DEBUG mapfile parameter can be used to control the level of debug-
ging output. Here is a description of the possible DEBUG values:

* DEBUG O or OFF - only msSetError() calls are logged to MS_ERRORFILE. No msDebug() output at
all. This is the default and corresponds to the original behavior of MS_ERRORFILE in MapServer 4.x.

* DEBUG 1 or ON - includes all output from DEBUG 0 plus msDebug() warnings about common pitfalls,
failed assertions or non-fatal error situations (e.g. missing or invalid values for some parameters, missing
shapefiles in tileindex, timeout error from remote WMS/WES servers, etc.).

5.14. MAP 161

MapServer Documentation, Release 6.0.3

* DEBUG 2 - includes all output from DEBUG 1 plus notices and timing information useful for tuning
mapfiles and applications.

* DEBUG 3 - all of DEBUG 2 plus some debug output useful in troubleshooting problems such as WMS
connection URLs being called, database connection calls, etc. This is the recommended level for debug-
ging mapfiles.

* DEBUG 4 - DEBUG 3 plus even more details...

e DEBUG 5 - DEBUG 4 plus any msDebug() output that might be more useful to the developers than to the
users.

You can also set the debug level by using the “MS_DEBUGLEVEL” environment variable.

The DEBUG setting can also be specified for a layer, by setting the DEBUG parameter in the LAYER object.
For more details on this debugging mechanism, please see the Debugging MapServer document.
Debugging with MapServer versions < 5:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer logfile if one is
set using the LOG parameter in the WEB object. Apache users will see timing details for drawing in Apache’s
error_log file. Requires MapServer to be built with the DEBUG=MSDEBUG option (—with-debug configure
option).

DEFRESOLUTION [int] Sets the reference resolution (pixels per inch) used for symbology. Default is 72.

Used to automatically scale the symbology when RESOLUTION 1is changed, so the map maintains the same
look at each resolution. The scale factor is RESOLUTION / DEFRESOLUTION. New in version 5.6.

EXTENT [minx] [miny] [maxx] [maxy] The spatial extent of the map to be created. In most cases you will need to
specify this, although MapServer can sometimes (expensively) calculate one if it is not specified.

FONTSET [filename] Filename of fontset file to use. Can be a path relative to the mapfile, or a full path.

IMAGECOLOR [r] [g] [b] Color to initialize the map with (i.e. background color). When transparency is enabled
(TRANSPARENT ON in OUTPUTFORMAT) for the typical case of 8-bit pseudocolored map generation, this
color will be marked as transparent in the output file palette. Any other map components drawn in this color
will also be transparent, so for map generation with transparency it is best to use an otherwise unused color as
the background color.

IMAGEQUALITY [int] Deprecated Use FORMATOPTION “QUALITY=n” in the OUTPUTFORMAT declara-
tion to specify compression quality for JPEG output. Deprecated since version 4.6.

IMAGETYPE [jpeglpdfipnglsvgl...luserdefined] Output format (raster or vector) to generate. The name used here
must match the ‘NAME’ of a user defined or internally available OUTPUTFORMAT . For a complete list of
available IMAGEFORMATsS, see the OUTPUTFORMAT section.

INTERLACE [onloff] Deprecated Use FORMATOPTION “INTERLACE=ON” in the OUTPUTFORMAT dec-
laration to specify if the output images should be interlaced. Deprecated since version 4.6.

LAYER Signals the start of a LAYER object.
LEGEND Signals the start of a LEGEND object.

MAXSIZE [integer] Sets the maximum size of the map image. This will override the default value. For example,
setting this to 2048 means that you can have up to 2048 pixels in both dimensions (i.e. max of 2048x2048).
Default is 2048.

NAME [name] Prefix attached to map, scalebar and legend GIF filenames created using this mapfile. It should be
kept short.

PROJECTION Signals the start of a PROJECTION object.
QUERYMAP Signals the start of a QUERYMAP object.

162 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

REFERENCE Signals the start of a REFERENCE MAP object.
RESOLUTION [int] Sets the pixels per inch for output, only affects scale computations. Default is 72.

SCALEDENOM [double] Computed scale of the map. Set most often by the application. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented
in MapServer 5.0, to replace the deprecated SCALE parameter.

See Also:
Map Scale

SCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is SCALEDENOM instead. The
deprecated SCALE is the computed scale of the map. Set most often by the application. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Deprecated
since version 5.0.

SCALEBAR Signals the start of a SCALEBAR object.

SHAPEPATH ([filename] Path to the directory holding the shapefiles or tiles. There can be further subdirectories
under SHAPEPATH.

SIZE [x][y] Size in pixels of the output image (i.e. the map).

STATUS [onloff] Is the map active? Sometimes you may wish to turn this off to use only the reference map or scale
bar.

SYMBOLSET [filename] Filename of the symbolset to use. Can be a path relative to the mapfile, or a full path.

Note: The SYMBOLSET file must start with the word SYMBOLSET and end with the word END.

SYMBOL Signals the start of a SYMBOL object.

TEMPLATEPATTERN [regular expression] This defines a regular expression to be applied to requests to change
the TEMPLATE parameters via URL requests (i.e. map_layername_template=...). If a pattern doesn’t exist then
web users can’t monkey with support files via URLs. This allows you to isolate one application from another if
you desire, with the default operation being very conservative. See also DATAPATTERN.

TRANSPARENT [onloff]

Deprecated since version 4.6. Use TRANSPARENT ON in the OUTPUTFORMAT declaration to specify
if the output images should be transparent.

UNITS [ddIfeetlincheslkilometersimetersimilesinauticalmiles] Units of the map coordinates. Used for scalebar and
scale computations. Nauticalmiles was added in MapServer 5.6.

WEB Signals the start of a WEB object.

5.15 OUTPUTFORMAT

A map file may have zero, one or more OUTPUTFORMAT object declarations, defining available output formats
supported including formats like PNG, GIF, JPEG, GeoTIFF, SVG, PDF and KML.

If OUTPUTFORMAT sections declarations are not found in the map file, the following implicit declarations will be
made. Only those for which support is compiled in will actually be available. The GeoTIFF depends on building with
GDAL support, and the PDF and SVG depend on building with cairo support.

OUTPUTFORMAT
NAME "png"
DRIVER AGG/PNG

5.15. OUTPUTFORMAT 163

MapServer Documentation, Release 6.0.3

MIMETYPE "image/png"
IMAGEMODE RGB

EXTENSION "png"
FORMATOPTION "GAMMA=0.75"

END
OUTPUTFORMAT
NAME "gif"

DRIVER GD/GIF
MIMETYPE "image/gif"
IMAGEMODE PC256
EXTENSION "gif"

END
OUTPUTFORMAT
NAME "png8"

DRIVER AGG/[P[N|[Gs

MIMETYPE "image/png; mode=8bit"
IMAGEMODE RGB

EXTENSION "png"

FORMATOPTION "QUANTIZE_FORCE=on"
FORMATOPTION "QUANTIZE_COLORS=256"
FORMATOPTION "GAMMA=0.75"

END
OUTPUTFORMAT
NAME "jpeg"

DRIVER AGG/JPEG

MIMETYPE "image/jpeg"
IMAGEMODE RGB

EXTENSION " jpg"
FORMATOPTION "GAMMA=0.75"

END
OUTPUTFORMAT
NAME "svg"

DRIVER [C|A|[I|R|O|/|S|V]|G

MIMETYPE "image/svg+xml"
IMAGEMODE RGB
EXTENSION "svg"

END
OUTPUTFORMAT
NAME "pdf"

DRIVER |C[2a[1I[R[0|/PDF
MIMETYPE "application/x—pdf"
IMAGEMODE RGB
EXTENSION "pdf"

END

OUTPUTFORMAT
NAME "GTiff"
DRIVER |G[D|[A[L|/GTiff
MIMETYPE "image/tiff"
IMAGEMODE RGB
EXTENSION "tif"

END
OUTPUTFORMAT
NAME "kml"

DRIVER
MIMETYPE "application/vnd.google—earth.kml.xml"
IMAGEMODE RGB
EXTENSION "kml"
END

164 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

OUTPUTFORMAT
NAME "kmz"
DRIVER
MIMETYPE "application/vnd.google-earth.kmz"
IMAGEMODE RGB
EXTENSION "kmz"

END

OUTPUTFORMAT
NAME "cairopng"
DRIVER [C[a[I[R]o0]/PNG
MIMETYPE "image/png"
IMAGEMODE RGB
EXTENSION "png"

END

DRIVER [name] The name of the driver to use to generate this output format. Some driver names include the defini-
tion of the format if the driver supports multiple formats. For AGG, the possbile driver names are “AGG/PNG”
and “AGG/JPEG”. For GD the possible driver names are “GD/Gif” and “GD/PNG”. For output through OGR the
OGR driver name is appended, such as “OGR/Mapinfo File”. For output through GDAL the GDAL shortname
for the format is appended, such as “GDAL/GTiff”. Note that PNG, JPEG and GIF output can be generated with
either GDAL or GD (GD is generally more efficient). TEMPLATE should be used for template based output.
(mandatory)

EXTENSION [type] Provide the extension to use when creating files of this type. (optional)

FORMATOPTION [option] Provides a driver or format specific option. Zero or more FORMATOPTION statement
may be present within a OUTPUTFORMAT declaration. (optional)

AGG/JPEG: The “QUALITY=n" option may be used to set the quality of jpeg produced (value from
0-100).

GD/PNG: The “INTERLACE=[ON/OFF]” option may be used to turn interlacing on or off.
GD/GIF: The “INTERLACE=[ON/OFF]” option may be used to turn interlacing on or off.

GDAL/GTiff: Supports the TILED=YES, BLOCKXSIZE=n, BLOCKYSIZE=n, INTER-
LEAVE=[PIXEL/BAND] and COMPRESS=[NONE,PACKBITS,JPEG,LZW,DEFLATE] format specific
options.

GDAL/*: AIl FORMATOPTIONS are passed onto the GDAL create function. Options supported by GDAL
are described in the detailed documentation for each GDAL format

GDAL/*: NULLVALUE=n is used in raw image modes (IMAGEMODE BYTE/INT16/FLOAT) to pre-
initialize the raster and an attempt is made to record this in the resulting file as the nodata value. This is
automatically set in WCS mode if rangeset_nullvalue is set.

OGR/*: See OGR Output document for details of OGR format options.

AGG/*: GAMMA-=n is used to specify the gamma correction to apply to polygon rendering. Allowed
values are]0.0,1.0] , default is 0.75. This value is used to prevent artifacts from appearing on the border of
contiguous polygons. Set to 1.0 to disable gamma correction.

AGG/PNG: COMPRESSION=n is used to determine the ZLIB compression applied to the png creation.
n is expected to be an integer value from 0O to 9, with 0 meaning no compression (not recommended),
1 meaning fastest compression, and 9 meaning best compression. The compression levels come at a

cost (be it in terms of cpu processing or file size, chose the setting that suits you most). The default is
COMPRESSION=6.

AGG/PNG supports quantizing from 24/32 bits to 8bits, in order to reduce the final image size (and there-
fore save bandwidth) (see also http://trac.osgeo.org/mapserver/ticket/2436#comment:4 for strategies when
applying these options):

5.15. OUTPUTFORMAT 165

http://trac.osgeo.org/mapserver/ticket/2436#comment:4

MapServer Documentation, Release 6.0.3

— “QUANTIZE_FORCE=o0n" used to reduce an RGB or RGBA image into an 8bit (or less)
paletted images. The colors used in the palette are selected to best fit the actual colors in the
RGB or RGBA image.

— “QUANTIZE_COLORS=256" used to specify the number of colors to be used when applying quan-
tization. Maximum value is 256. Specifying anything between 17 and 255 is probably a waste of
quality as each pixel is still encoded with a full byte. Specifying a value under 16 will produce tiny
images, but severly degraded.

— “PALETTE=/path/to/palette.txt” is used to define the absolute path where palette colors can be found.
This file must contain 256 entries of r,g,b triplets for RGB imagemodes, or r,g,b,a quadruplets for
RGBA imagemodes. The expected format is one triplet (or quadruplet) per line, each value separated
by commas, and each triplet/quadruplet on a single line. If you want to use transparency with a palette,
it is important to have these two colors in the palette file: 0,0,0,0 and 255,255,255,255.

Note: 0,0,0,0 is important if you have fully transparent areas. 255,255,255,255 is opaque white. The
important colors to have in your palette really depend on your actual map, although 0,0,0,0 , 0,0,0,255
, and 255,255,255,255 are very likely to show up most of the time.

— “PALETTE_FORCE=on" is used to reduce image depth with a predefined palette. To allow additional
colours for anti-aliasing other than those in the predefined palette, use with “QUANTIZE_COLORS”.

IMAGEMODE [PC256/RGB/RGBA/INT16/FLOAT32/FEATURE] Selects the imaging mode in which the output
is generated. Does matter for non-raster formats like Flash. Not all formats support all combinations. For
instance GD supports only PC256. (optional)

PC256: Produced a pseudocolored result with up to 256 colors in the palette (legacy MapServer mode).
Only supported for GD/GIF and GD/PNG.

RGB: Render in 24bit Red/Green/Blue mode. Supports all colors but does not support transparency.

RGBA: Render in 32bit Red/Green/Blue/Alpha mode. Supports all colors, and alpha based transparency.
All features are rendered against an initially transparent background.

BYTE: Render raw 8bit pixel values (no presentation). Only works for RASTER layers (through GDAL)
and WMS layers currently.

INT16: Render raw 16bit signed pixel values (no presentation). Only works for RASTER layers (through
GDAL) and WMS layers currently.

FLOAT32: Render raw 32bit floating point pixel values (no presentation). Only works for RASTER layers
(through GDAL) and WMS layers currently.

FEATURE: Output is a non-image result, such as features written via templates or OGR.

MIMETYPE [type] Provide the mime type to be used when returning results over the web. (optional)

NAME [name] The name to use in the IMAGETYPE keyword of the map file to select this output format. This name
is also used in metadata describing wxs formats allowed, and can be used (sometimes along with mimetype) to
select the output format via keywords in OGC requests. (optional)

TRANSPARENT [ON/OFF] Indicates whether transparency should be enabled for this format. Note that trans-
parency does not work for IMAGEMODE RGB output. Not all formats support transparency (optional). When
transparency is enabled for the typical case of 8-bit pseudocolored map generation, the IMAGECOLOR color
will be marked as transparent in the output file palette. Any other map components drawn in this color will
also be transparent, so for map generation with transparency it is best to use an otherwise unused color as the
background color.

166

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

5.16 PROJECTION

There are thousands of geographical reference systems. In order to combine datasets with different geographical
reference systems into a map, the datasets will have to be transformed (projected) to the chosen geographical reference
system of the map. If you want to know more about geographical reference systems and map projections, you could
take some Geomatics courses (Geographical Information Systems, Cartography, Geodesy, ...).

To set up projections you must define one projection object for the output image (in the MAP object) and one projection
object for each layer (in the LAYER objects) to be projected. MapServer relies on the Proj.4 library for projections.
Projection objects therefore consist of a series of PROJ.4 keywords, which are either specified within the object directly
or referred to in an EPSG file. An EPSG file is a lookup file containing projection parameters, and is part of the PROJ.4
library.

The following two examples both define the same projection (UTM zone 15, NADS83), but use 2 different methods:
Example 1: Inline Projection Parameters

PROJECTION
"proj=utm"
"ellps=GRS80"
"datum=NAD83"
"zone=15"
"units=m"
"north"
"no_defs"

END

Note: For a list of all of the possible PROJ.4 projection parameters, see the PROJ.4 parameters page.

Example 2: EPSG Projection Use

PROJECTION
"init=epsg:26915"
END

Note: This refers to an EPSG lookup file that contains a 26915’ code with the full projection parameters. “epsg” in
this instance is case-sensitive because it is referring to a file name. If your file system is case-sensitive, this must be
lower case, or MapServer (Proj.4 actually) will complain about not being able to find this file.

Note: See http://spatialreference.org/ref/epsg/26915 for more information on this coordinate system.

The next two examples both display how to possibly define unprojected lat/long (“geographic™):
Example 3: Inline Projection Parameters

PROJECTION
"proj=latlong"
"ellps=WGS84"
"datum=WGsS84"

END

Example 4: epsg Projection Use

PROJECTION
"init=epsg:4326"
END

5.16. PROJECTION 167

http://trac.osgeo.org/proj/wiki/GenParms
http://spatialreference.org/ref/epsg/26915

MapServer Documentation, Release 6.0.3

5.16.1 Important Notes
« If all of your data in the mapfile is in the same projection, you DO NOT have to specify any projection objects.
MapServer will assume that all of the data is in the same projection.

* Think of the MAP-level projection object as your output projection. The EXTENT and UNITS values at the
MAP-level must be in the output projection units. Also, if you have layers in other projections (other than the
MAP-level projection) then you must define PROJECTION objects for those layers, to tell MapServer what
projections they are in.

¢ If you specify a MAP-level projection, and then only one other LAYER projection object, MapServer will assume
that all of the other layers are in the specified MAP-level projection.

* Always refer to the EPSG file in lowercase, because it is a lowercase filename and on Linux/Unix systems this
parameter is case sensitive.

5.16.2 For More Information

* If you get projection errors, refer to the Errors to check if your exact error has been discussed.
» Search the MapServer-users email list archives, odds are that someone has faced your exact issue before.
* See the PROJ.4 user guides for complete descriptions of supported projections and coordinate systems.

 Refer to the Cartographical Map Projections page for background information on projections.

5.17 QUERYMAP

COLOR [r] [g] [b] Color in which features are highlighted. Default is yellow.

SIZE [x][y] Size of the map in pixels. Defaults to the size defined in the map object.

STATUS [onloff] Is the query map to be drawn?

STYLE [normalihilitelselected] Sets how selected features are to be handled. Layers not queried are drawn as usual.
* Normal: Draws all features according to the settings for that layer.
* Hilite: Draws selected features using COLOR. Non-selected features are drawn normally.

 Selected: draws only the selected features normally.

5.18 REFERENCE

Three types of reference maps are supported. The most common would be one showing the extent of a map in an
interactive interface. It is also possible to request reference maps as part of a query. Point queries will generate an
image with a marker (see below) placed at the query point. Region based queries will depict the extent of the area of
interest. Finally, feature based queries will display the selection feature(s) used.

COLOR [r] [g] [b] Color in which the reference box is drawn. Set any component to -1 for no fill. Default is red.
EXTENT [minx][miny][maxx][maxy] The spatial extent of the base reference image.
IMAGE [filename] Full filename of the base reference image. Must be a GIF image.

MARKER [integerlstring] Defines a symbol (from the symbol file) to use when the box becomes too small (see
MINBOXSIZE and MAXBOXSIZE below). Uses a crosshair by default.

168 Chapter 5. Mapfile

http://lists.osgeo.org/pipermail/mapserver-users/
http://trac.osgeo.org/proj/
http://www.progonos.com/furuti/MapProj/Normal/TOC/cartTOC.html

MapServer Documentation, Release 6.0.3

MARKERSIZE [integer] Defines the size of the symbol to use instead of a box (see MARKER above).

MINBOXSIZE [integer] If box is smaller than MINBOXSIZE (use box width or height) then use the symbol defined
by MARKER and MARKERSIZE.

MAXBOXSIZE [integer] If box is greater than MAXBOXSIZE (use box width or height) then draw nothing (Often
the whole map gets covered when zoomed way out and it’s perfectly obvious where you are).

OUTLINECOLOR [r] [g] [b] Color to use for outlining the reference box. Set any component to -1 for no outline.
SIZE [x][y] Size, in pixels, of the base reference image.
STATUS [onloff] Is the reference map to be created? Default it off.

5.19 SCALEBAR

Scalebars currently do not make use of TrueType fonts. The size of the scalebar image is NOT known prior to
rendering, so be careful not to hard-code width and height in the tag in the template file. Future versions will
make the image size available.

ALIGN [leftlcenterlright] Defines how the scalebar is aligned within the scalebar image. Default is center. Available
in versions 5.2 and higher. New in version 5.2.

BACKGROUNDCOLOR [r] [g] [b] Color to use for scalebar background, not the image background.
COLOR [r] [g] [b] Color to use for drawing all features if attribute tables are not used.
IMAGECOLOR [r] [g] [b] Color to initialize the scalebar with (i.e. background).

INTERLACE [truelfalse] Should output images be interlaced? Default is [on]. This keyword is now deprecated in
favour of using the FORMATOPTION “INTERLACE=ON" line in the OUTPUTFORMAT declaration. Depre-
cated since version 4.6.

INTERVALS [integer] Number of intervals to break the scalebar into. Default is 4.
LABEL Signals the start of a LABEL object.

OUTLINECOLOR [r] [g] [b] Color to use for outlining individual intervals. Set any component to -1 for no outline
which is the default.

POSITION [ulluclur/llllcllr] Where to place an embedded scalebar in the image. Default is Ir.

POSTLABELCACHE [truelfalse] For use with embedded scalebars only. Tells the MapServer to embed the scale-
bar after all labels in the cache have been drawn. Default is false.

SIZE [x][y] Size in pixels of the scalebar. Labeling is not taken into account.

STATUS [onlofflembed] Is the scalebar image to be created, and if so should it be embedded into the image? Default
is off. (Please note that embedding scalebars require that you define a markerset. In essence the scalebar
becomes a custom marker that is handled just like any other annotation.)

STYLE [integer] Chooses the scalebar style. Valid styles are 0 and 1.

TRANSPARENT [onloff] Should the background color for the scalebar be transparent. This flag is now deprecated
in favor of declaring transparency within OUTPUTFORMAT declarations. Default is off. Deprecated since
version 4.6.

UNITS [feetlincheslkilometersimetersimilesinauticalmiles] Output scalebar units, default is miles. Used in con-
junction with the map’s units to develop the actual graphic. Note that decimal degrees are not valid scalebar
units. Nauticalmiles was added in MapServer 5.6.

5.19. SCALEBAR 169

MapServer Documentation, Release 6.0.3

5.20 STYLE

Style holds parameters for symbolization and styling. Multiple styles may be applied within a CLASS or LABEL.

This object appeared in 4.0 and the intention is to separate logic from looks. The final intent is to have named styles
(Not yet supported) that will be re-usable through the mapfile. This is the way of defining the appearance of an object
(a CLASS or a LABEL).

ANGLE [doublelattributelAUTO] Angle, given in degrees, to rotate the symbol (counter clockwise). Default is O
(no rotation). If you have an attribute that specifies angles in a clockwise direction (compass direction), you
have to adjust the angle attribute values before they reach MapServer (360-ANGLE), as it is not possible to use
a mathematical expression for ANGLE.

* For points, it specifies the rotation of the symbol around its center.
* For decorated lines, the behaviour depends on the value of the GAP element.

— For negative GAP values it specifies the rotation of the decoration symbol relative to the direction of
the line. An angle of 0 means that the symbol’s x-axis is oriented along the direction of the line.

— For non-negativ (or absent) GAP values it specifies the rotation of the decoration symbol around its
center. An angle of 0 means that the symbol is not rotated.

* For polygons, it specifies the angle of the lines in a HATCH symbol (0 - horizontal lines), or it specifies
the rotation of the symbol used to generate the pattern in a polygon fill (it does not specify the rotation of
the fill as a whole). For its use with hatched lines, see Example #7 in the symbology examples.

e [attribute] was introduced in version 5.0, to specify the attribute to use for angle values. The hard brackets
[] are required. For example, if your data source has an attribute named “MYROTATE” that holds angle
values for each feature, your STYLE object for hatched lines might contain:

STYLE
SYMBOL ’'hatch-test’
COLOR 255 0 O
ANGLE [MYROTATE]
SIZE 4.0
WIDTH 3.0

END

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.

* The AUTO keyword was added in version 5.4, and currently only applies when coupled with the GEOM-
TRANSFORM keyword.

Note: Rotation using ANGLE is not supported for SYMBOLs of TYPE ellipse with the GD renderer (gif).

ANGLEITEM [string] ANGLE][attribute] must now be used instead. Deprecated since version 5.0.

ANTIALIAS [truelfalse] Should TrueType fonts be antialiased. Only useful for GD (gif) rendering. Default is false.
Has no effect for the other renderers (where anti-aliasing can not be turned off).

BACKGROUNDCOLOR [r] [g] [b] Color to use for non-transparent symbols.
COLOR [r] [g] [b] | [attribute] Color to use for drawing features.
* 1, g and b shall be integers [0..255]. To specify green, the following is used:

COLOR 0 255 0

170 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

e [attribute] was introduced in version 5.0, to specify the attribute to use for color values. The hard brackets
[] are required. For example, if your data set has an attribute named “MYPAINT” that holds color values
for each record, use: object for might contain:

COLOR [MYPAINT]

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.

GAP [double] GAP specifies the distance between SYMBOLs (center to center) for decorated lines and polygon fills
in layer SIZEUNITS. For polygon fills, GAP specifies the distance between SYMBOLs in both the X and the Y
direction. For lines, the centers of the SYMBOLs are placed on the line. As of MapServer 5.0 this also applies
to PixMap symbols.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), GAP specifies the
distance in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

* For lines, the first symbol will be placed GAP/2 from the start of the line.

* For lines, a negative GAP value will cause the symbols’ X axis to be aligned relative to the tangent of the
line.

* For lines, a positive GAP value aligns the symbols’ X axis relative to the X axis of the output device.

* For lines, a GAP of 0 (the default value) will cause the symbols to be rendered edge to edge

¢ For polygons, a missing GAP or a GAP of 0 will cause the symbols to be rendered edge to edge.
Symbols can be rotated using ANGLE. New in version 6.0: moved from SYMBOL

Note: The behaviour of GAP has not been stable over time. It has specified the amount of space between
the symbols, and also something in between the amount of space between the symbols and the center to center
distance. The goal is to have GAP specify the center to center distance, but in version 6.0 it is the amount of
space between the symbols that is specified.

GEOMTRANSFORM [bboxlendllabelpntilabelpolylstartlverticesl<expression>] Used to indicate that the current
feature will be transformed before the actual style is applied. Introduced in version 5.4.

* bbox: produces the bounding box of the current feature geometry.

e end: produces the last point of the current feature geometry. When used with ANGLE AUTO, it can for
instance be used to render arrowheads on line segments.

e labelpnt: used for LABEL styles. Draws a marker on the geographic position the label is attached to. This
corresponds to the center of the label text only if the label is in position CC.

* labelpoly: used for LABEL styles. Produces a polygon that covers the label plus a 1 pixel padding.

e start: produces the first point of the current feature geometry. When used with ANGLE AUTO, it can for
instance be used to render arrow tails on line segments.

* vertices: produces all the intermediate vertices (points) of the current feature geometry (the start and end
are excluded). When used with ANGLE AUTO, the marker is oriented by the half angle formed by the two
adjacent line segments.

* <expression>: Applies the given expression to the geometry. Supported expressions:

— (buffer([shape],dist): Buffer the geometry ([shape]) using dist pixels as buffer distance. For polygons,
a negative dist will produce a setback.

Note: Depends on GEOS.

5.20. STYLE 171

MapServer Documentation, Release 6.0.3

Example (polygon data set) - draw a two pixel wide line 5 pixels inside the boundary of the polygon:

STYLE

OUTLINECOLOR 255 0 0

WIDTH 2

GEOMTRANSFORM (buffer ([[s|h|a|p|e]l,~5))
END

LINECAP [buttiroundisquare] Sets the line cap type for lines. Default is round. See Cartographical Symbol Con-
struction with MapServer for explanation and examples. New in version 6.0: moved from SYMBOL

LINEJOIN [roundimiterlbevel] Sets the line join type for lines. Default is round. See Cartographical Symbol
Construction with MapServer for explanation and examples. New in version 6.0: moved from SYMBOL

LINEJOINMAXSIZE [int] Sets the max length of the miter LINEJOIN type. The value represents a coefficient
which multiplies a current symbol size. Default is 3. See Cartographical Symbol Construction with MapServer
for explanation and examples. New in version 6.0: moved from SYMBOL

MAXSIZE [double] Maximum size in pixels to draw a symbol. Default is 500. Starting from version 5.4, the value
can also be a decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MAXWIDTH [double] Maximum width in pixels to draw the line work. Default is 32. Starting from version 5.4,
the value can also be a decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MINSIZE [double] Minimum size in pixels to draw a symbol. Default is 0. Starting from version 5.4, the value can
also be a decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MINWIDTH [double] Minimum width in pixels to draw the line work. Default is 0. Starting from version 5.4, the
value can also be a decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

OFFSET [x][y] Geometry offset values in layer SIZEUNITS.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), OFFSET gives
offset values in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

An OFFSET of 20 40 will shift the geometry 20 SIZEUNITS to the left and 40 SIZEUNITS down before render-
ing.
For lines, an OFFSET of n -99 will produce a line geometry that is shifted n SIZEUNITS perpendicular to the

original line geometry. A positive n shifts the line to the right when seen along the direction of the line. A
negative n shifts the line to the left when seen along the direction of the line.

OPACITY [integerlattribute] Opacity to draw the current style (applies to 5.2+, AGG Rendering Specifics only, does
not apply to pixmap symbols)

e [attribute] was introduced in version 5.6, to specify the attribute to use for opacity values.

OUTLINECOLOR [r] [g] [b] | [attribute] Color to use for outlining polygons and certain marker symbols (ellipse,
vector polygons and fruetype). Has no effect for lines. The width of the outline can be specified using WIDTH.
If no WIDTH is specified, an outline of one pixel will be drawn.

If there is a SYMBOL defined for the STYLE, the OUTLINECOLOR will be used to create an outline for that
SYMBOL (only ellipse, truetype and polygon vector symbols will get an outline). If there is no SYMBOL defined
for the STYLE, the polygon will get an outline.

* 1, g and b shall be integers [0..255]. To specify green, the following is used:

OUTLINECOLOR 0O 255 0
WIDTH 3.0

e [attribute] was introduced in version 5.0, to specify the attribute to use for color values. The hard brackets
[] are required. For example, if your data set has an attribute named “MYPAINT” that holds color values
for each record, use: object for might contain:

172 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

OUTLINECOLOR [MYPAINT]

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.

PATTERN [double on] [double off] [double on] [double off] ... END Currently used to defines a dash pattern for
line work (lines, polygon outlines, ...). The numbers (doubles) specify the lengths of the dashes and gaps of the
dash pattern in layer SIZEUNITS.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), the numbers specify
the lengths of the dashes and gaps in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

To specify a dashed line that is 5 units wide, with dash lengths of 5 units and gaps of 5 units, the following style
can be used:

STYLE
COLOR 0 0 O
WIDTH 5.0
LINECAP BUTT
PATTERN 5.0 5.0 END
END

New in version 6.0: moved from SYMBOL

SIZE [doublelattribute] Height, in layer SIZEUNITS, of the symbol/pattern to be used. Default value depends on the
SYMBOL TYPE. For pixmap: the hight (in pixels) of the pixmap; for ellipse and vector: the maximum y value
of the SYMBOL POINTS parameter, for hatch: 1.0, for truetype: 1.0.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), SIZE gives the
height, in layer SIZEUNITS, of the symbol/pattern to be used at the map scale 1:SYMBOLSCALEDENOM.

» For symbols of TYPE hatch, the SIZE is the center to center distance between the lines. For its use with
hatched lines, see Example#8 in the symbology examples.

e [attribute] was introduced in version 5.0, to specify the attribute to use for size values. The hard brackets
[] are required. For example, if your data set has an attribute named “MYHIGHT” that holds size values
for each feature, your STYLE object for hatched lines might contain:

STYLE
SYMBOL ’hatch-test’
COLOR 255 0 0
ANGLE 45
SIZE [MYHIGHT]
WIDTH 3.0

END

The associated RFC document for this feature is MS RFC 19: Style & Label attribute binding.
* Starting from version 5.4, the value can also be a decimal value (and not only integer).
SIZEITEM ([string] SIZE [attribute] must now be used instead. Deprecated since version 5.0.
SYMBOL [integerlstringlfilenamelurllattribute] The symbol to use for rendering the features.
* Integer is the index of the symbol in the symbol set, starting at 1 (the Sth symbol is symbol number 5).
* String is the name of the symbol (as defined using the SYMBOL NAME parameter).

* Filename specifies the path to a file containing a symbol. For example a PNG file. Specify the path relative
to the directory containing the mapfile.

* URL specifies the address of a file containing a pixmap symbol. For example a PNG file. A URL must
start with “http”:

5.20. STYLE 173

MapServer Documentation, Release 6.0.3

SYMBOL "http://myserver.org/path/to/file.png"

New in version 6.0.

* [attribute] allows individual rendering of features by using an attribute in the dataset that specifies the
symbol name (as defined in the SYMBOL NAME parameter). The hard brackets [] are required. New in
version 5.6.

If SYMBOL is not specified, the behaviour depends on the type of feature.
* For points, nothing will be rendered.

¢ For lines, SYMBOL is only relevant if you want to style the lines using symbols, so the absence of SYMBOL
means that you will get lines as specified using the relevant line rendering parameters (COLOR, WIDTH,
PATTERN, LINECAP, ...).

* For polygons, the interior of the polygons will be rendered using a solid fill of the color specified in the
COLOR parameter.

See Also:
SYMBOL

WIDTH [doublelattribute] WIDTH refers to the thickness of line work drawn, in layer SIZEUNITS. Default is 1.0.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), WIDTH refers to
the thickness of the line work in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

e If used with SYMBOL and OUTLINECOLOR, WIDTH specifies the width of the symbol outlines. This
applies to SYMBOL TYPE vector (polygons), ellipse and truetype.

e For lines, WIDTH specifies the width of the line.
¢ For polygons, if used with OUTLINECOLOR, WIDTH specifies the thickness of the polygon outline.

* For a symbol of SYMBOL TYPE hatch, WIDTH specifies the thickness of the hatched lines. For its use
with hatched lines, see Example #7 in the symbology examples.

e [attribute] was added in version 5.4 to specify the attribute to use for the width value. The hard brackets []
are required.

* Starting from version 5.4, the value can also be a decimal value (and not only integer).

5.21 SYMBOL

Symbol definitions can be included within the main map file or, more commonly, in a separate file. Symbol
definitions in a separate file are designated using the SYMBOLSET keyword, as part of the MAP object. This
recommended setup is ideal for re-using symbol definitions across multiple MapServer applications.

There are 3 main types of symbols in MapServer: Markers, Lines and Shadesets.

Symbol 0 is always the degenerate case for a particular class of symbol. For points, symbol 0 is a single pixel,
for shading (i.e. filled polygons) symbol O is a solid fill, and for lines, symbol 0 is a single pixel wide line.

Symbol definitions contain no color information, colors are set within STYLE objects.

For MapServer versions < 5 there is a maximum of 64 symbols per file. This can be changed by editing
mapsymbol.h and changing the value of MS_MAXSYMBOLS at the top of the file. As of MapServer 5.0 there
is no symbol limit.

More information can be found in the Construction of Cartographic Symbols document.

174

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

ANTIALIAS [truelfalse] Should TrueType fonts be antialiased. Only useful for GD (gif) rendering. Default is false.
Has no effect for the other renderers (where anti-aliasing can not be turned off).

CHARACTER [char] Character used to reference a particular TrueType font character. You’ll need to figure out the
mapping from the keyboard character to font character.

FILLED [truelfalse] If true, the symbol will be filled with a user defined color (using STYLE COLOR). Default is
false.

If true, symbols of TYPE ellipse and vector will be treated as polygons (fill color specified using STYLE COLOR
and outline specified using STYLE OUTLINECOLOR and WIDTH).

If false, symbols of TYPE ellipse and vector will be treated as lines (the lines can be given a color using STYLE
COLOR and a width using STYLE WIDTH).

FONT [string] Name of TrueType font to use as defined in the FONTSET.

GAP [int] This keyword has been moved to STYLE in version 6.0. Deprecated since version 6.0.
IMAGE [string] Image (GIF or PNG) to use as a marker or brush for type pixmap symbols.
NAME [string] Alias for the symbol. To be used in CLASS STYLE objects.

LINECAP [buttlroundIsquareltriangle] This keyword has been moved to STYLE in version 6.0. Deprecated since
version 6.0.

LINEJOIN [roundImiter|bevel] This keyword has been moved to STYLE in version 6.0. Deprecated since version
6.0.

LINEJOINMAXSIZE [int] This keyword has been moved to STYLE in version 6.0. Deprecated since version 6.0.

PATTERN [num on] [num off] [num on] ... END This keyword has been moved to STYLE in version 6.0. Depre-
cated since version 6.0.

POINTS [x y] [x y] ... END

Signifies the start of a sequence of points that make up a symbol of TYPE vector or that define the x and y
radius of a symbol of TYPE ellipse. The end of this section is signified with the keyword END. The x and
y values can be given using decimal numbers. The maximum x and y values define the bounding box of
the symbol. The size (actually height) of a symbol is defined in the STYLE. You can create non-contiguous
paths by inserting “-99 -99” at the appropriate places.

x values increase to the right, y values increase downwards.

For symbols of TYPE ellipse, a single point is specified that defines the x and y radius of the ellipse.
Circles are created when x and y are equal.

Note: If a STYLE using this symbol doesn’t contain an explicit size, then the default symbol size will
be based on the range of “y” values in the point coordinates. e.g. if the y coordinates of the points in the
symbol range from 0 to 5, then the default size for this symbol will be assumed to be 5.

STYLE [num on] [num off] [num on] ... END Renamed to PATTERN in MapServer 5.0. Deprecated since version
5.0.

TRANSPARENT [color index] Sets a transparent color for the input image for pixmap symbols, or determines
whether all shade symbols should have a transparent background. For shade symbols it may be desirable to
have background features “show through” a transparent hatching pattern, creating a more complex map. By
default a symbol’s background is the same as the parent image (i.e. color 0). This is user configurable.

Note: The default (AGG) renderer does not support the TRANSPARENT parameter. It is supported by the GD
renderer (GIF).

5.21. SYMBOL 175

MapServer Documentation, Release 6.0.3

TYPE [ellipselhatchlpixmaplsimpleltruetypelvector]
e ellipse: radius values in the x and y directions define an ellipse.
e hatch: produces hatched lines throughout the (polygon) shape.
* pixmap: a user supplied image will be used as the symbol.
* simple: default symbol type (1 pixel point, 1 pixel line, solid fill).
e truetype: TrueType font to use as defined in the MAP FONTSET.

* vector: a vector drawing is used to define the shape of the symbol.

Note: TYPE cartoline is no longer used. Dashed lines are specified using PATTERN, LINECAP, LINEJOIN
and LINEJOINMAXSIZE in STYLE. Examples in Construction of Cartographic Symbols.

5.22 Symbology Examples

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com
Author Havard Tveite

Contact havard.tveite at umb.no

Date $Date$

Revision $Revision$

Last Updated 2011/05/11

Table of Contents

» Symbology Examples
— Example 1. Dashed Line
— Example 2. TrueType font marker symbol
Example 3. Vector triangle marker symbol
Example 4. Non-contiguous vector marker symbol (Cross)
Example 5. Circle vector symbol
Example 6. Downward diagonal fill
Example 7. Using the Symbol Type HATCH (new in 4.6)
Example 8. Styled lines using GAP

5.22.1 Example 1. Dashed Line

This example creates a dashed line that is 5 SIZEUNITS wide, with 10 SIZEUNITS on, 5 off, 5 on, 10 off ...

LAYER
CLASS
STYLE
COLOR 0O 0 O

176 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

WIDTH 5
LINECAP butt
PATTERN 10 5 5 10 END
END
END
END

5.22.2 Example 2. TrueType font marker symbol

This example symbol is a star, used to represent the national capital, hence the name. The font name in defined in
the FONTSET file. The code number “114” varies, you can use MS Windows’ character map to figure it out, or
guestimate.

SYMBOL
NAME "natcap"
TYPE TRUETYPE
FONT "geo"
FILLED true
ANTIALIAS true # only necessary for GD rendering
CHARACTER "r"
END

5.22.3 Example 3. Vector triangle marker symbol

This example is fairly straight forward. Note that to have 3 sides you need 4 points, hence the first and last points are
identical. The triangle is not filled.

SYMBOL
NAME "triangle"
TYPE vector
POINTS
0 4
20
4 4
0 4
END
END

5.22.4 Example 4. Non-contiguous vector marker symbol (Cross)

This example draws a cross, that is 2 lines (vectors) that are not connected end-to-end (Like the triangle in the previous
example). The negative values separate the two.

SYMBOL
NAME "cross"
TYPE vector
POINTS
2.0 0.0
2.0 4.0
-99 =99
0.0 2.0
4.0 2.0
END
END

5.22. Symbology Examples 177

MapServer Documentation, Release 6.0.3

5.22.5 Example 5. Circle vector symbol

This example creates a simple filled circle. Using non-equal values for the point will give you an actual ellipse.

SYMBOL
NAME "circle"
TYPE ellipse
FILLED true
POINTS

11

END

END

5.22.6 Example 6. Downward diagonal fill

This example creates a symbol that can be used to create a downward diagonal fill for polygons.

SYMBOL
NAME "downwarddiagonalfill"
TYPE vector
TRANSPARENT 0
POINTS
01
10
END
END

5.22.7 Example 7. Using the Symbol Type HATCH (new in 4.6)

As of MapServer 4.6, you can use the symbol type HATCH to produce hatched lines. The following will display
hatched lines at a 45 degree angle, 10 SIZEUNITS apart (center to center), and 3 SIZEUNITS wide.

Symbol definition:

SYMBOL
NAME ’'hatch-test’
TYPE HATCH

END

Layer definition:

LAYER
CLASS

STYLE
SYMBOL ’'hatch-test’
COLOR 255 0 0
ANGLE 45
SIZE 10
WIDTH 3

END

END
END

Other parameters available for HATCH are: MINSIZE, MAXSIZE, MINWIDTH, and MAXWIDTH.

178 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

5.22.8 Example 8. Styled lines using GAP

This example shows how to style lines with symbols.

A 5 SIZEUNITS wide black line is decorated with ellipses that are 15 SIZEUNITS long (and 7.5 SIZEUNITS ‘wide).
The ellipses are placed 30 ‘SIZEUNITS apart, and the negative GAP value ensures that the ellipses are oriented relative
to the direction of the line. The ellipses are rotated 30 degrees counter clock-wise from their position along the line.

Symbol definition:

SYMBOL
NAME "ellipse2"
TYPE ellipse
FILLED true
POINTS

12

END

END

Layer definition:

LAYER
CLASS

STYLE
WIDTH 5
COLOR 0 0 0

END

STYLE
SYMBOL ’'ellipse2’
COLOR 0 0 O
ANGLE 30
SIZE 15
GAP -30

END

END
END

5.23 Templating

Author Frank Koormann

Contact frank.koormann at intevation.de
Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com
Revision $Revision$

Date $Date$

5.23. Templating 179

MapServer Documentation, Release 6.0.3

Table of Contents

* Templating
— Introduction
— Format
— Example Template

5.23.1 Introduction

Templates are used:
* to define the look of a MapServer CGI application interface and
* to present the results of a query.

They guide the presentation of results, either a query or a map, to the user. Templates are almost always HTML files
although they can also be a URL (e.g.. http://www.somewhere.com/[ATTRIBUTE]/info.html). URL templates can
only be used with simple QUERY or ITEMQUERY results so many substitutions defined below are not available for
them. Simple pan/zoom interfaces use a single template file while complicated queries often require many templates.
Templates often use JavaScript to enhance the basic interface.

Notes

» Templates must contain the magic string ‘mapserver template’ in the first line of the template. Often this takes
the form of an HTML, javascript or XML comment. This line is not written to the client. The magic string is
not case sensitive.

e All CGI parameters can be referenced in template substitutions, MapServer specific parameters as well as user
defined ones. In principle parameters are handed through by the MapServer 1:1. This feature is essential for
implementing MapServer applications.

The reference below only lists special template substitution strings which are needed to obtain information
modified by the MapServer, e.g. a new scale, query results, etc.

» Template substitution strings are case sensitive.
¢ Attribute item substitutions must be the same case as the item names in the dbase file.

* ArcView and ArcInfo generally produce dbase files with item names that are all uppercase. Appropriate URL
encoding (i.e. * ‘ to ‘+°) is applied when templates are URLSs.

* Some substitutions are also available in escaped form (i.e. URL encoded).

As an example this is needed when generating links within a template. This might pass the current mapextent to a new
MapServer call. [mapext] is substituted by a space delimited set of lower left and upper right coordinates. This would
break the URL. [mapext_esc] is substituted by a proper encoded set.

5.23.2 Format

Templates are simply HTML files or URL strings that contains special characters that are replaced by mapserv each
time the template is processed. The simple substitution allows information such as active layers or the spatial extent
to be passed from the user to mapserv and back again. Most often the new values are dumped into form variables that
will be passed on again. The list of special characters and form variables is given below. HTML templates can include
just about anything including JavaScript and Java calls.

180 Chapter 5. Mapfile

http://www.somewhere.com/{[}ATTRIBUTE{]}/info.html

MapServer Documentation, Release 6.0.3

[132]

In HTML files, the attribute values can be inside quotes(*””). Writing attribute values inside quotes allows you to set
special characters in value that you couldn’t use normaly (ie:],=,” and space). To write a single quote in a attribute
value, just use two quotes (“”).

General
[date] Outputs the date (as per the web server’s clock). The default format is the same as is used by Apache’s Common
Log format, which looks like:

01/Dec/2010:17:34:58 —-0800

Available arguments:
e format= A format string as supported by the standard C strftime() function. As an example, the default
format is defined as:

[date format="%d/%b/%$Y:%$H:%M:%S %$z"]

e tz= timezone to use for the date returned. Default is “local”. Valid values are:
— “gmt” Output date will be Greenwich time
— “local” Output the time in the web server’s local time zone.

Additionally or alternatively, the %z and %Z strftime format strings allow the timezone offset or name
to be output.

[version] The MapServer version number.

[id] Unique session id. The id can be passed in via a form but is more commonly generated by the software. In that
case the id is a concatenation of UNIX time (or NT equivalent) and the process id. Unless you’re getting more
requests in a second than the system has process ids the id can be considered unique. ;->

[host] Hostname of the web server.
[port] Port the web server is listening to.

[post or get variable name], [post or get variable name_esc] The contents of any variables passed to the
MapServer, whether they were used or not, can be echoed this way. One use might be to have the user set
a map title or north arrow style in an interactive map composer. The system doesn’t care about the values, but
they might be real important in creating the final output, e.g. if you specified a CGI parameter like myvalue=....
you can access this in the template file with [myvalue].

Also available as escaped version.

[web_meta data key],[web_meta data key_esc] Web object meta data access (e.g [web_projection]
Also available as escaped version.

[errmsg], [errmsg_esc] Current error stack output. Various error messages are delimited by semi-colons.

Also available as escaped version.

File Reference

[img] Path (relative to document root) of the new image, just the image name if IMAGE_URL is not set in the mapfile.

In a map interface template, [img] is substituted with the path to the map image. In a query results template, it
is substituted with the path to the querymap image (if a QUERYMAP object is defined in the Mapfile).

[ref] Path (relative to document root) of the new reference image.

5.23. Templating 181

MapServer Documentation, Release 6.0.3

[legend] Path (relative to document root) of new legend image rendered by the MapServer.

Since version 3.5.1 a new HTML Legend template is provided by MapServer. If a template is defined in the
Mapfile the [legend] string is replaced by the processed legend as. See the HTML Legends with MapServer for
details.

[scalebar] Path (relative to document root) of new scalebar image.
[queryfile] Path to the query file (if savequery was set as a CGI Parameter).

[map] Path to the map file (if savemap was set as a CGI Parameter).

Image Geometry

[center] Computed image center in pixels. Useful for setting imgxy form variable when map sizes change.
[center_x], [center_y] Computed image center X or Y coordinate in pixels.
[mapsize], [mapsize_esc] Current image size in cols and rows (separated by spaces).
Also available as escaped version.
[mapwidth], [mapheight] Current image width or height.

[scaledenom] Current image scale. The exact value is not appropriate for user information but essential for some
applications. The value can be rounded e.g. using JavaScript or server side post processing.

[scale] - deprecated Since MapServer 5.0 the proper parameter to use is [scaledenom] instead. The deprecated [scale]
is the current image scale. The exact value is not appropriate for user information but essential for some appli-
cations. The value can be rounded e.g. using JavaScript or server side post processing.

[cellsize] Size of an pixel in the current image in map units. Useful for distance measurement tools in user interfaces.

Map Geometry

[mapx], [mapy] X and Y coordinate of mouse click.
[mapext], [mapext_esc] Full mapextent (separated by spaces).

Also available as escaped version. (mapext_esc is deprecated in MapServer 5.2. You should use the “escape="
argument instead)

The default template [mapext] returns coordinates in the format of: mixx miny maxx maxy
Available arguments:
» escape= Escape the coordinates returned. Default is “none”. Valid values are:
— “arl” Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.
» expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,

[mapext] might return:

123456 123456 567890 567890

and [mapext expand=1000] would therefore return:

122456 122456 568890 568890

182 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

o format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

[mapext format="$minx, $Sminy, $Smaxx, Smaxy"]

e precision= The number of decimal places to output for coordinates (default is 0).
[minx], [miny], [maxx], [maxy] Minimum / maximum X or Y coordinate of new map extent.
[dx], [dy] The differences of minimum / maximum X or Y coordinate of new map extent.
Useful for creating cachable extents (i.e. 0 0 dx dy) with legends and scalebars

[rawext], [rawext_esc] Raw mapextent, that is the extent before fitting to a window size (separated by spaces). In
cases where input came from imgbox (via Java or whatever) rawext refers to imgbox coordinates transformed
to map units. Useful for spatial query building.

Also available as escaped version. (rawext_esc is deprecated in MapServer 5.2. You should use the “escape="
argument instead)

The default template [rawext] returns coordinates in the format of: mixx miny maxx maxy
Available arguments:
» escape= Escape the coordinates returned. Default is “none”. Valid values are:
— “arl” Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.
» expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,

[rawext] might return:

123456 123456 567890 567890

and [rawext expand=1000] would therefore return:

122456 122456 568890 568890

e format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

[rawext format="$minx, $Sminy, Smaxx, Smaxy"]

* precision= The number of decimal places to output for coordinates (default is 0).

wminx wmi wmaxx wmax inimum / maximum X or Y coordinate of a raw map/search ex-
rawminx], [rawminy], [rawmaxx], [rawma M / XorY dinate of / h
tent.

The following substitutions are only available if the MapServer was compiled with PROJ support and a PROJECTION
is defined in the Mapfile.

[maplon], [maplat] Longitude / latitude value of mouse click. Available only when projection enabled.

[mapext_latlon], [mapext_latlon_esc] Full mapextent (separated by spaces). Available only when projection en-
abled.

Also available as escaped version. (mapext_latlon_esc is deprecated in MapServer 5.2. You should use the
“escape=""argument instead)

The default template [mapext_latlon] returns coordinates in the format of: mixx miny maxx maxy

Available arguments:

5.23. Templating 183

MapServer Documentation, Release 6.0.3

» escape= Escape the coordinates returned. Default is “none”. Valid values are:
— “arl” Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.

» expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,
[mapext_latlon] might return:

123456 123456 567890 567890

and [mapext_latlon expand=1000] would therefore return:

122456 122456 568890 568890

e format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

[mapext_latlon format="$minx, Sminy, $Smaxx, Smaxy"]

e precision= The number of decimal places to output for coordinates (default is 0).

[minlon], [minlat], [maxlon] [maxlat] Minimum / maximum longitude or latitude value of mapextent. Available
only when projection enabled.

[refext], [refext_esc] Reference map extent (separated by spaces).

This template has been added with version 4.6 on behalf of an enhancement request. See the thread in the
MapServer ticket#1102 for potential use cases.

Also available as escaped version. (refext_esc is deprecated in MapServer 5.2. You should use the “escape="
argument instead)

The default template [refext] returns coordinates in the format of: mixx miny maxx maxy
Available arguments:
* escape= Escape the coordinates returned. Default is “none”. Valid values are:
— “ar]” Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.

* expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,
[refext] might return:

123456 123456 567890 567890
and [refext expand=1000] would therefore return:

122456 122456 568890 568890

e format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

[refwext format="$minx, Sminy, Smaxx, Smaxy"]

e precision= The number of decimal places to output for coordinates (default is 0).

184 Chapter 5. Mapfile

http://trac.osgeo.org/mapserver/ticket/1102

MapServer Documentation, Release 6.0.3

Layer

[layers] | [layers_esc] All active layers space delimited. Used for a “POST” request.
Also available as escaped version.

[toggle_layers] | [toggle_layers_esc] List of all layers that can be toggled, i.e. all layers defined in the Mapfile which
status is currently not default.

Also available as escaped version.

[layername_check | select] Used for making layers persistent across a map creation session. String is replaced with
the keyword “checked”, “selected” or *” if layername is on. Layername is the name of a layer as it appears in
the Mapfile. Does not work for default layers.

[layername_meta data key] Layer meta data access (e.g. [streets_build] the underscore is essential).

Zoom

[zoom_minzoom to maxzoom_checklselect] Used for making the zoom factor persistent. Zoom values can range
from -25 to 25 by default. The string is replaced with the HTML keyword “checked”, “selected” or “”’ depending
on the current zoom value.

E.g. if the zoom is 12, a [zoom_12_select] is replaced with “selected”, while a [zoom_13_select] in the same
HTML template file is not.

[zoomdir_-1l0l1_checklselect] Used for making the zoom direction persistent. Use check with a radio control or
select with a selection list. See the demo for an example. The string is replaced with the HTML keyword
“checked”, “selected” or ”’ depending on the current value of zoomdir.

Query

The following substitutions are only available when the template is processed as a result of a query.
[shpext], [shpext_esc] Extent of current shape plus a 5 percent buffer. Available only when processing query results.
The default template [shpext] returns coordinates in the format of: mixx miny maxx maxy
Available arguments:
» escape= Escape the coordinates returned. Default is “none”. Valid values are:
- “arl”
Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.
» expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,

[shpext] might return:

123456 123456 567890 567890

and [shpext expand=1000] would therefore return:
122456 122456 568890 568890

e format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

5.23. Templating 185

MapServer Documentation, Release 6.0.3

[shpext format="$minx, $Sminy, $Smaxx, Smaxy"]

precision= The number of decimal places to output for coordinates (default is 0).

[shpminx], [shpminy], [shpmaxx], [shpmaxy] Minimum / maximum X or Y coordinate of shape extent. Available
only when processing query results.

[shpmid] Middle of the extent of current shape. Available only when processing query results.

[shpmidx], [shpmidy] X or Y coordinate of middle of the extent of the current shape. Available only when processing
query results.

[shpidx] Index value of the current shape. Available only when processing query results.

[shpclass]

Classindex value of the current shape. Available only when processing query results.

[shpxy formatting options] The list of shape coordinates, with list formatting options, especially useful for SVG.

The default template [shpxy] returns a comma separated list of space delimited of coordinates (i.e. x1 y1, x2 y2,
x3y3).

Available only when processing query results.

Available attributes (h = header, f=footer, s=separator):

L]

buffer=, Buffer size, currently the only unit available is pixels. Default is 0.

centroid= Should only the centroid of the shape be used? true or false (case insensitive). Default is false.
cs= Coordinate separator. Default is ”,”.
irh=, irf=, orh=, orf=

Characters to be put before (irh) and after (irf) inner rings, and before (orh) and after (orf) outer

135

rings of polygons with holes. Defaults are “”.

Note: Within each polygon, the outer ring is always output first, followed by the inner rings.

If neither irh nor orh are set, rings are output as “parts” using ph/pf/ps.

ph=, pf=, ps= Characters to put before (ph) and after (pf) and separators between (ps) feature parts (e.g.
rings of multigeometries). Defaults are ph=""", pf=

2999 29 9

and ps=""".
precision= The number of decimal places to output for coordinates. Default is 0.

proj= The output projection definition for the coordinates, a special value of “image” will convert to
image coordinates. Default is none.

scale=, scale_x=, scale_y= Scaling factor for coordinates: Both axes (scale), x axis (scale_x) and y axis
(scale_y). Defaults are 1.0.

32

sh=, sf= Characters to put before (sh) and after (sf) a feature. Defaults are “”.
xh=, xf= Characters to put before (x/) and after (xf) the x coordinates. Defaults are xh="""and xf=",").

132

yh= yf= Characters to put before (yh) and after (yf) the y coordinates. Defaults are .

As a simple example:

[shpxy xh=" (" yf=")"] will result in: (x1 yl), (x2 y2), (x3 y3)

And a more complicated example of outputting KML for multipolygons which may potentially have holes (note
that the parameters must all be on one line):

186

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

<MultiGeometry>
<Point>
<coordinates>[shplabel proj=epsg:4326 precision=10],0</coordinates>
</Point>
[shpxy ph="<Polygon><tessellate>1l</tessellate>" pf="</Polygon>" xf=",6"
xh=" " yh=" " yf=",0 " orh="<outerBoundaryIs><LinearRing><coordinates>"

orf="</coordinates></LinearRing></outerBoundaryIs>"
irh="<innerBoundaryIs><LinearRing><coordinates>"
irf="</coordinates></LinearRing></innerBoundaryIs>" proj=epsg:4326
precision=10]

</MultiGeometry>

[tileindex] Index value of the current tile. If no tiles used for the current shape this is replaced by “-1”. Available only
when processing query results.
[item formatting options] An attribute table “item”, with list formatting options. The “name” attribute is required.
Available only when processing query results.
Available attributes:
* name = The name of an attribute, case insenstive. (required)

e precision = The number of decimal places to use for numeric data. Use of this will force display as a
number and will lead to unpredicable results with non-numeric data.

» pattern = Regular expression to compare the value of an item against. The tag is output only if there is a
match.

e uc = Set this attribute to “true” to convert the attribute value to upper case.
¢ lc = Set this attribute to “true” to convert the attribute value to lower case.

* commify = Set this attribute to “true” to add commas to a numeric value. Again, only useful with numeric
data.

e escape = Default escaping is for HTML, but you can escape for inclusion in a URL (=url), or not escape
at all (=none).

e format = A format string used to output the attribute value. The token “$value” is used to place the value
in a more complex presentation. Default is to output only the value.

* nullformat = String to output if the attribute value is NULL, empty or doesn’t match the pattern (if de-
fined). If not set and any of these conditions occur the item tag is replaced with an empty string.

As a simple example:

[item name="area" precision="2" commify="2" format="Area is S$value"]

[attribute name],[attrribute name_esc],[attribute item name_raw] Attribute name from the data table of a queried
layer. Only attributes for the active query layers are accessible. Case must be the same as what is stored in the
data file. ArcView, for example, uses all caps for shapefile field names. Available only when processing query
results.

By default the attributes are encoded especially for HTML representation. In addition the escaped version (for
use in URLSs) as well as the raw data is available.

[Join name_attribute name],[Join name_attribute name_esc], [Join name_attribute name_raw]

One-to-one joins: First the join name (as specified in the Mapfile has to be given, second the tables fields
can be accessed similar to the layers attribute data. Available only when processing query results.

By default the attributes are encoded especially for HTML representation. In addition the escaped version
(for use in URLSs) as well as the raw data is available.

5.23. Templating 187

MapServer Documentation, Release 6.0.3

[join_Join name] One-to-many joins: The more complex variant. If the join type is multiple (one-to-many) the
template is replaced by the set of header, template file and footer specified in the Mapfile.

[metadata_meta data key], [metadata_meta data key_esc] Queried layer meta data access (e.g [meta-
data_projection]

Also available as escaped version.

For query modes that allow for multiple result sets, the following string substitutions are available. For FEATURESE-
LECT and FEATURENSELECT modes the totals a re adjusted so as not to include the selection layer. The selection
layer results ARE available for display to the user.

[nr] Total number of results. Useful in web header and footers. Available only when processing query results.

[nl] Number of layers returning results. Useful in web header and footers. Available only when processing query
results.

[nlr] Total number of results within the current layer. Useful in web header and footers. Available only when pro-
cessing query results.

[rn] Result number within all layers. Starts at 1. Useful in web header and footers. Available only when processing
query results.

[Irn] Result number within the current layer. Starts at 1. Useful in query templates. Available only when processing
query results.

[cl] Current layer name. Useful in layer headers and footers. Available only when processing query results.

5.23.3 Example Template

A small example to give an idea how to work with templates. Note that it covers MapServer specific templates (e.g.
the [map], [mapext]) and user defined templates (e.g. [htmlroot] or [program]) used to store application settings.

<!-- MapServer Template —-->
<!DOCTYPE HTML PUBLIC "-//W3C//DID HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/transitional.dtd">
<html>
<head>
<title>MapServer Template Sample</title>
</head>

<body>
MapServer Template Sample

<!-- The central form the application is based on. ——>
<form method="GET" action="[program]">

<!-- CGI MapServer applications are server stateless in principle,
all information must be "stored" in the client. This includes
some basic settings as below.
The example is based on the pan and zoom test suite:

http://maps.dnr.state.mn.us/mapserver._demos/tests36/ -——>
<input type="hidden" name="map" value="[map]">
<input type="hidden" name="imgext" value="[mapext]">
<input type="hidden" name="imgxy" value="149.5 199.5">
<input type="hidden" name="program" value="[program]">

<input type="hidden" name="htmlroot" value="[htmlroot]">
<input type="hidden" name="map_web" value="[map_web]">

<!-— A table for minimal page formatting. —-->

188 Chapter 5. Mapfile

28

29

30

31

33

34

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

MapServer Documentation, Release 6.0.3

<table border=0 cellpadding=5>

<tr>
<!-— First column: Map and scale bar ——>
<td align=center>
<!-- The map -->
<input type="image" name="img" src="[img]"
style="border:0;width:300;height:400">

<!-— The scale bar——>

</td>
<!-- Second column: Zoom direction, Legend and Reference -->
<td valign=top>
<!-—- Zoom direction ——>

Map Controls

Set your zoom option:

<select name="zoom" size="1">

<option value="2" EEH s|e elclt]|1 P Zoom in 2 times
<option value="1" nﬂ: s|lelllelc|t|] > Recenter Map
<option value="-2" |[|z]o|o rnf:jf Z}jj s|le|lle|c|t]|] P Zoom out 2 times

</select>

<!-- Legend —-->
Legend

<!-- Reference map —-—>
<input type="image" name="ref" src="[ref]"
style="border:0;width:150; height:150">
</td>
</tr>
</table>
</form>
</body>

</html>

5.24 Union Layer

Author Tamas Szekeres

Contact szekerest at gmail.com

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2011-04-11

5.24. Union Layer 189

MapServer Documentation, Release 6.0.3

Table of Contents

e Union Layer
— Description

Requirements
Mapfile Configuration
Feature attributes
Classes and Styles
Projections
Examples

+ Mapfile Example

* PHP MapScript Example

5.24.1 Description

Since version 6.0, MapServer has the ability to display features from multiple layers (called ‘source layers’) in a single
mapfile layer. This feature was added through MS RFC 68: Support for combining features from multiple layers.

5.24.2 Requirements

This is a native MapServer option that doesn’t use any external libraries to support it.

5.24.3 Mapfile Configuration

e The CONNECTIONTYPE parameter must be set to UNION.
* The CONNECTION parameter must contain a comma separated list of the source layer names.

 All of the source layers and the union layer must be the same TYPE (e.g. all must be TYPE POINT, or all TYPE
POLYGON etc.)

Note: You may wish to disable the visibility (change their STATUS) of the source layers to avoid displaying the
features twice.

For example:

LAYER
NAME "union-layer"
TYPE POINT
STATUS DEFAULT
CONNECTIONTYPE |U[N][IoN
CONNECTION "layerl, layer2,layer3" # reference to the source layers
PROCESSING "ITEMS=itemnamel, itemname?2, itemname3"

END

LAYER
NAME "layerl"
TYPE POINT
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ...

END

190 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

LAYER
NAME "layer2"
TYPE POINT
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ...

END

LAYER
NAME "layer3"
TYPE POINT
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ...

END

5.24.4 Feature attributes

In the LAYER definition you may refer to any attributes supported by each of the source layers. In addition to the
source layer attributes the union layer provides the following additional attributes:

1. Combine:SourceLayerName - The name of the source layer the feature belongs to
2. Combine:SourceLayerGroup - The group of the source layer the feature belongs to

During the selection / feature query operations only the ‘Combine:SourceLayerName’ and ‘Com-
bine:SourceLayerGroup’ attributes are provided by default. The set of the provided attributes can manually be
overridden (and further attributes can be exposed) by using the ITEMS processing option (refer to the example above).

5.24.5 Classes and Styles

We can define the symbology and labelling for the union layers in the same way as for any other layer by specifying the
classes and styles. In addition the STYLEITEM AUTO option is also supported for the union layer, which provides to
display the features as specified at the source layers. The source layers may also use the STYLEITEM AUTO setting
if the underlying data source provides that.

5.24.6 Projections

For speed, it is recommended to always use the same projection for the union layer and source layers. However
MapServer will reproject the source layers to the union layer if requested. (for more information on projections in
MapServer refer to PROJECTION)

5.24.7 Examples
Mapfile Example
The follow example contains 3 source layers in different formats, and one layer (yellow) in a different projection.

The union layer uses the STYLEITEM “AUTOQ” parameter to draw the styles from the source layers. (in this case
MapServer will reproject the yellow features, in EPSG:4326, for the union layer, which is in EPSG:3978).

5.24. Union Layer 191

MapServer Documentation, Release 6.0.3

MAP
PROJECTION
"init=epsg:3978"
END
LAYER
NAME ’unioned’
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE |U|N]|IoN

CONNECTION "red,green,yellow”
STYLEITEM "AUTO"

Define an empty class that will be filled at runtime from the color and

styles read from each source layer.
CLASS
END
PROJECTION
"init=epsg:3978"
END
END

LAYER
NAME ’'red’
TYPE POLYGON
STATUS OFF
DATA 'nb.shp’
CLASS
NAME ' red’
STYLE

192

Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

OUTLINECOLOR 0 0 O
COLOR 255 85 0
END
END
END

LAYER
NAME ’'green’
TYPE POLYGON
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ’'ns.mif’
CLASS
NAME ’'green’
STYLE
OUTLINECOLOR 0O 0 0
COLOR 90 218 71
END
END
END

LAYER
NAME "yellow’
TYPE POLYGON
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ’'pei.gml’
CLASS
NAME ’"yellow’
STYLE
OUTLINECOLOR 0O 0 0
COLOR 255 255 0
END
END
PROJECTION
"init=epsg:4326"
END
END

END # Map

PHP MapScript Example

<?php

// open map
SoMap

// create union layer

SoLayer = ms_newLayerObj (SoMap) ;

SoLayer->set ("name", "unioned");

SoLayer—->set ("type", MS_LAYER_POLYGON) ;
SoLayer—->set ("status", MS_ON);
SoLayer—->setConnectionType (MS_UNION) ;
SoLayer->set ("connection", "red,green,yellow");
SoLayer->set ("styleitem", "AUTO");
SoLayer->setProjection("init=epsg:3978");

ms_newMapObj ("D:/msdw/apps/osm/map/osm.map") ;

5.24. Union Layer

193

MapServer Documentation, Release 6.0.3

// create empty class
SoClass = ms_newClassObj (SolLayer);

?>

5.25 Variable Substitution

Syntax: ‘%’ + variable name + ‘%’

See Also:

Run-time Substitution.

Example 1. Connecting securely to a Spatial Database

You want to map some senstitive data held in a PostGIS database. The username and password to be used for the
database connection are held in 2 cookies previously set by a seperate authentication mechanism, “uid” and “passwd”.

CONNECTION "user=3uid$% password=%passwd bname=postgis"

Example 2. Handling temporary files

You have a user based discovery application that generates shapefiles and stores them in a user’s home directory on
the server. The “username” comes from a cookie, the “filename” comes from a request parameter.

DATA "/home/%username%/tempshp/¢filenames"
This feature is only available in the CGI version of MapServer through a mapfile pre-processor. If you are using

MapScript, you will have to code the substitution logic into your application yourself (By writing your own pre-
processor).

5.26 WEB

BROWSEFORMAT [mime-type] Format of the interface output, using MapServer CGI. (added to MapServer 4.8.0)
The default value is “text/html”. Example:

BROWSEFORMAT "image/svg+xml"

EMPTY [url] URL to forward users to if a query fails. If not defined the value for ERROR is used.

ERROR [url] URL to forward users to if an error occurs. Ugly old MapServer error messages will appear if this is
not defined

FOOTER [filename] Template to use AFTER anything else is sent. Multiresult query modes only.
HEADER [filename] Template to use BEFORE everything else has been sent. Multiresult query modes only.

IMAGEPATH [path] Path to the temporary directory fro writing temporary files and images. Must be writable by
the user the web server is running as. Must end with a / or depending on your platform.

IMAGEURL [path] Base URL for IMAGEPATH. This is the URL that will take the web browser to IMAGEPATH
to get the images.

LEGENDFORMAT [mime-type] Format of the legend output, using MapServer CGI. (added to MapServer 4.8.0)
The default value is “text/html”. Example:

194 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

LEGENDFORMAT "image/svg+xml"

LOG [filename] Since MapServer 5.0 the recommeded parameters to use for debugging are the MAP object’s CON-
FIG and DEBUG parameters instead (see the Debugging MapServer document).

File to log MapServer activity in. Must be writable by the user the web server is running as. Deprecated since
version 5.0.

MAXSCALEDENOM [double] Minimum scale at which this interface is valid. When a user requests a map at
a smaller scale, MapServer automatically returns the map at this scale. This effectively prevents user from
zooming too far out. Scale is given as the denominator of the actual scale fraction, for example for a map at a
scale of 1:24,000 use 24000. Implemented in MapServer 5.0, to replace the deprecated MAXSCALE parameter.

See Also:
Map scale

MAXSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MAXSCALEDENOM in-
stead. The deprecated MAXSCALE is the minimum scale at which this interface is valid. When a user requests
a map at a smaller scale, MapServer automatically returns the map at this scale. This effectively prevents user
from zooming too far out. Scale is given as the denominator of the actual scale fraction, for example for a map
at a scale of 1:24,000 use 24000. Deprecated since version 5.0.

MAXTEMPLATE ([filelurl] Template to be used if below the minimum scale for the app (the denominator of the
requested scale is larger than MAXSCALEDENOM), useful for nesting apps.

METADATA This keyword allows for arbitrary data to be stored as name value pairs. This is used with OGC WMS
to define things such as layer title. It can also allow more flexibility in creating templates, as anything you put
in here will be accessible via template tags. Example:

METADATA
title "My layer title"
author "Me!"

END

MINSCALEDENOM [double] Maximum scale at which this interface is valid. When a user reqests a map at a larger
scale, MapServer automatically returns the map at this scale. This effectively prevents the user from zooming
in too far. Scale is given as the denominator of the actual scale fraction, for example for a map at a scale of
1:24,000 use 24000. Implemented in MapServer 5.0, to replace the deprecated MINSCALE parameter.

See Also:
Map scale

MINSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MINSCALEDENOM in-
stead. The deprecated MINSCALE is the maximum scale at which this interface is valid. When a user reqests a
map at a larger scale, MapServer automatically returns the map at this scale. This effectively prevents the user
from zooming in too far. Scale is given as the denominator of the actual scale fraction, for example for a map at
a scale of 1:24,000 use 24000. Deprecated since version 5.0.

MINTEMPLATE Template to be used if above the maximum scale for the app (the denominator of the requested
scale is smaller than MINSCALEDENOM), useful for nesting apps.

QUERYFORMAT [mime-type] Format of the query output. (added to MapServer 4.8.0) This works for
mode=query (using query templates in CGI mode), but not for mode=browse. The default value is “text/html”.
Example:

QUERYFORMAT "image/svg+xml"

TEMPLATE [filenamelurl]

5.26. WEB 195

MapServer Documentation, Release 6.0.3

Template file or URL to use in presenting the results to the user in an interactive mode (i.e. map generates
map and soon ...).

URL is not a remote file, rather a template. For example:

TEMPLATE ’'http://someurl/somescript.cgi?mapext=[mapext]’

TEMPPATH Path for storing temporary files. If not set, the standard system temporary file path will be used (e.g.
tmp for unix). TEMPPATH can also be set using the environment variable MS_TEMPPATH.

TEMPPATH is used in many contexts (see rfc66).

Make sure that that MapServer has sufficient rights to read and write files at the specified location. New in
version 6.0.

VALIDATION Signals the start of a VALIDATION block.

As of MapServer 5.4.0, VALIDATION blocks are the preferred mechanism for specifying validation patterns for
CGI param runtime substitutions. See Run-time Substitution.

5.27 XML Mapfile support

MapServer is able to load XML mapfiles automatically, without user XSLT tranformations. Basicly, MapServer will
simply do an XSLT transformation when the mapfile passed to it is an XML one, convert it to a text mapfile in a
temporary file on disk, then process the mapfile normally.

New Dependencies
* libxslt

¢ libexslt

5.27.1 Enabling the support

You can enable the XML mapfile support by adding the following option: —with-xml-mapfile. This configure option
will enable the libxslt and libexslt check up. If your libxslt/libexslt are not installed in /usr, you’ll have to add the
following options:

—--with-xslt=/path/to/xslt/installation
-—-with-exslt=/path/to/exslt/installation

5.27.2 Usage:

In order to enable this feature, set the MS_XMLMAPFILE_XSLT environment variable to point to the location of the
XSLT to use for the XML->text mapfile conversion. e.g. in Apache:

SetEnv MS_XMLMAPFILE_XSLT /path/to/mapfile.xsl
PassEnv MS_XMLMAPFILE_XSLT

With this enabled, passing an .xml filename to the CGI map parameter will automatically trigger the conversion.

Note: This is a first step to XML mapfile loading support. Obviously, there is a cost to parse and translate the XML
mapfile, but this allows easier use of XML mapfiles.

196 Chapter 5. Mapfile

MapServer Documentation, Release 6.0.3

5.28 Notes

* The Mapfile is NOT case-sensitive.

e The Mapfile is read from top to bottom by MapServer; this means that LAYERs near the
top of your Mapfile will be drawn before those near the bottom. Therefore users commonly place background
imagery and other background layer types near the top of their mapfile, and lines and points near the bottom of
their mapfile.

« Strings containing non-alphanumeric characters or a MapServer keyword MUST be quoted. It is recommended
to put ALL strings in double-quotes.

» For MapServer versions < 5, there was a default maximum of 200 layers per mapfile (there is no layer limit with
MapServer >=5). This can be changed by editing the map.h file to change the value of MS_MAXLAYERS to
the desired number and recompiling. Here are other important default limits when using a MapServer version <
S:

— MAXCLASSES 250 (set in map.h)
— MAXSTYLES 5 (set in map.h)
— MAXSYMBOLS 64 (set in mapsymbol.h)
MapServer versions >= 5 have no limits for classes, styles, symbols, or layers.

* File paths may be given as absolute paths, or as paths relative to the location of the mapfile. In addition, data
files may be specified relative to the SHAPEPATH.

* The mapfile has a hierarchical structure, with the MAP object being the “root”. All other objects fall under this
one.

* Comments are designated with a #.

* Attributes are named using the following syntax: [ATTRIBUTENAME].

Note: that the name of the attribute included between the square brackets IS CASE SENSITIVE. Generally
ESRI generated shape data sets have their attributes (.dbf column names) all in upper-case for instance, and for
PostGIS, ALWAYS use lower-case.

* MapServer Regular Expressions are used through the operating system’s C Library. For information on how to
use and write Regular Expressions on your system, you should read the documentation provided with your C
Library. On Linux, this is GLibC, and you can read “man 7 regex” ... This man page is also available on most
UNIX’s. Since these RegEx’s are POSIX compliant, they should be the same on Windows as well, so windows
users can try searching the web for “man 7 regex” since man pages are available all over the web.

5.28. Notes 197

MapServer Documentation, Release 6.0.3

198 Chapter 5. Mapfile

CHAPTER 6

MapScript

Release 6.0.3
Date November 14, 2012

6.1 Introduction

This is language agnostic documentation for the MapScript interface to MapServer generated by SWIG. This document
is intended for developers and to serve as a reference for writers of more extensive, language specific documentation
located at Mapfile

6.1.1 Appendices

Language-specific extensions are described in the following appendices

Python Appendix

6.1.2 Documentation Elements
Classes will be documented in alphabetical order in the manner outlined below. Attributes and methods will be
formatted as definition lists with the attribute or method as item, the type or return type as classifier, and a concise

description. To make the document as agnostic as possible, we refer to the following types: int, float, and string. There
are yet no mapscript methods that return arrays or sequences or accept array or sequence arguments.

We will use the SWIG term immutable to indicate that an attribute’s value is read-only.

6.1.3 fooObj

A paragraph or two about class fooOby;.

fooObj Attributes

attribute [type [access]] Concise description of the attribute.

199

MapServer Documentation, Release 6.0.3

Attribute name are completely lower case. Multiple words are packed together like outlinecolor.

Note that because of the way that mapscript is generated many confusing, meaningless, and even dangerous attributes
are creeping into objects. See outputFormatObj.refcount for example. Until we get a grip on the structure members
we are exposing to SWIG this problem will continue to grow.

fooObj Methods

method(type mandatory_parameter [, type optional_parameter=default]) [type] Description of the method in-
cluding elaboration on the method arguments, the method’s actions, and returned values. Optional parameters
and their default values are enclosed in brackets.

Class method names are camel case with a leading lower case character like getExpressionString.

6.1.4 Additional Documentation

There’s no point in duplicating the MapServer Mapfile Reference, which remains the primary reference for mapscript
class attributes.

6.2 SWIG MapScript API Reference

Author Sean Gillies

Author Steve Lime

Contact steve.lime at dnr.state.mn.us
Author Frank Warmerdam

Contact warmerdam at pobox.com
Author Umberto Nicoletti

Contact umberto.nicoletti at gmail.com
Author Tamas Szekeres

Contact szekerest at gmail.com
Author Daniel Morissette

Contact dmorisette at mapgears.com
Revision $Revision$

Date $Date$

200 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

Contents

* SWIG MapScript API Reference
— Introduction
* Appendices
* Documentation Elements
* fooObj
* Additional Documentation
— MapScript Functions
— MapScript Classes
* classObj
colorObj
errorObj
fontSetObj
hashTableObj
imageQObj
intarray
labelCacheMemberObj
labelCacheObj
labelObj
layerObj
legendObj
lineObj
mapObj
markerCacheMemberObj
outputFormatObj
OWSRequest
pointObj
projectionObj
rectObj
referenceMapObj
resultCacheMemberObj
resultCacheObj
scalebarObj
shapefileObj
shapeObj
styleObj
symbolObj
symbolSetObj
webObj

¥ OX ¥ K K K K K K K K XK K K K K K K K K K XK XK X X X X X ¥

6.2.1 Introduction

This is language agnostic documentation for the mapscript interface to MapServer generated by SWIG. This document
is intended for developers and to serve as a reference for writers of more extensive, language specific documentation
in DocBook format for the MDP.

Appendices

Language-specific extensions are described in the following appendices

Python MapScript Appendix

6.2. SWIG MapScript APl Reference 201

MapServer Documentation, Release 6.0.3

Documentation Elements

Classes will be documented in alphabetical order in the manner outlined below. Attributes and methods will be
formatted as definition lists with the attribute or method as item, the type or return type as classifier, and a concise
description. To make the document as agnostic as possible, we refer to the following types: int, float, and string. There
are yet no mapscript methods that return arrays or sequences or accept array or sequence arguments.

We will use the SWIG term immutable to indicate that an attribute’s value is read-only.

fooObj

A paragraph or two about class fooObj.

fooObj Attributes

attribute [type [access]] Concise description of the attribute.
Attribute name are completely lower case. Multiple words are packed together like outlinecolor.

Note that because of the way that mapscript is generated many confusing, meaningless, and even dangerous attributes
are creeping into objects. See outputFormatObj.refcount for example. Until we get a grip on the structure members
we are exposing to SWIG this problem will continue to grow.

fooObj Methods

method(type mandatory_parameter [, type optional_parameter=default]) [type] Description of the method in-
cluding elaboration on the method arguments, the method’s actions, and returned values. Optional parameters
and their default values are enclosed in brackets.

Class method names are camel case with a leading lower case character like getExpressionString.

Additional Documentation

There’s no point in duplicating the MapServer Mapfile Reference, which remains the primary reference for mapscript
class attributes.

6.2.2 MapScript Functions

msCleanup() [void] msCleanup() attempts to recover all dynamically allocated resources allocated by MapServer
code and dependent libraries. It it used primarily for final cleanup in scripts that need to do memory leak testing
to get rid of “noise” one-time allocations. It should not normally be used by production code.

msGetVersion() [string] Returns a string containing MapServer version information, and details on what optional
components are built in. The same report as produced by “mapserv -v”.

msGetVersionInt() [int] Returns the MapServer version number (x.y.z) as an integer (x*10000 + y*100 + z). (New
in v5.0) e.g. V5.4.3 would return 50403.

msResetErrorList() [void] Clears the current error stack.

mslIO_installStdoutToBuffer() [void] Installs a mapserver 10 handler directing future stdout output to a memory
buffer.

202 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

mslIO_installStdinFromBuffer() [void] Installs a mapserver IO handler directing future stdin reading (ie. post re-
quest capture) to come from a buffer.

mslO_resetHandlers() [void] Resets the default stdin and stdout handlers in place of “buffer” based handlers.

msIO_getStdoutBufferString() [string] Fetch the current stdout buffer contents as a string. This method does not
clear the buffer.

msIO_getStdoutBufferBytes() [binary data] Fetch the current stdout buffer contents as a binary buffer. The exact
form of this buffer will vary by mapscript language (eg. string in Python, byte[] array in Java and C#, unhandled
in perl)

mslIO_stripStdoutBufferContentType() [string] Strip the Content-type header off the stdout buffer if it has one, and
if a content type is found it is return (otherwise NULL/None/etc).

mslO_stripStdoutBufferContentHeaders(): void Strip all Content-* headers off the stdout buffer if it has ones.

6.2.3 MapScript Classes

classObj

An instance of classObj is associated with with one instance of layerObj.

- + 1 0..% +——————— +

| Class | ————————— > | Style |

o + - +

Fom + 1 0..1 +——————- +

| Class | ————————— > | Label |

- + o +

+——— + 1 1 4——————— +

| Class | ————————— > | HashTable |

Fommmm s + I - |
| metadata |
o +

Multiple class styles are now supported in 4.1. See the styleObj section for details on use of multiple class styles.

classObj Attributes

debug [int] MS_TRUE or MS_FALSE

keyimage [string] TODO Not sure what this attribute is for

label [labelObj immutable] Definition of class labeling

layer [layerObj immutable] Reference to the parent layer
maxscaledenom [float] The minimum scale at which class is drawn
metadata [hashTableObj immutable] class metadata hash table.

minscaledenom [float] The maximum scale at which class is drawn

6.2. SWIG MapScript APl Reference 203

MapServer Documentation, Release 6.0.3

name [string] Unique within a layer

numstyles [int] Number of styles for class. In the future, probably the 4.4 release, this attribute will be made im-
mutable.

status [int] MS_ON or MS_OFF. Draw features of this class or do not.
template [string] Template for queries

title [string] Text used for legend labeling

type [int] The layer type of its parent layer

classObj Methods

new classObj([layerObj parent_layer=NULL]) [classObj] Create a new child classObj instance at the tail (high-
est index) of the class array of the parent_layer. A class can be created outside the context of a parent layer by
omitting the single constructor argument.

clone() [classObj] Return an independent copy of the class without a parent layer.

createLegendIcon(mapObj map, layerObj layer, int width, int height) [imageObj] Draw and return a new leg-
end icon.

drawLegendIcon(mapObj map, layerObj layer, int width, int height, imageObj image, int dstx, int dsty) [int]
Draw the legend icon onto image at dstx, dsty. Returns MS_SUCCESS or MS_FAILURE.

getExpressionString() [string] Return a string representation of the expression enclosed in the quote characters ap-
propriate to the expression type.

getFirstMetaDataKey() [string] Returns the first key in the metadata hash table. With getNextMetaDataKey(), pro-
vides an opaque iterator over keys.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableOb;.

getMetaData(string key) [string] Return the value of the classObj metadata at key.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableOb.

getNextMetaDataKey(string lastkey) [string] Returns the next key in the metadata hash table or NULL if lastkey
is the last valid key. If lastkey is NULL, returns the first key of the metadata hash table.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableOb.

getStyle(int index) [styleObj] Return a reference to the styleObj at index in the styles array.
See the styleObj section for more details on multiple class styles.

getTextString() [string] Return a string representation of the text enclosed in the quote characters appropriate to the
text expression type (logical or simple string).

insertStyle(styleObj style [, int index=-1]) [int] Insert a copy of style into the styles array at index index. Default
is -1, or the end of the array. Returns the index at which the style was inserted.

moveStyleDown(int index) [int] Swap the styleObj at index with the styleObj index + 1.

204 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

moveStyleUp(int index) [int] Swap the styleObj at index with the styleObj index - 1.
removeStyle(int index) [styleObj] Remove the styleObj at index from the styles array and return a copy.

setExpression(string expression) [int] Set expression string where expression is a MapServer regular, logical or
string expression. Returns MS_SUCCESS or MS_FAILUIRE.

setMetaData(string key, string value) [int] Insert value into the classObj metadata at key. Returns MS_SUCCESS
or MS_FAILURE.

Note: setMetaData() is deprecated and will be removed in a future version. Replaced by direct metadata access,
see hashTableOb;.

setText(string text) [int] Set text string where text is a MapServer text expression. Returns MS_SUCCESS or
MS_FAILUIRE.

Note: Older versions of MapScript (pre-4.8) featured the an undocumented setText() method that required a
layerObj be passed as the first argument. That argument was completely bogus and has been removed.

colorObj

Since the 4.0 release, MapServer colors are instances of colorObj. A colorObj may be a lone object or an attribute of
other objects and have no other associations.

colorObj Attributes

blue [int] Blue component of color in range [0-255]
green [int] Green component of color in range [0-255]
red [int] Red component of color in range [0-255]

pen [int] Don’t mess with this unless you know what you are doing!

Note: Because of the issue with pen, setting colors by individual components is unreliable. Best practice is to
use setRGB(), setHex(), or assign to a new instance of colorObj().

colorObj Methods

new colorObj([int red=0, int green=0, int blue=0, int pens=-4]) [colorObj] Create a new instance. The color ar-
guments are optional.

setRGB(int red, int green, int blue) [int] Set all three RGB components. Returns MS_SUCCESS or
MS_FAILURE.

setHex(string hexcolor) [int] Set the color to values specified in case-independent hexadecimal notation. Calling
setHex (“#ffffff’) assigns values of 255 to each color component. Returns MS_SUCCESS or MS_FAILURE.

toHex() [string] Complement to setHex, returning a hexadecimal representation of the color components.

6.2. SWIG MapScript APl Reference 205

MapServer Documentation, Release 6.0.3

errorObj

This class allows inspection of the MapServer error stack. Only needed for the Perl module as the other language
modules expose the error stack through exceptions.

errorObj Attributes

code [int] MapServer error code such as MS_IMGERR (1).
message [string] Context-dependent error message.

routine [string] MapServer function in which the error was set.

errorObj Methods

next [errorObj] Returns the next error in the stack or NULL if the end has been reached.
fontSetObj

A fontSetObj is always a ‘fontset’ attribute of a mapOb.

fontSetObj Attributes

filename [string immutable] Path to the fontset file on disk.
fonts [hashTableObj immutable] Mapping of fonts.

numfonts [int immutable] Number of fonts in set.

fontSetObj Methods

None

hashTableObj

A hashTableObj is a very simple mapping of case-insensitive string keys to single string values. Map, Layer, and Class
metadata have always been hash hables and now these are exposed directly. This is a limited hash that can contain no
more than 41 values.

hashTableObj Attributes

numitems [int immutable] Number of hash items.

hashTableObj Methods

clear() [void] Empties the table of all items.

get(string key [, string default=NULL]) [string] Returns the value of the item by its key, or default if the key does
not exist.

206 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

nextKey([string key=NULL]) [string] Returns the name of the next key or NULL if there is no valid next key. If
the input key is NULL, returns the first key.

remove(string key) [int] Removes the hash item by its key. Returns MS_SUCCESS or MS_FAILURE.
set(string key, string value) [int] Sets a hash item. Returns MS_SUCCESS or MS_FAILURE.

imageObj

An image object is a wrapper for GD and GDAL images.

imageObj Attributes

format [outputFormatObj immutable] Image format.

height [int immutable] Image height in pixels.

imagepath [string immutable] If image is drawn by mapObj.draw(), this is the mapObj’s web.imagepath.
imageurl [string immutable] If image is drawn by mapObj.draw(), this is the mapObj’s web.imageurl.

renderer [int] MS_RENDER_WITH_GD, MS_RENDER_WITH_SWF, MS_RENDER_WITH_RAWDATA,
MS_RENDER_WITH_PDF, or MS_RENDER_WITH_IMAGEMAP. Don’t mess with this!

size [int immutable] To access this attribute use the getSize method.

Note: the getSize method is inefficient as it does a call to getBytes and then computes the size of the byte array.
The bytearray is then immediately discarded. In most cases it is more efficient to call getBytes directly.

width [int immutable] Image width in pixels.

imageObj Methods

new imageObj(int width, int height [, outputFormatObj format=NULL [, string filename=NULL]])
[imageObj] Create new instance of imageObj. If filename is specified, an imageObj is created from the
file and any specified width, height, and format parameters will be overridden by values of the image in
filename. Otherwise, if format is specified an imageObj is created using that format. See the format attribute
above for details. If filename is not specified, then width and height should be specified.

getBytes() [binary data] Returns the image contents as a binary buffer. The exact form of this buffer will vary by
mapscript language (eg. string in Python, byte[] array in Java and C#, unhandled in perl)

getSize() [int] Resturns the size of the binary buffer representing the image buffer.

Note: the getSize method is inefficient as it does a call to getBytes and then computes the size of the byte array.
The byte array is then immediately discarded. In most cases it is more efficient to call getBytes directly.

save(string filename [, mapObj parent_map=NULL]) [int] Save image to filename. The optional parent_map
parameter must be specified if saving GeoTIFF images.

write([FILE file=NULL]) [int] Write image data to an open file descriptor or, by default, to stdout. Returns
MS_SUCCESS or MS_FAILURE.

Note: This method is current enabled for Python and C# only. C# supports writing onto a Stream object.
User-contributed typemaps are needed for Perl, Ruby, and Java.

6.2. SWIG MapScript APl Reference 207

MapServer Documentation, Release 6.0.3

Note: The free() method of imageObj has been deprecated. In MapServer revisions 4+ all instances of imageObj will
be properly disposed of by the interpreter’s garabage collector. If the application can’t wait for garabage collection,

then the instance can simply be deleted or undef’d.

intarray

An intarray is a utility class generated by SWIG wuseful for manipulating map

layer draw-

ing order. See mapObj::getLayersDrawingOrder for discussion of mapscript use and see

http://www.swig.org/Doc1.3/Library.html#Library_nn5 for a complete reference.

intarray Attributes

None

intarray Methods

new intarray(int numitems) [intarray] Returns a new instance of the specified length.

labelCacheMemberObj

An individual feature label. The labelCacheMemberObj class is associated with labelCacheOb;.

labelCacheMemberObj Attributes

classindex [int immutable] Index of the class of the labeled feature.
featuresize [float immutable] TODO

label [labelObj immutable] Copied from the class of the labeled feature.
layerindex [int immutable] The index of the layer of the labeled feature.
numstyles [int immutable] Number of styles as for the class of the labeled feature.
point [pointObj immutable] Label point.

poly [shapeObj immutable] Label bounding box.

shapeindex [int immutable] Index within shapefile of the labeled feature.
status [int immutable] Has the label been drawn or not?

styles [styleObj immutable] TODO this should be protected from SWIG.
text [string immutable] Label text.

tileindex [int immutable] Tileindex of the layer of the labeled feature.

208 Chapter 6

. MapScript

MapServer Documentation, Release 6.0.3

labelCacheMemberObj Methods

None.

Note: No real scripting control over labeling currently, but there may be some interesting new possibilities if users
have control over labeling text, position, and status.

labelCacheObj

Set of a map’s cached labels. Has no other existence other than as a ‘labelcache’ attribute of a mapObj. Associated
with labelCacheMemberObj and markerCacheMemberOb;.

Fom e + 1 O,k Fmmmmmmm +

| LabelCache | —-———————- > | LabelCacheMember |

Fomm + + +
| MarkerCacheMember
o +

labelCacheObj Attributes

cachesize [int immutable] TODO
markercachesize [int immutable] TODO
numlabels [int immutable] Number of label members.

nummarkers [int immutable] Number of marker members.

labelCacheObj Methods

freeCache() [void] Free the labelcache.

labelObj

A labelObj is associated with a classObj, a scalebarObj, or a legendOb;.

o + 0..1 1 4 +
| Label | <————————-— | Class |
Fommm + | === |
| Scalebar |
| |
| Legend
Fom +

labelObj Attributes

angle [float] TODO
antialias [int] MS_TRUE or MS_FALSE
autoangle [int] MS_TRUE or MS_FALSE

6.2. SWIG MapScript APl Reference 209

MapServer Documentation, Release 6.0.3

autofollow [int] MS_TRUE or MS_FALSE. Tells mapserver to compute a curved label for appropriate linear features
(see MS RFC 11: Support for Curved Labels for specifics).

autominfeaturesize: int MS_TRUE or MS_FALSE

backgroundcolor [colorObj] Color of background rectangle or billboard. Deprecated since version 6.0: Use styleObj
and geomtransform.

backgroundshadowcolor [colorObj] Color of background rectangle or billboard shadow. Deprecated since version
6.0: Use styleObj and geomtransform.

backgroundshadowsizex [int] Horizontal offset of drop shadow in pixels. Deprecated since version 6.0: Use styleObj
and geomtransform.

backgroundshadowsizey [int] Vertical offset of drop shadow in pixels. Deprecated since version 6.0: Use styleObj
and geomtransform.

buffer [int] Maybe this should’ve been named ‘padding’ since that’s what it is: padding in pixels around a label.
color [colorObj] Foreground color.

encoding [string] Supported encoding format to be used for labels. If the format is not supported, the label will not
be drawn. Requires the iconv library (present on most systems). The library is always detected if present on the
system, but if not the label will not be drawn. Required for displaying international characters in MapServer.
More information can be found at: http://www.foss4g.org/FOSS4G/MAPSERVER/mpsnf-i18n-en.html.

font [string] Name of TrueType font.

force [int] MS_TRUE or MS_FALSE.

maxsize [int] Maximum height in pixels for scaled labels. See symbolscale attribute of layerObj.
mindistance [int] Minimum distance in pixels between duplicate labels.

minfeaturesize [int] Features of this size of greater will be labeled.

minsize [int] Minimum height in pixels.

numstyles [int] Number of label styles

offsetx [int] Horizontal offset of label.

offsety [int] Vertical offset of label.

outlinecolor [colorObj] Color of one point outline.

partials [int] MS_TRUE (default) or MS_FALSE. Whether or not labels can flow past the map edges.
position [int] MS_UL, MS_UC, MS_UR, MS_CL, MS_CC, MS_CR, MS_LL, MS_LC, MS_LR, or MS_AUTO.
shadowcolor [colorObj] Color of drop shadow.

shadowsizex [int] Horizontal offset of drop shadow in pixels.

shadowsizey [int] Vertical offset of drop shadow in pixels.

size [int] Annotation height in pixels.

type [int] MS_BITMAP or MS_TRUETYPE.

wrap [string] Character on which legend text will be broken to make multi-line legends.

labelObj Methods

getBinding(int binding) [string] Get the attribute binding for a specified label property. Returns NULL if there is
no binding for this property.

210 Chapter 6. MapScript

http://www.foss4g.org/FOSS4G/MAPSERVER/mpsnf-i18n-en.html

MapServer Documentation, Release 6.0.3

getStyle(int index) [styleObj] Return a reference to the styleObj at index in the styles array.

insertStyle(styleObj style [, int index=-1]) [int] Insert a copy of style into the styles array at index index. Default
is -1, or the end of the array. Returns the index at which the style was inserted.

moveStyleDown(int index) [int] Swap the styleObj at index with the styleObj index + 1.

moveStyleUp(int index) [int] Swap the styleObj at index with the styleObj index - 1.

removeStyle(int index) [styleObj] Remove the styleObj at index from the styles array and return a copy.
removeBinding(int binding) [int] Remove the attribute binding for a specfiled label property.

setBinding (int binding, string item) [int] Set the attribute binding for a specified label property. Binding constants
look like this: MS_LABEL_BINDING_[attribute name].

setBinding (MS_LABEL_BINDING_COLOR, "FIELD_NAME_COLOR");

updateFromString (string snippet) [int] Update a label from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

layerObj

A layerObj is associated with mapObj. In the most recent revision, an intance of layerObj can exist outside of a
mapOby;.

layerObj Attributes

bandsitem [string] The attribute from the index file used to select the source raster band(s) to be used. Normally
NULL for default bands processing.

classitem [string] The attribute used to classify layer data.
connection [string] Layer connection or DSN.

connectiontype [int] See MS_CONNECTION_TYPE in mapserver.h for possible values. When setting the connec-
tion type setConnectionType() should be used in order to initialize the layer vtable properly.

data [string] Layer data definition, values depend upon connectiontype.

debug [int] Enable debugging of layer. MS_ON or MS_OFF (default).

6.2. SWIG MapScript APl Reference 211

MapServer Documentation, Release 6.0.3

dump [int] Since 6.0, dump is not available anymore. metadata is used instead.

Switch to allow mapserver to return data in GML format. MS_TRUE or MS_FALSE. Default is MS_FALSE.
Deprecated since version 6.0: metadata is used instead.

extent [rectObj] optional limiting extent for layer features.

filteritem [string] Attribute defining filter.

footer [string] TODO

group [string] Name of a group of layers.

header [string] TODO

index [int immutable] Index of layer within parent map’s layers array.
labelangleitem [string] Attribute defining label angle.

labelcache [int] MS_ON or MS_OFF. Default is MS_ON.

labelitem [string] Attribute defining feature label text.
labelmaxscaledenom [float] Minimum scale at which layer will be labeled.
labelminscaledenom [float] Maximum scale at which layer will be labeled.
labelrequires [string] Logical expression.

labelsizeitem [string] Attribute defining label size.

map [mapObj immutable] Reference to parent map.

maxfeatures [int] Maximum number of layer features that will be drawn. For shapefile data this means the first N
features where N = maxfeatures.

maxscaledenom [float] Minimum scale at which layer will be drawn.
metadata [hashTableObj immutable] Layer metadata.

minscaledenom [float] Maximum scale at which layer will be drawn.
name [string] Unique identifier for layer.

numclasses [int immutable] Number of layer classes.

numitems [int immutable] Number of layer feature attributes (items).
numjoins [int immutable] Number of layer joins.

numprocessing [int immutable] Number of raster processing directives.
offsite [colorObj] transparent pixel value for raster layers.

opacity [int] Layer opacity percentage in range [0, 100]. The special value of MS_GD_ALPHA (1000) indicates that
the alpha transparency of pixmap symbols should be honored, and should be used only for layers that use RGBA
pixmap symbols.

postlabelcache [int] MS_TRUE or MS_FALSE. Default is MS_FALSE.
requires [string] Logical expression.

sizeunits [int] Units of class size values. MS_INCHES, MS_FEET, MS_MILES, MS_NAUTICALMILES,
MS_METERS, MS_KILOMETERS, MS_DD or MS_PIXELS

status [int] MS_ON, MS_OFF, or MS_DEFAULT.
styleitem [string] Attribute defining styles.

symbolscaledenom [float] Scale at which symbols are default size.

212 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

template [string] Template file. Note that for historical reasons, the query attribute must be non-NULL for a layer to
be queryable.

tileindex [string] Layer index file for tiling support.
tileitem [string] Attribute defining tile paths.
tolerance [float] Search buffer for point and line queries.

toleranceunits [int] MS_INCHES, MS_FEET, MS_MILES, MS_NAUTICALMILES, MS_METERS,
MS_KILOMETERS, MS_DD or MS_PIXELS

transform [int] Whether or not layer data is to be transformed to image units. MS_TRUE or MS_FALSE. Default is
MS_TRUE. Case of MS_FALSE is for data that are in image coordinates such as annotation points.

type [int] See MS_LAYER_TYPE in mapserver.h.
units [int] Units of the layer. See MS_UNITS in mapserver.h.

layerObj Methods

new layerObj([mapObj parent_map=NULL]) [layerObj] Create a new layerObj in parent_map. The layer index
of the new layerObj will be equal to the parent_map numlayers - 1. The parent_map arg is now optional and
Layers can exist outside of a Map.

addFeature(shapeObj shape) [int] Add a new inline feature on a layer. Returns -1 on error. TODO: Is this similar
to inline features in a mapfile? Does it work for any kind of layer or connection type?

addProcessing(string directive) [void] Adds a new processing directive line to a layer, similar to the PROCESSING
directive in a map file. Processing directives supported are specific to the layer type and underlying renderer.

applySLD(string sld, string stylelayer) [int] Apply the SLD document to the layer object. The matching between
the sld document and the layer will be done using the layer’s name. If a namedlayer argument is passed (argu-
ment is optional), the NamedLayer in the sld that matchs it will be used to style the layer. See SLD HOWTO
for more information on the SLD support.

applySLDURL(string sld, string stylelayer) [int] Apply the SLD document pointed by the URL to the layer object.
The matching between the sld document and the layer will be done using the layer’s name. If a namedlayer
argument is passed (argument is optional), the NamedLayer in the sld that matchs it will be used to style the
layer. See SLD HOWTO for more information on the SLD support.

clearProcessing() [int] Clears the layer’s raster processing directives. Returns the subsequent number of directives,
which will equal MS_SUCCESS if the directives have been cleared.

clone() [layerObj] Return an independent copy of the layer with no parent map.

close() [void] Close the underlying layer.

Note: demote() is removed in MapServer 4.4

draw(mapObj map, imageObj image) [int] Renders this layer into the target image, adding labels to the cache if
required. Returns MS_SUCCESS or MS_FAILURE. TODO: Does the map need to be the map on which the
layer is defined? I suspect so.

drawQuery(mapObj map, imageObj image) : Draw query map for a single layer into the target image. Returns
MS_SUCCESS or MS_FAILURE.

execute WFSGetFeature(layer) [string] Executes a GetFeature request on a WFS layer and returns the name of the
temporary GML file created. Returns an empty string on error.

6.2. SWIG MapScript APl Reference 213

MapServer Documentation, Release 6.0.3

generateSLD() [void] Returns an SLD XML string based on all the classes found in the layer (the layer must have
STATUS on).

getClass(inti) [classObj] Fetch the requested class object. Returns NULL if the class index is out of the legal range.
The numclasses field contains the number of classes available, and the first class is index 0.

getExtent() [rectObj] Fetches the extents of the data in the layer. This normally requires a full read pass through the
features of the layer and does not work for raster layers.

getFeature(int shapeindex [, int tileindex=-1]) [shapeObj] Return the layer feature at shapeindex and tileindex.
getFilterString() [string] Returns the current filter expression.

getFirstMetaDataKey() [string] Returns the first key in the metadata hash table. With getNextMetaDataKey(), pro-
vides an opaque iterator over keys.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableOb.

getltem(inti) [string] Returns the requested item. Items are attribute fields, and this method returns the item name
(field name). The numitems field contains the number of items available, and the first item is index zero.

getMetaData(string key) [string] Return the value at key from the metadata hash table.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableOb;.

getNextMetaDataKey(string lastkey) [string] Returns the next key in the metadata hash table or NULL if lastkey
is the last valid key. If lastkey is NULL, returns the first key of the metadata hash table.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableOb;.

getNumFeatures() [int] Returns the number of inline features in a layer. TODQO: is this really only online features or
will it return the number of non-inline features on a regular layer?

getNumResults() [int] Returns the number of entries in the query result cache for this layer.

Note: getNumResults() and getResult() are deprecated in MapServer 4.4. Users should instead use the new
querying API described in querying-HOWTO.txt. layerObj::getResults() is the entry point for the new APL

getProcessing(int index) [string] Return the raster processing directive at index.
getProjection() [string] Returns the PROJ.4 definition of the layer’s projection.

getResult(inti) [resultCacheMemberObj] Fetches the requested query result cache entry, or NULL if the index is
outside the range of available results. This method would normally only be used after issuing a query operation.

Note: getNumResults() and getResult() are deprecated in MapServer 4.4. Users should instead use the new
querying API described in querying-HOWTO.txt. layerObj::getResults() is the entry point for the new APL

getResults() [resultCacheObj] Returns a reference to layer’s result cache. Should be NULL prior to any query, or
after a failed query or query with no results.

getResultsBounds() [rectObj] Returns the bounds of the features in the result cache.

214 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

getShape(shapeObj shape, int tileindex, int shapeindex) [int] Get a shape from layer data.

Note: getShape() is deprecated. Users should adopt getFeature() for new applications.

getWMSFeatureInfoURL(mapObj map, int click_x, int click_y, int feature_count, string info_format)
[string] Return a WMS GetFeatureInfo URL (works only for WMS layers) clickX, clickY is the location of
to query in pixel coordinates with (0,0) at the top left of the image. featureCount is the number of results to
return. infoFormat is the format the format in which the result should be requested. Depends on remote server’s
capabilities. MapServer WMS servers support only “MIME” (and should support “GML.1” soon). Returns *”
and outputs a warning if layer is not a WMS layer or if it is not queriable.

insertClass(classObj class [, int index=-1]) [int] Insert a copy of the class into the layer at the requested index.
Default index of -1 means insertion at the end of the array of classes. Returns the index at which the class was
inserted.

isVisible() [int] Returns MS_TRUE or MS_FALSE after considering the layer status, minscaledenom, and maxscale-
denom within the context of the parent map.

moveClassDown(int class) [int] The class specified by the class index will be moved up into the array of layers.
Returns MS_SUCCESS or MS_FAILURE. ex. moveClassDown(1) will have the effect of moving class 1 down
to postion 2, and the class at position 2 will be moved to position 1.

moveClassUp(int class) [int] The class specified by the class index will be moved up into the array of layers. Re-
turns MS_SUCCESS or MS_FAILURE. ex. moveClassUp(1) will have the effect of moving class 1 up to
postion 0, and the class at position 0 will be moved to position 1.

nextShape() [shapeObj] Called after msWhichShapes has been called to actually retrieve shapes within a given area
returns a shape object or MS_FALSE

example of usage :

mapObj map = new mapObj ("d:/msapps/gmap-ms40/htdocs/gmap75.map") ;
layerObj layer = map.getLayerByName (' road’);

int status = layer.open();

status = layer.whichShapes (map.extent);
shapeObj shape;

while ((shape = layer.nextShape()) != null)

{

}

layer.close();

open() [void] Opens the underlying layer. This is required before operations like getFeature() will work, but is not
required before a draw or query call.

Note: promote() is eliminated in MapServer 4.4.

queryByAttributes(mapObj map, string qitem, string gstring, int mode) [int] Query layer for shapes that inter-
sect current map extents. qitem is the item (attribute) on which the query is performed, and gstring is the expres-
sion to match. The query is performed on all the shapes that are part of a CLASS that contains a TEMPLATE
value or that match any class in a layer that contains a LAYER TEMPLATE value.

Note that the layer’s FILTER/FILTERITEM are ignored by this function. Mode is MS_SINGLE or
MS_MULTIPLE depending on number of results you want. Returns MS_SUCCESS if shapes were found
or MS_FAILURE if nothing was found or if some other error happened.

queryByFeatures(mapObj map, int slayer) [int] Perform a query set based on a previous set of results from an-
other layer. At present the results MUST be based on a polygon layer. Returns MS_SUCCESS if shapes were

6.2. SWIG MapScript APl Reference 215

MapServer Documentation, Release 6.0.3

found or MS_FAILURE if nothing was found or if some other error happened

queryByIndex(mapObj map, int shapeindex, int tileindex [, int bAddToQuery=MS_FALSE]) [int] Pop a
query result member into the layer’s result cache. By default clobbers existing cache. Returns MS_SUCCESS
or MS_FAILURE.

queryByPoint(mapObj map, pointObj point, int mode, float buffer) [int] Query layer at point location specified
in georeferenced map coordinates (i.e. not pixels). The query is performed on all the shapes that are part of a
CLASS that contains a TEMPLATE value or that match any class in a layer that contains a LAYER TEMPLATE
value. Mode is MS_SINGLE or MS_MULTIPLE depending on number of results you want. Passing buffer <=0
defaults to tolerances set in the map file (in pixels) but you can use a constant buffer (specified in ground units)
instead. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other
error happened.

queryByRect(mapObj map, rectObj rect) [int] Query layer using a rectangle specified in georeferenced map co-
ordinates (i.e. not pixels). The query is performed on all the shapes that are part of a CLASS that contains
a TEMPLATE value or that match any class in a layer that contains a LAYER TEMPLATE value. Returns
MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error happened.

queryByShape(mapObj map, shapeObj shape) [int] Query layer based on a single shape, the shape has to be a
polygon at this point. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or
if some other error happened

removeClass(int index) [classObj] Removes the class indicated and returns a copy, or NULL in the case of a failure.
Note that subsequent classes will be renumbered by this operation. The numclasses field contains the number
of classes available.

removeMetaData(string key) [int] Delete the metadata hash at key. Returns MS_SUCCESS or MS_FAILURE.

Note: removeMetaData() is deprecated and will be removed in a future version. Replaced by direct metadata
access, see hashTableOb;.

setConnectionType(int connectiontype, string library_str) [int] Changes the connectiontype of the layer and recre-
ates the vtable according to the new connection type. This method should be used instead of setting the con-
nectiontype parameter directly. In case when the layer.connectiontype = MS_PLUGIN the library_str parameter
should also be specified so as to select the library to load by mapserver. For the other connection types this
parameter is not used.

setExtent(float minx, float miny, float maxx, float maxy) [int] Sets the extent of a layer. Returns MS_SUCCESS
or MS_FAILURE.

setFilter(string filter) [int] Sets a filter expression similarly to the FILTER expression in a map file. Returns
MS_SUCCESS on success or MS_FAILURE if the expression fails to parse.

setMetaData(string key, string value) [int] Assign value to the metadata hash at key. Return MS_SUCCESS or
MS_FAILURE.

Note: setMetaData() is deprecated and will be removed in a future version. Replaced by direct metadata access,
see hashTableOb;.

setProcessingKey(string key, string value) [void] Adds or replaces a processing directive of the form “key=value”.
Unlike the addProcessing() call, this will replace an existing processing directive for the given key value. Pro-
cessing directives supported are specific to the layer type and underlying renderer.

setProjection(string proj4) [int] Set the layer projection using a PROJ.4 format projection definition (ie.
“+proj=utm +zone=11 +datum=WGS84” or “init=EPSG:26911”). Returns MS_SUCCESS or MS_FAILURE.

216 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

setWKTProjection(string wkt) [int] Set the layer projection using OpenGIS Well Known Text format. Returns
MS_SUCCESS or MS_FAILURE.

int whichShapes(rectObj rect) [int] Performs a spatial, and optionally an attribute based feature search. The func-
tion basically prepares things so that candidate features can be accessed by query or drawing functions (eg using
nextShape function). Returns MS_SUCCESS, MS_FAILURE or MS_DONE. MS_DONE is returned if the
layer extent does not overlap rect.

resultsGetShape(int shapeindex [, int tileindex = -1]) [shapeObj] Retrieve shapeObj from a layer’s resultset by in-
dex. Tileindex is optional and is used only for tiled shapefiles, Simply omit or pass tileindex = -1 for other data
sources. Added in MapServer 5.6.0 due to the one-pass query implementation.

legendObj

legendObj is associated with mapObj

F—————— + 0..1 1 +——- +

| Legend | <-———————— > | Map |
fo———— + +————= +
and with labelOb.

F——— + 1 1 +——— +
| Legend | ————————— > | Label |
fom— + fom———— +

legendObj Attributes

height [int] Legend height.

imagecolor [colorObj] Legend background color.

keysizex [int] Width in pixels of legend keys.

keysizey [int] Pixels.

keyspacingx [int] Horizontal padding around keys in pixels.
keyspacingy [int] Vertical padding.

label [labelObj immutable] legend label.

map [mapObj immutable] Reference to parent mapObj.
outlinecolor [colorObj] key outline color.

position [int] MS_UL, MS_UC, MS_UR, MS_LL, MS_LC, or MS_LR.
postlabelcache [int] MS_TRUE or MS_FALSE.

status [int] MS_ON, MS_OFF, or MS_EMBED.

template [string] Path to template file.

width [int] Label width.

legendObj Methods

None

6.2. SWIG MapScript APl Reference 217

MapServer Documentation, Release 6.0.3

lineObj

A 1ineObj is composed of one or more pointObj instances.

lineObj Attributes

numpoints [int immutable] Number of points in the line.

lineObj Methods

new lineObj() [lineObj] Create a new instance.
add(pointObj point) [int] Add point to the line. Returns MS_SUCCESS or MS_FAILURE.
get(int index) [pointObj] Return reference to point at index.

project(projectionObj proj_in, projectionObj proj_out) [int] Transform line in place from proj_in to proj_out. Re-
turns MS_SUCCESS or MS_FAILURE.

set(int index, pointObj point) [int] Set the point at index to point. Returns MS_SUCCESS or MS_FAILURE.

mapObj

A mapObj is primarily associated with instances of layerObj.

+———— + 1 0..1 +—-————————————— +
| Map | ————————- > | Legend |
- + | —————————— |
| Scalebar |
| mm— \
| ReferenceMap |
o +
outputFormatObj.
e + 1 1..x +—————————————— +
| Map | ————————— > | OutputFormat |
e + o +

mapObj Attributes

cellsize [float] Pixel size in map units.

configoptions [hashObj immutable] A hash table of configuration options from CONFIG keywords in the .map. Di-
rect access to config options is discouraged. Use the setConfigOption() and getConfigOption() methods instead.

218 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

datapattern [string] TODO not sure this is meaningful for mapscript.
debug [int] MS_TRUE or MS_FALSE.

extent [rectObj] Map’s spatial extent.

fontset [fontSetObj immutable] The map’s defined fonts.

height [int] Map’s output image height in pixels.

Note: direct setting of height is deprecated in MapServer version 4.4. Users should set width and height
simultaneously using setSize().

imagecolor [colorObj] Initial map background color.

imagequality [int] JPEG image quality.

Note: map imagequality is deprecated in MapServer 4.4 and should instead be managed through map output-
formats.

imagetype [string immutable] Name of the current output format.

interlace [int] Output image interlacing.

Note: map interlace is deprecated in MapServer 4.4 and should instead be managed through map outputformats.

lablecache [labelCacheObj immutable] Map’s labelcache.
legend [legendObj immutable] Reference to map’s legend.
mappath [string] Filesystem path of the map’s mapfile.
maxsize [int] TODO ?

name [string] Unique identifier.

numlayers [int immutable] Number of map layers.
numoutputformats [int] Number of output formats.

outputformat [outputFormatObj] The currently selected output format.

Note: Map outputformat should not be modified directly. Use the selectOutputFormat() method to select named
formats.

outputformatlist [outputFormatObj[]] Array of the available output formats.

Note: Currently only available for C#. A proper typemaps should be implemented for the other languages.

querymap [queryMapObj immutable] TODO should this be exposed to mapscript?
reference [referenceMapObj immutable] Reference to reference map.

resolution [float] Nominal DPI resolution. Default is 72.

scaledenom [float] The nominal map scale. A value of 25000 means 1:25000 scale.
scalebar [scalebarObj immutable] Reference to the scale bar.

shapepath [string] Base filesystem path to layer data.

6.2. SWIG MapScript APl Reference 219

MapServer Documentation, Release 6.0.3

status [int] MS_OFF, MS_ON, or MS_DEFAULT.
symbolset [symbolSetObj immutable] The map’s set of symbols.
templatepattern [string] TODO not sure this is meaningful for mapscript.

transparent [int] MS_TRUE or MS_FALSE.

Note: map transparent is deprecated in MapServer 4.4 and should instead be managed through map outputfor-
mats.

units [int] MS_DD, MS_METERS, etc.
web [webObj immutable] Reference to map’s web definitions.

width [int] Map’s output image width in pixels.

Note: direct setting of width is deprecated in MapServer version 4.4. Users should set width and height
simultaneously using setSize().

mapObj Methods

new mapObj([string filename=""]) [mapObj] Create a new instance of mapObj. Note that the filename is now
optional.

appendOutputFormat(outputFormatObj format) [int] Attach format to the map’s output format list. Returns the
updated number of output formats.

applyConfigOptions() [void] Apply the defined configuration options set by setConfigOption().

applySLD(string sldxml) [int] Parse the SLD XML string sldxml and apply to map layers. Returns MS_SUCCESS
or MS_FAILURE.

applySLDURL(string sldurl) [int] Fetch SLD XML from the URL sldurl and apply to map layers. Returns
MS_SUCCESS or MS_FAILURE.

clone() [mapObj] Returns a independent copy of the map, less any caches.

Note: In the Java module this method is named ‘cloneMap’.

draw() [imageObj] Draw the map, processing layers according to their defined order and status. Return an imageQOb.

drawLabelCache(imageObj image) [int] Draw map’s label cache on image. Returns MS_SUCCESS or
MS_FAILURE.

drawLegend() [imageObj] Draw map legend, returning an imageObj.

drawQuery() [imageObj] Draw query map, returning an imageObj.

drawReferenceMap() [imageObj] Draw reference map, returning an imageQObj.

drawScalebar() [imageObj] Draw scale bar, returning an imageQObj.

embedLegend(imageObj image) [int] Embed map’s legend in image. Returns MS_SUCCESS or MS_FAILURE.

embedScalebar(imageObj image) [int] Embed map’s scalebar in image. Returns MS_SUCCESS or
MS_FAILURE.

freeQuery([int gqlayer=-1]) [void] Clear layer query result caches. Default is -1, or all layers.

220 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

generateSLD() [string] Return SLD XML as a string for map layers that have STATUS on.

getConfigOption(string key) [string] Fetches the value of the requested configuration key if set. Returns NULL if
the key is not set.

getFirstMetaDataKey() [string] Returns the first key in the web.metadata hash table. With getNextMetaDataKey(),
provides an opaque iterator over keys.

getLayer(int index) [layerObj] Returns a reference to the layer at index.
getLayerByName(string name) [layerObj] Returns a reference to the named layer.

getLayersDrawingOrder() [int*] Returns an array of layer indexes in drawing order.

Note: Unless the proper typemap is implemented for the module’s language a user is more likely to get back
an unuseable SWIG pointer to the integer array.

getMetaData(string key) [string] Return the value at key from the web.metadata hash table.

getNextMetaDataKey(string lastkey) [string] Returns the next key in the web.metadata hash table or NULL if
lastkey is the last valid key. If lastkey is NULL, returns the first key of the metadata hash table.

getNumSymbols() [int] Return the number of symbols in map.

getOutputFormatByName(string imagetype) [outputFormatObj] Return the output format corresponding to
driver name imagetype or to format name imagetype. This works exactly the same as the IMAGETYPE di-
rective in a mapfile, is case insensitive and allows an output format to be found either by driver (like ‘GD/PNG’)
or name (like ‘PNG24°).

getProjection() [string] Returns the PROJ.4 definition of the map’s projection.

getSymbolByName(string name) [int] Return the index of the named symbol in the map’s symbolset.

Note: This method is poorly named and too indirect. It is preferrable to use the getSymbolByName method
of symbolSetObj, which really does return a symbolObj reference, or use the index method of symbolSetObj to
get a symbol’s index number.

insertLayer(layerObj layer [, int nIndex=-1]) [int] Insert a copy of layer into the Map at index nindex. The de-
fault value of nlndex is -1, which means the last possible index. Returns the index of the new Layer, or -1 in the
case of a failure.

loadMapContext(string filename [, int useUniqueNames=MS_FALSE]) [int] Load an OGC map context file to
define extents and layers of a map.

loadOWSParameters(OWSRequest request [, string version=°‘1.1.1’]) [int] Load OWS request parameters
(BBOX, LAYERS, &c.) into map. Returns MS_SUCCESS or MS_FAILURE.

loadQuery(string filename) [int] Load a saved query. Returns MS_SUCCESS or MS_FAILURE.

moveLayerDown(int layerindex) [int] Move the layer at layerindex down in the drawing order array, meaning that
it is drawn later. Returns MS_SUCCESS or MS_FAILURE.

moveLayerUp(int layerindex) [int] Move the layer at layerindex up in the drawing order array, meaning that it is
drawn earlier. Returns MS_SUCCESS or MS_FAILURE.

nextLabel() [labelCacheMemberObj] Return the next label from the map’s labelcache, allowing iteration over labels.

Note: nextLabel() is deprecated and will be removed in a future version. Replaced by getLabel().

getLabel(int labelindex) [labelCacheMemberObj] Return label at specified index from the map’s labelcache.

6.2. SWIG MapScript APl Reference 221

MapServer Documentation, Release 6.0.3

OWSDispatch(OWSRequest req) [int] Processes and executes the passed OpenGIS Web Services request on the
map. Returns MS_DONE (2) if there is no valid OWS request in the req object, MS_SUCCESS (0) if an OWS
request was successfully processed and MS_FAILURE (1) if an OWS request was not successfully processed.
OWS requests include WMS, WES, WCS and SOS requests supported by MapServer. Results of a dispatched
request are written to stdout and can be captured using the msIO services (ie. msIO_installStdoutToBuffer() and
mslO_getStdoutBufferString())

preparelmage() [imageObj] Returns an imageObyj initialized to map extents and outputformat.
prepareQuery() [void] TODO this function only calculates the scale or am I missing something?

processLegendTemplate(string names|[], string values[], int numitems) [string] Process MapServer legend tem-
plate and return HTML.

Note: None of the three template processing methods will be useable unless the proper typemaps are imple-
mented in the module for the target language. Currently the typemaps are not implemented.

processQueryTemplate(string names[], string values[], int numitems) [string] Process MapServer query tem-
plate and return HTML.

Note: None of the three template processing methods will be useable unless the proper typemaps are imple-
mented in the module for the target language. Currently the typemaps are not implemented.

processTemplate(int generateimages, string names|[], string values[], int numitems) [string] Process MapServer
template and return HTML.

Note: None of the three template processing methods will be useable unless the proper typemaps are imple-
mented in the module for the target language. Currently the typemaps are not implemented.

queryByFeatures(int layerindex) [int] Query map layers, result sets contain features that intersect or are con-
tained within the features in the result set of the MS_LAYER_POLYGON type layer at layerindex. Returns
MS_SUCCESS or MS_FAILURE.

queryByPoint(pointObj point, int mode, float buffer) [int] Query map layers, result sets contain one or more
features, depending on mode, that intersect point within a tolerance buffer. Returns MS_SUCCESS or
MS_FAILURE.

queryByRect(rectObj rect) [int] Query map layers, result sets contain features that intersect or are contained within
rect. Returns MS_SUCCESS or MS_FAILURE.

queryByShape(shapeObj shape) [int] Query map layers, result sets contain features that intersect or are contained
within shape. Returns MS_SUCCESS or MS_FAILURE.

removeLayer(int index) [int] Remove the layer at index.

removeMetaData(string key) [int] Delete the web.metadata hash at key. Returns MS_SUCCESS or
MS_FAILURE.

removeQutputFormat(string name) [int] Removes the format named name from the map’s output format list. Re-
turns MS_SUCCESS or MS_FAILURE.

save(string filename) [int] Save map to disk as a new map file. Returns MS_SUCCESS or MS_FAILURE.

saveMapContext(string filename) [int] Save map definition to disk as OGC-compliant XML. Returns
MS_SUCCESS or MS_FAILURE.

saveQuery(string filename) [int] Save query to disk. Returns MS_SUCCESS or MS_FAILURE.

222 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

saveQueryAsGML(string filename) [int] Save query to disk. Returns MS_SUCCESS or MS_FAILURE.

selectOutputFormat(string imagetype) [void] Set the map’s active output format to the internal format named
imagetype. Built-in formats are “PNG”, “PNG24”, “JPEG”, “GIF”, “GTIFF”.

setConfigOption(string key, string value) [void] Set the indicated key configuration option to the indicated value.
Equivalent to including a CONFIG keyword in a map file.

setExtent(float minx, float miny, float maxx, float maxy) [int] Set the map extent, returns MS_SUCCESS or
MS_FAILURE.

offsetExtent(float x, float y) [int] Offset the map extent based on the given distances in map coordinates, returns
MS_SUCCESS or MS_FAILURE.

scaleExtent(float zoomfactor, float minscaledenom, float maxscaledenom) [int] Scale the map extent using the
zoomfactor and ensure the extent within the minscaledenom and maxscaledenom domain. If minscalede-
nom and/or maxscaledenom is O then the parameter is not taken into account. returns MS_SUCCESS or
MS_FAILURE.

setCenter(pointObj center) [int] Set the map center to the given map point, returns MS_SUCCESS or
MS_FAILURE.

setFontSet(string filename) [int] Load fonts defined in filename into map fontset. The existing fontset is cleared.
Returns MS_SUCCESS or MS_FAILURE.

setImageType(string name) [void] Sets map outputformat to the named format.

Note: setlmageType() remains in the module but it’s use is deprecated in favor of selectOutputFormat().

setLayersDrawingOrder(int layerindexes[]) [int] Set map layer drawing order.

Note: Unless the proper typemap is implemented for the module’s language users will not be able to pass
arrays or lists to this method and it will be unusable.

setMetaData(string key, string value) [int] Assign value to the web.metadata hash at key. Return MS_SUCCESS
or MS_FAILURE.

setOutputFormat(outputFormatObj format) [void] Sets map outputformat.
setProjection(string proj4) [int] Set map projection from PROJ.4 definition string proj4.

setRotation(float rotation_angle) [int] Set map rotation angle. The map view rectangle (specified in EXTENTS)
will be rotated by the indicated angle in the counter- clockwise direction. Note that this implies the rendered
map will be rotated by the angle in the clockwise direction. Returns MS_SUCCESS or MS_FAILURE.

setSize(int width, int height) [int] Set map’s image width and height together and carry out the necessary subse-
quent geotransform computation. Returns MS_SUCCESS or MS_FAILURE.

setSymbolSet(string filename) [int] Load symbols defined in filename into map symbolset. The existing symbolset
is cleared. Returns MS_SUCCESS or MS_FAILURE.

setWKTProjection(string wkt) [int] Sets map projection from OGC definition wkt.

zoomPoint(int zoomfactor, pointObj imgpoint, int width, int height, rectObj extent, rectObj maxextent)
[int] Zoom by zoomfactor to imgpoint in pixel units within the image of height and width dimensions and
georeferenced extent. Zooming can be constrained to a maximum maxextent. Returns MS_SUCCESS or
MS_FAILURE.

zoomRectangle(rectObj imgrect, int width, int height, rectObj extent, rectObj maxextent) : int Zoom to a pixel
coordinate rectangle in the image of width and height dimensions and georeferencing extent. Zooming can be

6.2. SWIG MapScript APl Reference 223

MapServer Documentation, Release 6.0.3

constrained to a maximum maxextent. The imgrect rectangle contains the coordinates of the LL and UR coordi-
nates in pixel: the maxy in the rect object should be < miny value. Returns MS_SUCCESS or MS_FAILURE.

——————— UR (values in the rect object : maxx, maxy)

LL (values in the rectobject minx, miny)

zoomScale(float scale, pointObj imgpoint, int width, int height, rectObj extent, rectObj maxextent) [int] Like
the previous methods, but zooms to the point at a specified scale.

markerCacheMemberObj

An individual marker. The markerCacheMemberObj class is associated with labelCacheObj.

| MarkerCacheMember | <————————-— | LabelCache |

markerCacheMemberObj Attributes

id [int immutable] Id of the marker.

poly [shapeObj immutable] Marker bounding box.

markerCacheMemberObj Methods

None.

outputFormatObj

An outputFormatObj is associated with a mapObj

and can also be an attribute of an imageOb;j.

outputFormatObj Attributes

bands [int] The number of bands in the raster. Only used for the “raw” modes, MS_IMAGEMODE_BYTE,
MS_IMAGEMODE_INT16, and MS_IMAGEMODE_FLOAT32. Normally set via the BAND_COUNT for-
matoption ... this field should be considered read-only.

driver [string] A string such as ‘GD/PNG’ or ‘GDAL/GTiff".
extension [string] Format file extension such as ‘png’.

imagemode [int] MS_IMAGEMODE_PC256, MS_IMAGEMODE_RGB, MS_IMAGEMODE_RGBA,
MS_IMAGEMODE_INT16, MS_IMAGEMODE_FLOAT32, MS_IMAGEMODE_BYTE, or
MS_IMAGEMODE_NULL.

224 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

mimetype [string] Format mimetype such as ‘image/png’.
name [string] A unique identifier.

renderer [int] MS_RENDER_WITH_GD, MS_RENDER_WITH_SWF, MS_RENDER_WITH_RAWDATA,
MS_RENDER_WITH_PDF, or MS_RENDER_WITH_IMAGEMAP. Normally set internally based on the
driver and some other setting in the constructor.

transparent [int] MS_ON or MS_OFF.

outputFormatObj Methods

new outputFormatObj(string driver [, string name=driver]) [outputFormatObj] Create new instance. If name is
not provided, the value of driver is used as a name.

getOption(string key [, string value="""]) [string] Return the format option at key or value if key is not a valid hash
index.

setExtension(string extension) [void] Set file extension for output format such as ‘png’ or ‘jpg’. Method could
probably be deprecated since the extension attribute is mutable.

setMimetype(string mimetype) [void] Set mimetype for output format such as ‘image/png’ or ‘image/jpeg’.
Method could probably be deprecated since the mimetype attribute is mutable.

setOption(string key, string value) [void] Set the format option at key to value. Format options are mostly driver
specific.

validate() [int] Checks some internal consistency issues, and returns MS_TRUE if things are OK and MS_FALSE if
there are problems. Some problems are fixed up internally. May produce debug output if issues encountered.

OWSRequest
Not associated with other mapscript classes. Serves as a message intermediary between an application and
MapServer’s OWS capabilities. Using it permits creation of lightweight WMS services:

wms_map = mapscript.mapObj (’wms.map’)
wms_request = mapscript.OWSRequest ()

Convert application request parameters (reqg.args)
for param, value in reg.args.items():
wms_request.setParam(param, value)

Map loads parameters from OWSRequest, adjusting its SRS, extents,
active layers accordingly
wms_map.loadWMSRequest ("1.1.0", wms_request)

Render the Map
img = wms_map.draw ()

OWSRequest Attributes

NumParams [int immutable] Number of request parameters. Eventually should be changed to numparams lowercase
like other attributes.

postrequest [string] TODO
type [int] MS_GET_REQUEST or MS_POST_REQUEST.

6.2. SWIG MapScript APl Reference 225

MapServer Documentation, Release 6.0.3

OWSRequest Methods

new OWSRequest() [OWSRequest] Create a new instance.

Note: MapServer’s OWSRequest supports only single valued parameters.

setParameter(string name, string value) [void] Set a request parameter. For example

request.setParameter (' REQUEST’, ’GetMap’)
request.setParameter (' BBOX’, "-107.0,40.0,-106.0,41.0")

addParameter(string name, string value) [void] Add a request parameter, even if the parameter key was previ-
ousely set. This is useful when multiple parameters with the same key are required. For example

request.addParameter (' SIZE’, "x(100)")
request.addParameter (' SIZE’, "y (100)")

getName(int index) [string] Return the name of the parameter at index in the request’s array of parameter names.
getValue(int index) [string] Return the value of the parameter at index in the request’s array of parameter values.
getValueByName(string name) [string] Return the value associated with the parameter name.

loadParams() [int] Initializes the OWSRequest object from the cgi environment variables REQUEST_METHOD,
QUERY_STRING and HTTP_COOKIE. Returns the number of name/value pairs collected. Warning: most
errors will result in a process exit!

loadParamsFromURL(string url) [int] Initializes the OWSRequest object from the provided URL which is treated
like a QUERY_STRING. Note that REQUEST_METHOD=GET and no post data is assumed in this case. This
method was added in MapServer 6.0.

pointObj

A pointObj instance may be associated with a lineOb.

pointObj Attributes

m [float] Measure. Meaningful only for measured shapefiles. Given value -2e38 if not otherwise assigned to indicate
“nodata”.

x [float] Easting
y [float] Northing

z [float] Elevation

pointObj Methods

new pointObj([float x=0.0, float y=0.0, float z=0.0, float m=-2e38]) [pointObj] Create new instance. Easting,
northing, and measure arguments are optional.

distanceToPoint(pointObj point) [float] Returns the distance to point.

226 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

distanceToSegment(pointObj point1, pointObj point2) [float] Returns the minimum distance to a hypothetical
line segment connecting pointl and point2.

distanceToShape(shapeObj shape) [float] Returns the minimum distance to shape.

draw(mapObj map, layerObj layer, imageObj image, int classindex, string text) [int] Draw the point using the
styles defined by the classindex class of layer and labeled with string text. Returns MS_SUCCESS or
MS_FAILURE.

project(projectionObj proj_in, projectionObj proj_out) [int] Reproject point from proj_in to proj_out. Transfor-
mation is done in place. Returns MS_SUCCESS or MS_FAILURE.

setXY(float x, float y [, float m=2e-38]) [int] Set spatial coordinate and, optionally, measure values simultaneously.
The measure will be set only if the value of m is greater than the ESRI measure no-data value of 1e-38. Returns
MS_SUCCESS or MS_FAILURE.

setXYZ(float x, float y, float z [, float m=-2e38]) [int] Set spatial coordinate and, optionally, measure values si-
multaneously. The measure will be set only if the value of m is greater than the ESRI measure no-data value of
-1e38. Returns MS_SUCCESS or MS_FAILURE.

setXYZM(float x, float y, float z, float m) [int] Set spatial coordinate and, optionally, measure values simultane-
ously. The measure will be set only if the value of m is greater than the ESRI measure no-data value of -1e38.
Returns MS_SUCCESS or MS_FAILURE.

toString() [string] Return a string formatted like
{ 'x": £, 'y': %f, "z’: %f }

with the coordinate values substituted appropriately. Python users can get the same effect via the pointObj
__str__method

>>> p = mapscript.pointObj (1, 1)
>>> str(p)
{ 'x’: 1.000000 , ’"y’: 1.000000, "z’": 1.000000 }

toShape() [shapeObj] Convience method to quickly turn a point into a shapeObj.

projectionObj

This class is not really fully implemented yet. MapServer’s Maps and Layers have Projection attributes, and these
are C projectionObj structures, but are not directly exposed by the mapscript module. Currently we have to do some
round-a-bout logic like this

point.project (projectionObj (mapobj.getProjection (),
projectionObj (layer.getProjection())

to project a point from map to layer reference system.

projectionObj Attributes

numargs [int immutable] Number of PROJ.4 arguments.

projectionObj Methods

new projectionObj(string proj4) [projectionObj] Create new instance of projectionObj. Input parameter proj4 is a
PROJ.4 definition string such as “init=EPSG:4269”.

getUnits() [int] Returns the units of a projection object. Returns -1 on error.

6.2. SWIG MapScript APl Reference 227

MapServer Documentation, Release 6.0.3

rectObj

A rectObj may be a lone object or an attribute of another object and has no other associations.

rectObj Attributes

maxx [float] Maximum easting
maxy [float] Maximum northing
minx [float] Minimum easting

miny [float] Minimum northing

rectObj Methods

new rectObj([float minx=-1.0, float miny=-1.0, float maxx=-1.0, float maxy=-1.0, int imageunits=MS_FALSE])
[rectObj] Create new instance. The four easting and northing arguments are optional and default to -1.0. Note
the new optional fifth argument which allows creation of rectangles in image (pixel/line) units which are also
tested for validity.

draw(mapObj map, layerObj layer, imageObj img, int classindex, string text) [int] Draw rectangle into img us-
ing style defined by the classindex class of layer. The rectangle is labeled with the string text. Returns
MS_SUCCESS or MS_FAILURE.

getCenter() [pointObj] Return the center point of the rectagle.

project(projectionObj proj_in, projectionObj proj_out) [int] Reproject rectangle from proj_in to proj_out.
Transformation is done in place. Returns MS_SUCCESS or MS_FAILURE.

toPolygon() [shapeObj] Convert to a polygon of five vertices.
toString() [string] Return a string formatted like

{ 'minx’: $f , ’‘miny’: %f , ‘maxx’: %f , ’'maxy’: 3f }

with the bounding values substituted appropriately. Python users can get the same effect via the rectObj __str__
method

>>> r = mapscript.rectObj(0, 0, 1, 1)
>>> str(r)
{ 'minx’": 0 , 'miny’: 0 , 'maxx’: 1 , 'maxy’: 1 }

referenceMapObij

A referenceMapODbj is associated with mapOby;.

referenceMapObj Attributes

color [colorObj] Color of reference box.

extent [rectObj] Spatial extent of reference in units of parent map.

228 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

height [int] Height of reference map in pixels.

image [string] Filename of reference map image.

map [mapObj immutable] Reference to parent mapObj.
marker [int] Index of a symbol in the map symbol set to use for marker.
markername [string] Name of a symbol.

markersize [int] Size of marker.

maxboxsize [int] Pixels.

minboxsize [int] Pixels.

outlinecolor [colorObj] Outline color of reference box.
status [int] MS_ON or MS_OFF.

width [int] In pixels.

referenceMapObj Methods

None

resultCacheMemberObj

Has no associations with other MapScript classes and has no methods. By using several indexes, a resultCacheMem-
berObj refers to a single layer feature.

resultCacheMemberObj Attributes

classindex [int immutable] The index of the layer class into which the feature has been classified.
shapeindex [int immutable] Index of the feature within the layer.

tileindex [int immutable] Meaningful for tiled layers only, index of the shapefile data tile.

resultCacheObj
See querying-HOWTO.txt for extra guidance in using the new 4.4 query APIL.
resultCacheObj Attributes

bounds [rectObj immutable] Bounding box of query results.

numresults [int immutable] Length of result set.

resultCacheObj Methods

getResult(inti) [resultCacheMemberObj] Returns the result at index i, like layerObj::getResult, or NULL if index
is outside the range of results.

6.2. SWIG MapScript APl Reference 229

MapServer Documentation, Release 6.0.3

scalebarObj

A scalebarObj is associated with mapObj.

scalebarObj Attributes

backgroundcolor [colorObj] Scalebar background color.
color [colorObj] Scalebar foreground color.

imagecolor [colorObj] Background color of scalebar.
height [int] Pixels.

intervals [int] Number of intervals.

label [labelObj] Scalebar label.

outlinecolor [colorObj] Foreground outline color.
position [int] MS_UL, MS_UC, MS_UR, MS_LL, MS_LC, or MS_LR.
postlabelcache [int] MS_TRUE or MS_FALSE.

status [int] MS_ON, MS_OFF, or MS_EMBED.

style [int] O or 1.

units [int] See MS_UNITS in mapserver.h.

width [int] Pixels.

scalebarObj Methods
None

shapefileObj
shapefileObj Attributes

bounds [rectObj] Extent of shapes
numshapes [int] Number of shapes

type [int] See mapshape.h for values of type.

230 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

shapefileObj Methods

new shapefileObj(string filename [, int type=-1]) [shapefileObj] Create a new instance. Omit the fype argument
or use a value of -1 to open an existing shapefile.

add(shapeObj shape) [int] Add shape to the shapefile. Returns MS_SUCCESS or MS_FAILURE.

get(int i, shapeObj shape) [int] Get the shapefile feature from index i and store it in shape. Returns MS_SUCCESS
or MS_FAILURE.

getShape(inti) [shapeObj] Returns the shapefile feature at index i. More effecient than ger.
TODO

shapeObj

Each feature of a layer’s data is a shapeObj. Each part of the shape is a closed lineOb;.

shapeObj Attributes

bounds [rectObj] Bounding box of shape.

classindex [int] The class index for features of a classified layer.
index [int] Feature index within the layer.

numlines [int immutable] Number of parts.

numvalues [int immutable] Number of shape attributes.

text [string] Shape annotation.

tileindex [int] Index of tiled file for tileindexed layers.

type [int] MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON, or MS_SHAPE_NULL.

shapeObj Methods

new shapeObj(int type) [shapeObj] Return a new shapeObj of the specified type. See the type attribute above. No
attribute values created by default. initValues should be explicitly called to create the required number of values.

add(lineObj line) [int] Add lire (i.e. a part) to the shape. Returns MS_SUCCESS or MS_FAILURE.

boundary() [shapeObj] Returns the boundary of the existing shape. Requires GEOS support. Returns NULL/undef
on failure.

buffer(int distance) [shapeObj] Returns a new buffered shapeObj based on the supplied distance (given in the co-
ordinates of the existing shapeObj). Requires GEOS support. Returns NULL/undef on failure.

contains(pointObj point) [int] Returns MS_TRUE if the point is inside the shape, MS_FALSE otherwise.

contains(shapeObj shape2) [int] Returns MS_TRUE if shape? is entirely within the shape. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

convexHull() [shapeObj] Returns the convex hull of the existing shape. Requires GEOS support. Returns
NULL/undef on failure.

6.2. SWIG MapScript APl Reference 231

MapServer Documentation, Release 6.0.3

copy(shapeObj shape_copy) [int] Copy the shape to shape_copy. Returns MS_SUCCESS or MS_FAILURE.
clone() [shapeObj] Return an independent copy of the shape.

crosses(shapeObj shape2) [int] Returns MS_TRUE if shape2 crosses the shape. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

difference(shapeObj shape) [shapeObj] Returns the computed difference of the supplied and existing shape. Re-
quires GEOS support. Returns NULL/undef on failure.

disjoint(shapeObj shape2) [int] Returns MS_TRUE if shape2 and the shape are disjoint. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

distanceToPoint(pointObj point) [float] Return distance to point.
distanceToShape(shapeObj shape) [float] Return the minimum distance to shape.

draw(mapObj map, layerObj layer, imageObj img) [int] Draws the individual shape using layer. Returns
MS_SUCCESS or MS_FAILURE.

equals(shapeObj shape2) [int] Returns MS_TRUE if the shape and shape2 are equal (geometry only). Returns -1
on error and MS_FALSE otherwise. Requires GEOS support.

fromWKT(char *wkt) [shapeObj] Returns a new shapeObj based on a well-known text representation of a geom-
etry. Requires GEOS support. Returns NULL/undef on failure.

get(int index) [lineObj] Returns a reference to part at index. Reference is valid only during the life of the shapeOb;.
getArea() [double] Returns the area of the shape (if applicable). Requires GEOS support.

getCentroid() [pointObj] Returns the centroid for the existing shape. Requires GEOS support. Returns NULL/undef
on failure.

getLength() [double] Returns the length (or perimeter) of a shape. Requires GEOS support.
getValue(inti) [string] Return the shape attribute at index i.
initValues(int numvalues) [void] Allocates memory for the requested number of values.

intersects(shapeObj shape) [int] Returns MS_TRUE if the two shapes intersect, MS_FALSE otherwise.

Note: Does not require GEOS support but will use GEOS functions if available.

intersection(shapeObj shape) [shapeObj] Returns the computed intersection of the supplied and existing shape.
Requires GEOS support. Returns NULL/undef on failure.

overlaps(shapeObj shape2) [int] Returns MS_TRUE if shape2 overlaps shape. Returns -1 on error and MS_FALSE
otherwise. Requires GEOS support.

project(projectionObj proj_in, projectionObj proj_out) [int] Reproject shape from proj_in to proj_out. Trans-
formation is done in place. Returns MS_SUCCESS or MS_FAILURE.

setBounds [void] Must be called to calculate new bounding box after new parts have been added.
TODO: should return int and set msSetError.
setValue(int i, string value) [int] Set the shape value at index i to value.

simplify(double tolerance): shapeObj Given a tolerance, returns a simplified shape object or NULL on error. Re-
quires GEOS support (>=3.0).

symDifference(shapeObj shape) [shapeObj] Returns the computed symmetric difference of the supplied and exist-
ing shape. Requires GEOS support. Returns NULL/undef on failure.

232 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

topologySimplifyPreservingSimplify(double tolerance): shapeObj Given a tolerance, returns a simplified shape
object or NULL on error. Requires GEOS support (>=3.0).

touches(shapeObj shape2) [int] Returns MS_TRUE if the shape and shape2 touch. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

toWKT() [string] Returns the well-known text representation of a shapeObj. Requires GEOS support. Returns
NULL/undef on failure.

Union(shapeObj shape) [shapeObj] Returns the union of the existing and supplied shape. Shapes must be of the
same type. Requires GEOS support. Returns NULL/undef on failure.

within(shapeObj shape2) [int] Returns MS_TRUE if the shape is entirely within shape2. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

styleObj

An instance of styleObj is associated with one instance of classObj.

An instance of styleObj can exist outside of a classObj container and be explicitly inserted into the classObj for use in
mapping.

new_style = new styleObj()
the_class.insertStyle (new_style)

It is important to understand that insertStyle inserts a copy of the styleObj instance, not a reference to the instance
itself.

The older use case

new_style = new styleObj(the_class)

remains supported. These will be the only ways to access the styles of a class. Programmers should no longer directly
access the styles attribute.

styleObj Attributes

angle [double] Angle, given in degrees, to draw the line work. Default is 0. For symbols of Type HATCH, this is the
angle of the hatched lines.

angleitem [string]Deprecated since version 5.0: Use setBinding.

antialias [int] MS_TRUE or MS_FALSE. Should TrueType fonts be antialiased.
backgroundcolor [colorObj] Background pen color.

color [colorObj] Foreground or fill pen color.

mincolor [colorObj] Attribute for Color Range Mapping (MS RFC 6: Color Range Mapping of Continuous Feature
Values). mincolor, minvalue, maxcolor, maxvalue define the range for mapping a continuous feature value to a
continuous range of colors when rendering the feature on the map.

minsize [int] Minimum pen or symbol width for scaling styles.

minvalue [double] Attribute for Color Range Mapping (MS RFC 6: Color Range Mapping of Continuous Feature
Values). mincolor, minvalue, maxcolor, maxvalue define the range for mapping a continuous feature value to a
continuous range of colors when rendering the feature on the map.

6.2. SWIG MapScript APl Reference 233

MapServer Documentation, Release 6.0.3

minwidth [int] Minimum width of the symbol.

maxcolor [colorObj] Attribute for Color Range Mapping (MS RFC 6: Color Range Mapping of Continuous Feature
Values). mincolor, minvalue, maxcolor, maxvalue define the range for mapping a continuous feature value to a
continuous range of colors when rendering the feature on the map.

maxsize [int] Maximum pen or symbol width for scaling.

maxvalue [double] Attribute for Color Range Mapping (MS RFC 6: Color Range Mapping of Continuous Feature
Values). mincolor, minvalue, maxcolor, maxvalue define the range for mapping a continuous feature value to a
continuous range of colors when rendering the feature on the map.

maxwidth [int] Maximum width of the symbol.

offsetx [int] Draw with pen or symbol offset from map data.
offsety [int] Draw with pen or symbol offset from map data.
outlinecolor [colorObj] Outline pen color.

rangeitem [string] Attribute/field that stores the values for the Color Range Mapping (MS RFC 6: Color Range
Mapping of Continuous Feature Values).

size [int] Pixel width of the style’s pen or symbol.

sizeitem [string]Deprecated since version 5.0: Use setBinding.

symbol [int] The index within the map symbolset of the style’s symbol.
symbolname [string immutable] Name of the style’s symbol.

width [int] Width refers to the thickness of line work drawn, in pixels. Default is 1. For symbols of Type HATCH,
the with is how thick the hatched lines are.

styleObj Methods

new styleObj([classObj parent_class]) [styleObj] Returns new default style Obj instance. The parent_class is
optional.

clone [styleObj] Returns an independent copy of the style with no parent class.

getBinding(int binding) [string] Get the attribute binding for a specified style property. Returns NULL if there is
no binding for this property.

removeBinding(int binding) [int] Remove the attribute binding for a specfiled style property.

setBinding (int binding, string item) [int] Set the attribute binding for a specified style property. Binding constants
look like this: MS_STYLE_BINDING_[attribute name].

setBinding (MS_STYLE_BINDING_SIZE, ’'mySizeltem’);
updateFromString (string snippet) [int] Update a style from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

setSymbolByName(mapObj map, string symbolname) [int] Setting the symbol of the styleObj given the reference
of the map object and the symbol name.

updateFromString (string snippet) [int] Update a style from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

234 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

symbolObj

A symbolObj is associated with one symbolSetObj.

A styleObj will often refer to a symbolObj by name or index, but this is not really an object association, is it?

symbolObj Attributes

antialias [int] MS_TRUE or MS_FALSE.

character [string] For TrueType symbols.

filled [int] MS_TRUE or MS_FALSE.

font [string] For TrueType symbols.

gap [int] Moved to STYLE

imagepath [string] Path to pixmap file.

inmapfile [int] If set to TRUE, the symbol will be saved inside the mapfile. Added in MapServer 5.6.1
linecap [int] Moved to STYLE

linejoin [int] Moved to STYLE

linejoinmaxsize [float] Moved to STYLE

name [string] Symbol name

numpoints [int immutable] Number of points of a vector symbol.
position [int] No more available?

sizex [float] TODO what is this?

sizey [float] TODO what is this?

stylelength [int] Number of intervals

transparent [int] TODO what is this?

transparentcolor [int] TODO is this a derelict attribute?

type [int] MS_SYMBOL_SIMPLE, MS_SYMBOL_VECTOR, MS_SYMBOL_ELLIPSE,
MS_SYMBOL_PIXMAP, or MS_SYMBOL_TRUETYPE.

symbolObj Methods

new symbolObj(string symbolname [, string imagefile]) [symbolObj] Create new default symbol named name.
If imagefile is specified, then the symbol will be of type MS_SYMBOL_PIXMAP.

getImage() [imageObj] Returns a pixmap symbol’s imagery as an imageObj.
getPoints() [lineObj] Returns the symbol points as a lineOb.
setImage(imageObj image) [int] Set a pixmap symbol’s imagery from image.

setPoints(lineObj line) [int] Sets the symbol points from the points of line. Returns the updated number of points.

6.2. SWIG MapScript APl Reference 235

MapServer Documentation, Release 6.0.3

setStyle(int index, int value) [int] Set the style at index to value. Returns MS_SUCCESS or MS_FAILURE.

symbolSetObj

A symbolSetObj is an attribute of a mapObj and is associated with instances of symbolOb.

symbolSetObj Attributes

filename [string] Symbolset filename

numsymbols [int immutable] Number of symbols in the set.

symbolSetObj Methods

new symbolSetObj([string symbolfile]) [symbolSetObj] Create new instance. If symbolfile is specified, symbols
will be loaded from the file.

appendSymbol(symbolObj symbol) [int] Add a copy of symbol to the symbolset and return its index.
getSymbol(int index) [symbolObj] Returns a reference to the symbol at index.

getSymbolByName(string name) [symbolObj] Returns a reference to the symbol named name.

index(string name) [int] Return the index of the symbol named name or -1 in the case that no such symbol is found.
removeSymbol(int index) [symbolObj] Remove the symbol at index and return a copy of the symbol.

save(string filename) [int] Save symbol set to a file. Returns MS_SUCCESS or MS_FAILURE.

webObj

Has no other existence than as an attribute of a mapObj. Serves as a container for various run-time web application
definitions like temporary file paths, template paths, etc.

webObj Attributes

empty [string] TODO

error [string] TODO

extent [rectObj] Clipping extent.

footer [string] Path to footer document.

header [string] Path to header document.

imagepath [string] Filesystem path to temporary image location.
imageurl [string] URL to temporary image location.

log [string] TODO

map [mapObj immutable] Reference to parent mapObj.

236 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

maxscaledenom [float] Minimum map scale.
maxtemplate [string] TODO

metadata [hashTableObj immutable] metadata hash table.
minscaledenom [float] Maximum map scale.
mintemplate [string] TODO

queryformat [string] TODO

template [string] Path to template document.

webObj Methods

None.

6.3 PHP MapScript

Author Daniel Morissette

Contact dmorissette at mapgears.com
Author Yewondwossen Assefa
Contact yassefa at dmsolutions.ca
Author Alan Boudreault

Contact aboudreault at mapgears.com
Revision $Revision$

Date $Date$

Note: If you are using MapServer 5.6 and older, please refer to the PHP MapScript 5.6 documen-
tation instead.

Note: If you are migrating your existing application that is based on MapServer 5.6 or older, to
MapServer 6.0 or beyond, please read the PHP MapScript Migration Guide for important changes.

6.3. PHP MapScript 237

MapServer Documentation, Release 6.0.3

Contents

* PHP MapScript
Introduction
Versions Supported
How to Get More Information on PHP MapScript
Important Note
Constants
Functions
Classes

* classObj
clusterObj
colorObj
errorObj
gridObj
hashTableObj
imageObj
labelcacheMemberObj
labelcacheObj
labelObj
layerObj
legendObj
lineObj
mapObj
outputformatObj
OwsrequestObj
pointObj
projectionObj
querymapObj
rectObj
referenceMapObj
resultObj
scalebarObj
shapefileObj
shapeObyj
styleObj
symbolObj

* webObj

— Memory Management

¥ oK K K X K K K XK KK X K K K K K K XK XK X X X X X ¥

6.3.1 Introduction

This is a PHP module that makes MapServer’s MapScript functionalities available in a PHP Dynamically Loadable
Library. In simple terms, this module will allow you to use the powerful PHP scripting language to dynamically create
and modify map images in MapServer.

6.3.2 Versions Supported

PHP 5.2.0 or more recent is required; since MapServer 6.0, support for PHP 4, PHP 5.0 and PHP 5.1 have been
dropped. PHP MapScript was originally developed for PHP 3.0.14, and after MapServer 3.5 support for PHP 3 was
dropped.

238 Chapter 6. MapScript

http://www.php.net/

MapServer Documentation, Release 6.0.3

The module has been tested and used on Linux, Solaris, *BSD, and Windows.

6.3.3 How to Get More Information on PHP MapScript

* For installation questions regarding the PHP MapScript module, see PHP MapScript Installation.
¢ The MapServer Wiki has information on this module, that was contributed by users.

* New PHP MapScript users should read the php_example document.

* The project’s home is the PHP/MapScript page on MapTools.org.

* Also, see the MapScript, and the Mapfile sections of this site.

¢ Refer to the main PHP site for their official documentation.

6.3.4 Important Note

¢ Constant names and class member variable names are case-sensitive in PHP.

6.3.5 Constants

The following MapServer constants are available:
Boolean values MS_TRUE, MS_FALSE, MS_ON, MS_OFF, MS_YES, MS_NO

Map units MS_INCHES, MS_FEET, MS_MILES, MS_METERS, MS_KILOMETERS, MS_DD, MS_PIXELS,
MS_NAUTICALMILES

Layer types MS_LAYER_POINT, MS_LAYER LINE, MS_LAYER POLYGON, MS_LAYER_RASTER,
MS_LAYER_ANNOTATION, MS_LAYER_QUERY, MS_LAYER_CIRCLE, MS_LAYER_TILEINDEX,
MS_LAYER_CHART

Layer/Legend/Scalebar/Class Status MS_ON, MS_OFF, MS_DEFAULT, MS_EMBED, MS_DELETE
Layer alpha transparency allows alpha transparent pixmaps to be used with RGB map images MS_GD_ALPHA
Font types MS_TRUETYPE, MS_BITMAP

Label positions MS_UL, MS_LR, MS_UR, MS_LL, MS_CR, MS_CL, MS_UC, MS_LC, MS_CC, MS_XY,
MS_AUTO, MS_AUTO2, MS_FOLLOW, MS_NONE

Bitmap font styles MS_TINY , MS_SMALL, MS_MEDIUM, MS_LARGE, MS_GIANT

Shape types MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON, MS_SHAPE_NULL
Shapefile types MS_SHP_POINT, MS_SHP_ARC, MS_SHP_POLYGON, MS_SHP_MULTIPOINT
Query/join types MS_SINGLE, MS_MULTIPLE

Querymap styles MS_NORMAL, MS_HILITE, MS_SELECTED

Connection Types MS_INLINE, = MS_SHAPEFILE, @ MS_TILED_SHAPEFILE, @ MS_SDE, MS_OGR,
MS_TILED_OGR, MS_POSTGIS, MS_WMS, MS_ORACLESPATIAL, MS_WEFS, MS_GRATICULE,
MS_RASTER, MS_PLUGIN, MS_UNION

Error codes MS_NOERR, MS_IOERR, MS_MEMERR, MS_TYPEERR, MS_SYMERR, MS_REGEXERR,
MS_TTFERR, MS_DBFERR, MS_GDERR, MS_IDENTERR, MS_EOFERR, MS_PROJERR,
MS_MISCERR, MS_CGIERR, MS_WEBERR, MS_IMGERR, MS_HASHERR, MS_JOINERR,
MS_NOTFOUND, MS_SHPERR, MS_PARSEERR, MS_SDEERR, MS_OGRERR, MS_QUERYERR,

6.3. PHP MapScript 239

http://trac.osgeo.org/mapserver/wiki/PHPMapScript
http://www.maptools.org/php_mapscript/
http://www.php.net

MapServer Documentation, Release 6.0.3

MS_WMSERR, MS_WMSCONNERR, MS_ORACLESPATIALERR, MS_WFSERR, MS_WFSCONNERR,
MS_MAPCONTEXTERR, MS_HTTPERR, MS_WCSERR

Symbol types MS_SYMBOL_SIMPLE, MS_SYMBOL_VECTOR, MS_SYMBOL_ELLIPSE,
MS_SYMBOL_PIXMAP, MS_SYMBOL_TRUETYPE

Image Mode types (outputFormatObj) MS_IMAGEMODE_PC256, MS_IMAGEMODE_RGB,
MS_IMAGEMODE_RGBA, MS_IMAGEMODE_INT16, MS_IMAGEMODE_FLOAT32,
MS_IMAGEMODE_BYTE, MS_IMAGEMODE_FEATURE, MS_IMAGEMODE_NULL

Style/Attribue binding MS_STYLE_BINDING_SIZE, MS_STYLE_BINDING_ANGLE,
MS_STYLE_BINDING_COLOR, MS_STYLE_BINDING_OUTLINECOLOR,
MS_STYLE_BINDING_SYMBOL, MS_STYLE_BINDING_WIDTH

Label/Attribute binding MS_LABEL_BINDING_SIZE, MS_LABEL_BINDING_ANGLE,
MS_LABEL_BINDING_COLOR, MS_LABEL_BINDING_OUTLINECOLOR,

MS_LABEL_BINDING_FONT, MS_LABEL_BINDING_PRIORITY, MS_LABEL_BINDING_POSITION,
MS_LABEL_BINDING_SHADOWSIZEX, MS_LABEL_BINDING_SHADOWSIZEY

Alignment MS_ALIGN_LEFT, MS_ALIGN_CENTER, MS_ALIGN_RIGHT
OwsRequest MS_GET_REQUEST, MS_POST_REQUEST

6.3.6 Functions
string ms_GetVersion() Returns the MapServer version and options in a string. This string can be parsed to find out
which modules were compiled in, etc.

int ms_GetVersionInt() Returns the MapServer version number (x.y.z) as an integer (x*10000 + y*100 + z). (New
in v5.0) e.g. V5.4.3 would return 50403.

int ms_iogetStdoutBufferBytes() Writes the current buffer to stdout. The PHP header() function should be used to
set the documents’s content-type prior to calling the function. Returns the number of bytes written if output is
sent to stdout. See MapScript Wrappers for WxS Services for more info.

void ms_iogetstdoutbufferstring() Fetch the current stdout buffer contents as a string. This method does not clear
the buffer.

void ms_ioinstallstdinfrombuffer() Installs a mapserver IO handler directing future stdin reading (ie. post request
capture) to come from a buffer.

void ms_ioinstallstdouttobuffer() Installs a mapserver IO handler directing future stdout output to a memory buffer.
void ms_ioresethandlers() Resets the default stdin and stdout handlers in place of “buffer” based handlers.

void ms_iostripstdoutbuffercontenttype() Strip the Content-type header off the stdout buffer if it has one, and if a
content type is found it is return. Otherwise return false.

array ms_TokenizeMap(string map_file_name) Preparses a mapfile through the MapServer parser and return an ar-
ray with one item for each token from the mapfile. Strings, logical expressions, regex expressions and comments
are returned as individual tokens.

6.3.7 Classes

The following class objects are available through PHP MapScript.

240 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

classObj

Constructor
Class Objects can be returned by the layerObj class, or can be created using:
new classObj(layerObj layer [, classObj class])

or using the old constructor

classObj ms_newClassObj(layerObj layer [, classObj class])

The second argument class is optional. If given, the new class created will be a copy of this class.

Members
Type Name Note
string group
string keyimage
labelObj label
double maxscaledenom
hashTableObj | metadata
double minscaledenom
string name
int numstyles read-only
int status MS_ON, MS_OFF or MS_DELETE
string template
string title
int type
Methods

imageObj createLegendIcon(int width, int height) Draw the legend icon and return a new imageObj.

int deletestyle(int index) Delete the style specified by the style index. If there are any style that follow the deleted
style, their index will decrease by 1.

int drawLegendIcon(int width, int height, imageObj im, int dstX, int dstY) Draw the legend icon on im object at
dstX, dstY. Returns MS_SUCCESS/MS_FAILURE.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

string getExpressionString() Returns the expression string for the class object.

3L

int getMetaData(string name) Fetch class metadata entry by name. Returns
that the search is case sensitive.

if no entry matches the name. Note

Note: getMetaData’s query is case sensitive.

styleObj getStyle(int index) Return the style object using an index. index >= 0 && index < class->numstyles.

string getTextString() Returns the text string for the class object.

6.3. PHP MapScript 241

MapServer Documentation, Release 6.0.3

int movestyledown(int index) The style specified by the style index will be moved down into the array of classes.
Returns MS_SUCCESS or MS_FAILURE. ex class->movestyledown(0) will have the effect of moving style O

up to position 1, and the style at position 1 will be moved to position 0.

int movestyleup(int index) The style specified by the style index will be moved up into the array of cl

asses. Returns

MS_SUCCESS or MS_FAILURE. ex class->movestyleup(1) will have the effect of moving style 1 up to position

0, and the style at position 0 will be moved to position 1.

int removeMetaData(string name) Remove a metadata entry for the class. Returns MS_SUCCESS/MS_FAILURE.

int set(string property_name, new_value) Set object property to a new value.
int setExpression(string expression) Set the expression string for the class object.

int setMetaData(string name, string value) Set a metadata entry for the class.
MS_SUCCESS/MS_FAILURE.

int settext(string text) Set the text string for the class object.

int updateFromString(string snippet) Update a class from a string snippet.
MS_SUCCESS/MS_FAILURE.

/+*set the color =*/
$oClass—->updateFromString (' CLASS STYLE COLOR 255 0 255 END END’);

clusterObj

Constructor

Instance of clusterObj is always embedded inside the layerOb;.

Members

Type Name
double | buffer
double | maxdistance
string | region

Methods

string getFilterString() Returns the expression for this cluster filter or NULL on error.
string getGroupString() Returns the expression for this cluster group or NULL on error.
int setFilter(string expression) Set layer filter expression.

int setGroup(string expression) Set layer group expression.

colorObj

Constructor

Instances of colorObj are always embedded inside other classes.

Returns

Returns

242 Chapter 6

. MapScript

MapServer Documentation, Release 6.0.3

Members
Type | Name
int red
int green
int blue
Methods

void setRGB(int red, int green, int blue) Set red, green, blue values.

errorObj

Instances of errorObj are created internally by MapServer as errors happen. Errors are managed as a chained list with
the first item being the most recent error. The head of the list can be fetched using ms_GetErrorObj(), and the list can
be cleared using ms_ResetErrorList()

Functions

errorObj ms_GetErrorObj() Returns a reference to the head of the list of errorOb;.

void ms_ResetErrorList() Clear the current error list. Note that clearing the list invalidates any errorObj handles
obtained via the $error->next() method.

Members
Type | Name
int code //See error code constants above

string | message
string | routine

Method

errorObj next() Returns the next errorObj in the list, or NULL if we reached the end of the list.

Example

This example draws a map and reports all errors generated during the draw() call, errors can potentially come from
multiple layers.

ms_ResetErrorList () ;
$img = Smap->draw();
Serror = ms_GetErrorObj () ;
while (Serror && Serror—->code != MS_NOERR)
{
printf ("Error in %s: %$s
\n", Serror->routine, S$Serror->message);
Serror = $Serror->next ()

’

6.3. PHP MapScript 243

MapServer Documentation, Release 6.0.3

gridObj

Constructor

The grid is always embedded inside a layer object defined as a grid (layer->connectiontype = MS_GRATICULE) (for
more docs : https://github.com/mapserver/mapserver/wiki/MapServerGrid)

A layer can become a grid layer by adding a grid object to it using : ms_newGridObj(layerObj layer)

SoLayer = ms_newlayerob] ($oMap) ;
SoLayer->set ("name", "GRID");

ms_newgridobj ($SolLayer) ;

$SoLayer->grid->set ("labelformat", "DDMMSS");

Members

Type Name

string | labelformat
double | maxacrs
double | maxinterval
double | maxsubdivide
double | minarcs
double | mininterval
double | minsubdivide

Methods

int set(string property_name, new_value) Set object property to a new value.

hashTableObj

Constructor

Instance of hashTableObj is always embedded inside the classObj, layerObj, mapObj and webObj. It is uses a read
only.

ShashTable = $olayer->metadata;
Skey = null;
while ($key = S$hashTable->nextkey ($key))
echo "Key: ".S$key." value: ".$hashTable->get (Skey) ."
";

Methods

void clear() Clear all items in the hashTable (To NULL).

132

string get(string key) Fetch class metadata entry by name. Returns
search is case sensitive.

if no entry matches the name. Note that the

string nextkey(string previousKey) Return the next key or first key if previousKey = NULL. Return NULL if no
item is in the hashTable or end of hashTable is reached

int remove(string key) Remove a metadata entry in the hashTable. Returns MS_SUCCESS/MS_FAILURE.

244 Chapter 6. MapScript

https://github.com/mapserver/mapserver/wiki/MapServerGrid

MapServer Documentation, Release 6.0.3

int set(string key, string value) Set a metadata entry in the hashTable. Returns MS_SUCCESS/MS_FAILURE.

imageObj

Constructor

Instances of imageObj are always created by the mapObj class methods.

Members

Type Name Note
int width read-only
int height read-only
int resolution read-only
int resolutionfactor | read-only
string | imagepath

string | imageurl

Methods

void pasteImage(imageObj srcImg, int transparentColorHex [[, int dstX, int dstY], int angle]) Copy srcImg on
top of the current imageObj. transparentColorHex is the color (in Oxrrggbb format) from srcImg that should
be considered transparent (i.e. those pixels won’t be copied). Pass -1 if you don’t want any transparent color.
If optional dstx,dsty are provided then it defines the position where the image should be copied (dstx,dsty =
top-left corner position). The optional angle is a value between 0 and 360 degrees to rotate the source image
counterclockwise. Note that if an angle is specified (even if its value is zero) then the dstx and dsty coordinates
specify the CENTER of the destination area. Note: this function works only with 8 bits GD images (PNG or
GIF).

int savelmage([string filename, MapObj oMap]) Writes image object to specified filename. Passing no filename
or an empty filename sends output to stdout. In this case, the PHP header() function should be used to set the
document’s content-type prior to calling savelmage(). The output format is the one that is currently selected
in the map file. The second argument oMap is not manadatory. It is usful when saving to formats like GTIFF
that needs georeference informations contained in the map file. On success, it returns either MS_SUCCESS if
writing to an external file, or the number of bytes written if output is sent to stdout.

string saveWebImage() Writes image to temp directory. Returns image URL. The output format is the one that is
currently selected in the map file.

labelcacheMemberObj

Accessible only through the mapObj (map->getLabel()).

6.3. PHP MapScript 245

MapServer Documentation, Release 6.0.3

Members
Type Name Note
int classindex | read-only
int featuresize | read-only
int layerindex | read-only
int markerid read-only
int numstyles | read-only
int shapeindex | read-only
int status read-only
string | text read-only
int tileindex read-only

Method

None

labelcacheObj

Accessible only through the mapObj (map->labelcache). This object is only used to give the possiblity to free the label

cache (map->labelcache->freeCache())

Method

boolean freeCache() Free the label cache. Always returns MS_SUCCESS. Ex : map->labelcache->freeCache();

labelObj

Constructor

labelObj are always embedded inside other classes.

Members
Type Name
int align
double angle
int anglemode
int antialias
int autominfeaturesize
colorObj | backgroundcolor (deprecated since 6.0)
colorObj | backgroundshadowcolor (deprecated since 6.0)
int backgroundshadowsizex (deprecated since 6.0)
int backgroundshadowsizey (deprecated since 6.0)
int buffer
colorObj | color
Continued on next page
246 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

Table 6.1 — continued from previous page

Type Name
string encoding
string font

int force

int maxlength
int maxsize

int mindistance
int minfeaturesize
int minlength
int minsize

int numstyles
int offsetx

int offsety
colorObj | outlinecolor
int outlinewidth
int partials

int position

int priority

int repeatdistance
colorObj | shadowcolor
int shadowsizex
int shadowsizey
int size

int type

int wrap

Methods

int deleteStyle(int index) Delete the style specified by the style index. If there are any style that follow the deleted
style, their index will decrease by 1.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

string getBinding(const labelbinding) Get the attribute binding for a specified label property. Returns NULL if there
is no binding for this property.

Example:

$oLabel->setbinding (MS_LABEL_BINDING_COLOR, "FIELD_NAME_COLOR");
echo $oLabel->getbinding (MS_LABEL_BINDING_COLOR); // FIELD_NAME_COLOR

styleObj getStyle(int index) Return the style object using an index. index >= 0 && index < label->numstyles.

int moveStyleDown(int index) The style specified by the style index will be moved down into the array of classes.
Returns MS_SUCCESS or MS_FAILURE. ex label->movestyledown(0) will have the effect of moving style O
up to position 1, and the style at position 1 will be moved to position 0.

int moveStyleUp(int index) The style specified by the style index will be moved up into the array of classes. Returns
MS_SUCCESS or MS_FAILURE. ex label->movestyleup(1) will have the effect of moving style 1 up to position
0, and the style at position 0 will be moved to position 1.

int removeBinding(const labelbinding) Remove the attribute binding for a specfiled style property.

Example:

6.3. PHP MapScript 247

MapServer Documentation, Release 6.0.3

SoStyle->removebinding (MS_LABEL_BINDING_COLOR) ;

int set(string property_name, new_value) Set object property to a new value.
int setBinding(const labelbinding, string value) Set the attribute binding for a specified label property.
Example:

SoLabel->setbinding (MS_LABEL_BINDING_COLOR, "FIELD_NAME_COLOR");

This would bind the color parameter with the data (ie will extract the value of the color from the field called
“FIELD_NAME_COLOR”

int updateFromString(string snippet) Update a label from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

layerObj

Constructor

Layer Objects can be returned by the mapObj class, or can be created using:
layerObj ms_newLayerObj (MapObj map [, layerObj layer])

A second optional argument can be given to ms_newLayerObj() to create the new layer as a copy of an existing layer.
If a layer is given as argument then all members of a this layer will be copied in the new layer created.

Members
Type Name Note
int annotate
hashTableObj | bindvals
string classgroup
string classitem
clusterObj cluster
string connection
int connectiontype read-only, use setConnectionType() to set it
string data
int debug
int dump deprecated since 6.0
string filteritem
string footer
gridObj grid only available on a layer defined as grid (MS_GRATICULE)
string group
string header
int index read-only
int labelcache
string labelitem
double labelmaxscaledenom
double labelminscaledenom
string labelrequires
int maxfeatures
Continued on next page

248 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

Table 6.2 — continued from previous page
Type Name Note
double maxscaledenom
hashTableObj | metadata
double minscaledenom
string name
int num_processing
int numclasses read-only
colorObj offsite
int opacity
projectionObj | projection
int postlabelcache
string requires
int sizeunits
int startindex
int status MS_ON, MS_OFF, MS_DEFAULT or MS_DELETE
string styleitem
double symbolscaledenom
string template
string tileindex
string tileitem
double tolerance
int toleranceunits
int transform
int type
Methods

int addFeature(shapeObj shape) Add a new feature in a layer. Returns MS_SUCCESS or MS_FAILURE on error.

int applySLD(string sldxml, string namedlayer) Apply the SLD document to the layer object. The matching be-
tween the sld document and the layer will be done using the layer’s name. If a namedlayer argument is passed
(argument is optional), the NamedLayer in the sld that matchs it will be used to style the layer. See SLD HowTo
for more information on the SLD support.

int applySLDURL(string sldurl, string namedlayer) Apply the SLD document pointed by the URL to the layer ob-
ject. The matching between the sld document and the layer will be done using the layer’s name. If a namedlayer
argument is passed (argument is optional), the NamedLayer in the sld that matchs it will be used to style the
layer. See SLD HowTo for more information on the SLD support.

void clearProcessing() Clears all the processing strings.
void close() Close layer previously opened with open().

int draw(imageObj image) Draw a single layer, add labels to cache if required. Returns MS_SUCCESS or
MS_FAILURE on error.

int drawQuery(imageObj image) Draw query map for a single layer.

string executeWFSGetfeature() Executes a GetFeature request on a WES layer and returns the name of the tempo-
rary GML file created. Returns an empty string on error.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

string generateSLD() Returns an SLD XML string based on all the classes found in the layer (the layer must have
STATUS on).

6.3. PHP MapScript 249

MapServer Documentation, Release 6.0.3

classObj getClass(int classIndex) Returns a classObj from the layer given an index value (O=first class)

int getClassIndex(shape [, classgroup, numclasses]) Get the class index of a shape for a given scale. Returns -1 if
no class matches. classgroup is an array of class ids to check (Optionnal). numclasses is the number of classes
that the classgroup array contains. By default, all the layer classes will be checked.

rectObj getExtent() Returns the layer’s data extents or NULL on error. If the layer’s EXTENT member is set then
this value is used, otherwise this call opens/closes the layer to read the extents. This is quick on shapefiles, but
can be an expensive operation on some file formats or data sources. This function is safe to use on both opened
or closed layers: it is not necessary to call open()/close() before/after calling it.

string getFilterString() Returns the expression for this layer or NULL on error.

array getGridIntersectionCoordinates() Returns an array containing the grid intersection coordinates. If there are
no coordinates, it returns an empty array.

array getItems() Returns an array containing the items. Must call open function first. If there are no items, it returns
an empty array.

[3h

int getMetaData(string name) Fetch layer metadata entry by name. Returns
that the search is case sensitive.

if no entry matches the name. Note

Note: getMetaData’s query is case sensitive.

int getNumResults() Returns the number of results in the last query.

array getProcessing() Returns an array containing the processing strings. If there are no processing strings, it returns
an empty array.

string getProjection() Returns a string representation of the projection. Returns NULL on error or if no projection is
set.

resultObj getResult(int index) Returns a resultObj by index from a layer object with index in the range O to
numresults-1. Returns a valid object or FALSE(O) if index is invalid.

rectObj getResultsBounds() Returns the bounding box of the latest result.

shapeObj getShape(resultObj result]) If the resultObj passed has a valid resultindex, retrieve shapeObj from a
layer’s resultset. (You get it from the resultObj returned by getResult() for instance). Otherwise, it will do
a single query on the layer to fetch the shapeindex

Smap = new mapObj ("gmap75.map");

$1 = $map->getLayerByName ("popplace");

$1->queryByRect ($Smap->extent) ;

for ($1=0; $i<$l->getNumResults () ;$i++) {
$s = $1->getShape ($1->getResult ($1));
echo $s->getValue ($1, "Name") ;
echo "\n";

}

string getWMSFeatureInfoURL(int clickX, int clickY, int featureCount, string infoFormat) Returns a WMS
GetFeatureInfo URL (works only for WMS layers) clickX, clickY is the location of to query in pixel coor-
dinates with (0,0) at the top left of the image. featureCount is the number of results to return. infoFormat is the
format the format in which the result should be requested. Depends on remote server’s capabilities. MapServer
WMS servers support only “MIME” (and should support “GML.1” soon). Returns ‘“”* and outputs a warning if
layer is not a WMS layer or if it is not queriable.

boolean isVisible() Returns MS_TRUE/MS_FALSE depending on whether the layer is currently visible in the map
(i.e. turned on, in scale, etc.).

250 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

int moveclassdown(int index) The class specified by the class index will be moved down into the array of layers.
Returns MS_SUCCESS or MS_FAILURE. ex layer->moveclassdown(0) will have the effect of moving class 0
up to position 1, and the class at position 1 will be moved to position O.

int moveclassup(int index) The class specified by the class index will be moved up into the array of layers. Re-
turns MS_SUCCESS or MS_FAILURE. ex layer->moveclassup(1) will have the effect of moving class 1 up to
position 0, and the class at position 0 will be moved to position 1.

int open() Open the layer for use with getShape(). Returns MS_SUCCESS/MS_FAILURE.

shapeobj nextShape() Called after msWhichShapes has been called to actually retrieve shapes within a given area.
Returns a shape object or NULL on error.

Smap = ms_newmapobj ("d:/msapps/gmap-ms40/htdocs/gmap75.map") ;
S$layer = Smap->getLayerByName (' road’);
$status = $layer—->open|();
$status = S$layer->whichShapes (Smap->extent) ;
while ($Sshape = $layer->nextShape())
{
echo $shape->index ."
\n";
}

$Slayer->close () ;

int queryByAttributes(string gitem, string gstring, int mode) Query layer for shapes that intersect current map ex-
tents. gitem is the item (attribute) on which the query is performed, and gstring is the expression to match. The
query is performed on all the shapes that are part of a CLASS that contains a TEMPLATE value or that match
any class in a layer that contains a LAYER TEMPLATE value. Note that the layer’s FILTER/FILTERITEM are
ignored by this function. Mode is MS_SINGLE or MS_MULTIPLE depending on number of results you want.
Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error
happened (note that the error message in case nothing was found can be avoided in PHP using the ‘@’ control
operator).

int queryByFeatures(int slayer) Perform a query set based on a previous set of results from another layer. At present
the results MUST be based on a polygon layer. Returns MS_SUCCESS if shapes were found or MS_FAILURE
if nothing was found or if some other error happened (note that the error message in case nothing was found can
be avoided in PHP using the ‘@’ control operator).

int queryByPoint(pointObj point, int mode, double buffer) Query layer at point location specified in georefer-
enced map coordinates (i.e. not pixels). The query is performed on all the shapes that are part of a CLASS
that contains a TEMPLATE value or that match any class in a layer that contains a LAYER TEMPLATE value.
Mode is MS_SINGLE or MS_MULTIPLE depending on number of results you want. Passing buffer -1 defaults
to tolerances set in the map file (in pixels) but you can use a constant buffer (specified in ground units) instead.
Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error
happened (note that the error message in case nothing was found can be avoided in PHP using the ‘@’ control
operator).

int queryByRect(rectObj rect) Query layer using a rectangle specified in georeferenced map coordinates (i.e. not
pixels). The query is performed on all the shapes that are part of a CLASS that contains a TEMPLATE value
or that match any class in a layer that contains a LAYER TEMPLATE value. Returns MS_SUCCESS if shapes
were found or MS_FAILURE if nothing was found or if some other error happened (note that the error message
in case nothing was found can be avoided in PHP using the ‘@’ control operator).

int queryByShape(shapeObj shape) Query layer based on a single shape, the shape has to be a polygon at this
point. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other
error happened (note that the error message in case nothing was found can be avoided in PHP using the ‘@’
control operator).

classObj removeClass(int index) Removes the class indicated and returns a copy, or NULL in the case of a failure.
Note that subsequent classes will be renumbered by this operation. The numclasses field contains the number

6.3. PHP MapScript 251

MapServer Documentation, Release 6.0.3

of classes available.
int removeMetaData(string name) Remove a metadata entry for the layer. Returns MS_SUCCESS/MS_FAILURE.
int set(string property_name, new_value) Set object property to a new value.

int setConnectionType(int connectiontype [,string plugin_library]) Changes the connectiontype of the layer and
recreates the vtable according to the new connection type. This method should be used instead of setting the
connectiontype parameter directly. In the case when the layer.connectiontype = MS_PLUGIN the plugin_library
parameter should also be specified so as to select the library to load by MapServer. For the other connection
types this parameter is not used.

int setFilter(string expression) Set layer filter expression.

int setMetaData(string name, string value) Set a metadata entry for the layer. Returns
MS_SUCCESS/MS_FAILURE.

int setProcessing(string) Add the string to the processing string list for the layer. The layer->num_processing is
incremented by 1. Returns MS_SUCCESS or MS_FAILURE on error.

SoLayer->setprocessing ("SCALE_1=AUTO") ;
SoLayer->setprocessing ("SCALE_2=AUTO") ;

int setProjection(string proj_params) Set layer projection and coordinate system. Parameters are given as a single
string of comma-delimited PROJ.4 parameters. Returns MS_SUCCESS or MS_FAILURE on error.

int setWKTProjection(string proj_params) Same as setProjection(), but takes an OGC WKT projection definition
string as input.

Note: setWKTProjection requires GDAL support

int updateFromString(string snippet) Update a layer from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

/+modify the name =*/

SoLayer->updateFromString (' LAYER NAME land_fn2 END’);

/*add a new classx*/

SoLayer->updateFromString (' LAYER CLASS STYLE COLOR 255 255 0 END END END’);

int whichshapes(rectobj) Performs a spatial, and optionally an attribute based feature search. The function basically
prepares things so that candidate features can be accessed by query or drawing functions (eg using nextshape

function). Returns MS_SUCCESS, MS_FAILURE or MS_DONE. MS_DONE is returned if the layer extent
does not overlap the rectOb.

legendObj

Constructor

Instances of legendObj are always are always embedded inside the mapObj.

252 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

Members
Type Name Note
int height
colorObj | imagecolor
int keysizex
int keysizey
int keyspacingx
int keyspacingy
labelObj | label
colorObj | outlinecolor Color of outline of box, -1 for no outline
int position for embeded legends, MS_UL, MS_UC, ...
int postlabelcache | MS_TRUE, MS_FALSE
int status MS_ON, MS_OFF, MS_EMBED
string template
int width
Methods

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

int set(string property_name, new_value) Set object property to a new value.

int updateFromString(string snippet) Update a legend from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

lineObj

Constructor

new lineOb7j()

or using the old constructor

LineObj ms_newLineObj ()

Members
Type Name Note
int numpoints | read-only
Methods

int add(pointObj point) Add a point to the end of line. Returns MS_SUCCESS/MS_FAILURE.
int addXY(double x, double y [, double m]) Add a point to the end of line. Returns MS_SUCCESS/MS_FAILURE.

Note: the 3rd parameter m is used for measured shape files only. It is not mandatory.

6.3. PHP MapScript

253

MapServer Documentation, Release 6.0.3

int addX'YZ(double x, double y, double z [, double m]) Add a point to the end of line.
MS_SUCCESS/MS_FAILURE.

Returns

Note: the 4th parameter m is used for measured shape files only. It is not mandatory.

PointObj point(int i) Returns a reference to point number i.

9

int project(projectionObj in, projectionObj out) Project the line from “in” projection (1st argument) to “out” pro-
jection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

mapObj

Constructor

new mapObj(string map_file_name

or using the old constructors

[, string new_map_pathl])

mapObj ms_newMapObj(string map_file_name [, string new_map_path]) Returns a new object to deal with a
MapServer map file.

mapObj ms_newMapObjFromString(string map_file_string [, string new_map_path]) Construct a new
mapObj from a mapfile string. Returns a new object to deal with a MapServer map file.

Note: By default, the SYMBOLSET, FONTSET, and other paths in the mapfile are relative to the mapfile location.
If new_map_path is provided then this directory will be used as the base path for all the rewlative paths inside the

mapfile.
Members

Type Name Note

double cellsize

int debug

double defresolution pixels per inch, defaults to 72

rectObj extent;

string fontsetfilename read-only, set by setFontSet()

int height see setSize()

colorObj imagecolor

int keysizex

int keysizey

int keyspacingx

int keyspacingy

labelcacheObj labelcache no members. Used only to free the label cache (map->labelcache->free()

legendObyj legend

string mappath

int maxsize

hashTableObj metadata

string name

int numlayers read-only

Continued on next page

254 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

Table 6.3 — continued from previous page

Type Name Note
outputformatObj | outputformat
projectionObj projection
querymapObj querymap
referenceMapObj | reference
double resolution pixels per inch, defaults to 72
scalebarObj scalebar
double scaledenom read-only, set by drawMap()
string shapepath
int status
string symbolsetfilename | read-only, set by setSymbolSet()
int units map units type
webObj web
int width see setSize()
Methods

int applyconfigoptions() Applies the config options set in the map file. For example setting the PROJ_LIB using
the setconfigoption only modifies the value in the map object. applyconfigoptions will actually change the
PROJ_LIB value that will be used when dealing with projection.

int applySLD(string sldxml) Apply the SLD document to the map file. The matching between the sld document and
the map file will be done using the layer’s name. See SLD HowTo for more information on the SLD support.

int applySLDURL (string sldurl) Apply the SLD document pointed by the URL to the map file. The matching
between the sld document and the map file will be done using the layer’s name. See SLD HowTo for more
information on the SLD support.

imageObj draw() Render map and return an image object or NULL on error.

int drawLabelCache(imageObj image) Renders the labels for a map. Returns MS_SUCCESS or MS_FAILURE on
error.

imageObj drawLegend() Render legend and return an image object.

imageObj drawQuery() Render a query map and return an image object or NULL on error.
imageObj drawReferenceMap() Render reference map and return an image object.
imageObj drawScaleBar() Render scale bar and return an image object.

int embedLegend(imageObj image) embeds a legend. Actually the legend is just added to the label cache so you
must invoke drawLabelCache() to actually do the rendering (unless postlabelcache is set in which case it is
drawn right away). Returns MS_SUCCESS or MS_FAILURE on error.

int embedScalebar(imageObj image) embeds a scalebar. Actually the scalebar is just added to the label cache so
you must invoke drawLabelCache() to actually do the rendering (unless postlabelcache is set in which case it is
drawn right away). Returns MS_SUCCESS or MS_FAILURE on error.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

void freeQuery(layerindex) Frees the query result on a specified layer. If the layerindex is -1, all queries on layers
will be freed.

string generateSLD() Returns an SLD XML string based on all the classes found in all the layers that have STATUS
on.

6.3. PHP MapScript 255

MapServer Documentation, Release 6.0.3

array getAllGroupNames() Return an array containing all the group names used in the layers. If there are no groups,
it returns an empty array.

array getAllLayerNames() Return an array containing all the layer names. If there are no layers, it returns an empty
array.

colorObj getColorbyIndex(int iCloIndex) Returns a colorObj corresponding to the color index in the palette.

string getConfigOption(string key) Returns the config value associated with the key. Returns an empty sting if key
not found.

labelcacheMemberObj getLabel(int index) Returns a labelcacheMemberObj from the map given an index value
(O=first label). Labelcache has to be enabled.

while (SoLabelCacheMember = S$SoMap->getLabel ($1)) {
/+ do something with the labelcachemember =/
++$1;

}

layerObj getLayer(int index) Returns a layerObj from the map given an index value (O=first layer)

layerObj getLayerByName(string layer_name) Returns a layerObj from the map given a layer name. Returns
NULL if layer doesn’t exist.

array getLayersDrawingOrder() Return an array containing layer’s index in the order which they are drawn. If
there are no layers, it returns an empty array.

array getLayersIndexByGroup(string groupname) Return an array containing all the layer’s indexes given a group
name. If there are no layers, it returns an empty array.

332

int getMetaData(string name) Fetch metadata entry by name (stored in the WEB object in the map file). Returns
if no entry matches the name.

Note: getMetaData’s query is case sensitive.

int getNumSymbols() Return the number of symbols in map.

string getProjection() Returns a string representation of the projection. Returns NULL on error or if no projection is
set.

int getSymbolByName(string symbol_name) Returns the symbol index using the name.

symbol getSymbolObjectBylId(int symbolid) Returns the symbol object using a symbol id. Refer to the symbol
object reference section for more details.

int insertLayer(layerObj layer [, int nIndex=-1]) Insert a copy of layer into the Map at index nindex. The default
value of nlndex is -1, which means the last possible index. Returns the index of the new Layer, or -1 in the case
of a failure.

int loadMapContext(string filename [, boolean unique_layer_name]) Available only if WMS support is enabled.
Load a WMS Map Context XML file into the current mapObj. If the map already contains some layers then
the layers defined in the WMS Map context document are added to the current map. The 2nd argument
unique_layer_name is optional and if set to MS_TRUE layers created will have a unique name (unique pre-
fix added to the name). If set to MS_FALSE the layer name will be the the same name as in the context. The
default value is MS_FALSE. Returns MS_SUCCESS/MS_FAILURE.

int loadOWSParameters(owsrequest request, string version) Load OWS request parameters (BBOX, LAYERS,
&c.) into map. Returns MS_SUCCESS or MS_FAILURE. 2nd argument version is not mandatory. If not given,
the version will be set to 1.1.1

int loadQuery(filename) Loads a query from a file. Returns MS_SUCESS or MS_FAILURE. To be used with save-
query.

256 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

int moveLayerDown(int layerindex) Move layer down in the hierarcy of drawing. Returns MS_SUCCESS or
MS_FAILURE on error.

int moveLayerUp(int layerindex) Move layer up in the hierarcy of drawing. Returns MS_SUCCESS or
MS_FAILURE on error.

int offsetExtent(double x, double y) Offset the map extent based on the given distances in map coordinates. Returns
MS_SUCCESS or MS_FAILURE.

int owsDispatch(owsrequest request) Processes and executes the passed OpenGIS Web Services request on the map.
Returns MS_DONE (2) if there is no valid OWS request in the req object, MS_SUCCESS (0) if an OWS
request was successfully processed and MS_FAILURE (1) if an OWS request was not successfully processed.
OWS requests include WMS, WFS, WCS and SOS requests supported by MapServer. Results of a dispatched
request are written to stdout and can be captured using the msIO services (ie. ms_ioinstallstdouttobuffer() and
ms_iogetstdoutbufferstring())

imageObj preparelmage() Return a blank image object.

void prepareQuery() Calculate the scale of the map and set map->scaledenom.

string processLegendTemplate(array params) Process legend template files and return the result in a buffer.
See Also:
processtemplate

string processQueryTemplate(array params, boolean generateimages) Process query template files and return the
result in a buffer. Second argument generateimages is not mandatory. If not given it will be set to TRUE.

See Also:
processtemplate

string processTemplate(array params, boolean generateimages) Process the template file specified in the web ob-
ject and return the result in a buffer. The processing consists of opening the template file and replace all the tags
found in it. Only tags that have an equivalent element in the map object are replaced (ex [scaledenom]). The are
two exceptions to the previous statement :

e [img], [scalebar], [ref], [legend] would be replaced with the appropriate url if the parameter generateimages
is set to MS_TRUE. (Note : the images corresponding to the different objects are generated if the object is
set to MS_ON in the map file)

* the user can use the params parameter to specify tags and their values. For example if the user have a
specific tag call [my_tag] and would like it to be replaced by “value_of_my_tag” he would do

Stmparray ["my_tag"] = "value_of_my_tag";
Smap->processtemplate ($tmparray, MS_FALSE) ;

int queryByFeatures(int slayer) Perform a query based on a previous set of results from a layer. At present the
results MUST be based on a polygon layer. Returns MS_SUCCESS if shapes were found or MS_FAILURE if
nothing was found or if some other error happened (note that the error message in case nothing was found can
be avoided in PHP using the ‘@’ control operator).

int queryByIndex(layerindex, tileindex, shapeindex[, addtoquery]) Add a specific shape on a given layer to the
query result. If addtoquery (which is a non mandatory argument) is set to MS_TRUE, the shape will be added
to the existing query list. Default behavior is to free the existing query list and add only the new shape.

int queryByPoint(pointObj point, int mode, double buffer) Query all selected layers in map at point location spec-
ified in georeferenced map coordinates (i.e. not pixels). The query is performed on all the shapes that are part of
a CLASS that contains a Templating value or that match any class in a layer that contains a LAYER TEMPLATE
value. Mode is MS_SINGLE or MS_MULTIPLE depending on number of results you want. Passing buffer -1
defaults to tolerances set in the map file (in pixels) but you can use a constant buffer (specified in ground units)
instead. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other

6.3. PHP MapScript 257

MapServer Documentation, Release 6.0.3

error happened (note that the error message in case nothing was found can be avoided in PHP using the ‘@’
control operator).

int queryByRect(rectObj rect) Query all selected layers in map using a rectangle specified in georeferenced map
coordinates (i.e. not pixels). The query is performed on all the shapes that are part of a CLASS that con-
tains a Templating value or that match any class in a layer that contains a LAYER TEMPLATE value. Returns
MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error happened
(note that the error message in case nothing was found can be avoided in PHP using the ‘@’ control operator).

int queryByShape(shapeObj shape) Query all selected layers in map based on a single shape, the shape has to be
a polygon at this point. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found
or if some other error happened (note that the error message in case nothing was found can be avoided in PHP
using the ‘@’ control operator).

layerObj removeLayer(int nIndex) Remove a layer from the mapObj. The argument is the index of the layer to be
removed. Returns the removed layerObj on success, else null.

int removeMetaData(string name) Remove a metadata entry for the map (stored in the WEB object in the map file).
Returns MS_SUCCESS/MS_FAILURE.

int save(string filename) Save current map object state to a file. Returns -1 on error. Use absolute path. If a relative
path is used, then it will be relative to the mapfile location.

int saveMapContext(string filename) Available only if WMS support is enabled. Save current map object state
in WMS Map Context format. Only WMS layers are saved in the WMS Map Context XML file. Returns
MS_SUCCESS/MS_FAILURE.

int saveQuery(string filename[, int results]) Save the current query in a file. Results determines the save format -
MS_TRUE (or 1/true) saves the query results (tile index and shape index), MS_FALSE (or O/false) the query
parameters (and the query will be re-run in loadquery). Returns MS_SUCCESS or MS_FAILURE. Either save
format can be used with loadquery. See RFC 65 and ticket #3647 for details of different save formats.

int scaleExtent(double zoomfactor, double minscaledenom, double maxscaledenom) Scale the map extent using
the zoomfactor and ensure the extent within the minscaledenom and maxscaledenom domain. If minscale-
denom and/or maxscaledenom is O then the parameter is not taken into account. Returns MS_SUCCESS or
MS_FAILURE.

int selectOutputFormat(string type) Selects the output format to be wused in the map. Returns
MS_SUCCESS/MS_FAILURE.

Note: the type used should correspond to one of the output formats declared in the map file. The type argument
passed is compared with the mimetype parameter in the output format structure and then to the name parameter
in the structure.

int set(string property_name, new_value) Set map object property to new value.

int setCenter(pointObj center) Set the map center to the given map point. Returns MS_SUCCESS or
MS_FAILURE.

int setConfigOption(string key, string value) Sets a config parameter using the key and the value passed

void setExtent(double minx, double miny, double maxx, double maxy) Set the map extents using the georef ex-
tents passed in argument. Returns MS_SUCCESS or MS_FAILURE on error.

int setFontSet(string fileName) Load and set a new FONTSET.

boolean setLayersDrawingOrder(array layeryindex) Set the layer’s order array. The argument passed must be a
valid array with all the layer’s index. Returns MS_SUCCESS or MS_FAILURE on error.

int setMetaData(string name, string value) Set a metadata entry for the map (stored in the WEB object in the map
file). Returns MS_SUCCESS/MS_FAILURE.

258 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

int setProjection(string proj_params, boolean bSetUnitsAndExtents) Set map projection and coordinate system.
Returns MS_SUCCESS or MS_FAILURE on error.

Parameters are given as a single string of comma-delimited PROJ.4 parameters. The argument : bSetUnit-
sAndExtents is used to automatically update the map units and extents based on the new projection. Possible
values are MS_TRUE and MS_FALSE. By defualt it is set at MS_FALSE.

int setRotation(double rotation_angle) Set map rotation angle. The map view rectangle (specified in EXTENTS)
will be rotated by the indicated angle in the counter- clockwise direction. Note that this implies the rendered
map will be rotated by the angle in the clockwise direction. Returns MS_SUCCESS or MS_FAILURE.

int setSize(int width, int height) Set the map width and height. This method updates the internal geotransform and
other data structures required for map rotation so it should be used instead of setting the width and height
members directly. Returns MS_SUCCESS or MS_FAILURE.

int setSymbolSet(string fileName) Load and set a symbol file dynamically.

int setWKTProjection(string proj_params, boolean bSetUnitsAndExtents) Same as setProjection(), but takes an
OGC WKT projection definition string as input. Returns MS_SUCCESS or MS_FAILURE on error.

Note: setWKTProjection requires GDAL support

int zoomPoint(int nZoomFactor, pointObj oPixelPos, int nImageWidth, int nImageHeight, rectObj oGeorefExt)
Zoom to a given XY postion. Returns MS_SUCCESS or MS_FAILURE on error.

Parameters are :
e Zoom factor : positive values do zoom in, negative values zoom out. Factor of 1 will recenter.
* Pixel position (pointObj) : x, y coordinates of the click, with (0,0) at the top-left
* Width : width in pixel of the current image.
* Height : Height in pixel of the current image.
* Georef extent (rectObj) : current georef extents.

¢ MaxGeoref extent (rectObj) : (optional) maximum georef extents. If provided then it will be impos-
sible to zoom/pan outside of those extents.

int zoomRectangle(rectObj oPixelExt, int nImageWidth, int nImageHeight, rectObj oGeorefExt) Set the map
extents to a given extents. Returns MS_SUCCESS or MS_FAILURE on error.

Parameters are :
* oPixelExt (rect object) : Pixel Extents
* Width : width in pixel of the current image.
» Height : Height in pixel of the current image.
¢ Georef extent (rectObj) : current georef extents.

int zoomScale(double nScaleDenom, pointObj oPixelPos, int nImageWidth, int nImageHeight, rectObj oGeorefExt [, rectObj ol
Zoom in or out to a given XY position so that the map is displayed at specified scale. Returns MS_SUCCESS
or MS_FAILURE on error.

Parameters are :
¢ ScaleDenom : Scale denominator of the scale at which the map should be displayed.
* Pixel position (pointObj) : x, y coordinates of the click, with (0,0) at the top-left

* Width : width in pixel of the current image.

6.3. PHP MapScript 259

MapServer Documentation, Release 6.0.3

» Height : Height in pixel of the current image.
» Georef extent (rectObj) : current georef extents.

* MaxGeoref extent (rectObj) : (optional) maximum georef extents. If provided then it will be impos-
sible to zoom/pan outside of those extents.

outputformatObj

Constructor

Instance of outputformatObj is always embedded inside the mapObj. It is uses a read only.

No constructor available (coming soon, see ticket 979)

Members

Type Name Note
string | driver
string | extension
int imagemode | MS_IMAGEMODE_* value.
string | mimetype
string | name

int renderer
int transparent
Methods

string getOption(string property_name) Returns the associated value for the format option property passed as ar-
gument. Returns an empty string if property not found.

int set(string property_name, new_value) Set object property to a new value.

void setOption(string property_name, string new_value) Add or Modify the format option list. return true on suc-
cess.

$oMap->outputformat->setOption ("OUTPUT_TYPE", "RASTER");

int validate() Checks some internal consistency issues, Returns MS_SUCCESS or MS_FAILURE. Some problems
are fixed up internally. May produce debug output if issues encountered.

OwsrequestObj

Constructor

new OWSRequestObj ()

or using the old constructor

request = ms_newOwsrequestObj();

Create a new ows request object.

260 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

Members

Type | Name
int numparams (read-only)
int type (read-only): MS_GET_REQUEST or MS_POST_REQUEST

Methods

int addParameter(string name, string value) Add a request parameter, even if the parameter key was previousely
set. This is useful when multiple parameters with the same key are required. For example :

$Srequest->addparameter (' SIZE’, ’'x(100)");
Srequest->addparameter (' SIZE’, 'y (100)");

string getName(int index) Return the name of the parameter at index in the request’s array of parameter names.
string getValue(int index) Return the value of the parameter at index in the request’s array of parameter values.
string getValueByName(string name) Return the value associated with the parameter name.

int loadParams() Initializes the OWSRequest object from the cgi environment variables REQUEST_METHOD,
QUERY_STRING and HTTP_COOKIE. Returns the number of name/value pairs collected.

int setParameter(string name, string value) Set a request parameter. For example :

Srequest—->setparameter (' REQUEST’, ’GetMap’);

pointObj
Constructor

new pointObj ()

or using the old constructor

PointObj ms_newPointObj ()

Members

Type Name Note

double | x

double | y

double | z used for 3d shape files. set to O for other types

double | m used only for measured shape files - set to O for other types
Methods

double distanceToLine(pointObject p1, pointObject p2) Calculates distance between a point ad a lined defined by
the two points passed in argument.

double distanceToPoint(pointObj poPoint) Calculates distance between two points.

double distanceToShape(shapeObj shape) Calculates the minimum distance between a point and a shape.

6.3. PHP MapScript 261

MapServer Documentation, Release 6.0.3

int draw(mapObj map, layerObj layer, imageObj img, int class_index, string text) Draws the individual point
using layer. The class_index is used to classify the point based on the classes defined for the layer. The text

string is used to annotate the point. Returns MS_SUCCESS/MS_FAILURE.

int project(projectionObj in, projectionObj out) Project the point from “in” projection (1st argument) to “out” pro-

jection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.
int setXY(double x, double y [, double m]) Set X,Y coordinate values.

Note: the 3rd parameter m is used for measured shape files only. It is not mandatory.

int setXYZ(double x, double y , double z, [, double m]) Set X,Y,Z coordinate values.

Note: the 4th parameter m is used for measured shape files only. It is not mandatory.

projectionObj

Constructor

new projectionObj(string projectionString)

or using the old constructor

ProjectionObj ms_newProjectionObj(string projectionString)
Creates a projection object based on the projection string passed as argument.
SprojInObj = ms_newprojectionobj ("proj=latlong")

will create a geographic projection class.
The following example will convert a lat/long point to an LCC projection:

SprojInObj = ms_newprojectionobj("proj=latlong");

$SprojoOutObj = ms_newprojectionobj ("proj=lcc,ellps=GRS80,lat_0=49,".
"lon_0=-95,1lat_1=49,lat_2=77");

SpoPoint = ms_newpointobi();

SpoPoint->setXY (-92.0, 62.0);

SpoPoint->project ($SprojInObj, S$projoutlObj);

Methods

int getUnits() Returns the units of a projection object. Returns -1 on error.
querymapObj

Constructor

Instances of querymapODbj are always are always embedded inside the mapOb;.

262 Chapter 6

. MapScript

MapServer Documentation, Release 6.0.3

Members

Type Name | Note
colorObj | color

int height

int width

int style MS_NORMAL, MS_HILITE, MS_SELECTED
Methods

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

int set(string property_name, new_value) Set object property to a new value.

int updateFromString(string snippet) Update a queryMap object from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

rectODbj

Constructor
rectObj are sometimes embedded inside other objects. New ones can also be created with:
new rectObij()

or using the old constructor

RectObj ms_newRectObj ()

Note: the members (minx, miny, maxx ,maxy) are initialized to -1;

Members:

Type Name
double | minx
double | miny
double | maxx
double | maxy

Methods

int draw(mapObj map, layerObj layer, imageObj img, int class_index, string text) Draws the individual rectan-
gle using layer. The class_index is used to classify the rectangle based on the classes defined for the layer. The
text string is used to annotate the rectangle. Returns MS_SUCCESS/MS_FAILURE.

double fit(int width, int height) Adjust extents of the rectangle to fit the width/height specified.

[3Pl)

int project(projectionODbj in, projectionObj out) Project the rectangle from “in” projection (1st argument) to “out”
projection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

6.3. PHP MapScript 263

MapServer Documentation, Release 6.0.3

int set(string property_name, new_value) Set object property to a new value.

void setextent(double minx, double miny, double maxx, double maxy) Set the rectangle extents.

referenceMapObj

Constructor

Instances of referenceMapObj are always embedded inside the mapOb;.

Members
Type Name
ColorObj | color
int height
rectObj extent
string image
int marker
string markername
int markersize
int maxboxsize
int minboxsize
ColorObj | outlinecolor
int status
int width
Methods

void free() Free the object properties and break the internal references. Note that you have to unset the php variable

to free totally the resources.

int set(string property_name, new_value) Set object property to a new value.

int updateFromString(string snippet) Update a referenceMap object from a string snippet. Returns

MS_SUCCESS/MS_FAILURE.
resultObj
Constructor

new resultObj(int shapeindex)

or using the layerObj‘s getResult() method.

264

Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

Members
Type Name Note
int classindex | read-only
int resultindex | read-only
int shapeindex | read-only
int tileindex read-only
Method
None

scalebarObj

Constructor

Instances of scalebarObj are always embedded inside the mapOb.

Members
Type Name Note
int align

colorObj | backgroundcolor
colorObj | color

int height
colorObj | imagecolor
int intervals

labelObj | label
colorObj | outlinecolor

int position for embeded scalebars, MS_UL, MS_UC, ...
int postlabelcache
int status MS_ON, MS_OFF, MS_EMBED
int style
int units
int width
Methods

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

int set(string property_name, new_value) Set object property to a new value.

int setlmageColor(int red, int green, int blue) Sets the imagecolor propery (baclground) of the object. Returns
MS_SUCCESS or MS_FAILURE on error.

int updateFromString(string snippet) Update a scalebar from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

6.3. PHP MapScript 265

MapServer Documentation, Release 6.0.3

shapefileObj

Constructor

new shapeFileObj(string filename, int type)

or using the old constructor

shapefileObj ms_newShapefileObj(string filename, int type)

Opens a shapefile and returns a new object to deal with it. Filename should be passed with no extension.
To create a new file (or overwrite an existing one), type should be one of MS_SHP_POINT, MS_SHP_ARC,
MS_SHP_POLYGON or MS_SHP_MULTIPOINT. Pass type as -1 to open an existing file for read-only access, and
type=-2 to open an existing file for update (append).

Members
Type Name Note
rectObj | bounds read-only
int numshapes | read-only
string source read-only
int type read-only
Methods

int addPoint(pointObj point) Appends a point to an open shapefile.
int addShape(shapeObj shape) Appends a shape to an open shapefile.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

Note: The shape file is closed (and changes committed) when the object is destroyed. You can explicitly close
and save the changes by calling $shapefile->free(); unset($shapefile), which will also free the php object.

rectObj getExtent(int i) Retrieve a shape’s bounding box by index.
shapeObj getPoint(int i) Retrieve point by index.

shapeObj getShape(int i) Retrieve shape by index.

shapeObj getTransformed(mapObj map, int i) Retrieve shape by index.

shapeObj
Constructor

new shapeObj(int type)

or using the old constructor

ShapeObj ms_newShapeObj(int type)

266 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

‘type’ is one of MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON or MS_SHAPE_NULL

ShapeObj ms_shapeObjFromWkt (string wkt)

Creates new shape object from WKT string.

Members
Type Name Note
rectObj | bounds read-only
int classindex
int index
int numlines read-only
int numvalues | read-only
int tileindex read-only
string text
int type read-only
array values read-only

The values array is an associative array with the attribute values for this shape. It is set only on shapes obtained from
layer->getShape(). The key to the values in the array is the attribute name, e.g.

Spopulation = $shape->values["Population"];

Methods

int add(lineObj line) Add a line (i.e. a part) to the shape.
shapeobj boundary() Returns the boundary of the shape. Only available if php/mapscript is built with GEOS library.

shapeobj buffer(width) Returns a new buffered shapeObj based on the supplied distance (given in the coordinates of
the existing shapeObj). Only available if php/mapscript is built with GEOS library.

int containsShape(shapeobj shape2) Returns true if shape2 passed as argument is entirely within the shape. Else
return false. Only available if php/mapscript is built with GEOS library.

shapeobj convexhull() Returns a shape object representing the convex hull of shape. Only available if php/mapscript
is built with GEOS library.

boolean contains(pointObj point) Returns MS_TRUE if the point is inside the shape, MS_FALSE otherwise.

int crosses(shapeobj shape) Returns true if the shape passed as argument crosses the shape. Else return false. Only
available if php/mapscript is built with GEOS library.

shapeobj difference(shapeobj shape) Returns a shape object representing the difference of the shape object with the
one passed as parameter. Only available if php/mapscript is built with GEOS library.

int disjoint(shapeobj shape) Returns true if the shape passed as argument is disjoint to the shape. Else return false.
Only available if php/mapscript is built with GEOS library.

int draw(mapObj map, layerObj layer, imageObj img) Draws the individual shape using layer. Returns
MS_SUCCESS/MS_FAILURE.

int equals(shapeobj shape) Returns true if the shape passed as argument is equal to the shape (geometry only). Else
return false. Only available if php/mapscript is built with GEOS library.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

6.3. PHP MapScript 267

MapServer Documentation, Release 6.0.3

double getArea() Returns the area of the shape (if applicable). Only available if php/mapscript is built with GEOS
library.

pointObj getCentroid() Returns a point object representing the centroid of the shape. Only available if php/mapscript
is built with GEOS library.

pointObj getLabelPoint() Returns a point object with coordinates suitable for labelling the shape.

double getLength() Returns the length (or perimeter) of the shape. Only available if php/mapscript is built with
GEOS library.

pointObj getMeasureUsingPoint(pointObject point) Apply only on Measured shape files. Given an XY Location,
find the nearest point on the shape object. Return a point object of this point with the m value set.

pointObj getPointUsingMeasure(double m) Apply only on Measured shape files. Given a measure m, retun the
corresponding XY location on the shapeobject.

string getValue(layerObj layer, string filedname) Returns the value for a given field name.

shapeobj intersection(shapeobj shape) Returns a shape object representing the intersection of the shape object with
the one passed as parameter. Only available if php/mapscript is built with GEOS library.

boolean intersects(shapeObj shape) Returns MS_TRUE if the two shapes intersect, MS_FALSE otherwise.
LineObj line(int i) Returns a reference to line number i.

int overlaps(shapeobj shape) Returns true if the shape passed as argument overlaps the shape. Else returns false.
Only available if php/mapscript is built with GEOS library.

[3PRl)

int project(projectionObj in, projectionObj out) Project the shape from “in” projection (1st argument) to “out”
projection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

int set(string property_name, new_value) Set object property to a new value.

int setBounds() Updates the bounds property of the shape. Must be called to calculate new bounding box after new
parts have been added.

shapeObj simplify(double tolerance) Given a tolerance, returns a simplified shape object or NULL on error. Only
available if php/mapscript is built with GEOS library (>=3.0).

shapeobj symdifference(shapeobj shape) Returns the computed symmetric difference of the supplied and existing
shape. Only available if php/mapscript is built with GEOS library.

shapeObj topologySimplifyPreservingSimplify(double tolerance) Given a tolerance, returns a simplified shape
object or NULL on error. Only available if php/mapscript is built with GEOS library (>=3.0).

int touches(shapeobj shape) Returns true if the shape passed as argument touches the shape. Else return false. Only
available if php/mapscript is built with GEOS library.

string toWkt() Returns WKT representation of the shape’s geometry.

shapeobj union(shapeobj shape) Returns a shape object representing the union of the shape object with the one
passed as parameter. Only available if php/mapscript is built with GEOS library

int within(shapeobj shape2) Returns true if the shape is entirely within the shape2 passed as argument. Else returns
false. Only available if php/mapscript is built with GEOS library.

styleObj
Constructor

Instances of styleObj are always embedded inside a classObj or labelObj.

268 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

new styleObj(classObj class [, styleObj stylel])
// or
new styleObj(labelObj label [, styleObj style])

or using the old constructor (do not support a labelObj at first argument)

styleObj ms_newStyleObj(classObj class [, styleObj style])

The second argument ‘style’ is optional. If given, the new style created will be a copy of the style passed as argument.

Members
Type Name Note
double angle
int antialias
colorObj | backgroundcolor
colorObj | color
double maxsize
double maxvalue
double maxwidth
double minsize
double minvalue
double minwidth
int offsetx
int offsety
int opacity only supported for the AGG driver
colorObj | outlinecolor
string rangeitem
double size
int symbol
string symbolname
double width

Methods

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

string getBinding(const stylebinding) Get the attribute binding for a specfiled style property. Returns NULL if there
is no binding for this property.

$oStyle->setbinding (MS_STYLE_BINDING_COLOR, "FIELD_NAME_COLOR");
echo $oStyle->getbinding (MS_STYLE_BINDING_COLOR); // FIELD_NAME_COLOR

string getGeomTransform()

int removeBinding(const stylebinding) Remove the attribute binding for a specfiled style property. Added in
MapServer 5.0.

SoStyle->removebinding (MS_STYLE_BINDING_COLOR) ;

int set(string property_name, new_value) Set object property to a new value.

int setBinding(const stylebinding, string value) Set the attribute binding for a specfiled style property. Added in
MapServer 5.0.

6.3. PHP MapScript 269

MapServer Documentation, Release 6.0.3

SoStyle->setbinding (MS_STYLE_BINDING_COLOR, "FIELD_NAME_COLOR") ;

This would bind the color parameter with the data (ie will extract the value of the color from the field called
“FIELD_NAME_COLOR”

int setGeomTransform(string value)

int updateFromString(string snippet) Update a style from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

symbolObj

Constructor

new symbolObj (mapObj map, string symbolname)

or using the old constructor

int ms_newSymbolObj (mapObj map, string symbolname)

Creates a new symbol with default values in the symbolist.

Note: Using the new constructor, the symbol is automatically returned. The old constructor returns the id of the new
symbol.

If a symbol with the same name exists, it (or its id) will be returned. To get a symbol object using the old constructor,
you need to use a method on the map object:

SnId = ms_newSymbolObj ($Smap, "symbol-test");
SoSymbol = S$map->getSymbolObjectById ($nId);

Members
Type Name Note
int antialias
string | character
int filled
string font
string | imagepath read-only
int inmapfile If set to TRUE, the symbol will be saved inside the mapfile.
int patternlength read-only
int position
string | name
int numpoints read-only
double | sizex
double | sizey
int transparent
int transparentcolor

270 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

Methods

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

array getPatternArray() Returns an array containing the pattern. If there is no pattern, it returns an empty array.

array getPointsArray() Returns an array containing the points of the symbol. Refer to setpoints to see how the array
should be interpreted. If there are no points, it returns an empty array.

int set(string property_name, new_value) Set object property to a new value.

int setImagePath(char filename) Loads a pixmap symbol specified by the filename. The file should be of either Gif
or Png format.

int setPattern(array int) Set the pattern of the symbol (used for dash patterns). Returns
MS_SUCCESS/MS_FAILURE.

int setPoints(array double) Set the points of the symbol. Note that the values passed is an array containing the x and
y values of the points. Returns MS_SUCCESS/MS_FAILURE. Example:

Sarray[0] = 1 # x value of the first point
Sarray[l] = 0 # y values of the first point
Sarray[2] 1 # x value of the 2nd point

Example of usage

1. create a symbol to be used as a dash line

$nId = ms_newsymbolobj ($gpoMap, "mydash");
SoSymbol = $gpoMap->getsymbolobjectbyid($nId);
SoSymbol->set ("filled", MS_TRUE) ;
SoSymbol->set ("sizex", 1);

$SoSymbol->set ("sizey", 1);

SoSymbol->set ("inmapfile", MS_TRUE) ;

$SaPoints[0] = 1;
$SaPoints[1] = 1;
SoSymbol->setpoints ($aPoints);

SaPattern[0] = 10;
SaPattern[l] = 5;
SaPattern([2] = 5;
SaPattern([3] = 10;

SoSymbol->setpattern ($aPattern);
$style->set ("symbolname", "mydash");

2. Create a TrueType symbol

$nId = ms_newSymbolObj ($gpoMap, "ttfSymbol");
SoSymbol = $gpoMap->getSymbolObjectById ($nId);
SoSymbol->set ("type", MS_SYMBOL_TRUETYPE) ;
SoSymbol->set ("filled", true);
SoSymbol->set ("character", "D");
SoSymbol->set ("font", "ttfFontName");

6.3. PHP MapScript 271

MapServer Documentation, Release 6.0.3

webObj

Constructor

Instances of webObj are always are always embedded inside the mapOb.

Members
Type Name Note
string browseformat
string empty read-only
string error read-only
rectObj extent read-only
string footer
string header
string imagepath
string imageurl
string legendformat
string log
double maxscaledenom
string maxtemplate
hashTableObj | metadata
double minscaledenom
string mintemplate
string queryformat
string template
string temppath
Methods

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

int set(string property_name, new_value) Set object property to a new value.

int updateFromString(string snippet) Update a web object from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

6.3.8 Memory Management

Normally, you should not have to worry about the memory management because php has a garbage collector and will
free resources for you. If you write only small scripts that don’t do a lot of processing, it’s not worth to care about
that. Everything will be freed at the end of the script.

However, it may be useful to free resources during the execution if the script executes many tasks. To do so, you’ll
have to call the free() method of the mapscript objects and unset the php variables. The purpose of the free methods is
to break the circular references between an object and its properties to allow the zend engine to free the resources.

Here’s an example of a script that doesn’t free things during the execution:

272 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

Smap = new mapObj("mapfile.map");
$Sof = $map->outputformat;
echo S$map->extent->minx." - ".Smap->extent->miny." - ".Smap->extent->maxx.
" — ".Smap->extent->maxy."\n";
echo "Outputformat name: $of->name\n";
unset ($Sof);
unset ($Smap); // Even if we unset the php variables, resources wont be freed
// Resources will be only freed at the end of the script

and the same script that frees resources as soon as it can

Smap = new mapObj ("mapfile.map");

Sof = $map->outputformat;

echo S$map->extent->minx." - ".Smap->extent->miny." - ".S$map->extent->maxx." - ".Smap->extent->maxy."
echo "Outputformat name: $of->name\n";

unset ($of) ;

Smap->free(); // break the circular references

// at this place, the outputformat ($of) and the rect object ($Smap->extent) resources are freed
unset (Smap) ;

// the map object is immediately freed after the unset (before the end of the script)

6.4 Python MapScript Appendix

Author Sean Gillies
Revision $Revision$

Date $Date$

Contents

* Python MapScript Appendix
— Introduction
— Classes
— Exception Handling

6.4.1 Introduction

The Python MapScript module contains some class extension methods that have not yet been implemented for other
languages.

6.4.2 Classes

References to sections below will be added here as the documentation grows.

imageObj

The Python Imaging Library, http://www.pythonware.com/products/pil/, is an indispensible tool for image manipula-
tion. The extensions to imageQObj are all geared towards better integration of PIL in MapScript applications.

6.4. Python MapScript Appendix 273

http://www.pythonware.com/products/pil/

MapServer Documentation, Release 6.0.3

imageObj Methods

imageObj(PyObject argl, PyObject arg2 [, PyObject arg3]) [imageObj] Create a new instance which is either

empty or read from a Python file-like object that refers to a GD format image.

The constructor has 2 different modes. In the blank image mode, argl and arg2 should be the desired width and
height in pixels, and the optional arg3 should be either an instance of outputFormatObj or a GD driver name as
a shortcut to a format. In the image file mode, argl should be a filename or a Python file or file-like object. If
the file-like object does not have a “seek” attribute (such as a urllib resource handle), then a GD driver name

must be provided as arg?2.

Here’s an example of creating a 320 pixel wide by 240 pixel high JPEG using the constructor’s blank image

mode:

image = mapscript.imageObj (320, 240, ’'GD/JPEG’)

In image file mode, interesting values of arg! to try are instances of StringlO:

s = StringIO()
pil_image.save (s) # Save an image manipulated with PIL
ms_image = imageObij(s)

Or the file-like object returned from urlopen

url = urllib.urlopen(’http://mapserver.gis.umn.edu/bugs/ant. jpg’)

ms_image = imageObj(url, ’GD/JPEG’)

write([PyObject file]) [void] Write image data to a Python file-like object. Default is stdout.

pointObj

pointObj Methods

__str__() [string] Return a string formatted like
{ 'x": £, 'y': %f }

with the coordinate values substituted appropriately. Usage example:

>>> p = mapscript.pointObj (1, 1)
>>> str(p)
{ 'x’: 1.000000 , "y": 1.000000 }

Note that the return value can be conveniently eval’d into a Python dictionary:

>>> p_dict = eval (str(p))
>>> p_dict[’x’]
1.000000

rectODbj

rectObj Methods

__contains__(pointObj point) [boolean] Returns True if point is inside the rectangle, otherwise returns False.

274

Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

>>> r = mapscript.rectObj(0, 0, 1, 1)

>>> p = mapscript.pointObj (2, 0) # outside
>>> p in r

False

>>> p not in r

True

__str__() [string] Return a string formatted like
{ 'minx’: %f , 'miny’: %f , 'maxx’: %f , 'maxy’: $f }

with the bounding values substituted appropriately. Usage example:

>>> r = mapscript.rectObj(0, 0, 1, 1)
>>> str(r)
{ 'minx’: 0.000000 , 'miny’: 0.000000 , ’'maxx’: 1.000000 , ’"'maxy’: 1.000000 }

Note that the return value can be conveniently eval’d into a Python dictionary:

>>> r_dict = eval(str(r))
>>> r_dict['minx’]
0.000000

6.4.3 Exception Handling

The Python MapScript module maps a few MapServer errors into Python exceptions. Attempting to load a non-existent
mapfile raises an ‘IOError’, for example

>>> import mapscript
>>> mapfile = ’/no/such/file.map’
>>> m = mapscript.mapObj (mapfile)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "/usr/lib/python2.3/site-packages/mapscript.py", line 799, in __init_
newobj = _mapscript.new_mapObj(xargs)
IOError: msLoadMap (): Unable to access file. (/no/such/file.map)
>>>

The message of the error is written by ‘msSetError’ and so is the same message that CGI mapserv users see in error
logs.

6.5 Python MapScript Image Generation

Author Sean Gillies
Revision $Revision$
Date $Date$

Last Updated 2008/07/15

6.5. Python MapScript Image Generation 275

MapServer Documentation, Release 6.0.3

Table of Contents

* Python MapScript Image Generation
— Introduction
— Imagery Overview
— The imageObj Class

Image Output

Images and Symbols

6.5.1 Introduction

The MapScript HOWTO docs are intended to complement the API reference with examples of usage for specific
subjects. All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+ and
found under mapserver/tests.

Pseudocode

All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a
statement. For object attributes and methods we use the dot, ‘., operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.

6.5.2 Imagery Overview

The most common use of MapServer and MapScript is to create map imagery using the built-in GD format drivers:
GD/GIF, GD/PNG, GD/PNG24, and GD/JPEG. This imagery might be saved to a file on disk or be streamed directly
to another device.

6.5.3 The imageObj Class

Imagery is represented in MapScript by the imageObj class. Please see the API Reference (MapScript.txt) for class
attribute and method details.

Creating imageObj from a mapObj
The mapObj class has two methods that return instances of imageObj: ‘draw’, and ‘preparelmage’. The first returns a
full-fledged map image just as one would obtain from the mapserv CGI program

test_map = MapScript.mapObj(’tests/test.map’)
map_image = test_map.draw()

A properly sized and formatted blank image, without any layers, symbols, or labels, will be generated by ‘preparelm-

bl

age

blank_image = test_map.preparelmage ()

Creating a new imageObj

The imageObj class constructor creates new instances without need of a map

276 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

format = MapScript.outputFormatObj (' GD/JPEG")
image = MapScript.imageObj (300, 200, format) # 300 wide, 200 high JPEG

and can even initialize from a file on disk

First three args are overriden by attributes of the disk image file
disk_image = MapScript.imageObj (-1, -1, NULL, ’tests/test.png’)

6.5.4 Image Output

Creating files on disk
Imagery is saved to disk by using the ‘save’ method. By accessing the ‘extension’ attribute of an image’s format, the
proper file extension can be used without making any assumptions

filename = ’"test.’ + map_image.format.extension
map_image.save (filename)

If the image is using a GDAL/GTiff-based format, a GeoTIFF file can be created on disk by adding a mapObj as a
second optional argument to ‘save’

map_image.save (filename, test_map)

Direct Output

An image can be dumped to an open filehandle using the ‘write’ method. By default, the filehandle is ‘stdout’

Send an image to a web browser
print "Content-type: " + map_image.format.mimetype + "\n\n"
map_image.write ()

This method is not fully functional for all SWIG MapScript languages. See the API Reference (MapScript.txt) for
details. The ‘write’ method is new in 4.4.

6.5.5 Images and Symbols

The symbolObj::getimage() method will return an instance of imageObj for pixmap symbols

symbol = test_map.symbolset.getSymbolByName (' home-png’)
image = symbol.getImage ()

There is a symmetric ‘setlmage’ method which loads imagery into a symbol, allowing pixmap symbols to be created
dynamically

new_symbol = MapScript.symbolObj(’ from image’)
new_symbol.type = MapScript.MS_SYMBOL_PIXMAP
new_symbol.setImage (image)

index = test_map.symbolset.appendSymbol (new_symbol)

The get/setlmage methods are new in MapServer 4.4.

6.5. Python MapScript Image Generation 277

MapServer Documentation, Release 6.0.3

6.6 Mapfile Manipulation

Author Sean Gillies
Revision $Revision$

Date $Date$

Contents

* Mapfile Manipulation

— Introduction
Mapfile Overview
The mapObj Class
Children of mapObj
Metadata

6.6.1 Introduction
The MapScript HowTo docs are intended to complement the API reference with examples of usage for specific sub-

jects. All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+ and found
under mapserver/tests.

Pseudocode
All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a

statement. For object attributes and methods we use the dot, ‘.’, operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.

6.6.2 Mapfile Overview

By “Mapfile” here, I mean all the elements that can occur in (nearly) arbitrary numbers within a MapScript mapObj:
Layers, Classes, and Styles. MapServer 4.4 has greatly improved capability to manipulate these objects.

6.6.3 The mapObj Class

An instance of mapObj is a parent for zero to many layerObj children.

New instances

The mapfile path argument to the mapscript.mapObj constructor is now optional

empty_map = new mapscript.mapObj

generates a default mapObj with no layers. A mapObj is initialized from a mapfile on disk in the usual manner:

test_map = new mapscript.mapObj(’tests/test.map’)

278 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

Cloning

An independent copy, less result and label caches, of a mapObj can be produced by the new mapObj.clone() method:

clone_map = test_map.clone()

Note: the Java MapScript module implements a “cloneMap” method to avoid conflict with the clone method of Java’s
Object class.

Saving
A mapObj can be saved to disk using the save method:
clone_map.save (' clone.map’)

Frankly, the msSaveMap() function which is the foundation for mapObj::save is incomplete. Your mileage may vary.

6.6.4 Children of mapObj

There is a common parent/child object API for Layers, Classes, and Styles in MapServer 4.4.

Referencing a Child

References to Layer, Class, and Style children are obtained by “getChild”-like methods of their parent:

layer_i = test_map.getLayer (i)
class_ij = layer_i.getClass (j)
style_ijk = class_ij.getStyle (k)

These references are for convenience only. MapScript doesn’t have any reference counting, and you are certain to run
into trouble if you try to use these references after the parent mapObj has been deleted and freed from memory.

Cloning a Child

A completely independent Layer, Class, or Style can be created using the clone method of layerObj, classObj, and
styleObj:

clone_layer = layer_i.clone()

This instance has no parent, and is self-owned.

New Children

Uninitialized instances of layerObj, classObj, or styleObj can be created with the new constructors:

new_layer = new mapscript.layerObj
new_class = new mapscript.classObj
new_style = new mapscript.styleObj

and are added to a parent object using “insertChild”-like methods of the parent which returns the index at which the
child was inserted:

6.6. Mapfile Manipulation 279

MapServer Documentation, Release 6.0.3

1li = test_map.insertlayer (new_layer)
test_map.getlLayer (1li) .insertClass (new_class)
test_map.getLayer (li) .getClass(ci) .insertStyle (new_style)

ci
si

The insert* methods create a completely new copy of the object and store it in the parent with all ownership taken on
by the parent.

see the API reference for more details.

Backwards Compatibility

The old style child object constructors with the parent object as a single argument:

new_layer = new mapscript.layerObj(test_map)
new_class = new mapscript.classObj(new_layer)
new_style = new mapscript.styleObj(new_class)

remain in MapServer 4.4.

Removing Children

Child objects can be removed with “removeChild”-like methods of parents, which return independent copies of the
removed object:

following from the insertion example

remove the inserted style, returns a copy of the original new_style
removed_style = test_map.getLayer (li) .getClass(ci) .removeStyle (si)
removed_class test_map.getlLayer (li) .removeClass (ci)

removed_layer = test_map.removelayer (1i)

6.6.5 Metadata

Map, Layer, and Class metadata are the other arbitrarily numbered elements (well, up to the built-in limit of 41) of a
mapfile.

New API

In MapServer 4.4, the metadata attributes of mapObj.web, layerObj, and classObj are instances of hashTableObj, a
class which functions like a limited dictionary

layer.metadata.set (' wms_name’, "foo’)
name = layer.metadata.get (' wms_name’) # returns ’foo’

You can iterate over all keys in a hashTableObj like

key = NULL
while (1):
key = layer.metadata.nextKey (key)
if key == NULL:
break
value = layer.metadata.get (key)

See the API Reference (mapscript.txt) for more details.

280 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

Backwards Compatibility for Metadata

The old getMetaData and setMetaData methods of mapObj, layerObj, and classObj remain for use by older programs.

6.7 Querying

Author Sean Gillies
Revision $Revision$

Date $Date$

Contents

* Querying
— Introduction
— Querying Overview
— Attribute Queries
— Spatial Queries

6.7.1 Introduction

All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+ and found under
mapserver/tests.

Pseudocode
All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a

statement. For object attributes and methods we use the dot, ‘.’, operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.

6.7.2 Querying Overview

The Query Result Set

Map layers can be queried to select features using spatial query methods or the attribute query method. Ignoring for
the moment whether we are executing a spatial or attribute query, results are obtained like so:

layer.query () # not an actual method!
results = layer.getResults()

In the case of a failed query or query with zero results, ‘getResults’ returns NULL.

Result Set Members

Individual members of the query results are obtained like:

6.7. Querying 281

MapServer Documentation, Release 6.0.3

continued
if results:
for i in range(results.numresults) : # iterate over results
result = results.getResult (i)
This result object is a handle, of sorts, for a feature of the layer, having ‘shapeindex’ and ‘tileindex’ attributes that can

be used as arguments to ‘getFeature’.

Resulting Features

The previous example code can now be extended to the case of obtaining all queried features:

layer.query ()

results = layer.getResults()

if results:
open layer in preparation of reading shapes
layer.open ()

for i in range(results.numresults) :
result = results.getResult (1)

layer.getFeature (result.shapeindex, result.tileindex)
do something with this feature

Close when done
layer.close()

Backwards Compatibility

Scripts using the 4.2 API can continue to access query result members through layer methods:

for i in range (layer.getNumResults()) :
result = layer.getResult (0)

but should adopt the new API for use in new work.

6.7.3 Attribute Queries

By Attributes

queryByAttributes()

6.7.4 Spatial Queries
By Rectangle

queryByRect()

282 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

By Point

queryByRect()
By Shape
queryByShape()

By Selection

queryByFeatures()

6.8 MapScript Variables

Author Howard Butler
Contact hobu.inc at gmail.com
Revision $Revision$

Date $Date$

Contents

* MapScript Variables
— Version
— Logical Control - Boolean Values
— Logical Control - Status Values
— Map Units
— Layer Types
— Font Types
— Label Positions
— Label Size (Bitmap only)
— Shape Types
— Measured Shape Types
— Shapefile Types
— Query Types
— File Types
— Querymap Styles
— Connection Types
— DB Connection Types
— Join Types
— Line Join Types (for rendering)
— Image Types
— Image Modes
— Symbol Types
— Return Codes
— Limiters
— Error Return Codes

6.8. MapScript Variables

283

MapServer Documentation, Release 6.0.3

6.8.1 Version
Name Type Value
MS_VERSION | character | 5.2

6.8.2 Logical Control - Boolean Values

Name Type Value
MS_TRUE integer | 1
MS_ON integer | 1
MS_YES integer | 1
MS_FALSE | integer | 0
MS_OFF integer | O
MS_NO integer | O

6.8.3 Logical Control - Status Values

Name Type Value
MS_DEFAULT | integer | 2
MS_EMBED integer | 3
MS_DELETE integer | 4

6.8.4 Map Units
Name Type Value
MS_DD integer
MS_FEET integer
MS_INCHES integer
MS_METERS integer
MS_MILES integer
MS_NAUTICALMILES | integer
MS_PIXELS integer

6.8.5 Layer Types
Name Type Value
MS_LAYER_POINT integer
MS_LAYER_LINE integer
MS_LAYER_POLYGON integer
MS_LAYER_RASTER integer
MS_LAYER_ANNOTATION | integer
MS_LAYER_QUERY integer
MS_LAYER_CIRCLE integer
MS_LAYER_TILEINDEX integer

284

Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

6.8.6 Font Types

Name Type Value
MS_TRUETYPE | integer
MS_BITMAP integer
6.8.7 Label Positions
Name Type Value
MS_UL integer
MS_LL integer
MS_UR integer
MS_LR integer
MS_CL integer
MS_CR integer

MS _UC integer
MS_LC integer
MS_CC integer
MS_AUTO | integer

6.8.8 Label Size (Bitmap only)

Name Type Value
MS_TINY integer
MS_SMALL integer
MS_MEDIUM | integer
MS_LARGE integer
MS_GIANT integer

6.8.9 Shape Types
Name Type Value
MS_SHAPE_POINT integer
MS_SHAPE_LINE integer
MS_SHAPE_POLYGON | integer
MS_SHAPE_NULL integer

6.8.10 Measured Shape Types

Name Type Value
MS_SHP_POINTM integer | 21
MS_SHP_ARCM integer | 23
MS_SHP_POLYGONM integer | 25
MS_SHP_MULTIPOINTM | integer | 28

6.8. MapScript Variables

285

MapServer Documentation, Release 6.0.3

6.8.11 Shapefile Types

Name Type Value
MS_SHAPEFILE_POINT integer | 1
MS_SHAPEFILE_ARC integer | 3
MS_SHAPEFILE_POLYGON integer | 5
MS_SHAPEFILE_MULTIPOINT | integer | 8
6.8.12 Query Types

Name Type Value
MS_SINGLE integer | 0
MS_MULTIPLE | integer | 1

6.8.13 File Types

Name Type Value
MS_FILE_MAP integer
MS_FILE_SYMBOL | integer

6.8.14 Querymap Styles

Name Type Value
MS_NORMAL integer

MS_HILITE integer

MS_SELECTED | integer

6.8.15 Connection Types

Name Type Value
MS_INLINE integer
MS_SHAPEFILE integer
MS_TILED_SHAPEFILE | integer

MS_SDE integer
MS_OGR integer
MS_POSTGIS integer
MS_WMS integer
MS_ORACLESPATTAL integer

MS_WES integer
MS_GRATICULE integer
MS_MYGIS integer
MS_RASTER integer

286 Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

6.8.16 DB Connection Types

Name Type Value
MS_DB_XBASE integer

MS_DB_CSV integer
MS_DB_MYSQL integer
MS_DB_ORACLE integer
MS_DB_POSTGRES | integer

6.8.17 Join Types

Name Type Value
MS_JOIN_ONE_TO_ONE integer
MS_JOIN_ONE_TO_MANY | integer

6.8.18 Line Join Types (for rendering)

Name Type Value
MS_CJC_NONE integer
MS_CIJC_BEVEL integer
MS_CIJC_BUTT integer
MS_CJC_MITER integer
MS_CJC_ROUND integer
MS_CJC_SQUARE integer
MS_CJC_TRIANGLE | integer

6.8.19 Image Types

Name Type Value
GD/GIF integer
GD/PNG integer

GD/PNG24 integer

GD/JPEG integer

GD/WBMP | integer

swf integer
imagemap integer
pdf integer

GDAL/GTiff | integer

6.8. MapScript Variables

287

MapServer Documentation, Release 6.0.3

6.8.20 Image Modes

Name Type Value
MS_IMAGEMODE_PC256 integer
MS_IMAGEMODE_RGB integer
MS_IMAGEMODE_RGBA integer
MS_IMAGEMODE_INT16 integer
MS_IMAGEMODE_FLOAT32 | integer
MS_IMAGEMODE_BYTE integer
MS_IMAGEMODE_NULL integer
MS_NOOVERRIDE integer
MS_GD_ALPHA integer | 1000

6.8.21 Symbol Types

Name Type Value

MS_SYMBOL_SIMPLE integer

MS_SYMBOL_VECTOR integer

MS_SYMBOL_ELLIPSE integer

MS_SYMBOL_PIXMAP integer

MS_SYMBOL_TRUETYPE | integer

6.8.22 Return Codes

Name Type Value

MS_SUCCESS | integer

MS_FAILURE | integer

MS_DONE integer

6.8.23 Limiters

Name Type | Value

MS_MAXSYMBOLS long

MS_MAXVECTORPOINTS | long

MS_MAXSTYLELENGTH | long

MS_IMAGECACHESIZE long

6.8.24 Error Return Codes
Name Type | Value
MS_NOERR long | O
MS_IOERR long | 1
MS_MEMERR long | 2
MS_TYPEERR long | 3
MS_SYMERR long | 4
MS_REGEXERR long | 5
MS_TTFERR long | 6

Continued on next page

288

Chapter 6. MapScript

MapServer Documentation, Release 6.0.3

Table 6.4 — continued from previous page

MS_DBFERR long | 7

MS_GDERR long | 8

MS_IDENTERR long | 9

MS_EOFERR long | 10
MS_PROJERR long | 11
MS_MISCERR long | 12
MS_CGIERR long | 13
MS_WEBERR long | 14
MS_IMGERR long | 15
MS_HASHERR long | 16
MS_JOINERR long | 17
MS_NOTFOUND long | 18
MS_SHPERR long | 19
MS_PARSEERR long | 20
MS_SDEERR long | 21
MS_OGRERR long | 22
MS_QUERYERR long | 23
MS_WMSERR long | 24
MS_WMSCONNERR long | 25
MS_ORACLESPATIALERR | long | 26
MS_WFSERR long | 27
MS_WFSCONNERR long | 28
MS_MAPCONTEXTERR long | 29
MS_HTTPERR long | 30
MS_CHILDERR long | 31
MS_WCSERR long | 32
MS_NUMERRORCODES long | 33
MESSAGELENGTH long | 33
ROUTINELENGTH long | 33

6.8. MapScript Variables

289

MapServer Documentation, Release 6.0.3

290 Chapter 6. MapScript

CHAPTER 7

Data Input

7.1 Vector Data

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com
Author Tyler Mitchell

Contact tmitchell at osgeo.org

Last Updated 2011-07-18

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license,
visit: http://creativecommons.org/licenses/by-sa/2.0/ca/ or send a letter to Creative Commons, 559 Nathan Abbott
Way, Stanford, California 94305, USA.

What is vector data? This quote from is a good description of what vector data is:

Vector: “An abstraction of the real world where positional data is represented in the form of coordinates.
In vector data, the basic units of spatial information are points, lines and polygons. Each of these units
is composed simply as a series of one or more coordinate points. For example, a line is a collection of
related points, and a polygon is a collection of related lines. Vector images are defined mathematically
as a series of points joined by lines. Vector-based drawings are resolution independent. This means that
they appear at the maximum resolution of the output device, such as a printer or monitor. Each object is
self-contained, with properties such as color, shape, outline, size, and position on the screen.”

From: http://www8.nos.noaa.gov/coris_glossary/index.aspx?letter=v

The rest of this document is the data format guide. This guide is structured to show the fundamentals of each
MapServer supported data format. Each section discusses one format, ranging from one to several pages in length.
The sections typically start with a summary of the most important information about the format, followed by examples
of file listings, connection methods, ogrinfo usage and MapServer map file syntax examples.

Each section has been designed to stand alone, so you may notice that certain warnings and comments are repeated
or redundant. This is intentional. Each format is presented in rough order of popular use, based on a survey of the
MapServer community.

The following formats are included:

291

http://creativecommons.org/licenses/by-sa/2.0/ca/
http://www8.nos.noaa.gov/coris_glossary/index.aspx?letter=v

MapServer Documentation, Release 6.0.3

7.1.1 Data Format Types

Each type of data is made up of a data source and (one or more) layers. These two definitions apply to MapServer and
OGR.

Data Source - a group of layers stored in a common repository. This may be a file that handles several layers within
it, or a folder that has several files.

Layer - a sub-set of a data source often containing information in one type of vector format (point, line, polygon).

There are three types of data mapping and GIS data formats. Each type is handled differently. Below are the types and
some example formats:

¢ File-based- Shapefiles, Microstation Design Files (DGN), GeoTIFF images
¢ Directory-based - ESRI ArcInfo Coverages, US Census TIGER
 Database connections - PostGIS, ESRI ArcSDE, MySQL

File-based Data

File-based data consists of one or more files stored in any arbitrary folder. In many cases a single file is used (e.g.
DGN) but ESRI Shapefiles, for example, consist of at least 3 files each with a different filename extension: SHP, DBF,
SHX. In this case all 3 files are required because they each perform a different task internally.

Filenames usually serve as the data source name and contain layers that may or may not be obvious from the filename.
In Shapefiles, for example, there is one data source per shapefile and one layer which has the same name as that of the
file.

Directory-based Data

Directory-based data consists of one or more files stored in a particular way within a parent folder. In some cases
(e.g. Coverages) they may also require additional folders in other locations in the file tree in order to be accessed. The
directory itself may be the data source. Different files within the directory often represent the layers of data available.

For example, ESRI ArcInfo Coverages consist of more than one file with an ADF file extension, within a folder. The
PAL.ADF file represents the Polygon data. ARC.ADF holds the arc or line string data. The folder holds the data
source and each ADF file is a layer.

Database Connections

Database Connections are very similar to file and directory-based structures in one respect: they provide geographic
coordinate data for MapServer to interpret. That may be oversimplifying what is happening inside MapServer, but in
essence all you need is access to the coordinates making up the vector datasets.

Database connections provide a stream of coordinate data that is temporarily stored (e.g. in memory) and read by
MapServer to create the map. Other attribute or tabular data may also be required, but the focus of this guide is
coordinate data.

One important distinction between databases must be made. The databases discuss here are spatial databases, those
which can hold geographic data in its own data type. This is opposed to strictly tabular databases which cannot hold
geographic coordinates in the same way. It is possible to store some very simple coordinate data in regular tables, but
for anything but the most simple use a spatial database is required. There are spatial extensions to many databases
(open source and commercial). One of the most robust is the PostGIS extension to the PostgreSQL database. This
database not only allows the storage of geographic data, but also allows the manipulation of that data using SQL
commands. The other open source database with spatial capabilities is MySQL.

292 Chapter 7. Data Input

MapServer Documentation, Release 6.0.3

Connections to databases usually consist of the following pieces of connection information:
Host - Directions to the server or computer hosting the database.
Database name - The name of the database you wish to access that is running on the host.

User name / passwords - Access privileges are usually restricted by user.

Note: Some databases (e.g. Oracle) use a name service identifier that includes both the host and database names.

Access to specific pieces of coordinate data usually require:
Table/View name - The name of the table or view holding the coordinate data.

Geographic column name - Where the geometry or coordinates are stored.

7.1.2 Arcinfo

ESRI ArcInfo Coverage Files are also known as simply as Coverages and less commonly as ADF files.

File listing
Coverages are made up of a set of files within a folder. The folder itself is the coverage name. The files roughly
represent different layers, usually representing different types of topology or feature types.

> 1s /data/coverage/brazil
aat.adf arc.adf arx.adf Dbnd.adf lab.adf prj.adf tic.adf tol.adf

A folder with the name INFO is also part of the coverage. It sits at the same hierarchical level as the coverage folder
itself. Therefore, to copy a coverage (using regular file system tools) the coverage folder and the INFO folder must
both be copied. The INFO folder holds some catalogue information about the coverage.

> 1ls /data/coverage/info
arc0000.dat arc000l.dat arc0002.dat arc.dir
arc0000.nit arc000l.nit arc0002.nit

Data Access / Connection Method

* CONNECTIONTYPE OGR must be used. The ability to use coverages is not built into MapServer.
* The path to the coverage folder name is required.

* The layer name (feature type) is specified in the DATA parameter

OGRINFO Examples

The directory is the data source. Layers are found within the directory. Using ogrinfo on a coverage directory:

> ogrinfo /data/coverage/brazil -summary
INFO: Open of ‘brazil’

using driver ‘AVCBin’ successful.

1: ARC (Line String)

2: CNT (Point)
3: LAB (Point)
4: PAL (Polygon)

7.1. Vector Data 293

MapServer Documentation, Release 6.0.3

Using ogrinfo to examine the structure of a layer:

> ogrinfo /data/coverage/brazil PAL -summary

Had to open data source read-only.
INFO: Open of ‘brazil’
using driver ‘AVCBin’ successful.

Layer name: PAL
Geometry: Polygon
Feature Count: 1

Extent: (1272793.274958, 795381.617050)

Layer SRS WKT:

(unknown)

ArcIds: IntegerList (0.0)
AREA: Real (18.5)
PERIMETER: Real (18.5)
F_OPER#: Integer (5.0)
F_OPER-ID: Integer (5.0)
OPER: String (2.0)

FCODE: String (10.0)

Map File Example:

LAYER
NAME Brazil_ bounds
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "/data/coverage/brazil"
DATA "PAL"

CLASS
NAME "Brazil Admin Areas"
STYLE
OUTLINECOLOR 153 102 O
SIZE 2
END
END
END

7.1.3 ArcSDE

(1287078.382785,

807302.747284)

Spatial Database Engine (SDE) is one of ESRI‘s products which enables spatial data to be stored, managed, and
quickly retrieved from leading commercial database management systems like Oracle, Microsoft SQL Server, Sybase,

IBM DB2, and Informix.

Supported ArcSDE Operations

* Versioned queries (query geometry and attributes from a specified version)

* queryByAuttributes (select geometry and attributes based on the values of an attribute)

* Limited join support for within-database tables

* queryByRect (select geometry based on an extent)

* Projection on the fly

* SDE for Coverages (a read-only type of SDE for coverage, shapefile, and ArcStorm/ArcLibrarian repositories)

294

Chapter 7. Data Input

http://www.esri.com

MapServer Documentation, Release 6.0.3

« SDES8.1,8.2,8.3,9.0,9.1, and 9.2
* Linux, Windows, and Solaris (platforms that have SDE C API support)

Unsupported ArcSDE Operations
* queryByShape (pass in a shape with MapScript and use it for queries)
* Direct Connect (bypass SDE to connect directly to the database with the SDE C API)

How to make a connection to SDE:

¢ Install the SDE C API client libraries for your platform (preferably matched to the server version you are using,
ie 8.2 client -> 8.2 server, 8.3 client -> 8.3 server)

* Compile MapServer with SDE support MapServer Unix Compilation Howto for specific details)
¢ Define a LAYER block in a MapFile that uses SDE as the CONNECTIONTYPE

LAYER
NAME states
TYPE POLYGON

CONNECTION "sdemachine.iastate.edu,port:5151, sde,username, password"
CONNECTIONTYPE SDE

DATA "HOBU.STATES_LAYER, SHAPE, SDE.DEFAULT"

FILTER "where MYCOLUMN is not NULL"

PROCESSING "QUERYORDER=ATTRIBUTE" # <-- MapServer 4.10 and above

Within database one-to-one join support

MapServer 5.0 and above
PROCESSING "JOINTABLE=SDE_MASTER.GEOSERVWRITE.JOINTABLE"

MapServer 5.0 and above
CLASSITEM "SDE_MASTER.GEOSERVWRITE.JOINTABLE.VAL"

MapServer 5.0 and above
FILTER "SDE_MASTER.GEOSERVWRITE.JOINTABLE.AQ TAG=SDE_MASTER.GEOSERVWRITE.JOINTESTLAYER.AQ_ TAG"

ObjectID column manipulation
MapServer 5.0 and above

PROCESSING "OBJECTID=OBJECTID"

TEMPLATE ' /where/the/template/file/is/located’

CLASS
STYLE
SYMBOL ’circle’
SIZE 3
COLOR -1 -1 -1
OUTLINECOLOR 0 0 O
END
END
END

7.1. Vector Data 295

MapServer Documentation, Release 6.0.3

CONNECTION - Order is important!

* sdemachine.iastate.edu - The name of the machine you are connecting to. In some instances, this may need
to be the IP address of the machine rather than the name if the server running MapServer is not configured to
cascade DNS lookups

¢ port:5151 - The port number of SDE. The port: is important as SDE expects you to define the service in this
slot, and it can be other names like sde:oracle (for direct connect) or esri_sde (for systems with port 5151
defined as esri_sde in /etc/services)

* sde - The database username that the SDE server is using to connect to your database. It is often only important
for SDE setups that are connecting to Oracle (and even then, not so important). Just leave it as sde if you don’t
know what it should be.

e username - The username that will be connecting to SDE. This user must have been granted rights to select
the layer that you will be specifying in the DATA directive. You can use ArcCatalog or the SDE command-line
utilities to grant the appropriate rights to layers.

¢ password - Password of the user connecting to SDE. Case Sensitive.

DATA - Order is important!

« HOBU.STATES_LAYER - The layer name you are querying. This the fu/l name of the table in which the layer
resides. If you are using Oracle or Microsoft SQL Server as the DB for SDE, the schema name must also be
supplied.

e SHAPE - The column that contains the geometry. SDE technically allows for storage of multiple geometry
types in the same layer, but in practice this isn’t desirable. Also, expect to have problems if there are invalid or
null geometries in the layer (or versions of the layer).

* SDE.DEFAULT - As of MapServer 4.2, you can query against a specific version of the layer. SDE sup-
ports multi-user editing with versions. If a layer has been Registered with the GeoDatabase and Registered
as Versioned (ArcGIS terms), MapServer can query against specified versions of those edits. If not specified,
SDE.DEFAULT will be used for all queries. Case Sensitive.

Note: The version parameter is located in a different spot than MapServer 4.2, which had it on the CONNECTION
string.

TEMPLATE

» /where/the/template/file/is/located - A template directive must be specified (can point to a dummy file) in order
for MapServer to be able to query attributes from SDE. If you are only going to be drawing layers, this directive
is unnecessary and will slow down the query operations of SDE (especially for layers with lots of attribute
columns).

PROCESSING

* PROCESSING “QUERYORDER=ATTRIBUTE” - Allows you to force SDE to use the WHERE clause that
was defined in your FILTER statement first, without attempting to hit the spatial index. Only in very special
cases will you want to do this.

296 Chapter 7. Data Input

MapServer Documentation, Release 6.0.3

* PROCESSING “OBJECTID=OBJECTID” - If you are having trouble with the SDE driver detecting your
unique ID column, you can override it with this processing parameter. Doing so will also have a slight perfor-
mance benefit because it will save a couple of extra queries to the database.

¢ PROCESSING “ATTRIBUTE_QUALIFIED=TRUE?” - User can set this option to always use fully qualified
attribute names.

Within-database Join Support

MapServer’s SDE driver, as of MapServer 5.0, allows you to join a single attribute table that has no geometries to
the layer that you are rendering. This feature allows you to use the data in the joined table much as you would in a
composite query that was made with something like PostGIS or Oracle Spatial. That is, the columns in the right table
of the join are available for CLASSITEM, LABELITEM and so on. The biggest constraint, however, is that fully
qualified names must be used or it most likely will not work. The join support is activated through PROCESSING
options.

¢« PROCESSING “JOINTABLE=SDE_MASTER.GEOSERVWRITE.JOINTABLE” - The JOINTABLE
processing option tells the driver which table you are joining the current layer to.

* CLASSITEM “SDE_MASTER.GEOSERVWRITE.JOINTABLE.VAL” - A CLASSITEM or LABELITEM
for a joined table using this mechanism must be fully qualified.

* FILTER “SDE_MASTER.GEOSERVWRITE.JOINTABLE.AQ_TAG=SDE_MASTER.GEOSERVWRITE.JOINTESTL.:
- An important part of the join is defining how the join is to be made. Use a FILTER to do so.

7.1.4 DGN
File listing

Data are encapsulated in a single file, usually with the suffix .dgn.

0824t .dgn

Data Access / Connection Method

* Access is available in MapServer through OGR.
e The CONNECTIONTYPE OGR parameter must be used.
* The path to the dgn file is required, file extension is needed.

* All types of features in a DGN file are held in one “layer” of data. The layer is called elements and is the first
and only layer.

* The type of feature to be read from the DGN depends on the TYPE parameter in the map file.
* DGN files typically contain POINT, LINE, POLYGON and ANNOTATION feature types.

* DGN files contain “styling” information - how to color and present the data. This is used, optionally, by speci-
fying the STYLEITEM “AUTO” parameter.

Note: DGN files typically use white as a color for their features and therefore are not visible on maps with white
backgrounds.

7.1. Vector Data 297

MapServer Documentation, Release 6.0.3

OGRINFO Examples

Using ogrinfo on a single DGN file:

> ogrinfo /data/dgn/0824t.dgn

Had to open data source read-only.
INFO: Open of '0842t.dgn’

using driver ‘DGN’ successful.

1: elements

Note: No geometry/feature type for the layer is identified because it can be multiple types.

DGN files are not really GIS data files. They evolved from drafting formats used by computer aided drafting/design

(CADD) programs.

They carry a few key attributes which are usually consistent across all DGN files. Most of the attributes relate to
graphical styling of features for map presentation, such as ColorIndex, Style, etc.

Spatial reference system information is not always encoded into DGN files. This can be a major problem when trying

to adequately reference the DGN data in another mapping program.

Measurement units can be a problem. In some cases the features could be located in kilometres or feet even though
it is not obvious from the output of ogrinfo. Sometimes the only way to identify or correct a problem with units is to

open the file in Microstation software.
Using ogrinfo to examine the structure of the file/layer:

> ogrinfo -summary /data/dgn/0824t.dgn elements
INFO: Open of ’0824t.dgn’
using driver ’'DGN’ successful.

Layer name: elements
Geometry: Unknown (any)
Feature Count: 22685

Extent: (-513183.050000, 150292.930000) - (-224583.220000,
Layer SRS WKT:
(unknown)

Type: Integer (2.0)

Level: Integer (2.0)
GraphicGroup: Integer (4.0)
ColorIndex: Integer (3.0)
Weight: Integer (2.0)
Style: Integer (1.0)
EntityNum: Integer (8.0)
MSLink: Integer (10.0)
Text: String (0.0)

Map File Example:

LAYER
NAME dgn
TYPE LINE
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "dgn/0824t.dgn"
STYLEITEM "AUTO"
CLASS
END

END # Layer

407463.360000)

298

Chapter 7. Data Input

MapServer Documentation, Release 6.0.3

7.1.5 ESRI File Geodatabase

ESRI File Geodatabases exist in a file folder and offer improved performance and size limitations. For more informa-
tion see the ESRI description page.

Note: Only file geodatabases created by AcrGIS 10.0 and above can be read by GDAL/MapServer.

File listing

File geodatabases are made up of a set of files within a folder. The files are made up of geographic data, attribute data,
index files, and lock files. A better description of the file contents can be found here.

Data Access / Connection Method

File geodatabase access is available through OGR. See the OGR driver page for specific driver information. The driver
is available for GDAL >=1.9.0.

The CONNECTION parameter must be used to point to the name of the file folder, and the DATA parameter should
be the name of the spatial table (or OGR layer).

CONNECTIONTYPE ogr
CONNECTION "filegdb-folder"
DATA "layername"

Note: The CONNECTION path is relative to the mapfile (SHAPEPATH is not used here). Full paths can also be
used.

OGRINFO Examples

First you should make sure that your GDAL/OGR build contains the file geodatabase “FileGDB” driver, by using the
‘~formats’ command:

>ogrinfo --formats
Supported Formats:

"FileGDB" (read/write)

"ESRI Shapefile" (read/write)
"MapInfo File" (read/write)
"UK .NTF" (readonly)

"SDTS" (readonly)

"TIGER" (read/write)

If you don’t have the driver, see GDAL’s BuildHints page for compiling the driver.

Once you have the FileGDB driver you are ready to try an ogrinfo command on your database to get a list of spatial
tables. In the example below our folder is named us_states.gdb:

ogrinfo us_states.gdb
INFO: Open of ‘us_states.gdb’
using driver ‘FileGDB’ successful.
1: statesp020 (Multi Polygon)

7.1. Vector Data 299

http://resources.arcgis.com/content/geodatabases/10.0/types-of-geodatabases
http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/file_ge-516860750.htm
http://www.gdal.org/ogr/drv_filegdb.html
http://trac.osgeo.org/gdal/wiki/FileGDB

MapServer Documentation, Release 6.0.3

Now use ogrinfo to get information on the structure of the statesp020 table:

ogrinfo us_states.gdb statesp020 -summary
INFO: Open of ‘us_states.gdb’
using driver ‘FileGDB’ successful.

Layer name: statesp020

Geometry: Multi Polygon

Feature Count: 2895

Extent: (-179.000000, 17.000000) - (179.000000, 71.000000)

Layer SRS WKT:

GEOGCS["GCS_North_American_1983",
DATUM["North_American_Datum_1983",

SPHEROID["GRS_1980",6378137.0,298.25722210111,

PRIMEM["Greenwich",0.0],
UNIT["Degree",0.017453292519943295]]

FID Column = OBJECTID

Geometry Column = SHAPE

AREA: Real (0.0)

PERIMETER: Real (0.0)

STATESP020: Real (0.0)

STATE: String (0.0)

STATE_FIPS: String (0.0)

Mapfile Example
LAYER

NAME "fgdb_poly"
TYPE POLYGON

STATUS ON
CONNECTIONTYPE OGR
CONNECTION "../data/filegdb/us_states.gdb"

DATA "statespO020"
LABELITEM "STATE"
CLASS
NAME "US States"
STYLE
COLOR 120 120 120
OUTLINECOLOR O 0 O
END
LABEL
COLOR 255 255 255
OUTLINECOLOR 0O 0 O
END
END
END

7.1.6 ESRI Personal Geodatabase (MDB)

ESRI Personal Geodatabases are basically Microsoft Access files that contain spatial information. For more informa-
tion see the ESRI description page.

300 Chapter 7. Data Input

http://www.esri.com/software/arcgis/geodatabase/index.html

MapServer Documentation, Release 6.0.3

File listing

Similar to other database formats, the mdb file consists of several tables. The geometry is held in a BLOB table
column.

Data Access / Connection Method

Personal geodatabase access is available through OGR. See the OGR driver page for specific driver information. The
driver is standard in any win32 build of GDAL/OGR version 1.3.2 or later. For Linux/Unix, MDBTools ODBC drivers
can be used for this (with some difficulty).

OGR uses the names of spatial tables within the personal geodatabase (tables with a Shape column) as layers.

The CONNECTION parameter must include the mdb extension, and the DATA parameter should be the name of the
spatial table (or OGR layer).

CONNECTIONTYPE ogr
CONNECTION "pgeodatabase.mdb"
DATA "layername"

OGRINFO Examples

First you should make sure that your GDAL/OGR build contains the personal geodatabase “PGeo” driver, by using
the ‘—formats’ command:

>ogrinfo —-—-formats
Loaded OGR Format Drivers:

-> "ODBC" (read/write)
-> "PGeo" (readonly)
-> "PostgreSQL" (read/write)

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.
Once you have the PGeo driver you are ready to try an ogrinfo command on your database to get a list of spatial tables:

>ogrinfo test.mdb
INFO: Open of ‘test.mdb’
using driver ‘PGeo’ successful.
1: counties

Now use ogrinfo to get information on the structure of the spatial table:

>ogrinfo test.mdb counties -summary
INFO: Open of ‘test.mdb’
using driver ‘PGeo’ successful.

Layer name: counties

Geometry: Unknown (any)

Feature Count: 67

Extent: (-87.634943, 24.543945) - (-80.031369, 31.000975)

Layer SRS WKT:

GEOGCS["GCS_WGS_1984",
DATUM["WGS_1984",
SPHEROID["WGS_1984",6378137.0,298.25722356311,
PRIMEM["Greenwich",0.0],
UNIT["Degree",0.01745329251994331]1

7.1. Vector Data 301

http://gdal.org/ogr/drv_pgeo.html
http://mdbtools.sourceforge.net/
http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 6.0.3

OBJECTID_1: Integer (10.0)
OBJECTID: Integer (10.0)
NAME: String (32.0)
STATE_NAME: String (25.0)
STATE_FIPS: String (2.0)
CNTY_FIPS: String (3.0)
FIPS: String (5.0)

Note that you can also use an ODBC connection to access all of the tables in your geodatabase:

>ogrinfo PGeo:testDSN counties —-summary

INFO: Open of ‘testDSN’
using driver ‘PGeo’ successful.

1: counties
2: counties_Shape_Index

(where “testDSN” is the name of your System DSN)

Mapfile Example

Direct Access to MDB

LAYER
NAME my_geodatabase
TYPE POLYGON
CONNECTIONTYPE ogr
CONNECTION "test.mdb"
DATA "counties"

STATUS ON
CLASS
NAME "counties"
STYLE
COLOR 255 255 120
END
END

END

Through an ODBC Connection

LAYER
NAME my_geodatabase
TYPE POLYGON
CONNECTIONTYPE ogr
CONNECTION "PGeo:testDSN"
DATA "counties"

STATUS ON
CLASS
NAME "counties"
STYLE
COLOR 255 255 120
END
END
END
302

Chapter 7. Data Input

MapServer Documentation, Release 6.0.3

7.1.7 ESRI Shapefiles (SHP)

Also known as ESRI ArcView Shapefiles or ESRI Shapefiles. ESRI is the company that introduced this format.
ArcView was the first product to use shapefiles.

File listing

Shapefiles are made up of a minimum of three similarly named files, with different suffixes:

Countries_area.dbf
Countries_area.shp
Countries_area.shx

Data Access / Connection Method

Shapefile access is built directly into MapServer. It is also available through OGR, but direct access without OGR
is recommended and discussed here. The path to the shapefile is required. No file extension should be specified.
Shapefiles only hold one layer of data, therefore no distinction needs to be made.

OGRINFO Examples

 The directory can serve as a data source.

 Each shapefile in a directory serves as a layer.

A shapefile can also be a data source. In this case the layer has the same prefix as the shapefile.
Using ogrinfo on a directory with multiple shapefiles:

> ogrinfo /data/shapefiles/

INFO: Open of ‘/data/shapefiles/’

using driver ‘ESRI Shapefile’ successful.
1: wpg_h2o0 (Line String)

2: wpg_roads (Line String)

3: wpg_roads_dis (Line String)

4: wpgrestaurants (Point)

Using ogrinfo on a single shapefile:

> ogrinfo /data/shapefiles/Countries_area.shp
Had to open data source read-only.

INFO: Open of ‘Countries_area.shp’

using driver ‘ESRI Shapefile’ successful.

1: Countries_area (Polygon)

Using ogrinfo to examine the structure of the file/layer:

> ogrinfo —-summary /data/shapefiles/Countries_area.shp Countries_area
Had to open data source read-only.

INFO: Open of ‘Countries_area.shp’

using driver ‘ESRI Shapefile’ successful.

Layer name: Countries_area

Geometry: Polygon

Feature Count: 27458

Extent: (-180.000000, -90.000000) - (180.000000, 83.627419)
Layer SRS WKT:

7.1. Vector Data 303

MapServer Documentation, Release 6.0.3

(unknown)

FAC_ID: Integer (5.0)
TILE: Integer (3.0)
ARCLIST: String (254.0)
NAM: String (77.0)
PERIMETER: Real (22.17)
POLYGONCOU: Integer (6.0)
NA2DESC: String (45.0)

Map File Example:

LAYER
NAME my_shapefile
TYPE POLYGON
DATA countries_area
STATUS OFF
CLASS
NAME "Countries"
OUTLINECOLOR 0O 0 O
END

END

7.1.8 GML

Also known as Geographic Markup Language and GML/XML. GML is a text-based, XML format that can represent
vector and attribute data. This is an Open Geospatial Consortium specification for data interchange. More information
is available at http://www.opengeospatial.org/standards/gml

File listing

GML files are usually a single text file with a GML filename extension. Some may use XML as the filename extension:

coal_dep.gml

XML schema documents often accompany GML files that have been translated from some other format (e.g. using
the ogr2ogr utility).

GML uses sets of nested tags to define attributes and geometry coordinates. Example of text in a GML file:

<gml:featureMember>
<Coal_Deposits fid="1">
<UNKNOWN>0.000</UNKNOWN>
<NA>0.000</NA>
<ID>2</ID>

<ID2>2</ID2>
<MARK>7</MARK>
<COALKEY>110</COALKEY>
<COALKEY2>110</COALKEY2>
<ogr:geometryProperty>
<gml:Point>
<gml:coordinates>78.531,50.694</gml:coordinates>
</gml:Point>
</ogr:geometryProperty>
</Coal_Deposits>
</gml:featureMember>

304 Chapter 7. Data Input

http://www.opengeospatial.org/standards/gml

MapServer Documentation, Release 6.0.3

Data Access / Connection Method

* GML access is available in MapServer through OGR. More information on OGR GML support is available at
http://www.gdal.org/ogr/drv_gml.html

e The CONNECTIONTYPE OGR parameter must be used.

* The path to the GML file is required, including file extension. There can be multiple layers in a GML file,
including multiple feature types.

OGRINFO Examples

Using ogrinfo on a single GML file:

> ogrinfo /data/gml/coal_dep.gml
Had to open data source read-only.
INFO: Open of ‘coal_dep.gml’

using driver ‘GML’ successful.

1: Coal_Deposits

Using ogrinfo to examine the structure of one layer:

> ogrinfo -summary /data/gml/coal_dep.gml Coal_Deposits
Had to open data source read-only.

INFO: Open of ‘coal_dep.gml’

using driver ‘GML’ successful.

Layer name: Coal_Deposits
Geometry: Unknown (any)
Feature Count: 266

Extent: (23.293650, 37.986340) - (179.272550, 80.969670)
Layer SRS WKT:
(unknown)

UNKNOWN: Real (0.0)

NA: Real (0.0)

ID: Integer (0.0)

ID2: Integer (0.0)
MARK: Integer (0.0)
COALKEY: Integer (0.0)
COALKEY2: Integer (0.0)
LONG: Real (0.0)

LAT: Real (0.0)

Map File Example:

LAYER

NAME coal_deposits

TYPE POINT

STATUS DEFAULT

CONNECTIONTYPE OGR
CONNECTION "gml/coal_dep.gml”

CLASS
STYLE
COLOR 0 0 O
SYMBOL ’circle’
SIZE 6
END
END
END

7.1. Vector Data 305

http://www.gdal.org/ogr/drv_gml.html

MapServer Documentation, Release 6.0.3

7.1.9 GPS Exchange Format (GPX)

GPX (the GPS Exchange Format) is a light-weight XML data format containing GPS data (waypoints, routes, and
tracks). For more information see the official GPX site.
File listing

All waypoints, routes, and tracks are stored in a single .gpx file.

Data Access / Connection Method

* GPX access is available through OGR. See the OGR driver page for specific driver information.
* A relative path to the .gpx file can be used in the mapfile LAYER’s CONNECTION string.
¢ The feature type is specified in the DATA parameter

— the “tracks” feature type will usually be the track line

— the “track_points” feature type will usually be the points that make up the track line

OGRINFO Examples

First you should make sure that your GDAL/OGR build contains the “GPX” driver, by using the ‘—formats’ command:

>ogrinfo —--formats
Loaded OGR Format Drivers:

—> "gcsyr

(read/write)
-> "GML" (read/write)
-> "GPX" (read/write)
-> "KML" (read/write)

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.
Once you have the GPX driver you are ready to try an ogrinfo command on your file to get a list of feature types:

>ogrinfo test.gpx

INFO: Open of ‘test.gpx’

using driver ‘GPX’ successful.

: waypoints (Point)
routes (Line String)
: tracks (Multi Line String)
route_points (Point)
: track_points (Point)

g w N

Now use ogrinfo to get information on one of the feature types:

>ogrinfo test.gpx track_points —-summary
INFO: Open of ‘test.gpx’
using driver ‘GPX’ successful.

Layer name: track_points

Geometry: Point

Feature Count: 661

Extent: (-66.694270, 47.985570) - (-66.675222, 47.990791)
Layer SRS WKT:

306 Chapter 7. Data Input

http://www.topografix.com/gpx.asp
http://www.gdal.org/ogr/drv_gpx.html
http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 6.0.3

GEOGCS ["WGS 84",
DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]1,
AUTHORITY ["EPSG","6326"]1,
PRIMEM["Greenwich", 0,
AUTHORITY["EPSG","8901"]1,
UNIT["degree",0.01745329251994328,
AUTHORITY ["EPSG","9122"]],
AUTHORITY["EPSG","4326"]]
track_fid: Integer (0.0)
track_seg_id: Integer (0.0)
track_seg_point_id: Integer (0.0)
ele: Real (0.0)
time: DateTime (0.0)
magvar: Real (0.0)
geoidheight: Real (0.0)
name: String (0.0)
cmt: String (0.0)
desc: String (0.0)
src: String (0.0)

Mapfile Example

Since you have confirmed that OGR can read your GPX file, now you can create a MapServer layer:

LAYER
NAME gpx
TYPE POINT
STATUS ON
CONNECTIONTYPE OGR
CONNECTION test.gpx
DATA "track_points"
CLASS
NAME "gpx"
STYLE
SYMBOL ’circle’
COLOR 0 119 255
SIZE 2
END
END
END # layer

7.1.10 Inline

Inline features refer to coordinates entered directly into the map file. They are not a file or database format and do not
require any DATA or CONNECTION parameters. Instead they use a FEATURE section to define the coordinates.

Inline features can be used to define points, lines and polygons as if taken from an external file. This requires direct
entry of coordinate pairs in the map file using a particular syntax.

Data Access / Connection Method

This is a native MapServer option that doesn’t use any external libraries to support it.

7.1. Vector Data 307

MapServer Documentation, Release 6.0.3

Map File Example

Points

LAYER
NAME inline_stops
TYPE POINT
STATUS DEFAULT
FEATURE
POINTS
72.36 33.82
END
TEXT "My House"
END
FEATURE
POINTS
69.43 35.15
71.21 37.95
72.02 38.60
END
TEXT "My Stores"
END
CLASS
STYLE
COLOR 0 0 250
SYMBOL ’circle’
SIZE 6
END
END
END
Lines

e Each FEATURE..END section defines a feature.

* Multiple points can be defined in a FEATURE section. If multiple points are defined in the same layer, they will

have the same CLASS settings, e.g. for colours and styles.

* Coordinates are entered in the units set in the layer’s projection. In this case it is assuming the map file projection

is using decimal degrees.

Lines are simply a list of points strung together, but the layer must be TYPE LINE instead of TYPE POINT.

LAYER

NAME inline_track

TYPE LINE
STATUS DEFAULT

MAXSCALE 10000000

FEATURE

POINT
72.
70.
69.
70.
70.
71.

END

S

36
85
43
82
90
21

33.
34.
35.
36.
37.
37.

82
32
15
08
05
95

308

Chapter 7. Data Input

MapServer Documentation, Release 6.0.3

END
CLASS
STYLE
COLOR 255 10 O
SYMBOL ’circle’
SIZE 2
END
END
END

Polygons

Polygons are the same as the line example, just a list of points. They require the TYPE POLYGON parameter.
Polygons also require the final coordinate pair to be the same as the first, making it a closed polygon.

7.1.11 KML - Keyhole Markup Language

Table of Contents

* KML - Keyhole Markup Language
— Links to KML-Related Information
— Data Access / Connection Method
— Example 1: Displaying a .KML file
— Example 2: Displaying a .KMZ file

Keyhole Markup Language (KML) is an XML-based language for managing the display of 3D geospatial data. KML
is a standard maintained by the Open Geospatial Consoritum (OGC).

Links to KML-Related Information

* Google’s KML Reference

* OGC’s KML Specification

e KML Validator

* KML Validator (against OGC KML 2.2)

Data Access / Connection Method

KML access in MapServer is available through OGR. See the OGR driver page for specific driver information. Read
support was initially added to GDAL/OGR version 1.5.0. A more complete KML reader was added to GDAL/OGR in
version 1.8.0, through the libKML driver (including the ability to read multigeometry, and KMZ files).

The CONNECTION parameter must include the kml or kmz extension, and the DATA parameter should be the name
of the layer.

CONNECTIONTYPE OGR
CONNECTION "filename.kml"
DATA "layername"

7.1. Vector Data 309

http://code.google.com/apis/kml/documentation/kmlreference.html
http://www.opengeospatial.org/standards/kml
http://feedvalidator.org/
http://www.kmlvalidator.com/home.htm
http://www.gdal.org/ogr/drv_kml.html
http://www.gdal.org/ogr/drv_libkml.html

MapServer Documentation, Release 6.0.3

Example 1: Displaying a .KML file

OGRINFO

First you should make sure that your GDAL/OGR build contains the “KML” driver, by using the ‘—formats’ command:

>ogrinfo --formats
Loaded OGR Format Drivers:

-> "GML" (read/write)
-> "GPX" (read/write)
-> "KML" (read/write)

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver.

Once you have the KML driver you are ready to try an ogrinfo command on your file to get a list of available layers:

>ogrinfo myplaces.kml
INFO: Open of ‘myplaces.kml’
using driver ‘KML’ successful.
1: Layer #0 (Point)

Now use ogrinfo to get information on the structure of the layer:

>ogrinfo fountains-hotel.kml "Layer #0" -summary
Had to open data source read-only.
INFO: Open of ‘fountains-hotel.kml’
using driver ‘KML’ successful.

Layer name: Layer #0
Geometry: Point
Feature Count: 1

Extent: (18.424930, -33.919627) - (18.424930, -33.919627)

Layer SRS WKT:
GEOGCS ["WGS 84",
DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY ["EPSG","7030"]],
AUTHORITY["EPSG","6326"]1,
PRIMEM["Greenwich", O,
AUTHORITY ["EPSG","8901"]],
UNIT["degree",0.01745329251994328,
AUTHORITY ["EPSG", "9122"1],
AUTHORITY ["EPSG", "4326"]]
Name: String (0.0)
Description: String (0.0)

Mapfile Example

LAYER
NAME "kml_example"
TYPE POINT
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "kml/fountains-hotel.kml"
DATA "Layer #0"

310

Chapter 7. Data Input

http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 6.0.3

LABELITEM "NAME"
CLASS
NAME "My Places"
STYLE
COLOR 250 0 O
OUTLINECOLOR 255 255 255
SYMBOL ’'circle’
SIZE ©
END
LABEL
SIZE TINY
COLOR 0 0 O
OUTLINECOLOR 255 255 255
POSITION AUTO
END
END
END

Example 2: Displaying a .KMZ file

OGRINFO

First you should make sure that your GDAL/OGR build contains the “LIBKML” driver, by using the ‘—formats’
command:

>ogrinfo —--formats
Loaded OGR Format Drivers:

-> "GML" (read/write)
-> "GPX" (read/write)
—-> "LIBKML" (read/write)
-> "KML" (read/write)

If you don’t have the driver, you might want to try the FWTools or MS4W packages, which include the driver. Or you
can follow the compiling notes for libKML and GDAL/OGR.

Once you have the LIBKML driver you are ready to try an ogrinfo command on your file to get a list of available
layers:

>ogrinfo Lunenburg_Municipality.kmz
INFO: Open of ‘Lunenburg_Municipality.kmz’
using driver ‘LIBKML’ successful.
1: Lunenburg_Municipality

Now use ogrinfo to get information on the structure of the layer:

>ogrinfo Lunenburg_Municipality.kmz Lunenburg Municipality -summary
INFO: Open of ‘Lunenburg_Municipality.kmz’
using driver ‘LIBKML’ successful.

Layer name: Lunenburg_Municipality

Geometry: Unknown (any)

Feature Count: 1

Extent: (-64.946433, 44.133207) - (-64.230281, 44.735125)
Layer SRS WKT:

GEOGCS["WGS 84",

7.1. Vector Data 311

http://fwtools.maptools.org/
http://www.maptools.org/ms4w/
http://trac.osgeo.org/gdal/wiki/LibKML

MapServer Documentation, Release 6.0.3

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY ["EPSG","7030"11],
TOWGS84(0,0,0,0,0,0,07,
AUTHORITY ["EPSG","6326"]1,
PRIMEM["Greenwich", 0,
AUTHORITY["EPSG","8901"]1,
UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9108"]1,
AUTHORITY["EPSG","4326"]]
Name: String (0.0)
description: String (0.0)
timestamp: DateTime (0.0)
begin: DateTime (0.0)
end: DateTime (0.0)
altitudeMode: String (0.0)
tessellate: Integer (0.0)
extrude: Integer (0.0)
visibility: Integer (0.0)

Mapfile Example

LAYER
NAME "lunenburg"
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "Lunenburg Municipality.kmz"
DATA "Lunenburg_Municipality"
CLASS
NAME "Lunenburg"
STYLE
COLOR 244 244 16
OUTLINECOLOR 199 199 199
END
END
END # layer

7.1.12 Maplinfo
File listing

The following files are also associated with .TAB files: .DAT, .ID, .MAP. An example is:

border.DAT
border.ID

border.MAP
border.TAB

The term MID/MIF refers to files with .MID and .MIF extension.

Data Access / Connection Method

TAB and MID/MIF access is available in MapServer through OGR.

312 Chapter 7. Data Input

MapServer Documentation, Release 6.0.3

The CONNECTIONTYPE OGR parameter must be used.
e The path to the (*.tab or *.mif) file is required, and the file extension is needed.
* The path may be relative to the SHAPEPATH

* Maplnfo files already contain styling information. This styling information can be used optionally by specifying
the STYLEITEM “AUTO” parameter in the LAYER object of the map file.

Note: If youuse STYLEITEM “AUTO” you must have an empty class in the layer.

OGRINFO Examples

Using ogrinfo on a single TAB file

> ogrinfo elev5_poly.TAB

Had to open data source read-only.
INFO: Open of ‘elevb_poly.TAB’

using driver ‘MapInfo File’ successful.
1: elevb_poly (Polygon)

Using ogrinfo to examine the structure of the file/layer

> ogrinfo elev5_poly.TAB elev5_poly
Had to open data source read-only.
INFO: Open of ‘elev5_poly.TAB’

using driver ‘MapInfo File’ successful.

Layer name: elev5_poly

Geometry: Polygon

Feature Count: 2236

Extent: (-141.000000, 60.000000) - (-124.403310, 69.300251)

Layer SRS WKT:

GEOGCS ["unnamed",

DATUM["MIF O",

SPHEROID["WGS 84 (MAPINFO Datum 0)",6378137.01,298.257223563],

TOwWGs841(0,0,0,0,0,0,011,

PRIMEM["Greenwich",0],

UNIT["degree",0.0174532925199433]]

AREA: Real (0.0)

PERIMETER: Real (0.0)

ELEV5_: Integer (0.0)

ELEV5_ID: Integer (0.0)

TYPE: Real (4.0)

ELEV5: Real (4.0)

Map File Example

LAYER

NAME Elevation_Poly_5

TYPE POLYGON

STATUS DEFAULT

CONNECTIONTYPE OGR

CONNECTION "./hypso/elev5_poly.TABR"
STYLEITEM "AUTO"

7.1. Vector Data 313

MapServer Documentation, Release 6.0.3

CLASS

NAME "Elevation Poly 5"
END
END # Layer

7.1.13 MSSQL

Author Tamas Szekeres

Contact szekerest at gmail.com

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2012-09-26

Contents

* MSSQL
— Introduction
— Creating Spatial Data Tables in MSSQL 2008
— Connecting to Spatial Data in MSSQL 2008
* OPTION 1: Connect Through OGR
- Verify Local Support for MSSQLSpatial
- Test OGR Connection Parameters
- Create MapServer Layer using CONNECTIONTYPE OGR
% OPTION 2: Connect Through MapServer Plugin
- Create MapServer Layer
- Selecting the Type of the Geometry Column
- Expected Location of the MSSQL Plugin
- Binaries Containing the MSSQL Plugin
+ Using Spatial Indexes
* Layer Processing Options
— More Information

Introduction

Microsoft SQL Server 2008+ supports storing spatial data by using the built-in geometry/geography data types.
MapServer can connect to MSSQL through either: 1) an OGR connectiontype, or 2) a driver that accesses these
tables containing spatial columns, which is compiled as a plugin (“msplugin_mssql2008.d11”).

Creating Spatial Data Tables in MSSQL 2008

There are several ways to create spatial data tables in MSSQL 2008. You can easily upload existing data to an MSSQL
table by using the ogr2ogr commandline tool and the OGR’s MSSQL Spatial driver Here is an example that uploads a
shapefile (province.shp) into an MSSQL 2008 instance:

ogr2ogr —-f MSSQLSpatial —a_srs EPSG:4326 "MSSQL:server=.\SQLEXPRESS; database=geo; trusted_connection=:

314 Chapter 7. Data Input

http://www.gdal.org/ogr2ogr
http://www.gdal.org/ogr/drv_mssqlspatial.html

MapServer Documentation, Release 6.0.3

Connecting to Spatial Data in MSSQL 2008

In order to connect to the MSSQL 2008 spatial database you should set up a valid connection string to the database
like the following examples:

Server=.\MSSQLSERVER2008; Database=Maps; Integrated Security=true

Server=55.55.55.55,1433;uid=a_user;pwd=a_password; database=a_database;
Integrated Security=True

Server=55.55.55.55\SQLEXPRESS, 1433; uid=a_user; pwd=a_password;
database=a_database; Integrated Security=True

OPTION 1: Connect Through OGR

GDAL/OGR (and therefore MapServer) can read spatial tables in MSSQL 2008 through the MSSQLSpatial driver.

Verify Local Support for MSSQLSpatial Use the command “ogrinfo —formats” to verify that your local GDAL is
built with support for MSSQL; the response should contain “MSSQLSpatial” such as:

Supported Formats:
-> "OCI" (read/write)
-> "ESRI Shapefile" (read/write)
-> "MapInfo File" (read/write)

-> "MSSQLSpatial" (read/write)

Test OGR Connection Parameters Use the ogrinfo commandline utility to test your connection through the
MSSQLSpatial driver, such as:

ogrinfo "MSSQL:server=.\SQLEXPRESS;database=geo;trusted_connection=yes" province —-summary

Create MapServer Layer using CONNECTIONTYPE OGR Your layer should contain a CONNECTIONTYPE
OGR statement, as well as a CONNECTION. The connection should also contact a “tables=" parameter, and also the
name of the geometry column in brackets. You do not need to specify the DATA parameter unless you define an sql
select statement starting with the “‘WHERE’ keyword. For example:

LAYER
NAME "provinces"
TYPE POLYGON
STATUS ON
#H##
CONNECTIONTYPE OGR
CONNECTION "MSSQL:server=.\SQLEXPRESS; uid=xx;pwd=xxx;database=geo;trusted_connection=yes;tables=pr
#H##
PROJECTION
"init=epsg:4326"
END
CLASS
NAME "Land"
STYLE
COLOR 240 240 240
OUTLINECOLOR 199 199 199

7.1. Vector Data 315

http://www.gdal.org/ogr/drv_mssqlspatial.html

MapServer Documentation, Release 6.0.3

END
END
PROCESSING ’'CLOSE_CONNECTION=DEFER’
END # layer

Note: The usual CONNECTIONTYPE terms ‘using unique’ and ‘using srid’ are not meaningful for the OGR driver
in this case, as these parameters are automatically retrieved from the ‘geometry_columns’ metadata table.

OPTION 2: Connect Through MapServer Plugin

Create MapServer Layer Once the connection can be established to the server the layer can be configured to access
MSSQL2008 as follows:

LAYER
NAME "rivers_mssqgl_spatial”
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE PLUGIN
PLUGIN "msplugin_mssgl2008.d11"
CONNECTION "Server=.\MSSQLSERVER2008;Database=Maps; Integrated Security=true"
DATA "ogr_geometry from rivers USING UNIQUE ogr_fid USING SRID=4326"

END

The DATA parameter is used to perform the SQL select statement to access your table in MSSQL. The geometry
column is required in the select statement; in the above example the ogr_geometry column is the geometry column in
the rivers table. The table should also have an unique column (ogr_fid) which is provided for random access to the
features in the feature query operations.

The DATA section should also contain the spatial reference id (SRID) of the features in the data table The SRID is used
when specifying the search shapes during the intersect operations which should match with the SRID of the features
otherwise no features are returned in a particular query. if you omit specifying the SRID value in the DATA section
the diver will use SRID=0 when defining the search shapes.

Selecting the Type of the Geometry Column For the geometry columns MSSQL supports 2 data types: “geometry”
and “geography”. By default the driver considers the type of the geometry column is “geometry”. In case if the type
of the geometry column is “geography” we must specify the data type in the DATA section explicitly, like:

DATA "ogr_geometry (geography) from rivers USING UNIQUE ogr_fid USING SRID=4326"

Expected Location of the MSSQL Plugin On Windows platforms the DLLs needed by the program are searched
for in the following order:

1. The directory from which the application loaded.

The current directory.

The system directory. Use the GetSystemDirectory function to get the path of this directory.
The 16-bit system directory.

The Windows directory. Use the GetWindowsDirectory function to get the path of this directory.

A

The directories that are listed in the PATH environment variable.

316 Chapter 7. Data Input

http://msdn.microsoft.com/en-us/library/ms724373.aspx
http://msdn.microsoft.com/en-us/library/ms724454.aspx

MapServer Documentation, Release 6.0.3

Binaries Containing the MSSQL Plugin Currently the following binary distributions contain msplu-
gin_mssql2008.d11:

e MapServer and GDAL binary and SDK packages
* MS4W distributions

Using Spatial Indexes

In order to speed up the access to the features a spatial index should be created to the geometry column which could
easily be done with the OGR MSSQL Spatial driver like:

ogrinfo -sgl "create spatial index on rivers"
"MSSQL:server=.\MSSQLSERVER2008; database=Maps;
Integrated Security=true"

In general we can safely rely on the query optimizer to select the most appropriate index in the sql query operations.
In some cases - however - we should force the optimizer to use the spatial index by specifying the index hint in the
DATA section like:

DATA "ogr_geometry from rivers using index ogr_geometry_sidx
USING UNIQUE ogr_fid USING SRID=4326"

Layer Processing Options

We can control the behaviour of the MSSQL driver by using the following PROCESSING options:

* CLOSE_CONNECTION=DEFER - This is where you can enable connection pooling for certain layer types.
Connection pooling will allow MapServer to share the handle to an open database or layer connection throughout
a single map draw process.

« MSSQL_READ_WKB=TRUE - Uses WKB (Well Known Binary) format instead of native format when fetch-
ing geometries.

More Information

* OGR MSSQL Spatial driver page (describes the OGR MSSQL support)
* ogr2ogr application (describes the ogr2ogr commandline application)

 Vector Data (MapServer Vector Data Access Guide)

7.1.14 MySQL

Author David Fawcett

Contact david.fawcett at moea.state.mn.us
Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2010-07-29

7.1. Vector Data 317

http://vbkto.dyndns.org/sdk/
http://www.maptools.org/ms4w/
http://www.gdal.org/ogr/drv_mssqlspatial.html
http://www.gdal.org/ogr2ogr

MapServer Documentation, Release 6.0.3

Contents

* MySQL

— Introduction

— Connecting to Spatial Data in MySQL
* Requirements
Verify MySQL Support in OGR Build
% Test Connection with ogrinfo
* Create MapServer Layer

— Connecting to non-Spatial Data in MySQL
* Requirements
* Create .ovf file
+ Test Connection with ogrinfo
* Create MapServer Layer

— More Information

Introduction

The following methods connect to MySQL through OGR’s MySQL driver, thus avoiding the need to set up an ODBC
connection.

Connecting to Spatial Data in MySQL

This section describes how to display a spatial MySQL table (meaning that the table has a column of type geometry)
in MapServer. OGR’s MySQL driver was expanded in OGR version 1.3.2 to support access to MySQL spatial tables.

Requirements

* MapServer compiled with OGR support
* OGR/GDAL version 1.3.2 or more recent compiled with MySQL support

Verify MySQL Support in OGR Build

You can verify that your local build of OGR contains MySQL support by using the ogrinfo commandline utility, and
making sure that “MySQL” is returned:

ogrinfo —--formats
Supported Formats:
-> "ESRI Shapefile" (read/write)

-> "MapInfo File" (read/write)

-> "PostgreSQL" (read/write)
-> "MySQL" (read/write)

Test Connection with ogrinfo

MySQL connection strings in OGR are in the following format:

318 Chapter 7. Data Input

http://www.gdal.org/ogr/drv_mysql.html
http://www.gdal.org/ogr/drv_mysql.html

MapServer Documentation, Release 6.0.3

MYSQL:database, host=yourhost, user=youruser, password=yourpass, tables=yourtable

Therefore an example ogrinfo command would be:

> ogrinfo MYSQL:test,user=root,password=mysql,port=3306

which should return a list of all of your tables in the ‘test’ database:

INFO: Open of 'MYSQL:test,user=root,password=mysql,port=3306"'
using driver ‘MySQL’ successful.
1: province (Polygon)

and you can return a summary of the MySQL spatial layer:

> ogrinfo MYSQL:test,user=root,password=mysql,port=3306 province —-summary

INFO: Open of 'MYSQL:test,user=root,password=mysqgl,port=3306"'
using driver ‘MySQL’ successful.

Layer name: province

Geometry: Polygon

Feature Count: 48

Extent: (-13702.315770, 3973784.599548) - (1127752.921471, 4859616.714055)
Layer SRS WKT:

PROJCS["ED50_UTM_zone_30N",

FID Column = OGR_FID
Geometry Column = SHAPE
id: Real (2.0)

Create MapServer Layer

LAYER
NAME "spain_provinces_mysqgl_spatial"
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE OGR
CONNECTION "MySQL:test,user=root,password=mysqgl,port=3306"
DATA "SELECT SHAPE, admin_name from province"
LABELITEM "admin_name"
CLASS
NAME "Spain Provinces"
STYLE
COLOR 240 240 240
OUTLINECOLOR 199 199 199
END
LABEL
COLOR 0 0 O
FONT sans
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE
OUTLINECOLOR 255 255 255
END

7.1. Vector Data 319

MapServer Documentation, Release 6.0.3

END
END # layer

The DATA parameter is used to perform the SQL select statement to access your table in MySQL. The geometry
column is required in the select statement; in the above example the SHAPE column is the geometry column in the
province table.

Connecting to non-Spatial Data in MySQL
This section describes how to display a non-spatial MySQL table (meaning the table does not have a column of type

geometry) in MapServer.

Support for this functionality is found in GDAL/OGR 1.2.6 and older on Windows and GDAL/OGR 1.3.2 on Linux.

Requirements

* MySQL database containing a table with fields containing x and y coordinates
 .ovf file, a small xml file you will create

* MapServer compiled with OGR version supporting this functinality

Create .ovf file

Here is the .ovf file named aqidata.ovf

<OGRVRTDataSource>
<OGRVRTLayer name="agidata">
<SrcDataSource>MYSQL:agiTest, user=uuuuu, password=ppppp, host=192.170.1.100, port=3306, tables=tc¢
<SrcSQL>SELECT arealD, x, y, sampleValue FROM testdata</SrcSQL>
<GeometryType>wkbPoint</GeometryType>
<GeometryField encoding="PointFromColumns" x="x" y="y"/>
</OGRVRTLayer>
</OGRVRTDataSource>

If you look at the connection string in <SrcDataSource>
* The MySQL database name is ‘aqiTest’
* ‘testdata’ is the table containing the coordinate data
* host and port are for MySQL server

Use the GeometryField element to tell OGR which fields store the x and y coordinate data. Mine are simply named x
and y.

Test Connection with ogrinfo

usr/local/bin/ogrinfo /maps/agidata.ovf

ogrinfo returns

ERROR 4: Update access not supported for VRT datasources.
Had to open data source read-only.
INFO: Open of ‘/maps/agidata.ovf’

320 Chapter 7. Data Input

MapServer Documentation, Release 6.0.3

using driver ‘VRT’ successful.
1: agidata (Point)

Don’t worry about the error, this is just telling you that it is a read-only driver. If it really bugs you, call ogrinfo with
the -ro (read only) flag.

To see the actual data

usr/local/bin/ogrinfo /maps/agidata.ovf -al

Create MapServer Layer

LAYER
NAME "MyAqgi"
STATUS DEFAULT
TYPE POINT
CONNECTIONTYPE OGR
CONNECTION "agidata.ovf"
DATA "agidata"
CLASS
NAME "MyClass"
STYLE
SYMBOL ’circle’
SIZE 15
COLOR 0 255 0
END
END
END

DATA in the LAYER definition should be the same as the name attribute of the OGRVRTLayer element in the ovf file.

For this to draw, you need to have a SYMBOLSET defined in your mapfile and have a symbol called ‘circle’ in your
symbols.sym file.

More Information

* OGR (MapServer OGR document)
» Vector Data (MapServer Vector Data Access Guide)

* MySQL wiki page (describes the deprecated mygis support)

7.1.15 NTF

NTF files are mostly used by the United Kingdom Ordnance Survey (OS). For more on the Ordnance Survey, see their
website at: http://www.ordnancesurvey.co.uk/oswebsite/

File listing

NTF files have an NTF extension.

7.1. Vector Data 321

http://trac.osgeo.org/mapserver/wiki/MySQL
http://www.ordnancesurvey.co.uk/oswebsite/

MapServer Documentation, Release 6.0.3

Data Access / Connection Method

* NTF access requires OGR.

* The path to the NTF file is required in the CONNECTION string. It may be relative to the SHAPEPATH setting

in the map file or the full path.

* The DATA parameter is used to specify the layer to use

OGRINFO Examples

Using ogrinfo on an NTF file to retrieve layer names:

> ogrinfo llcontours.ntf

ERROR 4: NTF Driver doesn’t support update.
Had to open data source read-only.

INFO: Open of ‘llcontours.ntf’

using driver ‘UK .NTF’ successful.

1: LANDLINE_POINT (Point)

2: LANDLINE_LINE (Line String)

3: LANDLINE_NAME (Point)

4: FEATURE_CLASSES (None)

Using ogrinfo to examine the structure of an NTF layer:

> ogrinfo llcontours.ntf LANDLINE_LINE -summary
ERROR 4: NTF Driver doesn’t support update.

Had to open data source read-only.

INFO: Open of ‘llcontours.ntf’

using driver ‘UK .NTF’ successful.

Layer name: LANDLINE_LINE
Geometry: Line String
Feature Count: 491

Extent: (279000.000000, 187000.000000) - (280000.000000, 188000.000000)

Layer SRS WKT:
PROJCS["OSGB 1936 / British National Grid",
GEOGCS["0OSGB 1936",
DATUM["OSGB_1936",

SPHEROID ["Airy 1830",6377563.396,299.3249646,

AUTHORITY ["EPSG","7001"11,
AUTHORITY ["EPSG", "6277"11,
PRIMEM["Greenwich", 0,
AUTHORITY ["EPSG", "8901"1],
UNIT["degree",0.0174532925199433],
AUTHORITY ["EPSG", "4277"11,
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",49],
PARAMETER["central_meridian",-2],
PARAMETER ["scale_factor",0.999601272],
PARAMETER["false_easting",400000],
PARAMETER["false_northing",-100000],
UNIT["metre", 1,
AUTHORITY ["EPSG", "9001"1],
AUTHORITY["EPSG","27700"]]
LINE_ID: Integer (6.0)
FEAT_CODE: String (4.0)

322

Chapter 7. Data Input

MapServer Documentation, Release 6.0.3

Map File Example:

LAYER
NAME ntf_uk
TYPE LINE
CONNECTIONTYPE OGR
CONNECTION "./ntf/llcontours.ntf"
DATA "LANDLINE_LINE"
STATUS DEFAULT

CLASS
NAME "Contours"
STYLE
COLOR 0 150 200

END

END
END

7.1.16 OGR

Author Jeff McKenna
Contact jmckenna at gatewaygeomatics.com

Last Updated 2010-10-16

Table of Contents

* OGR
— Introduction
What is OGR?
Obtaining and Compiling MapServer with OGR Support
Integrating OGR Support with MapServer Applications
STYLEITEM “AUTO” - Rendering Layers Using Style Information from the OGR File
Sample Sites Using OGR/MapServer
— FAQ / Common Problems

Introduction

Starting with version 3.5, MapServer included the ability to access vector data sets in formats other than Shapefile
in their native format using the OGR library. The following document describes the process for implementing OGR
support within MapServer applications.

Note: Experimental OGR support was included in MapServer version 3.4 but this initial implementation had some
limitations and is not covered in this document.

This document assumes that you are already familiar with certain aspects of MapServer:
* MapServer application development and especially setting up .map files.

* Some compilation skills if you don’t have ready access to a pre-compiled installation and need to compile your
own copy of MapServer with OGR support.

* access to OGR utilities, such as ogrinfo, which are available in the FWTools and MS4W packages.

7.1. Vector Data 323

http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 6.0.3

Readers should also check out the Vector Data Access Guide, which has lots of examples of how to access specific
vector formats.

What is OGR?

The OGR Simple Features Library is a C++ open source library (and command-line tools) providing read (and some-
times write) access to a variety of vector file formats including ESRI Shapefiles, and MapInfo mid/mif and TAB
formats.

OGR is actually part of the GDAL library, so you will notice that some references point to GDAL (such as the mailing
list).

What Does OGR Add to MapServer?

The OGR Simple Features Library allows MapServer users to display several types of vector data files in their native
formats. For example, MapInfo Mid/Mif and TAB data do not need to be converted to ESRI shapefiles when using
OGR support with MapServer.

What Data Formats are Supported?

See http://www.gdal.org/ogr/ogr_formats.html for the latest list of supported formats. At the date this document was
written, the following formats were supported:

* Arclnfo Binary Coverages

* ArcInfo EO0 Coverages

e Atlas BNA

e Comma Separated Value (.csv)
* DODS/OPeNDAP

* ESRI ArcSDE

e ESRI Personal GeoDatabase
* ESRI Shapefiles

* FMEObjects Gateway

* Géoconcept Export

* GeoJSON

* GeoRSS

* GML

« GMT

* GRASS

* GPX

* Informix DataBlade

* INGRES

* INTERLIS

¢ KML

324 Chapter 7. Data Input

http://www.gdal.org/ogr/ogr_formats.html
http://www.gdal.org/ogr/drv_avcbin.html
http://www.gdal.org/ogr/drv_avce00.html
http://www.gdal.org/ogr/drv_bna.html
http://www.gdal.org/ogr/drv_csv.html
http://www.gdal.org/ogr/drv_dods.html
http://www.gdal.org/ogr/drv_sde.html
http://www.gdal.org/ogr/drv_pgeo.html
http://www.gdal.org/ogr/drv_shapefile.html
http://www.gdal.org/ogr/drv_fme.html
http://www.gdal.org/ogr/drv_geoconcept.html
http://www.gdal.org/ogr/drv_geojson.html
http://www.gdal.org/ogr/drv_georss.html
http://www.gdal.org/ogr/drv_gml.html
http://www.gdal.org/ogr/drv_gmt.html
http://www.gdal.org/ogr/drv_grass.html
http://www.gdal.org/ogr/drv_gpx.html
http://www.gdal.org/ogr/drv_idb.html
http://www.gdal.org/ogr/drv_ingres.html
http://www.gdal.org/ogr/drv_ili.html
http://www.gdal.org/ogr/drv_kml.html

MapServer Documentation, Release 6.0.3

* Maplnfo files

* Memory

* Microstation DGN files

* MySQL

* ODBC

* OGDI Vectors

* Oracle Spatial

* PostgreSQL

* SDTS

¢ SQLite

e UK.NTF (National Transfer Format)
* US Census TIGER/Line
e VRT - Virtual Datasource

* X-Plane/Flighgear aeronautical data

Note: Some of the above formats (e.g. OGDI) have external dependencies and are not always included in the
pre-compiled binary distributions of MapServer with OGR support.*

Note: Some of the above formats are not well suited for random access by nature, that’s the case of MapInfo MIF/MID
files which is a TEXT format and will give very poor performance for a web application. On the other hand, some
binary formats such as MaplInfo TAB are better suited for random access and will give performance comparable to
native shapefile access in MapServer.*

How to Get More Information on the OGR Project

* More information on the OGR Simple Features Project can be found at http://www.gdal.org/ogr/.

* The GDAL mailing list can be used for OGR related questions. Always search the list archives before sending
new questions.

» The GDAL Wiki has lots of good information for users and developers.
* The #gdal IRC channel on irc.freenode.net might also be of help. For info on IRC see the MapServer IRC page.

The main developer of the OGR library is Frank Warmerdam and the integration of OGR within MapServer was done
by Daniel Morissette.

Obtaining and Compiling MapServer with OGR Support

* Follow the instructions on the OGR page to compile/install OGR/GDAL.
¢ Obtain the MapServer source.

For UNIX users, see the README.CONFIGURE file in the MapServer source, or see the UNIX Compilation and
Installation. If GDAL/OGR is normally installed it should be sufficient to add —with-ogr to the configure line before
(re)building MapServer. Linux users might want to try FGS, a Linux installer for MapServer.

7.1. Vector Data 325

http://www.gdal.org/ogr/drv_mitab.html
http://www.gdal.org/ogr/drv_memory.html
http://www.gdal.org/ogr/drv_dgn.html
http://www.gdal.org/ogr/drv_mysql.html
http://www.gdal.org/ogr/drv_odbc.html
http://www.gdal.org/ogr/drv_ogdi.html
http://www.gdal.org/ogr/drv_oci.html
http://www.gdal.org/ogr/drv_pg.html
http://www.gdal.org/ogr/drv_sdts.html
http://www.gdal.org/ogr/drv_sqlite.html
http://www.gdal.org/ogr/drv_ntf.html
http://www.gdal.org/ogr/drv_tiger.html
http://www.gdal.org/ogr/drv_vrt.html
http://www.gdal.org/ogr/drv_xplane.html
http://www.gdal.org/ogr/
http://lists.osgeo.org/mailman/listinfo/gdal-dev
http://trac.osgeo.org/gdal/wiki/
http://www.gdal.org/ogr/
http://www.maptools.org/fgs/

MapServer Documentation, Release 6.0.3

For Windows users, it is recommended to look for a pre-compiled binary on the MapServer site (MS4W is recom-
mended). If you want to compile your own then see the README.WIN32 file in the MapServer source.

Integrating OGR Support with MapServer Applications

The only change that is needed to integrate OGR support with a MapServer application is with the .map file.
The LAYER’s DATA parameter is expanded to three parameters (CONNECTIONTYPE OGR, CONNECTION and
DATA).

The syntax for this differs depending on the type of data being used (the Vector Data Access Guide is an excellent
resource for this). In OGR, a data source can be either a set of files that share a common basename (e.g. .shp/.shx/.dbf
for ArcView Shapefiles, or .tab/.map/.dat/.ind/.id for MapInfo TAB files) or a whole directory of files (e.g. TIGER).

Let’s call the former “File-based data sources” and the later “Directory-based data sources”. When accessing a file-
based data source you specify the filename of one of the files in the set (e.g. roads.shp or roads.tab) and when
accessing a directory-based data source you specify the directory name and OGR reads all the files in the directory
as a single data source with potentially several layers (e.g. TIGER files).

Some OGR drivers (e.g. SHP, TAB) can have dual behaviors, that is if they’re pointed to a single file then they behave
as a file-based data source and if they’re pointed to a directory then they will behave as a directory-based data source
and then every file in the directory becomes a new layer in the data source.

See the OGR formats page for more info on the specific file format you’re using. (Click on the format name for more
specific driver info on that format)

Using OGR Data Sources in the Map File

The .map file LAYER definition for file-based sources is as follows:

LAYER

CONNECTIONTYPE OGR
CONNECTION "<datasource_name>"
DATA "<layer_definition>"

END

<datasource_name> is the name of the datasource to read from and is prefixed by the CONNECTION keyword. The
exact organization depends on the format driver in use. The format driver to use is automatically selected by OGR
based on the nature of the string passed as the datasource, and/or the format of the file referenced by it.

* For file based datasources this is the name of the file, including the extension, using an absolute path, or a relative
path. Relative paths are interpreted relative to the SHAPEPATH first, if not found then we try again relative to
the .map file location.

Note: Before version 4.1 the SHAPEPATH was ignored for OGR datasources.

¢ For directory based datasources, such as TIGER/Line, or Arc/Info Binary Coverages this is the name of the
directory containing the files. If the path is relative it is interpreted relative to the .map file.

e For virtual datasources such as database systems, and OGDI this is the service connection string
and is generally not related to the filesystem. For instance, for Oracle Spatial this might be
“OCI:warmerda/Password @ gdal800.velocet.ca”.

<layer_definition> is the name, number or SQL definition of the layer to use from the datasource. It is indicated via
the DATA keyword in the map file.

326 Chapter 7. Data Input

http://www.maptools.org/ms4w/
http://www.gdal.org/ogr/ogr_formats.html

MapServer Documentation, Release 6.0.3

» Layer Name: The (case insenstive) layer name may be used to select a layer.

e Layer Number: The layer number (starting from O for the first layer) may be used to select a layer. Generally
the layer name is preferred to this since it is more self describing.

e Omitted: If no DATA keyword is provided, this is equivalent to selecting layer 0.

e SQL SELECT: If an SQL SELECT statement is used, it is interpreted in a driver specific manner to try and
generate a temporary pseudo-layer. For some formats this a restricted subset of SQL is interpreted within OGR.
For RDBMS based drivers (such as PostGIS and Oracle) this is passed through to the underlying database.

The OGRINFO utility can be used to find out the list of layers and their names in a data source.

Examples of Layer Definitions Using OGR

Please see the Vector Data Access Guide for details and examples of each data format supported.
Example 1. MaplInfo TAB file

LAYER
NAME "Builtup_Areas_tab"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "data/tab/092b06_builtup_a.tab"
STATUS ON
CLASS

END
END
Example 2. Microstation DGN file using <layer_index>

The entire DGN file is represented in OGR as one layer (see the DGN driver page for more details):

LAYER
NAME "dgn"
TYPE LINE

CONNECTIONTYPE OGR
CONNECTION "dgn/santabarbara02.dgn"
DATA "O"
STATUS ON
STYLEITEM "AUTO"
CLASS
END
END # Layer

Example 3. TIGER/Line file using <layer_name>

LAYER
NAME "Roads_tig"
TYPE line

CONNECTIONTYPE OGR

CONNECTION "full/path/to/tiger/TGR25001"
DATA "CompleteChain"

STATUS ON

CLASS

END
END

7.1. Vector Data 327

http://www.gdal.org/ogr/drv_dgn.html

MapServer Documentation, Release 6.0.3

Example 4. Directory of Shapefiles using SQL JOIN

LAYER
NAME "Parks_cov"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "data/shppoly"
DATA "SELECT eas_id, idlink.Name FROM poly LEFT JOIN idlink ON poly.eas_id = idlink.eas_id"
STATUS ON
CLASSITEM "idlink.Name"
CLASS

END
END

How to Use “OGRINFO”

OGRINFO is part of the GDAL/OGR distribution (it is also included in FWTools and MS4W). It is an executable that
can be used to obtain layer information about OGR supported files. The parameters are:

ogrinfo [-ro] [-q] datasource_name [layer [layer...]]
* -ro opens the file as read only (optional)
* -q executes in quiet mode, only the layer idex line will be returned (optional)

* datasource_name is the filename including extension (eg. roads.tab); for TIGER/Line files, data-
source_name is the directory containing the TIGER files (eg. ogrinfo TGR25001)

Example 5. To get the list of layers in a file:

$ ogrinfo popplace.tab

Had to open data source read-only.
INFO: Open of ‘popplace.tab’

using driver ‘MapInfo File’ successful.
1: popplace (Point)

which shows that there is one point layer in the popplace.tab file.
Example 6. To get a dump of a specific layer, including field names, projection, etc:

$ ogrinfo popplace.tab popplace

Had to open data source read-only.
INFO: Open of ‘popplace.tab’
using driver ‘MapInfo File’ successful.

Layer name: popplace

Geometry: Point

Feature Count: 497

Layer SRS WKT: PROJCS["unnamed", GEOGCS["unnamed",DATUM["North ...snipped...

AREA: Real (15.3)

PERIMETER: Real (15.3)

POPPLACE_: Real (11.0)

POPPLACE_TI: Real (15.0)

NAME: String (50.0)

OGRFeature (popplace) : 1
AREA (Real) = 0.000
PERIMETER (Real) = 0.000

328 Chapter 7. Data Input

http://fwtools.maptools.org/
http://www.maptools.org/ms4w/

MapServer Documentation, Release 6.0.3

POPPLACE_ (Real) = 1
POPPLACE_I (Real) = 1
NAME (String) = Port Hope Simpson

POINT (2437287.249 1153656.751)

OGRFeature (popplace) : 2

AREA (Real) = 0.000
PERIMETER (Real) = 0.000
POPPLACE_ (Real) = 2
POPPLACE_I (Real) = 1
NAME (String) = Hopedale

Example 7. To get a list of layers in a TIGER/Line Directory:

$ ogrinfo TGR25001

Had to open data source read-only.
INFO: Open of ‘TGR25001’

using driver ‘TIGER’ successful.
CompleteChain (Line String)
AltName (None)

FeatureIds (None)

ZipCodes (None)

Landmarks (Point)
Arealandmarks (None)
KeyFeatures (None)

Polygon (None)

9: EntityNames (Point)

10: IDHistory (None)

11: PolyChainLink (None)

12: PIP (Point)

13: TLIDRange (None)

14: ZipPlus4 (None)

O J o U W N

The above example shows that there are 14 layers in the TGR25001 directory.
Example 8. To get a summary of a specific TIGER layer, including only field names, projection, and extent

$ ogrinfo TGR25001 Landmarks -summary

Had to open data source read-only.
INFO: Open of ‘TGR25001’
using driver ‘TIGER’ successful.

Layer name: Landmarks

Geometry: Point

Feature Count: 777

Extent: (-70.674324, 41.519817) - (-69.969211, 42.046868)

Layer SRS WKT: GEOGCS["NAD83",DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101]1]1,PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]]

MODULE: String (8.0)

FILE: String (5.0)

STATE: Integer (2.0)

COUNTY: Integer (3.0)

LAND: Integer (10.0)

7.1. Vector Data 329

MapServer Documentation, Release 6.0.3

SOURCE: String (1.0)
CFCC: String (3.0)
LANAME: String (30.0)

Queries Through OGR Format

OGR layers can be queried the same way as regular shapefiles in MapServer.

TILEINDEX with OGR

OGR layers can utilize tile indexes in a similar fashion to Shapefile based layers. The TILEINDEX keyword should
contain the connection string for the tile index file. The tile index file may be any supported OGR format, including
shapefiles.

The TILEITEM keyword in the LAYER definition indicates what attribute from the tile index file should be used as the
datasource location. If omitted, the default TILEITEM value is “location”. The value in the location field should be a
connection string the same as would have been used in the CONNECTION field for OGR layers. The CONNECTION
keyword is not needed (and will be ignored) for layers using the OGR connection type and having the TILEINDEX
keyword.

Tileindex files can be prepared in an external GIS, or using the OGR utility ogrtindex. Details can be found on the
OGR Utilities Page.

The following is a simple example of a point layer using a tile index.

LAYER
NAME "ogr_points"
TYPE POINT
CONNECTIONTYPE OGR
TILEINDEX "PIP_ogr_tiles.shp,0"
STATUS ON
CLASS
NAME "points"
STYLE
SYMBOL "default-circle"
COLOR 255 0 O
SIZE 6
END
END
END

OGR tileindex layers should support all normal query and attribute fetching mechanisms, including from MapScript;
however, this has not been heavily tested as of April/2002. Please report problems via the MapServer Trac. If auto
projection support is used for tileindexed OGR layers, the tileindex is read for the projection (not the component tiles).
Problems may (or may not) be encountered if the component tiles have differing schemas (different sets of attributes).

Connection Pooling

For some OGR supported formats, connecting to the dataset is quite expensive in terms of CPU use and amount of
disk IO. For instance, establishing access to an S-57 dataset results in a complete read into memory of the data files.
Connection pooling control aims at reducing this overhead in situations where the same file is used for several different
map layers.

To ensure that an OGR supported dataset is only opened once per map render (instead of separately for each map
LAYER referencing the dataset, use the CLOSE_CONNECTION PROCESSING option. The default value is for

330 Chapter 7. Data Input

http://www.gdal.org/ogr_utilities.html

MapServer Documentation, Release 6.0.3

CLOSE_CONNECTION is NORMAL, but if set to DEFER the dataset will be kept open till the map render is
complete. It will be reused by any other layers with using the same datasource.

Example 9. Preserve S-57 connection for two layers

In this example, we are using the same dataset (NO410810.000) for two layers. To avoid re-reading the dataset, we
mark the first layer to defer closing the connection till layer. In the second (or last) layer we request NORMAL
connection handling (though this could have been left out as normal handling is the default).

LAYER
NAME "AdminAreas"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "NO410810.000"
DATA "ADMARE"
PROCESSING "CLOSE_CONNECTION=DEFER"
STATUS ON

END
LAYER
NAME "Land Areas"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "NO410810.000"
DATA "LNDARE"
PROCESSING "CLOSE_CONNECTION=NORMAL"
STATUS ON

END

1. The text of the CONNECTION keyword must match exactly between layers for the connection to be reused.

2. Some dataset connections are quite memory expensive, and keeping them open may result in increased memory
use.

3. If all layers rendered for a particular connection defer closing the connection, it will remain open till MapServer
terminates. For normal cgi or MapScript use this is likely OK.

4. This use of CLOSE_CONNECTION handling is unique to OGR layers, and may be changed at some point in
the future as part of a broader implementation of connection pooling in MapServer.

STYLEITEM “AUTO” - Rendering Layers Using Style Information from the OGR File

Note: This feature is only supported with MapInfo TAB and Microstation DGN files at the moment, but eventually
other formats that carry colors and styles at the shape-level may also be supported through OGR.*

In MapServer, ArcView, and other shapefile-based applications, colors and styles are usually defined at the layer level.
This means that all the shapes in a given layer are usually rendered using the same color and styles.

On the other hand, some formats supported by OGR such as MapInfo TAB do have color and style information attached
to each shape. OGR adds support for the ‘STYLEITEM “AUTO’” layer parameter which allows you to request that the
shapes in a layer be rendered using colors and styles coming from the data source instead of being driven by CLASSes
as was traditionally done with MapServer.

7.1. Vector Data 331

MapServer Documentation, Release 6.0.3

How to Implement
In order to have a layer rendered using colours and styles coming from the OGR data source, your must do the
following:

* Your layer definition must contain the STYLEITEM “AUTO” parameter.

* Your layer definition needs to contain at least one CLASS (which may be empty) and optionally a CLASSITEM
to match the expressions if your CLASS contains an expression. The empty CLASS in the layer will be updated
dynamically at runtime to contain colours and styles coming from the data source for each shape.

Examples

Example 10. Layer Definition Using STYLEITEM “AUTO” without a CLASSITEM

LAYER
NAME "test_dgn"
STATUS ON

TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "../data/dgn/test.dgn"

This enables use of colors and styles from the source file.
STYLEITEM "AUTO"

Define an empty class that will be filled at runtime from the color and
styles read on each shape in the source file.
CLASS
END
END # layer

Example 11. Layer Definition Using STYLEITEM “AUTO” with a CLASSITEM

LAYER
NAME "Builtup_Areas_tab"
TYPE POLYGON
CONNECTIONTYPE OGR
CONNECTION "data/tab/092b06_builtup_a.tab"
STATUS ON

This enables use of colors and styles from the source file.
STYLEITEM "AUTO"

Define an empty class that will be filled at runtime from the color and
styles read on each shape in the source file.
CLASSITEM "CATEGORY"
CLASS
EXPRESSION "1"
END
END

Please Note:

CLASS EXPRESSIONS are still working, so it is still possible to query and classify layers that are using STYLEITEM

“AUTO”. The only difference is that instead of using static class definitions, the colors and style will be read from the
data file.

332 Chapter 7. Data Input

MapServer Documentation, Release 6.0.3

Important Notes

NOTE 1 Even though Maplnfo and other OGR data sources may support layers with mixed geometry
types (e.g. points, lines and polygons in the same file) this is not yet supported in MapServer. So
you still have to define a layer ‘TYPE’ and make sure that all the shapes in the OGR data source
are compatible with that layer type, otherwise MapServer may produce an error about incompatible
geometry types at runtime.

NOTE 2 Due to the dynamic nature of this feature, it is not compatible with the labelcache, so the label-
cache is automatically disabled for layers that make use of ‘STYLEITEM “AUTO””.

NOTE 3 When you use STYLEITEM AUTO, MapServer tries to match symbol names returned by OGR
to names in your symbol file. For a quick solution, try using the following symbol file:

http://demo.mapserver.org/ogr-demos/yk_demo/etc/symbols_mapinfo.txt

The name of the symbols returned by OGR to MapServer depends on the file format. In the case of Maplnfo files, it
will be:

* For “old-style” symbols (default MapInfo 3.0 symbols numbered 32 to 67) the symbol name will be ‘mapinfo-
sym-##" where ‘##° is the symbol number, e.g. ‘mapinfo-sym-32’.

* For “Font Symbols”, the symbol name is also ‘mapinfo-sym-##" where ‘##’ is the symbol number in the font.
In this case, the name of the font itself is ignored by MapServer.

* Maplnfo also supports “custom symbols” (bitmap symbols)... I'm not sure what you would get from OGR for
this, but I'm pretty sure that MapServer doesn’t do anything useful with them.

The OGRINFO utility can be used to find out exactly which symbol names OGR will return to MapServer. Look at
the “Style” string in the ogrinfo output for each shape that is read.

Mapping of OGR Style Info to the MapServer CLASS Members

Here is the list of style parameters that are currently supported from OGR data sources and how they’re mapped in
MapServer:

Line color The line colour is mapped to CLASS.COLOR

Line thickness The line thickness is mapped to CLASS.STYLE.WIDTH. The default will be 1 pixel line (as it always
is with MapServer).

Polygon fill color Polygon fill color is mapped directly to CLASS.COLOR
Note that at this time, transparent polygons are not supported (they’re always opaque).

Polygon outline If a polygon has an outline color and thickness defined in the data source then the same rule as for
line color and thickness above will apply, except that the outline color is mapped to CLASS.OUTLINECOLOR

Point symbols Point symbol color is directly mapped to CLASS.COLOR. Point symbol size is directly mapped to
CLASS.SIZE.

If your symbolset contains a symbol called “default-marker” then this symbol will be used, otherwise the default
will be CLASS.SYMBOL=0 (i.e. a 1 pixel dot)

It is also possible (with a bit of work) to control which symbol gets used in rendering point symbols. OGR
provides MapServer with symbol names, and if the symbol name returned by OGR to MapServer matches the
name of one of the symbols in your symbolset then this symbol will be used.

For Maplnfo point symbols (numbered 32 to 67 in the MapInfo MIF spec), the name returned by OGR is
“mapinfo-sym-X"" where X should be replaced with the MapInfo symbol number (e.g. “mapinfo-sym-35” is the
star symbol).

7.1. Vector Data 333

http://demo.mapserver.org/ogr-demos/yk_demo/etc/symbols_mapinfo.txt

MapServer Documentation, Release 6.0.3

If the OGR symbol id is a web reference (http://.../mysymbol.png), the symbol will be downloaded and a new
symbol entry will be created referring to it.

Text labels The text string is mapped to CLASS.TEXT
Text color is mapped to CLASS.LABEL.COLOR
Text background color is mapped to CLASS.LABEL.BACKGROUNDCOLOR
Text height is mapped to CLASS.LABEL.SIZE
Text angle is mapped to CLASS.LABEL.ANGLE
Text font mapping follows the following rules:
1. If TTF fonts are supported:

(a) If the native font name (e.g. “Arial”) is found in your fontset then this font will be used. The font
styles bold and italic are supported as follows: Arial bold fontname maps to arial-bold. Arial italic
fontname maps to arial-italic. Arial bold italic fontname maps to arial-bold-italic. If the styles are
not available, arial will be used.

(b) If 1a. failed and a font called “default” is present in your fontset then this “default” font will be used.
2. If TTF fonts are not supported or if all above cases failed, then BITMAP MEDIUM font will be used.

Transparency If the color parameter from the OGR style contains an alpha value, the value will be used to set the
OPACITY parameter in the STYLE object.

Accessing OGR STYLEITEMAUTO Label Styles Through MapScript

OGR STYLEITEMAUTO label styles can be accessed through MapScript, such as PHP/MapScript’s getshape() or
getvalue() methods, by setting the LAYER’s PROCESSING parameter to “GETSHAPE_STYLE_ITEMS=all”. There-
fore, the LAYER may contain:

LAYER
PROCESSING "GETSHAPE_STYLE_ITEMS=all"
END

The following label styles are supported:

334 Chapter 7. Data Input

http://.../mysymbol.png

MapServer Documentation, Release 6.0.3

Label Style Description MapServer Version
Implemented
OGR:LabelFont | Comma-delimited list of fonts names 54
OGR:LabelSize | Numeric value with units 5.2.0
OGR:LabelText | Label text string 5.2.0
OGR:LabelAngle Rotation angle (in degrees) 5.2.0
OGR:LabelFColorForeground color 54
OGR:LabelBColprBackground color 54
OGR:LabelPlacemElttw is the text drawn relative to the feature’s geometry 54
OGR:LabelAnchprA value from 1 to 12 defining the label’s position relative to the 54
point to which it is attached.
OGR:LabelDx | X offset 54
OGR:LabelDy | Y offset 54
OGR:LabelPerp | Perpendicular offset 54
OGR:LabelBold | Bold text 54
OGR:Labelltalic| Italic text 54
OGR:LabelUnderlfdaderlined text 54
OGR:LabelPriorityNumeric value defining the order in which style parts should be 54
drawn.
OGR:LabelStrikgoStrike out text (gdal >= 1.4.0) 54
OGR:LabelStretghStretch factor changes the width of all characters in the font by 54
factor percent. (gdal >=1.4.0)
OGR:LabelAdjHpHorizontally adjacent text (gdal >= 1.4.0) 54
OGR:LabelAdjVerVertically adjacent text (gdal >= 1.4.0) 54
OGR:LabelHColpiShadow color (gdal >= 1.4.0) 54
OGR:LabelOColprOutline color (gdal > 1.6.0) 54

Please see the OGR Feature Style Specification document for more details on those specific styles.

Sample Sites Using OGR/MapServer

The following sites use OGR’s STYLEITEM “AUTO” feature:

¢ http://demo.mapserver.org/ogr-demos/yk_demo/demo_init.html

* http://demo.mapserver.org/ogr-demos/nfld_demo/demo_init.html

The following site

uses OGR, as well as MapInfo’s ‘Seamless Map Layers’ feature:

* http://demo.mapserver.org/ogr-demos/ro_demo/demo_init.html

The following site

uses OGR to display TIGER 2000 files:

* http://demo.mapserver.org/ogr-demos/tig_demo/demo_init.html

FAQ / Common Problems

Q What Does “OGR” Stand For?

A Basically, OGR does not stand for anything. For a detailed explanation of how OGR was named, see
GDAL’s FAQ at http://trac.osgeo.org/gdal/wiki/FAQ.

Q When using STYLEITEM AUTO, what should I have in my .sym symbols file?

7.1. Vector Data

335

http://www.gdal.org/ogr/ogr_feature_style.html
http://demo.mapserver.org/ogr-demos/yk_demo/demo_init.html
http://demo.mapserver.org/ogr-demos/nfld_demo/demo_init.html
http://demo.mapserver.org/ogr-demos/ro_demo/demo_init.html
http://demo.mapserver.org/ogr-demos/tig_demo/demo_init.html
http://trac.osgeo.org/gdal/wiki/FAQ

MapServer Documentation, Release 6.0.3

A When you use STYLEITEM AUTO, MapServer tries to match symbol names returned by OGR to
names in your symbol file. For a quick solution, try using the following symbol file:

http://demo.mapserver.org/ogr-demos/yk_demo/etc/symbols_mapinfo.txt

The name of the symbols returned by OGR to MapServer depends on the file format. In the case of
Maplnfo files, it will be:

* For “old-style” symbols (default MapInfo 3.0 symbols numbered 32 to 67) the symbol name
will be ‘mapinfo-sym-##" where ‘##’ is the symbol number, e.g. ‘mapinfo-sym-32°.

e For “Font Symbols”, the symbol name is also ‘mapinfo-sym-## where ‘## is the symbol
number in the font. In this case, the name of the font itself is ignored by MapServer.

* Maplnfo also supports “custom symbols” (bitmap symbols)... I'm not sure what you would get
from OGR for this, but I'm pretty sure that MapServer doesn’t do anything useful with them.

The OGRINFO utility can be used to find out exactly which symbol names OGR will return to
MapServer. Look at the “Style” string in the ogrinfo output for each shape that is read.

7.1.17 Oracle Spatial

Author Bart van den Eijnden
Last Updated 2005/12/12

Table of Contents

* Oracle Spatial

— What MapServer 5.2 with Oracle Spatial
Binaries
Installation
Two options for using Oracle Spatial with MapServer
Mapfile syntax for native Oracle Spatial support
Using subselects in the DATA statement
Additional keywords - [FUNCTION]
Additional keywords - [VERSION]
More information
Example of a LAYER
Mapfile syntax for OGR Oracle Spatial support

Oracle Spatial is a spatial cartridge for the Oracle database. Remember that all Oracle databases come with Locator,
which has less features than Oracle Spatial. The differences between Locator and Spatial can be found in the Oracle
Spatial FAQ.

You can also see the original OracleSpatial wiki page that this document was based on.

What MapServer 5.2 with Oracle Spatial

* mode=map
* query modes: query, nquery, itemnquery

* MapScript query functions such as querybyattributes

OGC:WMS: GetCapabilities, GetMap, GetFeaturelnfo, DescribeLayer
e OGC:WFS, GetCapabilities, DescribeFeatureType, GetFeature

336 Chapter 7. Data Input

http://demo.mapserver.org/ogr-demos/yk_demo/etc/symbols_mapinfo.txt
http://www.orafaq.com/faqsdo.htm
http://www.orafaq.com/faqsdo.htm
https://github.com/mapserver/mapserver/wiki/OracleSpatial

MapServer Documentation, Release 6.0.3

Binaries

MapServer Windows plugins with Oracle spatial support can be downloaded from A/S4W. But you need Oracle client
software in the server on which you are running MapServer. Oracle client software can be obtained for development
purposes from the Oracle website, but you need to register, which by the way is free. The most recent version is
Oracle Database 10g Release 1 Client. The ORACLE TECHNOLOGY NETWORK DEVELOPMENT LICENSE
AGREEMENT applies to this software. The instant client will be satisfactory, and you can download the instant
client. Make sure though your MapServer is compiled against the same version as your Oracle client, for compiling
you need a full client install, not just the instant client.

Installation

See Oracle Installation for more configuration and installation information for MapServer’s native Oracle support

Note: If you receive error messages like “Error: .”. It’s likely related to MapServer being unable access or locate the
ORACLE_HOME.

Two options for using Oracle Spatial with MapServer

Oracle Spatial layers in MapServer can be used through 2 interfaces:
 The native built-in support through maporaclespatial.c

* OGR, but watch out: OGR is not compiled with Oracle Spatial support so it won’t work without compiling in
OCI (Oracle client) yourself. This requires both recompiling GDAL/OGR as well as recompiling MapServer
itself against the new GDAL/OGR !!!!

Mapfile syntax for native Oracle Spatial support

The DATA statement for a LAYER of CONNECTIONTYPE oraclespatial can now have 4 options. This change is
backwards compatible, i.e. the old ways of specifying DATA still work. The new options are an extension to the
old DATA statements, as they needed to include identification of the primary key to be used for the query modes
(UNIQUE).

The following options are valid DATA statements:

"[geom_column]
FROM
[table]l | [(
SELECT [...]
FROM [table] | [Spatial Operator]
[WHERE condition])]
[USING [UNIQUE column]
| [SRID #srid]
| [FUNCTION]
| [VERSION #version]

Example 1

The most simple DATA statement, in this case you only need to define one geometry column and one table. This
option assumes you do not have an SRID defined.

7.1. Vector Data 337

http://www.oracle.com/technology/software/tech/oci/instantclient/index.html
http://www.oracle.com/technology/software/tech/oci/instantclient/index.html

MapServer Documentation, Release 6.0.3

LAYER

CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE"

END

Example 2

It’s composed of the first option plus the USING UNIQUE parameter. These new features are necessary when you
want to use any query function. When it is used you must pass a numeric column type. This option assumes you do
not have an SRID defined.

LAYER

CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE USING UNIQUE MYTABLE_ID"

END

Example 3

This option is an extension to the first option. In this mode you must define the USING SRID parameter when the
SRID value in your data is different from NULL.

LAYER

CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE USING SRID 90112"

END

Example 4
This option is a combination of examples 2 and 3.
LAYER

CONNECTIONTYPE oraclespatial
DATA "MYGEOMETRY FROM MYTABLE USING UNIQUE MYTABLE_ID SRID 90112"

END

Using subselects in the DATA statement

It is possible to define the source of the date as a subselect and not only as a table. As source of data, used in FROM
token, you can define any SQL, table, function, or operator that returns a SDO_GEOMETRY. For example:

DATA "[geom_column] FROM (SELECT [columns] FROM [table] | [Spatial function])"

If the LAYER definition contains a CLASSITEM, LABELITEM or FILTER, it is necessary that the fields used are
returned by the query. When you define CLASSITEM you can use an expression without any problems.

338 Chapter 7. Data Input

MapServer Documentation, Release 6.0.3

Additional keywords - [FUNCTION]

You can add three keywords to the DATA statement for [FUNCTION] option that influence the query which will be
executed in Oracle:

USING FILTER

"[geom_column] FROM [table]| ([Subselect]) USING FILTER"

Using this keyword triggers MapServer to use the Oracle Spatial SDO_FILTER operator. This operator executes only
the Oracle Spatial primary filter over your query data. In the Oracle User guide they explain: The primary filter
compares geometric approximations, it returns a superset of exact result. The primary filter therefore should be as
efficient (that is, selective yet fast) as possible. This operator uses the spatial index, so you need to define your spatial
index correctly to retrieve an exact result. If the result of the query is not exact you can try the next option.

USING RELATE

"[geom_column] FROM [table] | ([Subselect]) USING RELATE"

Using this keyword triggers MapServer to use the Oracle Spatial SDO_RELATE operator. This operator applies the
primary and secondary Oracle Spatial filters. It’s performance can be slightly slow but the result is extremely correct.
You can use this mode when you want a perfect result or when you can’t readjust the spatial index.

USING GEOMRELATE

"[geom_column] FROM [table]| ([Subselect]) USING GEOMRELATE"

Using this keyword triggers MapServer to use the geometry function SDO_GEOM.RELATE, a function that searches
the relations between geometries. SDO_GEOM.RELATE does not use the spatial index and your performance is more
slow than operators but it’s very accurate. You can use this mode when you can’t use the spatial index or when it
doesn’t exist.

USING NONE

"[geom_column] FROM [table] | ([Subselect]) USING NONE"

Using this keyword triggers MapServer to don’t use any geometry function or spatial operator. So, the internal SQL
don’t retrict, bases in the extent, the data from source. All the data from source will be returned for MapServer. The
NONE token is very useful when the source of the data don’t contains any spatial index. It’s usually occur when the
source is a function like SDO_BUFFER, SDO_XOR, SDO_INTERSECTION...... So this mode is recomended when
you can’t use the spatial index or when it doesn’t exist.

Additional keywords - [VERSION]

You can define what version of database you are using to improve the internal sql. This is very useful when using
geodetic SRIDs and MapServer functions that retrieve the extent from data.

7.1. Vector Data 339

MapServer Documentation, Release 6.0.3

USING VERSION 8i

"[geom_column] FROM [table] | ([Subselect]) USING VERSION 8i"

This indicates MapServer to use a internal SQL that it’s compatible with Oracle 8i version.

USING VERSION 9i

"[geom_column] FROM [table]| ([Subselect]) USING VERSION 9i"

The second indicates MapServer to use 9i version, is recommended to use this parameter if you are using 9i version
because the internal SQL will use specific spatial functions that is need to retrieve data correctly from 9i Oracle Spatial
versions.

USING VERSION 10g

"[geom_column] FROM [table] | ([Subselect]) USING VERSION 10g"

This indicates MapServer to use a internal SQL that it’s compatible with Oracle 10g version.

More information

* You can define any PROJECTION to your LAYER without problem, can be used for data with or without an
SRID in Oracle.

* The native support for Oracle Spatial supports the defaults definition for SDO_GEOMETRY in database, the
Oracle Spatial SDO package.

¢ Information about the primary and secondary Oracle Spatial filters can be found in the Oracle Spatial User Guide
(the “Query Model” section). Information about the SDO_FILTER and SDO_RELATE operators can be found
in the “Spatial Operators” section, and information about the SDO_GEOM.RELATE function can be found in
the “Geometry Function” section of the Oracle Spatial User Guide.

Example of a LAYER

LAYER
NAME kwadranten
TYPE POLYGON
CONNECTIONTYPE oraclespatial
CONNECTION "user/pwd"
DATA "GEOMETRIE FROM KWADRANTEN USING SRID 90112"

CLASS
STYLE
OUTLINECOLOR 0 0 O
COLOR 0 128 128
END
END

END

You can specify the SID for your database, the SID alias needs to be supplied in the tnsnames.ora file of the Oracle
client, e.g.

Example for tnsnames.ora:

340 Chapter 7. Data Input

MapServer Documentation, Release 6.0.3

MYDB =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP) (HOST = server_ip) (PORT = 1521))
)
(CONNECT_DATA =
(SERVICE_NAME = DB1)
)
)

So after this you can define you layer connection as:

CONNECTION "user/pwd@MYDB"

Mapfile syntax for OGR Oracle Spatial support

Syntax for your MAP file:

CONNECTION "OCI:user/pwd@service"
CONNECTIONTYPE OGR
DATA "Tablename"

Note: Make sure you set the wms_extent METADATA for the LAYER, as otherwise the “Getcapabilities” request
takes a lot of time.

7.1.18 PostGIS/PostgreSQL

Table of Contents

* PostGIS/PostgreSQL

PostGIS/PostgreSQL

Data Access /Connection Method

OGRINFO Examples

Mapfile Example

Support for SQL/MM Curves

Example#1: CircularString in MapServer
Exa