

Validation of Satellite Image with Ground Sensor Network based on OGC Web Services Framework

Sarawut NINSAWAT

Ryousuke Nakamura, Hirokazu Yamamoto, Akihide Kamei and Satoshi Tsuchida GEO Grid Research Group/ITRI/AIST

Introduction

- The utilization of satellite remote sensing image
 - Widely applied and been recognized as powerful and effective tool
 - Monitoring state of the environments
- Benefit of satellite RS:
 - Cheap and rapid over large geographic area
 - Regional coverage and broadly spectral resolution
 - Continuous acquisition of data
 - Archive of historical data
- Limitation of satellite RS:
 - Not direct sample of the phenomenon.
 - Interference of atmospheric gaseous and particles
 - Absorbing (H₂0, O₃ etc.) and Scattering (aerosol particles such as dust, ash and smoke)

Surface reflectance and Top of the atmosphere

Image from: http://www.profc.udec.cl/~gabriel/tutoriales/rsnote/cp9/cp9-2.htm

Atmospheric Correction

- Convert the "top of the atmosphere" signal to the "surface reflectance".
 - Estimating the surface spectral reflectance as it would have been measured at ground level
 - Radioactive transfer model
- 6S = Second Simulation of the Satellite Signal in the Solar Spectrum
 - Work in cloud free condition
- Necessary Input parameters:
 - Geometrical condition
 - Atmospheric model for gaseous components
 - Aerosol mode (Type and concentration)
 - Spectral condition
 - Ground reflectance (type and spectral variation)

- Capable of viewing the entire globe daily at moderate resolutions
 - Ranging from 250 meters to 1 kilometer pixels.
 - 36 spectral bands ranging in wavelength from 0.4 μm to 14.4 μm
 - Land, Cloud, Aerosol properties, Atmosphere, Ocean color etc.
- Various products generated for earth observation purpose
 - Vegetation indices, leaf area index, sea surface temperature.
- 6S is a basic code for MODIS atmospheric correction algorithm.
 - Gaseous condition > MOD05 and MOD07
 - Cloud mask -> MOD35
 - Aerosol concentration -> MOD04

MOD04 and MOD08

- The algorithm retrieves daily Aerosol Optical Depth (AOD) as known as MOD04 in Level two product
 - Using seven bands of MODIS.
 - Resolution at 1 x 1, 5 x 5 and 10 x 10 km.
- The MOD08 is a Level three product as global dataset from MOD04
 - Daily Global, Eight-day Global and Monthly Global (Resolution 1° x 1°)
- Validation with ground observation is necessary to improve uncertainly estimate.

Band	Wavelength (µm)	Resolution (m)	Primary Use	
1	0.620-0.670	250	Land/Cloud/Aerosols Boundaries Land/Cloud/Aerosols Properties	
2	0.841-0.876	250		
3	0.459-0.479	500		
4	0.545-0.565	500		
5	1.230-1.250	500		
6	1.628-1.652	500	rioponiio	
7	2.105-2.155	500		

PEN

- Phenological Eyes Network
 - Monitoring dynamics of the ecosystem
 - Validate satellite information with reliable information on ground level
- Measurement equipments:
 - Sunphoto meter (SP)
 - 11 spectral bands with FOV 1 degree at 10 minutes interval
 - Optical thickness, aerosol size and aerosol reflective index etc.
 - Main purpose for atmospheric correction and monitoring pollutants
 - Automatic-capturing Digital Fisheye Camera (ADFC)
 - High quality images of the sky, canopy, branch and ground
 - 2 180 minutes interval
 - Sky condition at satellite overpass time.
 - Hemi-Spherical Spectral Radiometer (HSSR)

PEN Equipments

Validation (SP & MOD08)

Validation (SP & MOD08)

Validation (SP & MOD04)

Validation (MOD08 & MOD04)

Previous System Framework

Geo Grid

- GEO (Global Earth Observation) GRID
 - An E-Infrastructure to accelerate GEO science based on the concept that whole data related to earth observation are virtually integrated with a certain access management and easy to handle by the end-users those are enabled by a set of Grid and Web Service technologies.

Advanced Industrial Science ASTER DEM on demand mosaic system and Technology

OGC System Framework

WMS Time Tiling

- WMS-T support for time request
 - Time instance (etc. 2002-01-01)
 - Time period (etc 2002-01-01/2002-10-01)
- Currently, Mapserver do not support for WMS Time Tiling for "GetFeatureInfo" request with raster layer
 - "errors that look like this msShapefileOpen(): Unable to access file. (f:/msapps/gmap-ms40/htdocs/my_layer_idx " Ticket #2796

Solution: WxS mapscript

gid	filename	the_geom	otime
1	tiff/470/MOD08_D3_A2002010.tif	01030	2002-01-10
2	tiff/470/MOD08_D3_A2002011.tif	01030.	2002-01-11
3	tiff/470/MOD08_D3_A2002012.tif	0/030	2002-01-12

MOD08_D3_A2002010.tif

MOD08_D3_A2002011.tif

Prototype Application

Prototype Application

Chart Zooming

Conclusion

- Comprehensive web-based GIS system framework enabled
 - Based on various open standards of OGC specifications
 - Using FOSS
 - Mapserver, 52North SOS, PyWPS
 - OpenLayers, jQuery,
- Assimilation of sensor observation data and satellite image
 - Wider area, More accuracy, Reasonable cost
- Validation of aerosol properties from Satellite estimation with ground based sites
 - Improve the following product which relied on satellite image "surface reflectance"

Future Development

- Increase atmospheric observation network
 - Skynet
- Improving performance
 - Distributing ground site data source
 - More than two million records for two station and four years
 - WMS-T full supported with Mapserver
 - MOD03 overpass time to MOD08 Global dataset
 - Possible to error 5 minutes observation
- Satellite image product validation
 - GLEON (Global Lake Ecological Observatory Network)
 - Lake monitoring : SST, Chl. A : MODIS Ocean product
 - CO Flux monitoring : Asiaflux / Japanflux
- Water Column Correction
 - CREON (Coral Reef Environmental Observatory Network)
- Validation with higher satellite image resolution
 - ASTER, FORMOSAT-2

