22 Jan 2004, Working Draft ver 1.2

Bandwidth Compression (BWC)
Guidefor

JPEG 2000 Visually L ossless and
Numerically L ossless
Compression of Imagery Data

Working Draft 1.2

22 January 2004

P.O.C. James H. Kasner
Eastman Kodak Company
2600 Park Tower Drive
Suite 601
Vienna, VA 22180

(571) 226-1620
james.kasner@kodak.com

22 Jan 2004, Working Draft ver 1.2

Table Of Contents

I o oo L8 ox 1 o o O RRT 6
1.1 Brief AlQorithm DESCIIPLIONuuuiiiiiiiiiiiiiiiiiiturireierer e rrararararrrararararernrnrnrnnes 6
1.2 Heritage Overview and BackgrOUNGuuuuuuuuiuiumnirieieiiieenrernenennnnn... 6

P2 AN Ko o g1 a1 g T T=-Sos 1o ('o] o IS 7
P22 R AN [To a1] (0L = 7
2.2 Definitions and Processing CONVENTIONS.........uuuuuuuuuuiuiiiiiniueriiinrnnnnnenrnere———————————————————. 8
2.3 MEENOUS.....ce et a e e aaaeas 14

231 ReEFErenCe Grid (ANNEX B)cucveieieieieieieieieieie ettt bttt sttt bt besesesesesesesesasasasasas 14
232 High-Level Image Processing (ANNEX B.L—B.5) ...ttt sesesesssesssssssesesenes 14
233 QI LE= e 005 o R 18
2331 Discrete Wavelet Transform (DWT) (ANNEX F) ..o ssss s 19
23311 Forward DWT Processing (FDWT) (ANNEX F) ..ot sese s e s ssseenens 19
233111 The2D_SD Procedure (ANNEX F.A.2) ...ttt 21
233112 TheVER_SD Procedure (ANNEX F.4.3)cccciciririereniieriniessesesissesesessessssessssssssesssssssssssnsens 21
233113 TheHOR SD Procedure (ANNEX F.4.4)ccvoireeeeierseenes s iereesesaeses s sensens 22
233114 The2D_ DEINTERLEAVE Procedure (ANNEX F.A.5).....coovieivinininiiesinesesesesesese s 23
233115 ThelD SD Procedure (ANNEX F.4.6)cccccirireeieierisnenesesiesesesesiessesessssessessssssssesensens 23
233116 ThelD EXTD Procedure (ANNEX F.A.7) it 23
233117 ThelD FILTD Procedure (Annex F.4.8, Annex F.4.8.1, and Annex F.4.8.2).................. 24
23310170 -7 WAVEEL ...ttt 24
2331072 5-BRWAAVEIEL ...ttt ettt 24
2.3.3.1.1.8 FDWT Processing and EXAMPIES........ccccvrvreinirniersn st sessesss s sessnsens 24
2331181 O-TI WAVEEL ...ttt ettt bbbt 25
2331182 5-BRWAVEIEL......cooieritetree bbb 26
23312 Inverse DWT Processing (IDWT) (ANNEX F.3) ..ot 27
233121 The2D SR Procedure (ANNEX F.3.2) ...cccoiicirerrerreserisisesesestssesesessessssesssssnssessssssssessnsens 28
233122 The2D_INTERLEAVE Procedure (ANNEX F.3.3)......cconurrierriieenieeineienseessseesseiessssesneeenns 29
2.3.3.1.23 TheHOR_SR Procedure (ANNEX F.3.4).....cccooiiiniririninesene s 29
233124 TheVER SR Procedure (ANNEX F.3.5) ...ccicirireriinerinessesestssesesesiessesesssssssessssssssesensens 29
2.3.3.1.25 ThelD_SRProcedure (ANNEX F.3.6)ccccconiiiiriniririnesesese st 30
233126 ThelD EXTR Procedure (ANNEX F.3.7)...cciiicriiierisnenesstesenesesiessesessessssesssssssnesensens 30
2.3.3.1.27 ThelD_FILTR Procedure (Annex F.3.8, Annex F.3.8.1, and Annex F.3.8.2)c........ 30
2331270 O-TI WAVEEL ...ttt bbbt 30
2331272 5-BRWAVEIEL......ciiierieictree bbb 31
2331273 ThelD FILTRg.7 Parameters (AnNeX F.3.8.2.1) ..cccovvvvverirrrrssesesesesesesesesesesees 31
2.3.3.1.28 |IDWT Processing and EXaMPIES.......cccccirererierrirerierenesesinissesesessesesesesssssssessesssssesssssssnsssnsens 31
2331281 O-TI WAVEIEL ...ttt ettt bbbt 31
2331282 5-BRWAVEIEL......coiierctietreetre bbb 33
23313 REMAKS. ...ttt bbb 34
2.3.3.1.3.1 Convolution Equivaent Wavelet Filtering and Normalization..........c.coeeevenenenenenenescscnenns 35
2.3.3.1.3.2 GUA BILScueuieiaieieiieiseet ettt bbbt bbb 37
2.3.3.1.3.3 One-dimensiona Signal Wavelet Transformation...........cooevereneninenenenenesssesesesesesesssesessens 39
GG I © 1= 0 = (o g I (AN g1 = Gl R 41
23321 9-TI WAVEEL.....oeeeeeeeerete ettt ettt sttt 41
233211 Forward Wavelet Coefficient Quantization Procedure (ANNeX E.2)........cccovvvvverenesenenennns 41
233212 Inverse Wavelet Coefficient Quantization Procedure (ANNEX E.1)......cccovevevvernrvcenerenens 42
PRCRC I MO 2T S SRS (S o IS r4=Y @ U= g 1112 [o FO 45
2332131 Energy Weight EXamples (FUll TIlES)........ccvorrrrienerreiresesereresesiseseseseeesesesesssseneens 49

2332132 Energy Weight Examples (Small TiES)......covvvrerrrrrrrrssssssessesesesesesesesesesesees 53

22 Jan 2004, Working Draft ver 1.2

2.3.3.22 Visua Weighting (ANNEX J.12).......ccoireriiererieieesesinieesesessesesesessesssssessesssssessessssssssssssssssssssssnssens 56
2.3.3.2.3 B5-BRWWAVEIEL.......ceiceecieirete ettt ettt bbbttt 56
233231 Forward Wavelet Coefficient Quantization Procedure (AnneX E.2)......ccccoeveevevervevrerenenn 56
2.3.3.2.3.2 Inverse Wavelet Coefficient Quantization Procedure (ANNEX E.L)......ccoevvvrvrinenenenencnennnns 57
2.3.3.3 Code-Block Entropy Coding (ANNEX C)ccvrerrerrerrrminssns 58
23331 Bit-Plane Coding Passes (ANNEX D.3).....cccvirroinrirrirerrisenesesiesess s iessss s essssessssssssesssssssnssens 59
2.3.3.3.1.1 Significance Propagation (ANNEX D.3.1)cccrririririnininininesisesesssesesese s 60
2.3.3.3.1.2 Magnitude Refinement Pass (ANNEX D.3.3) ...ccccvverieririnnirerreene s ses e 61
2.3.3.3.1.3 Clean-Up Pass (ANNEX D.3.4)...ceieieiesentstststse st 61
23332 MQ COUEr (ANNEX C) ..oveereeriererereriereesesieteesestesesesesassesesesessesesesessesenssessesenssessesesssessssessssssnsassssens 61
2.3.3.3.3 Entropy Coding Options (ANNEX A.B.1).....cccuruererereriririreririerenesesiesenesessesesssessessssesessssssesssssssnssens 62
23334 Rate-Distortion EStimation (ANNEX J.14)ccooveiviririnininisenisenesesese s s 62

PR G TG I Nt R 2= (=] =] 7= 1 o 1T 62
2.3.3.34.2 Distortion ESmMation (J.14.4)......ccoeviinininesesinisesesesessse s s 64
233.34.21 Digortion Estimation Modificationsfor Reversible Transforms (Annex J.14.4.2).... 66
2.3.3.34.3 Computation of the Rate-Distortion Convex Hull (ANNEX J.14.3).....cccovvrinininenenenesesenesnens 66
2334 Layer FOrmation (ANNEX B.8)......cccciiiiiiiiirrssnssssssssssssssssssssss s sssssssssssssssssssssssssssssssssssnns 68
2.3.35 Packet Formation (ANNEX B.9)......cuo i ee sttt s s ssne s s st sanssneneens 70
2.3.3.6 Packet Headers (ANNEX B.10)......cccuiiiririreniressas 72
2.3.3.6.1 Bit Stuffing Routing (ANNEX B.10.1)c.cioeieiieirereretrcresis et sesenseseenens 72
23362 Tag TreeS (ANNEX B.10.2) ..ottt sttt 72
2.3.3.6.3 Zero-Length Packet (ANNEX B.10.3)......ccvoeirierriierieinireristseene s iessnesessessssessssssssesessssssesssssssesens 76
2.3.3.64 Code-Block INClusion (ANNEX B.10.4)ccoiueeeirererieererisisreneseseseseseseessnssessssssssesessssssesenssssnenens 77
2.33.6.5 ZeroBit-Plane Information (ANNEX B.10.5)cccoiriiinininininininist st 77
2.3.3.6.6 Number of Coding Passes (ANNEX B.10.6)ccccovurreirerririrereriernesesiesesssessssssesessssssesessssenesens 78
2.33.6.7 Length of Compressed Image Datafrom Each Code-Block (Annex B.10.7).....ccoovvvvvrvrvrvnnn. 78
2.3.3.6.8 Order of Information Within Packet Header (ANNEX B.10.8)......cccccvverrrererireienerensnenesessenenens 79
2.3.3.7 TileCodestream Formation (ANNEX B.11).......cccccvirrrmmrrrrnesssssssssssssssssssssssssssssssssssssnns 83
2.3.3.8 Progression Order (ANNEX B.12)........ccuviirririirnssas 83

2.3.3.9 Image Codestream FOrmation (ANNEX A)cceeeieeerireririeesesesesesesessesesssessesesssessssesssessssesssssssssssnssens 83

22 Jan 2004

, Working Draft ver 1.2

List Of Figures

Figure2.1. Anexample of thetile PartitionS.........ccciveiiirece e e neens 11
Figure 2.2. An example of a tile-component decomposition into wavel et subbands...........cccocovevevreenenevnseeneseneens 11
Figure 2.3. An example of the precinct and code-blocK Partitions............ccoirrree s 12
Figure2.4. An example of code-block bit-planes and COdING PASSES........cocvevereerrerieirerereene et seneens 13
Figure 2.5. Image processing flow diagram for ENCOENcvviiriiriirrrr s 15
Figure2.6. Tileprocessing flow diagramfor ENCOUEYcvovvreiecirernieerrr e seeens 19
Figure2.7. Application Of the FDWT (NL = 2) ..c.cviiiirrrrrrirsssnns 20
Figure2.8. Application of the VER _SD PrOCEAUIE..........cviuirererriierssissssssssssssssssssss s sssssssssssssssssssssssssssnns 22
Figure2.9. Application of the HOR SD PrOCEAUIE.......c.cceiviveueireeeee sttt aese s s ses st s sassesssesensns 23
Figure 2.10. Application of the 1D_SD procedure (9-71 WaVEIEL)..........cccvrriirririrnssesssssssssssssssss s 25
Figure2.11. Example of the 1D_SD procedure (9-71 WAVEIEL)ccovrieiererrieenereriersresesieres s issse s sesesssseseseneens 26
Figure2.12. Application of the 1D_SD procedure (5-3RWaVEIEL)cccvvrrririiisesssssssssssssssssssse s ssss s 27
Figure 2.13. Example of the 1D_SD procedure (5-3RWAVEIEL)........ccvuvurirerrieirererecre e see st seneens 27
Figure2.14. Application Of the IDWT (NL = 2) ..ot tse st sse s ssse e sssse s sese s s sssssssessssesssessnsssssssensns 28
Figure 2.15. Application of the HOR_SRand VER_SRPrOCEAUIES........cccovrrrrrrriissssssssssssssssssssssssssessssssens 29
Figure 2.16. Application of the 1D_SRprocedure (9-71 WaVEI€L)...........cvoverreirrerieire e ree st sesssssseseneens 32
Figure2.17. Example of the 1D_SR procedure (9-71 WAVEIEL)..........cccvrrrrrririsesssssssssssssssssssssssssssssssssssens 33
Figure2.18. Application of the 1D_SR procedure (5-3RWaVEIEL)..........ccovvrreirrereire et seeeens 34
Figure 2.19. Example of the 1D_SR procedure (5-3RWAVEIEL)..........ccccovrirriiirrnsssssessss s 34
Figure 2.20. Wavelet analysis (convolution implementation)............crrrrerrressessssssssssssssssss s sssssssssens 35
Figure2.21. Wavelet synthesis (convolution implementation) ... seneens 35
Figure2.22. Guard bits example: level-shifted 8-bit square Wave SIgNal..........ccovovrrerrneneneeneeeeesese s 38
Figure 2.23. Guard bitsexample: three-level 9-71 decomposition of the squarewave signalccccceeevvvveenerenene, 39
Figure2.24. Quantization example (D, = 0.5, 1 = 0.5) it s 42
Figure 2.25. Quantization example varying the number of decoded bit-planes (D, = 0.5, r = 0.5, My, = 3).............. 45
Figure2.26. One-dimensional, one-level, [oW-Pass SYNThESIS.........cccvrrrirrneer et 46
Figure 2.27. One-dimensional, tWO 1EVEl SYNENESIS.........cccuiiiiiiierrrssesess s 47
Figure2.28. Threelevel wavelet deCOMPOSITION.........cciiirereerer ettt ne e sensens 47
Figure2.29. 9-71 CONVOIULION fIlter KEXNEIS........ccieiecce s s s 50
Figure2.30. 9-71 LL synthesis aggregate CONVOIULION filtErccvviiiiiiircccrccscese s 51
Figure2.31. 9-71 HL synthesis aggregate CONVOIULION fIlLENcccvirieinrsccre e 51
Figure2.32. 9-71 LLL synthesis aggregate CONVOIULION fIlLEr.........cccviiiriirrrcrcceeesee s 52
Figure 2.33. 9-71 HLL synthesis aggregate CONVOIULION fIILENcccvvirieeirrrcere e 52
Figure 2.34. Scanning order Within @ code-bIOCK.........ccuiiiiiiiirrrrrrcsses s 59
Figure 2.35. Neighbors used tO fOrm CONEXL.........cuiiiriirrrrnsssssssssessss s 60
Figure 2.36. Convex hull of rate-diStOrtioN CUMVE.cccvieieueereretee sttt st st e e sensens 67
Figure 2.37. Distribution of code-block coding passes among different [ayers.......ccovenincennrnnnenensseseeseseseseens 71

22 Jan 2004, Working Draft ver 1.2

Table2.1.
Table2.2.
Table2.3.
Table 2.4.
Table2.5.
Table 2.6.
Table2.7.
Table2.8.
Table 2.9.

List Of Tables

9-71 Low-pass analysisfilter, N(N). (9-1ap filter).....ccvviiiirirerrrr e 36
9-71 High-pass analysisfilter, g(n). (7-tap filter).....ccoceorr e 36
9-71 Low-pass synthesisfilter, g&n). (7-1ap filter) ..o 36
9-71 High-pass synthesisfilter, h&n). (9-tap filtEr).....cvviirrrcrrrcrcrre e 36
Subband sizesin 8 x 1,024 tile (five level deCOmMPOSITION).........cccveererieireierieee s 40
Wavel et synthesis row and ColUMN OPEratioNS..........ccvrrrrirrrrrnsssssesessss s ssssssssssssss s 48
Energy weight calculations for five level 9-71 wavelet deCompPOSItioN...........covovverrrrnenrnenenesensseseseseeens 53
Subband sizesin 4 x 16 tile (five level deComMPOSItION).........ccoveirrrieirererece s 54
Energy weight calculationsfor 4 x 16 tile, five level 9-71 wavelet decomposition...........cccvvvvvvvverinene 55

Table 2.10 Codewordsfor the number of coding passesfor each code-blocK..........cccvvvvveinvvcii e, 78

22 Jan 2004, Working Draft ver 1.2

1 Introduction

1.1 Brief Algorithm Description

The core of the BWC agorithm is based on Part 1 of the Joint Photographic Experts Group 2000 (JPEG 2000) still
image compression standard. After a process of tiling, wavelet transform, quantization, entropy coding, and JPEG
2000 codestream formation, a compressed file is produced.

1.2 Heritage Overview and Background

The heritage compression algorithms used today include several versions of the JPEG Discrete Cosine Transform
(DCT) dgorithm that is the predecessor to JPEG 2000:

Nationa Imagery Transmission Format (NITF) JPEG Discrete Cosine Transform (DCT) agorithm for
primary dissemination.

Nationa Imagery Transmission Format Standard (NITFS) JPEG DCT a gorithm for secondary/tactical
dissemination throughout NGA.

NGA Method 4 (also known as Down-sample JPEG) for use in secondary/tactical dissemination throughout
NGA to very bandwidth-constrained users.
Other heritage algorithmsinclude the DCT and DPCM based Tape Format Requirements Document (TFRD)
algorithms:
Most of the technology used in these heritage compression algorithms was devel oped a decade ago

22 Jan 2004, Working Draft ver 1.2

2 Algorithm Description

This section of the document discusses the processes that comprise afull JPEG 2000 image coding system. The
coding framework is specified extensively in the 15444-x family of documents that are published by the ISO/IEC
international organizations. The international standard is currently composed of ten parts. Part 1 describes the
baseline coding system, which represents the minimum functionality required for compliance with the standard.

Part 2 describes extensions to the baseline system that may be useful for specific applications but are not necessary
for compliance. Part 3 specifiesvideo specific extensions. Part4 discusses the procedures to apply when testing for
conformance. Part 5 will publish reference software written in the C and Java programming languages to assist
developersin understanding the intricacies of the baseline system. Part 6 of the standard describes the Mixed Raster
Content (MRC) model for describing compound documents and the JPM fileformat. Part 8 of the standard deals
with security issuesrelated to intellectual property and imagery. Part 9 of the standard describes the JPIP protocol
that allows imagery to interactively streamed over networks. Part 10 of the standard defines more advanced 3D
encoding techniques and includes methods for dealing with floating point imagery. Part 11 of the standard deals
with wireless networks and use of JPEG 2000.

Thistechnical memo only discusses el ements from Part 1 of the international standard, which will henceforth be
referred to asthe “baseline standard”, or simply the “standard”. There are anumber of technologies of interest in
other portions of the standard that will someday impact enterprise systems. Future versions of this document will
address new technologies as theimaging community adopts them.

Thefocus of thistechnical memo is on the JPEG 2000 compression system, while the baseline standard describes
JPEG 2000 from a decompression standpoint. However, the baseline standard presents many guidelines for
developing the compressor. As such, there will be considerable overlap between this technical memo and the
standard. Throughout the discussion of JPEG 2000 technologies and processes, references will be made to sections
of the standard to assist in linking the two documents together. Note that the technical memo is not intended to be a
stand-alone document with respect to understanding the framework of JPEG 2000. This technical memo coupled
with the standard itself should provide the necessary information for implementing the coding system.

The standard discusses several compression-side optionsthat are left open to the devel oper for customization and
optimization purposes. Thisflexibility is advantageous from an open architecture standpoint, but is a burden to the
developer if all options are to be supported. The standard also leaves several key elements of the coding process
unspecified because of scope limitations (e.g., rate-control, wavelet and quantization normalization, etc.). The main
objectives of thistechnical memo and the JPEG 2000 sections of the other related requirements documents are to fix
the open parameters (i.e., a system-wide JPEG 2000 profile), clarify vague portions of the standard, and provide
complete guidelines and algorithms for devel oping the end-to-end compression system.

2.1 Algorithm Details

The JPEG 2000 image-coding agorithm consists of several advanced technologiesthat provide a high degree of
compression efficiency and functionality. The technologies are outlined in Section 5.3 of the standard. The core
operations that are implemented in the baseline algorithm consist of a discrete wavelet transform, dead-zone scalar
quantization, and three-pass bit-plane coding using a context-dependent adaptive arithmetic coder. These coding
elements form the typical chain of operationsfor atransform-based compression system (i.e., transform,
guantization, and entropy coding). Following the core operations are the layer, packet, and codestream formation
stages. These stages manipulate and order the compressed datain the proper constructs, format, and syntax that is
specified in the baseline standard.

A brief summary of the image processing stagesfollows:

22 Jan 2004, Working Draft ver 1.2

1

(Section 2.3.1) Theimage isregistered onto areference grid. For multi-component images with components at
different resolutions, integer sample separation factors are defined such that each component will have the same
spatial coverage on the reference grid.

(Section 2.3.2) Theimageis separated into contiguous, non-overlapping tiles. A tileis defined relative to the

reference grid, not relative to the component coordinate space. A multi-component imagetilewill have atile

from each component, each of which is called atile-component. Tiles are independently coded to promote
parallel processing.

(Section 2.3.3) Each tile undergoes the following processing stages.

1. EachtileccomponentisDC level shifted to change unsigned values to signed and symmetrical about zero.

2. A multi-component (color) transform is applied to the first three componentsin thetile. (Note: we
reference here the Irreversible Component Transform, ICT, and the Reversible Component Transform,
RCT. Readersfamiliar with Part 2 of the standard should not confuse these transforms with the more
general Multiple Component Transform, MCT, framework in 15444-2.)

3. Eachtile-component undergoes the following processing stages:

1. (Section 2.3.3.1) Discrete wavelet transform to decompose the samples into multiple resolutions. Each
resolution is comprised of subbands, which are spatially localized sets of wavelet coefficients that are
related to horizontal, vertical, and diagonal spatia frequencies.

2. (Section 2.3.3.2) Quantization to reduce the precision of the wavel et coefficients for the purpose of
controlling the trade-off between overall rate and distortion.

3. Regionof-interest (ROI) bit-wise shift is applied to the identified quantized subband wavel et
coefficients.

4. Subband partitioning into contiguous, non-overlapping precincts and code-blocks to localize the data,
which enhances compression efficiency, limits complexity, facilitates rate-control, and enables decoder
random access and extraction. Precincts can be defined per resolution; code-blocks are defined once
for theimage. Precincts and code-blocks are bounded by subband extent. Code-blocks are further
bounded by precinct extent.

5. (Section 2.3.3.3) Code-block entropy coding to reduce the number of bits required to represent the
quantized coefficients. Code-blocks are independently coded to promote parallel processing.

4. (Section 2.3.3.4) Organization of tile compressed datainto quality layers using arate-control procedure.

5. (Section 2.3.3.5) Organization of tile compressed datainto small segments called packets, which isthe
smallest unit of the compressed data. A packet corresponds to the compressed data produced for onetile,
component, resolution, layer, and precinct.

6. (Section2.3.3.7) Formation of thetile codestream, which is composed of marker segmentsfor conveying
tile-specific coding information and the packetsin a pre-defined order. Thetile codestream can be split
into multiple segments called tile-parts.

(Section 2.3.3.9) Formation of theimage codestream, which is composed of marker segmentsfor conveying

image-level coding information and the tile codestreamsin apre-defined order. Tile datanominally appear in

the image codestream in raster-scan order (thisis not arequirement of 15444-1 but it isthe most common
ordering of dataand recommended by this guideline), but tile-parts relating to a particular tile are not necessary
contiguous and can appear interleaved with tile-parts from other tiles. Tile-partsfor agiven tile appear in order
according to the packets that are contained in the tile-part.

Note that the notion of multiple components, precincts, regions-of -interest, and to some extent, the reference grid
may beirrelevant to the compression of some types of imagery systems. The discussion of these elementsin this
document is merely for the sake of completeness, and is by no meansthorough. Developers are referred to the
standard for more information.

2.2 Definitions and Processing Conventions

This section defines the image data structures and coding elements, and processing operations for the JPEG 2000
compression algorithm. The image data structures aretile, tile-component, resolution, subband, precinct, and code-
block. The coding elementsthat are defined in JPEG 2000 are bit-plane, coding pass, layer, packet, and tile-part.
Sections B.1 through B.9 of the standard describe these structuresin detail.

22 Jan 2004, Working Draft ver 1.2

JPEG 2000 describes the concept of areference grid for registering the components of the image to acommon
coordinate space. All components share the same top-left coordinate on the reference grid, location (0,0). The actua
start of image dataneed not coincide withthislocation. It can be offset down and to the right of the (0,0) anchor
point, but the fundamenta aignment of image samples between components may not be altered. The area of the
reference grid that contains valid image samplesis called the image areaand the reference grid point denoted by
(X0Osiz, YOsiz) isitstop left coordinate. When the original components have different resolutions, integer sample
separation factors are defined such that each component will have the same spatial coverage on the reference grid.
Note that tiles are defined relative to the reference grid and can be offset relative to the component anchor point
(reference XTOsiz, YTOsiz). Thefact that thetiles are defined in the grid coordinate space impliesthat the tile size
may vary when mapped to the component coordinate space, where the samples are not spread by the integer sample
separation factor. The reference grid is convenient for defining the location of different image data structuresin
different coordinate spaces. The reference grid can aso be used to define basic image manipulation operations such
as cropping, flipping, and rotation by integer multiples of 90 degrees.

Figure 2.1 shows a single-component image that is decomposed into a set of tiles. Theimage offset point isaso
shown to be (0,0), or the reference grid origin. When multiple components exist, each tile consists of tile-
components. Tile-components are defined in the coordinate space of the component. Therefore, the tile-component
dimensions may differ depending on the reference grid separation factors that are defined for the components. The
figure portrays a case where the image dimensions are not divisible by thetile dimensions. Thetilesaong theright
and bottom of the image do not have nomina dimensionsin this situation. Tiles are independently processed, which
impliesthat processing orcer isarbitrary. Tile codestreams may appear in any order in the final image codestream.
A tileindex isincluded in the tile header structure that allowsthe tiles to be assembled into their proper order. This
guideline recommends that tile data appear in raster-scan order in the final image codestream. Thisisthe ordering
in which the mgjority of imaging applications will generate, store, and utilize imagery data.

Figure 2.2 shows a single tile-component that is decomposed by atwo-dimensional discrete wavelet transforminto a
set of subbands. The dyadic decomposition style defined in the baseline standard, where the transform is recursively
applied to the low-pass signd, is shown in the figure. The two-dimensiona transform isimplemented astwo
separable one-dimensional transforms (i.e., horizontal and vertical). Each successive decomposition level reduces
the resolution and dimensions by approximately a factor of two. The wavelet subband coefficients describe the
image in terms of horizontal, vertical, and diagonal spatia frequencies at different resolutions. The coefficients are
localized in spatia influence due to the finite support of the wavelet filters used in the transform. Figure 2.2 shows
the wavelet decomposition from aresolution and subband perspective. Thefirst example showsthe multiple
resolutionsthat are created by the transform. In this example, three decomposition iterations are performed,
resulting in four unique resolutions. The resolutions are labeled RO through R3, where RO isthe lowest resolution
rendition of theimage available. Note that the resolution labeling scheme shown in Figure 2.2 isthat adopted by the
JPEG 2000 standard. Other communities have adopted a different scheme to denote resolution sets, or rsets, of an
image. Using the enterprise rset vernacular, afull resolution imageis denoted as RO, a 1/4 resolution image is
denoted R1, and a 1/16 resolution image is denoted as R2, etc. The two labeling schemes essentially run in opposite
directions.

The second examplein Figure 2.2 shows the subbands and the labeling convention that is employed by the standard.
ThelLL, HL, LH, and HH designations refer to a particular combination of one-dimensional decompositionsin
horizontal then vertical order. For example, HL meansthat the coefficients underwent a high-pass horizontal
decomposition and then alow-pass vertical decomposition; LH means that the coefficients underwent alow-pass
horizontal decomposition and then a high-pass vertical decomposition. The standard includes equations to cal culate
the size of an intermediate resol ution and the associated subbands, which can be used to locate the data with pixel
precision.

Figure 2.3 shows an example of precinct and code-block partitions for resolution R3, or subbands 1HL, 1LH, and
1HH. Precincts and code-blocks are contiguous, non-overlapping, rectangular regions that are defined to spatially
localize the subband wavel et coefficients for the purposes of entropy coding and enabling random accessto the
codestream. Entropy coding is performed on the code-blocks independently (i.e., no data from outside a code-block
is used during the coding operation), which promotes parallel processing. Both precincts and code-blocks are
anchored fromlocation (0,0) on the reference grid. Precinct size can be customized at the component and resolution
level, while code-block size is defined at the image or component level. Specific rules are set by the standard with

22 Jan 2004, Working Draft ver 1.2

respect to thesizes of precincts and code-blocks. For example, code-block dimensions must be an integer power-of -
two, the minimum value for adimension is 4, the maximum is 1024, and the product of the dimensions cannot
exceed 4096.

Precincts and code-blocks are bounded by subband extent. Code-blocks are further bounded by precinct extent. The
example in Figure 2.3 shows a partitioning that neatly fits within the confines of the subband and tile boundaries.
Thisis possible when theimage and tile anchors are set at (0,0) and the tile dimensions are a power of two. Note
that a precinct includes information from the HL, LH, and HH subbands (e.g., Ps1). Thisis because the notion of a
precinct relates to resolution, and is not subband specific. The second examplein Figure 2.3 illustrates a code-
block partition. The code-blocks for a precinct are ordered sequentially by subband in the following order: LL or
HL, LH, and HH. Within a subband, the code-blocks are raster-scan ordered. This resultsin the numbering shown
in the second example. The ordering isimportant when forming the contents of a packet.

Entropy coding of the integer quantization indicesis performed using a three-pass bit-plane coding scheme that
utilizes a context-dependent adaptive arithmetic coder. Figure 2.4 shows an example of bit-planes and coding
passes from code-blocks at three different resolutions. The quantization indices within a code-block are bit-plane
coded starting from the most significant bit-plane with anon-zero value to the least significant. Each bit in abit-
planeisvisited only once in three scans, referred to as coding passes. The three coding passes are labeled
significance propagation, magnitude refinement, and cleanup. Each coding pass uses contextual information
regarding the received bitsin a given bit-plane to condition the arithmetic coder’ s probability models. For example,
the most significant bit-plane within a code block will largely be comprised of “0” bits, with “1” bits occurring
infrequently. The arithmetic coder’ ssignificance propagation probability modelstake thisinto account. Oncethe
most significant bit in awavelet coefficient is encoded, the magnitude refinement probability contexts are used. The
cleanup coding passis used to handle all other wavelet coefficients for which we have not yet received any hits.

After the three coding passes, the coder will have considered all bitsin a code-block bit-plane. The most significant
bit plane of each code-block is always encoded with just a cleanup pass. The coding passes provide a convenient
truncation point for ending the code-block contribution to the codestream. By coding each bit-plane as three
separate sequences, the compression algorithm is able to control the rate at afiner level. Considering thisbit-plane
coding framework, the conceptual operation of arate-control module in a JPEG 2000 compression system isthe
selection of the most relevant coding passes from every code-block to achieve atarget average bit rate.

A layer in the JPEG 2000 coding framework is defined to be some number of consecutive coding passes from every
code-block inatile. It isimportant to note that layers do not span tiles; the only mechanism to control layering or
ordering of codestream dataamongst tilesisto usetile-parts (see below). Conceptualy, each layer adds more bits of
precision to the quantized wavelet coefficients, which improves the reconstructed image quality. The number of
coding passes can be different for each code-block. A code-block can even contribute zero bitsto alayer. Layer
formation is performed by arate-control module, since layers are typically defined by an average bit rate.

Packets are defined by JPEG 2000 as the compressed data produced for onetile, component, resolution, layer, and
precinct. Packets represent the smallest unit of the compressed data. For example, in Figure 2.3, a packet would be
created from the code-block coding pass data corresponding to precinct, P;1. The sequential code-block order
depicted in the example would be used to form the packet. During the tile codestream formation stage, packets are
interleaved in one of several progression orders defined in the standard (e.g., L ayer-Resol ution-Component-Precinct,
or LRCP). Packets are important from the perspective of being able to efficiently extract partial image data without
the need to perform full decompression. For example, if an application regquires compressed data from an
intermediate resolution and quality level, a parsing tool can satisfy this request by extracting just the relevant
packets.

Tile-parts are segments of the codestream for atile. Tile-parts smply break thetile codestream at the end of coding
passes and can be used to distribute and interleave the data throughout thefile codestream. JPEG 2000 requires that
each tile-part hold at least one packet. Thetile-part syntax defined by the standard allows packet progression order
changesto be signaled in thetile-part marker segment. Thisisanother reason to use tile-parts beyond layering and
rate control concerns. Two tile-partswould exist in this example; the first has a Resol ution-L ayer-Component-
Position, or RLCP, packet progression order, while the second would signal aswitchto LRCP.

10

22 Jan 2004, Working Draft ver 1.2

(XOSiZ! Yosiz) = (XTosizv YTOS!Z) = (Ov 0)

r
XTsiz
Ysiz<
YTsi{
\
—~
xsiz

Figure2.1. An exampleof thetilepartitions.

RO| R1 3LL|3HL
R2 2HL
R1| R1 3LH|3HH
R3 1IHL
R2 R2 2LH | 2HH
R3 R3 1LH 1HH

Figure2.2. An example of atile-component decomposition into wavelet subbands.

11

22 Jan 2004, Working Draft ver 1.2

1HL i Joia
¥ po | pa fig B Foo-
i | 3

1LH 1HH P:2 P:3 1LH HH [i
i 4 i 8! g

Po | Pa Po | P B il | . i

: 61 ! 1C: 11

P32 P33 P32 P33 '_"';‘ ________ E' _____ ';‘ """" E’“'

Figure2.3. An example of the precinct and code-block partitions.

12

22 Jan 2004, Working Draft ver 1.2

Oom; OOm; OO |

[min) FHimlsl Ml §
mia] (=] Huls! ¥
m[sl Hu[E] Hes |
mla] Hm(s! Hals! ¥
T
misl }
mle[¥
(s F:

OT 60 80 0 90 SO ¥O0O €0 <¢0 710

|83 |83 |83 IGO IED IED |83 |ED IEIO IHO IGO IED |E|O ad

1
sl

91 G ¥I €T ¢ 11

1 0O O

SpuUeqQns UoIN|0Sa1 MO| .

spueqgns uonnjosal yéiy

SpueggNS UOIN|0SaJ W paU .
ssed Juewsuljes spniubew [§ : :
ssed uoeBedoud aoueaiyubs Ml :

Figure24. An example of code-block bit-planesand coding passes.

22 Jan 2004, Working Draft ver 1.2

2.3 Methods
2.3.1 ReferenceGrid (Annex B)

Annex B of ISO/IEC IS 15444-1 describes the image data structure concepts of JPEG 2000. One of the fundamental
constructs of JPEG 2000 isthereference grid. The reference grid may be thought of asagrid of points uponwhich
al spatia entitiesin JPEG 2000 are located. Two of these spatia entitiesinclude theimage area where the visible
contents of theimage lie and tiles which partition theimage areainto contiguous, non-overlapping rectangular
regions. The reference grid also provides for subsampling of image components relative to the reference grid. The
influence of the reference grid extends beyond the definition of image area, tiles, and component subsampling.
Wavelet subbands are mapped to the reference grid at different resolutions, as are other constructs such ascode-
blocks and precincts.

We will not ventureinto al of the subtle nuances of the reference grid in this section. For mostimagery, many of
the choices we shall make regarding the reference grid will greatly simplify itsuse. Thereader is encouraged to
read Annex B.1 through Annex B.9 to get afedl for the reference grid and itsimportance in JPEG 2000. The
following paragraphs are specific in that the parameter valuesare used for a specific imaging system. The
discussion, however, is applicable to any JPEG 2000 system.

2.3.2 High-Level Image Processing (Annex B.1-B.5)

Figure 2.5 shows the high-level image processing of the JPEG 2000 encoder. The image to be compressed isfirst
partitioned into non-overlapping contiguoustiles. Eachtileis processed independently to generate the individual
tile codestream portions of the JPEG 2000 compressed codestream. Thetile processing is repeated for every tile
until all tiles have been processed. Finally the JPEG 2000 compressed image codestream is formed and the
encoding terminates. The following recommendation section considers more specific tiling-rel ated quantities and
their relationship to the JPEG 2000 reference grid. The section also covers many of the parametersin the SIZ
marker segment and their values.

14

22 Jan 2004, Working Draft ver 1.2

Begin Image)
Processing

Partition Into Tiles

v

t=0

p = mod(t, numXtiles)

=& L

&numxXtilesH
t=t+1
p= mod(t, nuthiIes) numXtiles X |mage Codestream
q= é t u numtiles Formation
&numXtilesH
A
\
Tile Processing C End | mage)
Processing

Figure25. Image processing flow diagram for encoder

Recommendation

Tiles provide a simple method by which large imagery may be processed in parallel. None of the JPEG 2000
constructs (i.e., code-blocks, precincts, wavelet transform, layers, etc.) crosstile boundaries. It istherefore possible
to independently compresstilesif desired. (Note sophisticated rate control schemes may want to jointly compress
tilesto control thefinal bitrate.) Current enterprise compression algorithms (e.g. NITF or TFRD) utilizetiling
schemes for rapid accessimage blocks. This practice has been adopted for JPEG 2000 compression within this
guidelineaswell. JPEG 2000 tiles are subtly different from NITF and TFRD tiles. While al of these tiling schemes
utilizeindependently coded tile codestreams, the JPEG 2000 tiles still exist within the overall file codestream.
Within previous compression standards, each tile or image block was encoded as an independent subimage with
each tile or block forming a completecodestream. The 1,024 x 1,024 tile size was chosen as a good compromise
between random access and compression efficiency. It also mimicsthe FAF block size used by TFRD. Precincts
are another construct within JPEG 2000 that alows rapid access to spatial regions wi thin animage. Tiling was
chosen over precincts due to its similar conops with current systems.

Imagery compressed according to this guideline shall be partitioned into contiguous non-overlapping tiles nominally
containing 1,024 pixelsx 1,024 pixels. 1t is possible that the image dimensions will not be integer multiples of
1,024. Inthis case theright and bottom sides of the image will contain tiles that have one or possibly both
dimensionslessthan 1,024. The nominal size of thetiles on thereference grid is communicated in the SIZ marker
segment that appearsin the main header of a JPEG 2000 codestream (see Figure A-3 and Annex A.5.1 of ISO/IEC
IS 15444-1). The coordinate limits of the image area on the reference grid are a so contained within the SIZ marker
segment. The dimensions of acomponent (i.e. the number of rows or height, and the number of columns or width, is
given by Equation 2.1 (Equation B.2):

15

22 Jan 2004, Working Draft ver 1.2

(width, height) = (X, - %, ¥; - ¥o)

Equation 2.1
where,
_éXOsizy . _é Xsiz | y_éYOsizu y_éYsizu
“TExrsZl * ExreZH P &Rzl " &vRsZH
Equation 2.2

The coordinates (Xo,Yo) and (X4,y1) specify the top-left and bottom-right corners of the image areataking into account
the component columnar and row subsampling factors XRsiZ* and YRsiZ". These parameters are a function of image
component, hence the superscript c. The parameters, XOsiz and YOsiz are the column and row offsets of the active
image area from thetop-left corner (0,0) of the reference grid. The point (XOsiz YOsi2) isthe top-left corner of the
image area. The parameters, Xsiz and Ysiz determine the bottom-right corner of theimage. The bottom-right sample
of theimage areaiisat location (Xsz-1,Ysz -1) (see Figure B-1in ISO/IEC 1S 15444-1). The sample (Xsiz,Ysz) is
not in theimage areg; it isthe boundary of theimage area. In general, the right and bottom boundaries of reference
grid congtructs (tiles, image ared) are not included inthe construct, but the top and left boundaries are.

It is recommended that the values of (XRsiz°,YRsiz%) = (1,1) and (XOsiz,YOsi2) = (0,0). Thisrecommendation
appliesto all original image creators. If afileis chipped to areduced resolution or to a collection of tiles, theimage
offsets (XOsiz, YOs2), tile offsets (XTOsiz, Y TOs z), and reference grid sampling factors(XRsiz, YRsz) are
typically modified. Thisisdone so that no wavelet coefficients need be recomputed. In certain circumstances, it
may be possibleto retain the original values, but in generd it is hecessary to change these values or recompute the
wavelet coefficients. Since most applications will wish to maintain parsing speed, decoders must be able to handle
reference grid parameters that differ from those recommended for original image providers.

The parameters (Xsiz Ysi2) should be set to the number of columns and rows in the image respectively. All of these
parameters are stored in the SIZ marker segment that is present in the main header of the JPEG 2000 codestream.
These parameter choices force theimagery datato be sampled one to one on the reference grid and force the top | eft
corner of the image to be coincident with the top-left corner of the reference grid. The variable, Csiz, is set to the
number of componentsintheimage. (Csiz = #of Componentsin the SIZ marker segment.)

Four additional SIZ marker segment parameters, XTOsiz, YTOsiz, XTsiz, and YTsiz, determine thetiling of theimage
area. The parameters (XTOsiz,YTOs z) specify thetile offset from the top-left corner, (0,0), of the reference grid.
The nominal (width,height) of atile on the reference grid are given by the parameters (XTsiz,YTsz). The vaues of

XTOsiz, YTOsiz, XTsiz, and YTsiz, are constrained by the following sets of relationships (see Equation B.3 and
Equation B.4),

O£ XTOsiz£ XOsiz 0£YTOsiz£YOsiz
Equation 2.3

and

XTsiz+ XTOsiz> XOsiz YTsiz+YTOsiz>YOsiz
Equation 2.4

Equation 2.3 guaranteesthat the top-left corner of the top-left tileis either in the image offset area whose bottom-
right corner is (XOsiz-1,YOsiz1) or just outside of it at first image areasample, (XOsiz,YOsiz). This guarantees that

16

22 Jan 2004, Working Draft ver 1.2

no image area samples on the top or left are outside of theimagetiles. Equation 2.4 guarantees that the top-left tile
contains at least one samplein theimage area(i.e. it does not lie completely in theimage offset area). For this
system’ simagery, (XTOsiz,YTOsz) shal be set to (0,0) and (XTsiz YTsi2) shall be set to (1024,1024).

The numbers of tilesin the column and row directions are given by numxXtiles and numVYtiles respectively. These
values are computed using Equation 2.5 (see Equation B.5),

_ éXsiz- XTOsizy éYsiz- YTOsiz(y

numxXtiles= : - numVYtiles= >—————— =
8 XTsiz Y 8 vYyrsz H
Equation 2.5

Tiles are indexed from 0 to nuMXtiles> numyYtiles- 1in raster-scan order (l€ft to right, top to bottom, see Figure
B-4). Tilesare also indexed in a (column, row) fashion with the variables (p,q), where pT [O, numxtiles- 1]

and ql [O, numvtiles - 1]. The (p,q) tile indices may be computed from the tile index,
t1 [0, numxXtiles>xnumvtiles - 1] , by the expressions in Equation 2.6 (see Equation B.6),

. é t !
p= mOd(t, nuthll%) gqg= ma

Equation 2.6

Given the(p,q) indices of atile, the top-left and bottom-right coordinates of thetile on the reference grid are
determined from Equation 2.7 (see Equations B.7 through B.10),

tx,(p,q) = max(XTOsiz+ p XXTsiz, XOsiz)

ty,(p,q) = max(YTOsiz + q ¥/Tsiz,YOsiz)

tx (p,q) = min(XTOsiz + (p +1) xXTsiz, Xsiz)

ty,(p,q) = min(YTOsiz + (q + 1) *(Tsiz, Ysiz)

Equation 2.7

The (width, height) dimensions of atile on the reference grid are given by (tx; — t, ty; —tyo) (see Equation B.11).

Within the domain of an image component (taking into account subsampling on the reference grid), atile’ stop-left
and bottom-right coordinates are determined using Equation 2.8 (see Equation B.12),

é X, u é X u é ty, u é ty u

tox, = x— 2 = toX = a—t—n Oy, = a—0 o tCY, = a2t

% T ExRiZH T EXRazH X T ErszH T BvRszH
Equation 2.8

The (width, height) dimensions of thetile-component (atile mapped into component space) are given by (tcx; — tex,
tcy, — teyp) (see Equation B.13 of the SO standard). It is recommended that the reference grid sampling factors
(XRsiz%,YRsiZ) besetto (1,1); therefore, thereis no difference between the coordinate sets (tx,, tXo, ty;, tyo) and (tcx,,
tcXo, teys, teyo). Itisworth noting here that the true number of pixelsin atileisgiven by (tcx; - texo, toy, - teyg) and
not (tx; - tXo, ty; - tyo). Although tile sizes are defined on the reference grid, the number of pixelsinatileis
determined by the tile size and subsampling on the reference grid.

17

22 Jan 2004, Working Draft ver 1.2

A reduced resolution version of thetile may be formed at resolution level, r, by using thenLL subband (see Annex F
and Section 2.3.3.1 of this document for definitions of resolution levels, decomposition levels, and subbands), where
n= N_—r. Tile-component corner coordinates may be mapped into agiven resolution level, r, yielding top-left
corner coordinates, (trxo,tryo), and bottom-right corner coordinates, (trx,-1,try;-1), using the expressionsin Equation
2.9 (see Equation B.14 of the SO standard). The dimensions of the wavelet subbands at decomposition level, n,
are computed using Equation 2.10 (see Equation B.15 of the | SO standard), where the parametersxo, and yo,, are
functions of subband orientation, b, and are givenin Table B-1 of ISO/IEC IS 15444-1.

_éetex u _éftcy, u _éetex u _étcy u
trx, = gZN—XﬂH try, = gZN—OrH trx = gZN—XirH try, = gZN—er
Equation 2.9

. (ny-1) . (no -1)
thO:etch- 2" xxq U thy, _etey, - \2° " xyo, Ju
¢z (T E

o 2S00 g ooy - (2)u
% = 5 2" u Vi = 5 2" u
e a e u

Equation 2.10

Equation 2.10 givesthe width, tbx; — thx,, and height, tby, — thy,, of each subband in the wavel et decomposition for
the currert tile. Equation 2.10 isvery important to the wavelet processing. It determines not only subband
dimensions, but also the order in which wavelet subband coefficients are produced (low-passfirst or high-passfirst).

2.3.3 TileProcessing

Figure 2.6 showsthetile processing flow for the JPEG 2000 encoder. The discrete wavel et transformation,
guantization of the wavelet coefficients, and code-block entropy coding (T1 engine) are run on every component for
the current tile. After all componentsin the current tile have been processed, layer formation, packet formation (T2
engine), and tile codestream generation occur. Thetile processing procedureis called for every tilein theimage
(see Figure 2.5).

Tiles are processed independently in JPEG 2000. No procedure within the standard spans more than asingletile.
The wavelet transform, quantization, entropy coding, and layer and packet formation al are restricted to the current
tile. It ispermitted within JPEG 2000 to split up the entropy-coded data associated with atile into one or moretile-
parts. Tile-parts may beinterspersed throughout the codestream, but they must appear in order of increasing tile-

part index within the codestream. This allows atype of metalayering to be performed with the data from the
varioustilesin the compressed codestream.

18

22 Jan 2004, Working Draft ver 1.2

Begin Tile)
Processing

<
)

<—]

yes
»<_c=Csiz > Layer Formation

. !

Discrete Wavelet Pafz_‘f_‘;‘t Eﬁ;frgl on
Transformation

Tile Codestream

Quantization Formation
‘ 1)
Code-Block Entropy End Tile
Coding (T1 Engine) Processing
c=c+1

Figure26. Tileprocessing flow diagram for encoder

2.3.3.1 Discrete Wavelet Transform (DWT) (Annex F)

The 9-7 irreversible (9-71) discrete wavelet transformation will be used for all visually lossless (VL) processing.
The 5-3 reversible (5-3R) discrete wavel et transformation will be used for all numerically lossless (NL) processing.
This section and its subsections serve to further explain and restrict the discrete wavel et transformation description
found in Part 1 of the JPEG 2000 standard (ISO/IEC IS 15444-1). Theforward and inverse wavelet transform
processing is described in Annex F of ISO/IEC 1S 15444-1. Annex F of ISO/IEC IS 15444-1 only specifiesthe
normative inverse wavelet transformation processing of adecoder. This section of this document additionally
specifies the normative forward wavel et transformation processing that a recommended encoder shall follow. This
section will make frequent reference to the sections and equationsin Annex F of ISO/IEC IS 15444-1.

The processing steps for the 9-71 and 5-3R wavelet transformations are quite similar. The only differencesliein the
lengths of symmetric extension needed for the two transforms and the actual filtering steps of the transforms.

Unless explicitly stated otherwise, the text in this section and all of its subsections applies equally to both wavel et
transformations. Those areas where the two transforms differ will be clearly indicated in a given subsection or by
creation of separate subsections within the text.

2.3.3.1.1 Forward DWT Processing (FDWT) (Annex F.4)

The forward wavelet transformation is informatively described in Annex F.4 of ISO/IEC |S 15444-1. For a
recommendation compliant encoder, the procedures described in Annex F.4 are normative. The two-dimensional

19

22 Jan 2004, Working Draft ver 1.2

discrete wavel et transformation is computed using separable one-dimensional wavel et transformation aong the rows
and then the columns of the array being processed. Each column or row is sent through a non-expansivefiltering
operation that creates a set of low-pass (L) and high-pass (H) wavelet coefficients.

The 9-71 wavelet transformation is called “irreversible” because the wavel et transformation is defined using
irrational numbers. In general it isnot possible within afinite precision floating-point architecture to guarantee
reversibility. Thusthe 9-71 wavelet transformation is suitable only for lossy (including visually lossless)
compression applications. The 5-3R wavelet transformation is“reversible” because it is defined using integer
arithmetic and special rounding rules that allow an integer-based architecture to guarantee reversibility when
operating on integer data. JPEG 2000 only allows for integer data as input to the compression algorithm and
therefore the 5-3R wavelet transformation istruly reversible.

Application of the separable one-dimensional wavel et transformation in the row and columnar directions generates
four sets of wavel et coefficients or subbands that are labeled: LL, HL, LH, and HH. Theselabels are also referred to
as subband orientations. The LL subband consists of those wavelet coefficients resulting from low-pass filtering in
row and columnar directions. The HL subband consists of wavel et coefficients resulting from high-passfiltering in
the row direction and low-pass filtering in the columnar direction. The LH subband consists of wavelet coefficients
resulting from low-pass filtering in the row direction and high-pass filtering in the columnar direction. The HH
subband consists of wavelet coefficients resulting from high-pass filtering i n both the row and columnar direction.
The process of taking an image or wavel et subband and processing it with aforward wavelet transformation is called
decomposition or analysis.

The FDWT takes asitsinput the DC-level shifted tile samples|(x,y) and the desired number of decomposition levels
(seebelow), N,. It generates asits output a set of wavelet coefficient subbands denoted by a,(up,vp), whereb
indicates the decomposition level associated with a given subband. The variablesu and v are the horizontal and
vertical subband coordinates within a particular subband for the current tile being processed. Figure 2.7 illustrates
the wavel et subbands generated from atwo level wavelet transformation (N, = 2) of thetile samples.

Ay (W Vo) o (bneVand) @aun(UainVai)

v

8 Uy Vo W)

1(X,y)

—

FDWT
(onelevel)

ay (U vy)

gy Uy Vi)

ay Uy Ve)

g (U Vi)

—p

FDWT
|(one level)

Ny

Ay Uy Van)

8y Uy Vi w)

AU Vi)

Figure2.7. Application of the FDWT (N_ = 2)

The wavelet subbands are generated by recursive application of the wavelet transformation to the LL subband using
the 2D_SD procedure in Annex F.4.2 of ISO/IEC IS 15444-1. This particular type of wavelet decompositionis
known as adyadic or Mallat decomposition. Each timethetile samplesor the LL wavelet subband are processed
with the forward wavel et transformation, anew decomposition level isformed. The original tile samples, [(X,y),
correspond to the subband ag, (Ug, Vo) and are said to lie at decomposition level zero.

One may also discuss the notion of resolution level in conjunction with the wavel et transformation. Resol ution level
and decompoasition level run in the opposite direction. As decomposition level increases, resolution level decreases.
In theFigure 2.7, there are two decomposition levels[1,2] and three resolution levels[0,1,2]. The subband

A, (U Vo) correspondsto resolution level O, ay (U V1) correspondsto resolution level 1, and 1(X,y)
corresponds to resolution level 2. It isimportant to understand this distinction between decomposition and
resolution level since the JPEG 2000 standard uses both terms. To further confuse thisissue, the notion of
resolution level in ISO/IEC IS 15444-1 runs counter to the notion of Reduced Resolution Data Sets (RRDS) used
within the community, where RO isfull resolution, R1 is half resolution, etc.

20

22 Jan 2004, Working Draft ver 1.2

The nomenclatureb = levSSin Figure 2.7 refers to the subband with orientation SS (where SST [LL, HL, LH, HH])
generated at decomposition level lev. The wavelet subband coordinatesu and v are bounded by the rangetbx, £u <
tbx, and tby, £ v <tby, (see Equation F.8). The parametersthx,, thx,, thy,, and tby;, represent the coordinate limits
within each subband at a given resolution level for the current tile. Thesequantities are computed from Equation
2.10 (Equation B.15in ISO/IEC IS 15444-1) and they take into consideration the effects of resolution level, subband
orientation, and component sampling on the reference grid.

Recommendation

It is recommended that the number of forward wavel et transformation decomposition levels be aways set to five, N,
=5. (l.e, there are six resolution levels.) The number of decomposition levels, N, and type of wavelet
transformation, 9-71 or 5-3R, are found in the applicable COD marker segment for the current tile.

2.3.3.1.1.1 The2D_SD Procedure (Annex F.4.2)

The FDWT repeatedly callsthe 2D_SD procedure to perform the forward wavel et transformation (see Figure F-19).
The FDWT procedureisinitialized by setting the variablelev =1 and ag (u,v) = I(x,y). The2D_SD procedureis
then called once for each decomposition level with the LL subband from the previous decomposition level being fed
back into the 2D_SD procedure to generate the next decomposition level. Thecall to 2D_SD is of theform

(@i »BevrL Bev 1, Bevi) = 2D_SD(8tev-1)LL,Uo U1 Vo V1) The wavelet transformation is non-expansive, so the total
number of wavelet coefficientsin the four newly created subbands (ayev QuevHi Qv 1:&ievin) 1S €qual to the number of
wavelet coefficientsin the parent subband a1y Theinputs, Uo, Uy, Vo, and vy, are the valuesthx,, thx, thy,, and
tby,, corresponding to subband b = (lev-1)LL (i.e. the parent LL subband).

Theinterna calls made by the 2D_SD procedure are shown in Figure F-22 of ISO/IEC 1S 15444-1. Thefirst call is
to the procedure VER_SD which wavelet transforms the columns of the array age..1) | to generate anew array

aver sp- Thearay ayer o isthen passed on to the HOR_SD procedure which transforms the rows of ayer s,
generating anew array, a, containing four interleaved subbands. Finally a2D DEINTERLEAVE procedureis
called which separates the interleaved subband samplesin a into the four subbands (&, | Atevhi Revi 1 QeviH) -

The wavelet transformation processing employed within ISO/IEC 1S 15444-1 utilizes thelifting form of the 9-71 and
5-3R filters. Traditional wavelet and other types of subband processing use a convolution and decimation based
approach. In this approach two distinct filters, alow-pass and a high-pass filter, are separately convolved with the
input data and every other output sample thrown out. Lifting implementations perform these processes
simultaneously using a seriesof prediction and update steps. Thereis no distinct low-pass and high-passfilter,
although we can equate the lifting processing to apair of low-pass and high-pass convolution filters.

With lifting, the low-pass and high-pass filtering operations are performed jointly. One consequence of this type of
processing isthat the low-pass and high-pass output channels are interleaved. Every other output sample belongs to
either the low-pass or high-pass output channel. Thus a deinterleaving procedure is needed to separate the subband
data.

2.3.3.1.1.2 TheVER_SD Procedure (Annex F.4.3)

The VER_SD procedure performs wavelet transformation processing in the columnar direction. It takes asits input

aev-1yLL, and the coordinate bounds of the parent subband uo, Uy, Vo, and v;. The procedure produces as its output the
array ayer sp, Which is columnar filtered version of ag.;y... Theinternal calls made by the VER_SD procedure are
shown in Figure F-24 of ISO/IEC IS 15444-1.

Note - We are using adifferent variable name ayer o, for the output of this procedure than that in ISO/IEC IS
15444-1. Inthe JPEG 2000 standard, the variable ayer o issimply referred to asa (see Figure F-24). Thisvariable

21

22 Jan 2004, Working Draft ver 1.2

nameis used in other places aswell, so to help avoid confusion we will distinguish which variable we are
referencing.

Each column of a1y is extracted, filtered using the 1D_SD procedure (Annex F.4.6. and Section 2.3.3.1.1.5 of
this document), and then placed back into the array, aver 5. Figure 2.8 illustrates the interleaving effects of the
VER_SD procedure. Inthisfigureit has been assumed that the top left corner of agev.,y . liesat an evenindex (U is
even). Furthermore it has been assumed that the number of rowsin &) iseven. If U, isan odd index, then the
wavelet transformation will generate a high-pass output samplefirst. If the number of rowsin &) were odd,
then the bottom row in Figure 2.8 would not be present and we would have one more |ow-pass sample than high-
pass samples for even u, and the converse would be true for odd .

Thisillustrates an important concept in JPEG 2000. If the starting index in a subband array is even, then the wavel et
transformation processing will be “low-passfirst”. If the starting index is odd, the wavelet transformation
processing will be “high-passfirst”. Thisbehavior israther unique and may not be familiar to readers who have
performed wavelet processing before. For thisimagery, the tile and image area offsets are set to zero and the tile
widths are aso even. Thusall wavelet transform processing for this specific imagery will be “low-passfirst”. This
however, may not be the case for al other types of data (e.g. norn-zero offsets may be used to align other data sets
with one another).

00000000 VOOOOLO
00000000 QIOIOIOIOIOIO)
00000000 COOLLOLOO
OOOOOOOOW-@)@@@@@@
00000000 COOLLOOOLO
OOOOOOO0O VERSD @@@®®®®®®
OOOOOOOQO Procedire GOOOOOO®O
OO0000000O QIOIOIOIOIOIOIC)

Agev-1)LL(U,V) aver sp (U,V)

@00

(L low-pass output sample
(H) high-pass output sample

Figure2.8. Application of the VER_SD procedure

2.3.3.1.1.3 The HOR_SD Procedure (Annex F.4.4)

The HOR_SD procedure performs wavel et transformation processing in the row direction. It takes asitsinput the
array, aver sp, Which has been generated by the VER_SD procedure, and the coordinate bounds of the parent
subband uy, u;, vy, and v;. The procedure produces as its output anew array a, which isthe row filtered version of
aver - Eachrow of ayer o is extracted, filtered using the 1D_SD procedure, and then placed back into the array,
a. Theinternal calls made by the HOR_SD procedure are shown in Figure F-26 of ISO/IEC 1S 15444-1.

Figure 2.9 illustrates the interleaving effects of the HOR_SD procedure. In thisfigure it has been assumed that the
top left corner of ayer o liesat an even index (ug iseven). Furthermore it has been assumed that the number of
rowsin ayeg o IS even. If uy isan odd index, then the wavel et transformation will generate a high-pass output
samplefirst.

22

22 Jan 2004, Working Draft ver 1.2

OOOOOOON OEOEOEO®
R Colooiot
00000000 @O

00000000 DO0C000
00000000 DCCCeTes
00000000 OEODOEOE
Natals VER SD N i i HOR D e e o
QOO VER S GYREEEEERE HOR S (@E@@@0E
0000000 0LLI00/0'000 00t e aaanaan
OOOCOOO0 00000000 OHOEO@O®

Qiev-y.(U,V) A/ER D (uv) a(uv)
@ low-pass output sample @ LL output sample
@ high-pass output sample @ HL output sample

@ LH output sample
@ HH output sample

Figure29. Application of theHOR_SD procedure

2.3.3.1.1.4 The2D_DEINTERLEAVE Procedure (Annex F.4.5)

The 2D_DEINTERLEAVE procedure takes the output from the HOR_SD procedure and separates the interleaved
wavelet subband coefficientsin array, a, into four distinct subbands, e, QeviL, Qe 1, A Qv [t takes asiits
inputs a, and the parent subband dimensions, uy, Uy, Vp, and vy, and outputs the above wavelet subbands. Although
the flowchart for this procedure looks very complex (see ISO/IEC IS 15444-1 Figure F-28), it does nothing more
than picks apart the interleaved datainto four new arrays. Depending upon the even/odd nature of uy and v, the top
left corner of the array a can belong to any of the four subbandsLL, HL, LH, or HH. Figure 2.9 has been drawn
assuming that the coordinatesu, and v, are both even.

2.3.3.1.1.5 ThelD_SD Procedure (Annex F.4.6)

The 1D_SD procedure calls the procedures that perform the wavel et transformation. It takes asinput a one-
dimensional array, X(i), with coefficient extent defined by ip £i <i;. Noteiyandi, are set either to v, and v, or uy
and u, depending upon the calling routine, VER_SD or HOR_SD respectively. The 1D_SD procedure produces as
its output an array, Y(i), with the sameindex range[iq, i1-1]. 1nthe event that the input array has alength of one, the
1D_SD procedure sets Y(ig) = X(ig) if ig isevenand Y(ip) = 2X(iy) if igisodd. For this special case, no further
processing is performed (1D_EXTD and 1D_FILTD are not caled).

For array lengths greater than one, 1D_SD usesthe 1D_EXTD procedure to symmetrically extend the input X(i) to
create Xoq(i). Once Xe(i) has been formed, 1D_SD callsthe 1D_FILTD procedure to perform the wavel et
transformation and to create the output array Y(i).

2.3.3.1.1.6 ThelD EXTD Procedure (Annex F.4.7)

The 1D _EXTD procedureisidentical to the 1D_EXTR procedure (see Annex F.3.7 and Section 2.3.3.1.2.6 of this
document). The1D_ EXTD procedure takes asitsinput the one-dimensiona array of samplesX(i), and iy, andi,
which define the extent of X(i). The output of the procedure isXq(i), the symmetrically extended version of X(i).
The number of samplesthat must be extended on the left and right sides of the array X (i) isgivenin Tables F-8 and

23

22 Jan 2004, Working Draft ver 1.2

F-9 of ISO/IEC IS 15444-1. For visualy lossless compressed imagery, we use the columns labeled i,eﬂ&7 " and

“I " in Tables F-8 and F-9 of ISO/IEC IS 15444-1, because we are using the 9-71 wavel et transformation. For

"in Tables F-8 and F-9

righty_;
numerically |ossless compressed imagery, we use the columns labeled “ i lefs. " and “i
of ISO/IEC IS 15444-1, because we are using the 5-3R wavel et transformation.

rights_

The type of symmetric extension applied to X(i) is known as “whole-sample” symmetric extension. Inwhole-
sample symmetric extension, the array datais reflected around its endpoints without repetition of the endpoints.
Thisisillustrated in Figure F-15 of ISO/IEC IS 15444-1 and in the figures of section 2.3.3.1.1.8 of this document.

2.3.3.1.1.7 Thel1lD FILTD Procedure (Annex F.4.8, Annex F.4.8.1, and Annex F.4.8.2)

The 1D_FILTD procedure performsthe lifting wavelet transform. It takes asitsinput the one-dimensional array
Xext(i) and creates thefiltered output Y(i). Additionally, the variablesiy and i, areinput to the procedure. These
variables define the index extent of Y(i) (which isthe same as that of X(i)) and indirectly the index extent of Xe(i)
(viaTables F-8 and F-9).

2.3.3.1.1.7.1 9-71 Wavelet

There are four lifting steps and two scaling stepsin the forward 9-71 wavel et transformation. These stepsare
described in detail in Annex F.4.8.2 and are shown in signal flow graph formin Figure 2.10. Steps1—4in Figure
2.10 arethe lifting steps and Steps 5— 6 are the scaling steps. As can be seen from the figure, the lifting steps
aternately predict and update the even and odd samplesin the array Y(i). The steps that operate on odd samples are
indicated by “Y(2n+1)" and those that operate on the even samples areindicated by “Y(2n)”. The range of the
variable nisaso indicated for each step. Annex F.4.8.2 describesin detail how to determine the range of n giveniy
andi,. Thelifting coefficients, a, b, g, d, and K are given in Table F-4 of ISO/IEC |S 15444-1.

The output array, Y(i), contains low-pass and high-pass samplesin interleaved form. Whether or not the first and
last samples are low-pass or high-passisafunction of ig andi,. If igiseven, thefirst samplein Y(i)islow-pass
(low-passfirgt). If igisodd, thefirst sampleis high-pass (high-passfirst). Thelast samplein Y(i) islow-pass or
high-pass depending upon whether iy is even or odd and the length of Y(i) (i, —ig). Figure2.11 showsthe
application of the 1D_SD procedure (including 1D_EXTD and 1D_FILTD) to an eight-sample array X(i). All
intermediate computations for all lifting steps are shown.

2.3.3.1.1.7.2 5-3R Wavelet

There are two lifting stepsin the forward 5-3R wavel et transformation; they are described in detail in Annex F.4.8.1
and shown in signa flow graph form in Figure2.12. Thelifting steps and range of the variablen aregivenin
Equation 2.11. The5-3R lifting steps differ from those of the 9-71 in one important way — rounding is performed in
each lifting step. Given integer input data, the 5-3R wavelet will produce integer output data. The 5-3R wavelet
may only be used with integer input data. Aswas the case with the 9-71 wavelet, the 5-3R lifting steps dternately
predict and update the even and odd samplesin the output array Y(i).

The output array, Y(i), contains low-pass and high-pass samplesin interleaved form. If iy iseven, thefirst samplein
Y(i) islow-pass (lowpassfirst). Ifigisodd, thefirst sampleis high-pass(high-passfirst). Thelast samplein Y(i)is
low-pass or high-pass depending upon whether iy is even or odd and the length of Y(i) (i, —ig). Figure 2.13 shows
the application of the 1D_SD procedure (including 1D_EXTD and 1D_FILTD) to an eight-sample array X(i). All
intermediate computations for all lifting steps are shown.

2.3.3.1.1.8 FDWT Processing and Examples

In this section we offer further insight into the forward wavel et transformation processing for both the 9-71 and 5-3R
filters. We also include an example one-level one-dimensional analysis of asignal to illustrate the intermediate
lifting computations in both wavel et transformations.

24

22 Jan 2004, Working Draft ver 1.2

2.3.3.1.1.8.1 9-71 Wavelet

Figure 2.10 illustrates application of the 1D_EXTD procedure for the 9-71 wavelet. In thisfigure an eight-sample
input vector withip=0andi, = 8, isfirst symmetrically extendedto form Xg.(i) using the 1D_EXTD procedure.
Bothiy and i, are even, so in accordance with Tables F-8 and F-9 ISO/IEC IS 15444-1, the array X(i) has been

extended by four samples on the left and three samples on the right in the formation of array Xe(i). Equation F.4 of
ISO/IEC IS 15444-1 can be used to map the index range of X.(i) back into that of X(i). For example, if wewant to

map i = -3 back into the origina range of X(i), Equation F.4 yields avalue of 3. This means that X..(-3) = X(3),

which is exactly what we seein Figure2.10. The “square” samplesin Xq.(i) represent the symmetrically extended

samplesfrom X(i). These samples have been copied from the locationsin X(i) with matching letters. Once Xq(i)

has been formed, it may be processed with the wavel et transform.

Steps 1 through 6 in Figure 2.10 illustrate the lifting implementation of the forward 9-71 wavel et transformation in

signa flow graph form, for an input length of eight samples (i, = 0, i, = 8). Each line represents multiplication of a
sample by anumber (for examplea, b inthefigure). If aline has no figure next to it, the sampleis passed through

(multiplication by 1). Locations where lines meet represent a summation of all pre-multiplied sample values
entering the summation. For example, the first samplein the row beneath X (i) is Y(-3) = Xou(-3) + a(Kex(-4) +

Xea(-2))-

Jelclelolelclelo

11-1

-l

1 1 1 1
K K K K
¢ 00 06 0 06 0 0 O

io i1-1

- J

N
Y(i)

i Ei<i,

8

0]

a

9

[F]

o

a

10
E]

Y(2n+1) Step 5 & Y(2n) Step 6
ni [-1,3]

1D_EXTD

Y(2n+1) Step 1
ni [-2,4]

Y(2n) Step 2
ni [-1,4]

Y(2n+1) Step 3
ni [-1,3]

Y(2n) Step 4
ni [0,3]

low-pass coefficients
© high-pass coefficients

Figure2.10. Application of the1D_SD procedure (9-71 wavelet)

Figure 2.11 shows an example applying the 1D_SD procedure to an eight-sample signal, X(i). Thisfigureis

presented in the same signal flow graph form asthat given in Figure 2.10. The intermediate computations of the

ni [0,3]

25

22 Jan 2004, Working Draft ver 1.2

lifting steps areshown and the resulting interleaved output signal, Y(i), is shown in the bottom line of the figure.
Given that iy and i, are both even, thefirst samplein Y(i) is alow-pass sample and the last is a high-pass sample.
These calculations can be easily reproduced in a spreadsheet to validate proper understanding of the 9-71 wavelet
filtering procedure.

alpha: -1.5861 gamma: 0.88291
beta: -0.053 delta: 0.44351

K: 1.23017

X(0) 8 2 4 1 6 9 1 3

Xext(i) 6 1 4 2 8 2 4 1 6 9 11 3 11 9 6
Step 1 -14.861 -17.034 -17.034 -14.861 -17.964 -31.895 -17.964

Step 2 5.6898 9.80489 5.6898 7.73911 13.6415 13.6415

Step 3 -3.3532 -3.3532 -3.0048 0.91293 -7.8064

Step 4 6.83057 2.86998 6.81134 10.5842

Step 5 & 6 -4.125 555252 -4.125 2.33299 -3.6964 5.53689 1.12307 8.60386 -9.6032

Y() 5.55252 -4.125 2.33299 -3.6964 5.53689 1.12307 8.60386 -9.6032

Figure2.11. Exampleof the1D_SD procedure (9-71 wavelet)

2.3.3.1.1.8.2 5-3R Wavelet

Figure 212 illustrates application of the 1D_EXTD procedurefor the 5-3R wavelet. Aswas shown in Figure 2.10,
we assume an eight-sample input signal, X(i). Again bothiy andi, are even, so in accordance with Tables F-8 and F-
9 ISO/IEC IS 15444-1, the array X(i) has been extended by two samples on the left and one sample on theright in
the formation of array Xo.(i). Equation F.4 of ISO/IEC IS 15444-1 still applies and can be used to map the index
range of Xe(i) back into that of X(i). Thusthereisno differencein the symmetric extension procedures between the
5-3R and 9-71 wavelet transformations other than the number of samplesthat must extended. Thisdifference simply
results from the fact that the wavelet filters have different lengths. The “square” samplesin Xq(i) represent the
symmetrically extended samples from X(i). These samples have been copied from the locationsin X(i) with
matching letters. Once Xqq(i) has been formed it may be processed with the wavel et transform.

Steps 1 and 2 in Figure 2.12 illustrate the lifting implementation of the forward 5-3R wavel et transformation in
signal flow graph form, for an input length of eight samples (i, =0, i, = 8). Each line represents multiplication of a
sample by anumber (for example 1/2, 1/4 in thefigure); if aline has no value next to it, the sampleis passed
through (multiplication by 1). Locationswhere lines meet represent a summation. Negative multipliersindicate
summationsthat involve asubtraction. In order to achieve reversibility with theinteger coefficients of the5-3R
wavelet, rounding must be applied in a very specific manner during the cal culation (see Equation 2.11). Dashed
linesin the flow graph indicate the need to follow the specia rounding rulesinstead of performing asimple
multiplication and summation.

Equation 2.11 showsthe lifting steps for the 5-3R wavelet and the range of variable, n, given the index range of X(i),
[io, i1). Therounding operations associated with the dashed lines in the signal flow graph of Figure 2.12 are readily
apparent in Equation 2.11.

€Xoe(2n) + X (2n+2)0 €,
2 H &

Step 2: Y(2n) = X, (2n)+§Y(2n‘ 1) +Z(2ﬂ+1)+2§

-1£n<

s

Step 1; Y(2n+1) = X, (2n+1) - 8

CC\ c

th
=]
A

e B

D> D
N ro

oo
oo

Equation 2.11

26

22 Jan 2004, Working Draft ver 1.2

: I i-1
Xext(1) 1D_EXTD
2 -1 0 1 2 3 4 5 6 7 8
BOEOOE®OW
\\\ //I \\\ I/I \\\ I/I \\\ ’/I \\\ I/I
Yen+l) Sepl
e} e} e} e} e} nil [-1,3]
\\\ ’/I \\\ I/I \\\ I/I \\\ I/I
A P A Pt N il N P Y(2n) ~ Sep2
<|> <|> <|> <|> nl [03]
6 ¢ 0 a6 0029 o low-pass coefficients
lo -1 . -
Y, o high-pass coefficients
v
Y(i)
igEi<iy

Figure2.12. Application of the 1D_SD procedure (5-3R wavelet)

Figure 2.13 shows an example applying the 1D_SD procedure to theeight-sample signal, X(i). Thisisthe same
eight-sample signal used inthe 9-71 examplein Figure2.11. Figure2.13 is presented in the same signal flow graph
form asthat givenin Figure 2.12. Theintermediate computations of the lifting steps are shown and the resulting
interleaved output signd, Y(i), is shown in the bottom line of the figure. Giventhatiy andi, are both even, the first
samplein Y(i) is alow-pass sample and the last is a high-pass sample. These calculations can be easily reproduced
in a spreadsheet to validate proper understanding of the 5-3R wavelet filtering procedure. Looking at Figure 2.13,
we notice that the output of the 5-3R filtering, Y(i), aswell as al intermediate lifting steps, areintegers. Sincethe
5-3R transformation is a one-to-one mapping, the 5-3R wavel et allows for |ossless reconstruction of integer data.

X(i) 8 2 4 1 6 9 11 3

Xext(i) 4 2 8 2 4 1 6 9 11 3 11
Step 1 -4 4 -4 1 8

Step 2 6 2 5 9

Y(i) 6 4 2 -4 5 1 9 8

Figure 2.13. Exampleof the 1D _SD procedure (53R wavel et)

2.3.3.1.2 Inverse DWT Processing (IDWT) (Annex F.3)

Theinverse wavel et transformation is normatively described in Annex F.3 of ISO/IEC 1S 15444-1. For adecoder,
the procedures described in Annex F.3 are normative. However, for the recommended compressor, only the
previously described forward wavel et transform procedureis normative. Section 2.3.3.1.2 isincluded here strictly
as an informative section.

Aswasthe case for the forward wavel et transformation, a separabl e one-dimensional wavelet transform in therow

and columnar directionsis used to implement the two-dimensional inverse wavelet transformation. The IDWT takes
asitsinput aset of subbands, a,(up,v,), and transforms them into DC-level shifted tile samplesi(x,y). TheIDWT

27

22 Jan 2004, Working Draft ver 1.2

also takes as an input the number of decomposition levels, N,. The decoder determines the number of
decomposition levels by reading the applicable COD/COC marker segment for the current tile. Figure 2.14
illustrates the wavel et subband reconstruction from an inverse two level wavelet transformation (N, = 2).

Ay i(Uar Vo) By (Vo)

\ B (Uaha Vo)

77
v

8y (U Van) A (Weeva) | awne (Waevand)

ay y(Uy pVan)

A —

IDWT

—

IDWT

I(xy)

AyypUypan Varn) (0ne|eve|). A (U V) | Bann (YY) (Onela/el)

\

81Uz VaHH)

Figure2.14. Application of theIDWT (N, = 2)

Figure F-3in ISO/IEC IS 15444-1 shows the main loop of the IDWT procedure. Each pass through the loop calls
the procedure 2D_SR, which performs the reconstruction or synthesis of subband ajev.yy.(u,v) from the four
subbands, ayey | (U,V), @t (U,V), 8o 1(U,V), and &evn(u,v). Thisisillustrated in Figure2.14. Thus, the IDWT works
in arecursive manner undoing the operations performed by the FDWT procedure in reverse order. Aswasthe case
with the FDWT, the IDWT is anon-expansive transform. The nomenclature and terminology introduced in Section
2.3.3.1.1 for the FDWT apply to the IDWT aswell. The notions of resolution level, decomposition level, subband
orientation, and computation of subband ranges for u and v are the same.

2.3.3.1.2.1 The2D_ SR Procedure (Annex F.3.2)

The IDWT repeatedly callsthe 2D_SR procedure to perform the inverse wavel et transformation (see Figure F-3).
The IDWT procedureisinitialized by setting the variablelev = N,. The2D_SR procedure is then called once for
each decomposition level. Thecall to 2D_SR isof the formaye.1y.. = 2D_SR(@evi Attt vt 1@evtinUo U1 Vo V1)
The output LL subband generated from the current call to 2D_SR isfed back into the next call tothe 2D SR
procedure. Theinverse wavelet transformation is non-expansive, so thetotal number of wavelet coefficientsin the
reconstructed parent subband, a1y, IS equal to the number of wavelet coefficientsin the child subbands

(AteviL »&evHL @ev 1, &evn)- THEINPULS, Ug, Uy, Vo, and vy, are the vauesthbx,, tbx,, thy,, and tby;, corresponding to
subband b = (lev-1)LL.

Theinternal calls made by the 2D_SR procedure are shown in Figure F-6 of ISO/IEC IS 15444-1. Thefirst call isto
the procedure 2D_INTERLEAVE, which takes the four subbands (e | @i Qv 1Qevun) and interleaves them to
form the two-dimensiona array a. Next, the HOR_SR procedureis called to synthesize the rows of the array a and
reconstruct the array aver sp- Finally, the VER_SR procedure is called which reconstructs the array a1y . from
aver sp- Notethat the processing order of the IDWT procedure is exactly the opposite of that in FDWT.

28

22 Jan 2004, Working Draft ver 1.2

2.3.3.1.2.2 The2D_INTERLEAVE Procedure (Annex F.3.3)

The2D_INTERLEAVE procedure takes as input the four child subbands, ayey | , @evii » @ev 1, 8 Qeypy aNA
interleavesthem to form the array, a, prior to inverse wavel et transformation processing. In addition to the four
child subbands, the parent subband dimensions, uy, u;, Vo, and v,, are inputs to the procedure. The flowchart for this
procedureisgiven ISO/IEC IS 154444-1 Figure F-9. Although this flowchart looks complex, the

2D _INTERLEAVE procedure does nothing more than arrange and place subband samples within the matrix, a. Itis
theinverse of the2D_DEINTERLEAVE procedure described in section 2.3.3.1.1.4. Depending upon the even/odd
nature of uy and vy, the top left corner of the array a can belong to any of the four subbandsLL, HL, LH, or HH.
Figure 2.15 (see below) has been drawn assuming that the coordinatesu, and v, are both even.

2.3.3.1.2.3 TheHOR_SR Procedure (Annex F.3.4)

The HOR_SR procedure performs inverse wavel et transformation processing in the row direction. It takesasits
input the array, a, and reconstructs the array ayer o, aSitsoutput. For clarity’ s sake we have once again adopted
the intermediate variable, ayer o, to distinguish the intermediate output of the HOR_SR procedure from input array,
a. The coordinate bounds, uo, Us, Vo, and v, of the parent subband, age..1y. (and array a), also form inputsto the
HOR_SR procedure. Each row of the array, a, is extracted and filtered using the 1D_SR procedure and then placed
back into the array, a. Theinternal calls made by the HOR_SD procedure are shown in Figure F-10 of ISO/IEC IS
15444-1. Figure?2.15 illustrates the deinterleaving effects of the HOR_SR and VER_SR procedures. In thisfigure
it has been assumed that the top left corner of a liesat an even index (uy and vy are even). Furthermore, it has been
assumed that the number of rows and columnsin a are even.

a(u,v) ayer o (UWV) Agiev-p L (ULV)
@ LL output sample @Iow—pass output sample
@ HL output sample @high-pass output sample

@ LH output sample
@ HH output sample

Figure2.15. Application of the HOR_SR and VER_SR procedures

2.3.3.1.2.4 TheVER_SR Procedure (Annex F.3.5)

The VER_SR procedure performs inverse wavel et transformation processing in the columnar direction. It takesas
itsinput ayer 5o and the coordinate bounds of the parent subband o, Uy, Vo, and v;. The procedure produces asits
output the array a1y, the reconstructed parent subband. Theinterna calls made by the VER_SD procedure are
shown in Figure F-12 of ISO/IEC 1S 15444-1. Each column of ayer o isextracted, filtered using the1D_SR
procedure (Annex F.3.8 and Section 2.3.3.1.2.5 of this document), and then placed back into the array, a. Figure
2.15 illustrates the deinterleaving effects of the VER_SD procedure. In thisfigure it has been assumed that the top

29

22 Jan 2004, Working Draft ver 1.2

left corner of ayer o liesat an evenindex (uy and v, are even). Furthermore it has been assumed that the number of
rows and columnsin ayer s iseven.

2.3.3.1.25 The1lD_SR Procedure (Annex F.3.6)

The 1D_SR procedure calls the procedures that perform the inverse wavelet transformation. It takes asinput aone-
dimensional array, Y(i), with coefficient extent defined by io £1 <i;. Noteiy andi, are set either to uy and u, or vy
and v, depending upon the calling routine, HOR_SR or VER_SD respectively. The 1D_SR procedure produces as
itsoutput an array, X(i), with the same index range[io, i1-1]. Inthe event that the input array has alength of one, the
1D SR proceduresets X(ip) = Y(ip) if igisevenand X(io) = Y(ip)/2 if igisodd. For this special case, no further
processing is performed (1D_EXTR and 1D_FILTR are not called).

For array lengths greater than one, 1D_SR usesthe 1D_EXTR procedure to symmetrically extend the input Y(i) to
create Yeq(i). Once Yqu(i) has been formed, 1D_SR calsthe 1D_FILTR procedure to perform the wavel et
transformation and create the output array X(i).

2.3.3.1.2.6 ThelD EXTR Procedure (Annex F.3.7)

The1D_EXTR procedureisidentical to the 1D_EXTD procedure (see Annex F.4.7 and Section 2.3.3.1.1.6 of this
document). The 1D_EXTR procedure takes as its input the one-dimensiona array of samplesY(i), and iy, and iy,
which define the extent of Y(i). The output of the procedure is Ye,(i), the symmetrically extended version of Y(i).
The number of samples that must be extended on the left and right sides of the array Y (i) isgivenin Tables F-2 and
F-3 of ISO/IEC IS 15444-1. Visually lossless compressed imagery usesthe 9-71 wavelet transformation and the

columns* i,eﬁg_ , " and ‘I " inthesetables. Numerically lossless compressed imagery usesthe 5-3R wavelet

" columnsin TablesF-2 and F-3 of ISO/IEC |S 15444-1.

righty_;

transformation and the “ i,eﬁs_3” and“ irights_3

Thetype of symmetric extension applied to Y(i) is known as “whole-sample’ symmetric extension. In whole-
sample symmetric extension, the array datais reflected around its endpoints without repetition of the endpoints.
Thisisillustrated in Figure F-15 of ISO/IEC IS 15444-1 and in the figures of section 2.3.3.1.2.8 of this document.

2.3.3.1.2.7 ThelD FILTR Procedure (Annex F.3.8, Annex F.3.8.1, and Annex F.3.8.2)

The 1D_FILTR procedure performsthe inverse lifting wavelet transform. It takes asits input the one-dimensiona
array Yeq(i) and creates the filtered output X(i). Additionaly, the variablesiy and i, areinput to the procedure.
These variables define the index extent of X(i) (which is the same as that of Y(i)) and indirectly theindex extent of
Yeu(i) (viaTables F-2 and F-3).

2.3.3.1.2.7.1 9-71 Wavelet

There are two scaling steps and four lifting stepsin theinverse 9-71 wavelet transformation. These steps are
described in detail in Annex F.3.8.2 and shown in signal flow graph form in Figure2.16. Steps 1-— 2 arethe scaling
steps, and Steps 3— 6 arethelifting steps. As can be seen from the figure, the lifting steps aternately predict and
update the even and odd samplesin the array X(i). The stepsthat operate on odd samples are indicated by
“X(2n+1)” and those that operate on the even samples are indicated by “X(2n)”. Therange of the variablen isaso
indicated for each step. Annex F.3.8.2 describesin detail how to determine the range of n givenip andi,. The
lifting coefficients, a, b, g, d, and K are given in Table F-4 of ISO/IEC IS 15444-1.

Note- Thereisan error inthe formulafor the range of n for Step 2 inthe 1D_FILTR procedurein ISO/IEC
FDIS15444-1 (dated 5 July 2001). Thiserror has been corrected in ISO/IEC FDI1S15444-1 (dated 28 September
2001). The proper formulais repeated here:

>,

8ol ol

g2f &2t

Theinput array, Y(i), contains low-pass and high-pass samplesin interleaved form as generated by the
2D _INTERLEAVE procedure (section 2.3.3.1.2.2). Thefiltered output array, X(i), generated by the 1D_FILTR
procedure is not interleaved due to the wavel et synthesis processing. Figure 2.17 showsthe application of the

30

22 Jan 2004, Working Draft ver 1.2

1D SR procedure (including 1D_EXTR and 1D_FILTR) to an eight-sample array Y(i). Thisisthe same eight-
sample output array, Y(i), generated in Figure 2.11 using the 1D_SD procedure.

2.3.3.1.2.7.2 5-3R Wavelet

There aretwo lifting stepsin theinverse 5-3R wavel et transformation; they are described in detail in Annex F.3.8.1
and shown in signal flow graph form in Figure2.18. Thelifting steps and range of the variablen are givenin
Equation 2.12. The5-3R lifting steps differ from those of the 9-71 in one important way — rounding is performed in
each lifting step. Given integer input data, the 5-3R wavelet will produce integer output data. The 5-3R wavelet
may only be used with integer input data. Aswas the case with the 9-71 wavelet, the 5-3R lifting steps aternately
predict and update the even and odd samples in the output array X(i).

Theinput array, Y(i), contains low-pass and high-pass samplesin interleaved form as generated by the

2D _INTERLEAVE procedure (section 2.3.3.1.2.2). Thefiltered output array, X(i), generated by the 1D_FILTR
procedure is not interleaved due to the wavelet synthesis processing. Figure 2.19 shows the application of the
1D SR procedure (including 1D_EXTR and 1D_FILTR) to an eight-sample array Y(i). Thisisthe same eight-
sample output array, Y(i), generated in Figure 2.13 using the 1D_SD procedure.

2.3.3.1.2.7.3 The 1D_FILTRy.7, Parameters (Annex F.3.8.2.1)

Table F-4 through Table F-7 give the 9-71 wavelet lifting coefficients as well as precise mathematical expressionsto
enable computation of the filter coefficientsto any precision desired. While the JPEG 2000 standard does not
mandate any precision requirements, for the recommended processing the coefficientsin Table F-4 are of sufficient
precision.

2.3.3.1.2.8 IDWT Processing and Examples

In this section we offer further insight into the inverse wavel et transformation processing for both the 9-71 and 5-3R
filters. Anexample one-level one-dimensional synthesis of asignal isincluded to illustrate the intermediate lifting
computationsin both wavel et transformations. The signal synthesized in the following examplesisthe output signal
generated by the examples from section 2.3.3.1.1.8. Thusthe following examples also serve as a check on the
reversibility of the 9-71 and 5-3R wavel et transformations.

2.3.3.1.2.8.1 9-7I Wavelet

Figure 2.16 illustrates application of the 1D_EXTR procedure for the 9-71 wavelet. It illustratesthe inverse wavelet
transformation processing and isthe counterpart to Figure 2.10. In thisfigure, an eight-sampleinput vector with i =
Oandi, = 8isfirst symmetrically extended to form Ye,(i) using the 1D_EXTR procedure. Sinceiy andi, areeven,
the array Y(i) has been extended by three samples on the left and four samples on the right, according to Tables F-2
and F-3 of ISO/IEC IS 15444-1. The number of samplesthat must be extended is afunction of the even/odd nature
of ip andi,. Equation F.4 of ISO/IEC IS 15444-1 can be used to map the index range of Yq(i) back into that of Y(i).
For example, if wewant to map i = 10 back into the original range of Y(i), Equation F.4 yieldsavaue of 4 (i.e.
Yoc(10) = Y(4)). Once Yo (i) has been formed, it may be processed with the inverse wavelet transform.

Steps 1 through 6 in Figure 2.16 illustrate the lifting implementation of the inverse 9-71 wavelet transformation in
signa flow graph form, for an input length of eight samples (i, = 0, i, = 8). Each line represents multiplication of a
sample by anumber (for exampleg, d inthefigure). If aline has no figure next to it then the sampleis passed
through (multiplication by 1). Locationswhere lines meet represent a summation of all pre-multiplied sample
values entering the summation. For example, the first sample output from step 3is: X(-2) = X(-2) - d(X(-4) + X(-2)).

31

22 Jan 2004, Working Draft ver 1.2

Y(I)OOOOODOD

, i i-1 o low-pass coefficients
Yex(i) 0 . .
3 2 1 0 1 2 5 6 7 8 9 10 1 o high-pass coefficients
0 0 0 ¢ 000 O 00 0 O 0 o
K K K K K K K 1D_EXTR
1 1 1 1 1 1 1 1
K K K K K K K K

o 0 00 O 0 0 0 0 O 0 o X(Zn)Stepl X(2n+1)Step2

S\ S\ ni [15] & ni [-25]
o[Ldl-d\| fd]-d\| ~dl-d\|Ld]-a\ | fdl-d\|Ld]-d\|/d

(] (] (] o -] (] o
X(2n) Step 3

A\[/-e|-e\[/-¢|-\/-¢|-\/-g|-\/9a|-c\/¢ ni [-19]

o o o o o o

X(2n+1) Step 4

-b\|/£b|-b\|/~b|-B\|~b|-b\|/b|-b\| /b ni [-1,4]
X(2n) Step 5

ni [0,4]

X(2n+1) Step 6
ni [0,3]

i £i<i

Figure2.16. Application of the1D_ SR procedure (9-71 wavelet)

Figure 2.17 shows the application of the 1D_SR procedure (including 1D_EXTR and 1D_FILTR) to the eight-
sample array, Y(i), the output array from Figure2.11. Thuswe should reconstruct the original array, X(i), from
Figure 2.11 since we are undoing the forward wavel et transformation performed there. In this example we have set
ip=0andi, = 8. All intermediate computationsfor al lifting steps are shown. As can be seen, the origina signd is
reconstructed to within the precision of the lifting coefficients (16 digitsin Table F-4).

32

22 Jan 2004, Working Draft ver 1.2

alpha: -1.5861 gamma: 0.88291
beta: -0.053 delta: 0.44351
K: 1.23017
Y (i) 555252 -4.125 2.33299 -3.6964 5.53689 1.12307 8.60386 -9.6032
Yext() -3.6964 2.33299 -4.125 5.55252 -4.125 2.33299 -3.6964 5.53689 1.12307 8.60386 -9.6032 8.60386 1.12307 5.53689 -3.6964

Step 1 & -3.0048 2.86998 -3.3532 6.83057 -3.3532 2.86998 -3.0048 6.81134 0.91293 10.5842 -7.8064 10.5842 0.91293 6.81134 -3.0048

Step 3 5.6898 0.80489 5.6898 7.73911 13.6415 13.6415 7.73911
Step 4 -17.034 -17.034 -14.861 -17.964 -31.895 -17.964

Step 5 8 4 6 11 11

Step 6 2 1 9 3

X(i) 8 2 4 1 6 9 11 3

Original | 8 2 4 1 6 9 11 3

Figure2.17. Exampleof the 1D SR procedure (9-71 wavelet)

2.3.3.1.2.8.2 5-3R Wavelet

Figure 2.18 illustrates application of the 1D_EXTR procedure for the 5-3R wavelet. It illustrates the inverse wavelet
transformation processing and isthe counterpart to Figure 2.12. In thisfigure, an eight-sampleinput vector with i =
Oandi, = 8isfirst symmetrically extended to form Ye,(i) using the 1D_EXTR procedure. Sinceiy and i, areeven,
the array Y(i) has been extended by one sample on the left and two samples on the right, according to Tables F-2 and
F-3 of ISO/IEC IS 15444-1. Equation F.4 of ISO/IEC IS 15444-1 till applies and can be used to map the index
range of Ye(i) back into that of Y(i). Thusthereis no difference in the symmetric extension procedures between
forward and inverse transformations for either the 5-3R and 9-71 wavel et other than the number of samples that must
extended. Once Y(i) has been formed, it may be processed with the wavelet transform.

Steps 1 and 2 in Figure 2.18 illustrate the lifting implementation of the inverse 5-3R wawvelet transformation in signal
flow graph form, for an input length of eight samples (io =0, i; = 8). Each line represents multiplication of a sample
by a number (for example 1/2, 1/4 inthe figure); if aline has no value next to it, the sampleis passed through
(multiplication by 1). Locations where lines meet represent asummation. Negative multipliers indicate summations
that involve asubtraction. In order to achieve reversibility with the integer coefficients of the 5-3R wavelet,
rounding must be applied in avery specific manner during the calculation (see Equation 2.12). Dashed linesin the
flow graph indicate the need to follow the specia rounding rules instead of performing a simple multiplication and
summation.

Equation 2.12 shows the lifting steps for the 5-3R wavel et and the range of variable, n, given the index range of Y(i),
[ig,i1). Therounding operations associated with the dashed linesin the signal flow graph of Figure 2.18 arereadily
apparent in Equation 2.12.

| v oy e DY (04D 42G Gy, By

Stepl: X(2n) =Y, (2n) g 2 i SZH£n<82H+1
) _ éx(2n)+ X(2n+ 2)u ,A_oU :_1u

Step 2: X(2n+1)—Y,“,,¢(2n+1)+8 > q 82H£n<82H

Equation 2.12

33

22 Jan 2004, Working Draft ver 1.2

Y(i)
i° ©c e oo co in o low-pass coefficients
0 1~ . ..
Youl(i) % o high-pass coefficients
e o 00 0 a0 a3 0 0 1D EXTR
\‘ // \\ ’I \\ /I \\ ’I \\ /I —_—
AN O I IV TR Y I IV A
4\\1/4 4‘\/’4 4‘\’4 4‘\/’4 4\\/’4 X(2I‘l) Stq:)l

® Q| Q¢ i (04

N2l 2Nl 22N 22 2 X(2n+1) Step2
®EOEEG®O!
Ic -1
(G)
N
X(i)
|0£| <i1

Figure2.18. Application of the 1D_SR procedure (5-3R wavelet)

Figure 2.19 shows an example applying the 1D_SR procedure (including 1D_EXTR and 1D_FILTR) to the eight-

sample array, Y(i), the output array from Figure2.13. Thuswe should reconstruct the origina array, X(i), from

Figure 2.13 since we are undoing the forward wavel et transformation performed there. Figure2.19 is presented in
the same signal flow graph form asthat given in Figure 2.18. The intermediate computations of the lifting steps are
shown. Ascan be seen, the original signal is reconstructed without any loss.

Y(i)
Yext(i)
Step 1
Step 2
X(i)

Original

2.3.3.1.3 Rem

The purpose of this section isto give further guidance and understanding regarding the wavel et transformation

6 4 2 -4 5 1 9 8
4 6 4 2 4 5 1 9 8 9 1
8 4 6 11 11
2 1 9 3
8 2 4 1 6 9 11 3
[8 2 4 1 6 9 11 3|

Figure2.19. Exampleof the 1D_SR procedure (53R wavelet)

arks

proceduresin ISO/IEC IS 15444-1. Some of this materia is not normative in nature; it isintended to clarify and tie

together conceptsthat are not clear in the standard. Some of thisinformation will be critical in understanding
implementation specific issues discussed in the quantization section of this document (Section 2.3.3.2). Notethat
not all of this material is applicable to both wavelet transformations. Wewill explicitly indicate in the text what

sections apply to which wavelet transformation.

34

22 Jan 2004, Working Draft ver 1.2

2.3.3.1.3.1 Convolution Equivalent Wavelet Filtering and Normalization

Most of this section is not applicable to the 5-3R integer wavelet transformation. Thereis no exact convolution
equivalent to the lifting implementation of the 5-3R wavelet. Thisis due to the rounding non-linearities present in
itslifting steps. The quantization procedures for the 5-3R wavelet are quite different than those of the 9-71 wavel et
and we will not be concerned with determining convolution equivaent filters for the 5-3R wavelet. However, the
normalization of the 5-3R wavelet is of importance in determination of the proper number of guard bits (see below).

Lifting implementations of wavelet transforms are arelatively new concept. Prior to their development, wavelets
wereimplemented like any QMF or subband filter, by using convolution, decimation and interpolation. Figures
Figure 2.20 and Figure 2.21 show the classical convolution processing steps involved in wavelet filtering prior to
lifting implementations. In Figure 2.20 we see that prior to filtering with the low-pass and high-pass analysis filters
asymmetrically extended sequence is generated from the input vector, X(n). The symmetric extension that is
performed isidentical to that described for the lifting i mplementation presented in ISO/IEC IS 15444-1. After
filtering is performed the low-pass and high-pass signals are decimated by afactor of two (every other sample
thrown out). Inthe lifting implementation this happens naturally during the computation of the even and odd

samples and deinterleaving.
| H@ Y(2n)
low-pass
N G(2) ,(:) 5
high-pass Y(2n+1)

Figure 2.20. Wavelet analysis (convolution implementation)

Xex()

X(n) | symmetric

extension

Y(2n) symmetric | Y@ | G (2)
extension low-pass
X(n)
() Symmetric \ H(2)
Y(2n+1) extension Y, (2n+1) | high-pass

Figure2.21. Wavelet synthesis (convolution implementation)

Figure 2.21 shows the convol ution implementation of wavelet synthesis processing. The low-pass and high-pass
subband samples, Y(2n) and Y(2n+ 1), are interpolated by afactor of two (zeros areinjected between samples,
doubling the sequence length). The sequences are symmetrically extended using the same procedures asin the
lifting case. The extended sequences are then filtered and summed together to form the reconstructed signal, X(n).
Theinterpolation and summation steps are buried in the lifting implementation in the interleaving and aternating
computation of even and odd samples. Asin thelifting implementation, the convolution processing is non
expansive for both analysis and synthesis. The convolution two-dimensiona wavelet transformation isimplemented
as separable one-dimensional transformations.

One can derive convolution equivalent forms of the 9-71 lifting wavelet filter. The analysis and synthesis
convolution equivalent filter taps are given below in Table 2.1 through Table 2.4.

35

22 Jan 2004, Working Draft ver 1.2

Table2.1. 9-7I Low-passanalysis

filter, h(n). (9-tap filter)

Table2.2. 9-71 High-passanalysis
filter, g(n). (7-tap filter)

Tap Coefficient Tap Coefficient

-4 0.026 748 757 411

-3 -0.016 864 118 443 -3 0.091 271 763 114
-2 -0.078 223 266 529 -2 -0.057 543 526 228
-1 0.266 864 118 443 -1 -0.591 271 763 114
0 0.602 949 018 236 0 1.115 087 052 457
1 0.266 864 118 443 1 -0.591 271 763 114
2 -0.078 223 266 529 2 -0.057 543 526 228
3 -0.016 864 118 443 3 0.091 271 763 114
4 0.026 748 757 411

Table2.3. 9-7| Low-passsynthesis

filter, g&n). (7-tap filter)

Table2.4. 9-71 High-passsynthesis

filter, h¢n). (9-tap filter)

Tap Coefficient Tap Coefficient

-4 0.026 748 757 411
-3 -0.091 271 763 114 -3 0.016 864 118 443
-2 -0.057 543 526 228 -2 -0.078 223 266 529
-1 0.591 271 763 114 -1 -0.266 864 118 443
0 1.115 087 052 457 0 0.602 949 018 236
1 0.591 271 763 114 1 -0.266 864 118 443
2 -0.057 543 526 228 2 -0.078 223 266 529
3 -0.091 271 763 114 3 0.016 864 118 443

4 0.026 748 757 411

Those familiar with linear system theory and wavelet processing may notice that the high-pass analysis and low-pass

synthesisfilters are alittl e different than might be expected. The analysisfilters havewhat iscalled a“(1,2)"

normalization and the synthesisfiltershave a“(2,1)” normalization. What this meansisthat the analysis low-pass
filter hasaDC gain of 1, and the analysis high-pass filter has a Nyquist gain of 2. Mathematically we may express

thisas:

4
o

a h(n)=1 low -passanalysisfilter
n=-4
3
A (-g(n)=2 high - passanalysisfilter
n=-3

Equation 2.13

36

22 Jan 2004, Working Draft ver 1.2

The interpolation process shown in Figure 2.21 that occurs during wavelet synthesis requires that the interpol ated
signals be scaled by afactor of two. This scaling of the signals may occur anywhere in the processing chain since
we are dealing with linear systems. In typical wavelet processing systemsthe scaling is performed during the
synthesisfiltering stage by scaling the filter coefficients. Thisisnot the casein JPEG 2000. The Nyquist gainon
the analysisfilter shown in Equation 2.13 represents the scaling factor of two needed during wavelet synthesis.
Thus JPEG 2000 effectively scalesthe high-pass data, Y(2n+ 1), by afactor of two.

Closer examination of the low-pass and high-pass synthesis filters reveals the following,

3
& 9¥n)=2 low - passsynthesis filter

n=-3

4
a (-)"'"n¢n)=1 high - passsynthesis filter
n=-4

Equation 2.14

The low-pass synthesis filter has again of two that will be applied to Y(2n), and the high-pass filter has again of
one. Thusthe scaling factor for the low-pass subband isapplied during synthesis, and the scaling factor for the
high-pass subband is applied to the data during analysis.

This somewhat odd behavior was adopted to make the 9-71 wavelet transformation and the reversible 5-3R wavel et
transformation behave in asimilar manner. The 5-3R wavel et transformation also has (1,2) normalization. In fact,
it ispossibleto usetheinverse 5-3R wavel et transformation to reconstruct a signal that was processed with the
forward 9-71 wavelet transformation (and vice versa) and still achieve recognizable results. The normalization of
the 9-71 and 5-3R wavelet filters does provide the real possibility of signal dynamic range expansion in the high-
pass subbands (HL, LH, and HH orientation). To accommodate the signal expansion, JPEG 2000 employs what are
known asguard hits.

2.3.3.1.3.2 Guard Bits

Even after accounting for the subband filter gains, it is necessary to consider the possibility of overflow in the
integer representation of the wavelet coefficients, especialy with multiple levels of transform. Guard bits are bits
beyond the nomina dynamic range of the datathat provide for overflow protection. Although the wavelet filters
have been normalized at the DC and Nyquist frequencies, examination of their frequency domain responsesreveas
that they do not have flat responsesin their pass-bands. For example, the low-pass 5-3R analysisfilter hasa
significant side-lobe with again greater than one. Additional levels of wavelet transform will increase this gain.
Oneguard bit is usually sufficient to provide for overflow protection with most natural images. Two guard bits are
sufficient for virtually all natural and realistic synthetic images.

Thefollowing exampleillustrates a case where a 1D synthetic signal requires one guard bit for the 9-71 wavel et

filters. The origind signal isan 8-bit square wave signa with varying frequency. Figure 2.22 showsthe signal after
aDC level-shift of 128 has been applied.

37

22 Jan 2004, Working Draft ver 1.2

Level-Shuftzd Sional
12y T T T

(iAo L

=
T

Figure2.22. Guard bitsexample: | evel-shifted 8-bit squarewave signal

Figure 2.23 showsthe signal after three levels of wavelet decomposition with the 9-71 wavelet filter. The vertical
dotted lines denote the subband boundaries. The horizontal dashed linesat —128/+127 denote the lower and upper
bounds for an 8-bit signed integer. The horizontal dashed linesat —256/+255 denote the lower and upper bounds for
a9-hit signed integer. From the (1,2) normalization policy of the wavelet analysisfilters, it was expected that 9 bits
would be needed to represent the wavelet coefficients. One can plainly see, however, that some of the wavelet
coefficientsrequire asigned 10-bit representation because they exceed the 9-bit bounds. Thus, one guard bit, in
addition to the expected 9 bits, is needed to fully represent the wavel et coefficient.

38

22 Jan 2004, Working Draft ver 1.2

O-TL 1D Wavelat Subbands
HHY T : T T T

W00 - :

) 1 i 1 ! 1
i ZAHE A L] N 1CHH] LMY

Figure 2.23. Guard bitsexample: three-level 9-7I decomposition of the squarewavesignal

One can easily image extending this example to two dimensions. In 2D, the wavelet processing is applied separately
in the row and columnar directions. Astherowsina?2D signal are analyzed, we may require aguard bit to fully
represent these intermediate values. After these values are analyzed in the columnar direction to complete the
wavelet analysis, an additional guard bit may be required to fully represent the 2D wavel et coefficients.

Recommendation

For this system, the number of guards bits used during encoding and signaled in each applicable QCD/QCC marker
segment shall be set to 2.

2.3.3.1.3.3 One-dimensional Signal Wavelet Transformation

In the recommended processing, the image dataiis broken into tilesthat are 1,024 pixelsx 1,024 pixels. It ispossible
that the image size is not an integer multiple of 1,024 pixelsin size, and we may be forced to deal with small tileson
the right and bottom sides of the image (remember that the image and tile offsetsare all set to zero). In fact, we may
encounter a situation where the width or height (or possibly both) of atileislessthan 32 pixels. If thisisthe case,
there will not be enough datain the tile to occupy every subband in afive level decomposition (N, =5). At some
point in the subband decomposition structure, subbandswill be created that are one-dimensiona (with their width
and/or height equal to one) or empty.

39

22 Jan 2004, Working Draft ver 1.2

The forward and i nverse wavel et transformations handl e the case of transforming a one-dimensional signal (see
Sections 2.3.3.1.1.5 and 2.3.3.1.2.5 of this document, Annex F.4.6 and Annex F.3.6 of ISO/IEC IS 15444-1). While
there may not be any compression benefitsin transforming small tiles, it is possible to do so. To change the wavel et
decomposition used on a specific tile requires the use of aCOD or COC marker segment in afirst tile-part header.

If thewavelet decomposition is changed on atile, the number of packets present in the JPEG 2000 codestream for
that tile will change. Thiswill impact the layering and parsing envisioned for this system’s processing. Instead, we
shall perform the same number of wavelet decomposition levelson al tileseven if the signal becomes one-
dimensional. If thisdoes occur, the modified synthesis energy weights will be signaled through use of atile-
specific QCD marker segment.

Table2.5. Subband sizesin 8x 1,024 tile (fivelevel decomposition)

Subband Dimension Parent Subband Dimension
1HL 4x512 oLL 8 x 1,024
1LH 4x512
1HH 4x512
2HL 2 X 256 1L 4x 512
2LH 2 X 256
2HH 2 X 256
3HL 1x 128 2LL 2 X 256
3LH 1x128
3HH 1x128
4HL 0x 64 3LL 1x 128
4LH 1x64
4HH 0x 64
5HL 0x 32 4L 1x64
5LH 1x32
5HH 0x 32
5LL 1x32

To better understand what happens with small tiles, we consider the example shown in Table 2.5. In this example
we are left with atile of size 8 x 1,024 (8 pixelswide, 1,024 pixels high). Clearly thereis not enough datain the
column dimension to support five wavel et decomposition levels and have data appearing in every subband.
Nevertheless, we can perform five levels of decomposition. At decomposition levels four and five we start
generating empty subbands that contain no wavel et coefficients. Gray shading indicates the empty subbands.

Where the empty subbands appear is afunction of the tile dimension and where the top-left corner lies, on an even
or odd location on the reference grid. With thetiling used for this system’ simages, the top-1eft corner of al tiles
will be located on an even location in the row and columnar directions. If the top-left corner were located just right
on the reference grid in the row direction, the empty subbands could have been 4LH, 4LL, 5HL, 5LH, 5HH, and
5LL, with4HL and 4HH containing all of the remaining subband data. The subband dimension equationsin Annex
B (Equation B.15) will indicate when a subband contains no data. The width, height, or both, given thetile
coordinates within a subband, will become zero (i.e. thx; — thx, = 0 and/or thy, — thy, = 0).

40

22 Jan 2004, Working Draft ver 1.2

When this happens, we still treat the subbands asif they exist, by coding empty packets for these subbands. By
adopting this philosophy, every tile will have the same number of decomposition levels and the same number of
packets per layer.

2.3.3.2 Quantization (Annex E)

Quantization is a many-to-one mapping that allows the arithmetic entropy coder to represent wavel et coefficientsin
afewer number of bits. Quantization also introduces distortion into the reconstructed wavel et coefficients generated
by the decoder because the process of quantization reduces wavelet coefficient precision. The forward and inverse
quantization proceduresfor the 9-71 and 5-3R wavelet transformation coefficients are markedly different. The
output of the 9-71 FDWT processing is a collection of wavelet subbands containing floating-point wavel et
coefficients. Quantization of these coefficientsis used to transform them into an integer representation with reduced
entropy.

The output of the 5-3R FDWT isa collection of wavelet subbands containi ng integer wavelet coefficients. Thereis
no explicit quantization of the 5-3R integer wavelet coefficientsin JPEG 2000. For the 5-3R wavelet
transformation, different bit rates or image qualities are achieved through the layering and rate control procedures
(see Section2.3.3.4). Inagiven layer in a codestream, the decoder receives some subset of the bit-planesforming
each wavelet coefficient. 1f adecoder does not receive all of the layersin anumericdly lossless encoded file, it
cannot reconstruct the wavel et coefficientsto full precision. The missing bit-planes are interpreted as zeros. Thisis
animplicit form of quantization. One may equivalently view this behavior as quantization of the original wavelet
coefficients by powers of two.

For NL encoded imagery, reception of al encoded layers by adecoder ensures numerically lossless decoding. Bit
rates of NL encoded fileswill vary from file to file based on scene content. The use of layer truncation points would
provide different quality levels subject to arate constraint. It has been recommended that 19 such layer truncation
points be used. Unlessall 19 layers are received by adecoder, a decoded image will not be lossless. Dueto the
differences between the quantization procedures for the 9-71 and 5-3R wavel ets, we shall describe them separately.

23321 9-71 Wavelet

The quantizer used in ISO/IEC IS 15444-1 is a dead-zone scalar quantizer. Figure 2.22 illustrates the effects of
guantization and reconstruction with a quantization step size, D, = 0.5, and reconstruction parameter, r =0.5. The
central bin of the quantizer istwice aswide asthe other bins. Thishinis called the “dead-zone’. The parameter, r,
allows a decoder to adjust where the reconstruction level iswithin the quantization bins. Itisrequiredthat O£ r < 1.
Thisis purely a decoder choice and it isnot signaled in the ISO/IEC | S 15444-1 codestream. A valueof r =0.51s
commonly chosen, asit placesthe reconstruction levels of the quantization bins at their midpoints.

Itisimportant to remember that the quantization does not produce an approximation of the original floating-point
wavelet coefficient. Instead it maps the floating-point coefficients using amany to one mapping into a new integer
form. Thisinteger form isentropy coded and stored in the JPEG 2000 codestream. The decoder takes this integer
representation and through dequantization generates an approximation to the original floating-point wavel et
coefficient value. Figure 2.23 showsthe input wavelet coefficients and the dequantized approximation that the
decoder creates.

2.3.3.2.1.1 Forward Wavelet Coefficient Quantization Procedure (Annex E.2)

The forward quantization procedure (or smply “quantization™) isdescribed in Annex E.2. Thisisan informative
section of the JPEG 2000 standard, but it isanormative part of this document. Each floating-point 9-71 wavel et
transformation coefficient, a,(u,v), in agiven subband b, is quantized or mapped to an integer vaue, g,(u,v),
according to Equation 2.15. We will till refer to this value as a quantized wavelet coefficient since there existsa
one to one mapping from thisinteger representation to the dequantized wavel et coefficient generated by the decoder.
It isthe dequantized wavel et coefficients generated in the decoder that are quantized approximations to the original
wavelet coefficients.

41

22 Jan 2004, Working Draft ver 1.2

_ a
ab(uv) = sign(a, (u,v) €=
u
Equation 2.15
Output value 4 The quantized integer !

(after quantization 3 valueisindicated above
and reconstruction) each step of the plot

-4 -3.5 -3 -25 -2 -15 -1 4.5 0.5 1 15 2 2.5 3 3.5 4

19 Input value
(prior to quantization)

Figure 2.24. Quantization example (D, =0.5,r =0.5)

Equation 2.16 preserves six additional fractional bitsin the integer representation of q,(u,v) that are not transmitted
by the encoder in the compressed codestream. These bits are used by the layering formation procedure (see Section
2.3.3.4) in the computation of rate-distortion values. The relationship between g (u,v) and gy(u,v) issimply aright

shift of six bit-planes. It istherefore straightforward in an implementation to use g, (u,v) and transmit q,(u,v) by

simply not encoding the six least significant bit-planes. Equation 2.15 gives the quantization integersthat are stored

in the compressed codestream.

g, (u,v) = sign(a, (u, v) ><e2 Jf

Equation 2.16

[} C\ (=

2.3.3.2.1.2 Inverse Wavelet Coefficient Quantization Procedure (Annex E.1)

The inverse wavel et coefficient quantization procedureis normatively described in Annex E.1 of ISO/IEC IS 15444~

1. For adecoder, the procedures described in Annex E.1 are normative. However, for this system’ s compressor,

only the previously described forward wavel et coefficient quantization procedure is normative. Section 2.3.3.2.1.2

isincluded here strictly as an informative section.

42

22 Jan 2004, Working Draft ver 1.2

For each wavelet transform coefficient, a,(u,v), the decoder constructs the integer representation, J, (u, V) , of this

coefficient at the current number of decoded bit-planes using Equation 2.17 (Equation E.1). The JPEG 2000
encoder encodes the integer representation of the wavelet coefficients, g,(u,v), in an embedded manner (see Section
2.3.3.3). Thismeansthat the bits associated with the integers, g,(u,v), are distributed throughout the codestream. At
any particular timein the decoding of the codestream the decoder may be forced to stop due to truncation of the
compressed codestream; it may elect to stop, having met some quality or rate constraint enforced on the
reconstructed image, or the encoder may have elected to not place all of the bit-planes associated with agiven
quantized wavelet coefficient in the compressed codestream. |n any case, the decoder may not receive al of the bit-
planes making up the quantized integer representation of a particular wavelet coefficient.

b (U,v)

G)=(- 250§ %Msa(b,u,vwb-ig

Equation 2.17

Equation 2.17 accounts for this behavior by assembling as much of the current quantized wavel et coefficient as has
currently been received by the decoder. The output of Equation 2.17, Q, (u, V) , istherefore an approximation to the
complete integer representation of the quantized wavel et coefficient, g,(u,v). The parameter s,(u,v), represents the
sign bit associated with the current integer representation at location (u,v) in subband, b. The manner in which sign
bits are encoded in the codestream (“just intime coding”) are explained in Annex D of ISO/IEC IS 15444-1 and

Section 2.3.3.3.1.1 of thisdocument. The sign bitis0 for positive and zero coefficients and 1 for negative
coefficients.

The parameter, Ny(u,v), in Equation 2.17 represents the number of decoded magnitude bits for the quantized wavel et
coefficient at location (u,v) in subband b. This parameter keeps track of how many bit-planes have been decoded for
the quantized wavelet coefficient under consideration. Included in N,(u,v) isthe number of zero most significant
bit-planes signaled in the packet headers for the code-block associated with the quantized wavelet coefficient (see
Annex B.10.5 of ISO/IEC IS 15444-1). The parameter, MSBi(b,u,V), contains the bit in bit-planei, of subbandb, of
the wavelet coefficient at location (u,v). Finally the parameter, My, represents the number of bit-planes that are
being used to represent quantized wavelet coefficientsfor the current tile-component. This parameter is determined
from the applicable QCD/QCC marker segment for the current tile-component. It is computed from Equation 2.18
(Equation E.2).

M,=G+e,-1
Equation 2.18

The parameter, G, in Equation 2.18 isthe number of guard bits, signaled in the applicable QCD/QCC marker
segment (also see Annex A.6.4 and Annex A.6.5 of ISO/IEC IS 15444-1). For the recommended implementation of
JPEG 2000, G = 2 (see Section 2.3.3.1.3.2). The other parameter, g,, is related to the base 2 exponent of the

magnitude of the quantization step size, D,. Thus, M,, isthe number of bit-planes in which we are representing the
integer representation of the quantized wavelet coefficients (note the “-1" accounts for the sign bit). Re-examining

Equation 2.18, we see that G, (u, V) contains the sigh and Ny (u,v) most significant bits of gy(u,v). Itissimply the
portion of the integer representation, g,(u,v), that has been received so far at the decoder. If only the top Ny(u,v) bit-
planes of qy(u,v) are decoded, thisis equivalent to using ascalar quantizer with step size Mo~ No(u) XD, . If al bit-

planesin the quantized wavelet coefficient are used (i.e. Ny(u,v) = M,) then we have, G, (u , V) =q, (u , V) .

The quantization step size, D, for the current wavelet subband, b, is determined by the QCD/QCC that applies to the
current tile-component (see Annex A.6.4 and A.6.5). The quantization step sizes are expressed as exponent,
mantissa pairs within a 16-bit integer value consisting of a 5-bit exponent, g,, and 11-bit mantissa, m. The(e,, M)
pairs are ordered in the QCD/QCC marker segment in the same order as the wavelet subbandsin Annex F.3.1.

43

22 Jan 2004, Working Draft ver 1.2

Equation 2.19 (Equation E.3) shows how the subband quantization step size, D, is recovered from the (exponent,
mantissa) format (e,, M). The parameter, R,, represents the number of bit-planes used to represent the original
wavelet coefficients. Equation 2.20 (Equation E.4) givesthe expression for R,. Equation 2.19 shows that the
quantization parameters, (g,, m), signaled in the codestream arerelative quantization step size parameters. They

specify arelative quantization step size, D,y -, where D,] (0,1] . In other words, the quantization step sizeis

signaled relative to the wavel et coefficient bit depth. For example, suppose R, = 8, that isthe wavel et coefficientsin
the current subband are eight bitsin magnitude. If we set (e,, m) = (0,0), then D, = 256 and we quantize al of the
wavel et coefficientsto zero, since no wavelet coefficient can have a magnitude greater than 255. The output of
Equation 2.19, D,, is an absolute quantization step size.

b

— ARy m o_
Db =R Eb§+FB_ 2Rb >Dre|
Equation 2.19

R, =R +log,(gain,)
Equation 2.20

In Equation 2.20, R, represents the bit depth associated with the current component, which is extracted from the SIZ
marker segment (see Annex A.5.1). (Notethat R isthe bit depth, which is one greater than the value coded in the
Ssiz field) The parameter gain, represents the subband gain associated with subbands with the same orientation as
that of subband b. In Sections2.3.3.1.3.1 and 2.3.3.1.3.2, we looked at the normalization of the 9-71 analysis
wavelet filters and saw that the LH and HL subband orientations had a gain of 2 and the HH subband orientation had
agan of 4. TheLL subband orientation was found to have again of 1. The parameter gainy is precisely thisgain
(see Table E-1in ISO/IEC IS 15444-1). ThusEquation 2.20 accounts for the signal expansion of the forward
wavelet transformation. It isnot necessarily true that the original wavelet coefficients and their quantized integer
representation possess the same bit depth. Thereforeit is necessary to separately maintain the two bit depths
represented by M and R,.

For irreversible wavel et transformations, two types of signaling may be used for the quantization step sizes: derived
and expounded. If derived quantization signaling isused, asingle (e,, mp) pair issignaled for theN, LL subband and
all other quantization step sizes are derived from this value by apower of 2 scaling described by Equation E.5.
Expounded quantization step size signaling stores an (g,, my) pair for each subband in the wavelet decomposition.

Once the approximation to the integer representation of the quantized wavelet coefficient, Q, (u, v) , has been

determined, the quantized reconstructed wavel et coefficient may be computed. Equation 2.21 (Equation E.6) gives
the proper relationship. The reconstruction parameter, r, was mentioned in Section 2.3.3.2.1. It allows a decoder
the flexibility of moving the reconstruction level within the quantization bins. The JPEG 2000 standard does not
specify avaue of r, but the recommended implementation is that the value of r shall be 0.5. Under some
circumstances aternative values of r may produce decoded imagery that are more visually pleasing or have a lower
mean squared error relative to the original images. The output of Equation 2.21 is the reconstructed quantized
wavelet coefficients. Notethat if no magnitude bits are available for the wavelet coefficient under consideration
(Np(u,v) = 0), the reconstructed quantized wavelet coefficient value shall be zero.

(g, (u,v) +r2e b o) for g (u,v) >0
qu(u,v)zl:'. q,(uv)- r2"™0 o forg(u,v) <0
10 for g, (u,v)=0

Equation 2.21

44

22 Jan 2004, Working Draft ver 1.2

Output value
4+ (after quantization

and reconstruction r
Nb(u,v) =3) [

————— Nb(u,v) =2 31

== == Np(uv) =1 I ____ , ____ I

T T T r -+ T |
4 3]2 e D 1 2 3 4

| | Input value

| :}j (prior to quantization)

— —— 31 Note: intermediate
____ |____, quantized integer
values are not shown
4- in thisfigure

Figure 2.25. Quantization example varying the number
of decoded bit-planes (D, = 0.5, r = 0.5, M, = 3)

Figure 2.25 showsthe effects of varying the number of decoded bit-planesin the integer representation of the
quantized wavelet coefficients. Thesolid linein Figure 2.25 represents the case where we have received the sign
and all three magnitude bit-planes(Ny(u,v) = 3), and isthe same as that in Figure 2.22. For this case, the quantized
integer representations range from—7 to 7 and the reconstructed coefficients range from—-3.75t0 3.75. Keepin
mind that the input value in Figure 2.25 is the unguantized wavel et coefficient, not the quantized integer
representation. Thethin dashed line shows what the quantization looks like if we have only received the top two
magnitude bit-planes (N,(u,v) = 2). Since we do not have the least significant bit, we can no longer distinguish
between integers—7 and —6, or 3 and 2. Theresult isthat the odd integers map to even integers and the only integers
dlowed are (-6, -4, -2, 0, 2, 4, 6). For this case the output ranges—3.5 to 3.5, but there are fewer intermediate
values, roughly haf as many. Thethick dashed line shows the effects of receiving only the most significant
magnitude bit (Ny(u,v) = 1). Theonly integers we can represent are (-4, 0, 4) and the only output values are (-3, 0,
3). Notethat receiving fewer bit planesis equivalent to originally quantizing with a larger step size.

2.3.3.2.1.3 Base Step Size Quantization

Base step size quantization is away to specify a set of subband quantization step sizes using asingle step size, Dyase,
that is then scaled and adapted for each subband to yield the actual D, step size values used for each subband, b. Itis
similar in operation to the derived quantization described in the JPEG 2000 standard, but the rel ationship between
the subband step sizesis not based on power of two relationships between decomposition levels. Instead, the
guantization step sizeis adjusted based on the L2 norm of the synthesisfilter chain that leads from a particular
subband, b, back to the resolution level of the original image. Expounded quantization step size signaling isused to
indicate the step sizes for each subband.

Thisform of quantization strives to make the error contributions from each wavel et subband the same. The

normalization procedures for the9-71 wavelet filters, along with the fact that the filters are only near-orthonormal,
causes the same numerical error in each subband in the wavel et decomposition to contribute dightly different mean

45

22 Jan 2004, Working Draft ver 1.2

squared error in the reconstructed image. To normalize the contributions between the wavel et subbands, one must
determine how errorsin the subband wavel et coefficients for each subband are amplified in the final reconstructed
image. If wewere to populate a particular wavelet subband with unit-variance white noise, leaving al other
subbands empty (i.e. full of zero coefficients), and synthesize the resulting decomposition; we would find
amplification of the variance of the reconstructed noise from that subband. Linear system theory tells us that this
amplification factor is given by the square of the L2 norm of the impulse response that links a particular wavel et
subband with the final reconstructed image. The square root of thisamplification factor is called an energy weight.

To determine what thisimpulse responseis, it is best to think of the wavel et synthesisin terms of the equivalent

convolution processing described in Section 2.3.3.1.3.1. Consider asimple one-dimensional one-level wavelet
synthesis from alow-pass subband as shown in Figure 2.26:

Y—)@—) G@ |y
low-pass

Figure 2.26. One-dimensional, one-level, low-pass synthesis

Interpolation zeros are first inserted into the input signal, Y, which is then convolved with the impul se response, g’
of the low-pass synthesisfilter G'. Theinput to the system, Y, represents a 1L subband orientation. If wefill this

subband with white noise of variance, S 3 , We may determine that the variance of the output signal, S ;‘; ,isrelated

tos 3 by the following expression:

sy =ag0)sy

i=-m
=EW?5s !
Equation 2.22

where the filter impulse response is defined over theinterval [-m,m] and EW isthe energy weight. If more than one
level of wavelet synthesisisrequired to restore a subband back to the original image resolution, the determination of
the energy weight is somewhat more complex.

Figure 2.27 shows an example where a subband must pass through two levels of wavelet synthesis processing, a
high-pass filtering operation followed by alow-pass filtering operation. Again we consider a one-dimensional
wavelet decomposition for simplicity. Inthisexample, theinput signal, Y, correspondsto a 2H subband orientation.
We may equate this set of high-passfiltering, intermediate upsampling, and low-pass filtering operations with a
system like that shown in Figure 2.26. Thisisillustrated in the bottom half of Figure 2.27. The aggregate
convolution filter, F(z), is created by upsampling the high-pass synthesisfilter, H’ (), and convolving it with the
low-pass synthesisfilter, G'(z). Oncethe aggregatefilter, F(z), has been determined, the two-level synthesis
problem has been reduced to the one-level synthesis problem and Equation 2.22 may be applied with f(i) replacing
g(i) in the equation and modifying the summation limits appropriately.

Extending this process to the two-dimensional caseis straightforward. We may treat the row and column directions
separately since separable 1-D filtering is used to implement the 2-D wavelet transform. Consider the three level
wavelet decomposition in Figure2.28. The processing steps needed to reconstruct the subband 3HL back to the full
image resolution in the row direction are: upsample and high-pass filter, upsample and low-pass filter, and upsample
and low-passfilter. Inthe column direction there are three upsample and low-passfilter operations.

46

22 Jan 2004, Working Draft ver

12

O

H(2)

high-pass ()

\

G (2
low-pass

» X

N

Y—)@—) F(2)

Figure2.27. One-dimensional, two level synthesis.

»X

3LL[3HL
2HL
3LH[3HH
1HL
2LH 2HH
1LH 1HH

Table 2.6 lists the row and column operations for each subband in the three level decomposition shown in Figure

Figure2.28. Threelevel wavelet decomposition

2.28. Inthistablean “L” indicates alow-pass synthesis filtering operation and an “H” indicates a high-pass

synthesisfiltering operation. In between each filtering operation there is an upsampling stage. To determine the
filter associated with the impul se response between each wavel et subband and the full image resolution, we may
take the convolution form of the wavelet filters and then upsample and convolve them against each other in the

ordersgiven by Table 2.6. Thusfor the row direction in subband 3HL (HLL), we would take the high-pass
synthesis convolution filter, upsample it by afactor of two, convolve it with the low-pass synthesis filter, upsample

theresult by afactor of two, and convolve thiswith the low-pass filter. Similarly, in the column direction for
subband 3HL (LLL), we would perform the same operations with the low-pass filter at each stage. Note that the
number of upsample stagesthat the filters see is one less than the number of upsample stages that the wavel et

subband coefficients see.

47

22 Jan 2004, Working Draft ver 1.2

Table2.6. Wavelet synthesisrow and column oper ations

Subband Row Operations Column Operations
3LL LLL LLL
3HL HLL LLL
3LH LLL HLL
3HH HLL HLL
2HL HL LL
2LH LL HL
2HH HL HL
1HL H L
1LH
1HH H H

For the row and column directions we may determine the aggregate convol ution filter that formsthe impulse
response from the subband back to the original image resolution. The L2 norm of each filter i s given by the square
root of the sum of the squares of thefilter coefficients. Let CF 4, represent the L2 norm of the aggregate
convolution filter in the column direction and RF 5, represent the L2 norm of the aggregate convolution filter in the
row direction. See TablesTable 2.3 and Table 2.4 in Section 2.3.3.1.3.1 for the convolution synthesis filter
coefficientsfor the 9-71 wavelet, but note that the high-pass coefficientsfrom Table 2.4 must be multiplied by a
factor of 2. Thisisnecessary because the normalization of the high-pass synthesisfilter is equal to one. When
computing the L2 norm of the aggregate convolution filters the factor of 2 needed for synthesis must be included.
Thisfactor isaready present in the low-pass filter (the synthesisfilters have (2,1) normalization) but is not present
in the high-pass filter (remember that the factor of 2 was multiplied into the wavel et coefficients).

The normalization of the 9-71 wavelet filters affects how we compute the L2 norms. If we place the factorsof 2in
the lowpass and high-pass synthesis filters when computing the L2 normsas described above, we are computing the
norms under (1,1) analysis normalization (note the synthesis normalization is (2,2) in this case). Under (1,1)
normalization, the HL and LH subband orientations have not been pre-multiplied by 2 and the HH subband
orientation has not been pre-multiplied by 4 aswe found in the case (1,2) analysis normalization. If the factors of 2
(and 4) are pre-multiplied into the wavel et coefficients, then these factors should not beincluded in the L2 norm
calculation. We must therefore account for this difference in the (1,1) L2 norm versusthe (1,2) L2 norm. A
correction factor, gainy, isincluded in Equation 2.23 for this purpose. Thegain, factor is simply the subband gai ns
from Table E-1 in ISO/IEC IS 15444-1, the same factor shown in Equation 2.20. The factors CF,,, and RF ,, are
also known as energy weights, since they describe how the error variance within a subband is amplified during
wavelet synthesisfiltering.

B — Dbase ’ gal n)
’ (CFLZb)(RFLZb)
Equation 2.23

The base quantization step size, D, 1S adapted for each subband using Equation 2.23. The true absol ute subband
guantization step sizes, Bb , are not exactly the same as what the decoder will determine from the codestream using
Equation 2.19 and the (e,, my) pairs from the appropriate QCD/QCC marker segment. The (e,, my) representation of
D,q, isaquantized version of the true relative quantization step sizes, f)rdb , where D, = 2% @rdb . Givena

true absol ute quantization step size, Bb , We may compute the (e,,) approximation, using Equation 2.24. Itis

48

22 Jan 2004, Working Draft ver 1.2

important to remember when deriving quantization step sizesto ensure that the encoder is using the same step sizes
asthe decoder.

& =R, - log,(B, 1
_€,2D, .0
W= e 1508

O\ CN

Equation 2.24

Therefore on the encoder side, when deriving quantization step sizes, be sure to convert them into (g,, m) form and
back again to ensure that the encoder uses the same numeric representation of the step sizes as the decoder does.

2.3.3.2.1.3.1 Energy Weight Examples (Full Tiles)

In this section we provide some examples of energy weight computation along with figuresto illustrate the
processesinvolved. We will assume that the tiles being wavel et transformed have sufficient width and height to
support the desired number of wavelet decomposition levels without them becoming one-dimensiona in either the
row or column dimension (see section 2.3.3.1.3.3).

Figure 2.29 isaplot of the analysis and synthesis 9-71 wavelet convolution kernels with (1,2) analysis
normalization. In both the top and bottom panes of the figure, the solid line corresponds to the low-pass filter and
the dashed line to the high-passfilter. These filters are the convolution equivalent of the 9-71 lifting wavelets.
When determining energy weights, it is easiest to usethe convolution representation of the wavelet processing. In
the following example, we compute the energy weights for the subband decomposition shown in Figure 2.28.
Looking at Table 2.6, we see that we must determine the “aggregate convolution” filters (i.e. the“F(z)” equivalent
inFigure 2.27) for the LLL, HLL, LL, and HL synthesis processing. Remember that the aggregate convolution
filtersfor onelevel of wavelet synthesis are simply the wavel et filters themselves.

Figure 2.28 shows the synthesis L L aggregate convolution filter in the bottom pane. In the top pane of the figure,
the low-pass synthesis filter isshown with interpolation zeros inserted. The bottom pane shows the resulting filter
generated by convolving thefilter in the top pane of the figure with the low-pass synthesis filter shown in Figure
2.29. Thus the bottom half of Figure 2.30 isthe result of taking the low-pass synthesisfilter, interpolating it, and
convolving that result with the low-pass synthesisfilter. Figure2.31 showsthe synthesis HL aggregate convolution
filter inits bottom pane. Thesetwo filters are al we need to determine the energy weightsfor the 2L L, 2HL, 2LH,
and 2HH subband orientations. In particular, if we let:

Bw, = [LLO

Ew, = [& HLOY

then we have:
(CFLZ(ZLL)XRFLZ(ZLL)) LL XEWLL
(CFLZ(ZHL))(RFLZ(ZHL)) = HL XEWLL
(CFLZ(ZLH)XRFLZ(ZLH)): E\NLL ><EV\/HL .
(CFLZ(ZHH)XRFLZ(ZHH))= HL XEWHL

These are the four energy weights for the 2X X subbands.

49

22 Jan 2004, Working Draft ver 1.2

Areysic filters (1,2) normalization
15 - - ;
1 ¥
i
T 05 A
o - ; i Tk
- e #,.- 'II" i 3
03 R A -
_1 L 1 L L L -|
-4 3 2 -1] 1 2 3 4
i mer
Syrthesis fiters (2, 1) normaizat on
15 T T T
1 X/A\\
E e B
z e -
£ 05} 3 5 ‘\
BTl .-/ Fd \\
& v . %,
mF— —t—— / .-"(. \ 3 ————
e -ff w7
_D 5 1 1
- 3 2 1 4] 1 a 3 4
il

Figure2.29. 9-7 Convolution filter kernels

In our three level decomposition example, thereisno 2LL subband; it issplitinto 3LL, 3HL, 3LH, and 3HH

subbands. Therefore we have another set of aggregate convolution filtersto find, LLL and HLL. Thesefiltersare
determined by taking the LL and HL aggregate filters, inserting interpolation zeros and convolving the result with
the low-pass synthesisfilter. Thisis shownin Figure 2.32 and Figure 2.33. Asinthe 2XX subband case, if welet:

EW,. = ,’é LLL(i)?
EW, = ’é. HLL (i)

then we have
(CFL2(3LL))(RFLZ(SLL)) = EWLLL XEWLLL
(CFL2(3HL))(RFL2(3HL)) = EWHLL XEWLLL
(CFL2(3LH) XRFLZ(SLH)) = EWLLL XEVVHLL '
(CFL2(3HH) XRFL2(3HH)) = EWHLL XEWHLL

These are the 3XX subband energy weights.

50

22 Jan 2004, Working Draft ver 1.2

Lew-pass Dynthes s htemolahon Vestor

1.5 T T T T T T T T
it J
nst /\ / ’\ 1
¢ ¢
¢ ¢
| !
oo d » -
'D'ED 2 B fi & 10 12 14 16 18
LL Comcdubion Cutpat Wector
15 T T T T T T T T T
&
\‘
.r"/ '\.& -

05} fr \“\ 1

05 : ; : : : : : : :

)
55
b
o0
o
—
=
—
[=]
—
I
—
o
=
oo

Figure2.30. 9-7I LL synthesisaggregate convolution filter

High-pass Syrthesis Intspolation Yeckar

/ |

!
a0 A /d 2 g _
\f

1.5 T

i

=

\;
QA

0] 10 15 0

H_ Comvolubion Oulput Wedar

4
0A¢ \ .
-\"'\'&\ \ /z-“'
o3 Wy
o 5 10 15 20

Figure2.31. 9-71 HL synthesisaggregate convolution filter

51

22 Jan 2004, Working Draft ver 1.2

LL Synthessis nterpaolstion Vectar

1.5 T T T T T T T T
05t) ."F\ /‘ i) 1
1 S-S Y)ﬁ\ A «,/’) hl} &v % R]]
-I:LSD 5 "IID IIS EII:I 25 -E-IEI 3I5 4IEI 43

LI L Comalution Catput Yector

o5} | f’ \ -.

0.5
o

Figure2.32. 9-7I LLL synthesisaggregate convolution filter

HL Senthesis Inberpolat on Vector

05

=

05

' f
T LH\\f\f o

] an z an a5 40 43 0

fm }
b
=

HLL Corwalliion Duaut Vector

N
W%h/ \i hfﬂ& T

fm)}
ih
[a)}
m
I
(==}
[
i
[
(=)
&
&
i
o
i¥

(=]

Figure 2.33. 9-71 HLL synthesisaggregate convolution filter

52

22 Jan 2004, Working Draft ver 1.2

Table2.7. Energy weight calculationsfor fivelevel 9-71 wavelet decomposition

Decomposition Subband Energy Weight Aggregate Filter
Level Orientation L2 Norm

1 LL 1.965907 L 1.402108
HL 2.022573 H 1.442523
LH 2.022573
HH 2.080872

2 LL 4.122410 LL 2.030372
HL 3.993625 HL 1.966943
LH 3.993625
HH 3.868863

3 LL 8.416744 LLL 2.901163
HL 8.366735 HLL 2.883925
LH 8.366735
HH 8.317022

4 LL 16.935572 LLLL 4.115285
HL 17.068231 HLLL 4.147521
LH 17.068231
HH 17.201929

5 LL 33.924927 LLLLL 5.824511
HL 34.333452 HLLLL 5.894650
LH 34.333452
HH 34.746896

Table 2.7 givesthe computed energy weights for afive level wavelet decomposition using the 9-71 wavelet. The
shaded cellsin the tableindicate the set of energy weightsthat are needed. The LL subband weights for
decomposition levels 1— 4 are not needed because those subbands were further split during generation of the
wavelet decomposition. They areincluded here for completeness and they may be useful if the number of wavel et
decomposition levelsis changed. Theright columnin thistable givesthe L2 norms of the two aggregate
convolution filtersthat each level of wavelet synthesis creates. The products of these L2 norms form the subband
energy weights as discussed above.

2.3.3.2.1.3.2 Energy Weight Examples (Small Tiles)

Computation of the energy weightsfor small tilesis subtly different than the computation of energy weightsin the
full tile case. Aswe saw in section 2.3.3.1.3.3 and Table 2.5 (also see sections2.3.3.1.1.5 and 2.3.3.1.2.5), when a
tile has asmall enough row and/or column dimension, there may be an insufficent number of data samplesto
support the full number of wavelet decomposition levels. In this case we will generate subbands that are either

53

22 Jan 2004, Working Draft ver 1.2

empty or one-dimensional (i.e. the width and/or height of the subband isone). Further wavelet processing is not
performed in row and/or column direction of awavelet subband if the width and/or height of that subband are equal
toone. Instead, asimple scaling of the coefficientsis performed. This affects the energy weight computations.

To better understand this, let us consider a4 x 16 tile on which we wish to perform five levels of wavelet
decomposition. Table 2.8 shows the subband sizes resulting from this decomposition, assuming that the top-1eft
corner of thetile lies on an even row and even column location of the reference grid, where both the row and column

numbers are integer multiples of 2P °of decomposiions i<yl e the case for this system’ simagery). For those
subbands that are empty (i.e. the row and/or column dimension is zero), the energy weight is not needed and it is set

to equal to zero. Thisismerely good programming practice since the quantization step size parameters (e,, m), are
always set to (0,0) for empty subbands (see below).

Table2.8. Subband sizesin 4 x 16 tile (five level decomposition)

Subband Dimension Parent Subband Dimension
1HL 2x8 oLL 4x 16
1LH 2x8
1HH 2x8
2HL 1x4 1L 2x8
2LH 1x4
2HH 1x4
3HL 0x2 2LL 1x4
3LH 1x2
3HH 0x2
4HL Ox1 3LL 1x2
4LH 1x1
4HH Ox1
5HL 0x0 4L 1x1
5LH 0x0
5HH 0x0
5LL 1x1

When the width and/or height of a parent subband is equal to one, the row and/or column energy weight is no longer
computed as described in section 2.3.3.2.1.3.1. Instead, the row and/or column energy weight of the parent subband
issimply multiplied by the scaling factor applied during aone-dimensional wavel et synthesis (see section
2.3.3.1.2.5). If the sampleislow-pass, the factor (L*) is 1.0; and if the sample is high-pass, the factor (H*) is 2.0.
Again, we assume that both the row and column of the top-left corner of thetile on the reference grid are integer

multiples of 2Mmper of decomposiions a4 this allows only |ow-pass samples to have one-dimensional parents. Table
2.9 showsthe energy weightsfor the 4 x 16 tile case. Aswasthe case with Table 2.7, only the shaded energy
weights are needed for afive level decomposition. The remai ning weights are included for completeness.

54

22 Jan 2004, Working Draft ver 1.2

Table2.9. Energy weight calculationsfor 4 x 16 tile, fivelevel 9-71 wavelet decomposition

Decomposition Subband Energy Weight Aggregate Filter
Level Orientation L2 Norm
1 LL 1.965907 L 1.402108
HL 2.022573 H 1.442523
LH 2.022573
HH 2.080872
2 LL 4.122410 LL 2.030372
(LL xLL)
HL 3.993625 HL 1.966943
(HL »L)
LH 3.993625
(LL >HL)
HH 3.868863
(HL >HL)
3 LL 5.890440 LLL 2901163
(L*%L HLL)
HL 0.0 HLL 2.883925
(empty)
LH 5.855440 L* 1.0
(L* kL xHLL)
HH 0.0
(empty)
4 LL 8.355557 LLLL 4.115285
(L*k*%kL xLLLL)
HL 0.0 HLLL 4.147521
(empty)
LH 8.421010 L* 1.0
(L*k*% L xHLLL)
HH 0.0
(empty)
5 LL 8.355557 L* 1.0
(L*kxk* kL x
L*%LLL)
HL 0.0
(empty)
LH 0.0
(empty)
HH 0.0
(empty)

55

22 Jan 2004, Working Draft ver 1.2

Recommendation

It ispossible that the image dimensions and 1,024 pixel x 1,024 pixel tiling will lead to small tileswhose dimensions
do not support afully populated wavel et decomposition (see Section 2.3.3.1.3.3). The case of small tiles and one-
dimensional or empty subbands requires specia handling with respect to quantization step sizes. If the calculated
energy weightsfor atile do not match those of the full tile (as specified in the main header QCD marker segment), a
tile-header QCD marker segment must be used to override the main header QCD. For those subbands that are
empty (i.e., the row and/or column dimension is zero), the energy weight is not needed, and for convenience this
may be expressed as aweight of 0.0. Asagood programming practice, the quantization parameters (g,, m) for an
empty subband shall be set to (0,0).

2.3.3.2.2 Visual Weighting (Annex J.12)

The base step size procedure described above operates on the principle that the error contributions from each
quantized wavelet subband should be equal. The human visua system (HVS) is not linear in its response to
guantization noise, and improved visual quality can sometimes be achieved with the use of visual weights. Visua
weights are used to modify the subband quantization step sizes according to HV S principles. The use of visual
weights will increase the mean squared error between the original and decoded image. Equation 2.25 illustrates the
use of visual weightsin determining quantization step sizes for base step size quantization. A new subband specific
weighting factor, VW,, has been added to adjust the quantization step size for HV S perceptua improvement.

B — Dbase ? gal nb
° VVVb (CFLZb)(RI:L 2b)

Equation 2.25

The use of visual weightsfor this system’simagery isTBR. If they are used, they will be supplied separately and
multiplied into the calculated base step sizes.

2.3.3.2.3 5-3R Wavelet

For the 5-3R wavelet transformation, no quantization is performed. The quantization step size for every wavelet
subband, D, is defined to be one (D, = 1). The QCC and QCD marker segments are still used with the 5-3R
wavelet. These marker segments are used to signal the reversible dynamic range of the wavelet coefficientsin each
subband.

2.3.3.2.3.1 Forward Wavelet Coefficient Quantization Procedure (Annex E.2)

The forward quantization procedure (or simply “quantization”) is described in Annex E.2. Thisisan informative
section of the JPEG 2000 standard, but it is anormative part of this document. To enable usto use the same rate
control procedures presented in section 2.3.3.2.1.10f this document, we shall multiply the wavelet coefficients
generated by the 5-3R wavelet transformation, a,(u,v), by afactor of 2° as shown in Equation 2.26.

Equation 2.26 is ssimply Equation 2.16 where we have set, D, = 1; thus the ab (u, V) integers are not really quantized

5-3R wavelet coefficients— they are simply the 5-3R wavel et coefficients multiplied by 64. This alows the same
piece of code to perform rate-distortion optimization for both the 9-71 and 5-3R wavelet transformations. Aswas
done with the 9-71 wavelet coefficients, these six “fractional” bit-planes are not encoded. Thereis no requirement
that an implementation operate in this fashion; however, the engineering code for thestandard imagery test data set
iswritten thisway.

56

22 Jan 2004, Working Draft ver 1.2

§,(u,v) =2°xa,(uv)

- e) g 2

o\ CN

Equation 2.26

Several of the parametersin the QCD and QCC marker segment for the current tile are interpreted differently for the
5-3R wavelet transformation. In Annex A.6.4 and Annex A.6.5 of ISO/IEC IS 15444-1, it is somewhat unclear
which tables and parameter choices apply for the 5-3R wavelet. The “no quantization” and “reversible” tables and
parameter values should be used. The Sqcd/Sqcc parameter is set to “xxx00000”, which indicates that no explicit
quantization is performed. Even though there are no quantization step sizes (i.e., D, = 1), the g, quantization
parameter is still signaled. The interpretation of the quantization parameters, (g,, m), changesfor the 5-3R wavelet.
The m, parameter is not used at all and it isnot signaled in the QCD or QCC marker segment. Theeg, parameter is
used to signal the reversible dynamic range of each subband. For each subband, the value of g, isgiven by
(Equation E.10):

e, =R +log,(gain,)+z,
=R, *+z,

Equation 2.27

Note - Table A-29 in Annex A.6.4 incorrectly references Equation E.5; it should reference Equation E.10 instead.

Whereas the R,, R, and gain, of Equation 2.27 have the same meaning they had in Equation 2.20, the variable, z.,
accounts for expansion of the component bit depth if the reversible multiple component transform (RCT) isused (z
=1). TheRCT transforms RGB components into an approximation of a'YC,C, spaceto aid in compression
performance. The RCT is applicabl e only to three-band RGB color images encoded using the 5-3R wavelet and
shall not be used for imagery not of this nature. Therefore we set, z. = 0, in Equation 2.27 when dealing with other
than three-band RGB imagery. Theincrease in wavelet coefficient bit depth as afunction of subband orientation,
gain,, isgivenin Table E-1, the same values asthat for the 9-71 wavelet. Thisisdueto the fact that the 9-71 (1,2)
normalization is the same as that of the 5-3R wavelet.

2.3.3.2.3.2 Inverse Wavelet Coefficient Quantization Procedure (Annex E.1)

Theinverse wavel et coefficient quantization procedure is normatively described in Annex E.1 of ISO/IEC IS
15444-1. For arecommended decoder, the procedures described in Annex E.1 are normative. However, for the
recommended compressor, only the previously described forward wavelet coefficient quantization procedureis
normative. Section 2.3.3.2.3.2 isincluded here strictly as an informative section.

Theinverse quantization procedures for the 5-3R wavel et transformation are very similar to those described for the
9-71 wavelet transformation. For each wavelet transform coefficient, a,(u,v), the decoder constructs the integer

representation, Q, (u, v) , Of this coefficient at the current number of decoded bit-planes using Equation 2.17

(Equation E.1). The parameters N,(u,v), s,(uv), MSB(b,u,v), and M, have the same meaning when encoding with
the 5-3R wavel et asthey do for the 9-71 wavelet. The number of bit-planes used to represent the wavelet
coefficients, M,, isgiven by Equation 2.18. Thisiswhy the e, quantization parameter is aways signaled, even for
the 5-3R wavelet.

57

22 Jan 2004, Working Draft ver 1.2

Once the approximation to the integer representation of the quantized wavelet coefficient, Q, (u, v) , has been

determined, the reconstructed wavelet coefficient, Rq, (u,v), may be computed. If N,(u,v) = M,, then the proper
relationship is given by Equation 2.28 (Equation E.7).

RCIb(u’V) = qb(u’v)
Equation 2.28

If Np(uv) < My, the reconstructed wavelet coefficient, Rq, (u,v), is given by Equation 2.29 (Equation E.8— note
that Equation E.8 has D, in the equation, but D, = 1 and it has been omitted here).

1@, (u,v) +r2 0T for g (u,v) >0

':;O forg,(u,v)=0
Equation 2.29

The reconstruction parameter, r (see Equation 2.29), was mentioned in Section 2.3.3.2.1. It allows a decoder the
flexibility of adjusting the reconstruction level. For the 5-3R wavel et transformation, once al of the bit-planesfor a
wavelet coefficient have been received, it isimportant that we setr = 0, since the wavelet coefficient is now exact.
Thisiswhat Equation 2.28 istelling usto do. If al bit-planes have not been received by the decoder then we may
use avaue of r other than 0. The JPEG 2000 standard does not specify avalue for r, but for the recommended
implementations the value of r will be 0.5.

For example, if the value of agiven wavelet coefficient is 22, but the decoder has not received the last two bit-planes
(i.e. My(u,v) - Np(u,v) = 2); the decoder knows that the wavel et coefficient isin the set [20, 21, 22, 23]. If wesetr =
0, the decoder will guessthe wavelet coefficient to be equal to 20. 1f we set r = 0.5, the decoder will guess 22,
which is closer to the midpoint of the range[20, 23]. Under some circumstances aternative values of r may produce
decoded imagery that are more visually pleasing or have alower mean squared error relative to the original images.
Note that if no magnitude bits are available for the wavelet coefficient under consideration (N,(u,v) = 0), the
reconstructed quantized wavel et coefficient value shall be zero.

2.3.3.3 Code-Block Entropy Coding (Annex C)

For each code-block, quantized coefficients are entropy coded to form asingle compressed bit stream. Thisis
referredtoas Tier 1 (T1) coding, and represents the bulk of the complexity of the overall coding algorithm. Each
code-block is entropy coded independently, using context -based adaptive binary arithmetic coding to code the
coefficients bit-plane by bit-plane.

Given acode-block, the number of initial all-zero bit-planesis calculated. Thisinformation istemporarily stored for
later inclusion in the codestream asheader information (described in more detail in Section 2.3.3.5), and these bit-
planes are subsequently skipped. The code-block isthen encoded bit-plane by bit-plane beginning with the most
significant bit-plane.

The coding of each bit-planeis divided into three coding passes. significance propagation, magnitude refinement,
and clean-up. For asingle bit-plane, each coefficient is encoded in exactly one of the three coding passes. Inthe
most significant bit-plane, the first two coding passes (significance propagation and magnitude refinement) are
skipped, and all coefficients are coded using only a clean-up coding pass. All remaining bit-planes are coded using
all three coding passesin the following order: significance propagation, magnitude refinement, and clean-up.

58

22 Jan 2004, Working Draft ver 1.2

Each time a coefficient bit-plane (i.e. aone-bit magnitude symbol) is encoded, a context isformed based on the
currently coded values of neighboring coefficients aswell as previous bit-planes of the current coefficient. The
context is provided to the arithmetic coder — the MQ coder — along with the symbol to be encoded. The MQ coder
maintai ns an adaptive binary probability estimate for each context, and efficiently codes the one-bit symbol
according to the probability estimate.

The necessary internal information for coding each bit-plane can be efficiently represented with five bitsfor each
coefficient:

1) significance of the coefficient (a coefficient isinitially insignificant, and becomes significant when itsfirst
‘1" magnitude bit is coded)

2) whether the coefficient has been refined at least once

3) sign of the coefficient

4) magnitude bit for that bit-plane

5) flagtoindicateif the coefficient has been coded yet for this bit-plane

Thesefive pieces of information are used to determine in which bit-plane coding pass each coefficient is coded, as
well asto determine the context for each coefficient.

2.3.3.3.1 Bit-Plane Coding Passes (Annex D.3)

The bit-plane coding algorithms are causal so that the decoder can exactly reproduce the various context formations
and probability estimates produced by the encoder. While the most important points are outlined here, the JPEG
2000 standard contains the exact details necessary to implement the coding pass encoder algorithms.

For each coding pass, the coefficients are scanned in groups of four rows, when possible (at the bottom of a code-
block, the last grouping may contain fewer than four rows), starting at the top of the code-block. Within that
grouping of four rows, the coefficients are scanned one column at atime, with the columns scanned | ft to right.
Within a column, the four (unless constrained by the bottom of the code-block) coefficients are scanned top to
bottom. After the entire four rows have been scanned, the group of four rowsimmediately beneath the current group
is processed next. Figure 2.28 showsthis scanning order pictorialy:

< n >

Figure 2.34. Scanning order within a code-block

The neighbors considered in any context formation are the eight neighbors shown in Figure 2.35 below. The centra
coefficient, X, isthe current coefficient being coded. If the coefficient being encoded lies on a code-block boundary

59

22 Jan 2004, Working Draft ver 1.2

such that some of the eight neighbors do not exist, those neighbors are assumed to be insignificant when determining
the context. The significance and sign of each neighbor is based onits current coded value, and thusincludes any
updates made during the current coding pass.

Do [Vo | Dy
Hy | X H,
D, | Vi | Ds

Figure 2.35. Neighborsused toform context.

2.3.3.3.1.1 Significance Propagation (Annex D.3.1)

The significance propagation passisintended to code a bit-plane for coefficients that are likely to become
significant in the current bit-plane. The coefficients are scanned in the previously described order. Coefficients
whose significance state bit has been set aready (they became significant in a previous bit-plane) are skipped — they
will have their current bit-plane encoded during the magnitude refinement pass. Otherwise, a context isformed
considering the significance of the eight neighbors of the current coefficient. The2® = 256 initial contexts are
guantized to nine possible contexts. One of the contexts corresponds to the case when all eight of the neighbors are
insignificant. For this context, the coefficient is skipped, and is later encoded during the clean-up pass. Otherwise,
the quantized context is sent to the MQ coder, a ong with the actual bit to be encoded. If thebitis‘1’, signaling
significance, the sign hit for that coefficient is coded immediately afterwards.

Thesign bit isencoded similarly to the significance bit. A context isformed using the sign of four neighbors: HO,
H1, VO, and V1. Each may be positive, negative, or not coded yet. The 3* = 81 initial contexts are quantized to five
final contexts. The actual bit encoded (‘1’ indicates the coefficient is negative, ‘0’ indicates positive) isthe
exclusive-or (XOR) of the sign bit with a second predictor bit:

D = signbitA XORbit
Equation 2.30

where D isthe bit sent to the MQ coder, signbit isthe sign of the current coefficient, and the XORbit is derived from
theinitial context. Thus, D, along with the quantized context, is sent to the MQ coder to code the sign information.

If the coefficient issignificant, itsinternal stateis changed to indicate that it has become significant. Also, its
internal stateis updated to indicate the sign of the coefficient. Regardless of the significance of the coefficient, the
interna state flag is set to indicate that this coefficient has been coded al ready for this bit-plane (thisis necessary to
keep the magnitude refinement pass, which now recognizes the coefficient as significant, from trying to code this
coefficient aswell).

Thelookup tables that define how the various contexts are formed and quantized can be found in the JPEG 2000
standard document.

60

22 Jan 2004, Working Draft ver 1.2

2.3.3.3.1.2 Magnitude Refinement Pass (Annex D.3.3)

After the significance propagation passis complete, the code-block is scanned again, in the same order as described
earlier. Any coefficient that iseither insignificant or already flagged as having been coded in thisbit-planeis
skipped. All other coefficients have amagnitude refinement bit coded. The context isformed based on the
significance of eight neighbors aswell asthe internal state bit indicating whether or not this coefficient has been
refined previoudly. The context, along with the refinement bit, is sent to the MQ coder. If necessary, theinternal
state bit for this coefficient isthen adjusted to reflect that it has been refined at |east once. It is not necessary to set
the flag indicating that this coefficient has been coded for this bit-plane, since the remaining clean-up passignores
all significant coefficients. The lookup table that defines the various quantized magnitude refinement contexts can
be found in the JPEG 2000 standard document.

2.3.3.3.1.3 Clean-Up Pass (Annex D.3.4)

After the magnitude refinement passis complete, the code-block is scanned again, in the same order as described
earlier. Any coefficient that is either significant or flagged as having been coded already in this bit-plane is not
coded. Contexts are formed as for significance propagation, taking into account al new significance information
coded during the significance propagation pass from the same bit-plane. Thus the context formed for a coefficient
during the clean-up pass may differ from the context formed for the same coefficient during the significance
propagation pass.

An additional run-length coding step is used to exploit the high probability that coefficients will be insignificant.
Coefficients are processed in groups of four (if possible) corresponding to one column within one strip of four rows.
If there are fewer than four coefficients (last strip of rows contains fewer than four rows) or one of the four
coefficients does not currently have the zero context (the context associated with not having any significant eight-
neighbors), or one of the coefficients already has been coded this bit-plane, then run-length coding is not used, and
this column of up to four coefficientsis coded using the same procedure as for significance propagation. If,
however, all four coefficients are to be coded during the clean-up pass and all four coefficients have the zero
context, then one run-length symbol is encoded to i ndicate whether or not all four coefficients remain insignificant.
A ‘0 iscoded if al four coefficients remain insignificant; a‘1’ is coded otherwise. The symbol, along with the
unique run-length context, is sent to the MQ coder. If al four coefficients are insignificant, the encoder moves on to
the next column. Otherwise, two symbols must be encoded to indicate which of the four coefficientsisthe first
(starting from the top) to become significant. That isfollowed by coding the sign of that coefficient using the
significance propagation sign contexts, and then encoding the remaining coefficients of that column (there may be
zero, one, two, or three) using the regular significance propagation contexts. Any coefficient that becomes
significant also hasitsinternal state bits set to reflect its sign and that it is now significant.

At the conclusion of this pass, in preparation for coding the next bit-plane, al coefficients have their internal state
flag set to indicate that they have not been coded yet at the current bit-plane. Note also that this flag must be
initialized prior to the first coding pass (which is a clean-up pass) since al coefficients are coded during thisfirst
pass. Thelookup tables used for encoding symbols related to theclean-up pass can be found in the JPEG 2000
standard document.

2.3.3.3.2 MQ Coder (Annex C)

The MQ coder isabinary adaptive arithmetic coder. It takes asinput a sequence of (symbol, context) pairs, and
produces a compressed bit stream. During coding, it outputs to the compressed bit stream whole bytes at atime and
thus naturally produces afinal compressed codestream that is an exact number of bytes. For JPEG 2000, there are
18 coding contexts in addition to auniform context. Nine contexts are used for significance coding, five contexts
are used for sign coding, three contexts are used for magnitude refinement and one context is used for run-length
coding during the clean-up pass. Each context has associated with it aprobability estimate that is represented
through afinite state machine. Assymbols are encoded, the state associated with a particular context may be
updated, changing the probability estimate. The context states are initialized prior to thefirst coding pass. The
details of the MQ coder can be obtained from the JPEG 2000 standard.

61

22 Jan 2004, Working Draft ver 1.2

Termination of the MQ coder is performed using the FLUSH routine outlined in the standard (Annex C.2.9). When
used at the end of acoding pass, the FLUSH routine terminates encoding operations and outputs to the bit-stream
enough bytes so that the decoder can correctly decode the current coding pass. Terminated coding passes end on
byte boundaries. Thisfully flushed codestream, however, istypically several byteslonger than necessary for the
decoder. Therefore, amore efficient codestream may be achieved by appropriate truncation of the fully flushed
codestream. Thisisaccomplished viaa near optimal length computation, as described in terms of rate estimation in
Section2.3.3.3.4.1.

In normal operation, the MQ coder associated with each code-block is terminated only once, at the end of the final
coding pass. The context statesfor each code-block are aso initialized only once, prior to the beginning of the first
coding pass. If selective arithmetic coding bypass is enabled, though, the MQ coder associated with each code block
isterminated after each cleanup pass starting with the fourth bit-plane coded. In this case, due to the frequent
termination, aless complex termination algorithm is desirable, and it may be useful to consider the predictable
termination algorithm (Annex D.4.2), even though it is on average one bit less efficient than the full flush followed
by near optimal length truncation.

2.3.3.3.3 Entropy Coding Options (Annex A.6.1)

JPEG 2000 allowssevera entropy coding optionsthat can be selected in any combination. These options are used
to increase error resilience, alow parallel processing, and decrease computational complexity. The presence of
these options in the codestream is signaled in the COD markers (see Section 2.3.3.9). These options include the
following:

1) Selectivearithmetic coding bypass

2) Reset context probabilities on coding pass boundaries
3) Termination on each coding pass

4) Verticaly causal context

5) Predictabletermination

6) Segmentation symbols

Note: Further image quality studies need to be performed to seeif the selective arithmetic coding bypass mode
should be employed for this system. This entropy coding option may reduce the computational burden on the
processing system. If enabled, the significance propagation and magnitude refinement passes are coded in raw form
starting with the fifth most significant bit plane for acode-block. Since al the information being coded is binary,
coding in raw form simply impliesthat either a‘1’ or ‘0", corresponding to the bit value in current coefficient bit-
plane, iswritten directly to the codestream. This eliminates the need to compute contexts and bypassesthe MQ
coder aswell. Results of testing performed by the JPEG committee shows that while the arithmetic coding bypass
mode can be invoked without impacting visua quality for many classes of imagery, certain imagery typesare
negatively impacted by this option. Further experimentation needs to be performed to seeif this option is useful for
this system’ simagery.

2.3.3.3.4 Rate-Distortion Estimation (Annex J.14)

In order to perform post-compression rate-distortion optimization, the encoder must cal culate and temporarily store
rate and rate-distortion slope information for each coding pass of each code-block.

2.3.3.3.4.1 Rate Estimation

At the end of acoding pass coded using the raw coder (arithmetic coding bypass), the total rate can be calculated
explicitly asthe number of bytes output to the codestream plusoneif thereisapartiadly filled byte. A partialy

62

22 Jan 2004, Working Draft ver 1.2

filled byte can only occur at the end of a significance propagation pass, since the raw coder isterminated at the end

of magnitude refinement passes.

On the other hand, if the arithmetic coder is not terminated at the end of the coding pass, or if the coding passis
terminated using the FLUSH routine of the MQ coder, the codestream must be appropriately truncated. A
conservative rate estimate is used that guarantees enough datais available to decode the desired coding passes.
Although avery simple estimate may be calculated directly using only L, and CT,, the resulting length is very
conservative, typically two or more bytes longer than necessary for correct decoding. Thismay be acceptable for
some applications, but at low bit rate layersthis overly conservative estimate may significantly degrade image
quality. Instead, wewill use amore complicated agorithm that computes near optimal truncation lengths. In fact
this algorithm will report the optimum truncation length under all conditions except if more than one extrabyteis
initially pushed out of the byte buffer, which isan extremely rare circumstance.

The algorithm to calculate a near optimal truncation length, Ry, for each such coding pass, k, isas follows:

1. LetC lower, B lower, C upper, and B_upper be variableswhich represent lower and upper bounds
for the C and B registersin the MQ coder:
C lower =C
C_upper =Gy + A
B lower =B_upper =By,
2. Normalizeto the state corresponding to CT=0 and deal with the carry bits:
Shift C_lower left by the count in CTy
Shift C_upper left by the count in CTy
If the carry bit (0x08000000) issetin C_lower
Reset the carry bit and increment B_lower
If the carry bit (0x08000000) issetin C_upper
Reset the carry bit and increment B_upper
3. Settheinitia length R = L, and set Curr_byte = the last byte pushed out to the codestream
(Note: some implementations may delay the output of OxXFF bytes, using aflag E = 1; for such
implementations, theinitial length would be calculated asR, = L, + E.)
4. Test for sufficiency of the current length:
If (Curr_byte = OxFF) and (B_lower < 128) and (B_upper > 127)
We have enough bytes; in fact, we do not need the last byte, which was OxFF
Seat R =R(—1andfinish
If (Curr_byte = OxFF) and (B_lower < 256) and (B_upper > 255)
We have enough bytes so finish
5. Retrieve the next byte from the codestream, and update the bounds and byte count as follows:
Curr_byte = next byte from the actual codestream (i.e. the byte following the first R, bytes)
B lower =B_lower — Curr_byte
B_upper = B_upper — Curr_byte
Re=Rc+1
If (Curr_byte = OXFF)
Shift B_lower left by 7 bits
Load the vacant bits of B_lower with the 7 M SBs (bits 20— 26) of C_lower
Shift C_lower left by 7 bits
Shift B_upper left by 7 bits
Load the vacant bits of B_upper with the 7 MSBs (bits 20— 26) of C_upper
Shift C_upper left by 7 bits
Else
Shift B_lower left by 8 bits
Load the vacant bits of B_lower with the 8 MSBs (bits 19— 26) of C_lower
Shift C_lower left by 8 bits
Shift B_upper Ieft by 8 bits
Load the vacant bits of B_upper with the 8 MSBs (bits 19— 26) of C_upper
Shift C_upper left by 8 bits
6. Loop back to step 4.

63

22 Jan 2004, Working Draft ver 1.2

L, represents the total number of bytes output to the bit stream through the firstk coding passes of the code-block.
CT, isthe counter which identifies the number of additional renormalizing shifts of the A and C registers before
some of the C register bitswill need to be pushed out into the byte buffer, at the end of thek™ coding pass. The byte
buffer B, the A and C registers, and CT, are discussed in detail in Annex C of the JPEG 2000 standard, which
describesthe MQ coder.

2.3.3.3.4.2 Distortion Estimation (J.14.4)

The distortion reduction resulting from encoding each coding passis calculated. Thisvaueisdivided by the rate
associated with the coding passto determine the rate-distortion slope. The slope value is used during optimization
to decide when the coding passisincluded in the overall image codestream. Distortion-reduction estimates can be
calculated with two small lookup tables that are independent of the coding pass, bit-plane or subband involved.

Following the notation of the JPEG 2000 standard document, let W, D? denote the distortion contribution from a
single step-size error from acoefficient in code-block B, . D? isthe squared value of the quantization step-size for

the relevant subband (the absolute step size, D, divided by the subband analysis gain, gain,), whilew; isa

weighting factor, computed from the L2 norm energy weights (CF_,, and RF ,,) of the subband’ s wavelet synthesis
waveform, and multiplied by avisua weighting (VW) if required:

Wi = (CFLZb XRE L,)2 sz
Comment:WiD? = lf

Equation 2.31

Visua weightings are input by the user as a set of weights, one for each subband, and these values are squared (per

Equation 2.31) prior to multiplying by lf . Theweights are not coded in the codestream, but are used to adjust
distortion estimates and subsequently affect the ordering of coding passesin the codestream. For therecommended
VL compression, the same subband weights are used for visual weighting of the base step size, as described in
Section2.3.3.2.2. Note that the distortion estimation modification is necessary for proper visual weighting during
rate control even though the quantization was also visually weighted.

Define V;[m, n] to bethe fractional representation of the magnitude of quantized coefficient [m,n] . v,[m, n]

contains both the integer value (the quantization index) and the fractional value (the six least significant bitsthat are
stored beyond the quantization step-size accuracy) of the quantized coefficient magnitude. Although these six bits
are not explicitly coded, and are unrecoverable by the decoder, they are used to calculate distortion-reduction
estimates. Suppose bit-plane p is being coded, where p = 0 corresponds to the least significant bit-plane to be coded,
and define

€2 Pv.[m,n]d
& U
e 2

Equation 2.32

vP[mn] =2 Pv[m,n]- 2

Thus \/ip [M, N] represents the normalized difference between the magnitude of the coefficient and the largest
guantization threshold in the previous bit-plane that does not exceed this magnitude. It can be seen that

O£ vP[m,n] <2. Specificaly, V;°[m,n] can be thought of as having the representation x.yyyyyy...y, where x

64

22 Jan 2004, Working Draft ver 1.2

isthe coefficient valuein the current bit-plane, and yyyyyy...y are the subsegquent bit-planes. The use of six least
significant bit-planes guarantees that for any bit-plane p, there are at least six subsequent bit-planes that can be used
for distortion-reduction estimation.

For example, suppose the fractional representation of the magnitude of the quantized coefficient is v, [m,n] =
10001001011011.101111. For bit-plane p=8, application of Equation 2.32 yields Vip[m, n] =0.01011011101111.
Likewise, for theleast significant bit-plane p=0, v\"[m,n] = 1.101111.

If the current coefficient becomes significant in this bit-plane, the distortion reduction can be expressed as:

22w, D[V’ [m,n]? - (v"[m n] - 1.5)%] = 22w, 0% (v [m, n])
Equation 2.33

Thus, fsisthe normalized M SE decrease for the significance pass:

f(vPImn]) =vP[mn]? - (W[mr]- 15)?

Equation 2.34

This value assumes a midpoint reconstruction level (the normalized coefficient, originally restricted to the range
[0,2), becomes significant and thereforeisin therange[1,2), so a midpoint reconstruction hasthe value 1.5).

Similarly, a coefficient being refined in bit-plane p has a distortion reduction expressed as:

2°Pw D [(v"[m,n] - 1)* - (v"[m n] - k)] = 2*"w, D f,, (v [m, n])
Equation 2.35
wherekis1.5if v°[m,n] 3 1 andkis0.5 otherwise. Note that the subscript min the function f stands for
“magnitude’, distinguishing it from f,, and is unrelated to the coefficient location [m;n].

Thus, f,,, isthe normalized M SE decrease for the magnitude refinement pass:

FP[mn]- D2 - ("[mn]- 15)%], v[mn]21
fr (M Im,n]) = |
flPImn]- 92 - (W"[mn]- 0.5)°], v[m,n]<1
Equation 2.36
The reference software uses simple seven-bit (128 entry) look-up tables to store values for fsand f,,,. The current bit-

plane plusthefirst six fractional bits of Vip[m, N] can be used as an entry into the table. [Actually, since the

significance pass only applies when the current bit-planeis 1, a six-bit table could be used for f;.] The distortion-
reduction estimate over the entire code-block is calculated as:

4 27w, D f (v"[mn]) = 2°w, D g f (v"[m,n])

Equation 2.37

65

22 Jan 2004, Working Draft ver 1.2

where the accumul ation term é fA(Vip[m, Nn]) is summed over all (m,n) in the code-block. The function fis
m,n
either f,, orf,, depending on the coding pass.

Note that the reference software computes the distortion-reduction estimations using floating-point arithmetic. An

dternate implementation might scale the output of f by 2'° so that the tables can be represented with a 16-bit

integer, and then the summation over the entire code-block may be computed in a 32-bit accumulator without risk of
overflow.

The look-up tables contain exact distortion-reduction values for the respective seven bit inputs. The look-up table
values become estimates of the actual distortion reduction when the coefficient being coded has more than six

fractional bit-planes of datainits representation as \/ip [M,n]. Only thefirst six fractional bits are used to access
the look-up table, and hence the returned value is only an approximation of the actua distortion-reduction.

2.3.3.3.4.2.1 Distortion Estimation Modifications for Reversible Transforms (Annex J.14.4.2)

When areversible wavelet transform is used, the wavel et coefficients have integer values and midpoint
reconstruction makes no sense for distortion estimations involving the fina bit-plane. For the final bit-plane, the
distortion estimation formulas for significance and refinement coding can be modified to account for the fact that
there will be no quantizer error and hence no distortion remaining after the final bit-planeis coded. For significance
coding, the distortion reduction in the final bit-planeis given by:

2°Pw, v/ [m, n]*

Equation 2.38

For magnitude refinement coding, the distortion reduction in the final bit-planeis given by:

2°Pw D% (v [m,n] - 1)®
Equation 2.39

2.3.3.3.4.3 Computation of the Rate-Distortion Convex Hull (Annex J.14.3)

After acode-block has been compressed, each coding pass has associated with it arate and arate-distortion (RD)
dopevaue. The RD-dope valueisafloating point value obtained by dividing the weighted distortion-reduction
estimate by the rate. The post-compression rate-distortion optimization al gorithm uses these RD-s ope values to
determine when to include coding passes in the codestream. Specifically, when forming alayer, an RD-slope
threshold is used to determine how many coding passes from each code-block to include in the current layer. In
order to efficiently determine this contribution, the set of valid coding pass truncation points for a code-block is first
computed, prior to the optimization process, by forming the convex hull of the rate-distortion curve for that code-
block. Coding passesthat lie on the convex hull form the set of valid truncation points. These valid truncation
points comprise the set of allowable points at which to truncate the contribution of a code-block to alayer. Coding
passes that do not lie on the convex hull are not valid truncation points, and each is grouped with the next valid
truncation point. The RD-slope associated with valid truncation pointsis modified to represent the overall RD-slope
for all coding passes since thelast valid truncation point. This approach resultsin a set of RD-dopesfor thevalid
truncation points which are monotonically decreasing, thus making it easy for the optimization algorithm to
determine how many coding passes to include in alayer, given a certain RD-slope threshold. The layer formation
algorithm is discussed in detail in the following section (Section 2.3.3.4).

66

22 Jan 2004, Working Draft ver 1.2

Figure 2.36 illustrates the convex hull of an example rate-distortion curve. Only those coding passes that lie on the
convex hull are valid truncation points. In this example, coding pass 2 is grouped with coding pass 3. Similarly,
coding pass 5 is grouped with coding pass 6.

coding passes

"N, /N

Distortion

Figure 2.36. Convex hull of rate-digtortion curve.

The algorithm for determining the valid truncation points for acode-block is given below. Let B; be the code-block,
and let M be the number of compressed coding passes for B;. For k ranging from 1 toM, let Rk bethetotd rate

associated with coding passes 1 through k, and let Dik be the total weighted distortion-reduction estimate from

coding passes 1 through k. Let N, ={01,2,..., M} . Thisisthe set of all truncation points, and will be trimmed to

become the set of valid truncation points. [Notethat 0 and M, corresponding to including no coding passes, and
including all coding passes, cannot be removed from the set N; in the following a gorithm.]

1) Setp=0. DefineR”> =0 and D° =0.
2) Forg=1toM
1f gl N

Set DRQ — Rq _ RP

Set DD? = D¢ - Df

Set S = DD/ DR"

If pt 0and S* > SP then removep from N; and go to step 1)
Elsesetp=g.

Once the set of valid truncation pointsis determined, the modified rate and RD-dlope value for each valid truncation
point is recomputed as the overall rate and RD-slope since the previous valid truncation point.

67

22 Jan 2004, Working Draft ver 1.2

2.3.3.4 Layer Formation (Annex B.8)

The compressed data of a code-block can be represented asa single array of bytes. Thisdatais distributed across
one or more layersin the codestream. Each layer consists of a certain number of consecutive coding passes from
each code-block contained in atile. The number of coding passes contained in alayer may vary from code-block to
code-block. For any given code-block, the coding passes must appear in sequential order both within and across
layers. Each successive layer can be thought of asimproving the quality of each code-block.

For each tile, layers are formed to achieve target bit rates. Rate-distortion optimization is used to achieve the
maximum distortion reduction for the allowed rate. For the given target bit rate, it is necessary to decide which
coding passesto include in that layer, so asto maximize distortion reduction. Thisisdone by finding the smallest
RD-slopethreshold, t , such that thetotal rate required to include all codi ng passes with RD-sl opes greater than or
equal tot islessthan the allowed rate.

Layers are formed based on target bit rates. The targets are to be met independently for each tile. Thusthe layer
formation algorithm isindependent for each tile, and it may be the case that each tile has adifferent thresholdt at
which a certain target bit rate is achieved. Each target bit rate refers to packet bytes only. Packets are discussed in
detail in the following section. The main header and tile-part headers are excluded from any layer formation rate
caculations. Thusthe actual achieved bit rate for a certain layer may be slightly higher than the target, once the
header information is considered. Tables containing the actual target bit rates are available in other documentation.

Thefinal layer contains all remaining bits— that is, it contains all coding passes that have not previously been
included in the codestream for one of thefirst 18 layers. For visually lossess compression a maximum per-tile bit
rate of 4.3 bpp (TBR) will truncate thisfinal layer if necessary. Essentiadly, thisfina layer isimplemented asarate-
controlled layer with atarget of 4.3 bpp. Dueto careful selection of the quantization base step size, however, most
tileswill be able to include al remaining bits prior to hitting thisfina truncation point. For numerically lossless
compression al coding passes are included in the codestream and there is no ceiling on the per-tile bit rate of the
final layer.

It is possible that the entropy of the datain atileis small enough such that all of thetile's code-block coding passes
are coded using fewer bytes than available. In this case, the final layer containing coding pass data may be smaller
than the target. Additionaly, any remaining layers still exist, but contain no coding passdata. Each code-block is
marked as contributing zero coding passes to each of the extralayers.

For each tile and each layer, abinary search algorithm is used to determine the optimal RD-slope threshold t . The
layer comprisesall coding passes of al code-blocksin thetile which have not been included in a previous layer and
whose RD-slope value is greater than or equal tot . The RD-slope values are converted to a 16-hit
exponent/mantissa representation. Thefirst bit is0, the next six bits are used to represent the unsigned (positive)
exponent, and the remaining nine bits are used to represent the mantissa. Using the exponent/mantissa notation, the
RD-slopeis represented as:

M
25(1+§

Equation 2.40

The six-hit exponent, E, can take integer values from [0,63]. The nine-bit mantissa, M, can take integer values from

[0,2° - 1]. Thusthe 16-bit exponent/mantissa notation can represent arange of RD-slopesfrom 1 to nearly 2%,
Aswill be seen below, this 16-bit logarithmic re-mapping of the RD-dopes alows the iterative optimization
algorithm to converge on the correct thresholdt more quickly than a simple floating point linear representation of
the RD-dopes. Thisre-mapping doesincur asmall loss of precision in the RD-slope values. For each value of the
exponent E in the exponent/mantissa notation, only nine additional bits of precision are used in the mantissa M.
Thisloss of precision does not significantly affect the performance of the optimization algorithm.

68

22 Jan 2004, Working Draft ver 1.2

To convert floating-point RD-5 opes to exponent/mantissa notation, the following algorithm is used:

1) SetE=0

2) WhileE<63
If RD-slope £ 2- 27 then break from while loop
Else Set RD-slope=RD-dope/2and SetE=E+1

3) IfRD-slope> 2- 2 *° then Set RD-slope=2- 2°%°.

4) M= g5+ (RDslope- 1)2°(

5 IfM<0SetM=0

6) IfM>2°-1SetM=2-1.

During the conversion of RD-dlope values to exponent/manti ssa notation, a conservative estimate of the rate used for
certain thresholdsisformed. Specificaly, for each exponent value, E, a counter array tracks how many coding pass
bytes would be included if the layer had a boundary at the threshold corresponding to the exponent/mantissa pair

(E,0). Tocomputethe conservative estimates, the exponent, E , of each remapped RD-dope value is observed,

and all counters with an exponent E £ E areincremented by the associated rate. Note that the conservative rate
estimates are computed independently for each tile. The actual rate required for each threshold would be higher, as
header information is required in addition to the compressed coding pass bytes, but the conservative estimate can be
used to decrease theinitial range of the binary search to find the optimal threshold t , and thus decrease

computational complexity.

The iterative binary search algorithm for determining the optimal RD-dope threshold, t , at which to form the layer
boundary is described below.

1) Sethi_threshold = previous layer threshold (or if thisisthefirst layer, set it equal to maximum possible
exponent/mantissa pair (63,59-1))

2) Setlo_threshold = exponent/mantissapair (E,0), where E isthe largest exponent value for which the
conservative rate estimation is higher than the availablerate.

ghi _threshold + 1o __threshold
3 sert =S = u
& 2 H
4) Whilehi_threshold >1o_threshold
Calculate rate necessary to encode layer using threshold t

If rate necessary > available rate
Setlo_threshold=t +1

Else
Set hi_threshold =t

_ éhi _threshold + Io_thresholdg
& 2 H

At the conclusion of thealgorithm, t isthe optimal RD-slope threshold.

Set t

There are several comments to be made regarding this algorithm. The RD-slope values contained in lo_threshold
and hi_threshold are stored in 16-bit exponent/mantissa notation, but when used in arithmetic or logical operations,
aretreated asregular integers (i.e. integersin therange[0,2*°-1], since thefirst bit isalways0). This meansthat the
average taken in steps 3) and 4) isnot in general the arithmetic average of thetwo thresholds. Thisis not aproblem,
however, as the exponent/mantissa representation is an increasing function with respect to the standard integer
representation (i.e. if aand b are each 16-bits, and a>b when ab are interpreted as integers, then a>b when they are
interpreted as exponent/mantissa notation aswell). Thus the average operation will still converge on the optimal
threshold. By representing the wide range of possible RD-slope values using only 16 bits, the binary searchis
guaranteed to convergein no more than 16 iterations. The algorithm terminates upon finding the smallest value of
thethreshold t for which the required rateislessthan the available rate.

69

22 Jan 2004, Working Draft ver 1.2

The above algorithm must also alow the possibility that alayer will have the same threshold as the previous layer.
This happensin the case that the differential in bit rate between one layer and the next istoo small to contain the
coding passesincluded by decreasing the threshold at al.

Aseach potential threshold t isbeing tested, it is necessary to simulate the cost of forming alayer at thisthreshold.
Note that the target bit rates are given in terms of coding pass information only, and do not include the cost of any
main or tile-part header information. Thus when calculating the rate required to code alayer at a certain threshold,
only the cost required to encode the coding passesisincluded. Thiscost is calculated as asum of the cost of
individual packets. Essentialy, a packet contains compressed coding pass datafrom one layer of one precinct of
one resolution of onetile-component, as well as a packet header, which is needed to properly decode the coding pass
data. Packet headers areincluded in the rate required to form alayer at a certain threshold, and the construction of
packet headers must be simulated for each potential threshold in order to calculate an accuraterate. Packets are
discussed in detail in the following section.

In order to minimize the execution time necessary to converge on the optimal threshold t for a given layer, note
that for each potentia threshold, it isnot necessary to calculate the exact layer cost onceit is known that the cost is
higher than the available rate. Also, conservative rate estimates can be used to start the iterative binary search
algorithm with an accurate value for lo_threshold, allowing for quick convergence to the optimal threshold.

Once dl layers have been formed, the following datamust be retained in temporary storage for each code-block:
how many coding passes are included in each layer, and how many bytes (rate) are necessary for each layer to code
those coding passes. Thisinformation is used in the formation of packet headers. The RD-dope values are
discarded at this stage.

2.3.3.5 Packet Formation (Annex B.9)

In addition to the grouping of datainto code-blocks, precincts and layers as discussed previously, JPEG 2000 aso
organizes compressed datainto structures called packets. A packet isasegment of the codestream that containsa
packet header and the compressed image data from one layer of one precinct of one resolution of one tile-component
(packet body).

The concept of apacket is central to the layer formation algorithm discussed in the previous section. For each
potential RD-slope threshold examined during the binary search agorithm, it is necessary to simulate the cost of
forming alayer at that threshold. Thiscost isthe rate necessary to form the packetsfor that layer. For example, a
system-specificimageis JPEG 2000 compressed using afive-level wavelet decomposition with maximal precincts
and 19 quality layers. For each layer formed, there are six associated packets that contribute to the cost of that layer
—there are six resolutions, and only one precinct per resolution. Thus, there will be atotal of 6 x 19 = 114 packets
per tile. When the layer formation algorithm calculates the cost of forming alayer at a certain threshold, it is
calculating the cost of the packets comprising that layer. This cost isthe sum of both the packet headers and the
packet bodies. The cost of the packet bodies at a certain threshold is easy to compute. Itissimply the sum of the
cost of the coding pass data, for which stored rate values have already been pre-computed. The cost of a packet
header, however, must be determined by simulating its construction at the given threshold.

The compressed image data of a packet must occur contiguously as one unit in the codestream. Al though JPEG
2000 does alow packet headersto be grouped separately in PPM or PPT marker segments, in this system’s
implementation a packet header will appear in the codestream immediately preceding the packet body (compressed
image data).

The packet header is byte-aligned in the codestream. 1t must begin at the beginning of abyte, and it comprises a
whole number of bytes. Similarly, the packet body isbyte-aligned. Thisisclear from the fact that it contains only
code-block coding pass contributions, and each code-block contribution is awhole number of bytes. Consequently,
the total packet isbyte-aligned aswell.

70

22 Jan 2004, Working Draft ver 1.2

Within a packet body, the code-block contributions appear in a specific order. Since apacket contains data from
only one resolution, it will either contain data from just the LL band, or from all the subbands (HL, LH, HH) from a
particular resolution. For packets containing datafrom all three (HL, LH, HH) subbands, the code-block data
contributions occur one subband at atime. Code-block datafrom the HL subband appears first, followed by code-
block data from the LH subband, followed by data from the HH subband. Within any subband, the code-block data
appearsin raster-scan order, restricted to the relevant precinct. The number of coding passes contributed by each
code-block is determined during the RD optimization process.

Figure 2.37 illustrates how code-block coding passes may be distributed among different layers. The code-blocksin
this example correspond to atwo-level wavelet decomposition of a 256 x 256 tile using 64 x 64 code-blocks and

maximal precincts. In thisexample, the outer resolution does not contribute to the first layer— each code-block from
1HL, 1LH, and 1HH contributes zero coding passesto thefirst layer.

h

s M I AR E .l

Layer 2 JiJiJiJi_ﬁ_liﬁ |iJi

wmﬂﬂﬂ:

2LL 2HL 2LH 2HH IHL 1LH 1HH

Figure 2.37. Distribution of code-block coding passesamong different layers.

For aspecific code-block, the entire compressed coding pass data can be viewed as a single stream of bytes,
distributed among one or more packets. The coding passes must occur in sequential order in the overall codestream.
Each time a code-block contributesto a packet, it is necessary only to determine wherein the corresponding code-
block compressed data bit stream the most recent contribution from this code-block terminated, and include the next
set of bytes starting from that point.

A code-block contribution to a packet may not end with a OxFF byte. In this case, the OxFF byteis moved to the
subsequent packet that contains data from this code-block, or dropped if no such packet exists. The corresponding
rates associated with the affected coding passes must be adjusted accordingly. The rateof the final coding pass
included in the current packet is decreased by one, and the rate of the next coding pass, if any, isincreased by one.

Whereas the arithmetic encoding of the bit-planesisreferred to as Tier 1 (T1) coding, the packetization of the
compressed data and encoding of the packet header isreferred to as Tier 2 (T2) coding. The mgjority of the
computational complexity of a JPEG 2000 encoder residesin T1 coding. Codestream packets can be parsed,
shuffled and reordered using only T2 decoding, and thus JPEG 2000 codestreams can be rearranged with minimal
computational complexity.

71

22 Jan 2004, Working Draft ver 1.2

2.3.3.6 Packet Headers (Annex B.10)

The packet header contains the signaling information necessary to properly parse and decode the packet body. It
containsfivetypesof information:

1) Zero-length packet (Annex B.10.3)

2) Code-block inclusion (Annex B.10.4)

3) Zero bit-planeinformation (Annex B.10.5)

4) Number of coding passes (Annex B.10.6)

5) Length of compressed image data from each code-block (Annex B.10.7)

2.3.3.6.1 Bit Stuffing Routine (Annex B.10.1)

Bits are packed into header bytes from most significant bit (MSB) to least significant bit (LSB). When abyteis
completed, it is appended to the packet header. An OxFF byte must be immediately followed by a zero bit placed in
the MSB of the following byte, even if this occurs at the end of the packet header and requires an extra byte to be
appended to the header. The last byte of the packet header is bit-stuffed with ‘0’ s as necessary.

2.3.3.6.2 Tag Trees(Annex B.10.2)

Two types of data are represented in the packet header using a data structure called tag trees. Onetag treeis used to
represent the layer number in which each of the code-blocksisfirst present. A second tag treeis used to represent
the number of initially zero bit-planesfor each code-block. Although each tag tree represents information for all
code-blocksin the precinct, it is not encoded al at once in the packet header. The tag tree coding is distributed such
that as each code-block hasits header information encoded, only enough information about the tag treesis encoded
to allow that current code-block to be correctly signaled for the current packet.

Since only enough information about the tag treesisincluded in a packet header to correctly parse the coding pass
datafor that packet, it isthe case that tag trees are coded gradually over one or more packets. Thusthe state of each
tag tree must be stored after each packet, so that the next related packet (same precinct, resolution and tile-
component, but next layer) can continue coding the tag trees where the previous packet | eft off. During the RD
optimization algorithm, each time an optimal threshold isfound for alayer boundary, the tag trees associated with
each packet for that layer must be updated and stored to allow simulations for future layers to correctly compute
packet header costs. The procedure for encoding tag treesis described below.

In general, atag-treeisahierarchical method of representing atwo-dimensional array of non-negativeintegers. In
JPEG 2000 packet headers, thistwo-dimensional array represents a precinct within a subband, with each element
corresponding to a code-block within that precinct.

Fromtheorigina 2-D array, atree structure is created that containsa 2-D array for each reduced resolution, where
each element in the reduced resolution stores the minimum of the (up to) four pixelsin the corresponding 2x2
neighborhood in the higher resolution.

Mathematically, this can be described asfollows. Let g,() bethe 2-D array at resolution level n. Then, the next
reduced resolution is g,1(X,y) = min{ d.(2x,2y), g.(2x+1,2y), a.(2%,2y+1), g.(2x+1,2y+1)}. The procedureis
repeated recursively until the lowest resolution, gy(), is generated that contains asingle element.

First, consider asimple case where all information for the tag treeis coded at once. (Aswill be described later, the
JPEG 2000 use of tag treesis not this straightforward.) Once the reduced resolution tree is generated, the origina
array is processed in raster order (i.e. left to right and then top to bottom). For each element inthe origina array,
start at the root node go(0,0), and traverse the appropriate path in the tree to the branch node in the original array.
For any of these intermediate nodes that have not aready been coded, cal culate the difference between this node and
its parent, and code a0 bit for each increment, followed by asingle 1 bit to terminate that node. 1.e., 1 =no
increment necessary; 01 = increment by 1; 001 = increment by 2; etc. Assumean initia value of O for the “ parent”

72

22 Jan 2004, Working Draft ver 1.2

of theroot node. Continue for each element inthe origina array, skipping any intermediate node that has already
been coded.

Pseudocode for this simple procedure to code all tag tree information at onceis asfollows.

1) Let N = dogz(max{#rows,#cols})(j+1
2) Forn=N-2to 0 step—1
é#colsu
gZN—l— n H'l
é#rowsu
goN-Tn H'l
qn(X,y) = ml n{ qn+l(2X12y)1 qn+l(2X+112y)1 qn+l(2X!2y+l)1 qn+l(2X+1!2y+1)}
3) Fori =0to#cols—1
Forj =0to#rows—1
Forn=0toN-1

Forx=0to

Fory=0to

~ i 7
Letx = < u
oY
é j u
82N -1- nH
If g,(X,y) has not already been coded

Ifn=0
Letd=agn(x\y)

Lety =

Else

X
Letd=qu(xy) - qm(gza ?2’;)

Coded “0" bitsfollowed by asingle“1” bit

Consider the example from Annex B.10.2. Here, we are interested in coding the following two-dimensional array of
non-negative integers:

Original array (branches): gs()
1(3|2|3|]2]|3

2121432

2122|212

To start, we build the hierarchy of arrays for the reduced-resolution levels. Based on the maximum dimension of the
array (width = 6), we know that we need 3 reductions to get to a 1x1 root node, so we will call the original array
values gz(x,y). 1.e. gz(0,0) =1; g5(1,0) = 3; g3(2,0) = 2. Thefirst reduced resolution is created by taking the
minimum value of each 2x2 neighborhood. 1.e., g»(0,0) = min{gz(0,0), gs(1,0), 0x(0,1), gx(1,1)} =min{1, 3,2, 2} =
1; q(1,0) = min{g5(2,0), 0z(3,0), 05(2,1), 0z(3,1)} =min{ 2, 3, 1, 4} =1, etc. Sincethere are an odd humber of rows,
the bottom row of the reduced resolution is calculated on 2x1 neighborhoods. E.g., g,(0,1) = min{ gs(0,2), gx(1,2)} =
min{ 2, 2} = 2.

73

22 Jan 2004, Working Draft ver 1.2

First reduced resolution: ()

1 1 2

Continuing this pattern for the next reduced resolution, g;(0,0) = min{ g,(0,0), gx(1,0), 0x(0,1), 0x(1,1)} = min{1, 1,
2,2} =1. Sincethere are an odd number of columns, the rightmost column of the reduced resolution is calcul ated
on a 1x2 neighborhood: ¢,(1,0) = min{ (:(2,0), 92(2,1)} = min{2, 1} = 1.

Second reduced resolution: g,()

Finally, the last reduced resolution is simply g,(0,0) = min{ ¢,(0,0), 9:(1,0)} =min{1, 1} = 1.

Lowest resolution (root): gy()

Once the reduced resol ution arrays are created, we can code each element in the original array (). Thearray is
coded in raster order, so we start with g3(0,0). To get to g;(0,0), the hierarchy is traversed from root to branch in the
following order: qq(0,0) -> g,(0,0) -> g,(0,0) -> 0z(0,0). We start off with aninitial value of 0. At node gy(0,0), we
have the value 1, so our initial value of 0 must be incremented by 1. Thus, we code asingle 0 bit followed by a 1.
At ,(0,0), we have the value 1, which isthe same as that at the parent node g,(0,0), so we don’t code any O bits—
only al. Atg,(0,0), weagain havethevaue 1, sothecodeissimply albit. Finaly, at g;(0,0), we have the value
1, so again thereis no incrementing and we simply codea 1. Thus, the entire code for g5(0,0) is 01111, and this
includes coding of theintermediate nodes ¢,(0,0), 9;(0,0), and g,(0,0).

Next, we need to code g5(1,0). The hierarchy istraversed in the following order: g«(0,0) -> g;(0,0) -> g,(0,0) ->
05(1,0). Now, we aready have coded ¢,(0,0), 4,(0,0), and ¢,(0,0), so al that remainsisto code g3(1,0) based on the
knowledge that its parent at g,(0,0) is1. To code gz(1,0) = 3, we need to increment ¢,(0,0) by 2, so we code two O
bits followed by a1, and the code for g;(1,0) is001.

Next, we need to code g3(2,0). The hierarchy istraversed in the following order: g«(0,0) -> g;(0,0) -> g,(1,0) ->

0:(2,0). Wedready have coded g,(0,0) and g,(0,0), so we begin with g,(1,0). Since g,(1,0) = g,(0,0), we simply
codeal. Then, g;(2,0) =2=0,(1,0) + 1, sowe codeasingle O followed by al. Thus, the codefor g;(2,0) is 101.

74

22 Jan 2004, Working Draft ver 1.2

If we continue this processfor the rest of the array, the results are asfollows:

Intermediate nodes Leaf nodes Code
0e(0,0)=1 01
a(0,00=1 1
qz(0,0) =1 1
(0,0 =1 1
03(1,0)=3 001
0(1,0)=1 1
03(2,0)=2 01
03(3,0)=3 001
0(1,0)=1 1
0p(2,0)=2 01
(4,0)=2 1
03(5,0)=3 01
03(0,1) =2 01
0(1,1)=2 01
(2,1)=1 1
0s(3,1)=4 0001
03(4,1)=3 01
0(5,1) =2 1
0(0,1) =2 01
03(0,2) =2 1
R(1,2)=2 1
0p(1,1)=2 01
0s(2,2) =2 1
03(3,2) =2 1
®(21)=1 1
4,2 =1 1
(5,2 = 2 01

Thus, we are able to fully encode this 6x3 array of non-negative integers using atotal of 44 bits. Note that this
example does not fully explain the use of tag trees for JPEG 2000, which will be described next.

JPEG 2000 allows tag trees to be partially coded at any given time, and the resulting bit order in the code stream is
not strictly the same asthe full coding example above. While each layer processes code-blocksin astrict raster
order, it may be the case that information for a certain code-block may be needed in an earlier layer than that for a
code-block with alower raster index, and in this case code bits related to the higher raster index code-block will
appear earlier inthe code stream. Furthermore, with JPEG 2000, at any given time the tag treeis only coded to the
minimum extent necessary to answer arelevant question about whether the value at aleaf is at least some quantity.
To avoid redundancy, each tag tree must maintain state information identifying the current value of each node in the
tree and whether or not that node’ s value has been locked in (i.e. a 1 has been coded).

The pseudocode for partial tag tree coding is provided below. Assume we start with atag tree created using steps 1
and 2 of the previous procedure for afully coded tag tree. For each node g,(x,y), let V(n,x,y) be the current tag tree
value, and L(n,x,y) be aflag indicating whether the value of this node has been locked in (1) or not (0). Initially set
V(n,x,y) =0and L(n,x,y) =0for al n, x, and y. We define a procedure T(x,y,t) that, given the state stored in VV and
L, will code dl of the partial tag tree information necessary to answer the question “is gy.1(X,y) >=1t7" asfollows:

75

22 Jan 2004, Working Draft ver 1.2

For n=0to N-1 #for each level of the tag tree, starting at theroot

s

,_é x u
Letx = S_ZN'l'nH
é a
Lety = 8 H
#if node’ scurrent value < parent’ svalue, set node' svalue = parent’ svalue
éex'u ey u
If (n>0)and (V(nX',y')<V(n1, 8 "
2082
éx'u ey u
V(nx.y)=V(n1i,
82 82

while node’ s current value < threshold, and node is not locked
While (V(n,x',y") <t)and (L(n,x’,y") =0)
#if node' s current value < node’' sfinal value, increment node’ s current value
IfV(nx.y') <an(x'.y’)
SaVihxy)=Vvnxy)+1
Emit a“0" bit
else lock the current value of the node
Else
SalL(hxy)=1
Emit a“1” bit
#if current node' s value >= threshold, we know leaf is >= threshold so wearedone
IfV(nx,y)>=t
Return TRUE
elseif wefinished processing the leaf node, we know that leaf is < threshold
Elseif n=N-1
Return FALSE
otherwise, continue to the next node on the path, i.e. the next iteration of the for -loop

Note that athough intuitive, the algorithm above may not be the most efficient method for encoding tag trees. Any
valid implementation, though, must achieve the same bit stream as this algorithm.

2.3.3.6.3 Zero-Length Packet (Annex B.10.3)

Thefirst information included in the packet header isasingle bit to indicate if the packet has alength of zero (i.e., is
empty). A ‘0" indicates an empty packet. In this case the packet header is one bytelong (therest of the byteis
padded with zeros) and the packet body is zero bytes. The empty packet symbol may be used by bit-stream parsers
to effectively discard packets from an existing bit-stream without interfering with global packet ordering constraints.
Itisnot typically used when a packet constructed using the RD optimization algorithm happensto contain no coding
passes, as may happen when two target bit rates are too close. Nor isit typically used when a packet contains no
coding passes because all possible coding passes appeared in previous packets, as may occur if target bit rates for
layers exist that are higher than the entropy of the wavelet coefficients. Inthesecases, a‘l’ hitisusedto signal a
non-empty packet, and the remainder of the packet header is used to indicate that there are no coding passes present
in the packet.

The recommended JPEG 2000 encoder will always set the first bit of the packet header to ‘1. In the case where
empty packetsfor aprecinct are later followed by non-empty packets for this precinct, it may actually beinefficient
to codea‘0’, because the tag tree information for these empty packets will need to be transmitted with the later
packets rather than incrementally taking advantage of the unused 7 bitsin the packet header (due to byte alignment).
Although thereis no such issue in handling empty packets when all possible coding passes appeared in previous
packets, for smplicity we implement a consistent policy where thefirst bitisalways‘1'.

The remainder of the packet header contains some information for each code-block in the relevant precinct. This
information appears in the same order as the compressed datain the packet body. All header information for the HL

76

22 Jan 2004, Working Draft ver 1.2

subband appearsfirst, followed by header information for the LH subband, followed by information for the HH
subband. Within each subband, header information isincluded for the relevant code-blocks (those in the current
precinct) in raster-scan order, with al header information for the first code-block encoded first, and so forth.

2.3.3.6.4 Code-Block Inclusion (Annex B.10.4)

For each code-block, the first information that is coded in the packet header is whether or not data from this code-
block isincluded in the current layer. If the code-block has aready been included in any previous packet, this
information issimply coded using a0 or 1 to indicate that the code-block is or is not included in the current layer. |If
the code-block has not previously been included, a more complicated method using atag treeis used to exploit
redundancy.

Each precinct maintains a separate tag tree for each subband it covers. The valuesin the tag tree are the number of
the layer (starting with Q) in which each code-block isfirst included. Although each bit associated with the full code
of atag tree will be used at some point in the (non-truncated) codestream, only those bits that are required for
determining if the code-block isincluded in the current layer are placed in the packet header for thislayer. If some
of thetag tree is already known from previous code-blocks or previous layers, it is not repeated. Furthermore, the
path to the current leaf node is only coded to the point where it can be inferred whether the code-block isincluded or
not inthislayer. It may not be necessary to finish coding the entire branch to the leaf, and it may happen that a node
isonly partialy coded during the current layer.

For instance, suppose we are processing layer 2 for acode-block which isnot included until layer 6. Furthermore,
suppose that the parent of this node i n the tag tree has afinal value of 4, and that its parent has already been fully
coded for avalue of 2 (while processing a previous code-block). If weincrement the current code-block’s parent
from 2 to 3, we aready know that the current code-block cannot be included in layer 2. Thus, we would simply
code a 0 to increment the current value of the parent, and we would move on to the next code-block in the precinct.
Asother code-blocks and layers are processed, eventually the parent node will be incremented to afina value of 4
(viaadditional code-bits 01), and then the leaf node will be incremented to afinal value of 6 (via code-bits 001), but
these bitswill be sent one at atime on an as-needed basis. The decoder knows to stop reading tag tree bits as soon
asit hasthe information needed to determine if the current code-block isincluded in the current layer.

2.3.3.6.5 ZeroBit-Plane Information (Annex B.10.5)

During entropy coding, the all-zero most significant bit-planes are skipped, and coding passes start at the most
significant bit-plane with anon-zero element. When acode-block isincluded for the first time, it is necessary to
signal the number of zero bit-planes that were skipped, so that the decoder may determine the significance of the
first bit-plane coded for that code-block.

The number of missing most significant bit-planesis coded in the packet header with a separate tag tree for each
precinct, in the same manner as the code-block inclusion information. Processing the zero bit-planestagtreeis
intuitively alittle more straightforward, though, since the full path to the code-block leaf isimmediately required
when that code-block isincluded for thefirst time. When applying the partial tag tree coding algorithm in Section
2.3.3.6.2, simply perform the procedure T with threshold t =¥ to force coding al the way to the leaf.

77

22 Jan 2004, Working Draft ver 1.2

2.3.3.6.6 Number of Coding Passes (Annex B.10.6)

The number of coding passes included from each code-block is signal ed using Huffman-style codewords from Table
2.10 (Table B-4):

Table2.10 Codewordsfor the number of coding passesfor each code-block

Number of coding passes Codeword in packet header
1 0
2 10
3 1100
4 1101
5 1110
6—36 111100000-111111110
37-164 11111111 1000 0000—11111111 1111 1111

2.3.3.6.7 Length of Compressed Image Data from Each Code-Block (Annex B.10.7)

Since the recommended JPEG 2000 encoder does not use arithmetic coding bypass, each code-block contribution
will contain asingle codeword segment. The packet header encodes the length of the codeword segment using a
binary number. The number of bitsin this binary number is calculated using Equation 2.41 (Equation B.19):

bits = Lblock + gog 2(coding passesadded)]
Equation 2.41

Consider theexamplein Annex B.10.7.1. Suppose that i n successive layers a code-block has 6 bytes, 31 bytes, 44
bytes, and 134 bytes respectively. Further assume that the number of coding passesis1, 9, 2, and 5. Initialy, the
value of Lblock is 3. When processing the first layer, we need to encode thevalue of 6 (110), which requires at least
3 bits. Based on Equation 2.41, if we keep Lblock at itsinitial value of 3, wewould use 3 + log,1 = 3 bits. Thisis
sufficient, so we do not increment Lblock, and the code word is 0110, where the leading zero delimits the fact that
Lblock isnot incremented. When processing the second layer, we need to encode the value of 31 (11111), which
requires at least 5 bits. Based on Equation 2.41, with Lblock of 3, we use 3 + 10g,9 = 6 bits (excluding the Lblock
delimiter), so the code word is 0011111. When processing the third layer, we need to encode the value of 44
(101100), which requires at least 6 bits. If Lblock were to remain 3, we would have only 3 + log,2 = 4 bits, so we
need to increment Lblock by 2. We do this by prepending two ones prior to the zero delimiter, and the code word is
110101100. Finaly, when processing the fourth layer, we need to encode the value of 134 (10000110), which
requires at least 8 hits. Since Lblock isnhow 5, we would have 5 + log,5 = 7 bits, so we need to further increment
Lblock by 1. So, we prepend asingle one prior to the zero delimiter, and the code word is 1010000110.

78

22 Jan 2004, Working Draft ver 1.2

2.3.3.6.8 Order of Information Within Packet Header (Annex B.10.8)
The overall packet header construction is outlined below:

1) CODE one hit to indicate zero or non-zero packet
2) If nonzero
For each subband (LL, or HL, LH and HH)
For al code-blocks in the subband, confined to the relevant precinct, in raster-scan order
CODE code-block inclusion bits (if not previously included, use tag tree,
otherwise single bit)
If code-block included
If first-timeinclusion
CODE zero hit-planes information
CODE number of coding passes
CODE length of coding pass data
3) Bit stuff to byte boundary with ‘0’s.

Consider the example of packet header construction from Annex B.10.8 (Figure B-13 and Table B-5). We consider
asingle precinct with six code-blocks. Code-block 0,0 isfirst included in layer O; it has 3 missing most-significant
(zero) bit-planes; in layer 0 it contains 4 bytesin 3 coding passes, and in layer 1 it contains 10 bytesin 3 coding
passes. Code-block 1,0isfirst included inlayer O; it has 4 missing bit-planes; in layer O it contains 4 bytesin 2
coding passes, and in layer 1 it contains no data. Code-block 2,0isfirstincluded in layer 2; it has 7 missing bit-
planes. (For thisexample, wewill only consider layersO and 1.) Code-block 0,1 isfirstincluded in layer 2; it has 3
missing bit-planes. Code-block 1,1 isfirstincluded in layer 1; it has 3 missing bit-planes; in layer 1 it contains 1
bytein 1 coding pass. Code-block 2,1 isfirst included inlayer 1; it has6 missing bit-planes; in layer 1 it contains 2
bytesin 1 coding pass. Thisinformation, and the resulting tag trees for the inclusion information and zero bit-
planes, is detailed below.

Inclusion information Zero bit-planes # of coding passes (layer 0) Length information (layer 0)
0|0} 2 34| 7 312 |- 4 | 4| -
2 1|1 313|6 -1 =-1- - =1 -
Inclusion tag tree Zero bit-planestagtree # of coding passes (layer 1) Length information (layer 1)
3| -1 - 10| - | -
0 1 3 6
-111]1 - 1112
0 3

79

22 Jan 2004, Working Draft ver 1.2

Theresulting bit-stream is provided in Table B-5 and is repeated here for convenience. Each step in thistable will

be further described below.
Packet for layer O
St#ep %'rt] irrgslr;l Derived meaning
1 1 Packet non-zero in length
2 111 Code-block 0,0 included for thefirst time (partia inclusion tag tree)
3 000111 Caode-block 0,0 insignificant for 3 bit-planes
4 1100 Code-block 0,0 has 3 coding passesincluded
5 0 Code-block 0,0 length indicator is unchanged
6 0100 Code-block 0,0 has 4 bytes, 4 bitsare used, 3 + floor(log, 3)
7 1 Code-block 1,0 included for thefirst time (partial inclusion tag tree)
8 01 Caode-block 1,0 insignificant for 4 bit-planes
9 10 Code-block 1,0 has 2 coding passesincluded
10 10 Code-block 1,0 length indicator increased by 1 bit (3 to 4)
11 00100 Code-block 1,0 has 4 bytes, 5 bits are used, 4 + floor(log, 2)
(Notethat whilethisis alegitimate entry, it is not minimal in code length)
12 0 Code-block 2,0 not yet included (partial tag tree)
13 0 Code-block 0,1 not yet included
14 0 Code-block 1,1 not yet included
15 Code-block 2,1 no yet included (no data needed, aready conveyed by
partial tag tree for code-block 2,0)
16 ... Packet header datafor the other subbands, packet data
Packet for layer 1
St#ep %Ir: ztrrde:; Derived meaning
17 1 Packet non-zero in length
18 1 Code-block 0,0 included again
19 1100 Code-block 0,0 has 3 coding passesincluded
20 0 Code-block 0,0 length indicator is unchanged
21 1010 Code-block 0,0 has 10 bytes, 4 bits are used, 3 + floor(log, 3)
22 0 Caode-block 1,0 not included in thislayer
23 10 Code-block 2,0 not yet included
24 0 Code-block 0,1 not yet included
25 1 Code-block 1,1 included for thefirst time
26 1 Caode-block 1,1 insignificant for 3 bit-planes
27 0 Caode-block 1,1 has 1 coding passincluded
28 0 Code-block 1,1 length information is unchanged
29 001 Code-block 1,1 has 1 byte, 3 bitsare used, 3 + floor(log, 1)
30 1 Code-block 2,1 included for thefirst time
31 00011 Caode-block 2,1 insignificant for 6 bit-planes
32 0 Caode-block 2,1 has 1 coding passincluded
33 0 Code-block 2,1 length indicator is unchanged
34 010 Code-block 2,1 has 2 bytes, 3 bitsare used, 3 + floor(log, 1)
35 ... Packet header datafor the other subbands, packet data

Further explanation of each step in this coding example follows:

1)

2)

First, we create the packet for layer 0. Thefirst bit in each packet is used to indicate that the packet is not zero
length.

We process each code-block in the precinct in raster order, so the first code-block we consider is0,0. This
code-block isincluded for the first timein thislayer, so we use theinclusion tag tree to signal thisfact. Starting
at theroot of thetag tree, we visit all nodeson adirect lineto the leaf for code-block 0,0. Sincewe have not yet

80

22 Jan 2004, Working Draft ver 1.2

3)

4)

5)

6)

8)

9)

10)

11)

12)

13)

14)

coded any partial information for the tag tree, we need to code the root node gy(0,0), the intermediate node
0:(0,0), and the leaf node g,(0,0). Each of these three nodesis 0, so there is no need to increment the default
states of any of these nodes, and each nodeislocked in by codingal. Thus, the codewordis111.

Since code-block 0,0 isincluded in this layer for the first time, we need to code the number of zero bit-planes
that were skipped. For this, we use the zero bit-planestag tree, which is a separate tag tree from the inclusion
information tag tree, with itsown state. In thistag tree, we have not coded any partia information yet, so we
start at the root and code all nodes on the branch to the leaf for code-block 0,0. Theroot g«(0,0) is3, but its
initial state was 0, so we need to increment by 3; i.e. we code three Osfollowed by altolock inthevalue. The
intermediate node g,(0,0) isalso 3, so thereisno increment to its parent’ svalue, and we codethe 1tolock in its
value. Theleaf node g,(0,0) isalso 3, so again we simply codeal. Thus, the codeword is000111.

Since code-block 0,0 isincluded in this layer, we must code the number of coding passes and the length of the
compressed image data. The number of coding passesis coded using the look-up tablein Table 2.10 (Table B-
4). For 3 coding passes, the code-word is 1100.

The length of the compressed image datais 4 bytes, i.e. 100 in binary. Thisrequires at least 3 bits. The current
value of Lblock for code-block 0,0 is unchanged from itsinitial value of 3, and the number of bitsused is
calculated to be 4, using Equation 2.41 (Equation B.19). Wefirst code asingle 0 to indicate that the value of
Lblock was unchanged.

Then, we code the data length as a binary number using 4 bits, and the codeword is 0100.

Now, we proceed in raster order to code-block 1,0. Itisincluded for thefirst timein thislayer, so we usethe
tag treeto code thisinformation. Starting from the root, both gy(0,0) and g,(0,0) have been locked in and coded
as 0, and thus are not coded at this point intime. Theleaf g,(1,0) isalso 0, so its statedoes not need to be
incremented above that of its parent ¢,(0,0). So, we simply code a1 to lock in the value.

Since code-block 1,0 isincluded in this layer for the first time, we need to code the number of zero bit-planes
that were skipped, using the zero bit-planestag tree. In thistag tree, we have aready locked in and coded
0p(0,0) and g;(0,0) with the value 3. Theleaf g,(1,0) has avaue of 4, so we need to increment by one (i.e. code
asingle0) and lock in the value (i.e. code al). Thus, the code wordis01.

The number of coding passesis coded using the look-up tablein Table 2.10 (Table B-4). For 2 coding passes,
the code-word is 10.

The length of the compressed image datais 4 bytes, i.e. 100in binary. Thisrequiresat least 3 bits. Ina
minimal code-length implementation, there would be no need to change the value of Lblock for code-block 1,0
at thispoint intime. In such aminimal code-length implementation, we would code a0 to indicate that Lblock
is unchanged followed by 0100 to code the value 4 using 4 bits. In this example, however, Lblock is
prematurely incremented by 1 (from 3 to 4), so we code asingle 1 for the increment followed by a0; i.e. the
codewordis 10. Note that although not optimal, this premature incrementing of Lblock islegitimate, and a
decoder must be able to handleit.

Using the value of Lblock = 4, we calculate that we need to use 5 bitsto represent the data length, so the
codeword is00100.

Next, we proceed to code-block 2,0. It has not yet been included, and will not be included until layer 2, so we
must use the tag tree to indicate thisfact. Therule for theinclusion tag tree isthat only theinformation that is
necessary at this point intimeisto be coded. At thispointintime, all we need to know isthat code-block 2,0is
not included in layer 0. It does not matter whether it will beincluded in layer 1 or layer 2. Starting at the root
node g,(0,0), we have dready locked in the value of 0. The next node in the path to the leaf isthe intermediate
node g,(1,0). If weincrement the current state of ¢,(1,0) from 0to 1, we know that all its children must have a
value of at least 1. Thisisall we need to know that code-block 2,0 isnot included in layer 0, so thisis all that
wewill codeat thispointintime. |.e., codeasingle 0 to increment g,(1,0). At thistime, we do not code the 1
tolock in the value of g;(1,0) as 1.

Next, we proceed to code-block 0,1. It has not yet been included, so we use the tag tree to indicate this. We
have already locked in its parent at g;(0,0) with the value 0, so we are now coding the leaf node g,(0,1). All we
need to do at this point in time isincrement its current state by 1 to indicate that it is not included until at least
layer 1. While processing the current layer, we do not need to increment this node all the way to itsfina value
of 2. Notethat thereisno option here— it would beillegal to code any more information than necessary for this
layer, as the decoder would interpret the extra bits as part of the codeword for the next code-block. So, we code
asingleO.

Code-block 1,1 isalso not yet included, so we usethe tag tree. Again, we have already locked in its parent at
0:(0,0) with the value 0, so all we need to do at thistimeisincrement g,(1,1) by 1 to indicate that it is not
included until at least layer 1. So, the codeword isalso asingleO.

81

22 Jan 2004, Working Draft ver 1.2

15) Code-block 2,1 isalso not yet included, so we use thetag tree. Its parent at g,(1,0) has already been
incremented to a current value of 1, so we aready know that g,(2,1) isat least 1 and thereforeis not included in
layer 0. Thisisall we need to know right now, so no information is coded for this code-block in thislayer.

16) After completing this subband of this precinct, the other subbands of this precinct (if applicable) are processed
inasimilar manner using their own sets of tag trees. Once the packet header is complete for al the subbands of
this precinct, the compressed image data for thislayer’ s packet is appended to the codestream.

17) Next, we consider the packet for layer 1 of the same precinct. All tag tree states have remained from the
processing performed on the packet header for layer 0. We start the new packet by coding a 1 to indicate that
the packet is not zero-length.

18) Now, we again visit all code-blocksin the precinct in raster order. Starting with code-block 0,0, we see that
thereis additional dataincluded in thislayer. Since code-block 0,0 was aready included, we do not use the tag
tree, but simply code a1 toindicate that it isincluded again in thislayer.

19) Sincethisisnot thefirst time that code-block 0,0 wasincluded, we are not concerned with zero bit-planes, and
we proceed directly to the number of coding passes. From the look-up tablein Table 2.10 (Table B-4), the
codeword for 3 coding passesis 1100.

20) Thelength of the compressed image datais 10 bytes, i.e. 1010 in binary. With the current value of Lblock for
code-block 0,0 equal to 3, we calculate that we would use 4 bits. Sincethisis sufficient, thereisno need to
increment Lblock, and we code a 0 to indicate this fact.

21) Using 4 bits, we code the length as 1010.

22) Code-block 1,0isnot includedinlayer 1. Sinceit was previously included, we do not use the tag tree, but
simply code a0 to indicate that it is not included again in thislayer.

23) Code-block 2,0isstill not yet included. Referring to the inclusion tag tree, we previoudy (in step 12) had
incremented its parent at g;(1,0) to 1 but did not lock initsvalue. Knowing that g,(1,0) isat least 1 and
therefore g,(2,0) isat least 1 isnot sufficient to know if code-block 2,0 isincluded in layer 1, so we need to
continue coding this branch of the tag tree. The next step isto lock in the current value of 1 for node g;(1,0)
with acode of 1. Then, we can increment the current value for node g,(2,0) from 1 to 2 with a code of 0.
Remember that at thistimeit is not necessary to lock in the value of node g,(2,0) — aslong as we know that its
valueisat least 2, we know that this code-block is not included in layer 1. Thus, the codeword is 10.

24) Code-block 0,1 isaso not yet included. Referring to the inclusion tag tree, we previoudly (in step 13) had
incremented the current value of g,(0,1) to 1, and now we need to increment it once moreto 2. Again, it isnot
yet necessary to lock in the value as 2 — just knowing that the value is at least 2 impliesthat this code-block is
not included in layer 1. Thus, the codeword issimply O.

25) Code-block 1,1isincluded for thefirst timeinlayer 1. Referring to theinclusion tag tree, we previoudly (in
step 14) had incremented g,(1,1) to 1, and now we need to lock it in asafinal value using the codeword 1.

26) Since code-block 1,1 isincluded for the first time, we need to code the zero bit-planes using the associated tag
tree. We have already coded and locked in avaue of 3 for g;(0,0), so we just heed to lock in this value of 3for
(1,1). Thus, the codewordissimply 1.

27) Fromthelook-up tablein Table 2.10 (Table B-4), the codeword for 1 coding passisO.

28) Thereisno need to increment Lblock for code-block 1,1, so we code thiswith a0.

29) Based on Lblock of 3, we calculate to use 3 bits, so the codeword for a compressed image data length of 1 byte
is001.

30) Code-block 2,1 isincluded for thefirsttimeinlayer 1. Referring to the inclusion tag tree, we previoudly (in
step 23) locked in the parent node g,(1,0) with avalue of 1. Now, we must lock in the leaf node at g,(2,1) with
its current value of 1, sowecodea 1.

31) Sincecode-block 2,1 isincluded for the first time, we need to code the zero bit-planes using the associated tag
tree. Starting from the root and following the path to this code-block, we see that q,(0,0) was aready locked in
with the value of 3, but g;(1,0) has not been processed at al. We need to increment g;(1,0) from 3to 6, which
requires coding three Os, and we lock thisvalue in by coding al. Then, we proceed to g,(2,1), where we ssimply
need to lock in the current value of 6 (same asits parent), by codingal. Thus, the codeword is 00011.

32) Fromthelook-up tablein Table 2.10 (Table B-4), the codeword for 1 coding passisO.

33) Thereisno need to increment Lblock for code-block 2,1, so we code thiswith a0.

34) Based on Lblock of 3, we calculate to use 3 hits, so the codeword for a compressed image data length of 2 bytes
is010.

35) Finaly, after completing this subband of this precinct, the other subbands of this precinct (if applicable) are
processed for layer 1 inasimilar manner using their own sets of tag trees. Once the packet header is complete

82

22 Jan 2004, Working Draft ver 1.2

for al the subbands of this precinct, the compressed image datafor this layer’s packet is appended to the
codestream.

2.3.3.7 Tile Codestream Formation (Annex B.11)

JPEG 2000 allowsthetile codestream datato be split into one or moretile-parts. Each tile part has associated with
it atile-part header, which is agroup of markers and marker segments at the beginning of thetile-part in the
codestream that describes thetile-part coding parameters. Thetile-part header isfollowed by the packets contained
inthetile-part. Inthe recommended implementation, only onetile-part is used for each tile. Thus, thetile
codestream contains onetile-part header, followed by al of the tile data packets ordered in LRCP progression (see
Section 2.3.3.8). Thedetailsregarding the structure of thetile-part headers, including the ordering of the marker
segments and system-specific parameters, are discussed in other documentation.

2.3.3.8 Progression Order (Annex B.12)

Once all packets for atile have been formed, they must be organized within the codestream. JPEG 2000 allows five
ordering schemes that can be selected to control the sequence in which packets occur in atile codestream. A single
ordering scheme can be used to order all the packets, or the ordering scheme can be changed as often as desired
within the codestream. For thisimplementation of JPEG 2000, the tile codestream is formed using one progression
ordering scheme, which is signaled in the COD marker of the main header (see Section 2.3.3.9). The progression
order is layer-resol utiorn-component-position (LRCP), and is described by a series of nested for loops:

for each layer =1,2,3,...
for each resolution =1,2,3,...
for each comporent =1,2,3,...
for each position (precinct) = 1,2,3,...
Include corresponding packet

Note that this simplifies for images with only one component and when maximal precincts are used (such that each
subband has only one precinct). In this casethereisonly one packet per layer-resolution, and, for a specific tile, the
number of packets per layer is equal to the number of resolutions. This knowledge can be used to quickly locate a
specific packet within the tile codestream.

Given an LRCP orderi ng scheme, the packets corresponding to any particular resolution are distributed throughout
thetile codestream, and thus to obtain alower resolution version of thetile, it is necessary to jJump around within the
codestream to grab the desired packets and skip the unwanted packets. This parsing is made easier with thea priori
knowledge that each layer-resolution has only one packet.

2.3.3.9 Image Codestream Formation (Annex A)

Theimage codestream is formed by merging the tile-part codestreams and including amain header and end of
codestream (EOC) symbol. Thetile codestreams (each containing onetile-part) are included in raster-scan order.
The main header is agroup of markers and marker segments at the beginning of the codestream that describes the
image parameters and coding parameters that apply (unless overridden by later markers) to every tile and tile-
component. The details regarding the structure of the main header, including the ordering of the marker segments
and system-specific parameters, are discussed in other documentation.

! It should be noted that the requirement for visually lossless quality is a more stringent requirement than simply “being as good as the 4.3
DPCM”. Thus, the overall achieved bit rates for imagery are likely to be higher than the estimates from this study.

83

