PostGIS 3.1.10 Manual
Contents

1 Introduction ... 1
 1.1 Project Steering Committee 1
 1.2 Core Contributors Present 1
 1.3 Core Contributors Past 2
 1.4 Other Contributors 2

2 PostGIS Installation 5
 2.1 Short Version 5
 2.2 Compiling and Install from Source 5
 2.2.1 Getting the Source 6
 2.2.2 Install Requirements 6
 2.2.3 Build configuration 7
 2.2.4 Building .. 9
 2.2.5 Building PostGIS Extensions and Deploying them ... 9
 2.2.6 Testing ... 11
 2.2.7 Installation 26
 2.3 Installing and Using the address standardizer 26
 2.3.1 Installing Regex::Assemble 27
 2.4 Installing, Upgrading Tiger Geocoder and loading data 27
 2.4.1 Tiger Geocoder Enabling your PostGIS database: Using Extension 27
 2.4.1.1 Converting a Tiger Geocoder Regular Install to Extension Model ... 30
 2.4.2 Tiger Geocoder Enabling your PostGIS database: Not Using Extensions ... 30
 2.4.3 Using Address Standardizer Extension with Tiger geocoder 31
 2.4.4 Loading Tiger Data 31
 2.4.5 Upgrading your Tiger Geocoder Install 31
 2.5 Common Problems during installation 32
4.6 Topology

4.6.1 Topology Types

4.6.1.1 getfaceedges_returntype

4.6.1.2 TopoGeometry

4.6.1.3 validatetopology_returntype

4.6.2 Topology Domains

4.6.2.1 TopoElement

4.6.2.2 TopoElementArray

4.6.3 Topology and TopoGeometry Management

4.6.3.1 AddTopoGeometryColumn

4.6.3.2 DropTopology

4.6.3.3 DropTopoGeometryColumn

4.6.3.4 Populate_Topology_Layer

4.6.3.5 TopologySummary

4.6.3.6 ValidateTopology

4.6.4 Topology Statistics Management

4.6.5 Topology Constructors

4.6.5.1 CreateTopology

4.6.5.2 CopyTopology

4.6.5.3 ST_InitTopoGeo

4.6.5.4 ST_CreateTopoGeo

4.6.5.5 TopoGeo_AddPoint

4.6.5.6 TopoGeo_AddLineString

4.6.5.7 TopoGeo_AddPolygon

4.6.6 Topology Editors

4.6.6.1 ST_AddIsoNode

4.6.6.2 ST_AddIsoEdge

4.6.6.3 ST_AddEdgeNewFaces

4.6.6.4 ST_AddEdgeModFace

4.6.6.5 ST_RemEdgeNewFace

4.6.6.6 ST_RemEdgeModFace

4.6.6.7 ST_ChangeEdgeGeom

4.6.6.8 ST_ModEdgeSplit

4.6.6.9 ST_ModEdgeHeal

4.6.6.10 ST_NewEdgeHeal

4.6.6.11 ST_MoveIsoNode

4.6.6.12 ST_NewEdgesSplit

4.6.6.13 ST_RemoveIsoNode

4.6.6.14 ST_RemoveIsoEdge
4.6.7 Topology Accessors .. 108
 4.6.7.1 GetEdgeByPoint .. 108
 4.6.7.2 GetFaceByPoint ... 109
 4.6.7.3 GetNodeByPoint ... 110
 4.6.7.4 GetTopologyID .. 111
 4.6.7.5 GetTopologySRID .. 112
 4.6.7.6 GetTopologyName .. 112
 4.6.7.7 ST_GetFaceEdges .. 113
 4.6.7.8 ST_GetFaceGeometry .. 114
 4.6.7.9 GetRingEdges .. 114
 4.6.7.10 GetNodeEdges ... 115

4.6.8 Topology Processing ... 115
 4.6.8.1 Polygonize ... 115
 4.6.8.2 AddNode .. 116
 4.6.8.3 AddEdge .. 117
 4.6.8.4 AddFace .. 118
 4.6.8.5 ST_Simplify ... 119

4.6.9 TopoGeometry Constructors ... 120
 4.6.9.1 CreateTopoGeom .. 120
 4.6.9.2 toTopoGeom ... 121
 4.6.9.3 TopoElementArray_Agg ... 122

4.6.10 TopoGeometry Editors .. 123
 4.6.10.1 clearTopoGeom .. 123
 4.6.10.2 TopoGeom_addElement 123
 4.6.10.3 TopoGeom_remElement 124
 4.6.10.4 toTopoGeom ... 124

4.6.11 TopoGeometry Accessors .. 125
 4.6.11.1 GetTopoGeomElementArray 125
 4.6.11.2 GetTopoGeomElements 125

4.6.12 TopoGeometry Outputs ... 126
 4.6.12.1 AsGML .. 126
 4.6.12.2 AsTopoJSON ... 128

4.6.13 Topology Spatial Relationships 129
 4.6.13.1 Equals ... 129
 4.6.13.2 Intersects .. 130

4.7 Address Standardizer .. 131
 4.7.1 How the Parser Works .. 131
 4.7.2 Address Standardizer Types 131
 4.7.2.1 stdaddr .. 131
4.7.3 Address Standardizer Tables ... 132
 4.7.3.1 rules table .. 132
 4.7.3.2 lex table ... 135
 4.7.3.3 gaz table ... 135

4.7.4 Address Standardizer Functions ... 135
 4.7.4.1 parse_address ... 135
 4.7.4.2 standardize_address ... 136

4.8 PostGIS Extras ... 138
 4.8.1 Tiger Geocoder .. 138
 4.8.1.1 Drop_Indexes_Generate_Script .. 138
 4.8.1.2 Drop_Nation_Tables_Generate_Script 139
 4.8.1.3 Drop_State_Tables_Generate_Script 140
 4.8.1.4 Geocode ... 141
 4.8.1.5 Geocode_Intersection .. 143
 4.8.1.6 Get_Geocode_Setting ... 144
 4.8.1.7 Get_Tract ... 145
 4.8.1.8 Install_Missing_Indexes ... 146
 4.8.1.9 Loader_Generate_Census_Script .. 146
 4.8.1.10 Loader_Generate_Script ... 148
 4.8.1.11 Loader_Generate_Nation_Script ... 150
 4.8.1.12 Missing_Indexes_Generate_Script 151
 4.8.1.13 Normalize_Address ... 152
 4.8.1.14 Page_Normalize_Address .. 153
 4.8.1.15 Pprint_Addy ... 155
 4.8.1.16 Reverse_Geocode ... 156
 4.8.1.17 Topology_Load_Tiger ... 157
 4.8.1.18 Set_Geocode_Setting .. 159

5 PostGIS Reference .. 161
 5.1 PostGIS Geometry/Geography/Box Data Types 161
 5.1.1 box2d ... 161
 5.1.2 box3d ... 161
 5.1.3 geometry .. 162
 5.1.4 geometry_dump ... 162
 5.1.5 geography ... 163

 5.2 Table Management Functions .. 163
 5.2.1 AddGeometryColumn .. 163
 5.2.2 DropGeometryColumn ... 165
 5.2.3 DropGeometryTable ... 166
5.2.4 Find_SRID .. 167
5.2.5 Populate_Geometry_Columns 167
5.2.6 UpdateGeometrySRID .. 169

5.3 Geometry Constructors .. 170
 5.3.1 ST_Collect .. 170
 5.3.2 ST_LineFromMultiPoint .. 171
 5.3.3 ST_MakeEnvelope .. 172
 5.3.4 ST_MakeLine .. 172
 5.3.5 ST_MakePoint ... 174
 5.3.6 ST_MakePointM ... 175
 5.3.7 ST_MakePolygon .. 176
 5.3.8 ST_Point ... 178
 5.3.9 ST_Polygon .. 179
 5.3.10 ST_TileEnvelope .. 180
 5.3.11 ST_HexagonGrid ... 181
 5.3.12 ST_SquareGrid .. 183
 5.3.13 ST_Hexagon .. 184
 5.3.14 ST_Square ... 185

5.4 Geometry Accessors .. 186
 5.4.1 GeometryType ... 186
 5.4.2 ST_Boundary .. 187
 5.4.3 ST_CoordDim ... 189
 5.4.4 ST_Dimension ... 189
 5.4.5 ST_Dump .. 190
 5.4.6 ST_DumpPoints ... 192
 5.4.7 ST_DumpRings ... 196
 5.4.8 ST_EndPoint ... 197
 5.4.9 ST_Envelope .. 198
 5.4.10 ST_BoundingDiagonal .. 199
 5.4.11 ST_ExteriorRing .. 200
 5.4.12 ST_GeometryN .. 201
 5.4.13 ST_GeometryType ... 203
 5.4.14 ST_HasArc ... 204
 5.4.15 ST_InteriorRingN .. 205
 5.4.16 ST_IsPolygonCCW .. 206
 5.4.17 ST_IsPolygonCW .. 206
 5.4.18 ST_IsClosed ... 207
 5.4.19 ST_IsCollection .. 209
 5.4.20 ST_IsEmpty ... 210
<table>
<thead>
<tr>
<th>Section</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.21</td>
<td>ST_IsRing</td>
</tr>
<tr>
<td>5.4.22</td>
<td>ST_IsSimple</td>
</tr>
<tr>
<td>5.4.23</td>
<td>ST_M</td>
</tr>
<tr>
<td>5.4.24</td>
<td>ST_MemSize</td>
</tr>
<tr>
<td>5.4.25</td>
<td>ST_NDms</td>
</tr>
<tr>
<td>5.4.26</td>
<td>ST_NPoints</td>
</tr>
<tr>
<td>5.4.27</td>
<td>ST_NRings</td>
</tr>
<tr>
<td>5.4.28</td>
<td>ST_NumGeometries</td>
</tr>
<tr>
<td>5.4.29</td>
<td>ST_NumInteriorRings</td>
</tr>
<tr>
<td>5.4.30</td>
<td>ST_NumInteriorRing</td>
</tr>
<tr>
<td>5.4.31</td>
<td>ST_NumPatches</td>
</tr>
<tr>
<td>5.4.32</td>
<td>ST_NumPoints</td>
</tr>
<tr>
<td>5.4.33</td>
<td>ST_PatchN</td>
</tr>
<tr>
<td>5.4.34</td>
<td>ST_PointN</td>
</tr>
<tr>
<td>5.4.35</td>
<td>ST_Points</td>
</tr>
<tr>
<td>5.4.36</td>
<td>ST_StartPoint</td>
</tr>
<tr>
<td>5.4.37</td>
<td>ST_Summary</td>
</tr>
<tr>
<td>5.4.38</td>
<td>ST_X</td>
</tr>
<tr>
<td>5.4.39</td>
<td>ST_Y</td>
</tr>
<tr>
<td>5.4.40</td>
<td>ST_Z</td>
</tr>
<tr>
<td>5.4.41</td>
<td>ST_Zmflag</td>
</tr>
<tr>
<td>5.5</td>
<td>Geometry Editors</td>
</tr>
<tr>
<td>5.5.1</td>
<td>ST_AddPoint</td>
</tr>
<tr>
<td>5.5.2</td>
<td>ST_CollectionExtract</td>
</tr>
<tr>
<td>5.5.3</td>
<td>ST_CollectionHomogenize</td>
</tr>
<tr>
<td>5.5.4</td>
<td>ST_CurveToLine</td>
</tr>
<tr>
<td>5.5.5</td>
<td>ST_FlipCoordinates</td>
</tr>
<tr>
<td>5.5.6</td>
<td>ST_Force2D</td>
</tr>
<tr>
<td>5.5.7</td>
<td>ST_Force3D</td>
</tr>
<tr>
<td>5.5.8</td>
<td>ST_Force3DZ</td>
</tr>
<tr>
<td>5.5.9</td>
<td>ST_Force3DM</td>
</tr>
<tr>
<td>5.5.10</td>
<td>ST_Force4D</td>
</tr>
<tr>
<td>5.5.11</td>
<td>ST_ForcePolygonCCW</td>
</tr>
<tr>
<td>5.5.12</td>
<td>ST_ForceCollection</td>
</tr>
<tr>
<td>5.5.13</td>
<td>ST_ForcePolygonCW</td>
</tr>
<tr>
<td>5.5.14</td>
<td>ST_ForceSFS</td>
</tr>
<tr>
<td>5.5.15</td>
<td>ST_ForceRHR</td>
</tr>
<tr>
<td>5.5.16</td>
<td>ST_ForceCurve</td>
</tr>
<tr>
<td>5.5.17</td>
<td>ST_LineMerge</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>5.5.18</td>
<td>ST_LineToCurve</td>
</tr>
<tr>
<td>5.5.19</td>
<td>ST_Multi</td>
</tr>
<tr>
<td>5.5.20</td>
<td>ST_Normalize</td>
</tr>
<tr>
<td>5.5.21</td>
<td>ST_QuantizeCoordinates</td>
</tr>
<tr>
<td>5.5.22</td>
<td>ST_RemovePoint</td>
</tr>
<tr>
<td>5.5.23</td>
<td>ST_RemoveRepeatedPoints</td>
</tr>
<tr>
<td>5.5.24</td>
<td>ST_Reverse</td>
</tr>
<tr>
<td>5.5.25</td>
<td>ST_Segmentize</td>
</tr>
<tr>
<td>5.5.26</td>
<td>ST_SetPoint</td>
</tr>
<tr>
<td>5.5.27</td>
<td>ST_ShiftLongitude</td>
</tr>
<tr>
<td>5.5.28</td>
<td>ST_WrapX</td>
</tr>
<tr>
<td>5.5.29</td>
<td>ST_SnapToGrid</td>
</tr>
<tr>
<td>5.5.30</td>
<td>ST_Snap</td>
</tr>
<tr>
<td>5.5.31</td>
<td>ST_SwapOrdinates</td>
</tr>
<tr>
<td>5.6</td>
<td>Geometry Validation</td>
</tr>
<tr>
<td>5.6.1</td>
<td>ST_IsValid</td>
</tr>
<tr>
<td>5.6.2</td>
<td>ST_IsValidDetail</td>
</tr>
<tr>
<td>5.6.3</td>
<td>ST_IsValidReason</td>
</tr>
<tr>
<td>5.6.4</td>
<td>ST_MakeValid</td>
</tr>
<tr>
<td>5.7</td>
<td>Spatial Reference System Functions</td>
</tr>
<tr>
<td>5.7.1</td>
<td>ST_SetSRID</td>
</tr>
<tr>
<td>5.7.2</td>
<td>ST_SRID</td>
</tr>
<tr>
<td>5.7.3</td>
<td>ST_Transform</td>
</tr>
<tr>
<td>5.8</td>
<td>Geometry Input</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Well-Known Text (WKT)</td>
</tr>
<tr>
<td>5.8.1.1</td>
<td>ST_BdPolyFromText</td>
</tr>
<tr>
<td>5.8.1.2</td>
<td>ST_BdMPolyFromText</td>
</tr>
<tr>
<td>5.8.1.3</td>
<td>ST_GeogFromText</td>
</tr>
<tr>
<td>5.8.1.4</td>
<td>ST_GeographyFromText</td>
</tr>
<tr>
<td>5.8.1.5</td>
<td>ST_GeomCollFromText</td>
</tr>
<tr>
<td>5.8.1.6</td>
<td>ST_GeomFromEWKT</td>
</tr>
<tr>
<td>5.8.1.7</td>
<td>ST_GeometryFromText</td>
</tr>
<tr>
<td>5.8.1.8</td>
<td>ST_GeomFromText</td>
</tr>
<tr>
<td>5.8.1.9</td>
<td>ST_LineFromText</td>
</tr>
<tr>
<td>5.8.1.10</td>
<td>ST_MLineFromText</td>
</tr>
<tr>
<td>5.8.1.11</td>
<td>ST_MPointFromText</td>
</tr>
<tr>
<td>5.8.1.12</td>
<td>ST_MPolyFromText</td>
</tr>
<tr>
<td>5.8.1.13</td>
<td>ST_PointFromText</td>
</tr>
<tr>
<td>5.8.1.14</td>
<td>ST_PolygonFromText</td>
</tr>
</tbody>
</table>
5.8.1.15 ST_WKTToSQL .. 279

5.8.2 Well-Known Binary (WKB) .. 279

5.8.2.1 ST_GeogFromWKB .. 279
5.8.2.2 ST_GeomFromEWKB ... 280
5.8.2.3 ST_GeomFromWKB ... 281
5.8.2.4 ST_LineFromWKB ... 282
5.8.2.5 ST_LinestringFromWKB ... 283
5.8.2.6 ST_PointFromWKB ... 284
5.8.2.7 ST_WKBToSQL .. 285

5.8.3 Other Formats .. 285

5.8.3.1 ST_Box2dFromGeoHash .. 285
5.8.3.2 ST_GeomFromGeoHash .. 286
5.8.3.3 ST_GeomFromGML ... 287
5.8.3.4 ST_GeomFromGeoJSON ... 289
5.8.3.5 ST_GeomFromKML .. 290
5.8.3.6 ST_GeomFromTWKB ... 291
5.8.3.7 ST_GMILToSQL ... 291
5.8.3.8 ST_LineFromEncodedPolyline 292
5.8.3.9 ST_PointFromGeoHash ... 292

5.9 Geometry Output .. 293

5.9.1 Well-Known Text (WKT) .. 293

5.9.1.1 ST_AsEWKT .. 293
5.9.1.2 ST_AsText .. 294

5.9.2 Well-Known Binary (WKB) 296

5.9.2.1 ST_AsBinary .. 296
5.9.2.2 ST_AsEWKB ... 297
5.9.2.3 ST_AsHEXEWKB .. 299

5.9.3 Other Formats .. 299

5.9.3.1 ST_AsEncodedPolyline 299
5.9.3.2 ST_AsGeobuf .. 300
5.9.3.3 ST_AsGeoJSON .. 301
5.9.3.4 ST_AsGML .. 303
5.9.3.5 ST_AsKML .. 305
5.9.3.6 ST_AsLatLonText .. 307
5.9.3.7 ST_AsMVTGeom ... 308
5.9.3.8 ST_AsMVT .. 309
5.9.3.9 ST_AsSVG .. 310
5.9.3.10 ST_AsTWKB ... 310
5.9.3.11 ST_AsX3D .. 311
5.10 Operators .. 315
 5.10.1 Bounding Box Operators 315
 5.10.1.1 && ... 315
 5.10.1.2 &&(geometry,box2df) 316
 5.10.1.3 &&(box2df,geometry) 317
 5.10.1.4 &&(box2df,box2df) 318
 5.10.1.5 &&& ... 318
 5.10.1.6 &&&(geometry,gidx) 320
 5.10.1.7 &&&(gidx,geometry) 320
 5.10.1.8 &&&(gidx,gidx) 321
 5.10.1.9 &< .. 322
 5.10.1.10 &<| .. 323
 5.10.1.11 &> .. 324
 5.10.1.12 << .. 324
 5.10.1.13 <<| .. 325
 5.10.1.14 = .. 326
 5.10.1.15 >> .. 327
 5.10.1.16 @ ... 328
 5.10.1.17 @(geometry,box2df) 328
 5.10.1.18 @(box2df,geometry) 329
 5.10.1.19 @(box2df,box2df) 330
 5.10.1.20 |&> .. 331
 5.10.1.21 |>> .. 331
 5.10.1.22 ~ .. 332
 5.10.1.23 ~(geometry,box2df) 333
 5.10.1.24 ~(box2df,geometry) 334
 5.10.1.25 ~(box2df,box2df) 334
 5.10.1.26 ~= .. 335
 5.10.2 Distance Operators 336
 5.10.2.1 <-> ... 336
 5.10.2.2 |=| .. 338
 5.10.2.3 <#> .. 339
 5.10.2.4 <<>> ... 340
 5.10.2.5 <<#>> .. 340

5.11 Spatial Relationships 341
 5.11.1 Topological Relationships 341
 5.11.1.1 ST_3DIntersects 341
 5.11.1.2 ST_Contains 342
5.11.3 ST_ContainsProperly .. 345
5.11.4 ST_Covers ... 346
5.11.5 ST_CoveredBy .. 348
5.11.6 ST_Crosses ... 349
5.11.7 ST_LineCrossingDirection .. 351
5.11.8 ST_Disjoint ... 353
5.11.9 ST_Equals ... 354
5.11.10 ST_Intersects .. 355
5.11.11 ST_OrderingEquals .. 357
5.11.12 ST_Overlaps ... 358
5.11.13 ST_Relate ... 360
5.11.14 ST_RelateMatch ... 362
5.11.15 ST_Touches ... 363
5.11.16 ST_Within .. 364

5.11.2 Distance Relationships .. 366
5.11.2.1 ST_3DDWithin ... 366
5.11.2.2 ST_3DDFullyWithin ... 367
5.11.2.3 ST_DFullyWithin .. 368
5.11.2.4 ST_DWithin .. 368
5.11.2.5 ST_PointInsideCircle .. 370

5.12 Measurement Functions .. 371
5.12.1 ST_Area ... 371
5.12.2 ST_Azimuth ... 372
5.12.3 ST_Angle ... 374
5.12.4 ST_ClosestPoint .. 374
5.12.5 ST_3DClosestPoint .. 376
5.12.6 ST_Distance .. 377
5.12.7 ST_3DDistance .. 379
5.12.8 ST_DistanceSphere .. 380
5.12.9 ST_DistanceSpheroid .. 381
5.12.10 ST_FrechetDistance .. 381
5.12.11 ST_HausdorffDistance ... 382
5.12.12 ST_Length .. 384
5.12.13 ST_Length2D .. 385
5.12.14 ST_3DLength .. 385
5.12.15 ST_LengthSpheroid .. 386
5.12.16 ST_LongestLine ... 387
5.12.17 ST_3DLongestLine .. 390
5.12.18 ST_MaxDistance ... 392
<table>
<thead>
<tr>
<th>Section</th>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12.19</td>
<td>ST_3DMaxDistance</td>
<td>392</td>
</tr>
<tr>
<td>5.12.20</td>
<td>ST_MinimumClearance</td>
<td>393</td>
</tr>
<tr>
<td>5.12.21</td>
<td>ST_MinimumClearanceLine</td>
<td>394</td>
</tr>
<tr>
<td>5.12.22</td>
<td>ST_Perimeter</td>
<td>394</td>
</tr>
<tr>
<td>5.12.23</td>
<td>ST_Perimeter2D</td>
<td>396</td>
</tr>
<tr>
<td>5.12.24</td>
<td>ST_3DPerimeter</td>
<td>397</td>
</tr>
<tr>
<td>5.12.25</td>
<td>ST_Project</td>
<td>397</td>
</tr>
<tr>
<td>5.12.26</td>
<td>ST_ShortestLine</td>
<td>398</td>
</tr>
<tr>
<td>5.12.27</td>
<td>ST_3DShortestLine</td>
<td>399</td>
</tr>
<tr>
<td>5.13</td>
<td>Overlay Functions</td>
<td>401</td>
</tr>
<tr>
<td>5.13.1</td>
<td>ST_ClipByBox2D</td>
<td>401</td>
</tr>
<tr>
<td>5.13.2</td>
<td>ST_Difference</td>
<td>401</td>
</tr>
<tr>
<td>5.13.3</td>
<td>ST_Intersection</td>
<td>403</td>
</tr>
<tr>
<td>5.13.4</td>
<td>ST_MemUnion</td>
<td>405</td>
</tr>
<tr>
<td>5.13.5</td>
<td>ST_Node</td>
<td>405</td>
</tr>
<tr>
<td>5.13.6</td>
<td>ST_SPLIT</td>
<td>406</td>
</tr>
<tr>
<td>5.13.7</td>
<td>ST_Subdivide</td>
<td>409</td>
</tr>
<tr>
<td>5.13.8</td>
<td>ST_SymDifference</td>
<td>411</td>
</tr>
<tr>
<td>5.13.9</td>
<td>ST_Union</td>
<td>413</td>
</tr>
<tr>
<td>5.13.10</td>
<td>ST_UnaryUnion</td>
<td>415</td>
</tr>
<tr>
<td>5.14</td>
<td>Geometry Processing</td>
<td>416</td>
</tr>
<tr>
<td>5.14.1</td>
<td>ST_Buffer</td>
<td>416</td>
</tr>
<tr>
<td>5.14.2</td>
<td>ST_BuildArea</td>
<td>420</td>
</tr>
<tr>
<td>5.14.3</td>
<td>ST_Centroid</td>
<td>421</td>
</tr>
<tr>
<td>5.14.4</td>
<td>ST_ConcaveHull</td>
<td>423</td>
</tr>
<tr>
<td>5.14.5</td>
<td>ST_ConvexHull</td>
<td>428</td>
</tr>
<tr>
<td>5.14.6</td>
<td>ST_DelaunayTriangles</td>
<td>429</td>
</tr>
<tr>
<td>5.14.7</td>
<td>ST_FilterByM</td>
<td>434</td>
</tr>
<tr>
<td>5.14.8</td>
<td>ST_GeneratePoints</td>
<td>435</td>
</tr>
<tr>
<td>5.14.9</td>
<td>ST_GeometricMedian</td>
<td>436</td>
</tr>
<tr>
<td>5.14.10</td>
<td>ST_MaximumInscribedCircle</td>
<td>437</td>
</tr>
<tr>
<td>5.14.11</td>
<td>ST_MinimumBoundingCircle</td>
<td>438</td>
</tr>
<tr>
<td>5.14.12</td>
<td>ST_MinimumBoundingRadius</td>
<td>440</td>
</tr>
<tr>
<td>5.14.13</td>
<td>ST_OrientedEnvelope</td>
<td>440</td>
</tr>
<tr>
<td>5.14.14</td>
<td>ST_OffsetCurve</td>
<td>442</td>
</tr>
<tr>
<td>5.14.15</td>
<td>ST_PointOnSurface</td>
<td>445</td>
</tr>
<tr>
<td>5.14.16</td>
<td>ST_Polygonize</td>
<td>446</td>
</tr>
<tr>
<td>5.14.17</td>
<td>ST_ReducePrecision</td>
<td>447</td>
</tr>
<tr>
<td>5.14.18</td>
<td>ST_SharedPaths</td>
<td>448</td>
</tr>
</tbody>
</table>
5.14.19 ST_Simplify ... 450
5.14.20 ST_SimplifyPreserveTopology 451
5.14.21 ST_SimplifyVW ... 452
5.14.22 ST_ChaikinSmoothing .. 453
5.14.23 ST_SetEffectiveArea ... 453
5.14.24 ST_VoronoiLines .. 455
5.14.25 ST_VoronoiPolygons ... 456
5.15 Affine Transformations .. 459
5.15.1 ST_Affine ... 459
5.15.2 ST_Rotate ... 461
5.15.3 ST_RotateX ... 462
5.15.4 ST_RotateY ... 463
5.15.5 ST_RotateZ ... 463
5.15.6 ST_Scale ... 465
5.15.7 ST_Translate .. 466
5.15.8 ST_TransScale .. 467
5.16 Clustering Functions .. 468
5.16.1 ST_ClusterDBSCAN .. 468
5.16.2 ST_ClusterIntersecting .. 470
5.16.3 ST_ClusterKMeans .. 470
5.16.4 ST_ClusterWithin ... 472
5.17 Bounding Box Functions ... 473
5.17.1 Box2D ... 473
5.17.2 Box3D ... 473
5.17.3 ST_EstimatedExtent .. 474
5.17.4 ST_Expand ... 475
5.17.5 ST_Extent .. 476
5.17.6 ST_3DExtent ... 478
5.17.7 ST_MakeBox2D ... 479
5.17.8 ST_3DMakeBox ... 480
5.17.9 ST_XMax ... 480
5.17.10 ST_XMin ... 481
5.17.11 ST_YMax ... 482
5.17.12 ST_YMin ... 483
5.17.13 ST_ZMax ... 484
5.17.14 ST_ZMin ... 485
5.18 Linear Referencing ... 486
5.18.1 ST_LineInterpolatePoint ... 486
5.18.2 ST_3DLineInterpolatePoint 488
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.18.3 ST_LineInterpolatePoints</td>
<td>488</td>
</tr>
<tr>
<td>5.18.4 ST_LineLocatePoint</td>
<td>489</td>
</tr>
<tr>
<td>5.18.5 ST_LineSubstring</td>
<td>490</td>
</tr>
<tr>
<td>5.18.6 ST_LocateAlong</td>
<td>492</td>
</tr>
<tr>
<td>5.18.7 ST_LocateBetween</td>
<td>493</td>
</tr>
<tr>
<td>5.18.8 ST_LocateBetweenElevations</td>
<td>494</td>
</tr>
<tr>
<td>5.18.9 ST_InterpolatePoint</td>
<td>495</td>
</tr>
<tr>
<td>5.18.10 ST_AddMeasure</td>
<td>496</td>
</tr>
<tr>
<td>5.19 Trajectory Functions</td>
<td>496</td>
</tr>
<tr>
<td>5.19.1 ST_IsValidTrajectory</td>
<td>496</td>
</tr>
<tr>
<td>5.19.2 ST_ClosestPointOfApproach</td>
<td>497</td>
</tr>
<tr>
<td>5.19.3 ST_DistanceCPA</td>
<td>498</td>
</tr>
<tr>
<td>5.19.4 ST_CPAWithin</td>
<td>499</td>
</tr>
<tr>
<td>5.20 SFCGAL Functions</td>
<td>500</td>
</tr>
<tr>
<td>5.20.1 postgis_sfcgal_version</td>
<td>500</td>
</tr>
<tr>
<td>5.20.2 ST_Extrude</td>
<td>500</td>
</tr>
<tr>
<td>5.20.3 ST_StraightSkeleton</td>
<td>501</td>
</tr>
<tr>
<td>5.20.4 ST_ApproximateMedialAxis</td>
<td>502</td>
</tr>
<tr>
<td>5.20.5 ST_IsPlanar</td>
<td>503</td>
</tr>
<tr>
<td>5.20.6 ST_Orientation</td>
<td>504</td>
</tr>
<tr>
<td>5.20.7 ST_ForceLHR</td>
<td>504</td>
</tr>
<tr>
<td>5.20.8 ST_MinkowskiSum</td>
<td>505</td>
</tr>
<tr>
<td>5.20.9 ST_ConstrainedDelaunayTriangles</td>
<td>506</td>
</tr>
<tr>
<td>5.20.10 ST_3DIntersection</td>
<td>507</td>
</tr>
<tr>
<td>5.20.11 ST_3DDifference</td>
<td>509</td>
</tr>
<tr>
<td>5.20.12 ST_3DUnion</td>
<td>510</td>
</tr>
<tr>
<td>5.20.13 ST_3DArea</td>
<td>511</td>
</tr>
<tr>
<td>5.20.14 ST_Tesselate</td>
<td>512</td>
</tr>
<tr>
<td>5.20.15 ST_Volume</td>
<td>514</td>
</tr>
<tr>
<td>5.20.16 ST_MakeSolid</td>
<td>515</td>
</tr>
<tr>
<td>5.20.17 ST_IsSolid</td>
<td>515</td>
</tr>
<tr>
<td>5.21 Long Transaction Support</td>
<td>516</td>
</tr>
<tr>
<td>5.21.1 AddAuth</td>
<td>516</td>
</tr>
<tr>
<td>5.21.2 CheckAuth</td>
<td>517</td>
</tr>
<tr>
<td>5.21.3 DisableLongTransactions</td>
<td>517</td>
</tr>
<tr>
<td>5.21.4 EnableLongTransactions</td>
<td>518</td>
</tr>
<tr>
<td>5.21.5 LockRow</td>
<td>518</td>
</tr>
<tr>
<td>5.21.6 UnlockRows</td>
<td>519</td>
</tr>
<tr>
<td>5.22 Version Functions</td>
<td>519</td>
</tr>
</tbody>
</table>
5.22.1 PostGIS_Extensions_Upgrade ... 519
5.22.2 PostGIS_Full_Version .. 520
5.22.3 PostGIS_GEOS_Version ... 521
5.22.4 PostGIS_Liblwgeom_Version .. 521
5.22.5 PostGIS_LibXML_Version ... 522
5.22.6 PostGIS_Lib_Build_Date ... 522
5.22.7 PostGIS_Lib_Version ... 523
5.22.8 PostGIS_PROJ_Version .. 523
5.22.9 PostGIS_Wagyu_Version ... 524
5.22.10 PostGIS_Scripts_Build_Date ... 524
5.22.11 PostGIS_Scripts_Installed .. 525
5.22.12 PostGIS_Scripts_Released .. 525
5.22.13 PostGIS_Version .. 526
5.23 Grand Unified Custom Variables (GUCs) 526
5.23.1 postgis.backend .. 526
5.23.2 postgis.gdal_datapath .. 527
5.23.3 postgis.gdal_enabled_drivers .. 528
5.23.4 postgis.enable_outdb_rasters .. 529
5.24 Troubleshooting Functions .. 530
5.24.1 PostGIS_AddBBox .. 530
5.24.2 PostGIS_DropBBox .. 530
5.24.3 PostGIS_HasBBox ... 531
6 Raster Reference ... 533
6.1 Raster Support Data types ... 534
6.1.1 geomval ... 534
6.1.2 addbandarg ... 534
6.1.3 rastbandarg ... 534
6.1.4 raster .. 535
6.1.5 reclassarg ... 535
6.1.6 summarystats ... 536
6.1.7 unionarg ... 536
6.2 Raster Management ... 537
6.2.1 AddRasterConstraints ... 537
6.2.2 DropRasterConstraints .. 538
6.2.3 AddOverviewConstraints ... 539
6.2.4 DropOverviewConstraints .. 540
6.2.5 PostGIS_GDAL_Version .. 541
6.2.6 PostGIS_Raster_Lib_Build_Date ... 541
6.2.7 PostGIS_Raster_Lib_Version .. 542
6.2.8 ST_GDALDrivers ... 542
6.2.9 UpdateRasterSRID ... 546
6.2.10 ST_CreateOverview ... 547

6.3 Raster Constructors ... 548
6.3.1 ST_AddBand ... 548
6.3.2 ST_AsRaster ... 550
6.3.3 ST_Band ... 552
6.3.4 ST_MakeEmptyCoverage .. 554
6.3.5 ST_MakeEmptyRaster ... 555
6.3.6 ST_Tile ... 556
6.3.7 ST_Retile ... 558
6.3.8 ST_FromGDALRaster .. 558

6.4 Raster Accessors ... 559
6.4.1 ST_GeoReference .. 559
6.4.2 ST_Height ... 560
6.4.3 ST_IsEmpty ... 561
6.4.4 ST_MemSize ... 561
6.4.5 ST_MetaData ... 562
6.4.6 ST_NumBands ... 563
6.4.7 ST_PixelHeight ... 563
6.4.8 ST_PixelWidth ... 564
6.4.9 ST_ScaleX ... 565
6.4.10 ST_ScaleY ... 566
6.4.11 ST_RasterToWorldCoord .. 567
6.4.12 ST_RasterToWorldCoordX .. 567
6.4.13 ST_RasterToWorldCoordY ... 568
6.4.14 ST_Rotation ... 569
6.4.15 ST_SkewX ... 570
6.4.16 ST_SkewY ... 571
6.4.17 ST_SRID ... 571
6.4.18 ST_Summary ... 572
6.4.19 ST_UpperLeftX .. 573
6.4.20 ST_UpperLeftY .. 573
6.4.21 ST_Width ... 574
6.4.22 ST_WorldToRasterCoord .. 574
6.4.23 ST_WorldToRasterCoordX ... 575
6.4.24 ST_WorldToRasterCoordY ... 576

6.5 Raster Band Accessors .. 576
6.8.3 ST_SetBandPath ... 622
6.8.4 ST_SetBandIndex ... 623

6.9 Raster Band Statistics and Analytics .. 625
6.9.1 ST_Count ... 625
6.9.2 ST_CountAgg ... 625
6.9.3 ST_Histogram ... 626
6.9.4 ST_Quantile ... 628
6.9.5 ST_SummaryStats .. 630
6.9.6 ST_SummaryStatsAgg ... 632
6.9.7 ST_ValueCount ... 633

6.10 Raster Inputs ... 635
6.10.1 ST_RastFromWKB .. 635
6.10.2 ST_RastFromHexWKB ... 636

6.11 Raster Outputs ... 637
6.11.1 ST_AsBinary/ST_AsWKB ... 637
6.11.2 ST_AsHexWKB ... 638
6.11.3 ST_AsGDALRaster ... 638
6.11.4 ST_AsJPEG ... 639
6.11.5 ST_AsPNG ... 640
6.11.6 ST_AsTIFF ... 641

6.12 Raster Processing: Map Algebra ... 642
6.12.1 ST_Clip ... 642
6.12.2 ST_ColorMap ... 645
6.12.3 ST_GrayScale ... 648
6.12.4 ST_Intersection .. 650
6.12.5 ST_MapAlgebra (callback function version) 651
6.12.6 ST_MapAlgebra (expression version) 658
6.12.7 ST_MapAlgebraExpr ... 660
6.12.8 ST_MapAlgebraExpr ... 662
6.12.9 ST_MapAlgebraFct ... 667
6.12.10 ST_MapAlgebraFctNgb .. 671
6.12.11 ST_MapAlgebraFctNgb .. 675
6.12.12 ST_Reclass ... 677
6.12.13 ST_Union ... 678

6.13 Built-in Map Algebra Callback Functions 680
6.13.1 ST_Distinct4ma .. 680
6.13.2 ST_InvDistWeight4ma .. 681
6.13.3 ST_Max4ma ... 681
6.13.4 ST_Mean4ma ... 682
6.13.5 ST_Min4ma .. 684
6.13.6 ST_MinDist4ma .. 685
6.13.7 ST_Range4ma ... 685
6.13.8 ST_StdDev4ma ... 686
6.13.9 ST_Sum4ma ... 687
6.14 Raster Processing: DEM (Elevation) 688
 6.14.1 ST_Aspect ... 688
 6.14.2 ST_HillShade .. 690
 6.14.3 ST_Roughness ... 692
 6.14.4 ST_Slope ... 692
 6.14.5 ST_TPI .. 694
 6.14.6 ST_TRI .. 695
6.15 Raster Processing: Raster to Geometry 695
 6.15.1 Box3D .. 695
 6.15.2 ST_ConvexHull .. 696
 6.15.3 ST_DumpAsPolygons 697
 6.15.4 ST_Envelope .. 698
 6.15.5 ST_MinConvexHull 699
 6.15.6 ST_Polygon .. 700
6.16 Raster Operators ... 701
 6.16.1 && .. 701
 6.16.2 &< ... 702
 6.16.3 &> ... 702
 6.16.4 = ... 703
 6.16.5 @ ... 704
 6.16.6 ~= ... 704
 6.16.7 ~ ... 705
6.17 Raster and Raster Band Spatial Relationships 705
 6.17.1 ST_Contains .. 705
 6.17.2 ST_ContainsProperly 706
 6.17.3 ST_Covers ... 707
 6.17.4 ST_CoveredBy .. 708
 6.17.5 ST_Disjoint .. 709
 6.17.6 ST_Intersects ... 710
 6.17.7 ST_Overlaps .. 710
 6.17.8 ST_Touches .. 711
 6.17.9 ST_SameAlignment 712
 6.17.10 ST_NotSameAlignmentReason 713
 6.17.11 ST_Within ... 714
10 Reporting Problems

10.1 Reporting Software Bugs

10.2 Reporting Documentation Issues

A Appendix

A.1 Release 3.1.10
 A.1.1 Bug Fixes

A.2 Release 3.1.9
 A.2.1 Bug Fixes

A.3 Release 3.1.8
 A.3.1 Bug and Security Fixes

A.4 Release 3.1.7
 A.4.1 Bug Fixes

A.5 Release 3.1.6
 A.5.1 Bug Fixes

A.6 Release 3.1.5
 A.6.1 Bug Fixes

A.7 Release 3.1.4
 A.7.1 Bug Fixes

A.8 Release 3.1.3
 A.8.1 Bug Fixes

A.9 Release 3.1.2
 A.9.1 Bug Fixes

A.10 Release 3.1.2
 A.10.1 Bug Fixes

A.11 Release 3.1.1
 A.11.1 Bug Fixes

A.12 Release 3.1.0beta1
 A.12.1 Breaking changes
 A.12.2 Enhancements

A.13 Release 3.1.0alpha3
 A.13.1 Breaking changes
 A.13.2 New features
 A.13.3 Enhancements
 A.13.4 Bug Fixes

A.14 Release 3.1.0alpha2
 A.14.1 New Features
 A.14.2 Enhancements
 A.14.3 Bug fixes
Abstract

PostGIS is an extension to the PostgreSQL object-relational database system which allows GIS (Geographic Information Systems) objects to be stored in the database. PostGIS includes support for GiST-based R-Tree spatial indexes, and functions for analysis and processing of GIS objects.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License. Feel free to use this material any way you like, but we ask that you attribute credit to the PostGIS Project and wherever possible, a link back to http://postgis.net.
Chapter 1

Introduction

PostGIS is a spatial extension for the PostgreSQL relational database that was created by Refractions Research Inc, as a spatial database technology research project. Refractions is a GIS and database consulting company in Victoria, British Columbia, Canada, specializing in data integration and custom software development.

PostGIS is now a project of the OSGeo Foundation and is developed and funded by many FOSS4G developers and organizations all over the world that gain great benefit from its functionality and versatility.

The PostGIS project development group plans on supporting and enhancing PostGIS to better support a range of important GIS functionality in the areas of OpenGIS and SQL/MM spatial standards, advanced topological constructs (coverages, surfaces, networks), data source for desktop user interface tools for viewing and editing GIS data, and web-based access tools.

1.1 Project Steering Committee

The PostGIS Project Steering Committee (PSC) coordinates the general direction, release cycles, documentation, and outreach efforts for the PostGIS project. In addition the PSC provides general user support, accepts and approves patches from the general PostGIS community and votes on miscellaneous issues involving PostGIS such as developer commit access, new PSC members or significant API changes.

Raúl Marín Rodríguez MVT support, Bug fixing, Performance and stability improvements, GitHub curation, alignment of PostGIS with PostgreSQL releases

Regina Obe Buildbot Maintenance, Windows production and experimental builds, documentation, alignment of PostGIS with PostgreSQL releases, X3D support, TIGER geocoder support, management functions.

Darafei Praliaskouski Index improvements, bug fixing and geometry/geography function improvements, SFCGAL, raster, GitHub curation, and Travis bot maintenance.

Paul Ramsey (Chair) Co-founder of PostGIS project. General bug fixing, geography support, geography and geometry index support (2D, 3D, nD index and anything spatial index), underlying geometry internal structures, GEOS functionality integration and alignment with GEOS releases, alignment of PostGIS with PostgreSQL releases, loader/dumper, and Shapefile GUI loader.

Sandro Santilli Bug fixes and maintenance, buildbot maintenance, git mirror management, management functions, integration of new GEOS functionality and alignment with GEOS releases, topology support, and raster framework and low level API functions.

1.2 Core Contributors Present

Nicklas Avén Distance function enhancements (including 3D distance and relationship functions) and additions, Tiny WKB (TWKB) output format and general user support
Dan Baston Geometry clustering function additions, other geometry algorithm enhancements, GEOS enhancements and general user support

Martin Davis GEOS enhancements and documentation

Björn Harrtell MapBox Vector Tile and GeoBuf functions. Gogs testing and GitLab experimentation.

Aliaksandr Kalenik Geometry Processing, PostgreSQL gist, general bug fixing

1.3 Core Contributors Past

Bborie Park Raster development, integration with GDAL, raster loader, user support, general bug fixing, testing on various OS (Slackware, Mac, Windows, and more)

Mark Cave-Ayland Prior PSC Member. Coordinated bug fixing and maintenance effort, spatial index selectivity and binding, loader/dumper, and Shapefile GUI Loader, integration of new and new function enhancements.

Olivier Courtin (Emeritus) Input/output XML (KML,GML)/GeoJSON functions, 3D support and bug fixes.

Chris Hodgson Prior PSC Member. General development, site and buildbot maintenance, OSGeo incubation management

Kevin Neufeld Prior PSC Member. Documentation and documentation support tools, buildbot maintenance, advanced user support on PostGIS newsgroup, and PostGIS maintenance function enhancements.

Dave Blashy The original developer/Co-founder of PostGIS. Dave wrote the server side objects, index bindings, and many of the server side analytical functions.

Pierre Racine Raster overall architecture, prototyping, programming support

Jorge Arévalo Raster development, GDAL driver support, loader

Mark Leslie Ongoing maintenance and development of core functions. Enhanced curve support. Shapefile GUI loader.

Mateusz Loskot CMake support for PostGIS, built original raster loader in python and low level raster API functions

Jeff Lounsbury Original development of the Shapefile loader/dumper.

David Zwarg Raster development (mostly map algebra analytic functions)

1.4 Other Contributors
Individual Contributors

Alex Bodnaru	Gerald Fenoy	Maxime Guillaud
Alex Mayrhofer	Gino Lucrezi	Maxime van Noppen
Andrea Peri	Greg Troxel	Michael Fuhr
Andreas Forø Tollefsen	Guillaume Lelarge	Mike Toews
Andreas Neumann	Haribabu Kommi	Nathan Wagner
Anne Ghisla	Havard Tveite	Nathaniel Clay
Antoine Bajole	IIDA Tetsushi	Nikita Shulga
Artur Zakirov	Ingvild Nystuen	Norman Vine
Barbara Phillipot	Jackie Leng	Patricia Tozer
Ben Jubb	James Marca	Rafał Magda
Bernhard Reiter	Jason Smith	Ralph Mason
Björn Esser	Jeff Adams	Rémi Cura
Brian Hamlin	Jonne Savolainen	Richard Greenwood
Bruce Rindahl	Jose Carlos Martinez Llari	Roger Crew
Bruno Wolff III	Jörg Habenicht	Ron Mayer
Bryce L. Nordgren	Julien Rouhaud	Sebastiaan Couwenberg
Carl Anderson	Kashif Rasul	Sergey Fedoseev
Charlie Savage	Klaus Foerster	Shinichi Sugiyama
Christoph Berg	Kris Jurka	Shoaib Burq
Christoph Moench-Tegeder	Laurenz Albe	Silvio Grosso
Dane Springmeyer	Lars Roessiger	Steffen Macke
Dave Fuhr	Leo Hsu	Stepan Kuzmin
David Garnier	Loic Dachary	Stephen Frost
David Skea	Luca S. Percich	Stefa Rizwan
David Techer	Maria Arias de Reyna	Tom Glancy
Dmitry Vasilyev	Marc Ducobu	Tom van Tilburg
Eduin Carrillo	Mark Sondheim	Vincent Mora
Eugene Antimirov	Markus Schaber	Vincent Picavet
Even Rouault	Markus Wanner	Volf Tomáš
Frank Warmerdam	Matt Amos	
George Silva	Matthias Bay	

Corporate Sponsors

These are corporate entities that have contributed developer time, hosting, or direct monetary funding to the PostGIS project. In alphabetical order:

- Arrival 3D
- Associazione Italiana per l’Informazione Geografica Libera (GFOSS.it)
- AusVet
- Avencia
- Azavea
- Boundless
- Cadcorp
- Camptocamp
- Carto
- City of Boston (DND)
- City of Helsinki
- Clever Elephant Solutions
- Cooperativa Alveo
- Deimos Space
- Faunalia
- Geographic Data BC
- Hunter Systems Group
- ISciences, LLC
Crowd Funding Campaigns Crowd funding campaigns are campaigns we run to get badly wanted features funded that can service a large number of people. Each campaign is specifically focused on a particular feature or set of features. Each sponsor chips in a small fraction of the needed funding and with enough people/organizations contributing, we have the funds to pay for the work that will help many. If you have an idea for a feature you think many others would be willing to co-fund, please post to the PostGIS newsgroup your thoughts and together we can make it happen.

PostGIS 2.0.0 was the first release we tried this strategy. We used PledgeBank and we got two successful campaigns out of it.

postgistopology - 10 plus sponsors each contributed $250 USD to build the TopoGeometry function and beef up topology support in 2.0.0. It happened.

postgis64windows - 20 someodd sponsors each contributed $100 USD to pay for the work needed to work out PostGIS 64-bit issues on windows. It happened.

Important Support Libraries The GEOS geometry operations library

The GDAL Geospatial Data Abstraction Library used to power much of the raster functionality introduced in PostGIS 2. In kind, improvements needed in GDAL to support PostGIS are contributed back to the GDAL project.

The PROJ cartographic projection library

Last but not least, PostgreSQL, the giant that PostGIS stands on. Much of the speed and flexibility of PostGIS would not be possible without the extensibility, great query planner, GIST index, and plethora of SQL features provided by PostgreSQL.
Chapter 2

PostGIS Installation

This chapter details the steps required to install PostGIS.

2.1 Short Version

To compile assuming you have all the dependencies in your search path:

```
tar xvfz postgis-3.1.10.tar.gz
cd postgis-3.1.10
./configure
make
make install
```

Once PostGIS is installed, it needs to be enabled (Section 3.3) or upgraded (Section 3.4) in each individual database you want to use it in.

2.2 Compiling and Install from Source

The PostGIS module is an extension to the PostgreSQL backend server. As such, PostGIS 3.1.10 requires full PostgreSQL server headers access in order to compile. It can be built against PostgreSQL versions 9.6-14. Earlier and later versions of PostgreSQL are not supported.

Refer to the PostgreSQL installation guides if you haven’t already installed PostgreSQL. http://www.postgresql.org.
For GEOS functionality, when you install PostgreSQL you may need to explicitly link PostgreSQL against the standard C++ library:

```
LDFLAGS=-lstdc++ ./configure [YOUR OPTIONS HERE]
```

This is a workaround for bogus C++ exceptions interaction with older development tools. If you experience weird problems (backend unexpectedly closed or similar things) try this trick. This will require recompiling your PostgreSQL from scratch, of course.

The following steps outline the configuration and compilation of the PostGIS source. They are written for Linux users and will not work on Windows or Mac.

2.2.1 Getting the Source

Retrieve the PostGIS source archive from the downloads website http://download.osgeo.org/postgis/source/postgis-3.1.10.tar.gz

```
wget http://download.osgeo.org/postgis/source/postgis-3.1.10.tar.gz
```

```
tar -xvzf postgis-3.1.10.tar.gz
```

This will create a directory called `postgis-3.1.10` in the current working directory.

Alternatively, checkout the source from the git repository https://git.osgeo.org/gitea/postgis/postgis/.

```
git clone https://git.osgeo.org/gitea/postgis/postgis.git postgis
```

Change into the newly created `postgis` directory to continue the installation.

2.2.2 Install Requirements

PostGIS has the following requirements for building and usage:

Required

- PostgreSQL 9.6 - 14. A complete installation of PostgreSQL (including server headers) is required. PostgreSQL is available from http://www.postgresql.org.

- GNU C compiler (`gcc`). Some other ANSI C compilers can be used to compile PostGIS, but we find far fewer problems when compiling with `gcc`.

- GNU Make (`gmake` or `make`). For many systems, GNU `make` is the default version of make. Check the version by invoking `make -v`. Other versions of `make` may not process the PostGIS `Makefile` properly.

- Proj4 reprojection library. Proj4 4.9 or above is required. The Proj4 library is used to provide coordinate reprojection support within PostGIS. Proj4 is available for download from http://trac.osgeo.org/proj/.

- GEOS geometry library, version 3.6 or greater, but GEOS 3.9+ is required to take full advantage of all the new functions and features. GEOS is available for download from http://trac.osgeo.org/geos/.

- LibXML2, version 2.5.x or higher. LibXML2 is currently used in some imports functions (ST_GeomFromGML and ST_GeomFromKML). LibXML2 is available for download from http://xmlsoft.org/downloads.html.

- JSON-C, version 0.9 or higher. JSON-C is currently used to import GeoJSON via the function ST_GeomFromGeoJson. JSON-C is available for download from https://github.com/json-c/json-c/releases/.

- GDAL, version 2+ is required 3+ is preferred. This is required for raster support. http://trac.osgeo.org/gdal/wiki/DownloadSource.
• If compiling with PostgreSQL+JIT, LLVM version >=6 is required https://trac.osgeo.org/postgis/ticket/4125.

Optional

• GDAL (pseudo optional) only if you don’t want raster you can leave it out. Also make sure to enable the drivers you want to use as described in Section 3.2.

• GTK (requires GTK+2.0, 2.8+) to compile the shp2pgsql-gui shape file loader. http://www.gtk.org/.

• SFCGAL, version 1.1 (or higher) could be used to provide additional 2D and 3D advanced analysis functions to PostGIS cf Section 5.20. And also allow to use SFCGAL rather than GEOS for some 2D functions provided by both backends (like ST_Intersection or ST_Area, for instance). A PostgreSQL configuration variable postgis.backend allow end user to control which backend he want to use if SFCGAL is installed (GEOS by default). Nota: SFCGAL 1.2 require at least CGAL 4.3 and Boost 1.54 (cf: http://oslandia.github.io/SFCGAL/installation.html) https://github.com/Oslandia/SFCGAL.

• In order to build the Section 4.7 you will also need PCRE http://www.pcre.org (which generally is already installed on nix systems). Regex::Assemble perl CPAN package is only needed if you want to rebuild the data encoded in parseaddress-stcities. Section 4.7 will automatically be built if it detects a PCRE library, or you pass in a valid --with-pcre-dir=/path/to/pcre during configure.

• To enable ST_AsMVT protobuf-c library 1.1.0 or higher (for usage) and the protoc-c compiler (for building) are required. Also, pkg-config is required to verify the correct minimum version of protobuf-c. See protobuf-c. By default, Postgis will use Wagyu to validate MVT polygons faster which requires a c++11 compiler. It will use CXXFLAGS and the same compiler as the PostgreSQL installation. To disable this and use GEOS instead use the --without-wagyu during the configure step.

• CUnit (CUnit). This is needed for regression testing. http://cunit.sourceforge.net/

• DocBook (xsltproc) is required for building the documentation. Docbook is available from http://www.docbook.org/.

• DBLatex (dblatex) is required for building the documentation in PDF format. DBLatex is available from http://dblatex.sourceforge.net/.

• ImageMagick (convert) is required to generate the images used in the documentation. ImageMagick is available from http://www.imagemagick.org/.

2.2.3 Build configuration

As with most linux installations, the first step is to generate the Makefile that will be used to build the source code. This is done by running the shell script

configure

With no additional parameters, this command will attempt to automatically locate the required components and libraries needed to build the PostGIS source code on your system. Although this is the most common usage of configure, the script accepts several parameters for those who have the required libraries and programs in non-standard locations.

The following list shows only the most commonly used parameters. For a complete list, use the --help or --help=short parameters.

--with-library-minor-version Starting with PostGIS 3.0, the library files generated by default will no longer have the minor version as part of the file name. This means all PostGIS 3 libs will end in postgis-3. This was done to make pg_upgrade easier, with downside that you can only install one version PostGIS 3 series in your server. To get the old behavior of file including the minor version: e.g. postgis-3.0 add this switch to your configure statement.

--prefix=PREFIX This is the location the PostGIS loader executables and shared libs will be installed. By default, this location is the same as the detected PostgreSQL installation.

Caution

This parameter is currently broken, as the package will only install into the PostgreSQL installation directory. Visit http://trac.osgeo.org/postgis/ticket/635 to track this bug.
--with-pgconfig=FILE PostgreSQL provides a utility called pg_config to enable extensions like PostGIS to locate the PostgreSQL installation directory. Use this parameter (--with-pgconfig=/path/to/pg_config) to manually specify a particular PostgreSQL installation that PostGIS will build against.

--with-gdalconfig=FILE GDAL, a required library, provides functionality needed for raster support gdal-config to enable software installations to locate the GDAL installation directory. Use this parameter (--with-gdalconfig=/path/to/gdal-config) to manually specify a particular GDAL installation that PostGIS will build against.

--with-geosconfig=FILE GEOS, a required geometry library, provides a utility called geos-config to enable software installations to locate the GEOS installation directory. Use this parameter (--with-geosconfig=/path/to/geos-config) to manually specify a particular GEOS installation that PostGIS will build against.

--with-xml2config=FILE LibXML is the library required for doing GeomFromKML/GML processes. It normally is found if you have libxml installed, but if not or you want a specific version used, you’ll need to point PostGIS at a specific xml2-config file to enable software installations to locate the LibXML installation directory. Use this parameter (--with-xml2config=/path/to/xml2-config) to manually specify a particular LibXML installation that PostGIS will build against.

--with-projdir=DIR Proj4 is a reprojection library required by PostGIS. Use this parameter (--with-projdir=/path/to/projdir) to manually specify a particular Proj4 installation directory that PostGIS will build against.

--with-libiconv=DIR Directory where iconv is installed.

--with-jsondir=DIR JSON-C is an MIT-licensed JSON library required by PostGIS ST_GeomFromJSON support. Use this parameter (--with-jsondir=/path/to/jsondir) to manually specify a particular JSON-C installation directory that PostGIS will build against.

--with-pcredir=DIR PCRE is an BSD-licensed Perl Compatible Regular Expression library required by address_standardizer extension. Use this parameter (--with-pcredir=/path/to/pcredir) to manually specify a particular PCRE installation directory that PostGIS will build against.

--with-gui Compile the data import GUI (requires GTK+2.0). This will create shp2pgsql-gui graphical interface to shp2pgsql.

--without-raster Compile without raster support.

--without-topology Disable topology support. There is no corresponding library as all logic needed for topology is in postgis-3.1.10 library.

--with-gettext=no By default PostGIS will try to detect gettext support and compile with it, however if you run into incompatibility issues that cause breakage of loader, you can disable it entirely with this command. Refer to ticket http://trac.osgeo.org/postgis/ticket/748 for an example issue solved by configuring with this. NOTE: that you aren’t missing much by turning this off. This is used for international help/label support for the GUI loader which is not yet documented and still experimental.

--with-sfcgal=PATH By default PostGIS will not install with sfcgal support without this switch. PATH is an optional argument that allows to specify an alternate PATH to sfcgal-config.

--without-wagyu When building with MVT support, Postgis will use Wagyu to clip and validate MVT polygons. Wagyu is the fastest alternative and guarantees producing correct values for this specific case, but it requires a C++-11 compiler. With this optional argument you can disable using this library; GEOS will be used instead.

--without-phony-revision Disable updating postgis_revision.h to match current HEAD of the git repository.

Note
If you obtained PostGIS from the code repository, the first step is really to run the script ./autogen.sh
This script will generate the configure script that in turn is used to customize the installation of PostGIS.
If you instead obtained PostGIS as a tarball, running ./autogen.sh is not necessary as configure has already been generated.
2.2.4 Building

Once the Makefile has been generated, building PostGIS is as simple as running

```
make
```

The last line of the output should be "PostGIS was built successfully. Ready to install."

As of PostGIS v1.4.0, all the functions have comments generated from the documentation. If you wish to install these comments into your spatial databases later, run the command which requires docbook. The `postgresql_comments.sql` and other package comments files `raster_comments.sql`, `topology_comments.sql` are also packaged in the tar.gz distribution in the doc folder so no need to make comments if installing from the tar ball. Comments are also included as part of the CREATE EXTENSION install.

```
make comments
```

Introduced in PostGIS 2.0. This generates html cheat sheets suitable for quick reference or for student handouts. This requires `xsltproc` to build and will generate 4 files in doc folder `topology_cheatsheet.html`, `tiger_geocoder_cheatsheet.html`, `raster_cheatsheet.html`, `postgis_cheatsheet.html`

You can download some pre-built ones available in html and pdf from PostGIS / PostgreSQL Study Guides

```
make cheatsheets
```

2.2.5 Building PostGIS Extensions and Deploying them

The PostGIS extensions are built and installed automatically if you are using PostgreSQL 9.1+.

If you are building from source repository, you need to build the function descriptions first. These get built if you have docbook installed. You can also manually build with the statement:

```
make comments
```

Building the comments is not necessary if you are building from a release tar ball since these are packaged pre-built with the tar ball already.

The extensions should automatically build as part of the make install process. You can if needed build from the extensions folders or copy files if you need them on a different server.

```
cd extensions
cd postgis
make clean
make export PGUSER=postgres #overwrite psql variables
make check #to test before install
make install
# to test extensions
make check RUNTESTFLAGS=--extension
```

Note

The extension files will always be the same for the same version of PostGIS and PostgreSQL regardless of OS, so it is fine to copy over the extension files from one OS to another as long as you have the PostGIS binaries already installed on your servers.

If you want to install the extensions manually on a separate server different from your development, You need to copy the following files from the extensions folder into the `PostgreSQL / share / extension` folder of your PostgreSQL install as well as the needed binaries for regular PostGIS if you don’t have them already on the server.

- These are the control files that denote information such as the version of the extension to install if not specified. `postgis.control`, `postgis_topology.control`.
• All the files in the /sql folder of each extension. Note that these need to be copied to the root of the PostgreSQL share/extension folder:

extensions/postgis/sql/*.sql
extensions/postgis_topology/sql/*.sql

Once you do that, you should see postgis, postgis_topology as available extensions in PgAdmin -> extensions.

If you are using psql, you can verify that the extensions are installed by running this query:

```
SELECT name, default_version, installed_version
FROM pg_available_extensions
WHERE name LIKE 'postgis%' or name LIKE 'address%';
```

<table>
<thead>
<tr>
<th>name</th>
<th>default_version</th>
<th>installed_version</th>
</tr>
</thead>
<tbody>
<tr>
<td>address_standardizer</td>
<td>3.1.10</td>
<td>3.1.10</td>
</tr>
<tr>
<td>address_standardizer_data_us</td>
<td>3.1.10</td>
<td>3.1.10</td>
</tr>
<tr>
<td>postgis</td>
<td>3.1.10</td>
<td>3.1.10</td>
</tr>
<tr>
<td>postgis_raster</td>
<td>3.1.10</td>
<td>3.1.10</td>
</tr>
<tr>
<td>postgis_sfcgal</td>
<td>3.1.10</td>
<td></td>
</tr>
<tr>
<td>postgis_tiger_geocoder</td>
<td>3.1.10</td>
<td>3.1.10</td>
</tr>
<tr>
<td>postgis_topology</td>
<td>3.1.10</td>
<td></td>
</tr>
</tbody>
</table>

(6 rows)

If you have the extension installed in the database you are querying, you’ll see mention in the installed_version column. If you get no records back, it means you don’t have postgis extensions installed on the server at all. PgAdmin III 1.14+ will also provide this information in the extensions section of the database browser tree and will even allow upgrade or uninstall by right-clicking.

If you have the extensions available, you can install postgis extension in your database of choice by either using pgAdmin extension interface or running these sql commands:

```
CREATE EXTENSION postgis;
CREATE EXTENSION postgis_raster;
CREATE EXTENSION postgis_sfcgal;
CREATE EXTENSION fuzzystrmatch;  -- needed for postgis_tiger_geocoder
                      -- optional used by postgis_tiger_geocoder, or can be used standalone
CREATE EXTENSION address_standardizer;
CREATE EXTENSION address_standardizer_data_us;
CREATE EXTENSION postgis_tiger_geocoder;
CREATE EXTENSION postgis_topology;
```

In psql you can use to see what versions you have installed and also what schema they are installed.

```
\connect mygisdb
\x
\dx postgis*
```

```
List of installed extensions
- [ RECORD 1 ]-------------------------------------------------------------
  Name   | postgis
  Version | 3.1.10
  Schema  | public
  Description | PostGIS geometry, geography, and raster spat...
- [ RECORD 2 ]-------------------------------------------------------------
  Name   | postgis_raster
  Version | 3.0.0dev
  Schema  | public
  Description | PostGIS raster types and functions
- [ RECORD 3 ]-------------------------------------------------------------
  Name   | postgis_tiger_geocoder
  Version | 3.1.10
  Schema  | tiger
  Description | PostGIS tiger geocoder and reverse geocoder
- [ RECORD 4 ]-------------------------------------------------------------
```
Warning

Extension tables `spatial_ref_sys`, `layer`, `topology` can not be explicitly backed up. They can only be backed up when the respective `postgis` or `postgis_topology` extension is backed up, which only seems to happen when you backup the whole database. As of PostGIS 2.0.1, only srid records not packaged with PostGIS are backed up when the database is backed up so don't go around changing srids we package and expect your changes to be there. Put in a ticket if you find an issue. The structures of extension tables are never backed up since they are created with `CREATE EXTENSION` and assumed to be the same for a given version of an extension. These behaviors are built into the current PostgreSQL extension model, so nothing we can do about it.

If you installed 3.1.10, without using our wonderful extension system, you can change it to be extension based by running the below commands to package the functions in their respective extension.

```sql
CREATE EXTENSION postgis FROM unpackaged;
CREATE EXTENSION postgis_raster FROM unpackaged;
CREATE EXTENSION postgis_topology FROM unpackaged;
CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;
```

2.2.6 Testing

If you wish to test the PostGIS build, run `make check`

The above command will run through various checks and regression tests using the generated library against an actual PostgreSQL database.

Note

If you configured PostGIS using non-standard PostgreSQL, GEOS, or Proj4 locations, you may need to add their library locations to the `LD_LIBRARY_PATH` environment variable.

Caution

Currently, the `make check` relies on the `PATH` and `PGPORT` environment variables when performing the checks - it does not use the PostgreSQL version that may have been specified using the configuration parameter `--with-pgconfig`. So make sure to modify your PATH to match the detected PostgreSQL installation during configuration or be prepared to deal with the impending headaches.

If successful, the output of the test should be similar to the following:

```plaintext
CUnit - A unit testing framework for C - Version 2.1-3
http://cunit.sourceforge.net/

Suite: algorithm
Test: test_lw_segment_side ...passed
Test: test_lw_segment_intersects ...passed
Test: test_lwline_crossing_short_lines ...passed
```
Test: test_lwline_crossing_long_lines ...passed
Test: test_lwline_crossing_bugs ...passed
Test: test_lwpoint_set_ordinate ...passed
Test: test_lwpoint_get_ordinate ...passed
Test: test_point_interpolate ...passed
Test: test_lwline_interpolate_points ...passed
Test: test_lwline_interpolate_point_3d ...passed
Test: test_lwline_clip ...passed
Test: test_lwpoly_clip ...passed
Test: test_lwtriangle_clip ...passed
Test: test_lwline_clip_big ...passed
Test: test_lwmiline_clip ...passed
Test: test_geohash_point ...passed
Test: test_geohash_precision ...passed
Test: test_geohash ...passed
Test: test_geohash_point_as_int ...passed
Test: test_isclosed ...passed
Test: test_lwgeom_simplify ...passed
Test: test_lw_arc_center ...passed
Test: test_point_density ...passed
Test: test_kmeans ...passed
Test: test_median_handles_3d_correctly ...passed
Test: test_median_robustness ...passed
Test: test_lwpoly_construct_circle ...passed
Test: test_trim_bits ...passed
Test: test_lwgeom_remove_repeated_points ...passed
Suite: buildarea
Test: buildarea1 ...passed
Test: buildarea2 ...passed
Test: buildarea3 ...passed
Test: buildarea4 ...passed
Test: buildarea4b ...passed
Test: buildarea5 ...passed
Test: buildarea6 ...passed
Test: buildarea7 ...passed
Suite: geometry_clean
Test: test_lwgeom_make_valid ...passed
Suite: clip_by_rectangle
Test: test_lwgeom_clip_by_rect ...DEBUG 1: lwgeom_clip_by_rect: GEOS Error: Invalid number of points in LinearRing found 3 - must be 0 or >= 4 passed
Suite: force_sfs
Test: test_sfs_11 ...passed
Test: test_sfs_12 ...passed
Test: test_sqlmm ...passed
Suite: geodetic
Test: test_sphere_direction ...passed
Test: test_sphere_project ...passed
Test: test_lwgeom_area_sphere ...passed
Test: test_gbox_from_spherical_coordinates ...passed
Test: test_gserialized_get_gbox_geocentric ...passed
Test: test_clairaut ...passed
Test: test_edge_intersection ...passed
Test: test_edge_intersects ...passed
Test: test_edge_distance_to_point ...passed
Test: test_edge_distance_to_edge ...passed
Test: test_lwgeom_distance_sphere ...passed
Test: test_lwgeom_check_geodetic ...passed
Test: test_gserialized_from_lwgeom ...passed
Test: test_spheroid_distance ...passed
Test: test_spheroid_area ...passed
Test: test_lwpoly_covers_point2d ...passed
Test: test_gbox_utils ...passed
Test: test_vector_angle ...passed
Test: test_vector_rotate ...passed
Test: test_lwgeom_segmentize_sphere ...passed
Test: test_ptarray_contains_point_sphere ...passed
Test: test_ptarray_contains_point_sphere_iowa ...passed
Test: test_gbox_to_string_truncated ...passed
Suite: geos
Test: test_geos_noop ...passed
Test: test_geos_subdivide ...passed
Test: test_geos_linemerger ...passed
Test: test_geos_offsetcurve ...passed
Test: test_geos_offsetcurve_crash ...passed
Test: test_geos_makevalid ...passed
Suite: clustering
Test: basic_test ...passed
Test: nonsequential_test ...passed
Test: basic_distance_test ...passed
Test: single_input_test ...passed
Test: empty_inputs_test ...passed
Test: multipoint_test ...passed
Test: dbscan_test ...passed
Test: dbscan_test_3612a ...passed
Test: dbscan_test_3612b ...passed
Test: dbscan_test_3612c ...passed
Suite: clustering_unionfind
Test: test_unionfind_create ...passed
Test: test_unionfind_union ...passed
Test: test_unionfind_ordered_by_cluster ...passed
Test: test_unionfind_path_compression ...passed
Test: test_unionfindCollapse_cluster_ids ...passed
Suite: homogenize
Test: test_coll_point ...passed
Test: test_coll_line ...passed
Test: test_coll_poly ...passed
Test: test_coll_coli ...passed
Test: test_geom ...passed
Test: test_coll_curve ...passed
Suite: encoded_polyline_input
Test: in_encoded_polyline_test_geoms ...passed
Test: in_encoded_polyline_test_precision ...passed
Suite: geojson_input
Test: in_geojson_test_srid ...passed
Test: in_geojson_test_bbox ...passed
Test: in_geojson_test_geoms ...passed
Suite: iterator
Test: test_point_count ...passed
Test: test_ordering ...passed
Test: test_modification ...passed
Test: test_mixe_rx_access ...passed
Test: test_cannot_modify_read_only ...passed
Test: test_no_memory_leaked_when_iterator_is_partially_used ...passed
Suite: twkb_input
Test: test_twkb_in_point ...passed
Test: test_twkb_in_linestring ...passed
Test: test_twkb_in_polygon ...passed
Test: test_twkb_in_multipoint ...passed
Test: test_twkb_in_multilinestring ...passed
Test: test_twkb_in_multipolygon ...passed
Test: test_twkb_in_collection ...passed
Test: test_twkb_in_precision ...passed
Suite: serialization/deserialization
 Test: test_typmod_macros ...passed
 Test: test_flags_macros ...passed
 Test: test_serialized_srid ...NOTICE: SRID value -3005 converted to the officially unknown SRID value 0
 passed
 Test: test_gserialized_from_lwgeom_size ...passed
 Test: test_gbox_serialized_size ...passed
 Test: test_lwgeom_from_gserialized ...passed
 Test: test_lwgeom_count_vertices ...passed
 Test: test_on_gser_lwgeom_count_vertices ...passed
 Test: test_geometry_type_from_string ...passed
 Test: test_lwcollection_extract ...passed
 Test: test_lwgeom_free ...passed
 Test: test_lwgeom_swap_ordinates ...passed
 Test: test_f2d ...passed
 Test: test_lwgeom_clone ...passed
 Test: test_lwgeom_force_clockwise ...passed
 Test: test_lwgeom_calculate_gbox ...passed
 Test: test_lwgeom_is_empty ...passed
 Test: test_lwgeom_same ...passed
 Test: test_lwline_from_lwmpoint ...passed
 Test: test_lwgeom_as_curve ...passed
 Test: test_lwgeom_scale ...passed
 Test: test_gserialized_is_empty ...passed
 Test: test_gserialized_peek_gbox_p_no_box_when_empty ...passed
 Test: test_gserialized_peek_gbox_p_gets_correct_box ...passed
 Test: test_gserialized_peek_gbox_p_fails_for_unsupported_cases ...passed
 Test: test_gbox_same_2d ...passed
 Test: test_signum_macro ...passed
Suite: lwstroke
 Test: test_lwcurve_linearize ...passed
 Test: test_unstroke ...passed
Suite: measures
 Test: test_mindistance2d_tolerance ...passed
 Test: test_mindistance3d_tolerance ...NOTICE: One or both of the geometries is missing z-value. The unknown z-value will be regarded as "any value"
 NOTICE: One or both of the geometries is missing z-value. The unknown z-value will be regarded as "any value"
 passed
 Test: test_rect_tree_contains_point ...passed
 Test: test_rect_tree_intersects_tree ...passed
 Test: test_lwgeom_segmentize2d ...NOTICE: ptarray.c:448 - ptarray_segmentize2d: Too many segments required (1.000000e+101)
 NOTICE: liblwgeom code interrupted
 NOTICE: liblwgeom code interrupted
 NOTICE: liblwgeom code interrupted
 NOTICE: liblwgeom code interrupted
 passed
 Test: test_lwgeom_locate_along ...passed
 Test: test_lx_dist2d_pt_arc ...passed
 Test: test_lx_dist2d_seg_arc ...passed
 Test: test_lx_dist2d_arc_arc ...passed
 Test: test_lx_arc_length ...passed
 Test: test_lx_dist2d_pt_ptarrayarc ...passed
 Test: test_lx_dist2d_ptarray_ptarrayarc ...passed
 Test: test_lwgeom_tcpa ...passed
 Test: test_lwgeom_is_trajectory ...NOTICE: Geometry is not a LINESTRING
 NOTICE: Line does not have M dimension
 NOTICE: Measure of vertex 1 (1) not bigger than measure of vertex 0 (1)
 NOTICE: Measure of vertex 1 (0) not bigger than measure of vertex 0 (1)
 NOTICE: Measure of vertex 2 (2) not bigger than measure of vertex 1 (3)
passed
 Test: test_rect_tree_distance_tree ...passed
Suite: effectivearea
 Test: do_test_lwgeom_effectivearea_lines ...passed
 Test: do_test_lwgeom_effectivearea_polys ...passed
Suite: chaikin
 Test: do_test_chaikin_lines ...passed
 Test: do_test_chaikin_polygons ...passed
Suite: filterm
 Test: do_test_filterm_single_geometries ...passed
 Test: do_test_filterm_collections ...passed
Suite: minimum_bounding_circle
 Test: basic_test ...passed
 Test: test_empty ...passed
Suite: miscellaneous
 Test: test_misc_force_2d ...passed
 Test: test_misc_simplify ...passed
 Test: test_misc_count_vertices ...passed
 Test: test_misc_area ...passed
 Test: test_misc_wkb ...passed
 Test: test_grid ...passed
 Test: test_grid_in_place ...passed
 Test: test_clone ...passed
 Test: test_lwmpoint_from_lwgeom ...passed
Suite: noding
 Test: test_lwgeom_node ...passed
Suite: encoded_polyline_output
 Test: out_encoded_polyline_test_geoms ...passed
 Test: out_encoded_polyline_test_srid ...passed
 Test: out_encoded_polyline_test_precision ...passed
Suite: geojson_output
 Test: out_geojson_test_precision ...passed
 Test: out_geojson_test_dims ...passed
 Test: out_geojson_test_srid ...passed
 Test: out_geojson_test_bbox ...passed
 Test: out_geojson_test_geoms ...passed
Suite: gml_output
 Test: out_gml_test_precision ...passed
 Test: out_gml_test_srid ...passed
 Test: out_gml_test_dims ...passed
 Test: out_gml_test_geodetic ...passed
 Test: out_gml_test_geoms ...passed
 Test: out_gml_test_geoms_prefix ...passed
 Test: out_gml_test_geoms_nodims ...passed
 Test: out_gml2_extent ...passed
 Test: out_gml3_extent ...passed
Suite: kml_output
 Test: out_kml_test_precision ...passed
 Test: out_kml_test_dims ...passed
 Test: out_kml_test_geoms ...passed
 Test: out_kml_test_prefix ...passed
Suite: svg_output
 Test: out_svg_test_precision ...passed
 Test: out_svg_test_dims ...passed
 Test: out_svg_test_relative ...passed
 Test: out_svg_test_geoms ...passed
 Test: out_svg_test_srid ...passed
Suite: x3d_output
 Test: out_x3d3_test_precision ...passed
 Test: out_x3d3_test_geoms ...passed
 Test: out_x3d3_test_option ...passed
Suite: ptarray
Test: test_ptarray_append_point ... passed
Test: test_ptarray_append_ptarray ... passed
Test: test_ptarray_locate_point ... passed
Test: test_ptarray_isccw ... passed
Test: test_ptarray_signed_area ... passed
Test: test_ptarray_insert_point ... passed
Test: test_ptarrayContains_point ... passed
Test: test_ptarray_arcContains_point ... passed
Test: test_ptarray_scale ... passed
Suite: printing
 Test: test_lwprint_default_format ... passed
 Test: test_lwprint_format_orders ... passed
 Test: test_lwprint_optional_format ... passed
 Test: test_lwprint_oddball_formats ... passed
 Test: test_lwprint_bad_formats ... passed
Suite: sfcgal
 Test: test_sfcgal_noop ... passed
Suite: split
 Test: test_lwline_split_by_point_to ... passed
 Test: test_lwgeom_split ... passed
Suite: stringbuffer
 Test: test_stringbuffer_append ... passed
 Test: test_stringbuffer_aprintf ... passed
Suite: surface
 Test: triangle_parse ... passed
 Test: tin_parse ... passed
 Test: polyhedralsurface_parse ... passed
 Test: surface_dimension ... passed
Suite: spatial_trees
 Test: test_tree_circ_create ... passed
 Test: test_tree_circ_pip ... passed
 Test: test_tree_circ_pip2 ... passed
 Test: test_tree_circ_distance ... passed
 Test: test_tree_circ_distance_threshold ... passed
Suite: triangulate
 Test: test_lwgeom_delaunay_triangulation ... passed
 Test: test_lwgeom_voronoi_diagram ... passed
 Test: test_lwgeom_voronoi_diagram_expected_empty ... passed
 Test: test_lwgeom_voronoi_diagram_custom_envelope ... passed
Suite: twkb_output
 Test: test_twkb_out_point ... passed
 Test: test_twkb_out_linestring ... passed
 Test: test_twkb_out_polygon ... passed
 Test: test_twkb_out_multipoint ... passed
 Test: test_twkb_out_multilinestring ... passed
 Test: test_twkb_out_multipolygon ... passed
 Test: test_twkb_out_collection ... passed
 Test: test_twkb_out_idlist ... passed
Suite: varint
 Test: test_zigzag ... passed
 Test: test_varint ... passed
 Test: test_varint_roundtrip ... passed
Suite: wkb_input
 Test: test_wkb_in_point ... passed
 Test: test_wkb_in_linestring ... passed
 Test: test_wkb_in_polygon ... passed
 Test: test_wkb_in_multipoint ... passed
 Test: test_wkb_in_multilinestring ... passed
 Test: test_wkb_in_multipolygon ... passed
 Test: test_wkb_in_collection ... passed
 Test: test_wkb_in_circularstring ... passed
 Test: test_wkb_in_compoundcurve ... passed
Test: test_wkb_in_curvpolygon ...passed
Test: test_wkb_in_multicurve ...passed
Test: test_wkb_in_multisurface ...passed
Test: test_wkb_in_malformed ...passed
Suite: wkb_output
Test: test_wkb_out_point ...passed
Test: test_wkb_out_linestring ...passed
Test: test_wkb_out_polygon ...passed
Test: test_wkb_out_multipoint ...passed
Test: test_wkb_out_multilinestring ...passed
Test: test_wkb_out_multipolygon ...passed
Test: test_wkb_out_collection ...passed
Test: test_wkb_out_curvpolygon ...passed
Test: test_wkb_out_multicurve ...passed
Test: test_wkb_out_multisurface ...passed
Test: test_wkb_out_polyhedralsurface ...passed
Suite: wkt_input
Test: test_wkt_in_point ...passed
Test: test_wkt_in_linestring ...passed
Test: test_wkt_in_polygon ...passed
Test: test_wkt_in_multipoint ...passed
Test: test_wkt_in_multilinestring ...passed
Test: test_wkt_in_multipolygon ...passed
Test: test_wkt_in_collection ...passed
Test: test_wkt_in_curvpolygon ...passed
Test: test_wkt_in_multicurve ...passed
Test: test_wkt_in_multisurface ...passed
Test: test_wkt_in_tin ...passed
Test: test_wkt_in_polyhedralsurface ...passed
Test: test_wkt_in_errlocation ...passed
Test: test_wkt_double ...passed
Suite: wkt_output
Test: test_wkt_out_point ...passed
Test: test_wkt_out_linestring ...passed
Test: test_wkt_out_polygon ...passed
Test: test_wkt_out_multipoint ...passed
Test: test_wkt_out_multilinestring ...passed
Test: test_wkt_out_multipolygon ...passed
Test: test_wkt_out_collection ...passed
Test: test_wkt_out_curvpolygon ...passed
Test: test_wkt_out_multicurve ...passed
Test: test_wkt_out_multisurface ...passed
Suite:wrapx
Test: test_lwgeom_wrapx ...passed

Run Summary:

<table>
<thead>
<tr>
<th>Type</th>
<th>Total</th>
<th>Ran</th>
<th>Passed</th>
<th>Failed</th>
<th>Inactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>suites</td>
<td>44</td>
<td>44</td>
<td>n/a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tests</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>asserts</td>
<td>4215</td>
<td>4215</td>
<td>4215</td>
<td>0</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Elapsed time = 0.229 seconds
PROJ: Rel. 5.2.0, September 15th, 2018

Running tests

../loader/Point ok
../loader/PointM ok
../loader/PointZ ok
../loader/MultiPoint ok
../loader/MultiPointM ok
../loader/MultiPointZ ok
../loader/Arc ok
../loader/ArcM ok
../loader/ArcZ ok
../loader/Polygon ok
../loader/PolygonM ok
../loader/PolygonZ ok
../loader/TSTPolygon ok
../loader/TSIPolygon ok
../loader/TSTIPolygon ok
../loader/PointWithSchema ... ok
../loader/NoTransPoint ok
../loader/NotReallyMultiPoint ok
../loader/MultiToSinglePoint ok
../loader/ReprojectPts ok
../loader/ReprojectPtsGeog ok
../loader/Latin1 ... ok
../loader/Latin1-implicit ... ok
../loader/mfile ok
../dumper/literalsrid ok
../dumper/realtable ok
affine .. ok
bestsrid .. ok
binary .. ok
boundary .. ok
chaikin .. ok
filterm .. ok
cluster .. ok
concave_hull .. ok
concave_hull_hard .. ok
ctors .. ok
curvetoline .. ok
dump .. ok
dumpoints .. ok
empty .. ok
estimatedextent .. ok
forcecurve .. ok
geography .. ok
geometric_median .. ok
in_geohash .. ok
in_gml .. ok
in_kml .. ok
in_encodedpolyline .. ok
iscollection .. ok
legacy .. ok
long_xact .. ok
lwgeom_regress .. ok
measures .. ok
minimum_bounding_circle .. ok
normalize .. ok
operators .. ok
orientation .. ok
out_geometry .. ok
out_geography .. ok
polygonize .. ok
polyhedralsurface .. ok
postgis_type_name .. ok
quantize_coordinates .. ok
regress .. ok
regress_bdpoly .. ok
regress_gist_index_nd .. ok
regress_index .. ok
regress_index_nulls .. ok
regress_management .. ok
regress_selectivity .. ok
regress_lrs .. ok
regress_ogc .. ok
regress_ogc_cover .. ok
regress_ogc_prep .. ok
regress_proj .. ok
relate .. ok
remove_repeated_points .. ok
removepoint .. ok
reverse .. ok
setpoint .. ok
simplify .. ok
simplifyvw .. ok
size .. ok
snaptogrid .. ok
split .. ok
sql-mm-serialize .. ok
sql-mm-circularstring .. ok
sql-mm-compoundcurve .. ok
sql-mm-curvepoly .. ok
sql-mm-general .. ok
sql-mm-multicurve .. ok
sql-mm-multisurface .. ok
swapordinates .. ok
summary .. ok
tickets .. ok
twkb .. ok
typmod .. ok
wkb .. ok
wkt .. ok
wmsservers .. ok
knn_recheck .. ok
temporal_knn .. ok
haussdorff .. ok
regress_buffer_params .. ok
frechet .. ok
offsetcurve .. ok
relatematch .. ok
isvaliddetail .. ok
sharedpaths .. ok
snap .. ok
node .. ok
unaryunion .. ok
clean .. ok
relate_bnr .. ok
delaunaytriangles .. ok
clipbybox2d .. ok
subdivide .. ok
voronoi .. ok
minimum_clearance .. ok
oriented_envelope .. ok
in_geojson .. ok
regress_brin_index .. ok
regress_brin_index_3d .. ok
regress_brin_index_geography .. ok
regress_spgist_index_2d .. ok
regress_spgist_index_3d .. ok
regress_spgist_index_nd .. ok
mvt .. ok
grobat .. ok
mvt_jsonb .. ok
uninstall .. ok (4643)

Run tests: 134
Failed: 0

-- if you build with SFCGAL

PostgreSQL 12dev on x86_64-w64-mingw32, compiled by gcc.exe (x86_64-posix-seh-rev0, Built by MinGW-W64 project) 8.1.0, 64-bit
Postgis 3.0.0dev - r17081 - 2018-11-28 18:50:02
scripts 3.0.0dev r17081
GEOS: 3.7.0-CAPI-1.11.0 673b9939
PROJ: Rel. 5.2.0, September 15th, 2018
SFCGAL: 1.3.2

Running tests
regress_sfcgal .. ok
empty .. ok
gacency .. ok
legacy .. ok
measures .. ok
regress_ogc_prep .. ok
regress_ogc .. ok
regress .. ok
tickets .. ok
concave_hull .. ok
wmsservers .. ok
approximatemedialaxis .. ok
uninstall .. ok (4643)

Run tests: 13
Failed: 0

-- if you built with raster support

CUnit - A unit testing framework for C - Version 2.1-2
http://cunit.sourceforge.net/

Suite: pixtype
 Test: test_pixtype_size ...passed
 Test: test_pixtype_alignment ...passed
 Test: test_pixtype_name ...passed
 Test: test_pixtype_index_from_name ...passed
 Test: test_pixtype_get_min_value ...passed
 Test: test_pixtype_compare_clamped_values ...passed
Suite: raster_basics
Test: test_raster_new ... passed
Test: test_raster_empty ... passed
Test: test_raster_metadata ... passed
Test: test_raster_clone ... passed
Test: test_raster_from_band ... passed
Test: test_raster_replace_band ... passed
Suite: band basics
Test: test_band_metadata ... passed
Test: test_band_pixtype_1BB ... passed
Test: test_band_pixtype_2BUI ... passed
Test: test_band_pixtype_4BUI ... passed
Test: test_band_pixtype_8BUI ... passed
Test: test_band_pixtype_8BSI ... passed
Test: test_band_pixtype_16BUI ... passed
Test: test_band_pixtype_16BSI ... passed
Test: test_band_pixtype_32BUI ... passed
Test: test_band_pixtype_32BSI ... passed
Test: test_band_pixtype_32BF ... passed
Test: test_band_pixtype_32BSI ... passed
Test: test_band_pixtype_64BF ... passed
Test: test_band_get_pixel_line ... WARNING: Limiting returning number values to 1
WARNING: Attempting to get pixel values with out of range raster coordinates: (5, 5) passed
Test: test_band_new_offline_from_path ... passed
Suite: raster_wkb
Test: test_raster_wkb ... SRID value -1 converted to the officially unknown SRID value 0
SRID value -1 converted to the officially unknown SRID value 0
SRID value -1 converted to the officially unknown SRID value 0
SRID value -1 converted to the officially unknown SRID value 0
SRID value -1 converted to the officially unknown SRID value 0
SRID value -1 converted to the officially unknown SRID value 0
passed
Suite: gdal
Test: test_gdal_configured ... passed
Test: test_gdal_drivers ... passed
Test: test_gdal_rasterize ... passed
Test: test_gdal_polygonize ... passed
Test: test_raster_to_gdal ... Warning 6: PNG driver doesn't support data type Float64. Only eight bit (Byte) and sixteen bit (UInt16) bands supported. Defaulting to Byte passed
Test: test_gdal_to_raster ... passed
Test: test_gdal_warp ... passed
Suite: raster geometry
Test: test_raster_envelope ... passed
Test: test_raster_envelope_geom ... passed
Test: test_raster_convex_hull ... passed
Test: test_raster_surface ... INFO: Ring Self-intersection at or near point 2 -2
INFO: Ring Self-intersection at or near point 3 -3
passed
Test: test_raster_perimeter ... passed
Test: test_raster_pixel_as_polygon ... passed
Suite: raster misc
Test: test_raster_cell_to_geopoint ... passed
Test: test_raster_geopoint_to_cell ... passed
Test: test_raster_from_two_rasters ... passed
Test: test_raster_compute_skewed_raster ... passed
Suite: band stats
Test: test_band_stats ... passed
Test: test_band_value_count ... passed
Suite: band misc
Test: test_band_get_nearest_pixel ... passed
Test: test_band_get_pixel_of_value ... passed
Test: test_pixel_set_to_array ...passed
Suite: mapalgebra
 Test: test_raster_iterator ...passed
 Test: test_band_reclass ...passed
 Test: test_raster_colormap ...passed
Suite: spatial_relationship
 Test: test_raster_geos_overlaps ...passed
 Test: test_raster_geos_touches ...passed
 Test: test_raster_geos_contains ...passed
 Test: test_raster_geos_contains_properly ...passed
 Test: test_raster_geos_covers ...passed
 Test: test_raster_geos_covered_by ...passed
 Test: test_raster_within_distance ...passed
 Test: test_raster_fully_within_distance ...passed
 Test: test_raster_intersects ...passed
 Test: test_raster_same_alignment ...passed
Suite: misc
 Test: test_rgb_to_hsv ...passed
 Test: test_hsv_to_rgb ...passed
 Test: test_util_gdal_open ...passed

Run Summary: Type Total Ran Passed Failed Inactive
 suites 12 12 n/a 0 0
 tests 65 65 65 0 0
 asserts 45896 45896 45896 0 n/a

Elapsed time = 0.499 seconds

Loading Raster into 'postgis_reg'
PostgreSQL 12devel on x86_64-w64-mingw32, compiled by gcc.exe (x86_64-posix-seh-rev0, Built ←
 by MinGW-W64 project) 8.1.0, 64-bit
Postgis 3.0.0dev - r17081 - 2018-11-28 18:50:02
scripts 3.0.0dev r17081
raster scripts 3.0.0dev r17081
GEOS: 3.7.0-CAPI-1.11.0 673b9939
PROJ: Rel. 5.2.0, September 15th, 2018
GDAL: GDAL 2.3.1, released 2018/06/22

Running tests
check_gdal .. ok
load_outdb ... ok
check_raster_columns .. ok
check_raster_overviews .. ok
rt_io .. ok
rt_bytea .. ok
rt_wkb .. ok
box3d .. ok
rt_addband .. ok
rt_band .. ok
rt_tile .. ok
rt_dimensions .. ok
rt_scale .. ok
rt_pixelsize .. ok
rt_upperleft .. ok
rt_rotation .. ok
rt_georeference .. ok
rt_set_properties .. ok
rt_isempty .. ok
rt_hasnoband .. ok
rt_metadata .. ok
rt_rastertoworldcoord .. ok
loader/BasicCopy .. ok
loader/BasicFilename .. ok
loader/BasicOutDB .. ok
loader/Tiled10x10 .. ok
loader/Tiled10x10Copy .. ok
loader/Tiled8x8 .. ok
clean .. ok
uninstall .. ok (4643)

Run tests: 101
Failed: 0

-- topology regress
PostgreSQL 12devel on x86_64-w64-mingw32, compiled by gcc.exe (x86_64-posix-seh-rev0, Built ←
by MinGW-W64 project) 8.1.0, 64-bit
Postgis 3.0.0dev - r17081 - 2018-11-28 18:50:02
scripts 3.0.0dev r17081
GEOS: 3.7.0-CAPI-1.11.0 673b9939
PROJ: Rel. 5.2.0, September 15th, 2018

Running tests

regress/legacy_validate .. ok
regress/legacy_predicate .. ok
regress/legacy_invalid .. ok
regress/sqlmm .. ok
regress/legacy_query .. ok
regress/addnode .. ok
regress/addedge .. ok
regress/addface .. ok
regress/addface2.5d .. ok
regress/addtopogeometrycolumn .. ok
regress/polygonize .. ok
regress/st_addisoedge .. ok
regress/st_addisonode .. ok
regress/st_addedgeface .. ok
regress/st_addgedgenewfaces .. ok
regress/st_changeedgegeom .. ok
regress/st_createtopogeo .. ok
regress/st_getfacegeometry .. ok
regress/st_getfaceedges .. ok
regress/st_modgedgeheal .. ok
regress/st_modgedgesplit .. ok
regress/st_newedgeheal .. ok
regress/st_newedgessplit .. ok
regress/st_remedgenewface .. ok
regress/st_remedgedgenewface .. ok
regress/st_simplify .. ok
regress/topoelement .. ok
regress/topoelementarray_agg .. ok
regress/topogeo_addlinestring .. ok
regress/topogeo_addpoint .. ok
regress/topogeo_addpolygon .. ok
regress/topogeo_edit .. ok
regress/topogeo_type .. ok
regress/topojson .. ok
regress/topologysummary .. ok
regress/topo2.5d .. ok
regress/totopogeom .. ok
regress/droptopology .. ok
regress/droptopogeometrycolumn .. ok
regress/copytopology .. ok
regress/createtopogeom .. ok
regress/createtopology .. ok
regress/gml .. ok
regress/getnodebypoint .. ok
regress/getedgebypoint .. ok
regress/getfacebypoint .. ok
regress/getringedges .. ok
regress/gettopogeomelements .. ok
regress/layertrigger .. ok
regress/validatetopology .. ok
uninstall .. ok (4643)

Run tests: 51
Failed: 0

-- if you built --with-gui, you should see this too

CUnit - A unit testing framework for C - Version 2.1-2
http://cunit.sourceforge.net/

Suite: Shapefile Loader File shp2pgsql Test
Test: test_ShpLoaderCreate() ...passed
Test: test_ShpLoaderDestroy() ...passed

Suite: Shapefile Loader File pgsql2shp Test
Test: test_ShpDumperCreate() ...passed
Test: test_ShpDumperDestroy() ...passed

Run Summary: Type Total Ran Passed Failed Inactive
suites 2 2 n/a 0 0
tests 4 4 4 0 0
asserts 4 4 4 0 n/a

The postgis_tiger_geocoder and address_standardizer extensions, currently only support the standard PostgreSQL installcheck. To test these use the below. Note: the make install is not necessary if you already did make install at root of PostGIS code folder.

For address_standardizer:

```bash
cd extensions/address_standardizer
make install
make installcheck
```

Output should look like:

```
-------------- dropping database "contrib_regression"  ---------------
DROP DATABASE
-------------- creating database "contrib_regression"  ---------------
CREATE DATABASE
ALTER DATABASE
-------------- running regression test queries  ---------------
test test-init-extensions ... ok
test test-parseaddress ... ok
test test-standardize_address_1 ... ok
test test-standardize_address_2 ... ok

All 4 tests passed.
```

For tiger geocoder, make sure you have postgis and fuzzystrmatch extensions available in your PostgreSQL instance. The address_standardizer tests will also kick in if you built postgis with address_standardizer support:
cd extensions/postgis_tiger_geocoder
make install
make installcheck

output should look like:

```
============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== installing fuzzystrmatch ==============
CREATE EXTENSION
============== installing postgis ==============
CREATE EXTENSION
============== installing postgis_tiger_geocoder ==============
CREATE EXTENSION
============== installing address_standardizer ==============
CREATE EXTENSION
============== running regression test queries ==============

test test-normalize_address ... ok

test test-pagc Normalize_address ... ok
```

All 2 tests passed.

2.2.7 Installation

To install PostGIS, type

```
make install
```

This will copy the PostGIS installation files into their appropriate subdirectory specified by the `--prefix` configuration parameter. In particular:

- The loader and dumper binaries are installed in `[prefix]/bin`.
- The SQL files, such as `postgis.sql`, are installed in `[prefix]/share/contrib`.
- The PostGIS libraries are installed in `[prefix]/lib`.

If you previously ran the `make comments` command to generate the `postgis_comments.sql`, `raster_comments.sql` file, install the sql file by running

```
make comments-install
```

Note

`postgis_comments.sql`, `raster_comments.sql`, `topology_comments.sql` was separated from the typical build and installation targets since with it comes the extra dependency of `xsltproc`.

2.3 Installing and Using the address standardizer

The `address_standardizer` extension used to be a separate package that required separate download. From PostGIS 2.2 on, it is now bundled in. For more information about the `address_standardizer`, what it does, and how to configure it for your needs, refer to Section 4.7.
This standardizer can be used in conjunction with the PostGIS packaged tiger geocoder extension as a replacement for the Normalize_Address discussed. To use as replacement refer to Section 2.4.3. You can also use it as a building block for your own geocoder or use it to standardize your addresses for easier compare of addresses.

The address standardizer relies on PCRE which is usually already installed on many Nix systems, but you can download the latest at: http://www.pcre.org. If during Section 2.2.3, PCRE is found, then the address standardizer extension will automatically be built. If you have a custom pcre install you want to use instead, pass to configure --with-pcredir=/path/to/pcre where /path/to/pcre is the root folder for your pcre include and lib directories.

For Windows users, the PostGIS 2.1+ bundle is packaged with the address_standardizer already so no need to compile and can move straight to CREATE EXTENSION step.

Once you have installed, you can connect to your database and run the SQL:

```sql
CREATE EXTENSION address_standardizer;
```

The following test requires no rules, gaz, or lex tables

```sql
SELECT num, street, city, state, zip
FROM parse_address('1 Devonshire Place PH301, Boston, MA 02109');
```

Output should be

<table>
<thead>
<tr>
<th>num</th>
<th>street</th>
<th>city</th>
<th>state</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Devonshire Place PH301</td>
<td>Boston</td>
<td>MA</td>
<td>02109</td>
</tr>
</tbody>
</table>

2.3.1 Installing Regex::Assemble

Perl Regex::Assemble is no longer needed for compiling address_standardizer extension since the files it generates are part of the source tree. However if you need to edit the usps-st-city-orig.txt or usps-st-city-orig.txt usps-st-city-adds. tx, you need to rebuild parseaddress-stcities.h which does require Regex::Assemble.

```bash
cpan Regexp::Assemble
```

or if you are on Ubuntu / Debian you might need to do

```bash
sudo perl -MCPAN -e "install Regexp::Assemble"
```

2.4 Installing, Upgrading Tiger Geocoder and loading data

Extras like Tiger geocoder may not be packaged in your PostGIS distribution. If you are missing the tiger geocoder extension or want a newer version than what your install comes with, then use the share/extension/postgis_tiger_geocoder.* files from the packages in Windows Unreleased Versions section for your version of PostgreSQL. Although these packages are for windows, the postgis_tiger_geocoder extension files will work on any OS since the extension is an SQL/plpgsql only extension.

2.4.1 Tiger Geocoder Enabling your PostGIS database: Using Extension

If you are using PostgreSQL 9.1+ and PostGIS 2.1+, you can take advantage of the new extension model for installing tiger geocoder. To do so:

1. First get binaries for PostGIS 2.1+ or compile and install as usual. This should install the necessary extension files as well for tiger geocoder.

2. Connect to your database via psql or pgAdmin or some other tool and run the following SQL commands. Note that if you are installing in a database that already has postgis, you don’t need to do the first step. If you have fuzzystrmatch extension already installed, you don’t need to do the second step either.
CREATE EXTENSION postgis;
CREATE EXTENSION fuzzystrmatch;
CREATE EXTENSION postgis_tiger_geocoder;
→ this one is optional if you want to use the rules based standardizer (←
pagc_normalize_address)
CREATE EXTENSION address_standardizer;

If you already have postgis_tiger_geocoder extension installed, and just want to update to the latest run:
ALTER EXTENSION postgis UPDATE;
ALTER EXTENSION postgis_tiger_geocoder UPDATE;

If you made custom entries or changes to tiger.loader_platform and tiger.loader_variables you may
need to update these.

3. To confirm your install is working correctly, run this sql in your database:

```sql
SELECT na.address, na.streetname,na.streettypeabbrev, na.zip
FROM normalize_address('1 Devonshire Place, Boston, MA 02109') AS na;
```

Which should output

<table>
<thead>
<tr>
<th>address</th>
<th>streetname</th>
<th>streettypeabbrev</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Devonshire</td>
<td>Pl</td>
<td>02109</td>
</tr>
</tbody>
</table>

4. Create a new record in tiger.loader_platform table with the paths of your executables and server.

So for example to create a profile called debbie that follows sh convention. You would do:

```sql
INSERT INTO tiger.loader_platform(os, declare_sect, pgbin, wget, unzip_command, psql, path_sep,
loader, environ_set_command, county_process_command)
SELECT 'debbie', declare_sect, pgbin, wget, unzip_command, psql, path_sep,
loader, environ_set_command, county_process_command
FROM tiger.loader_platform
WHERE os = 'sh';
```

And then edit the paths in the declare_sect column to those that fit Debbie’s pg, unzip,shp2pgsql, psql, etc path locations.

If you don’t edit this loader_platform table, it will just contain common case locations of items and you’ll have to
edit the generated script after the script is generated.

5. As of PostGIS 2.4.1 the Zip code-5 digit tabulation area zcta5 load step was revised to load current zcta5 data and is part
of the Loader_Generate_Nation_Script when enabled. It is turned off by default because it takes quite a bit of time to load
(20 to 60 minutes), takes up quite a bit of disk space, and is not used that often.

To enable it, do the following:

```sql
UPDATE tiger.loader_lookuptables SET load = true WHERE table_name = 'zcta510';
```

If present the Geocode function can use it if a boundary filter is added to limit to just zips in that boundary. The Re-
verse_Geocode function uses it if the returned address is missing a zip, which often happens with highway reverse geocod-
ing.

6. Create a folder called gisdata on root of server or your local pc if you have a fast network connection to the server.

This folder is where the tiger files will be downloaded to and processed. If you are not happy with having the folder on
the root of the server, or simply want to change to a different folder for staging, then edit the field staging_fold in the
tiger.loader_variables table.

7. Create a folder called temp in the gisdata folder or wherever you designated the staging_fold to be. This will be
the folder where the loader extracts the downloaded tiger data.
8. Then run the `Loader_Generate_Nation_Script` SQL function make sure to use the name of your custom profile and copy the script to a .sh or .bat file. So for example to build the nation load:

```sql
psql -c "SELECT Loader_Generate_Nation_Script('debbie')" -d geocoder -tA > /gisdata/ nation_script_load.sh
```

9. Run the generated nation load commandline scripts.

```bash
cd /gisdata
sh nation_script_load.sh
```

10. After you are done running the nation script, you should have three tables in your `tiger_data` schema and they should be filled with data. Confirm you do by doing the following queries from psql or pgAdmin.

```sql
SELECT count(*) FROM tiger_data.county_all;
```

```
count
-------
3233
(1 row)
```

```sql
SELECT count(*) FROM tiger_data.state_all;
```

```
count
-------
56
(1 row)
```

11. By default the tables corresponding to `bg`, `tract`, `tabblock` are not loaded. These tables are not used by the geocoder but are used by folks for population statistics. If you wish to load them as part of your state loads, run the following statement to enable them.

```sql
UPDATE tiger.loader_lookuptables SET load = true WHERE load = false AND lookup_name IN ('tract', 'bg', 'tabblock');
```

Alternatively you can load just these tables after loading state data using the `Loader_Generate_Census_Script`

12. For each state you want to load data for, generate a state script `Loader_Generate_Script`.

```
Warning
DO NOT Generate the state script until you have already loaded the nation data, because the state script utilizes county list loaded by nation script.
```

13. `psql -c "SELECT Loader_Generate_Script(ARRAY['MA'], 'debbie')" -d geocoder -tA > /gisdata/ ma_load.sh`

14. Run the generated commandline scripts.

```bash
cd /gisdata
sh ma_load.sh
```

15. After you are done loading all data or at a stopping point, it’s a good idea to analyze all the tiger tables to update the stats (include inherited stats)
2.4.1.1 Converting a Tiger Geocoder Regular Install to Extension Model

If you installed the tiger geocoder without using the extension model, you can convert to the extension model as follows:

1. Follow instructions in Section 2.4.5 for the non-extension model upgrade.
2. Connect to your database with psql or pgAdmin and run the following command:

```sql
CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;
```

2.4.2 Tiger Geocoder Enabling your PostGIS database: Not Using Extensions

First install PostGIS using the prior instructions.

If you don’t have an extras folder, download http://download.osgeo.org/postgis/source/postgis-3.1.10.tar.gz
```
tar xvfz postgis-3.1.10.tar.gz
```
```
cd postgis-3.1.10/extras/tiger_geocoder
```

Edit the `tiger_loader_2015.sql` (or latest loader file you find, unless you want to load different year) to the paths of your executables server etc or alternatively you can update the `loader_platform` table once installed. If you don’t edit this file or the `loader_platform` table, it will just contain common case locations of items and you’ll have to edit the generated script after the fact when you run the `Loader_Generate_Nation_Script` and `Loader_Generate_Script` SQL functions.

If you are installing Tiger geocoder for the first time edit either the `create_geocode.bat` script If you are on windows or the `create_geocode.sh` if you are on Linux/Unix/Mac OSX with your PostgreSQL specific settings and run the corresponding script from the commandline.

Verify that you now have a `tiger` schema in your database and that it is part of your database search_path. If it is not, add it with a command something along the line of:

```sql
ALTER DATABASE geocoder SET search_path=public, tiger;
```

The normalizing address functionality works more or less without any data except for tricky addresses. Run this test and verify things look like this:

```
SELECT pprint_addy(normalize_address('202 East Fremont Street, Las Vegas, Nevada 89101'))
```

```
As pretty_address;
pretty_address
--------------------------
202 E Fremont St, Las Vegas, NV 89101
```
2.4.3 Using Address Standardizer Extension with Tiger geocoder

One of the many complaints of folks is the address normalizer function Normalize_Address function that normalizes an address for prepping before geocoding. The normalizer is far from perfect and trying to patch its imperfection takes a vast amount of resources. As such we have integrated with another project that has a much better address standardizer engine. To use this new address_standardizer, you compile the extension as described in Section 2.3 and install as an extension in your database.

Once you install this extension in the same database as you have installed postgis_tiger_geocoder, then the Page_Normalize_Address function can be used instead of Normalize_Address. This extension is tiger agnostic, so can be used with other data sources such as international addresses. The tiger geocoder extension does come packaged with its own custom versions of rules table (tiger.pagc_rules), gaz table (tiger.pagc_gaz), and lex table (tiger.pagc_lex). These you can add and update to improve your standardizing experience for your own needs.

2.4.4 Loading Tiger Data

The instructions for loading data are available in a more detailed form in the extras/tiger_geocoder/tiger_2011/README. This just includes the general steps.

The load process downloads data from the census website for the respective nation files, states requested, extracts the files, and then loads each state into its own separate set of state tables. Each state table inherits from the tables defined in tiger schema so that its sufficient to just query those tables to access all the data and drop a set of state tables at any time using the Drop_State_Tables_Generate_Script if you need to reload a state or just don’t need a state anymore.

In order to be able to load data you’ll need the following tools:

- A tool to unzip the zip files from census website.
 For Unix like systems: unzip executable which is usually already installed on most Unix like platforms.
 For Windows, 7-zip which is a free compress/uncompress tool you can download from http://www.7-zip.org/
- shp2pgsql commandline which is installed by default when you install PostGIS.
- wget which is a web grabber tool usually installed on most Unix/Linux systems.
 If you are on windows, you can get pre-compiled binaries from http://gnuwin32.sourceforge.net/packages/wget.htm

If you are upgrading from tiger_2010, you’ll need to first generate and run Drop_Nation_Tables_Generate_Script. Before you load any state data, you need to load the nation wide data which you do with Loader_Generate_Nation_Script. Which will generate a loader script for you. Loader_Generate_Nation_Script is a one-time step that should be done for upgrading (from 2010) and for new installs.

To load state data refer to Loader_Generate_Script to generate a data load script for your platform for the states you desire. Note that you can install these piecemeal. You don’t have to load all the states you want all at once. You can load them as you need them.

After the states you desire have been loaded, make sure to run the:

```sql
SELECT install_missing_indexes();
```

as described in Install_Missing_Indexes.

To test that things are working as they should, try to run a geocode on an address in your state using Geocode.

2.4.5 Upgrading your Tiger Geocoder Install

If you have Tiger Geocoder packaged with 2.0+ already installed, you can upgrade the functions at any time even from an interim tar ball if there are fixes you badly need. This will only work for Tiger geocoder not installed with extensions.

If you don’t have an extras folder, download http://download.osgeo.org/postgis/source/postgis-3.1.10.tar.gz

```
tar xvfz postgis-3.1.10.tar.gz
```
cd postgis-3.1.10/extras/tiger_geocoder/tiger_2011

Locate the `upgrade_geocoder.bat` script if you are on Windows or the `upgrade_geocoder.sh` if you are on Linux/Unix/Mac OSX. Edit the file to have your PostGIS database credentials.

If you are upgrading from 2010 or 2011, make sure to unremark out the loader script line so you get the latest script for loading 2012 data.

Then run the corresponding script from the command line.

Next drop all nation tables and load up the new ones. Generate a drop script with this SQL statement as detailed in `Drop_Nation_Tables_Generate_Script`:

```sql
SELECT drop_nation_tables_generate_script();
```

Run the generated drop SQL statements.

Generate a nation load script with this `SELECT` statement as detailed in `Loader_Generate_Nation_Script`:

For windows

```sql
SELECT loader_generate_nation_script('windows');
```

For unix/linux

```sql
SELECT loader_generate_nation_script('sh');
```

Refer to Section 2.4.4 for instructions on how to run the generate script. This only needs to be done once.

Note

You can have a mix of 2010/2011 state tables and can upgrade each state separately. Before you upgrade a state to 2011, you first need to drop the 2010 tables for that state using `Drop_State_Tables_Generate_Script`.

2.5 Common Problems during installation

There are several things to check when your installation or upgrade doesn’t go as you expected.

1. Check that you have installed PostgreSQL 9.6 or newer, and that you are compiling against the same version of the PostgreSQL source as the version of PostgreSQL that is running. Mix-ups can occur when your (Linux) distribution has already installed PostgreSQL, or you have otherwise installed PostgreSQL before and forgotten about it. PostGIS will only work with PostgreSQL 9.6 or newer, and strange, unexpected error messages will result if you use an older version. To check the version of PostgreSQL which is running, connect to the database using `psql` and run this query:

   ```sql
   SELECT version();
   ```

 If you are running an RPM based distribution, you can check for the existence of pre-installed packages using the `rpm` command as follows: `rpm -qa | grep postgresql`

2. If your upgrade fails, make sure you are restoring into a database that already has PostGIS installed.

   ```sql
   SELECT postgis_full_version();
   ```

 Also check that configure has correctly detected the location and version of PostgreSQL, the Proj4 library and the GEOS library.

 1. The output from configure is used to generate the `postgis_config.h` file. Check that the `POSTGIS_PGSQL_VERSION`, `POSTGIS_PROJ_VERSION` and `POSTGIS_GEOS_VERSION` variables have been set correctly.
Chapter 3

PostGIS Administration

3.1 Performance Tuning

Tuning for PostGIS performance is much like tuning for any PostgreSQL workload. The only additional consideration is that geometries and rasters are usually large, so memory-related optimizations generally have more of an impact on PostGIS than other types of PostgreSQL queries.

For general details about optimizing PostgreSQL, refer to Tuning your PostgreSQL Server.

For PostgreSQL 9.4+ configuration can be set at the server level without touching `postgresql.conf` or `postgresql.auto.conf` by using the `ALTER SYSTEM` command.

```
ALTER SYSTEM SET work_mem = '256MB';
-- this forces non-startup configs to take effect for new connections
SELECT pg_reload_conf();
-- show current setting value
-- use SHOW ALL to see all settings
SHOW work_mem;
```

In addition to the Postgres settings, PostGIS has some custom settings which are listed in Section 5.23.

3.1.1 Startup

These settings are configured in `postgresql.conf`:

constraint_exclusion

- Default: partition
- This is generally used for table partitioning. The default for this is set to "partition" which is ideal for PostgreSQL 8.4 and above since it will force the planner to only analyze tables for constraint consideration if they are in an inherited hierarchy and not pay the planner penalty otherwise.

shared_buffers

- Default: ~128MB in PostgreSQL 9.6
- Set to about 25% to 40% of available RAM. On windows you may not be able to set as high.

max_worker_processes This setting is only available for PostgreSQL 9.4+. For PostgreSQL 9.6+ this setting has additional importance in that it controls the max number of processes you can have for parallel queries.

- Default: 8
- Sets the maximum number of background processes that the system can support. This parameter can only be set at server start.
3.1.2 Runtime

work_mem - sets the size of memory used for sort operations and complex queries

- Default: 1-4MB
- Adjust up for large dbs, complex queries, lots of RAM
- Adjust down for many concurrent users or low RAM.
- If you have lots of RAM and few developers:
  ```sql
  SET work_mem TO '256MB';
  ```

maintenance_work_mem - the memory size used for VACUUM, CREATE INDEX, etc.

- Default: 16-64MB
- Generally too low - ties up I/O, locks objects while swapping memory
- Recommend 32MB to 1GB on production servers w/lots of RAM, but depends on the # of concurrent users. If you have lots of RAM and few developers:
  ```sql
  SET maintenance_work_mem TO '1GB';
  ```

max_parallel_workers_per_gather

This setting is only available for PostgreSQL 9.6+ and will only affect PostGIS 2.3+, since only PostGIS 2.3+ supports parallel queries. If set to higher than 0, then some queries such as those involving relation functions like `ST_Intersects` can use multiple processes and can run more than twice as fast when doing so. If you have a lot of processors to spare, you should change the value of this to as many processors as you have. Also make sure to bump up `max_worker_processes` to at least as high as this number.

- Default: 0
- Sets the maximum number of workers that can be started by a single Gather node. Parallel workers are taken from the pool of processes established by `max_worker_processes`. Note that the requested number of workers may not actually be available at run time. If this occurs, the plan will run with fewer workers than expected, which may be inefficient. Setting this value to 0, which is the default, disables parallel query execution.

3.2 Configuring raster support

If you enabled raster support you may want to read below how to properly configure it.

As of PostGIS 2.1.3, out-of-db rasters and all raster drivers are disabled by default. In order to re-enable these, you need to set the following environment variables `POSTGIS_GDAL_ENABLED_DRIVERS` and `POSTGIS_ENABLE_OUTDB_RASTERS` in the server environment. For PostGIS 2.2, you can use the more cross-platform approach of setting the corresponding Section 5.23.

If you want to enable offline raster:
```bash
POSTGIS_ENABLE_OUTDB_RASTERS=1
```

Any other setting or no setting at all will disable out of db rasters.

In order to enable all GDAL drivers available in your GDAL install, set this environment variable as follows
```bash
POSTGIS_GDAL_ENABLED_DRIVERS=ENABLE_ALL
```
If you want to only enable specific drivers, set your environment variable as follows:

```
POSTGIS_GDAL_ENABLED_DRIVERS="GTiff PNG JPEG GIF XYZ"
```

Note

If you are on windows, do not quote the driver list.

Setting environment variables varies depending on OS. For PostgreSQL installed on Ubuntu or Debian via apt-postgresql, the preferred way is to edit `/etc/postgresql/10/main/environment` where 10 refers to version of PostgreSQL and main refers to the cluster.

On windows, if you are running as a service, you can set via System variables which for Windows 7 you can get to by right-clicking on Computer->Properties Advanced System Settings or in explorer navigating to Control Panel\All Control Panel Items\System. Then clicking Advanced System Settings ->Advanced->Environment Variables and adding new system variables.

After you set the environment variables, you’ll need to restart your PostgreSQL service for the changes to take effect.

3.3 Creating spatial databases

3.3.1 Spatially enable database using EXTENSION

If you are using PostgreSQL 9.1+ and have compiled and installed the extensions/postgis modules, you can turn a database into a spatial one using the EXTENSION mechanism.

Core postgis extension includes geometry, geography, spatial_ref_sys and all the functions and comments. Raster and topology are packaged as a separate extension.

Run the following SQL snippet in the database you want to enable spatially:

```
CREATE EXTENSION IF NOT EXISTS plpgsql;
CREATE EXTENSION postgis;
CREATE EXTENSION postgis_raster; -- OPTIONAL
CREATE EXTENSION postgis_topology; -- OPTIONAL
```

3.3.2 Spatially enable database without using EXTENSION (discouraged)

Note

This is generally only needed if you cannot or don’t want to get PostGIS installed in the PostgreSQL extension directory (for example during testing, development or in a restricted environment).

Adding PostGIS objects and function definitions into your database is done by loading the various sql files located in `[prefix]/share/contrib` as specified during the build phase.

The core PostGIS objects (geometry and geography types, and their support functions) are in the postgis.sql script. Raster objects are in the rtpostgis.sql script. Topology objects are in the topology.sql script.

For a complete set of EPSG coordinate system definition identifiers, you can also load the spatial_ref_sys.sql definitions file and populate the spatial_ref_sys table. This will permit you to perform ST_Transform() operations on geometries.

If you wish to add comments to the PostGIS functions, you can find them in the postgis_comments.sql script. Comments can be viewed by simply typing `\dd [function_name]` from a `psql` terminal window.

Run the following Shell commands in your terminal:
3.3.3 Create a spatially-enabled database from a template

Some packaged distributions of PostGIS (in particular the Win32 installers for PostGIS >= 1.1.5) load the PostGIS functions into a template database called template_postgis. If the template_postgis database exists in your PostgreSQL installation then it is possible for users and/or applications to create spatially-enabled databases using a single command. Note that in both cases, the database user must have been granted the privilege to create new databases.

From the shell:

```
# createdb -T template_postgis my_spatial_db
```

From SQL:

```
postgres=# CREATE DATABASE my_spatial_db TEMPLATE=template_postgis
```

3.4 Upgrading spatial databases

Upgrading existing spatial databases can be tricky as it requires replacement or introduction of new PostGIS object definitions. Unfortunately not all definitions can be easily replaced in a live database, so sometimes your best bet is a dump/reload process.

PostGIS provides a SOFT UPGRADE procedure for minor or bugfix releases, and a HARD UPGRADE procedure for major releases.

Before attempting to upgrade PostGIS, it is always worth to backup your data. If you use the -Fc flag to pg_dump you will always be able to restore the dump with a HARD UPGRADE.

3.4.1 Soft upgrade

If you installed your database using extensions, you’ll need to upgrade using the extension model as well. If you installed using the old sql script way, then you should upgrade using the sql script way. Please refer to the appropriate.

3.4.1.1 Soft Upgrade Pre 9.1+ or without extensions

This section applies only to those who installed PostGIS not using extensions. If you have extensions and try to upgrade with this approach you’ll get messages like:

```
can't drop ... because postgis extension depends on it
```
NOTE: if you are moving from PostGIS 1.* to PostGIS 2.* or from PostGIS 2.* prior to r7409, you cannot use this procedure but would rather need to do a HARD UPGRADE.

After compiling and installing (make install) you should find a set of *_upgrade.sql files in the installation folders. You can list them all with:

```
ls `pg_config --sharedir`/contrib/postgis-3.1.10/*_upgrade.sql
```

Load them all in turn, starting from postgis_upgrade.sql.

```
psql -f postgis_upgrade.sql -d your_spatial_database
```

The same procedure applies to raster, topology and sfcgal extensions, with upgrade files named rtpostgis Upgrade.sql, topology Upgrade.sql and sfcgal Upgrade.sql respectively. If you need them:

```
psql -f rtpostgis_upgrade.sql -d your_spatial_database
psql -f topology_upgrade.sql -d your_spatial_database
psql -f sfcgal_upgrade.sql -d your_spatial_database
```

Note

If you can't find the postgis Upgrade.sql specific for upgrading your version you are using a version too early for a soft upgrade and need to do a HARD UPGRADE.

The PostGIS Full Version function should inform you about the need to run this kind of upgrade using a "procs need upgrade" message.

3.4.1.2 Soft Upgrade 9.1+ using extensions

If you originally installed PostGIS with extensions, then you need to upgrade using extensions as well. Doing a minor upgrade with extensions, is fairly painless.

```
ALTER EXTENSION postgis UPDATE TO "3.1.10";
ALTER EXTENSION postgis_topology UPDATE TO "3.1.10";
```

If you get an error notice something like:

```
No migration path defined for ... to 3.1.10
```

Then you’ll need to backup your database, create a fresh one as described in Section 3.3.1 and then restore your backup ontop of this new database.

If you get a notice message like:

```
Version "3.1.10" of extension "postgis" is already installed
```

Then everything is already up to date and you can safely ignore it. UNLESS you’re attempting to upgrade from an development version to the next (which doesn’t get a new version number); in that case you can append "next" to the version string, and next time you’ll need to drop the "next" suffix again:

```
ALTER EXTENSION postgis UPDATE TO "3.1.10next";
ALTER EXTENSION postgis_topology UPDATE TO "3.1.10next";
```
3.4.2 Hard upgrade

By HARD UPGRADE we mean full dump/reload of postgis-enabled databases. You need a HARD UPGRADE when PostGIS objects’ internal storage changes or when SOFT UPGRADE is not possible. The Release Notes appendix reports for each version whether you need a dump/reload (HARD UPGRADE) to upgrade.

The dump/reload process is assisted by the postgis_restore.pl script which takes care of skipping from the dump all definitions which belong to PostGIS (including old ones), allowing you to restore your schemas and data into a database with PostGIS installed without getting duplicate symbol errors or bringing forward deprecated objects.

Supplementary instructions for windows users are available at Windows Hard upgrade.

The Procedure is as follows:

1. Create a "custom-format" dump of the database you want to upgrade (let’s call it olddb) include binary blobs (-b) and verbose (-v) output. The user can be the owner of the db, need not be postgres super account.
   ```
   pg_dump -h localhost -p 5432 -U postgres -Fc -b -v -f "/somepath/olddb.backup" olddb
   ```

2. Do a fresh install of PostGIS in a new database -- we’ll refer to this database as newdb. Please refer to Section 3.3.2 and Section 3.3.1 for instructions on how to do this.

 The spatial_ref_sys entries found in your dump will be restored, but they will not override existing ones in spatial_ref_sys. This is to ensure that fixes in the official set will be properly propagated to restored databases. If for any reason you really want your own overrides of standard entries just don’t load the spatial_ref_sys.sql file when creating the new db.

 If your database is really old or you know you’ve been using long deprecated functions in your views and functions, you might need to load legacy.sql for all your functions and views etc. to properly come back. Only do this if really needed. Consider upgrading your views and functions before dumping instead, if possible. The deprecated functions can be later removed by loading uninstall_legacy.sql.

3. Restore your backup into your fresh newdb database using postgis_restore.pl. Unexpected errors, if any, will be printed to the standard error stream by psql. Keep a log of those.
   ```
   perl utils/postgis_restore.pl "/somepath/olddb.backup" | psql -h localhost -p 5432 -U postgres newdb 2> errors.txt
   ```

Errors may arise in the following cases:

1. Some of your views or functions make use of deprecated PostGIS objects. In order to fix this you may try loading legacy.sql script prior to restore or you’ll have to restore to a version of PostGIS which still contains those objects and try a migration again after porting your code. If the legacy.sql way works for you, don’t forget to fix your code to stop using deprecated functions and drop them loading uninstall_legacy.sql.
2. Some custom records of spatial_ref_sys in dump file have an invalid SRID value. Valid SRID values are bigger than 0 and smaller than 999000. Values in the 999000.999999 range are reserved for internal use while values > 999999 can’t be used at all. All your custom records with invalid SRIDs will be retained, with those > 999999 moved into the reserved range, but the spatial_ref_sys table would lose a check constraint guarding for that invariant to hold and possibly also its primary key (when multiple invalid SRIDS get converted to the same reserved SRID value).

In order to fix this you should copy your custom SRS to a SRID with a valid value (maybe in the 910000..910999 range), convert all your tables to the new srid (see UpdateGeometrySRID), delete the invalid entry from spatial_ref_sys and reconstruct the check(s) with:

```sql
ALTER TABLE spatial_ref_sys ADD CONSTRAINT spatial_ref_sys_srid_check check (srid > 0 AND srid < 999000 );
ALTER TABLE spatial_ref_sys ADD PRIMARY KEY(srid);
```

If you are upgrading an old database containing french IGN cartography, you will have probably SRIDs out of range and you will see, when importing your database, issues like this:

```
WARNING: SRID 310642222 converted to 999175 (in reserved zone)
```

In this case, you can try following steps: first throw out completely the IGN from the sql which is resulting from postgis_restore.pl. So, after having run:

```
perl utils/postgis_restore.pl "/somepath/olddb.backup" > olddb.sql
```

run this command:

```
grep -v IGNF olddb.sql > olddb-without-IGN.sql
```

Create then your newdb, activate the required Postgis extensions, and insert properly the french system IGN with: this script. After these operations, import your data:

```
psql -h localhost -p 5432 -U postgres -d newdb -f olddb-without-IGN.sql 2> errors.txt
```
Chapter 4

PostGIS Usage

4.1 Data Management

4.1.1 GIS Objects

The GIS objects supported by PostGIS are a superset of the "Simple Features" standard defined by the OpenGIS Consortium (OGC). PostGIS supports all the objects and functions specified in the OGC "Simple Features for SQL" specification (SFS).

PostGIS extends the standard with support for embedded SRID information.

4.1.1.1 OpenGIS WKB and WKT

The OpenGIS specification defines two standard ways of expressing spatial objects: the Well-Known Text (WKT) form and the Well-Known Binary (WKB) form. Both WKT and WKB include information about the type of the object and the coordinates which form the object.

Examples of the text representations (WKT) of the spatial objects of the features are as follows:

- POINT(0 0)
- POINT Z (0 0 0)
- POINT ZM (0 0 0 0)
- LINESTRING(0 0,1 1,1 2)
- POLYGON((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1))
- MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))
- GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))

The OpenGIS specification also requires that the internal storage format of spatial objects include a spatial referencing system identifier (SRID). The SRID is required when creating spatial objects for insertion into the database.

Input/Output of these formats are available using the following interfaces:
bytea WKB = ST_AsBinary(geometry);

WKT = ST_AsText(geometries);

geometry = ST_GeomFromWKB(bytea WKB, SRID);

geometry = ST_GeometryFromText(text WKT, SRID);

For example, a valid insert statement to create and insert an OGC spatial object would be:

```sql
INSERT INTO geotable (the_geom, the_name)
VALUES (ST_GeomFromText('POINT(-126.4 45.32)', 312), 'A Place');
```

4.1.1.2 PostGIS EWKB, EWKT and Canonical Forms

First OpenGIS specifications (prior to 1.2.0) only support 2D geometries, and the associated SRID is *never* embedded in the input/output representations.

Even though the last OpenGIS specification 1.2.1 supports 3DM and 3DZ coordinates specifying ZM qualifiers, it does not include yet the associated SRID in the input/output representations.

PostGIS extended formats add 3DM, 3DZ, 4D coordinates support and embedded SRID information. However, PostGIS EWKB/EWKT outputs have several peculiarities:

- For 3DZ geometries they will drop the Z qualifier:
 - OpenGIS: POINT Z (1 2 3)
 - EWKB/EWKT: POINT(1 2 3)

- For 3DM geometries they will keep the M qualifier:
 - OpenGIS: POINT M (1 2 3)
 - EWKB/EWKT: POINTM(1 2 3)

- For 4D geometries they will drop the ZM qualifiers:
 - OpenGIS: POINT ZM (1 2 3 4)
 - EWKB/EWKT: POINT(1 2 3 4)

By doing this, PostGIS EWKB/EWKT avoids over-specifying dimensionality and a whole categories of potential errors that ISO admits, e.g.:

- POINT ZM (1 1)
- POINT ZM (1 1 1)
- POINT (1 1 1 1)

Caution

PostGIS extended formats are currently superset of the OGC one (every valid WKB/WKT is a valid EWKB/EWKT) but this might vary in the future, specifically if OGC comes out with a new format conflicting with our extensions. Thus you **SHOULD NOT** rely on this feature!

Examples of the text representations (EWKT) of the extended spatial objects of the features are as follows:

- POINT(0 0 0) -- XYZ
- SRID=32632;POINT(0 0) -- XY with SRID
- POINTM(0 0 0) -- XYM
• POINT(0 0 0) -- XXYZM
• SRID=4326;MULTIPOINTM((0 0 0,1 2 1)) -- XYM with SRID
• MULTILINESTRINGM((0 0 0,1 1 0,1 2 1),(2 3 1,3 2 1,5 4 1))
• POLYGONM((0 0 0,4 0 0,4 0 0,0 0 0),(1 1 0,2 1 0,2 0 0,1 2 0,1 1 0))
• MULTIPOLYGONM(((0 0 0,4 0 0,4 0 0,0 0 0),(1 1 0,2 1 0,2 0 0,1 2 0,1 1 0)),((-1 -1 0,-1 -2 0,-2 -2 0,-2 -1 0,-1 -1 0)))
• GEOMETRYCOLLECTIONM(POINTM(2 3 9), LINestringM(2 3 4, 3 4 5))
• MULTICURVEM((0 0 5 5), CIRCULARSTRINGM(4 0, 4 4, 8 4)
• POLYHedRALSURFACEM(((0 0 0, 0 1 0, 1 1 0, 0 0 0), ((0 0 0, 0 1 0, 1 1 0, 0 1 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 1 0, 1 1 0, 1 1 0)), ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))
• TRIANGLESM((0 0 9, 9 0, 0))
• TINM((0 0 0, 0 1 0, 1 1 0, 0 0 0), (0 0 0, 0 1 0, 1 1 0, 0 0 0))

Conversion between these formats is available using the following interfaces:

```sql
bytea EWKB = ST_AsEWKB(geometry);
text EWKT = ST_AsEWKT(geometry);
geometry = ST_GeomFromEWKB(bytea EWKB);
geometry = ST_GeomFromEWKT(text EWKT);
```

For example, a valid insert statement to create and insert a PostGIS spatial object would be:

```sql
INSERT INTO geotable (the_geom, the_name) VALUES (ST_GeomFromEWKT('SRID=312;POINTM(-126.4 45.32 15)'), 'A Place')
```

The "canonical forms" of a PostgreSQL type are the representations you get with a simple query (without any function call) and the one which is guaranteed to be accepted with a simple insert, update or copy. For the PostGIS 'geometry' type these are:

- **Output**
 - binary: EWKB
 - ascii: HEXEWKB (EWKB in hex form)
- **Input**
 - binary: EWKB
 - ascii: HEXEWKB|EWKT

For example this statement reads EWKT and returns HEXEWKB in the process of canonical ascii input/output:

```sql
=# SELECT 'SRID=4;POINT(0 0)'::geometry;
geometry
----------------------------------------
01010000200040000000000000000000000000000000000000000000000000000
(1 row)
```

4.1.1.3 SQL-MM Part 3

The SQL Multimedia Applications Spatial specification extends the simple features for SQL spec by defining a number of circularly interpolated curves.

The SQL-MM definitions include 3DM, 3DZ and 4D coordinates, but do not allow the embedding of SRID information.

The Well-Known Text extensions are not yet fully supported. Examples of some simple curved geometries are shown below:
• CIRCULARSTRING(0 0, 1 1, 1 0)
 CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0)

The CIRCULARSTRING is the basic curve type, similar to a LINESTRING in the linear world. A single segment required
three points, the start and end points (first and third) and any other point on the arc. The exception to this is for a closed circle,
where the start and end points are the same. In this case the second point MUST be the center of the arc, ie the opposite
side of the circle. To chain arcs together, the last point of the previous arc becomes the first point of the next arc, just like in
LINESTRING. This means that a valid circular string must have an odd number of points greater than 1.

• COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))

A compound curve is a single, continuous curve that has both curved (circular) segments and linear segments. That means that
in addition to having well-formed components, the end point of every component (except the last) must be coincident with the
start point of the following component.

• CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),(1 1, 3 3, 3 1, 1 1))

Example compound curve in a curve polygon: CURVEPOLYGON(COMPOUNDCURVE(CIRCULARSTRING(0 0, 2 0, 2 1,
2 3, 4 3),(4 3, 4 5, 1 4, 0 0)), CIRCULARSTRING(1.7 1, 1.4 0.4, 1.6 0.4, 1.6 0.5, 1.7 1))

A CURVEPOLYGON is just like a polygon, with an outer ring and zero or more inner rings. The difference is that a ring can
take the form of a circular string, linear string or compound string.

As of PostGIS 1.4 PostGIS supports compound curves in a curve polygon.

• MULTICURVE((0 0, 5 5),CIRCULARSTRING(4 0, 5 4, 8 4))

The MULTICURVE is a collection of curves, which can include linear strings, circular strings or compound strings.

• MULTISURFACE(CURVEPOLYGON(CIRCULARSTRING(0 0, 4 0, 4 4, 0 4, 0 0),(1 1, 3 3, 3 1, 1 1)),((10 10, 14 12, 11 10,
10 10),(11 11, 11.5 11, 11 11.5, 11 11)))

This is a collection of surfaces, which can be (linear) polygons or curve polygons.

Note

All floating point comparisons within the SQL-MM implementation are performed to a specified tolerance, currently 1E-8.

4.1.2 PostGIS Geography Type

The geography type provides native support for spatial features represented on "geographic" coordinates (sometimes called
"geodetic" coordinates, or "lat/lon", or "lon/lat"). Geographic coordinates are spherical coordinates expressed in angular units
(degrees).

The basis for the PostGIS geometry type is a plane. The shortest path between two points on the plane is a straight line. That
means calculations on geometries (areas, distances, lengths, intersections, etc) can be calculated using cartesian mathematics and
straight line vectors.

The basis for the PostGIS geographic type is a sphere. The shortest path between two points on the sphere is a great circle arc.
That means that calculations on geographies (areas, distances, lengths, intersections, etc) must be calculated on the sphere, using
more complicated mathematics. For more accurate measurements, the calculations must take the actual spheroidal shape of the
world into account.

Because the underlying mathematics is much more complicated, there are fewer functions defined for the geography type than
for the geometry type. Over time, as new algorithms are added, the capabilities of the geography type will expand.

It uses a data type called geography. None of the GEOS functions support the geography type. As a workaround one can
convert back and forth between geometry and geography types.

Prior to PostGIS 2.2, the geography type only supported WGS 84 long lat (SRID:4326). For PostGIS 2.2 and above, any long/lat
based spatial reference system defined in the spatial_ref_sys table can be used. You can even add your own custom
spheroidal spatial reference system as described in geography type is not limited to earth.
Regardless which spatial reference system you use, the units returned by the measurement (ST_Distance, ST_Length, ST_Perimeter, ST_Area) and for input of ST_DWithin are in meters.

The geography type uses the PostgreSQL typmod definition format so that a table with a geography field can be added in a single step. All the standard OGC formats except for curves are supported.

4.1.2.1 Geography Basics

The geography type does not support curves, TINS, or POLYHEDRALSURFACES, but other geometry types are supported. Standard geometry type data will autocast to geography if it is of SRID 4326. You can also use the EWKT and EWKB conventions to insert data.

- **POINT:** Creating a table with 2D point geography when srid is not specified defaults to 4326 WGS 84 long lat:
  ```sql
  CREATE TABLE ptgeogwgs(gid serial PRIMARY KEY, geog geography(POINT) );
  ```

- **POINT:** Creating a table with 2D point geography in NAD83 longlat:
  ```sql
  CREATE TABLE ptgeognad83(gid serial PRIMARY KEY, geog geography(POINT,4269) );
  ```

- Creating a table with z coordinate point and explicitly specifying srid
  ```sql
  CREATE TABLE ptzgeogwgs84(gid serial PRIMARY KEY, geog geography(POINTZ,4326) );
  ```

- **LINESTRING**
  ```sql
  CREATE TABLE lgeog(gid serial PRIMARY KEY, geog geography(LINESTRING) );
  ```

- **POLYGON**
  ```sql
  --polygon NAD 1927 long lat
  CREATE TABLE lgeognad27(gid serial PRIMARY KEY, geog geography(POLYGON,4267) );
  ```

- **MULTIPOINT**

- **MULTILINESTRING**

- **MULTIPOLYGON**

- **GEOMETRYCOLLECTION**

The geography fields get registered in the `geography_columns` system view.

Now, check the "geography_columns" view and see that your table is listed.

You can create a new table with a GEOGRAPHY column using the CREATE TABLE syntax.

```sql
CREATE TABLE global_points (  
id SERIAL PRIMARY KEY,  
name VARCHAR(64),  
location GEOGRAPHY(POINT,4326)  );
```

Note that the location column has type GEOGRAPHY and that geography type supports two optional modifiers: a type modifier that restricts the kind of shapes and dimensions allowed in the column; an SRID modifier that restricts the coordinate reference identifier to a particular number.

Allowable values for the type modifier are: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON. The modifier also supports dimensionality restrictions through suffixes: Z, M and ZM. So, for example a modifier of 'LINESTRINGM' would only allow line strings with three dimensions in, and would treat the third dimension as a measure. Similarly, 'POINTZM' would expect four dimensional data.

If you do not specify an SRID, the SRID will default to 4326 WGS 84 long/lat will be used, and all calculations will proceed using WGS84.

Once you have created your table, you can see it in the `GEOGRAPHY_COLUMNS` table:
-- See the contents of the metadata view
SELECT * FROM geography_columns;

You can insert data into the table the same as you would if it was using a GEOMETRY column:

-- Add some data into the test table
INSERT INTO global_points (name, location) VALUES ('Town', 'SRID=4326;POINT(-110 30)');
INSERT INTO global_points (name, location) VALUES ('Forest', 'SRID=4326;POINT(-109 29)');
INSERT INTO global_points (name, location) VALUES ('London', 'SRID=4326;POINT(0 49)');

Creating an index works the same as GEOMETRY. PostGIS will note that the column type is GEOGRAPHY and create an appropriate sphere-based index instead of the usual planar index used for GEOMETRY.

-- Index the test table with a spherical index
CREATE INDEX global_points_gix ON global_points USING GIST (location);

Query and measurement functions use units of meters. So distance parameters should be expressed in meters, and return values should be expected in meters (or square meters for areas).

-- Show a distance query and note, London is outside the 1000km tolerance
SELECT name FROM global_points WHERE ST_DWithin(location, 'SRID=4326;POINT(-110 29)'::geography, 1000000);

You can see the power of GEOGRAPHY in action by calculating how close a plane flying from Seattle to London (LINESTRING(-122.33 47.606, 0.0 51.5)) comes to Reykjavik (POINT(-21.96 64.15)).

-- Distance calculation using GEOGRAPHY (122.2km)
SELECT ST_Distance('LINESTRING(-122.33 47.606, 0.0 51.5)'::geography, 'POINT(-21.96 64.15)'::geography);

-- Distance calculation using GEOMETRY (13.3 "degrees")
SELECT ST_Distance('LINESTRING(-122.33 47.606, 0.0 51.5)'::geometry, 'POINT(-21.96 64.15)'::geometry);

Testing different lon/lat projects. Any long lat spatial reference system listed in spatial_ref_sys table is allowed.

-- NAD 83 lon/lat
SELECT 'SRID=4269;POINT(-123 34)'
geography
--
0101000020AD10000000000000000C05EC000000000000004140
(1 row)

-- NAD27 lon/lat
SELECT 'SRID=4267;POINT(-123 34)'
geography
--
0101000020AB10000000000000000C05EC000000000000004140
(1 row)

-- NAD83 UTM zone meters, yields error since its a meter based projection
SELECT 'SRID=26910;POINT(-123 34)'
geography
ERROR: Only lon/lat coordinate systems are supported in geography.
LINE 1: SELECT 'SRID=26910;POINT(-123 34)'

The GEOGRAPHY type calculates the true shortest distance over the sphere between Reykjavik and the great circle flight path between Seattle and London.

Great Circle mapper The GEOMETRY type calculates a meaningless cartesian distance between Reykjavik and the straight line path from Seattle to London plotted on a flat map of the world. The nominal units of the result might be called "degrees", but the result doesn’t correspond to any true angular difference between the points, so even calling them "degrees" is inaccurate.
4.1.2.2 When to use Geography Data type over Geometry data type

The geography type allows you to store data in longitude/latitude coordinates, but at a cost: there are fewer functions defined on GEOGRAPHY than there are on GEOMETRY; those functions that are defined take more CPU time to execute.

The type you choose should be conditioned on the expected working area of the application you are building. Will your data span the globe or a large continental area, or is it local to a state, county or municipality?

- If your data is contained in a small area, you might find that choosing an appropriate projection and using GEOMETRY is the best solution, in terms of performance and functionality available.

- If your data is global or covers a continental region, you may find that GEOGRAPHY allows you to build a system without having to worry about projection details. You store your data in longitude/latitude, and use the functions that have been defined on GEOGRAPHY.

- If you don’t understand projections, and you don’t want to learn about them, and you’re prepared to accept the limitations in functionality available in GEOGRAPHY, then it might be easier for you to use GEOGRAPHY than GEOMETRY. Simply load your data up as longitude/latitude and go from there.

Refer to Section 9.11 for compare between what is supported for Geography vs. Geometry. For a brief listing and description of Geography functions, refer to Section 9.4

4.1.2.3 Geography Advanced FAQ

1. Do you calculate on the sphere or the spheroid?

 By default, all distance and area calculations are done on the spheroid. You should find that the results of calculations in local areas match up well with local planar results in good local projections. Over larger areas, the spheroidal calculations will be more accurate than any calculation done on a projected plane. All the geography functions have the option of using a sphere calculation, by setting a final boolean parameter to 'FALSE'. This will somewhat speed up calculations, particularly for cases where the geometries are very simple.

2. What about the date-line and the poles?

 All the calculations have no conception of date-line or poles, the coordinates are spherical (longitude/latitude) so a shape that crosses the dateline is, from a calculation point of view, no different from any other shape.

3. What is the longest arc you can process?

 We use great circle arcs as the "interpolation line" between two points. That means any two points are actually joined up two ways, depending on which direction you travel along the great circle. All our code assumes that the points are joined by the *shorter* of the two paths along the great circle. As a consequence, shapes that have arcs of more than 180 degrees will not be correctly modelled.

4. Why is it so slow to calculate the area of Europe / Russia / insert big geographic region here ?

 Because the polygon is so darned huge! Big areas are bad for two reasons: their bounds are huge, so the index tends to pull the feature no matter what query you run; the number of vertices is huge, and tests (distance, containment) have to traverse the vertex list at least once and sometimes N times (with N being the number of vertices in the other candidate feature). As with GEOMETRY, we recommend that when you have very large polygons, but are doing queries in small areas, you "denormalize" your geometric data into smaller chunks so that the index can effectively subquery parts of the object and so queries don’t have to pull out the whole object every time. Please consult ST_Subdivide function documentation. Just because you *can* store all of Europe in one polygon doesn’t mean you *should*.

4.1.3 Spatial Metadata Tables

The OpenGIS "Simple Features Specification for SQL" defines some metadata tables to describe geometry table structure and coordinate systems. In order to ensure that metadata remains consistent, operations such as creating and removing a spatial column are carried out through special procedures defined by OpenGIS.

There are two OpenGIS meta-data tables: SPATIAL_REF_SYS and GEOMETRY_COLUMNS. The SPATIAL_REF_SYS table holds the numeric IDs and textual descriptions of coordinate systems used in the spatial database.
4.1.3.1 The SPATIAL_REF_SYS Table and Spatial Reference Systems

The SPATIAL_REF_SYS table used by PostGIS is an OGC-compliant database table that lists over 3000 known spatial reference systems and details needed to transform (reproject) between them.

The PostGIS SPATIAL_REF_SYS table contains over 3000 of the most common spatial reference system definitions that are handled by the PROJ projection library. But there are many coordinate systems that it does not contain. You can define your own custom spatial reference system if you are familiar with PROJ constructs. Keep in mind that most spatial reference systems are regional and have no meaning when used outside of the bounds they were intended for.

A resource for finding spatial reference systems not defined in the core set is http://spatialreference.org/

Some commonly used spatial reference systems are: 4326 - WGS 84 Long Lat, 4269 - NAD 83 Long Lat, 3395 - WGS 84 World Mercator, 2163 - US National Atlas Equal Area, and the 60 WGS84 UTM zones. UTM zones are one of the most ideal for measurement, but only cover 6-degree regions. (To determine which UTM zone to use for your area of interest, see the utmzone PostGIS plpgsql helper function.)

US states use State Plane spatial reference systems (meter or feet based) - usually one or 2 exists per state. Most of the meter-based ones are in the core set, but many of the feet-based ones or ESRI created ones will need to be copied from spatialreference.org.

You can even define non-Earth-based coordinate systems, such as Mars 2000 This Mars coordinate system is non-planar (it’s in degrees spheroidal), but you can use it with the geography type to obtain length and proximity measurements in meters instead of degrees.

The SPATIAL_REF_SYS table definition is:

```sql
CREATE TABLE spatial_ref_sys (  
srid INTEGER NOT NULL PRIMARY KEY,  
auth_name VARCHAR(256),  
auth_srid INTEGER,  
srtext VARCHAR(2048),  
proj4text VARCHAR(2048)
)
```

The columns are:

SRID An integer code that uniquely identifies the Spatial Reference System (SRS) within the database.

AUTH_NAME The name of the standard or standards body that is being cited for this reference system. For example, "EPSG" is a valid AUTH_NAME.

AUTH_SRID The ID of the Spatial Reference System as defined by the Authority cited in the AUTH_NAME. In the case of EPSG, this is where the EPSG projection code would go.

SRTEXT The Well-Known Text representation of the Spatial Reference System. An example of a WKT SRS representation is:

```sql
CREATE TABLE spatial_ref_sys (  
srid INTEGER NOT NULL PRIMARY KEY,  
auth_name VARCHAR(256),  
auth_srid INTEGER,  
srtext VARCHAR(2048),  
proj4text VARCHAR(2048)
)
```

The columns are:

SRID An integer code that uniquely identifies the Spatial Reference System (SRS) within the database.

AUTH_NAME The name of the standard or standards body that is being cited for this reference system. For example, "EPSG" is a valid AUTH_NAME.

AUTH_SRID The ID of the Spatial Reference System as defined by the Authority cited in the AUTH_NAME. In the case of EPSG, this is where the EPSG projection code would go.

SRTEXT The Well-Known Text representation of the Spatial Reference System. An example of a WKT SRS representation is:

```sql
CREATE TABLE spatial_ref_sys (  
srid INTEGER NOT NULL PRIMARY KEY,  
auth_name VARCHAR(256),  
auth_srid INTEGER,  
srtext VARCHAR(2048),  
proj4text VARCHAR(2048)
)
```

The columns are:

SRID An integer code that uniquely identifies the Spatial Reference System (SRS) within the database.

AUTH_NAME The name of the standard or standards body that is being cited for this reference system. For example, "EPSG" is a valid AUTH_NAME.

AUTH_SRID The ID of the Spatial Reference System as defined by the Authority cited in the AUTH_NAME. In the case of EPSG, this is where the EPSG projection code would go.

SRTEXT The Well-Known Text representation of the Spatial Reference System. An example of a WKT SRS representation is:

PROJ4TEXT PostGIS uses the PROJ library to provide coordinate transformation capabilities. The PROJ4TEXT column contains the Proj4 coordinate definition string for a particular SRID. For example:

```
+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m
```

For more information see the Proj4 web site. The spatial_ref_sys.sql file contains both SRTEXT and PROJ4TEXT definitions for all EPSG projections.

4.1.3.2 The GEOMETRY_COLUMNS View

GEOMETRY_COLUMNS is a view reading from database system catalog tables. Its structure is:

```
\d geometry_columns
```

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_table_catalog</td>
<td>character varying(256)</td>
<td></td>
</tr>
<tr>
<td>f_table_schema</td>
<td>character varying(256)</td>
<td></td>
</tr>
<tr>
<td>f_table_name</td>
<td>character varying(256)</td>
<td></td>
</tr>
<tr>
<td>f_geometry_column</td>
<td>character varying(256)</td>
<td></td>
</tr>
<tr>
<td>coord_dimension</td>
<td>integer</td>
<td></td>
</tr>
<tr>
<td>srid</td>
<td>integer</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>character varying(30)</td>
<td></td>
</tr>
</tbody>
</table>

The columns are:

F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME The fully qualified name of the feature table containing the geometry column. Note that the terms "catalog" and "schema" are Oracle-ish. There is not PostgreSQL analogue of "catalog" so that column is left blank -- for "schema" the PostgreSQL schema name is used (public is the default).

F_GEOMETRY_COLUMN The name of the geometry column in the feature table.

COORD_DIMENSION The spatial dimension (2, 3 or 4 dimensional) of the column.

SRID The ID of the spatial reference system used for the coordinate geometry in this table. It is a foreign key reference to the SPATIAL_REF_SYS.

TYPE The type of the spatial object. To restrict the spatial column to a single type, use one of: POINT, LINESTRING, POLYGON, MULTIPoint, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION or corresponding XYM versions POINTM, LINestringM, POLYGONM, MULTIpoINTM, MULTILInestringM, MULTIPOLYGONM, GEOMETRYCOLLECTIONM. For heterogeneous (mixed-type) collections, you can use "GEOMETRY" as the type.

Note

This attribute is (probably) not part of the OpenGIS specification, but is required for ensuring type homogeneity.

4.1.3.3 Creating a Spatial Table

Creating a table with spatial data, can be done in one step. As shown in the following example which creates a roads table with a 2D linestring geometry column in WGS84 long lat
CREATE TABLE ROADS (ID serial, ROAD_NAME text, geom geometry(LINESTRING,4326));

We can add additional columns using standard ALTER TABLE command as we do in this next example where we add a 3-D linestring.

ALTER TABLE roads ADD COLUMN geom2 geometry(LINESTRINGZ,4326);

4.1.3.4 Manually Registering Geometry Columns

Two of the cases where you may need this are the case of SQL Views and bulk inserts. For bulk insert case, you can correct the registration in the geometry_columns table by constraining the column or doing an alter table. For views, you could expose using a CAST operation. Note, if your column is typmod based, the creation process would register it correctly, so no need to do anything. Also views that have no spatial function applied to the geometry will register the same as the underlying table geometry column.

-- Lets say you have a view created like this
CREATE VIEW public.vwmytablemercator AS
 SELECT gid, ST_Transform(geom, 3395) As geom, f_name
 FROM public.mytable;

-- For it to register correctly
-- You need to cast the geometry
--
DROP VIEW public.vwmytablemercator;
CREATE VIEW public.vwmytablemercator AS
 SELECT gid, ST_Transform(geom, 3395)::geometry(Geometry, 3395) As geom, f_name
 FROM public.mytable;

-- If you know the geometry type for sure is a 2D POLYGON then you could do
DROP VIEW public.vwmytablemercator;
CREATE VIEW public.vwmytablemercator AS
 SELECT gid, ST_Transform(geom,3395)::geometry(Polygon, 3395) As geom, f_name
 FROM public.mytable;

--Lets say you created a derivative table by doing a bulk insert
SELECT poi.gid, poi.geom, citybounds.city_name
INTO myschema.my_special_pois
FROM poi INNER JOIN citybounds ON ST_Intersects(citybounds.geom, poi.geom);

-- Create 2D index on new table
CREATE INDEX idx_myschema_myspecialpois_geom_gist
 ON myschema.my_special_pois USING gist(geom);

-- If your points are 3D points or 3M points,
-- then you might want to create an nd index instead of a 2D index
CREATE INDEX my_special_pois_geom_gist_nd
 ON my_special_pois USING gist(geom gist_geometry_ops_nd);

-- To manually register this new table's geometry column in geometry_columns.
-- Note it will also change the underlying structure of the table to
-- to make the column typmod based.
SELECT populate_geometry_columns('myschema.my_special_pois'::regclass);

-- If you are using PostGIS 2.0 and for whatever reason, you
-- you need the constraint based definition behavior
-- (such as case of inherited tables where all children do not have the same type and srid)
-- set optional use_typmod argument to false
SELECT populate_geometry_columns('myschema.my_special_pois'::regclass, false);
Although the old-constraint based method is still supported, a constraint-based geometry column used directly in a view, will not register correctly in geometry_columns, as will a typmod one. In this example we define a column using typmod and another using constraints.

```sql
CREATE TABLE pois_ny(gid SERIAL PRIMARY KEY, poi_name text, cat text, geom geometry(POINT←,4326));
SELECT AddGeometryColumn('pois_ny', 'geom_2160', 2160, 'POINT', 2, false);
```

If we run in psql

```sql
\d pois_ny;
```

We observe they are defined differently -- one is typmod, one is constraint

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Table "public.pois_ny"</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>gid</td>
<td>integer</td>
<td></td>
<td>not null default nextval('pois_ny_gid_seq'::regclass)</td>
</tr>
<tr>
<td>poi_name</td>
<td>text</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>character varying(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>geom</td>
<td>geometry(Point,4326)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>geom_2160</td>
<td>geometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indexes:</td>
<td></td>
<td></td>
<td>"pois_ny_pkey" PRIMARY KEY, btree (gid)</td>
</tr>
<tr>
<td>Check constraints:</td>
<td></td>
<td></td>
<td>"enforce_dims_geom_2160" CHECK (st_ndims(geom_2160) = 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"enforce_geotype_geom_2160" CHECK (geometrytype(geom_2160) = 'POINT'::text OR geom_2160 IS NULL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"enforce_srid_geom_2160" CHECK (st_srid(geom_2160) = 2160)</td>
</tr>
</tbody>
</table>

In geometry_columns, they both register correctly

```sql
SELECT f_table_name, f_geometry_column, srid, type FROM geometry_columns WHERE f_table_name = 'pois_ny';
```

<table>
<thead>
<tr>
<th>f_table_name</th>
<th>f_geometry_column</th>
<th>srid</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>pois_ny</td>
<td>geom</td>
<td>4326</td>
<td>POINT</td>
</tr>
<tr>
<td>pois_ny</td>
<td>geom_2160</td>
<td>2160</td>
<td>POINT</td>
</tr>
</tbody>
</table>

However -- if we were to create a view like this

```sql
CREATE VIEW vw_pois_ny_parks AS
SELECT *
FROM pois_ny
WHERE cat='park';
```

```sql
SELECT f_table_name, f_geometry_column, srid, type FROM geometry_columns WHERE f_table_name = 'vw_pois_ny_parks';
```

<table>
<thead>
<tr>
<th>f_table_name</th>
<th>f_geometry_column</th>
<th>srid</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>vw_pois_ny_parks</td>
<td>geom</td>
<td>4326</td>
<td>POINT</td>
</tr>
<tr>
<td>vw_pois_ny_parks</td>
<td>geom_2160</td>
<td>0</td>
<td>GEOMETRY</td>
</tr>
</tbody>
</table>

The typmod based geom view column registers correctly, but the constraint based one does not.

```sql
SELECT f_table_name, f_geometry_column, srid, type FROM geometry_columns WHERE f_table_name = 'vw_pois_ny_parks';
```

This may change in future versions of PostGIS, but for now to force the constraint-based view column to register correctly, you need to do this:
DROP VIEW vw_pois.ny_parks;
CREATE VIEW vw_pois.ny_parks AS
SELECT gid, poi_name, cat,
 geom,
 geom_2160::geometry(POINT,2160) As geom_2160
FROM pois.ny
WHERE cat = 'park';
SELECT f_table_name, f_geometry_column, srid, type
FROM geometry_columns
WHERE f_table_name = 'vw_pois.ny_parks';

<table>
<thead>
<tr>
<th>f_table_name</th>
<th>f_geometry_column</th>
<th>srid</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>vw_pois.ny_parks</td>
<td>geom</td>
<td>4326</td>
<td>POINT</td>
</tr>
<tr>
<td>vw_pois.ny_parks</td>
<td>geom_2160</td>
<td>2160</td>
<td>POINT</td>
</tr>
</tbody>
</table>

4.1.4 Geometry Validation

PostGIS is compliant with the Open Geospatial Consortium’s (OGC) OpenGIS Specifications. As such, many PostGIS methods require, or more accurately, assume that geometries that are operated on are both simple and valid. For example, it does not make sense to calculate the area of a polygon that has a hole defined outside of the polygon, or to construct a polygon from a non-simple boundary line.

According to the OGC Specifications, a *simple* geometry is one that has no anomalous geometric points, such as self intersection or self tangency and primarily refers to 0 or 1-dimensional geometries (i.e. [MULTI]POINT, [MULTI]LINESTRING). Geometry validity, on the other hand, primarily refers to 2-dimensional geometries (i.e. [MULTI]POLYGON) and defines the set of assertions that characterizes a valid polygon. The description of each geometric class includes specific conditions that further detail geometric simplicity and validity.

A **POINT** is inherently *simple* as a 0-dimensional geometry object.

MULTIPOINTS are *simple* if no two coordinates (POINTS) are equal (have identical coordinate values).

A **LINESTRING** is *simple* if it does not pass through the same **POINT** twice (except for the endpoints, in which case it is referred to as a linear ring and additionally considered closed).
(a) and (c) are simple LINESTRINGs, (b) and (d) are not.

A MULTILINESTRING is simple only if all of its elements are simple and the only intersection between any two elements occurs at POINTs that are on the boundaries of both elements.

(e) and (f) are simple MULTILINESTRINGs, (g) is not.

By definition, a POLYGON is always simple. It is valid if no two rings in the boundary (made up of an exterior ring and interior rings) cross. The boundary of a POLYGON may intersect at a POINT but only as a tangent (i.e. not on a line). A POLYGON may not have cut lines or spikes and the interior rings must be contained entirely within the exterior ring.
(h) and (i) are valid POLYGONS. (j-m) cannot be represented as single POLYGONS, but (j) and (m) could be represented as a valid MULTIPOLYGON.

A MULTIPOLYGON is valid if and only if all of its elements are valid and the interiors of no two elements intersect. The boundaries of any two elements may touch, but only at a finite number of POINTs.
and **are not valid** MULTIPOLYGONs. **(p)**, however, is valid.

Most of the functions implemented by the GEOS library rely on the assumption that your geometries are valid as specified by the OpenGIS Simple Feature Specification. To check simplicity or validity of geometries you can use the **ST_IsSimple()** and **ST_IsValid()**

```
-- Typically, it doesn't make sense to check
-- for validity on linear features since it will always return TRUE.
-- But in this example, PostGIS extends the definition of the OGC IsValid
-- by returning false if a LineString has less than 2 *distinct* vertices.
gisdb=# SELECT
   ST_IsValid('LINESTRING(0 0, 1 1)'),
   ST_IsValid('LINESTRING(0 0, 0 0, 0 0)');

  st_isvalid  |  st_isvalid
-------------+-------------
         t |         f
```

By default, PostGIS does not apply this validity check on geometry input, because testing for validity needs lots of CPU time for complex geometries, especially polygons. If you do not trust your data sources, you can manually enforce such a check to your tables by adding a check constraint:

```
ALTER TABLE mytable
  ADD CONSTRAINT geometry_valid_check
  CHECK (ST_IsValid(the_geom));
```

If you encounter any strange error messages such as "GEOS Intersection() threw an error!" when calling PostGIS functions with valid input geometries, you likely found an error in either PostGIS or one of the libraries it uses, and you should contact the PostGIS developers. The same is true if a PostGIS function returns an invalid geometry for valid input.

Note

Strictly compliant OGC geometries cannot have Z or M values. The **ST_IsValid()** function won't consider higher dimensioned geometries invalid! Invocations of **AddGeometryColumn()** will add a constraint checking geometry dimensions, so it is enough to specify 2 there.
4.1.5 Loading Spatial Data

Once you have created a spatial table, you are ready to upload spatial data to the database. There are two built-in ways to get spatial data into a PostGIS/PostgreSQL database: using formatted SQL statements or using the Shapefile loader.

4.1.5.1 Using SQL to Load Data

If spatial data can be converted to a text representation (as either WKT or WKB), then using SQL might be the easiest way to get data into PostGIS. Data can be bulk-loaded into PostGIS/PostgreSQL by loading a text file of SQL INSERT statements using the `psql` SQL utility.

A SQL load file (roads.sql for example) might look like this:

```sql
BEGIN;
INSERT INTO roads (road_id, roads_geom, road_name)
VALUES (1,'LINESTRING(191232 243118,191108 243242)','Jeff Rd');
INSERT INTO roads (road_id, roads_geom, road_name)
VALUES (2,'LINESTRING(189141 244158,189265 244817)','Geordie Rd');
INSERT INTO roads (road_id, roads_geom, road_name)
VALUES (3,'LINESTRING(192783 228138,192612 229814)','Paul St');
INSERT INTO roads (road_id, roads_geom, road_name)
VALUES (4,'LINESTRING(189412 252431,189631 259122)','Graeme Ave');
INSERT INTO roads (road_id, roads_geom, road_name)
VALUES (5,'LINESTRING(190131 224148,190871 228134)','Phil Tce');
INSERT INTO roads (road_id, roads_geom, road_name)
VALUES (6,'LINESTRING(198231 263418,198213 268322)','Dave Cres');
COMMIT;
```

The SQL file can be loaded into PostgreSQL using `psql`:

```
psql -d [database] -f roads.sql
```

4.1.5.2 Using the Shapefile Loader

The `shp2pgsql` data loader converts Shapefiles into SQL suitable for insertion into a PostGIS/PostgreSQL database either in geometry or geography format. The loader has several operating modes selected by command line flags.

There is also a `shp2pgsql-gui` graphical interface with most of the options as the command-line loader. This may be easier to use for one-off non-scripted loading or if you are new to PostGIS. It can also be configured as a plugin to PgAdminIII.

(claldp) These are mutually exclusive options:

- `-c` Creates a new table and populates it from the Shapefile. This is the default mode.
- `-a` Appends data from the Shapefile into the database table. Note that to use this option to load multiple files, the files must have the same attributes and same data types.
- `-d` Drops the database table before creating a new table with the data in the Shapefile.
- `-p` Only produces the table creation SQL code, without adding any actual data. This can be used if you need to completely separate the table creation and data loading steps.
- `-?` Display help screen.
- `-D` Use the PostgreSQL "dump" format for the output data. This can be combined with `-a`, `-c` and `-d`. It is much faster to load than the default "insert" SQL format. Use this for very large data sets.
- `-s [-FROM_SRID]:[-SRID>` Creates and populates the geometry tables with the specified SRID. Optionally specifies that the input shapefile uses the given FROM_SRID, in which case the geometries will be reprojected to the target SRID.
- `-k` Keep identifiers' case (column, schema and attributes). Note that attributes in Shapefile are all UPPERCASE.
-i Coerce all integers to standard 32-bit integers, do not create 64-bit bigints, even if the DBF header signature appears to warrant it.

-1 Create a GiST index on the geometry column.

-m -m a_file_name Specify a file containing a set of mappings of (long) column names to 10 character DBF column names. The content of the file is one or more lines of two names separated by white space and no trailing or leading space. For example:

<table>
<thead>
<tr>
<th>COLUMNNAME</th>
<th>DBFFIELD1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERYLONGCOLUMNNAME</td>
<td>DBFFIELD2</td>
</tr>
</tbody>
</table>

-S Generate simple geometries instead of MULTI geometries. Will only succeed if all the geometries are actually single (I.E. a MULTIPOLYGON with a single shell, or a MULTIPOINT with a single vertex).

-t <dimensionality> Force the output geometry to have the specified dimensionality. Use the following strings to indicate the dimensionality: 2D, 3DZ, 3DM, 4D. If the input has fewer dimensions that specified, the output will have those dimensions filled in with zeroes. If the input has more dimensions that specified, the unwanted dimensions will be stripped.

-w Output WKT format, instead of WKB. Note that this can introduce coordinate drifts due to loss of precision.

-e Execute each statement on its own, without using a transaction. This allows loading of the majority of good data when there are some bad geometries that generate errors. Note that this cannot be used with the -D flag as the "dump" format always uses a transaction.

-W <encoding> Specify encoding of the input data (dbf file). When used, all attributes of the dbf are converted from the specified encoding to UTF8. The resulting SQL output will contain a SET CLIENT_ENCODING to UTF8 command, so that the backend will be able to reconvert from UTF8 to whatever encoding the database is configured to use internally.

-N <policy> NULL geometries handling policy (insert*,skip,abort)

-n -n Only import DBF file. If your data has no corresponding shapefile, it will automatically switch to this mode and load just the dbf. So setting this flag is only needed if you have a full shapefile set, and you only want the attribute data and no geometry.

-G Use geography type instead of geometry (requires lon/lat data) in WGS84 long lat (SRID=4326)

-T <tablespace> Specify the tablespace for the new table. Indexes will still use the default tablespace unless the -X parameter is also used. The PostgreSQL documentation has a good description on when to use custom tablespaces.

-X <tablespace> Specify the tablespace for the new table’s indexes. This applies to the primary key index, and the GIST spatial index if -I is also used.

An example session using the loader to create an input file and loading it might look like this:

```
# shp2pgsql -c -D -s 4269 -i -I shaperoads.shp myschema.roadstable > roads.sql
# psql -d roadsdb -f roads.sql
```

A conversion and load can be done in one step using UNIX pipes:

```
# shp2pgsql shaperoads.shp myschema.roadstable | psql -d roadsdb
```

4.1.6 Extracting Spatial Data

Spatial data can be extracted from the database using either SQL or the Shapefile dumper. The section on SQL presents some of the functions available to do comparisons and queries on spatial tables.
4.1.6.1 Using SQL to Extract Data

The most straightforward way of extracting spatial data out of the database is to use a SQL `SELECT` query to define the data set to be extracted and dump the resulting columns into a parsable text file:

```
1. db=# SELECT road_id, ST_AsText(road_geom) AS geom, road_name FROM roads;
   road_id | geom | road_name
   --------+-----------------------------------------+-----------
       1 | LINESTRING(191232 243118,191108 243242) | Jeff Rd
       2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd
       3 | LINESTRING(192783 228138,192612 229814) | Paul St
       4 | LINESTRING(198412 252431,198213 258322) | Graeme Ave
       5 | LINESTRING(190131 224148,190871 228134) | Phil Tce
       6 | LINESTRING(218421 284121,224123 241231) | Chris Way
   (6 rows)
```

There will be times when some kind of restriction is necessary to cut down the number of records returned. In the case of attribute-based restrictions, use the same SQL syntax as used with a non-spatial table. In the case of spatial restrictions, the following functions are useful:

ST_Intersects This function tells whether two geometries share any space.

= 'This tests whether two geometries are geometrically identical. For example, if 'POLYGON((0 0, 1 1, 1 0, 0 0))' is the same as 'POLYGON((0 0, 1 1, 0, 0))' (it is).

Next, you can use these operators in queries. Note that when specifying geometries and boxes on the SQL command line, you must explicitly turn the string representations into geometries function. The 312 is a fictitious spatial reference system that matches our data. So, for example:

```
SELECT road_id, road_name
FROM roads
WHERE roads_geom='SRID=312;LINESTRING(191232 243118,191108 243242)'
```

The above query would return the single record from the "ROADS_GEOM" table in which the geometry was equal to that value.

To check whether some of the roads passes in the area defined by a polygon:

```
SELECT road_id, road_name
FROM roads
WHERE ST_Intersects(roads_geom, 'SRID=312;POLYGON((...))');
```

The most common spatial query will probably be a "frame-based" query, used by client software, like data browsers and web mappers, to grab a "map frame" worth of data for display.

When using the "&&" operator, you can specify either a BOX3D as the comparison feature or a GEOMETRY. When you specify a GEOMETRY, however, its bounding box will be used for the comparison.

Using a "BOX3D" object for the frame, such a query looks like this:

```
SELECT ST_AsText(roads_geom) AS geom
FROM roads
WHERE roads_geom && ST_MakeEnvelope(191232, 243117,191232, 243119,312);
```

Note the use of the SRID 312, to specify the projection of the envelope.
4.1.6.2 Using the Shapefile Dumper

The `pgsql2shp` table dumper connects to the database and converts a table (possibly defined by a query) into a shape file. The basic syntax is:

```
pqlsql2shp [options] <database> [schema.]<table>
pqlsql2shp [options] <database> <query>
```

The commandline options are:

- `-f <filename>` Write the output to a particular filename.
- `-h <host>` The database host to connect to.
- `-p <port>` The port to connect to on the database host.
- `-P <password>` The password to use when connecting to the database.
- `-u <user>` The username to use when connecting to the database.
- `-g <geometry column>` In the case of tables with multiple geometry columns, the geometry column to use when writing the shape file.
- `-b` Use a binary cursor. This will make the operation faster, but will not work if any NON-geometry attribute in the table lacks a cast to text.
- `-r` Raw mode. Do not drop the `gid` field, or escape column names.
- `-m filename` Remap identifiers to ten character names. The content of the file is lines of two symbols separated by a single white space and no trailing or leading space: VERYLONGSYMBOL SHORTONE ANOTHERVERYLONGSYMBOL SHORTER etc.

4.1.7 Building Spatial Indexes

Indexes make using a spatial database for large data sets possible. Without indexing, a search for features would require a sequential scan of every record in the database. Indexing speeds up searching by organizing the data into a structure which can be quickly traversed to find records.

The B-tree index method commonly used for attribute data is not very useful for spatial data, since it only supports storing and querying data in a single dimension. Data such as geometry which has 2 or more dimensions) requires an index method that supports range query across all the data dimensions. (That said, it is possible to effectively index so-called XY data using a B-tree and explicit range searches.) One of the main advantages of PostgreSQL for spatial data handling is that it offers several kinds of indexes which work well for multi-dimensional data: GiST, BRIN and SP-GiST indexes.

- **GiST (Generalized Search Tree)** indexes break up data into "things to one side", "things which overlap", "things which are inside" and can be used on a wide range of data-types, including GIS data. PostGIS uses an R-Tree index implemented on top of GiST to index spatial data. GiST is the most commonly-used and versatile spatial index method, and offers very good query performance.

- **BRIN (Block Range Index)** indexes operate by summarizing the spatial extent of ranges of table records. Search is done via a scan of the ranges. BRIN is only appropriate for use for some kinds of data (spatially sorted, with infrequent or no update). But it provides much faster index create time, and much smaller index size.

- **SP-GiST (Space-Partitioned Generalized Search Tree)** is a generic index method that supports partitioned search trees such as quad-trees, k-d trees, and radix trees (tries).

For more information see the [PostGIS Workshop](https://postgis.net/workshop/), and the [PostgreSQL documentation](https://www.postgresql.org).
4.1.7.1 GiST Indexes

GiST stands for "Generalized Search Tree" and is a generic form of indexing. In addition to GIS indexing, GiST is used to speed up searches on all kinds of irregular data structures (integer arrays, spectral data, etc) which are not amenable to normal B-Tree indexing.

Once a GIS data table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data (unless all your searches are based on attributes, in which case you’ll want to build a normal index on the attribute fields).

The syntax for building a GiST index on a "geometry" column is as follows:

```
CREATE INDEX [indexname] ON [tablename] USING GIST ( [geometryfield] );
```

The above syntax will always build a 2D-index. To get the an n-dimensional index for the geometry type, you can create one using this syntax:

```
CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield] gist_geometry_ops_nd);
```

Building a spatial index is a computationally intensive exercise. It also blocks write access to your table for the time it creates, so on a production system you may want to do in in a slower CONCURRENTLY-aware way:

```
CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING GIST ( [geometryfield] );
```

After building an index, it is sometimes helpful to force PostgreSQL to collect table statistics, which are used to optimize query plans:

```
VACUUM ANALYZE [table_name] [(column_name)];
```

4.1.7.2 BRIN Indexes

BRIN stands for "Block Range Index". It is an general-purpose index method introduced in PostgreSQL 9.5. BRIN is a lossy index method, meaning that a a secondary check is required to confirm that a record matches a given search condition (which is the case for all provided spatial indexes). It provides much faster index creation and much smaller index size, with reasonable read performance. Its primary purpose is to support indexing very large tables on columns which have a correlation with their physical location within the table. In addition to spatial indexing, BRIN can speed up searches on various kinds of attribute data structures (integer, arrays etc).

Once a spatial table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data. GiST indexes are very performant as long as their size doesn’t exceed the amount of RAM available for the database, and as long as you can afford the index storage size, and the cost of index update on write. Otherwise, for very large tables BRIN index can be considered as an alternative.

A BRIN index stores the bounding box enclosing all the geometries contained in the rows in a contiguous set of table blocks, called a block range. When executing a query using the index the block ranges are scanned to find the ones that intersect the query extent. This is efficient only if the data is physically ordered so that the bounding boxes for block ranges have minimal overlap (and ideally are mutually exclusive). The resulting index is very small in size, but is typically less performant for read than a GiST index over the same data.

Building a BRIN index is much less CPU-intensive than building a GiST index. It’s common to find that a BRIN index is ten times faster to build than a GiST index over the same data. And because a BRIN index stores only one bounding box for each range of table blocks, it’s common to use up to a thousand times less disk space than a GiST index.

You can choose the number of blocks to summarize in a range. If you decrease this number, the index will be bigger but will probably provide better performance.

For BRIN to be effective, the table data should be stored in a physical order which minimizes the amount of block extent overlap. It may be that the data is already sorted appropriately (for instance, if it is loaded from another dataset that is already sorted in spatial order). Otherwise, this can be accomplished by sorting the data by a one-dimensional spatial key. One way to do this is to create a new table sorted by the geometry values (which in recent PostGIS versions uses an efficient Hilbert curve ordering):
CREATE TABLE table_sorted AS
 SELECT * FROM table ORDER BY geom;

Alternatively, data can be sorted in-place by using a GeoHash as a (temporary) index, and clustering on that index:

CREATE INDEX idx_temp_geohash ON table
 USING btree (ST_GeoHash(ST_Transform(geom, 4326), 20));
CLUSTER table USING idx_temp_geohash;

The syntax for building a BRIN index on a geometry column is:

CREATE INDEX [indexname] ON [tablename] USING BRIN ([geome_col]);

The above syntax builds a 2D index. To build a 3D-dimensional index, use this syntax:

CREATE INDEX [indexname] ON [tablename]
 USING BRIN (([geome_col] brin_geometry_inclusion_ops_3d));

You can also get a 4D-dimensional index using the 4D operator class:

CREATE INDEX [indexname] ON [tablename]
 USING BRIN (([geome_col] brin_geometry_inclusion_ops_4d));

The above commands use the default number of blocks in a range, which is 128. To specify the number of blocks to summarise in a range, use this syntax:

CREATE INDEX [indexname] ON [tablename]
 USING BRIN ([geome_col]) WITH (pages_per_range = [number]);

Keep in mind that a BRIN index only stores one index entry for a large number of rows. If your table stores geometries with a mixed number of dimensions, it’s likely that the resulting index will have poor performance. You can avoid this performance penalty by choosing the operator class with the least number of dimensions of the stored geometries.

The geography datatype is supported for BRIN indexing. The syntax for building a BRIN index on a geography column is:

CREATE INDEX [indexname] ON [tablename] USING BRIN ([geog_col]);

The above syntax builds a 2D-index for geospatial objects on the spheroid.

Currently, only "inclusion support" is provided, meaning that just the &&, ~ and @ operators can be used for the 2D cases (for both geometry and geography), and just the &&& operator for 3D geometries. There is currently no support for kNN searches.

An important difference between BRIN and other index types is that the database does not maintain the index dynamically. Changes to spatial data in the table are simply appended to the end of the index. This will cause index search performance to degrade over time. The index can be updated by performing a VACUUM, or by using a special function brin_summarize_new_values(regclass).

For this reason BRIN may be most appropriate for use with data that is read-only, or only rarely changing. For more information refer to the manual.

To summarize using BRIN for spatial data:

- Index build time is very fast, and index size is very small.
- Index query time is slower than GiST, but can still be very acceptable.
- Requires table data to be sorted in a spatial ordering.
- Requires manual index maintenance.
- Most appropriate for very large tables, with low or no overlap (e.g. points), and which are static or change infrequently.
4.1.7.3 SP-GiST Indexes

SP-GiST stands for "Space-Partitioned Generalized Search Tree" and is a generic form of indexing that supports partitioned search trees, such as quad-trees, k-d trees, and radix trees (tries). The common feature of these data structures is that they repeatedly divide the search space into partitions that need not be of equal size. In addition to GIS indexing, SP-GiST is used to speed up searches on many kinds of data, such as phone routing, ip routing, substring search, etc.

As it is the case for GiST indexes, SP-GiST indexes are lossy, in the sense that they store the bounding box enclosing spatial objects. SP-GiST indexes can be considered as an alternative to GiST indexes. The performance tests reveal that SP-GiST indexes are especially beneficial when there are many overlapping objects, that is, with so-called “spaghetti data”.

Once a GIS data table exceeds a few thousand rows, an SP-GiST index may be used to speed up spatial searches of the data. The syntax for building an SP-GiST index on a "geometry" column is as follows:

```
CREATE INDEX [indexname] ON [tablename] USING SPGIST ( [geometryfield] );
```

The above syntax will build a 2-dimensional index. A 3-dimensional index for the geometry type can be created using the 3D operator class:

```
CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield] ← spgist_geometry_ops_3d);
```

Building a spatial index is a computationally intensive operation. It also blocks write access to your table for the time it creates, so on a production system you may want to do in a slower CONCURRENTLY-aware way:

```
CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING SPGIST ( [geometryfield] );
```

After building an index, it is sometimes helpful to force PostgreSQL to collect table statistics, which are used to optimize query plans:

```
VACUUM ANALYZE [table_name] [{column_name}];
```

An SP-GiST index can accelerate queries involving the following operators:

- `<<, &, &<, >>, <<l, &<l, l>&l, l>>, &<, &>, &&, @>, <@, and ~=`, for 2-dimensional indexes,
- `&/&, ~==, @>>, and <<@, for 3-dimensional indexes.

There is no support for kNN searches at the moment.

4.1.7.4 Using Indexes

Ordinarily, indexes invisibly speed up data access: once the index is built, the PostgreSQL query planner automatically decides when to use index information to speed up a query plan. Unfortunately, the query planner sometimes does not optimize the use of GiST indexes, so queries end up using slow sequential scans instead of a spatial index.

If you find your spatial indexes are not being used, there are a couple things you can do:

- Examine the query plan and check your query actually computes the thing you need. An erroneous JOIN, either forgotten or to the wrong table, can unexpectedly retrieve table records multiple times. To get the query plan, execute with `EXPLAIN` in front of the query.
- Make sure statistics are gathered about the number and distributions of values in a table, to provide the query planner with better information to make decisions around index usage. `VACUUM ANALYZE` will compute both.

You should regularly vacuum your databases anyways - many PostgreSQL DBAs have `VACUUM` run as an off-peak cron job on a regular basis.
• If vacuuming does not help, you can temporarily force the planner to use the index information by using the `set enable_seqscan to off;` command. This way you can check whether planner is at all capable to generate an index accelerated query plan for your query. You should only use this command only for debug; generally speaking, the planner knows better than you do about when to use indexes. Once you have run your query, do not forget to set `ENABLE_SEQSCAN` back on, so that other queries will utilize the planner as normal.

• If `set enable_seqscan to off;` helps your query to run, your Postgres is likely not tuned for your hardware. If you find the planner wrong about the cost of sequential vs index scans try reducing the value of `random_page_cost` in `postgresql.conf` or using `set random_page_cost to 1.1;`. Default value for the parameter is 4, try setting it to 1 (on SSD) or 2 (on fast magnetic disks). Decreasing the value makes the planner more inclined of using Index scans.

• If `set enable_seqscan to off;` does not help your query, the query may be using a SQL construct that the Postgres planner is not yet able to optimize. It may be possible to rewrite the query in a way that the planner is able to handle. For example, a subquery with an inline SELECT may not produce an efficient plan, but could possibly be rewritten using a LATERAL JOIN.

4.2 Spatial Queries

The *raison d'être* of spatial databases is to perform queries inside the database which would ordinarily require desktop GIS functionality. Using PostGIS effectively requires knowing what spatial functions are available, how to use them in queries, and ensuring that appropriate indexes are in place to provide good performance.

4.2.1 Determining Spatial Relationships

Spatial relationships indicate how two geometries interact with one another. They are a fundamental capability for querying geometry.

4.2.1.1 Dimensionally Extended 9-Intersection Model

According to the OpenGIS Simple Features Implementation Specification for SQL, "the basic approach to comparing two geometries is to make pair-wise tests of the intersections between the Interiors, Boundaries and Exteriors of the two geometries and to classify the relationship between the two geometries based on the entries in the resulting 'intersection' matrix."

In the theory of point-set topology, the points in a geometry embedded in 2-dimensional space are categorized into three sets:

Boundary

The boundary of a geometry is the set of geometries of the next lower dimension. For POINTs, which have a dimension of 0, the boundary is the empty set. The boundary of a LINESTRING is the two endpoints. For POLYGONs, the boundary is the linework of the exterior and interior rings.

Interior

The interior of a geometry are those points of a geometry that are not in the boundary. For POINTs, the interior is the point itself. The interior of a LINESTRING is the set of points between the endpoints. For POLYGONs, the interior is the areal surface inside the polygon.

Exterior

The exterior of a geometry is the rest of the space in which the geometry is embedded; in other words, all points not in the interior or on the boundary of the geometry. It is a 2-dimensional non-closed surface.

The Dimensionally Extended 9-Intersection Model (DE-9IM) describes the spatial relationship between two geometries by specifying the dimensions of the 9 intersections between the above sets for each geometry. The intersection dimensions can be formally represented in a 3x3 *intersection matrix*.

For a geometry g the *Interior*, *Boundary*, and *Exterior* are denoted using the notation $I(g)$, $B(g)$, and $E(g)$. Also, $\text{dim}(s)$ denotes the dimension of a set s with the domain of $\{0, 1, 2, F\}$.
• 0 => point
• 1 => line
• 2 => area
• ∅ => empty set

Using this notation, the intersection matrix for two geometries \(a \) and \(b \) is:

<table>
<thead>
<tr>
<th></th>
<th>Interior</th>
<th>Boundary</th>
<th>Exterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior</td>
<td>(\dim(I(a) \cap I(b)))</td>
<td>(\dim(I(a) \cap B(b)))</td>
<td>(\dim(I(a) \cap E(b)))</td>
</tr>
<tr>
<td>Boundary</td>
<td>(\dim(B(a) \cap I(b)))</td>
<td>(\dim(B(a) \cap B(b)))</td>
<td>(\dim(B(a) \cap E(b)))</td>
</tr>
<tr>
<td>Exterior</td>
<td>(\dim(E(a) \cap I(b)))</td>
<td>(\dim(E(a) \cap B(b)))</td>
<td>(\dim(E(a) \cap E(b)))</td>
</tr>
</tbody>
</table>

Visually, for two overlapping polygonal geometries, this looks like:
<table>
<thead>
<tr>
<th></th>
<th>Interior</th>
<th>Boundary</th>
<th>Exterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{dim}(I(a) \cap I(b))$</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Boundary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{dim}(B(a) \cap I(b))$</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Exterior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{dim}(E(a) \cap I(b))$</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Reading from left to right and top to bottom, the intersection matrix is represented as the text string `212101212`.

For more information, refer to:

- OpenGIS Simple Features Implementation Specification for SQL (version 1.1, section 2.1.13.2)
- Wikipedia: Dimensionally Extended Nine-Intersection Model (DE-9IM)
- GeoTools: Point Set Theory and the DE-9IM Matrix

4.2.1.2 Named Spatial Relationships

To make it easy to determine common spatial relationships, the OGC SFS defines a set of named spatial relationship predicates. PostGIS provides these as the functions `ST_Contains`, `ST_Crosses`, `ST_Disjoint`, `ST_Equals`, `ST_Intersects`, `ST_Overlaps`, `ST_Touches`, `ST_Within`. It also defines the non-standard relationship predicates `ST_Covers`, `ST_CoveredBy`, and `ST_ContainsProperly`.
Spatial predicates are usually used as conditions in SQL `WHERE` or `JOIN` clauses. The named spatial predicates automatically use a spatial index if one is available, so there is no need to use the bounding box operator `&&` as well. For example:

```sql
SELECT city.name, state.name, city.geom
FROM city JOIN state ON ST_Intersects(city.geom, state.geom);
```

For more details and illustrations, see the PostGIS Workshop.

4.2.1.3 General Spatial Relationships

In some cases the named spatial relationships are insufficient to provide a desired spatial filter condition.

For example, consider a linear dataset representing a road network. It may be required to identify all road segments that cross each other, not at a point, but in a line (perhaps to validate some business rule). In this case `ST_Crosses` does not provide the necessary spatial filter, since for linear features it returns `true` only where they cross at a point. A two-step solution would be to first compute the actual intersection (`ST_Intersection`) of pairs of road lines that spatially intersect (`ST_Intersects`), and then check if the intersection’s `ST_GeometryType` is 'LINESTRING' (properly dealing with cases that return `GEOMETRYCOLLECTIONS` of `[MULTI]POINTS`, `[MULTI]LINESTRINGS`, etc.). Clearly, a simpler and faster solution is desirable.
A second example is locating wharves that intersect a lake’s boundary on a line and where one end of the wharf is up on shore. In other words, where a wharf is within but not completely contained by a lake, intersects the boundary of a lake on a line, and where exactly one of the wharf’s endpoints is within or on the boundary of the lake. It is possible to use a combination of spatial predicates to find the required features:

- `ST_Contains(lake, wharf) = TRUE`
- `ST_ContainsProperly(lake, wharf) = FALSE`
- `ST_GeometryType(ST_Intersection(wharf, lake)) = 'LINESTRING'`
- `ST_NumGeometries(ST_Multi(ST_Intersection(ST_Boundary(wharf), ST_Boundary(lake)))) = 1`

... but needless to say, this is quite complicated.

These requirements can be met by computing the full DE-9IM intersection matrix. PostGIS provides the `ST_Relate` function to do this:

```sql
SELECT ST_Relate( 'LINESTRING (1 1, 5 5)',
                   'POLYGON ((3 3, 3 7, 7 7, 7 3, 3 3))' );
```

```plaintext
st_relate
-----------
1010F0212
```

To test a particular spatial relationship, an intersection matrix pattern is used. This is the matrix representation augmented with the additional symbols `{T, *}`:

- `T` => intersection dimension is non-empty; i.e. is in `{0, 1, 2}`
- `*` => don’t care

Using intersection matrix patterns, specific spatial relationships can be evaluated in a more succinct way. The `ST_Relate` and the `ST_RelateMatch` functions can be used to test intersection matrix patterns. For the first example above, the intersection matrix pattern specifying two lines intersecting in a line is `'1*1***1**'`:

```sql
-- Find road segments that intersect in a line
SELECT a.id
FROM roads a, roads b
WHERE a.id != b.id
  AND a.geom && b.geom
  AND ST_Relate(a.geom, b.geom, '1*1***1**');
```
For the second example, the intersection matrix pattern specifying a line partly inside and partly outside a polygon is ‘102101FF2’:

```sql
-- Find wharves partly on a lake's shoreline
SELECT a.lake_id, b.wharf_id
FROM lakes a, wharfs b
WHERE a.geom && b.geom
  AND ST_Relate(a.geom, b.geom, '102101FF2');
```

4.2.2 Taking Advantage of Indexes

When constructing queries using spatial conditions it is important to ensure that a spatial index is used, if one exists (see Section 4.1.7). To do this, an index-aware spatial operator or function must be used in the `WHERE` or `ON` clause. Spatial operators include the bounding box-based operators (of which the most commonly used is `&&`) and the distance operators used in nearest-neighbour queries (the most common being `<->`). Index-aware functions include most of the named spatial predicates (such as `ST_Intersects`), and most of the distance predicates (such as `ST_DWithin`).

Functions such as `ST_Distance` do not use indexes to optimize their operation. For example, the following query would be quite slow on a large table:

```sql
SELECT the_geom
FROM geom_table
WHERE ST_Distance(the_geom, 'SRID=312;POINT(100000 200000)') < 100
```

This query selects all the geometries in `geom_table` which are within 100 units of the point (100000, 200000). It will be slow because it is calculating the distance between each point in the table and the specified point, i.e. one `ST_Distance()` calculation is computed for every row in the table.

We can reduce the number of rows processed by using the index-aware function `ST_DWithin`:

```sql
SELECT the_geom
FROM geom_table
WHERE ST_DWithin(the_geom, 'SRID=312;POINT(100000 200000)', 100)
```

This query selects the same geometries, but it does it in a more efficient way. This is enabled by `ST_DWithin()` using the `&&` operator internally on an expanded bounding box of the query geometry. If there is a spatial index on `the_geom`, the query planner will recognize that it can use the index to reduce the number of rows scanned before calculating the distance. The spatial index allows retrieving only records with geometries whose bounding boxes overlap the expanded extent and hence which might be within the required distance. The actual distance is then computed to confirm whether to include the record in the result set.

4.2.3 Examples of Spatial SQL

The examples in this section will make use of two tables, a table of linear roads, and a table of polygonal municipality boundaries.

The table definitions for the `bc_roads` table is:

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gid</td>
<td>integer</td>
<td>Unique ID</td>
</tr>
<tr>
<td>name</td>
<td>character varying</td>
<td>Road Name</td>
</tr>
<tr>
<td>the_geom</td>
<td>geometry</td>
<td>Location Geometry (Linestring)</td>
</tr>
</tbody>
</table>

The table definition for the `bc_municipality` table is:

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gid</td>
<td>integer</td>
<td>Unique ID</td>
</tr>
<tr>
<td>code</td>
<td>integer</td>
<td>Unique ID</td>
</tr>
<tr>
<td>name</td>
<td>character varying</td>
<td>City / Town Name</td>
</tr>
<tr>
<td>the_geom</td>
<td>geometry</td>
<td>Location Geometry (Polygon)</td>
</tr>
</tbody>
</table>
1. **What is the total length of all roads, expressed in kilometers?**

 You can answer this question with a very simple piece of SQL:

   ```sql
   SELECT sum(ST_Length(the_geom))/1000 AS km_roads FROM bc_roads;
   
   km_roads
   ------------------
   70842.1243039643
   (1 row)
   ```

2. **How large is the city of Prince George, in hectares?**

 This query combines an attribute condition (on the municipality name) with a spatial calculation (of the area):

   ```sql
   SELECT ST_Area(the_geom)/10000 AS hectares
   FROM bc_municipality
   WHERE name = 'PRINCE GEORGE';
   
   hectares
   ------------------
   32657.9103824927
   (1 row)
   ```

3. **What is the largest municipality in the province, by area?**

 This query brings a spatial measurement into the query condition. There are several ways of approaching this problem, but the most efficient is below:

   ```sql
   SELECT name,
   ST_Area(the_geom)/10000 AS hectares
   FROM bc_municipality
   ORDER BY hectares DESC
   LIMIT 1;
   
   name       | hectares
   -----------+-----------------
   TUMBLER RIDGE | 155020.02556131
   (1 row)
   ```

 Note that in order to answer this query we have to calculate the area of every polygon. If we were doing this a lot it would make sense to add an area column to the table that we could separately index for performance. By ordering the results in a descending direction, and then using the PostgreSQL "LIMIT" command we can easily pick off the largest value without using an aggregate function like max().

4. **What is the length of roads fully contained within each municipality?**

 This is an example of a "spatial join", because we are bringing together data from two tables (doing a join) but using a spatial interaction condition ("contained") as the join condition rather than the usual relational approach of joining on a common key:

   ```sql
   SELECT m.name,
   sum(ST_Length(r.the_geom))/1000 as roads_km
   FROM bc_roads AS r,
   bc_municipality AS m
   WHERE ST_Contains(m.the_geom, r.the_geom)
   GROUP BY m.name
   ORDER BY roads_km;
   ```
<table>
<thead>
<tr>
<th>name</th>
<th>roads_km</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURREY</td>
<td>1539.47553551242</td>
</tr>
<tr>
<td>VANCOUVER</td>
<td>1450.33093486576</td>
</tr>
<tr>
<td>LANGLEY DISTRICT</td>
<td>833.793392535662</td>
</tr>
<tr>
<td>BURNABY</td>
<td>773.769091404338</td>
</tr>
<tr>
<td>PRINCE GEORGE</td>
<td>694.37554369147</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

This query takes a while, because every road in the table is summarized into the final result (about 250K roads for our particular example table). For smaller overlays (several thousand records on several hundred) the response can be very fast.

5. Create a new table with all the roads within the city of Prince George.

This is an example of an "overlay", which takes in two tables and outputs a new table that consists of spatially clipped or cut resultants. Unlike the "spatial join" demonstrated above, this query actually creates new geometries. An overlay is like a turbo-charged spatial join, and is useful for more exact analysis work:

```sql
CREATE TABLE pg_roads as
SELECT
    ST_Intersection(r.the_geom, m.the_geom) AS intersection_geom,
    ST_Length(r.the_geom) AS rd_orig_length,
    r.*
FROM
    bc_roads AS r,
    bc_municipality AS m
WHERE
    m.name = 'PRINCE GEORGE'
    AND ST_Intersects(r.the_geom, m.the_geom);
```

6. What is the length in kilometers of "Douglas St" in Victoria?

```sql
SELECT
    sum(ST_Length(r.the_geom))/1000 AS kilometers
FROM
    bc_roads r,
    bc_municipality m
WHERE
    r.name = 'Douglas St'
    AND m.name = 'VICTORIA'
    AND ST_Intersects(m.the_geom, r.the_geom);
```

<table>
<thead>
<tr>
<th>kilometers</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.89151904172838</td>
</tr>
<tr>
<td>(1 row)</td>
</tr>
</tbody>
</table>

7. What is the largest municipality polygon that has a hole?

```sql
SELECT gid, name, ST_Area(the_geom) AS area
FROM bc_municipality
WHERE ST_NRings(the_geom) > 1
ORDER BY area DESC LIMIT 1;
```

<table>
<thead>
<tr>
<th>gid</th>
<th>name</th>
<th>area</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>SPALLUMCHEEN</td>
<td>257374619.430216</td>
</tr>
<tr>
<td>(1 row)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3 Performance Tips

4.3.1 Small tables of large geometries

4.3.1.1 Problem description

Current PostgreSQL versions (including 9.6) suffer from a query optimizer weakness regarding TOAST tables. TOAST tables are a kind of "extension room" used to store large (in the sense of data size) values that do not fit into normal data pages (like long texts, images or complex geometries with lots of vertices), see the PostgreSQL Documentation for TOAST for more information.

The problem appears if you happen to have a table with rather large geometries, but not too many rows of them (like a table containing the boundaries of all European countries in high resolution). Then the table itself is small, but it uses lots of TOAST space. In our example case, the table itself had about 80 rows and used only 3 data pages, but the TOAST table used 8225 pages.

Now issue a query where you use the geometry operator && to search for a bounding box that matches only very few of those rows. Now the query optimizer sees that the table has only 3 pages and 80 rows. It estimates that a sequential scan on such a small table is much faster than using an index. And so it decides to ignore the GIST index. Usually, this estimation is correct. But in our case, the && operator has to fetch every geometry from disk to compare the bounding boxes, thus reading all TOAST pages, too.

To see whether your suffer from this issue, use the "EXPLAIN ANALYZE" postgresql command. For more information and the technical details, you can read the thread on the postgres performance mailing list: http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php

and newer thread on PostGIS https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html

4.3.1.2 Workarounds

The PostgreSQL people are trying to solve this issue by making the query estimation TOAST-aware. For now, here are two workarounds:

The first workaround is to force the query planner to use the index. Send "SET enable_seqscan TO off;" to the server before issuing the query. This basically forces the query planner to avoid sequential scans whenever possible. So it uses the GIST index as usual. But this flag has to be set on every connection, and it causes the query planner to make misestimations in other cases, so you should "SET enable_seqscan TO on;" after the query.

The second workaround is to make the sequential scan as fast as the query planner thinks. This can be achieved by creating an additional column that "caches" the bbox, and matching against this. In our example, the commands are like:

```sql
SELECT AddGeometryColumn('myschema','mytable','bbox','4326','GEOMETRY','2');
UPDATE mytable SET bbox = ST_Envelope(ST_Force2D(the_geom));
```

Now change your query to use the && operator against bbox instead of geom_column, like:

```sql
SELECT geom_column
FROM mytable
WHERE bbox && ST_SetSRID('BOX3D(0 0,1 1)::box3d,4326');
```

Of course, if you change or add rows to mytable, you have to keep the bbox "in sync". The most transparent way to do this would be triggers, but you also can modify your application to keep the bbox column current or run the UPDATE query above after every modification.

4.3.2 CLUSTERing on geometry indices

For tables that are mostly read-only, and where a single index is used for the majority of queries, PostgreSQL offers the CLUSTER command. This command physically reorders all the data rows in the same order as the index criteria, yielding two performance advantages: First, for index range scans, the number of seeks on the data table is drastically reduced. Second, if your working set concentrates to some small intervals on the indices, you have a more efficient caching because the data rows
are spread along fewer data pages. (Feel invited to read the CLUSTER command documentation from the PostgreSQL manual at this point.)

However, currently PostgreSQL does not allow clustering on PostGIS GIST indices because GIST indices simply ignores NULL values, you get an error message like:

```
lwgeom=# CLUSTER my_geom_index ON my_table;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column "the_geom" NOT NULL.
```

As the HINT message tells you, one can work around this deficiency by adding a "not null" constraint to the table:

```
lwgeom=# ALTER TABLE my_table ALTER COLUMN the_geom SET not null;
```

Of course, this will not work if you in fact need NULL values in your geometry column. Additionally, you must use the above method to add the constraint, using a CHECK constraint like "ALTER TABLE blubb ADD CHECK (geometry is not null);" will not work.

4.3.3 Avoiding dimension conversion

Sometimes, you happen to have 3D or 4D data in your table, but always access it using OpenGIS compliant ST_AsText() or ST_AsBinary() functions that only output 2D geometries. They do this by internally calling the ST_Force2D() function, which introduces a significant overhead for large geometries. To avoid this overhead, it may be feasible to pre-drop those additional dimensions once and forever:

```
UPDATE mytable SET the_geom = ST_Force2D(the_geom);
VACUUM FULL ANALYZE mytable;
```

Note that if you added your geometry column using AddGeometryColumn() there’ll be a constraint on geometry dimension. To bypass it you will need to drop the constraint. Remember to update the entry in the geometry_columns table and recreate the constraint afterwards.

In case of large tables, it may be wise to divide this UPDATE into smaller portions by constraining the UPDATE to a part of the table via a WHERE clause and your primary key or another feasible criteria, and running a simple "VACUUM;" between your UPDATEs. This drastically reduces the need for temporary disk space. Additionally, if you have mixed dimension geometries, restricting the UPDATE by "WHERE dimension(the_geom)>2" skips re-writing of geometries that already are in 2D.

4.4 Building Applications

4.4.1 Using MapServer

The Minnesota MapServer is an internet web-mapping server which conforms to the OpenGIS Web Map Service specification.

4.4.1.1 Basic Usage

To use PostGIS with MapServer, you need to know how to configure MapServer, which is beyond the scope of this documentation. This section covers specific PostGIS issues and configuration details.

To use PostGIS with MapServer, you will need:

- Version 0.6 or newer of PostGIS.
• Version 3.5 or newer of MapServer.

MapServer accesses PostGIS/PostgreSQL data like any other PostgreSQL client, using the `libpq` interface. This means that MapServer can be installed on any machine with network access to the PostGIS server, and use PostGIS as a source of data. The faster the connection between the systems, the better.

1. Compile and install MapServer, with whatever options you desire, including the "--with-postgis" configuration option.

2. In your MapServer map file, add a PostGIS layer. For example:

   ```
   LAYER
   CONNECTIONTYPE postgis
   NAME "widehighways"
   # Connect to a remote spatial database
   CONNECTION "user=dbuser dbname=gisdatabase host=bigserver"
   PROCESSING "CLOSE_CONNECTION=DEFER"
   # Get the lines from the 'geom' column of the 'roads' table
   DATA "geom from roads using srid=4326 using unique gid"
   STATUS ON
   TYPE LINE
   # Of the lines in the extents, only render the wide highways
   FILTER "type = 'highway' and numlanes >= 4"
   CLASS
   # Make the superhighways brighter and 2 pixels wide
   EXPRESSION ([numlanes] >= 6)
   STYLE
   COLOR 255 22 22
   WIDTH 2
   END
   END
   CLASS
   # All the rest are darker and only 1 pixel wide
   EXPRESSION ([numlanes] < 6)
   STYLE
   COLOR 205 92 82
   END
   END
   ```

In the example above, the PostGIS-specific directives are as follows:

CONNECTIONTYPE For PostGIS layers, this is always "postgis".

CONNECTION The database connection is governed by the a 'connection string' which is a standard set of keys and values like this (with the default values in <>):

```
user=<username> password=<password> dbname=<username> hostname=<server> port=<5432>
```

An empty connection string is still valid, and any of the key/value pairs can be omitted. At a minimum you will generally supply the database name and username to connect with.

DATA The form of this parameter is "<geocolumn> from <tablename> using srid=<srid> using unique <primary key>" where the column is the spatial column to be rendered to the map, the SRID is SRID used by the column and the primary key is the table primary key (or any other uniquely-valued column with an index).

You can omit the "using srid" and "using unique" clauses and MapServer will automatically determine the correct values if possible, but at the cost of running a few extra queries on the server for each map draw.

PROCESSING Putting in a CLOSE_CONNECTION=DEFER if you have multiple layers reuses existing connections instead of closing them. This improves speed. Refer to for MapServer PostGIS Performance Tips for a more detailed explanation.

FILTER The filter must be a valid SQL string corresponding to the logic normally following the "WHERE" keyword in a SQL query. So, for example, to render only roads with 6 or more lanes, use a filter of "num_lanes >= 6."

3. In your spatial database, ensure you have spatial (GiST) indexes built for any the layers you will be drawing.
CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]);

4. If you will be querying your layers using MapServer you will also need to use the "using unique" clause in your DATA statement.

MapServer requires unique identifiers for each spatial record when doing queries, and the PostGIS module of MapServer uses the unique value you specify in order to provide these unique identifiers. Using the table primary key is the best practice.

4.4.1.2 Frequently Asked Questions

1. When I use an EXPRESSION in my map file, the condition never returns as true, even though I know the values exist in my table.

Unlike shape files, PostGIS field names have to be referenced in EXPRESSIONS using lower case.

```
EXPRESSION ([numlanes] >= 6)
```

2. The FILTER I use for my Shapefiles is not working for my PostGIS table of the same data.

Unlike shape files, filters for PostGIS layers use SQL syntax (they are appended to the SQL statement the PostGIS connector generates for drawing layers in MapServer).

```
FILTER "type = 'highway' and numlanes >= 4"
```

3. My PostGIS layer draws much slower than my Shapefile layer, is this normal?

In general, the more features you are drawing into a given map, the more likely it is that PostGIS will be slower than Shapefiles. For maps with relatively few features (100s), PostGIS will often be faster. For maps with high feature density (1000s), PostGIS will always be slower. If you are finding substantial draw performance problems, it is possible that you have not built a spatial index on your table.

```
postgis# CREATE INDEX geotable_gix ON geotable USING GIST ( geocolumn );
postgis# VACUUM ANALYZE;
```

4. My PostGIS layer draws fine, but queries are really slow. What is wrong?

For queries to be fast, you must have a unique key for your spatial table and you must have an index on that unique key. You can specify what unique key for mapserver to use with the USING UNIQUE clause in your DATA line:

```
DATA "geom FROM geotable USING UNIQUE gid"
```

5. Can I use "geography" columns (new in PostGIS 1.5) as a source for MapServer layers?

Yes! MapServer understands geography columns as being the same as geometry columns, but always using an SRID of 4326. Just make sure to include a "using srid=4326" clause in your DATA statement. Everything else works exactly the same as with geometry.

```
DATA "geog FROM geogtable USING SRID=4326 USING UNIQUE gid"
```

4.4.1.3 Advanced Usage

The USING pseudo-SQL clause is used to add some information to help mapserver understand the results of more complex queries. More specifically, when either a view or a subselect is used as the source table (the thing to the right of "FROM" in a DATA definition) it is more difficult for mapserver to automatically determine a unique identifier for each row and also the SRID for the table. The USING clause can provide mapserver with these two pieces of information as follows:
DATA "geom FROM (
SELECT
 table1.geom AS geom,
 table1.gid AS gid,
 table2.data AS data
FROM table1
LEFT JOIN table2
ON table1.id = table2.id
) AS new_table USING UNIQUE gid USING SRID=4326"

USING UNIQUE <uniqueid> MapServer requires a unique id for each row in order to identify the row when doing map queries. Normally it identifies the primary key from the system tables. However, views and subselects don’t automatically have an known unique column. If you want to use MapServer’s query functionality, you need to ensure your view or subselect includes a uniquely valued column, and declare it with **USING UNIQUE**. For example, you could explicitly select one of the table’s primary key values for this purpose, or any other column which is guaranteed to be unique for the result set.

Note

"Querying a Map" is the action of clicking on a map to ask for information about the map features in that location. Don’t confuse “map queries” with the SQL query in a **DATA** definition.

USING SRID=<srid> PostGIS needs to know which spatial referencing system is being used by the geometries in order to return the correct data back to MapServer. Normally it is possible to find this information in the "geometry_columns" table in the PostGIS database, however, this is not possible for tables which are created on the fly such as subselects and views. So the **USING SRID=** option allows the correct SRID to be specified in the **DATA** definition.

4.4.1.4 Examples

Example 1

Let's start with a simple example and work our way up. Consider the following MapServer layer definition:

```
LAYER
    CONNECTIONTYPE postgis
    NAME "roads"
    CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
    DATA "geom from roads"
    STATUS ON
    TYPE LINE
    CLASS
        STYLE
            COLOR 0 0 0
        END
    END
END
```

This layer will display all the road geometries in the roads table as black lines.

Example 2

Now let's say we want to show only the highways until we get zoomed in to at least a 1:100000 scale - the next two layers will achieve this effect:

```
LAYER
    CONNECTIONTYPE postgis
    CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
    PROCESSING "CLOSE_CONNECTION=DEFER"
    DATA "geom from roads"
    MINSCALE 100000
    STATUS ON
    TYPE LINE
```
FILTER "road_type = 'highway'"
CLASS
 COLOR 0 0 0
END
END
LAYER
 CONNECTIONTYPE postgis
 CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
 PROCESSING "CLOSE_CONNECTION=DEFER"
 DATA "geom from roads"
 MAXSCALE 100000
 STATUS ON
 TYPE LINE
 CLASSITEM road_type
 CLASS
 EXPRESSION "highway"
 STYLE
 WIDTH 2
 COLOR 255 0 0
 END
 END
 CLASS
 STYLE
 COLOR 0 0 0
 END
 END
END

The first layer is used when the scale is greater than 1:100000, and displays only the roads of type "highway" as black lines. The FILTER option causes only roads of type "highway" to be displayed.

The second layer is used when the scale is less than 1:100000, and will display highways as double-thick red lines, and other roads as regular black lines.

So, we have done a couple of interesting things using only MapServer functionality, but our DATA SQL statement has remained simple. Suppose that the name of the road is stored in another table (for whatever reason) and we need to do a join to get it and label our roads.

LAYER
 CONNECTIONTYPE postgis
 CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
 DATA "geom FROM (SELECT roads.gid AS gid, roads.geom AS geom, road_names.name as name FROM roads LEFT JOIN road_names ON roads.road_name_id = road_names.road_name_id) AS named_roads USING UNIQUE gid USING SRID=4326"
 MAXSCALE 20000
 STATUS ON
 TYPE ANNOTATION
 LABELITEM name
 CLASS
 LABEL
 ANGLE auto
 SIZE 8
 COLOR 0 192 0
 TYPE truetype
 FONT arial
 END
 END
END

This annotation layer adds green labels to all the roads when the scale gets down to 1:20000 or less. It also demonstrates how to use an SQL join in a DATA definition.
4.4.2 Java Clients (JDBC)

Java clients can access PostGIS "geometry" objects in the PostgreSQL database either directly as text representations or using the JDBC extension objects bundled with PostGIS. In order to use the extension objects, the "postgis.jar" file must be in your CLASSPATH along with the "postgresql.jar" JDBC driver package.

```java
import java.sql.*;
import java.util.*;
import java.lang.*;
import org.postgis.*;

public class JavaGIS {
    public static void main(String[] args) {
        try {
            /*
             * Load the JDBC driver and establish a connection.
             */
            Class.forName("org.postgresql.Driver");
            String url = "jdbc:postgresql://localhost:5432/database";
            conn = DriverManager.getConnection(url, "postgres", "");
            /*
             * Add the geometry types to the connection. Note that you
             * must cast the connection to the pgsql-specific connection
             * implementation before calling the addDataType() method.
             */
            ((org.postgresql.PGConnection)conn).addDataType("geometry",Class.forName("org.postgis.PGgeometry"));
            ((org.postgresql.PGConnection)conn).addDataType("box3d",Class.forName("org.postgis.PGbox3d"));
            /*
             * Create a statement and execute a select query.
             */
            Statement s = conn.createStatement();
            ResultSet r = s.executeQuery("select geom,id from geomtable");
            while( r.next() ) {
                /*
                 * Retrieve the geometry as an object then cast it to the geometry type.
                 * Print things out.
                 */
                PGgeometry geom = (PGgeometry)r.getObject(1);
                int id = r.getInt(2);
                System.out.println("Row "+ id + ":");
                System.out.println(geom.toString());
            }
            s.close();
            conn.close();
        }
        catch( Exception e ) {
            e.printStackTrace();
        }
    }
}
```

The "PGgeometry" object is a wrapper object which contains a specific topological geometry object (subclasses of the abstract class "Geometry") depending on the type: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon.

```java
PGgeometry geom = (PGgeometry)r.getObject(1);
if( geom.getType() == Geometry.POLYGON ) {
```
Polygon pl = (Polygon) geom.getGeometry();
for(int r = 0; r < pl.numRings(); r++) {
 LinearRing rng = pl.getRing(r);
 System.out.println("Ring: " + r);
 for(int p = 0; p < rng.numPoints(); p++) {
 Point pt = rng.getPoint(p);
 System.out.println("Point: " + p);
 System.out.println(pt.toString());
 }
}

The JavaDoc for the extension objects provides a reference for the various data accessor functions in the geometric objects.

4.4.3 C Clients (libpq)

...

4.4.3.1 Text Cursors

...

4.4.3.2 Binary Cursors

...

4.5 Raster Data Management, Queries, and Applications

4.5.1 Loading and Creating Rasters

For most use cases, you will create PostGIS rasters by loading existing raster files using the packaged raster2pgsql raster loader.

4.5.1.1 Using raster2pgsql to load rasters

The raster2pgsql is a raster loader executable that loads GDAL supported raster formats into sql suitable for loading into a PostGIS raster table. It is capable of loading folders of raster files as well as creating overviews of rasters. Since the raster2pgsql is compiled as part of PostGIS most often (unless you compile your own GDAL library), the raster types supported by the executable will be the same as those compiled in the GDAL dependency library. To get a list of raster types your particular raster2pgsql supports use the -G switch. These should be the same as those provided by your PostGIS install documented here ST_GDALDrivers if you are using the same gdal library for both.

Note
The older version of this tool was a python script. The executable has replaced the python script. If you still find the need for the Python script Examples of the python one can be found at GDAL PostGIS Raster Driver Usage. Please note that the raster2pgsql python script may not work with future versions of PostGIS raster and is no longer supported.

Note
When creating overviews of a specific factor from a set of rasters that are aligned, it is possible for the overviews to not align. Visit http://trac.osgeo.org/postgis/ticket/1764 for an example where the overviews do not align.
EXAMPLE USAGE:

```
raster2pgsql raster_options_go_here raster_file someschema.sometable > out.sql
```

-? Display help screen. Help will also display if you don’t pass in any arguments.

-G Print the supported raster formats.

(c|d|l|p) These are mutually exclusive options:

-` Create new table and populate it with raster(s), this is the default mode
-` Append raster(s) to an existing table.
-` Drop table, create new one and populate it with raster(s)
-` Prepare mode, only create the table.

Raster processing: Applying constraints for proper registering in raster catalogs

-` Apply raster constraints -- srid, pixelsize etc. to ensure raster is properly registered in `columns view.
-` Disable setting the max extent constraint. Only applied if -` flag is also used.
-` Set the constraints (spatially unique and coverage tile) for regular blocking. Only applied if -` flag is also used.

Raster processing: Optional parameters used to manipulate input raster dataset

-` Assign output raster with specified SRID. If not provided or is zero, raster’s metadata will be checked to determine an appropriate SRID.
-` Index (1-based) of band to extract from raster. For more than one band index, separate with comma (,). If unspecified, all bands of raster will be extracted.
-` Cut raster into tiles to be inserted one per table row. ` is expressed as WIDTHxHEIGHT or set to the value "auto" to allow the loader to compute an appropriate tile size using the first raster and applied to all rasters.
-` Pad right-most and bottom-most tiles to guarantee that all tiles have the same width and height.
-` Register the raster as a filesystem (out-db) raster.
 Only the metadata of the raster and path location to the raster is stored in the database (not the pixels).
-` Create overview of the raster. For more than one factor, separate with comma(.). Overview table name follows the pattern o_overview_factor_table, where overview factor is a placeholder for numerical overview factor and table is replaced with the base table name. Created overview is stored in the database and is not affected by -R. Note that your generated sql file will contain both the main table and overview tables.
-` NODATA NODATA value to use on bands without a NODATA value.

Optional parameters used to manipulate database objects

-` Specify name of destination raster column, default is ‘rast’
-` Add a column with the name of the file
-` Specify the name of the filename column. Implies -F.
-` Wrap PostgreSQL identifiers in quotes.
-` Create a GiST index on the raster column.
-` Vacuum analyze the raster table.
-` Skip NODATA value checks for each raster band.
-` Specify the tablespace for the new table. Note that indices (including the primary key) will still use the default tablespace unless the -X flag is also used.
-` Specify the tablespace for the table’s new index. This applies to the primary key and the spatial index if the -I flag is used.
-Y Use copy statements instead of insert statements.

e Execute each statement individually, do not use a transaction.

-E ENDIAN Control endianness of generated binary output of raster; specify 0 for XDR and 1 for NDR (default); only NDR output is supported now

-V version Specify version of output format. Default is 0. Only 0 is supported at this time.

An example session using the loader to create an input file and uploading it chunked in 100x100 tiles might look like this:

```bash
raster2pgsql -s 4326 -I -C -M *.tif -F -t 100x100 public.demelevation > elev.sql
psql -d gisdb -f elev.sql
```

A conversion and upload can be done all in one step using UNIX pipes:

```bash
raster2pgsql -s 4326 -I -C -M *.tif -F -t 100x100 public.demelevation | psql -d gisdb
```

Load rasters Massachusetts state plane meters aerial tiles into a schema called `aerial` and create a full view, 2 and 4 level overview tables, use copy mode for inserting (no intermediary file just straight to db), and -e don’t force everything in a transaction (good if you want to see data in tables right away without waiting). Break up the rasters into 128x128 pixel tiles and apply raster constraints. Use copy mode instead of table insert. (-F) Include a field called `filename` to hold the name of the file the tiles were cut from.

```bash
raster2pgsql -I -C -e -Y -F -s 26986 -t 128x128 -l 2,4 bostonaerials2008/*.jpg aerials. ← boston | psql -U postgres -d gisdb -h localhost -p 5432
```

--get a list of raster types supported:
```bash
raster2pgsql -G
```

The -G commands outputs a list something like

```
Available GDAL raster formats:
  Virtual Raster
  GeoTIFF
  National Imagery Transmission Format
  Raster Product Format TOC format
  ECRG TOC format
  Erdas Imagine Images (.img)
  CEOS SAR Image
  CEOS Image
  JAXA PALSAR Product Reader (Level 1.1/1.5)
  Ground-based SAR Applications Testbed File Format (.gff)
  ELAS
  Arc/Info Binary Grid
  Arc/Info ASCII Grid
  GRASS ASCII Grid
  SDTS Raster
  DTED Elevation Raster
  Portable Network Graphics
  JPEG JFIF
  In Memory Raster
  Japanese DEM (.mem)
  Graphics Interchange Format (.gif)
```

<table>
<thead>
<tr>
<th>Format/Format Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphics Interchange Format (.gif)</td>
</tr>
<tr>
<td>Envisat Image Format</td>
</tr>
<tr>
<td>Maptech BSB Nautical Charts</td>
</tr>
<tr>
<td>X11 PixMap Format</td>
</tr>
<tr>
<td>MS Windows Device Independent Bitmap</td>
</tr>
<tr>
<td>SPOT DIMAP</td>
</tr>
<tr>
<td>AirSAR Polarimetric Image</td>
</tr>
<tr>
<td>RadarSat 2 XML Product</td>
</tr>
<tr>
<td>PCIDSK Database File</td>
</tr>
<tr>
<td>PCRaster Raster File</td>
</tr>
<tr>
<td>ILWIS Raster Map</td>
</tr>
<tr>
<td>SGI Image File Format 1.0</td>
</tr>
<tr>
<td>SRTMHGT File Format</td>
</tr>
<tr>
<td>Leveller heightfield</td>
</tr>
<tr>
<td>Terragen heightfield</td>
</tr>
<tr>
<td>USGS Astrogeology ISIS cube (Version 3)</td>
</tr>
<tr>
<td>USGS Astrogeology ISIS cube (Version 2)</td>
</tr>
<tr>
<td>NASA Planetary Data System</td>
</tr>
<tr>
<td>EarthWatch .TIL</td>
</tr>
<tr>
<td>ERMapper .ers Labelled</td>
</tr>
<tr>
<td>NOAA Polar Orbiter Level 1b Data Set</td>
</tr>
<tr>
<td>FIT Image</td>
</tr>
<tr>
<td>GRidded Binary (.grb)</td>
</tr>
<tr>
<td>Raster Matrix Format</td>
</tr>
<tr>
<td>EUMETSAT Archive native (.nat)</td>
</tr>
<tr>
<td>Idrisi Raster A.1</td>
</tr>
<tr>
<td>Intergraph Raster</td>
</tr>
<tr>
<td>Golden Software ASCII Grid (.grd)</td>
</tr>
<tr>
<td>Golden Software Binary Grid (.grd)</td>
</tr>
<tr>
<td>Golden Software 7 Binary Grid (.grd)</td>
</tr>
<tr>
<td>COSAR Annotated Binary Matrix (TerraSAR-X)</td>
</tr>
<tr>
<td>TerraSAR-X Product</td>
</tr>
<tr>
<td>DRDC COASP SAR Processor Raster</td>
</tr>
<tr>
<td>R Object Data Store</td>
</tr>
<tr>
<td>Portable Pixmap Format (netpbm)</td>
</tr>
<tr>
<td>USGS DOQ (Old Style)</td>
</tr>
<tr>
<td>USGS DOQ (New Style)</td>
</tr>
<tr>
<td>ENVI .hdr Labelled</td>
</tr>
<tr>
<td>ESRI .hdr Labelled</td>
</tr>
<tr>
<td>Generic Binary (.hdr Labelled)</td>
</tr>
<tr>
<td>PCI .aux Labelled</td>
</tr>
<tr>
<td>Vexcel MFF Raster</td>
</tr>
<tr>
<td>Vexcel MFF2 (HKV) Raster</td>
</tr>
<tr>
<td>Fuji BAS Scanner Image</td>
</tr>
<tr>
<td>GSC Geogrid</td>
</tr>
<tr>
<td>EOSAT FAST Format</td>
</tr>
<tr>
<td>VTP .bt (Binary Terrain) 1.3 Format</td>
</tr>
<tr>
<td>Erdas .LAN/.GIS</td>
</tr>
<tr>
<td>Convair PolGASP</td>
</tr>
<tr>
<td>Image Data and Analysis</td>
</tr>
<tr>
<td>NLAPS Data Format</td>
</tr>
<tr>
<td>Erdas Imagine Raw</td>
</tr>
<tr>
<td>DIPEX</td>
</tr>
<tr>
<td>FARSITE v.4 Landscape File (.lcp)</td>
</tr>
<tr>
<td>NOAA Vertical Datum .GTX</td>
</tr>
<tr>
<td>NADCON .los/.las Datum Grid Shift</td>
</tr>
<tr>
<td>NTv2 Datum Grid Shift</td>
</tr>
<tr>
<td>ACE2</td>
</tr>
<tr>
<td>Snow Data Assimilation System</td>
</tr>
<tr>
<td>Swedish Grid RIK (.rik)</td>
</tr>
<tr>
<td>USGS Optional ASCII DEM (and CDED)</td>
</tr>
<tr>
<td>GeoSoft Grid Exchange Format</td>
</tr>
</tbody>
</table>
4.5.1.2 Creating rasters using PostGIS raster functions

On many occasions, you’ll want to create rasters and raster tables right in the database. There are a plethora of functions to do that. The general steps to follow.

1. Create a table with a raster column to hold the new raster records which can be accomplished with:

   ```sql
   CREATE TABLE myrasters(rid serial primary key, rast raster);
   ```

2. There are many functions to help with that goal. If you are creating rasters not as a derivative of other rasters, you will want to start with: `ST_MakeEmptyRaster`, followed by `ST_AddBand`.

 You can also create rasters from geometries. To achieve that you’ll want to use `ST_AsRaster` perhaps accompanied with other functions such as `ST_Union` or `ST_MapAlgebraFct` or any of the family of other map algebra functions.

 There are even many more options for creating new raster tables from existing tables. For example you can create a raster table in a different projection from an existing one using `ST_Transform`.

3. Once you are done populating your table initially, you’ll want to create a spatial index on the raster column with something like:

   ```sql
   CREATE INDEX myrasters_rast_st_convexhull_idx ON myrasters USING gist( ST_ConvexHull( rast ) );
   ```

 Note the use of `ST_ConvexHull` since most raster operators are based on the convex hull of the rasters.

 Note

 Pre-2.0 versions of PostGIS raster were based on the envelop rather than the convex hull. For the spatial indexes to work properly you’ll need to drop those and replace with convex hull based index.

4. Apply raster constraints using `AddRasterConstraints`.

4.5.2 Raster Catalogs

There are two raster catalog views that come packaged with PostGIS. Both views utilize information embedded in the constraints of the raster tables. As a result the catalog views are always consistent with the raster data in the tables since the constraints are enforced.

1. `raster_columns` this view catalogs all the raster table columns in your database.

2. `raster_overviews` this view catalogs all the raster table columns in your database that serve as overviews for a finer grained table. Tables of this type are generated when you use the `-l` switch during load.
4.5.2.1 Raster Columns Catalog

The `raster_columns` is a catalog of all raster table columns in your database that are of type raster. It is a view utilizing the constraints on the tables so the information is always consistent even if you restore one raster table from a backup of another database. The following columns exist in the `raster_columns` catalog.

If you created your tables not with the loader or forgot to specify the `-C` flag during load, you can enforce the constraints after the fact using `AddRasterConstraints` so that the `raster_columns` catalog registers the common information about your raster tiles.

- **r_table_catalog** The database the table is in. This will always read the current database.
- **r_table_schema** The database schema the raster table belongs to.
- **r_table_name raster table**
- **r_raster_column** the column in the `r_table_name` table that is of type raster. There is nothing in PostGIS preventing you from having multiple raster columns per table so it's possible to have a raster table listed multiple times with a different raster column for each.
- **srid** The spatial reference identifier of the raster. Should be an entry in the Section 4.1.3.1.
- **scale_x** The scaling between geometric spatial coordinates and pixel. This is only available if all tiles in the raster column have the same `scale_x` and this constraint is applied. Refer to `ST_ScaleX` for more details.
- **scale_y** The scaling between geometric spatial coordinates and pixel. This is only available if all tiles in the raster column have the same `scale_y` and the `scale_y` constraint is applied. Refer to `ST_ScaleY` for more details.
- **blocksize_x** The width (number of pixels across) of each raster tile. Refer to `ST_Width` for more details.
- **blocksize_y** The width (number of pixels down) of each raster tile. Refer to `ST_Height` for more details.
- **same_alignment** A boolean that is true if all the raster tiles have the same alignment. Refer to `ST_SameAlignment` for more details.
- **regular_blocking** If the raster column has the spatially unique and coverage tile constraints, the value will be TRUE. Otherwise, it will be FALSE.
- **num_bands** The number of bands in each tile of your raster set. This is the same information as what is provided by `ST_NumBands`.
- **pixel_types** An array defining the pixel type for each band. You will have the same number of elements in this array as you have number of bands. The `pixel_types` are one of the following defined in `ST_BandPixelType`.
- **nodata_values** An array of double precision numbers denoting the `nodata_value` for each band. You will have the same number of elements in this array as you have number of bands. These numbers define the pixel value for each band that should be ignored for most operations. This is similar information provided by `ST_BandNoDataValue`.
- **out_db** An array of boolean flags indicating if the raster bands data is maintained outside the database. You will have the same number of elements in this array as you have number of bands.
- **extent** This is the extent of all the raster rows in your raster set. If you plan to load more data that will change the extent of the set, you'll want to run the `DropRasterConstraints` function before load and then reapply constraints with `AddRasterConstraints` after load.
- **spatial_index** A boolean that is true if raster column has a spatial index.
4.5.2.2 Raster Overviews

raster_overviews catalogs information about raster table columns used for overviews and additional information about them that is useful to know when utilizing overviews. Overview tables are cataloged in both raster_columns and raster_overviews because they are rasters in their own right but also serve an additional special purpose of being a lower resolution caricature of a higher resolution table. These are generated along-side the main raster table when you use the `-l` switch in raster loading or can be generated manually using AddOverviewConstraints.

Overview tables contain the same constraints as other raster tables as well as additional informational only constraints specific to overviews.

> Note
> The information in raster_overviews does not duplicate the information in raster_columns. If you need the information about an overview table present in raster_columns you can join the raster_overviews and raster_columns together to get the full set of information you need.

Two main reasons for overviews are:

1. Low resolution representation of the core tables commonly used for fast mapping zoom-out.
2. Computations are generally faster to do on them than their higher resolution parents because there are fewer records and each pixel covers more territory. Though the computations are not as accurate as the high-res tables they support, they can be sufficient in many rule-of-thumb computations.

The raster_overviews catalog contains the following columns of information.

- o_table_catalog The database the overview table is in. This will always read the current database.
- o_table_schema The database schema the overview raster table belongs to.
- o_table_name raster overview table name
- o_raster_column the raster column in the overview table.
- r_table_catalog The database the raster table that this overview services is in. This will always read the current database.
- r_table_schema The database schema the raster table that this overview services belongs to.
- r_table_name raster table that this overview services.
- r_raster_column the raster column that this overview column services.
- overview_factor - this is the pyramid level of the overview table. The higher the number the lower the resolution of the table. raster2pgsql if given a folder of images, will compute overview of each image file and load separately. Level 1 is assumed and always the original file. Level 2 is will have each tile represent 4 of the original. So for example if you have a folder of 5000x5000 pixel image files that you chose to chunk 125x125, for each image file your base table will have (5000*5000)/(125*125) records = 1600, your (l=2) o_2 table will have ceiling(1600/Power(2,2)) = 400 rows, your (l=3) o_3 will have ceiling(1600/Power(2,3)) = 200 rows. If your pixels aren’t divisible by the size of your tiles, you’ll get some scrap tiles (tiles not completely filled). Note that each overview tile generated by raster2pgsql has the same number of pixels as its parent, but is of a lower resolution where each pixel of it represents (Power(2,overview_factor) pixels of the original).

4.5.3 Building Custom Applications with PostGIS Raster

The fact that PostGIS raster provides you with SQL functions to render rasters in known image formats gives you a lot of options for rendering them. For example you can use OpenOffice / LibreOffice for rendering as demonstrated in Rendering PostGIS Raster graphics with LibreOffice Base Reports. In addition you can use a wide variety of languages as demonstrated in this section.
4.5.3.1 PHP Example Outputting using ST_AsPNG in concert with other raster functions

In this section, we’ll demonstrate how to use the PHP PostgreSQL driver and the ST_AsGDALRaster family of functions to output band 1,2,3 of a raster to a PHP request stream that can then be embedded in an img src html tag.

The sample query demonstrates how to combine a whole bunch of raster functions together to grab all tiles that intersect a particular wgs 84 bounding box and then unions with ST_Union the intersecting tiles together returning all bands, transforms to user specified projection using ST_Transform, and then outputs the results as a png using ST_AsPNG.

You would call the below using

```
http://mywebserver/test_raster.php?srid=2249
```
to get the raster image in Massachusetts state plane feet.

```php
<?php
/** contents of test_raster.php **/
$conn_str = 'dbname=mydb host=localhost port=5432 user=myuser password=mypwd';
$dbconn = pg_connect($conn_str);
header('Content-Type: image/png');
/**If a particular projection was requested use it otherwise use mass state plane meters
if (!empty( $_REQUEST['srid'] ) && is_numeric( $_REQUEST['srid'] ) ) {
    $input_srid = intval($_REQUEST['srid']);
} else { $input_srid = 26986; }
/** The set bytea_output may be needed for PostgreSQL 9.0+, but not for 8.4 **/
$sql = "SELECT ST_AsPNG(ST_Transform(
    ST_AddBand(ST_Union(rast,1), ARRAY[ST_Union(rast,2),ST_Union(rast,3)])
    ,$input_srid) ) As new_rast
FROM aerials.boston
WHERE
    ST_Intersects(rast, ST_Transform(ST_MakeEnvelope(-71.1217, 42.227, -71.1210, 42.218,4326),26986) )";
$result = pg_query($sql);
$row = pg_fetch_row($result);
pg_free_result($result);
if ($row === false) return;
echo pg_unescape_bytea($row[0]);
?>
```

4.5.3.2 ASP.NET C# Example Outputting using ST_AsPNG in concert with other raster functions

In this section, we’ll demonstrate how to use Npgsql PostgreSQL .NET driver and the ST_AsGDALRaster family of functions to output band 1,2,3 of a raster to a PHP request stream that can then be embedded in an img src html tag.

You will need the npgsql .NET PostgreSQL driver for this exercise which you can get the latest of from http://npgsql.projects.postgresql.org/-. Just download the latest and drop into your ASP.NET bin folder and you’ll be good to go.

The sample query demonstrates how to combine a whole bunch of raster functions together to grab all tiles that intersect a particular wgs 84 bounding box and then unions with ST_Union the intersecting tiles together returning all bands, transforms to user specified projection using ST_Transform, and then outputs the results as a png using ST_AsPNG.

This is same example as Section 4.5.3.1 except implemented in C#.

You would call the below using

```
http://mywebserver/TestRaster.ashx?srid=2249
```
to get the raster image in Massachusetts state plane feet.
-- web.config connection string section --
<connectionStrings>
 <add name="DSN"
 connectionString="server=localhost;database=mydb;Port=5432;User Id=myuser;password=mypwd"/>
</connectionStrings>

// Code for TestRaster.ashx
<%@ WebHandler Language="C#" Class="TestRaster" %>
using System;
using System.Data;
using System.Web;
using Npgsql;

class TestRaster : IHttpHandler
{
 public void ProcessRequest(HttpContext context)
 {
 context.Response.ContentType = "image/png";
 context.Response.BinaryWrite(GetResults(context));
 }

 public bool IsReusable {
 get { return false; }
 }

 public byte[] GetResults(HttpContext context)
 {
 byte[] result = null;
 NpgsqlCommand command;
 string sql = null;
 int input_srid = 26986;
 try {
 using (NpgsqlConnection conn = new NpgsqlConnection(System.Configuration.
 ConfigurationManager.ConnectionStrings["DSN"].ConnectionString)) {
 conn.Open();

 if (context.Request["srid"] != null)
 {
 input_srid = Convert.ToInt32(context.Request["srid"]);
 }

 sql = @"SELECT ST_AsPNG(
 ST_Transform(
 ST_AddBand(
 ST_Union(rast,1), ARRAY[ST_Union(rast,2),ST_Union(rast,3)])
 ,input_srid)) As new_rast
 FROM aerials.boston
 WHERE
 ST_Intersects(rast,
 ST_Transform(ST_MakeEnvelope(-71.1217, 42.227,
 -71.1210, 42.218,4326),26986))"
;

 command = new NpgsqlCommand(sql, conn);
 command.Parameters.Add(new NpgsqlParameter("input_srid", input_srid));

 result = (byte[]) command.ExecuteScalar();
 conn.Close();
 }
 }
 }
}
4.5.3.3 Java console app that outputs raster query as Image file

This is a simple java console app that takes a query that returns one image and outputs to specified file. You can download the latest PostgreSQL JDBC drivers from http://jdbc.postgresql.org/download.html

You can compile the following code using a command something like:

```
set env CLASSPATH ../../postgresql-9.0-801.jdbc4.jar
javac SaveQueryImage.java
jar cfm SaveQueryImage.jar Manifest.txt *.class
```

And call it from the command-line with something like

```
java -jar SaveQueryImage.jar "SELECT ST_AsPNG(ST_AsRaster(ST_Buffer(ST_Point(1,5),10, 'quad_segs=2'),150, 150, '8BUI',100));" "test.png"
```

```
-- Manifest.txt --
Class-Path: postgresql-9.0-801.jdbc4.jar
Main-Class: SaveQueryImage
```

```
// Code for SaveQueryImage.java
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.io.*;
public class SaveQueryImage {
    public static void main(String[] argv) {
        System.out.println("Checking if Driver is registered with DriverManager.");

        try {
            //java.sql.DriverManager.registerDriver (new org.postgresql.Driver());
            Class.forName("org.postgresql.Driver");
        }
        catch (ClassNotFoundException cnfe) {
            System.out.println("Couldn't find the driver!");
            cnfe.printStackTrace();
            System.exit(1);
        }

        Connection conn = null;

        try {
            conn = DriverManager.getConnection("jdbc:postgresql://localhost:5432/mydb","myuser←","mypwd");
            conn.setAutoCommit(false);
            PreparedStatement sGetImg = conn.prepareStatement(argv[0]);
```
ResultSet rs = sGetImg.executeQuery();

FileOutputStream fout;
try {
 rs.next();
 /** Output to file name requested by user **/
 fout = new FileOutputStream(new File(argv[1]));
 fout.write(rs.getBytes(1));
 fout.close();
}
catch(Exception e) {
 System.out.println("Can't create file");
 e.printStackTrace();
}

rs.close();
sGetImg.close();
conn.close();
}
catch (SQLException se) {
 System.out.println("Couldn't connect: print out a stack trace and exit.");
 se.printStackTrace();
 System.exit(1);
}

4.5.3.4 Use PLPython to dump out images via SQL

This is a plpython stored function that creates a file in the server directory for each record. Requires you have plpython installed. Should work fine with both plpythonu and plpython3u.

CREATE OR REPLACE FUNCTION write_file (param_bytes bytea, param_filepath text)
RETURNS text
AS $$
f = open(param_filepath, 'wb+')
f.write(param_bytes)
return param_filepath
$$ LANGUAGE plpythonu;

--write out 5 images to the PostgreSQL server in varying sizes
-- note the postgresql daemon account needs to have write access to folder
-- this echos back the file names created;
SELECT write_file(ST_AsPNG(
 ST_AsRaster(ST_Buffer(ST_Point(1,5),j*5, 'quad_segs=2'),150*j, 150*j, '8BUI',100)),
 'C:/temp/slices'|| j || '.png')
FROM generate_series(1,5) As j;

write_file
C:/temp/slices1.png
C:/temp/slices2.png
C:/temp/slices3.png
C:/temp/slices4.png
C:/temp/slices5.png
4.5.3.5 Outputting Rasters with PSQL

Sadly PSQL doesn’t have easy to use built-in functionality for outputting binaries. This is a bit of a hack that piggybacks on PostgreSQL somewhat legacy large object support. To use first launch your psql commandline connected to your database. Unlike the python approach, this approach creates the file on your local computer.

```
SELECT oid, lowrite(lo_open(oid, 131072), png) As num_bytes
FROM
  ( VALUES (lo_create(0),
    ST_AsPNG( (SELECT rast FROM aerials.boston WHERE rid=1) )
  ) ) As v(oid,png);
-- you'll get an output something like --
oid    | num_bytes
---------+-----------
2630819 | 74860
-- next note the oid and do this replacing the c:/test.png to file path location
-- on your local computer
\lo_export 2630819 'C:/temp/aerial_samp.png'
-- this deletes the file from large object storage on db
SELECT lo_unlink(2630819);
```

4.6 Topology

The PostGIS Topology types and functions are used to manage topological objects such as faces, edges and nodes.

Sandro Santilli’s presentation at PostGIS Day Paris 2011 conference gives a good synopsis of PostGIS Topology and where it is headed Topology with PostGIS 2.0 slide deck.

Vincent Picavet provides a good synopsis and overview of what is Topology, how is it used, and various FOSS4G tools that support it in PostGIS Topology PGConf EU 2012.

An example of a topologically based GIS database is the US Census Topologically Integrated Geographic Encoding and Referencing System (TIGER) database. If you want to experiment with PostGIS topology and need some data, check out Topology_Load_Tiger.

The PostGIS topology module has existed in prior versions of PostGIS but was never part of the Official PostGIS documentation. In PostGIS 2.0.0 major cleanup is going on to remove use of all deprecated functions in it, fix known usability issues, better document the features and functions, add new functions, and enhance to closer conform to SQL-MM standards.

Details of this project can be found at PostGIS Topology Wiki

All functions and tables associated with this module are installed in a schema called topology.

Functions that are defined in SQL/MM standard are prefixed with ST_ and functions specific to PostGIS are not prefixed.

Topology support is build by default starting with PostGIS 2.0, and can be disabled specifying --without-topology configure option at build time as described in Chapter 2

4.6.1 Topology Types

4.6.1.1 getfaceedges_returntype

getfaceedges_returntype — A composite type that consists of a sequence number and edge number. This is the return type for ST_GetFaceEdges.
Description

A composite type that consists of a sequence number and edge number. This is the return type for \texttt{ST_GetFaceEdges} function.

1. \texttt{sequence} is an integer: Refers to a topology defined in the topology.topology table which defines the topology schema and srid.
2. \texttt{edge} is an integer: The identifier of an edge.

4.6.1.2 \texttt{TopoGeometry}

\texttt{TopoGeometry} — A composite type representing a topologically defined geometry.

Description

A composite type that refers to a topology geometry in a specific topology layer, having a specific type and a specific id. The elements of a \texttt{TopoGeometry} are the properties: topology_id, layer_id, id integer, type integer.

1. \texttt{topology_id} is an integer: Refers to a topology defined in the topology.topology table which defines the topology schema and srid.
2. \texttt{layer_id} is an integer: The layer_id in the layers table that the \texttt{TopoGeometry} belongs to. The combination of topology_id, layer_id provides a unique reference in the topology.layers table.
3. \texttt{id} is an integer: The id is the autogenerated sequence number that uniquely defines the topogeometry in the respective topology layer.
4. \texttt{type} integer between 1 - 4 that defines the geometry type: 1:[multi]point, 2:[multi]line, 3:[multi]poly, 4:collection

Casting Behavior

This section lists the automatic as well as explicit casts allowed for this data type

<table>
<thead>
<tr>
<th>Cast To</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>geometry</td>
<td>automatic</td>
</tr>
</tbody>
</table>

See Also

\texttt{CreateTopoGeom}

4.6.1.3 \texttt{validatetopology_returntype}

\texttt{validatetopology_returntype} — A composite type that consists of an error message and id1 and id2 to denote location of error. This is the return type for \texttt{ValidateTopology}.

Description

A composite type that consists of an error message and two integers. The \texttt{ValidateTopology} function returns a set of these to denote validation errors and the id1 and id2 to denote the ids of the topology objects involved in the error.

1. \texttt{error} is varchar: Denotes type of error.

 Current error descriptors are: coincident nodes, edge crosses node, edge not simple, edge end node geometry mis-match, edge start node geometry mismatch, face overlaps face, face within face,

2. \texttt{id1} is an integer: Denotes identifier of edge / face / nodes in error.
3. id2 is an integer: For errors that involve 2 objects denotes the secondary edge / or node

See Also

ValidateTopology

4.6.2 Topology Domains

4.6.2.1 TopoElement

TopoElement — An array of 2 integers generally used to identify a TopoGeometry component.

Description

An array of 2 integers used to represent one component of a simple or hierarchical TopoGeometry.

In the case of a simple TopoGeometry the first element of the array represents the identifier of a topological primitive and the second element represents its type (1:node, 2:edge, 3:face). In the case of a hierarchical TopoGeometry the first element of the array represents the identifier of a child TopoGeometry and the second element represents its layer identifier.

Note

For any given hierarchical TopoGeometry all child TopoGeometry elements will come from the same child layer, as specified in the topology.layer record for the layer of the TopoGeometry being defined.

Examples

```sql
( SELECT ARRAY[1,2]::topology.topoelement AS te ) f;

id | type
----+------
 1  |  2

SELECT ARRAY[1,2]::topology.topoelement;

{1,2}

--Example of what happens when you try to case a 3 element array to topoelement
-- NOTE: topoelement has to be a 2 element array so fails dimension check
SELECT ARRAY[1,2,3]::topology.topoelement;
ERROR: value for domain topology.topoelement violates check constraint "dimensions"
```

See Also

GetTopoGeomElements, TopoElementArray, TopoGeometry, TopoGeom_addElement, TopoGeom_remElement

4.6.2.2 TopoElementArray

TopoElementArray — An array of TopoElement objects.
Description

An array of 1 or more TopoElement objects, generally used to pass around components of TopoGeometry objects.

Examples

```sql
SELECT '({1,2},{4,3})'::topology.topoelementarray As tea;
  tea
--------
{1,2},{4,3}

-- more verbose equivalent --
SELECT ARRAY[ARRAY[1,2], ARRAY[4,3]]::topology.topoelementarray As tea;
  tea
--------
{1,2},{4,3}

--using the array agg function packaged with topology --
SELECT topology.TopoElementArray_Agg(ARRAY[e,t]) As tea
  FROM generate_series(1,4) As e CROSS JOIN generate_series(1,3) As t;

tea
-----------------------------------------------
{{1,1},{1,2},
{1,3},{2,1},{2,2},{2,3},
{3,1},{3,2},{3,3},
{4,1},{4,2},{4,3}}
```

```sql
SELECT '{{1,2,4},{3,4,5}}'::topology.topoelementarray As tea;
ERROR: value for domain topology.topoelementarray violates check constraint "dimensions"
```

See Also

TopoElement, GetTopoGeomElementArray, TopoElementArray_Agg

4.6.3 Topology and TopoGeometry Management

4.6.3.1 AddTopoGeometryColumn

AddTopoGeometryColumn — Adds a topogeometry column to an existing table, registers this new column as a layer in topology.layer and returns the new layer_id.

Synopsis

```sql
integer AddTopoGeometryColumn(varchar topology_name, varchar schema_name, varchar table_name, varchar column_name, varchar feature_type);

integer AddTopoGeometryColumn(varchar topology_name, varchar schema_name, varchar table_name, varchar column_name, varchar feature_type, integer child_layer);
```

Description

Each TopoGeometry object belongs to a specific Layer of a specific Topology. Before creating a TopoGeometry object you need to create its TopologyLayer. A Topology Layer is an association of a feature-table with the topology. It also contain type and hierarchy information. We create a layer using the AddTopoGeometryColumn() function:

This function will both add the requested column to the table and add a record to the topology.layer table with all the given info.
If you don’t specify [child_layer] (or set it to NULL) this layer would contain Basic TopoGeometries (composed by primitive topology elements). Otherwise this layer will contain hierarchical TopoGeometries (composed by TopoGeometries from the child_layer).

Once the layer is created (its id is returned by the AddTopoGeometryColumn function) you’re ready to construct TopoGeometry objects in it.

Valid feature_types are: POINT, LINE, POLYGON, COLLECTION

Availability: 1.7

Examples

```sql
-- Note for this example we created our new table in the ma_topo schema
-- though we could have created it in a different schema -- in which case topology_name and schema_name would be different
CREATE SCHEMA ma;
CREATE TABLE ma.parcels(gid serial, parcel_id varchar(20) PRIMARY KEY, address text);
SELECT topology.AddTopoGeometryColumn('ma_topo', 'ma', 'parcels', 'topo', 'POLYGON');

CREATE SCHEMA ri;
CREATE TABLE ri.roads(gid serial PRIMARY KEY, road_name text);
SELECT topology.AddTopoGeometryColumn('ri_topo', 'ri', 'roads', 'topo', 'LINE');
```

See Also

DropTopoGeometryColumn, toTopoGeom, CreateTopology, CreateTopoGeom

4.6.3.2 DropTopology

DropTopology — Use with caution: Drops a topology schema and deletes its reference from topology.topology table and references to tables in that schema from the geometry_columns table.

Synopsis

integer DropTopology(varchar topology_schema_name);

Description

Drops a topology schema and deletes its reference from topology.topology table and references to tables in that schema from the geometry_columns table. This function should be USED WITH CAUTION, as it could destroy data you care about. If the schema does not exist, it just removes reference entries the named schema.

Availability: 1.7

Examples

Cascade drops the ma_topo schema and removes all references to it in topology.topology and geometry_columns.

```sql
SELECT topology.DropTopology('ma_topo');
```

See Also

DropTopoGeometryColumn
4.6.3.3 DropTopoGeometryColumn

DropTopoGeometryColumn — Drops the topogeometry column from the table named `table_name` in `schema` `schema_name` and unregisters the columns from `topology.layer` table.

Synopsis

```text
DropTopoGeometryColumn(varchar schema_name, varchar table_name, varchar column_name);
```

Description

Drops the topogeometry column from the table named `table_name` in `schema` `schema_name` and unregisters the columns from `topology.layer` table. Returns summary of drop status. **NOTE:** it first sets all values to NULL before dropping to bypass referential integrity checks.

Availability: 1.?

Examples

```sql
SELECT topology.DropTopoGeometryColumn('ma_topo', 'parcel_topo', 'topo');
```

See Also

AddTopoGeometryColumn

4.6.3.4 Populate_Topology_Layer

Populate_Topology_Layer — Adds missing entries to `topology.layer` table by reading metadata from topo tables.

Synopsis

```sql
setof record Populate_Topology_Layer();
```

Description

Adds missing entries to the `topology.layer` table by inspecting topology constraints on tables. This function is useful for fixing up entries in topology catalog after restores of schemas with topo data.

It returns the list of entries created. Returned columns are `schema_name`, `table_name`, `feature_column`.

Availability: 2.3.0

Examples

```sql
CREATE SCHEMA strk;
CREATE TABLE strk.parcels(gid serial, parcel_id varchar(20) PRIMARY KEY, address text);
SELECT topology.AddTopoGeometryColumn('strk_topo', 'strk', 'parcels', 'topo', 'POLYGON');
-- this will return no records because this feature is already registered
SELECT *
FROM topology.Populate_Topology_Layer();
-- let's rebuild
TRUNCATE TABLE topology.layer;
```
SELECT *
 FROM topology.Populate_Topology_Layer();

SELECT topology_id, layer_id, schema_name As sn, table_name As tn, feature_column As fc
 FROM topology.layer;

<table>
<thead>
<tr>
<th>schema_name</th>
<th>table_name</th>
<th>feature_column</th>
</tr>
</thead>
<tbody>
<tr>
<td>strk</td>
<td>parcels</td>
<td>topo</td>
</tr>
</tbody>
</table>

(1 row)

<table>
<thead>
<tr>
<th>topology_id</th>
<th>layer_id</th>
<th>sn</th>
<th>tn</th>
<th>fc</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>strk</td>
<td>parcels</td>
<td>topo</td>
</tr>
</tbody>
</table>

(1 row)

See Also

AddTopoGeometryColumn

4.6.3.5 TopologySummary

TopologySummary — Takes a topology name and provides summary totals of types of objects in topology.

Synopsis
text TopologySummary(varchar topology_schema_name);

Description

Takes a topology name and provides summary totals of types of objects in topology.

Availability: 2.0.0

Examples

SELECT topology.topologysummary('city_data');

topologysummary
--
Topology city_data (329), SRID 4326, precision: 0
22 nodes, 24 edges, 10 faces, 29 topogeoms in 5 layers
Layer 1, type Polygonal (3), 9 topogeoms
 Deploy: features.land_parcels.feature
Layer 2, type Puntal (1), 8 topogeoms
 Deploy: features.traffic_signs.feature
Layer 3, type Lineal (2), 8 topogeoms
 Deploy: features.city_streets.feature
Layer 4, type Polygonal (3), 3 topogeoms
 Hierarchy level 1, child layer 1
 Deploy: features.big_parcels.feature
Layer 5, type Puntal (1), 1 topogeoms
 Hierarchy level 1, child layer 2
 Deploy: features.big_signs.feature
See Also

Topology_Load_Tiger

4.6.3.6 ValidateTopology

ValidateTopology — Returns a set of validetopology_returntype objects detailing issues with topology.

Synopsis

setof validetopology_returntype ValidateTopology(varchar topology_schema_name);

Description

Returns a set of validetopology_returntype objects detailing issues with topology. List of possible errors and what the returned ids represent are displayed below:

<table>
<thead>
<tr>
<th>Error</th>
<th>id1</th>
<th>id2</th>
</tr>
</thead>
<tbody>
<tr>
<td>edge crosses node</td>
<td>edge_id</td>
<td>node_id</td>
</tr>
<tr>
<td>invalid edge</td>
<td>edge_id</td>
<td>null</td>
</tr>
<tr>
<td>edge not simple</td>
<td>edge_id</td>
<td>null</td>
</tr>
<tr>
<td>edge crosses edge</td>
<td>edge_id</td>
<td>edge_id</td>
</tr>
<tr>
<td>edge start node geometry mis-match</td>
<td>edge_id</td>
<td>node_id</td>
</tr>
<tr>
<td>edge end node geometry mis-match</td>
<td>edge_id</td>
<td>node_id</td>
</tr>
<tr>
<td>face without edges</td>
<td>face_id</td>
<td>null</td>
</tr>
<tr>
<td>face has no rings</td>
<td>face_id</td>
<td>null</td>
</tr>
<tr>
<td>face overlaps face</td>
<td>face_id</td>
<td>face_id</td>
</tr>
<tr>
<td>face within face</td>
<td>inner face_id</td>
<td>outer face_id</td>
</tr>
</tbody>
</table>

Availability: 1.0.0

Enhanced: 2.0.0 more efficient edge crossing detection and fixes for false positives that were existent in prior versions.

Changed: 2.2.0 values for id1 and id2 were swapped for ‘edge crosses node’ to be consistent with error description.

Examples

```
SELECT * FROM topology.ValidateTopology('ma_topo');
```

```
<table>
<thead>
<tr>
<th>error</th>
<th>id1</th>
<th>id2</th>
</tr>
</thead>
<tbody>
<tr>
<td>face without edges</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
```

See Also

validetopology_returntype, Topology_Load_Tiger

4.6.4 Topology Statistics Management

Adding elements to a topology triggers many database queries for finding existing edges that will be split, adding nodes and updating edges that will node with the new linework. For this reason it is useful that statistics about the data in the topology tables are up-to-date.

PostGIS Topology population and editing functions do not automatically update the statistics because a updating stats after each and every change in a topology would be overkill, so it is the caller’s duty to take care of that.
Note
That the statistics updated by autovacuum will NOT be visible to transactions which started before autovacuum process completed, so long-running transactions will need to run ANALYZE themeselves, to use updated statistics.

4.6.5 Topology Constructors

4.6.5.1 CreateTopology

CreateTopology — Creates a new topology schema and registers this new schema in the topology.topology table.

Synopsis

integer CreateTopology(varchar topology_schema_name);
integer CreateTopology(varchar topology_schema_name, integer srid);
integer CreateTopology(varchar topology_schema_name, integer srid, double precision prec);
integer CreateTopology(varchar topology_schema_name, integer srid, double precision prec, boolean hasz);

Description

Creates a new schema with name topology_name consisting of tables (edge_data, face, node, relation and registers this new topology in the topology.topology table. It returns the id of the topology in the topology table. The srid is the spatial reference identified as defined in spatial_ref_sys table for that topology. Topologies must be uniquely named. The tolerance is measured in the units of the spatial reference system. If the tolerance (prec) is not specified defaults to 0.

This is similar to the SQL/MM ST_InitTopoGeo but a bit more functional. hasz defaults to false if not specified.

Availability: 1.?

Examples

This example creates a new schema called ma_topo that will store edges, faces, and relations in Massachusetts State Plane meters. The tolerance represents 1/2 meter since the spatial reference system is a meter based spatial reference system

```sql
SELECT topology.CreateTopology('ma_topo',26986, 0.5);
```

Create Rhode Island topology in State Plane ft

```sql
SELECT topology.CreateTopology('ri_topo',3438) As topoid;
topoid
--------
2
```

See Also

Section 4.1.3.1, ST_InitTopoGeo, Topology_Load_Tiger

4.6.5.2 CopyTopology

CopyTopology — Makes a copy of a topology structure (nodes, edges, faces, layers and TopoGeometries).

Synopsis

integer CopyTopology(varchar existing_topology_name, varchar new_name);
Description

Creates a new topology with name `new_topology_name` and SRID and precision taken from `existing_topology_name`, copies all nodes, edges and faces in there, copies layers and their TopoGeometries too.

Note
The new rows in `topology.layer` will contain synthesized values for `schema_name`, `table_name` and `feature_column`. This is because the TopoGeometry will only exist as a definition but won’t be available in any user-level table yet.

Availability: 2.0.0

Examples

This example makes a backup of a topology called `ma_topo`

```sql
SELECT topology.CopyTopology('ma_topo', 'ma_topo_bakup');
```

See Also

Section 4.1.3.1, CreateTopology

4.6.5.3 **ST_InitTopoGeo**

ST_InitTopoGeo — Creates a new topology schema and registers this new schema in the `topology.topology` table and details summary of process.

Synopsis

text **ST_InitTopoGeo**(varchar topology_schema_name);

Description

This is an SQL-MM equivalent of CreateTopology but lacks the spatial reference and tolerance options of CreateTopology and outputs a text description of creation instead of topology id.

Availability: 1.?

This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.17

Examples

```sql
SELECT topology.ST_InitTopoGeo('topo_schema_to_create') AS topocreation;
```

```sql
astopocreation
-------------------
Topology-Geometry 'topo_schema_to_create' (id:7) created.
```

See Also

CreateTopology
4.6.5.4 ST_CreateTopoGeo

ST_CreateTopoGeo — Adds a collection of geometries to a given empty topology and returns a message detailing success.

Synopsis

text ST_CreateTopoGeo(varchar atopology, geometry acollection);

Description

Adds a collection of geometries to a given empty topology and returns a message detailing success.

Useful for populating an empty topology.

Availability: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details -- X.3.18

Examples

```
-- Populate topology --
SELECT topology.ST_CreateTopoGeo('ri_topo',
  ST_GeomFromText('MULTILINESTRING((384744 236928,384750 236923,384769 236911,384799
 reside...
384844 236882,384866 236881,384879 236883,384954 236898,385087 236932,385117 236938,
385167 236938,385203 236941,385224 236946,385233 236950,385241 236956,385254 236971,
385260 236979,385268 236999,385273 237018,385273 237037,385271 237047,385267 237057,
385225 237125,385210 237144,385192 237161,385167 237192,385162 237202,385159 237214,
385159 237227,385162 237241,385166 237256,385196 237324,385209 237345,385234 237375,
385237 237383,385238 237399,385236 237407,385227 237419,385213 237430,385193 237439,
385174 237451,385170 237455,385169 237460,385171 237475,385181 237503,385190 237521,
385200 237533,385206 237538,385213 237541,385221 237542,385235 237540,385242 237541,
385249 237544,385260 237555,385270 237570,385289 237584,385292 237589,385291 237596,385284 237630))',3438)
);
```

```
st_createetopogeo
---------------------
Topology ri_topo populated
```

```
-- create tables and topo geometries --
CREATE TABLE ri.roads(gid serial PRIMARY KEY, road_name text);

SELECT topology.AddTopoGeometryColumn('ri_topo', 'ri', 'roads', 'topo', 'LINE');
```

See Also

AddTopoGeometryColumn, CreateTopology, DropTopology

4.6.5.5 TopoGeo_AddPoint

TopoGeo_AddPoint — Adds a point to an existing topology using a tolerance and possibly splitting an existing edge.

Synopsis

integer TopoGeo_AddPoint(varchar atopology, geometry apoint, float8 tolerance);
Description

Adds a point to an existing topology and returns its identifier. The given point will snap to existing nodes or edges within given tolerance. An existing edge may be split by the snapped point.

Availability: 2.0.0

See Also

TopoGeo_AddLineString, TopoGeo_AddPolygon, AddNode, CreateTopology

4.6.5.6 TopoGeo_AddLineString

TopoGeo_AddLineString — Adds a linestring to an existing topology using a tolerance and possibly splitting existing edges/faces. Returns edge identifiers.

Synopsis

SETOF integer TopoGeo_AddLineString(varchar atopology, geometry aline, float8 tolerance);

Description

Adds a linestring to an existing topology and returns a set of edge identifiers forming it up. The given line will snap to existing nodes or edges within given tolerance. Existing edges and faces may be split by the line.

Note

Updating statistics about topologies being loaded via this function is up to caller, see maintaining statistics during topology editing and population.

Availability: 2.0.0

See Also

TopoGeo_AddPoint, TopoGeo_AddPolygon, AddEdge, CreateTopology

4.6.5.7 TopoGeo_AddPolygon

TopoGeo_AddPolygon — Adds a polygon to an existing topology using a tolerance and possibly splitting existing edges/faces. Returns face identifiers.

Synopsis

SETOF integer TopoGeo_AddPolygon(varchar atopology, geometry apoly, float8 tolerance);
Description

Adds a polygon to an existing topology and returns a set of face identifiers forming it up. The boundary of the given polygon will snap to existing nodes or edges within given tolerance. Existing edges and faces may be split by the boundary of the new polygon.

Note

Updating statistics about topologies being loaded via this function is up to caller, see maintaining statistics during topology editing and population.

Availability: 2.0.0

See Also

TopoGeo_AddPoint, TopoGeo_AddLineString, AddFace, CreateTopology

4.6.6 Topology Editors

4.6.6.1 ST_AddIsoNode

ST_AddIsoNode — Adds an isolated node to a face in a topology and returns the nodeid of the new node. If face is null, the node is still created.

Synopsis

integer ST_AddIsoNode(varchar atopology, integer aface, geometry apoint);

Description

Adds an isolated node with point location apoint to an existing face with faceid aface to a topology atopology and returns the nodeid of the new node.

If the spatial reference system (srid) of the point geometry is not the same as the topology, the apoint is not a point geometry, the point is null, or the point intersects an existing edge (even at the boundaries) then an exception is thrown. If the point already exists as a node, an exception is thrown.

If aface is not null and the apoint is not within the face, then an exception is thrown.

Availability: 1.?

This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X+1.3.1

Examples

See Also

AddNode, CreateTopology, DropTopology, ST_Intersects

4.6.6.2 ST_AddIsoEdge

ST_AddIsoEdge — Adds an isolated edge defined by geometry alinestring to a topology connecting two existing isolated nodes anode and anothernode and returns the edge id of the new edge.
Synopsis

integer ST_AddIsoEdge(varchar topology, integer anode, integer anothernode, geometry alinestring);

Description

Adds an isolated edge defined by geometry alinestring to a topology connecting two existing isolated nodes anode and anothernode and returns the edge id of the new edge.

If the spatial reference system (srid) of the alinestring geometry is not the same as the topology, any of the input arguments are null, or the nodes are contained in more than one face, or the nodes are start or end nodes of an existing edge, then an exception is thrown.

If the alinestring is not within the face of the face the anode and anothernode belong to, then an exception is thrown.

If the anode and anothernode are not the start and end points of the alinestring then an exception is thrown.

Availability: 1.?

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.4

Examples

See Also

ST_AddIsoNode, ST_IsSimple, ST_Within

4.6.6.3 ST_AddEdgeNewFaces

ST_AddEdgeNewFaces — Add a new edge and, if in doing so it splits a face, delete the original face and replace it with two new faces.

Synopsis

integer ST_AddEdgeNewFaces(varchar topology, integer anode, integer anothernode, geometry acurve);

Description

Add a new edge and, if in doing so it splits a face, delete the original face and replace it with two new faces. Returns the id of the newly added edge.

Updates all existing joined edges and relationships accordingly.

If any arguments are null, the given nodes are unknown (must already exist in the node table of the topology schema) , the acurve is not a LINESTRING, the anode and anothernode are not the start and endpoints of acurve then an error is thrown.

If the spatial reference system (srid) of the acurve geometry is not the same as the topology an exception is thrown.

Availability: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.12

Examples

See Also

ST_RemEdgeNewFace
ST_AddEdgeModFace
4.6.6.4 ST_AddEdgeModFace

ST_AddEdgeModFace — Add a new edge and, if in doing so it splits a face, modify the original face and add a new face.

Synopsis

integer ST_AddEdgeModFace(varchar atopology, integer anode, integer anothernode, geometry acurve);

Description

Add a new edge and, if doing so splits a face, modify the original face and add a new one.

Note

If possible, the new face will be created on left side of the new edge. This will not be possible if the face on the left side
will need to be the Universe face (unbounded).

Returns the id of the newly added edge.

Updates all existing joined edges and relationships accordingly.

If any arguments are null, the given nodes are unknown (must already exist in the node table of the topology schema) , the
acurve is not a LINESTRING, the anode and anothernode are not the start and endpoints of acurve then an error is
thrown.

If the spatial reference system (srid) of the acurve geometry is not the same as the topology an exception is thrown.

Availability: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.13

Examples

See Also

ST_RemEdgeModFace
ST_AddEdgeNewFaces

4.6.6.5 ST_RemEdgeNewFace

ST_RemEdgeNewFace — Removes an edge and, if the removed edge separated two faces, delete the original faces and replace
them with a new face.

Synopsis

integer ST_RemEdgeNewFace(varchar atopology, integer anedge);
Description

Removes an edge and, if the removed edge separated two faces, delete the original faces and replace them with a new face.

Returns the id of a newly created face or NULL, if no new face is created. No new face is created when the removed edge is dangling or isolated or confined with the universe face (possibly making the universe flood into the face on the other side).

Updates all existing joined edges and relationships accordingly.

Refuses to remove an edge participating in the definition of an existing TopoGeometry. Refuses to heal two faces if any TopoGeometry is defined by only one of them (and not the other).

If any arguments are null, the given edge is unknown (must already exist in the edge table of the topology schema), the topology name is invalid then an error is thrown.

Availability: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.14

Examples

See Also

ST_RemEdgeModFace
ST_AddEdgeNewFaces

4.6.6.6 ST_RemEdgeModFace

ST_RemEdgeModFace — Removes an edge and, if the removed edge separated two faces, delete one of the them and modify the other to take the space of both.

Synopsis

integer ST_RemEdgeModFace(varchar atopology, integer anedge);

Description

Removes an edge and, if the removed edge separated two faces, delete one of the them and modify the other to take the space of both. Preferentially keeps the face on the right, to be symmetric with ST_AddEdgeModFace also keeping it. Returns the id of the face remaining in place of the removed edge.

Updates all existing joined edges and relationships accordingly.

Refuses to remove an edge participating in the definition of an existing TopoGeometry. Refuses to heal two faces if any TopoGeometry is defined by only one of them (and not the other).

If any arguments are null, the given edge is unknown (must already exist in the edge table of the topology schema), the topology name is invalid then an error is thrown.

Availability: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.15

Examples

See Also

ST_AddEdgeModFace
ST_RemEdgeNewFace
4.6.6.7 ST_ChangeEdgeGeom

ST_ChangeEdgeGeom — Changes the shape of an edge without affecting the topology structure.

Synopsis

integer ST_ChangeEdgeGeom(varchar topology, integer anedge, geometry acurve);

Description

Changes the shape of an edge without affecting the topology structure.

If any arguments are null, the given edge does not exist in the edge table of the topology schema, the acurve is not a LINESTRING, the anode and anothernode are not the start and endpoints of acurve or the modification would change the underlying topology then an error is thrown.

If the spatial reference system (srid) of the acurve geometry is not the same as the topology an exception is thrown.

If the new acurve is not simple, then an error is thrown.

If moving the edge from old to new position would hit an obstacle then an error is thrown.

Availability: 1.1.0

Enhanced: 2.0.0 adds topological consistency enforcement

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details X.3.6

Examples

SELECT topology.ST_ChangeEdgeGeom('ma_topo', 1, ST_GeomFromText('LINESTRING(227591.9 893900.4,227622.6 893844.3,227641.6 893816.6, 227704.5 893778.5)', 26986));

Edge 1 changed

See Also

ST_AddEdgeModFace
ST_RemEdgeModFace
ST_ModEdgeSplit

4.6.6.8 ST_ModEdgeSplit

ST_ModEdgeSplit — Split an edge by creating a new node along an existing edge, modifying the original edge and adding a new edge.

Synopsis

integer ST_ModEdgeSplit(varchar topology, integer anedge, geometry apoint);
Description

Split an edge by creating a new node along an existing edge, modifying the original edge and adding a new edge. Updates all existing joined edges and relationships accordingly. Returns the identifier of the newly added node.

Availability: 1.?

Changed: 2.0 - In prior versions, this was misnamed ST_ModEdgesSplit

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

Examples

```
-- Add an edge --
SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227592 893910, 227600 ← 893910)', 26986) ) As edgeid;

-- edgeid--
3

-- Split the edge --
SELECT topology.ST_ModEdgeSplit('ma_topo', 3, ST_SetSRID(ST_Point(227594,893910),26986) ) ← As node_id;
   node_id
-------------------------
7
```

See Also

ST_NewEdgesSplit, ST_ModEdgeHeal, ST_NewEdgeHeal, AddEdge

4.6.6.9 ST_ModEdgeHeal

ST_ModEdgeHeal — Heals two edges by deleting the node connecting them, modifying the first edge and deleting the second edge. Returns the id of the deleted node.

Synopsis

```
int ST_ModEdgeHeal(varchar atopology, integer anedge, integer anotheredge);
```

Description

Heals two edges by deleting the node connecting them, modifying the first edge and deleting the second edge. Returns the id of the deleted node. Updates all existing joined edges and relationships accordingly.

Availability: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

See Also

ST_ModEdgeSplit ST_NewEdgesSplit
4.6.6.10 ST_NewEdgeHeal

ST_NewEdgeHeal — Heals two edges by deleting the node connecting them, deleting both edges, and replacing them with an edge whose direction is the same as the first edge provided.

Synopsis

```sql
int ST_NewEdgeHeal(varchar atopology, integer anedge, integer anotheredge);
```

Description

Heals two edges by deleting the node connecting them, deleting both edges, and replacing them with an edge whose direction is the same as the first edge provided. Returns the id of the new edge replacing the healed ones. Updates all existing joined edges and relationships accordingly.

Availability: 2.0

✅ This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

See Also

ST_ModEdgeHeal ST_ModEdgeSplit ST_NewEdgesSplit

4.6.6.11 ST_MoveIsoNode

ST_MoveIsoNode — Moves an isolated node in a topology from one point to another. If new `apoint` geometry exists as a node an error is thrown. Returns description of move.

Synopsis

```sql
text ST_MoveIsoNode(varchar atopology, integer anedge, geometry apoint);
```

Description

Moves an isolated node in a topology from one point to another. If new `apoint` geometry exists as a node an error is thrown.

If any arguments are null, the `apoint` is not a point, the existing node is not isolated (is a start or end point of an existing edge), new node location intersects an existing edge (even at the end points) then an exception is thrown.

If the spatial reference system (srid) of the point geometry is not the same as the topology an exception is thrown.

Availability: 1.0

✅ This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X.3.2

Examples

```sql
-- Add an isolated node with no face --
SELECT topology.ST_AddIsoNode('ma_topo', NULL, ST_GeomFromText('POINT(227579 893916)', 26986) ) As nodeid;
nodeid
-------
7

-- Move the new node --
SELECT topology.ST_MoveIsoNode('ma_topo', 7, ST_GeomFromText('POINT(227579.5 893916.5)', 26986) ) As descrip;
descrip
----------------------------------------
Isolated Node 7 moved to location 227579.5,893916.5
```
4.6.6.12 ST_NewEdgesSplit

ST_NewEdgesSplit — Split an edge by creating a new node along an existing edge, deleting the original edge and replacing it with two new edges. Returns the id of the new node created that joins the new edges.

Synopsis

integer ST_NewEdgesSplit(varchar atopology, integer anedge, geometry apoint);

Description

Split an edge with edge id anedge by creating a new node with point location apoint along current edge, deleting the original edge and replacing it with two new edges. Returns the id of the new node created that joins the new edges. Updates all existing joined edges and relationships accordingly.

If the spatial reference system (srid) of the point geometry is not the same as the topology, the apoint is not a point geometry, the point is null, the point already exists as a node, the edge does not correspond to an existing edge or the point is not within the edge then an exception is thrown.

Availability: 1.?

This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X.3.8

Examples

```
-- Add an edge --
SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227575 893917,227592 893900) ←', 26986) ) As edgeid;
-- result--
edgeid
-----
2
-- Split the new edge --
SELECT topology.ST_NewEdgesSplit('ma_topo', 2, ST_GeomFromText('POINT(227578.5 893913.5)', ←
26986) ) As newnodeid;
newnodeid
-------
6
```

See Also

ST_ModEdgeSplit ST_ModEdgeHeal ST_NewEdgeHeal AddEdge

4.6.6.13 ST_RemoveIsoNode

ST_RemoveIsoNode — Removes an isolated node and returns description of action. If the node is not isolated (is start or end of an edge), then an exception is thrown.

Synopsis

text ST_RemoveIsoNode(varchar atopology, integer anode);
Description

Removes an isolated node and returns description of action. If the node is not isolated (is start or end of an edge), then an exception is thrown.

Availability: 1.?

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3

Examples

-- Remove an isolated node with no face --
SELECT topology.ST_RemoveIsoNode('ma_topo', 7) As result;

result

Isolated node 7 removed

See Also

ST_AddIsoNode

4.6.6.14 ST_RemoveIsoEdge

ST_RemoveIsoEdge — Removes an isolated edge and returns description of action. If the edge is not isolated, then an exception is thrown.

Synopsis

text ST_RemoveIsoEdge(varchar topology, integer anedge);

Description

Removes an isolated edge and returns description of action. If the edge is not isolated, then an exception is thrown.

Availability: 1.?

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3

Examples

-- Remove an isolated node with no face --
SELECT topology.ST_RemoveIsoNode('ma_topo', 7) As result;

result

Isolated node 7 removed

See Also

ST_AddIsoNode

4.6.7 Topology Accessors

4.6.7.1 GetEdgeByPoint

GetEdgeByPoint — Finds the edge-id of an edge that intersects a given point.
Synopsis

integer GetEdgeByPoint(varchar topology, geometry apoint, float8 tol1);

Description

Retrieves the id of an edge that intersects a Point.

The function returns an integer (id-edge) given a topology, a POINT and a tolerance. If tolerance = 0 then the point has to intersect the edge.

If apoint doesn’t intersect an edge, returns 0 (zero).

If use tolerance > 0 and there is more than one edge near the point then an exception is thrown.

Note

If tolerance = 0, the function uses ST_Intersects otherwise uses ST_DWithin.

Performed by the GEOS module.

Availability: 2.0.0

Examples

These examples use edges we created in AddEdge

```
SELECT topology.GetEdgeByPoint('ma_topo', geom, 1) As with1mtol, topology.GetEdgeByPoint('ma_topo', geom, 0) As withnotol
FROM ST_GeomFromEWKT('SRID=26986;POINT(227622.6 893843)') As geom;
```

```
with1mtol | withnotol  
-----------+-----------
  2 |     0
```

```
SELECT topology.GetEdgeByPoint('ma_topo', geom, 1) As nearnode
FROM ST_GeomFromEWKT('SRID=26986;POINT(227591.9 893900.4)') As geom;
```

```
-- get error --
ERROR: Two or more edges found
```

See Also

AddEdge, GetNodeByPoint, GetFaceByPoint

4.6.7.2 GetFaceByPoint

GetFaceByPoint — Finds the face-id of a face that intersects a given point.

Synopsis

integer GetFaceByPoint(varchar topology, geometry apoint, float8 tol1);
Description

Retrieves the id of a face that intersects a Point.

The function returns an integer (id-face) given a topology, a POINT and a tolerance. If tolerance = 0 then the point has to intersect the face.

If apoint doesn’t intersect a face, returns 0 (zero).

If use tolerance > 0 and there is more than one face near the point then an exception is thrown.

Note

If tolerance = 0, the function uses ST_Intersects otherwise uses ST_DWithin.

Performed by the GEOS module.

Availability: 2.0.0

Examples

These examples use edges faces created in AddFace

```sql
SELECT topology.GetFaceByPoint('ma_topo', geom, 10) As with1mtol, topology.GetFaceByPoint('ma_topo', geom, 0) As withnotol
FROM ST_GeomFromEWKT('POINT(234604.6 899382.0)') As geom;

<table>
<thead>
<tr>
<th>with1mtol</th>
<th>withnotol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

```sql
SELECT topology.GetFaceByPoint('ma_topo', geom, 1) As nearnode
FROM ST_GeomFromEWKT('POINT(227591.9 893900.4)') As geom;

-- get error --
ERROR: Two or more faces found
```

See Also

AddFace, GetNodeByPoint, GetEdgeByPoint

4.6.7.3 GetNodeByPoint

GetNodeByPoint — Finds the node-id of a node at a point location.

Synopsis

integer **GetNodeByPoint**(varchar atopology, geometry apoint, float8 tol1);
Description

Retrieves the id of a node at a point location.

The function returns an integer (id-node) given a topology, a POINT and a tolerance. If tolerance = 0 means exact intersection, otherwise retrieves the node from an interval.

If apoint doesn’t intersect a node, returns 0 (zero).

If use tolerance > 0 and there is more than one node near the point then an exception is thrown.

Note

If tolerance = 0, the function uses ST_Intersects otherwise uses ST_DWithin.

Performed by the GEOS module.

Availability: 2.0.0

Examples

These examples use edges we created in AddEdge

```sql
SELECT topology.GetNodeByPoint('ma_topo', geom, 1) As nearnode
FROM ST_GeomFromEWKT('SRID=26986;POINT(227591.9 893900.4)') As geom;
nearnode
----------
   2
```

```sql
SELECT topology.GetNodeByPoint('ma_topo', geom, 1000) As too_much_tolerance
FROM ST_GeomFromEWKT('SRID=26986;POINT(227591.9 893900.4)') As geom;

----get error--
ERROR: Two or more nodes found
```

See Also

AddEdge, GetEdgeByPoint, GetFaceByPoint

4.6.7.4 GetTopologyID

GetTopologyID — Returns the id of a topology in the topology.topology table given the name of the topology.

Synopsis

`integer GetTopologyID(varchar toponame);`

Description

Returns the id of a topology in the topology.topology table given the name of the topology.

Availability: 1.?
Examples

```sql
SELECT topology.GetTopologyID('ma_topo') AS topo_id;
  topo_id
--------
   1
```

See Also

`CreateTopology`, `DropTopology`, `GetTopologyName`, `GetTopologySRID`

4.6.7.5 GetTopologySRID

GetTopologySRID — Returns the SRID of a topology in the topology.topology table given the name of the topology.

Synopsis

```sql
integer GetTopologyID(varchar toponame);
```

Description

Returns the spatial reference id of a topology in the topology.topology table given the name of the topology.

Availability: 2.0.0

Examples

```sql
SELECT topology.GetTopologySRID('ma_topo') AS SRID;
  SRID
 -------
   4326
```

See Also

`CreateTopology`, `DropTopology`, `GetTopologyName`, `GetTopologyID`

4.6.7.6 GetTopologyName

GetTopologyName — Returns the name of a topology (schema) given the id of the topology.

Synopsis

```sql
varchar GetTopologyName(integer topology_id);
```

Description

Returns the topology name (schema) of a topology from the topology.topology table given the topology id of the topology.

Availability: 1.?
Examples

```
SELECT topology.GetTopologyName(1) As topo_name;
  topo_name
-----------
    ma_topo
```

See Also

CreateTopology, DropTopology, GetTopologyID, GetTopologySRID

4.6.7.7 ST_GetFaceEdges

ST_GetFaceEdges — Returns a set of ordered edges that bound a face.

Synopsis

```
getfaceedges_returntype ST_GetFaceEdges(varchar topology, integer aface);
```

Description

Returns a set of ordered edges that bound a face. Each output consists of a sequence and edgeid. Sequence numbers start with value 1.

Enumeration of each ring edges start from the edge with smallest identifier. Order of edges follows a left-hand-rule (bound face is on the left of each directed edge).

Availability: 2.0

This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.5

Examples

```
-- Returns the edges bounding face 1
SELECT (topology.ST_GetFaceEdges('tt', 1)).*;
-- result --
  sequence | edge
----------+------
       1 |  -4
       2 |   5
       3 |   7
       4 |  -6
       5 |   1
       6 |   2
       7 |   3
(7 rows)

-- Returns the sequence, edge id
-- and geometry of the edges that bound face 1
-- If you just need geom and seq, can use ST_GetFaceGeometry
SELECT t.seq, t.edge, geom
FROM topology.ST_GetFaceEdges('tt',1) As t(seq,edge)
  INNER JOIN tt.edge AS e ON abs(t.edge) = e.edge_id;
```
See Also

GetRingEdges, AddFace, ST_GetFaceGeometry

4.6.7.8 ST_GetFaceGeometry

ST_GetFaceGeometry — Returns the polygon in the given topology with the specified face id.

Synopsis

```sql
gamey ST_GetFaceGeometry(varchar topology, integer aface);
```

Description

Returns the polygon in the given topology with the specified face id. Builds the polygon from the edges making up the face.

Availability: 1.?

✅ This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.16

Examples

```sql
-- Returns the wkt of the polygon added with AddFace
SELECT ST_AsText(topology.ST_GetFaceGeometry('ma_topo', 1)) As facegeomwkt;
```

```
facegeomwkt
POLYGON((234776.9 899563.7,234896.5 899456.7,234914 899436.4,234946.6 899356.9,
234872.5 899328.7,234891 899285.4,234992.5 899145,234890.6 899069,
234755.2 899255.4,234612.7 899379.4,234776.9 899563.7))
```

See Also

AddFace

4.6.7.9 GetRingEdges

GetRingEdges — Returns the ordered set of signed edge identifiers met by walking on an edge side.

Synopsis

```sql
getfaceedges_returntype GetRingEdges(varchar topology, integer aring, integer max_edges=null);
```

Description

Returns the ordered set of signed edge identifiers met by walking on an edge side. Each output consists of a sequence and a signed edge id. Sequence numbers start with value 1.

If you pass a positive edge id, the walk starts on the left side of the corresponding edge and follows the edge direction. If you pass a negative edge id, the walk starts on the right side of it and goes backward.

If `max_edges` is not null no more than those records are returned by that function. This is meant to be a safety parameter when dealing with possibly invalid topologies.
This function uses edge ring linking metadata.

Availability: 2.0.0

See Also

ST_GetFaceEdges, GetNodeEdges

4.6.7.10 GetNodeEdges

GetNodeEdges — Returns an ordered set of edges incident to the given node.

Synopsis

getfaceedges_returntype GetNodeEdges (varchar atopology, integer anode);

Description

Returns an ordered set of edges incident to the given node. Each output consists of a sequence and a signed edge id. Sequence numbers start with value 1. A positive edge starts at the given node. A negative edge ends into the given node. Closed edges will appear twice (with both signs). Order is clockwise starting from northbound.

This function computes ordering rather than deriving from metadata and is thus usable to build edge ring linking.

Availability: 2.0

See Also

GetRingEdges, ST_Azimuth

4.6.8 Topology Processing

4.6.8.1 Polygonize

Polygonize — Finds and registers all faces defined by topology edges.

Synopsis

text Polygonize (varchar toponame);
Description

Registers all faces that can be built out a topology edge primitives.
The target topology is assumed to contain no self-intersecting edges.

Note

Already known faces are recognized, so it is safe to call Polygonize multiple times on the same topology.

Note

This function does not use nor set the next_left_edge and next_right_edge fields of the edge table.

Availability: 2.0.0

See Also

AddFace, ST_Polygonize

4.6.8.2 AddNode

AddNode — Adds a point node to the node table in the specified topology schema and returns the nodeid of new node. If point already exists as a node, the existing nodeid is returned.

Synopsis

integer AddNode(varchar toponame, geometry apoint, boolean allowEdgeSplitting=false, boolean computeContainingFace=false);

Description

Adds a point node to the node table in the specified topology schema. The AddEdge function automatically adds start and end points of an edge when called so not necessary to explicitly add nodes of an edge.

If any edge crossing the node is found either an exception is raised or the edge is split, depending on the allowEdgeSplitting parameter value.

If computeContainingFace is true a newly added node would get the correct containing face computed.

Note

If the apoint geometry already exists as a node, the node is not added but the existing nodeid is returned.

Availability: 2.0.0

Examples

```
SELECT topology.AddNode('ma_topo', ST_GeomFromText('POINT(227641.6 893816.5)', 26986) ) As nodeid;
-- result --
nodeid
--------
4
```
AddEdge — Adds a linestring edge to the edge table and associated start and end points to the point nodes table of the specified topology schema using the specified linestring geometry and returns the edgeid of the new (or existing) edge.

Synopsis

integer AddEdge(varchar toponame, geometry aline);

Description

Adds an edge to the edge table and associated nodes to the nodes table of the specified toponame schema using the specified linestring geometry and returns the edgeid of the new or existing record. The newly added edge has "universe" face on both sides and links to itself.

Note

If the aline geometry crosses, overlaps, contains or is contained by an existing linestring edge, then an error is thrown and the edge is not added.

Note

The geometry of aline must have the same srid as defined for the topology otherwise an invalid spatial reference sys error will be thrown.

Performed by the GEOS module.

Availability: 2.0.0

Examples

```sql
SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227575.8 893917.2,227591.9 ← 893900.4)', 26986) ) As edgeid;
-- result-
edgeid
--------
1

SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227591.9 893900.4,227622.6 ← 893844.2,227641.6 893816.5, 227704.5 893778.5)', 26986) ) As edgeid;
-- result --
edgeid
--------
2

SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227591.2 893900, 227591.9 ← 893900.4, 227704.5 893778.5)', 26986) ) As edgeid;
-- gives error --
ERROR: Edge intersects (not on endpoints) with existing edge 1
```
4.6.8.4 AddFace

AddFace — Registers a face primitive to a topology and gets its identifier.

Synopsis

integer AddFace(varchar toponame, geometry apolygon, boolean force_new=false);

Description

Registers a face primitive to a topology and gets its identifier.

For a newly added face, the edges forming its boundaries and the ones contained in the face will be updated to have correct values in the left_face and right_face fields. Isolated nodes contained in the face will also be updated to have a correct containing_face field value.

Note

This function does not use nor set the next_left_edge and next_right_edge fields of the edge table.

The target topology is assumed to be valid (containing no self-intersecting edges). An exception is raised if: The polygon boundary is not fully defined by existing edges or the polygon overlaps an existing face.

If the apolygon geometry already exists as a face, then: if force_new is false (the default) the face id of the existing face is returned; if force_new is true a new id will be assigned to the newly registered face.

Note

When a new registration of an existing face is performed (force_new=true), no action will be taken to resolve dangling references to the existing face in the edge, node an relation tables, nor will the MBR field of the existing face record be updated. It is up to the caller to deal with that.

Note

The apolygon geometry must have the same srid as defined for the topology otherwise an invalid spatial reference sys error will be thrown.

Availability: 2.0.0

Examples

-- first add the edges we use generate_series as an iterator (the below
-- will only work for polygons with < 10000 points because of our max in gs)
SELECT topology.AddEdge('ma_topo', ST_MakeLine(ST_PointN(geom,i), ST_PointN(geom, i + 1))) ←
As edgeid
FROM (SELECT ST_NPoints(geom) AS npt, geom
FROM
(SELECT ST_Boundary(ST_GeomFromText('POLYGON((234896.5 899456.7,234914
99436.4,234946.6 899356.9,234872.5 899328.7,
```sql
234891 899285.4, 234992.5 899145, 234890.6 899069, 234755.2 899255.4,
234612.7 899379.4, 234776.9 899563.7, 234896.5 899456.7))', 26986) ) As geom
WHERE i < npt;
-- result --
edgeid
--------
     3
     4
     5
     6
     7
     8
     9
     10
    11
    12
(10 rows)
-- then add the face --
SELECT topology.AddFace('ma_topo',
                     ST_GeomFromText('POLYGON((234896.5 899456.7, 234914 899436.4, 234946.6 899356.9, 234872.5 899328.7,
                                               234891 899285.4, 234992.5 899145, 234890.6 899069, 234755.2 899255.4,
                                               234612.7 899379.4, 234776.9 899563.7, 234896.5 899456.7))', 26986) ) As faceid;
-- result --
faceid
--------
     1
```

See Also

AddEdge, CreateTopology, Section 4.1.3.1

4.6.8.5 ST_Simplify

ST_Simplify — Returns a "simplified" geometry version of the given TopoGeometry using the Douglas-Peucker algorithm.

Synopsis

```sql
geometry ST_Simplify(TopoGeometry tg, float8 tolerance);
```

Description

Returns a "simplified" geometry version of the given TopoGeometry using the Douglas-Peucker algorithm on each component edge.

Note

The returned geometry may be non-simple or non-valid. Splitting component edges may help retaining simplicity/validity.

Performed by the GEOS module.

Availability: 2.1.0
See Also
Geometry ST_Simplify, ST_IsSimple, ST_IsValid, ST_ModEdgeSplit

4.6.9 TopoGeometry Constructors

4.6.9.1 CreateTopoGeom

CreateTopoGeom — Creates a new topo geometry object from topo element array - tg_type: 1:[multi]point, 2:[multi]line, 3:[multi]poly, 4:collection

Synopsis
topogeometry CreateTopoGeom(varchar toponame, integer tg_type, integer layer_id, topoelementarray tg_objs);
topogeometry CreateTopoGeom(varchar toponame, integer tg_type, integer layer_id);

Description
Creates a topogeometry object for layer denoted by layer_id and registers it in the relations table in the toponame schema.
tg_type is an integer: 1:[multi]point (punctal), 2:[multi]line (lineal), 3:[multi]poly (areal), 4:collection. layer_id is the layer id in the topology.layer table.
punctal layers are formed from set of nodes, lineal layers are formed from a set of edges, areal layers are formed from a set of faces, and collections can be formed from a mixture of nodes, edges, and faces.
Omitting the array of components generates an empty TopoGeometry object.
Availability: 1.?

Examples: Form from existing edges
Create a topogeom in ri_topo schema for layer 2 (our ri_roads), of type (2) LINE, for the first edge (we loaded in ST_CreateTopoGeo).

```sql
INSERT INTO ri.ri_roads(road_name, topo) VALUES('Unknown', topology.CreateTopoGeom('ri_topo',2,2,'{{1,2}}'::topology.topoelementarray));
```

Examples: Convert an areal geometry to best guess topogeometry
Lets say we have geometries that should be formed from a collection of faces. We have for example blockgroups table and want to know the topo geometry of each block group. If our data was perfectly aligned, we could do this:

```sql
-- create our topo geometry column --
SELECT topology.AddTopoGeometryColumn('topo_boston', 'boston', 'blockgroups', 'topo', 'POLYGON');

-- addtopgeometrycolumn --

-- update our column assuming --
-- everything is perfectly aligned with our edges
UPDATE boston.blockgroups AS bg
SET topo = topology.CreateTopoGeom('topo_boston',3,1, foo.bfaces)
FROM (SELECT b gid, topology.TopoElementArray_Agg(ARRAY[f.face_id,3]) As bfaces
FROM boston.blockgroups AS b
```
INNER JOIN topo_boston.face As f ON b.geom && f.mbr
WHERE ST_Covers(b.geom, topology.ST_GetFaceGeometry('topo_boston', f.face_id))
GROUP BY b.gid) As foo
WHERE foo.gid = bg.gid;

-- the world is rarely perfect allow for some error
-- count the face if 50% of it falls
-- within what we think is our blockgroup boundary
UPDATE boston.blockgroups AS bg
SET topo = topology.CreateTopoGeom('topo_boston', 3, 1, foo.bfaces)
FROM (SELECT b.gid, topology.TopoElementArray_Agg(ARRAY[f.face_id, 3]) As bfaces
FROM boston.blockgroups AS b
INNER JOIN topo_boston.face As f ON b.geom && f.mbr
WHERE ST_Covers(b.geom, topology.ST_GetFaceGeometry('topo_boston', f.face_id))
OR
(ST_Intersects(b.geom, topology.ST_GetFaceGeometry('topo_boston', f.face_id))
 AND ST_Area(ST_Intersection(b.geom, topology.ST_GetFaceGeometry('topo_boston', f.face_id)) >
 ST_Area(topology.ST_GetFaceGeometry('topo_boston', f.face_id))*0.5
)
GROUP BY b.gid) As foo
WHERE foo.gid = bg.gid;

-- and if we wanted to convert our topogeometry back
-- to a denormalized geometry aligned with our faces and edges
-- cast the topo to a geometry
-- The really cool thing is my new geometries
UPDATE boston.blockgroups SET new_geom = topo::geometry;

See Also
AddTopoGeometryColumn, toTopoGeom ST_CreateTopoGeo, ST_GetFaceGeometry, TopoElementArray, TopoElementArray_Agg

4.6.9.2 toTopoGeom

toTopoGeom — Converts a simple Geometry into a topo geometry.

Synopsis
topogeometry toTopoGeom(geom, varchar, integer, float8);
topogeometry toTopoGeom(geom, toogeometry, float8);

description
Converts a simple Geometry into a TopoGeometry.

Topological primitives required to represent the input geometry will be added to the underlying topology, possibly splitting existing ones, and they will be associated with the output TopoGeometry in the relation table.

Existing TopoGeometry objects (with the possible exception of toogeometry, if given) will retain their shapes.

When tolerance is given it will be used to snap the input geometry to existing primitives.

In the first form a new TopoGeometry will be created for the given layer (layer_id) of the given topology (toponame).
In the second form the primitives resulting from the conversion will be added to the pre-existing TopoGeometry (topogeom), possibly adding space to its final shape. To have the new shape completely replace the old one see clearTopoGeom.

Availability: 2.0

Enhanced: 2.1.0 adds the version taking an existing TopoGeometry.

Examples

This is a full self-contained workflow

```sql
-- do this if you don't have a topology setup already
-- creates topology not allowing any tolerance
SELECT topology.CreateTopology('topo_boston_test', 2249);
-- create a new table
CREATE TABLE nei_topo(gid serial primary key, nei varchar(30));
-- add a topogeometry column to it
SELECT topology.AddTopoGeometryColumn('topo_boston_test', 'public', 'nei_topo', 'topo', 'MULTIPOLYGON') AS new_layer_id;
new_layer_id
-----------
1
-- use new layer id in populating the new topogeometry column
-- we add the topogeoms to the new layer with 0 tolerance
INSERT INTO nei_topo(nei, topo)
SELECT nei, topology.toTopoGeom(geom, 'topo_boston_test', 1)
FROM neighborhoods
WHERE gid BETWEEN 1 and 15;

-- use to verify what has happened --
SELECT * FROM
    topology.TopologySummary('topo_boston_test');

-- summary--
Topology topo_boston_test (5), SRID 2249, precision 0
61 nodes, 87 edges, 35 faces, 15 topogeoms in 1 layers
Layer 1, type Polygonal (3), 15 topogeoms
Deploy: public.nei_topo.topo

-- Shrink all TopoGeometry polygons by 10 meters
UPDATE nei_topo SET topo = ST_Buffer(clearTopoGeom(topo), -10);

-- Get the no-one-lands left by the above operation
-- I think GRASS calls this "polygon0 layer"
SELECT ST_GetFaceGeometry('topo_boston_test', f.face_id)
FROM topo_boston_test.face f
WHERE f.face_id > 0 -- don't consider the universe face
AND NOT EXISTS ( -- check that no TopoGeometry references the face
    SELECT * FROM topo_boston_test.relation
    WHERE layer_id = 1 AND element_id = f.face_id
);
```

See Also

CreateTopology, AddTopoGeometryColumn, CreateTopoGeom, TopologySummary, clearTopoGeom

4.6.9.3 TopoElementArray_Agg

TopoElementArray_Agg — Returns a topoelementarray for a set of element_id, type arrays (topoelements).
Synopsis

topoelementarray TopoElementArray_Agg(topoelement set tefield);

Description

Used to create a TopoElementArray from a set of TopoElement.
Availability: 2.0.0

Examples

```
SELECT topology.TopoElementArray_Agg(ARRAY[e,t]) As tea
  FROM generate_series(1,3) As e CROSS JOIN generate_series(1,4) As t;
```

```
tea
--------------------------
{{1,1},{1,2},{1,3},{1,4},{2,1},{2,2},{2,3},{2,4},{3,1},{3,2},{3,3},{3,4}}
```

See Also

TopoElement, TopoElementArray

4.6.10 TopoGeometry Editors

4.6.10.1 clearTopoGeom

clearTopoGeom — Clears the content of a topo geometry.

Synopsis

topogeometry clearTopoGeom(topogeometry topgeom);

Description

Clears the content a TopoGeometry turning it into an empty one. Mostly useful in conjunction with toTopoGeom to replace the shape of existing objects and any dependent object in higher hierarchical levels.
Availability: 2.1

Examples

```
-- Shrink all TopoGeometry polygons by 10 meters
UPDATE nei_topo SET topo = ST_Buffer(clearTopoGeom(topo), -10);
```

See Also

toTopoGeom

4.6.10.2 TopoGeom_addElement

TopoGeom_addElement — Adds an element to the definition of a TopoGeometry.
Synopsis

topogeometry TopoGeom_addElement(topogeometry tg, topoelement el);

Description

Adds a TopoElement to the definition of a TopoGeometry object. Does not error out if the element is already part of the definition.
Availability: 2.3

Examples

```sql
-- Add edge 5 to TopoGeometry tg
UPDATE mylayer SET tg = TopoGeom_addElement(tg, '(5,2)');
```

See Also

TopoGeom_remElement, CreateTopoGeom

4.6.10.3 TopoGeom_remElement

TopoGeom_remElement — Removes an element from the definition of a TopoGeometry.

Synopsis

topogeometry TopoGeom_remElement(topogeometry tg, topoelement el);

Description

Removes a TopoElement from the definition of a TopoGeometry object.
Availability: 2.3

Examples

```sql
-- Remove face 43 from TopoGeometry tg
UPDATE mylayer SET tg = TopoGeom_remElement(tg, '(43,3)');
```

See Also

TopoGeom_addElement, CreateTopoGeom

4.6.10.4 toTopoGeom

toTopoGeom — Adds a geometry shape to an existing topo geometry.

Description

Refer to toTopoGeom.
4.6.11 TopoGeometry Accessors

4.6.11.1 GetTopoGeomElementArray

GetTopoGeomElementArray — Returns a topoelementarray (an array of topoelements) containing the topological elements and type of the given TopoGeometry (primitive elements).

Synopsis

topoelementarray GetTopoGeomElementArray(varchar toponame, integer layer_id, integer tg_id);
topoelementarray topoelement GetTopoGeomElementArray(topogeometry tg);

Description

Returns a TopoElementArray containing the topological elements and type of the given TopoGeometry (primitive elements). This is similar to GetTopoGeomElements except it returns the elements as an array rather than as a dataset.

tg_id is the topogeometry id of the topogeometry object in the topology in the layer denoted by layer_id in the topology.layer table.

Availability: 1.?

Examples

See Also

GetTopoGeomElements, TopoElementArray

4.6.11.2 GetTopoGeomElements

GetTopoGeomElements — Returns a set of topoelement objects containing the topological element_id,element_type of the given TopoGeometry (primitive elements).

Synopsis

setof topoelement GetTopoGeomElements(varchar toponame, integer layer_id, integer tg_id);
setof topoelement GetTopoGeomElements(topogeometry tg);

Description

Returns a set of element_id,element_type (topoelements) for a given topogeometry object in toponame schema.

tg_id is the topogeometry id of the topogeometry object in the topology in the layer denoted by layer_id in the topology.layer table.

Availability: 2.0.0

Examples

See Also

GetTopoGeomElementArray, TopoElement, TopoGeom_addElement, TopoGeom_remElement
4.6.12 TopoGeometry Outputs

4.6.12.1 AsGML

AsGML — Returns the GML representation of a topogeometry.

Synopsis

```
 AsGML(topogeometry tg);
 AsGML(topogeometry tg, text nsprefix_in);
 AsGML(topogeometry tg, regclass visitedTable);
 AsGML(topogeometry tg, regclass visitedTable, text nsprefix);
 AsGML(topogeometry tg, text nsprefix_in, integer precision, integer options);
 AsGML(topogeometry tg, text nsprefix_in, integer precision, integer options, regclass visitedTable);
 AsGML(topogeometry tg, text nsprefix_in, integer precision, integer options, regclass visitedTable, text idprefix);
 AsGML(topogeometry tg, text nsprefix_in, integer precision, integer options, regclass visitedTable, text idprefix, int gm-
Iversion);
```

Description

Returns the GML representation of a topogeometry in version GML3 format. If no nsprefix_in is specified then gml is used. Pass in an empty string for nsprefix to get a non-qualified name space. The precision (default: 15) and options (default 1) parameters, if given, are passed untouched to the underlying call to ST_AsGML.

The visitedTable parameter, if given, is used for keeping track of the visited Node and Edge elements so to use cross-references (xlink:xref) rather than duplicating definitions. The table is expected to have (at least) two integer fields: `element_type` and `element_id`. The calling user must have both read and write privileges on the given table. For best performance, an index should be defined on element_type and element_id, in that order. Such index would be created automatically by adding a unique constraint to the fields. Example:

```
CREATE TABLE visited {
  element_type integer, element_id integer,
  unique(element_type, element_id)
};
```

The idprefix parameter, if given, will be prepended to Edge and Node tag identifiers.

The gmlver parameter, if given, will be passed to the underlying ST_AsGML. Defaults to 3.

Availability: 2.0.0

Examples

This uses the topo geometry we created in `CreateTopoGeom`

```
SELECT topology.AsGML(topo) As rdgml
  FROM ri.roads
  WHERE road_name = 'Unknown';
```

```
-- rdgml--
<gml:TopoCurve>
  <gml:directedEdge>
    <gml:Edge gml:id="E1">
      <gml:directedNode orientation="-">
        <gml:Node gml:id="N1"/>
      </gml:directedNode>
      <gml:directedNode></gml:directedNode>
    </gml:Edge>
  </gml:directedEdge>
  <gml:curveProperty>
    <gml:Curve srsName="urn:ogc:def:crs:EPSG::3438">
```

Same exercise as previous without namespace

```
SELECT topology.AsGML(topo,'') As rdgml
FROM ri.roads
WHERE road_name = 'Unknown';
```

```
-- rdgml--
<TopoCurve><directedEdge><Edge id="E1">
  <directedNode orientation="->">
    <Node id="N1"/>
  </directedNode>
</directedEdge><curveProperty>
  <Curve srsName="urn:ogc:def:crs:EPSG::3438">
    <segments>
      <LineStringSegment>
        <posList srsDimension="2">384744 236928 384750 236923 ↔
          384769 236911 384799 236895 384811 236890
          384833 236884 384844 236882 384866 236881 384879 236883 384954 ↔
          236898 385087 236932 385117 236938
          385167 236938 385203 236941 385224 236946 385233 236950 385241 ↔
          236956 385254 236971
          385260 236979 385268 236999 385273 237018 385273 237037 385271 ↔
          237047 385267 237057 385225 237125
          385210 237144 385192 237161 385167 237192 385162 237202 385159 ↔
          237214 385159 237227 385162 237241
          385166 237256 385196 237324 385209 237345 385234 237375 385237 ↔
          237383 385238 237399 385236 237407
          385227 237419 385213 237430 385193 237439 385174 237451 385170 ↔
          237455 385169 237460 385171 237475
          385181 237503 385190 237521 385200 237533 385206 237538 385213 ↔
          237541 385221 237542 385235 237540 385242 237541
          385249 237544 385260 237555 385270 237570 385289 237584 385292 ↔
          237589 385291 237596 385284 237630</posList>
    </LineStringSegment>
  </segments>
</Curve></directedEdge><TopoCurve>
```
AsTopoJSON — Returns the TopoJSON representation of a topogeometry.

Synopsis

text AsTopoJSON(topogeometry tg, regclass edgeMapTable);

Description

Returns the TopoJSON representation of a topogeometry. If `edgeMapTable` is not null, it will be used as a lookup/storage mapping of edge identifiers to arc indices. This is to be able to allow for a compact "arcs" array in the final document.

The table, if given, is expected to have an "arc_id" field of type "serial" and an "edge_id" of type integer; the code will query the table for "edge_id" so it is recommended to add an index on that field.

Note

Arc indices in the TopoJSON output are 0-based but they are 1-based in the "edgeMapTable" table.

A full TopoJSON document will be need to contain, in addition to the snippets returned by this function, the actual arcs plus some headers. See the TopoJSON specification.

Availability: 2.1.0

Enhanced: 2.2.1 added support for puntal inputs

See Also

ST_AsGeoJSON

Examples

```
CREATE TEMP TABLE edgemap(arc_id serial, edge_id int unique);

-- header
SELECT '{ "type": "Topology", "transform": { "scale": [1,1], "translate": [0,0] }, "objects": {
 -- objects
```
UNION ALL SELECT '"' || feature_name || '"': ' || AsTopoJSON(feature, 'edgemap')
FROM features.big_parcel
WHERE feature_name = 'P3P4';

-- arcs
WITH edges AS (
 SELECT m.arc_id, e.geom FROM edgemap m, city_data.edge e
 WHERE e.edge_id = m.edge_id
), points AS (
 SELECT arc_id, (st_dumppoints(geom)).* FROM edges
), compare AS (
 SELECT p2.arc_id,
 CASE WHEN p1.path IS NULL THEN p2.geom
 ELSE ST_Translate(p2.geom, -ST_X(p1.geom), -ST_Y(p1.geom))
 END AS geom
 FROM points p2 LEFT OUTER JOIN points p1
 ORDER BY arc_id, p2.path
), arcsdump AS (
 SELECT arc_id, (regexp_matches(ST_AsGeoJSON(geom), '\[.*\]'))[1] as t
 FROM compare
), arcs AS (
 SELECT arc_id, '[' || array_to_string(array_agg(t), ',') || ']' as a FROM arcsdump
 GROUP BY arc_id
 ORDER BY arc_id
)

SELECT '"', "arcs": '[' UNION ALL
SELECT array_to_string(array_agg(a), E',
') from arcs

-- footer
UNION ALL SELECT ']'::text as t;

-- Result:
{ "type": "Topology", "transform": { "scale": [1,1], "translate": [0,0] }, "objects": {
 "P3P4": { "type": "MultiPolygon", "arcs": [[[-1]], [[6,5,-5,-4,-3,1]]]}
}, "arcs": [
 [[25,30],[6,0],[0,10],[-14,0],[0,-10],[8,0]],
 [[35,6],[0,8]],
 [[35,6],[12,0]],
 [[47,6],[0,8]],
 [[47,14],[0,8]],
 [[35,22],[12,0]],
 [[35,14],[0,8]]
]}

4.6.13 Topology Spatial Relationships

4.6.13.1 Equals

Equals — Returns true if two topogeometries are composed of the same topology primitives.

Synopsis

boolean Equals(topogeometry tg1, topogeometry tg2);

Description

Returns true if two topogeometries are composed of the same topology primitives: faces, edges, nodes.
This function not supported for topogeometries that are geometry collections. It also can not compare topogeometries from different topologies.

Availability: 1.1.0

This function supports 3d and will not drop the z-index.

Examples

See Also

GetTopoGeomElements, ST_Equals

4.6.13.2 Intersects

Intersects — Returns true if any pair of primitives from the two topogeometries intersect.

Synopsis

boolean Intersects(topogeometry tg1, topogeometry tg2);

Description

Returns true if any pair of primitives from the two topogeometries intersect.

This function not supported for topogeometries that are geometry collections. It also can not compare topogeometries from different topologies. Also not currently supported for hierarchichal topogeometries (topogeometries composed of other topogeometries).

Availability: 1.1.0

This function supports 3d and will not drop the z-index.

Examples

See Also

ST_Intersects
4.7 Address Standardizer

This is a fork of the PAGC standardizer (original code for this portion was PAGC PostgreSQL Address Standardizer).

The address standardizer is a single line address parser that takes an input address and normalizes it based on a set of rules stored in a table and helper lex and gaz tables.

The code is built into a single postgresql extension library called address_standardizer which can be installed with
CREATE EXTENSION address_standardizer;
In addition to the address_standardizer extension, a sample data extension called address_standardizer_data_us extensions is built, which contains gaz, lex, and rules tables for US data. This extensions can be installed via: CREATE EXTENSION address_standardizer_data_us;
The code for this extension can be found in the PostGIS extensions/address_standardizer and is currently self-contained.

For installation instructions refer to: Section 2.3.

4.7.1 How the Parser Works

The parser works from right to left looking first at the macro elements for postcode, state/province, city, and then looks micro elements to determine if we are dealing with a house number street or intersection or landmark. It currently does not look for a country code or name, but that could be introduced in the future.

Country code Assumed to be US or CA based on: postcode as US or Canada state/province as US or Canada else US

Postcode/zipcode These are recognized using Perl compatible regular expressions. These regexs are currently in the parseaddress-api.c and are relatively simple to make changes to if needed.

State/province These are recognized using Perl compatible regular expressions. These regexs are currently in the parseaddress-api.c but could get moved into includes in the future for easier maintenance.

4.7.2 Address Standardizer Types

4.7.2.1 stdaddr

stdaddr — A composite type that consists of the elements of an address. This is the return type for standardize_address function.

Description

A composite type that consists of elements of an address. This is the return type for standardize_address function. Some descriptions for elements are borrowed from PAGC Postal Attributes.

The token numbers denote the output reference number in the rules table.

✅ This method needs address_standardizer extension.

building is text (token number 0): Refers to building number or name. Unparsed building identifiers and types. Generally blank for most addresses.

house_num is a text (token number 1): This is the street number on a street. Example 75 in 75 State Street.

predir is text (token number 2): STREET NAME PRE-DIRECTIONAL such as North, South, East, West etc.

qual is text (token number 3): STREET NAME PRE-MODIFIER Example OLD in 3715 OLD HIGHWAY 99.

pretype is text (token number 4): STREET PREFIX TYPE

name is text (token number 5): STREET NAME
suftype is text (token number 6): STREET POST TYPE e.g. St, Ave, Cir. A street type following the root street name. Example *STREET* in 75 State Street.

sufdir is text (token number 7): STREET POST-DIRECTIONAL A directional modifier that follows the street name. Example *WEST* in 3715 TENTH AVENUE WEST.

ruralroute is text (token number 8): RURAL ROUTE. Example 7 in RR 7.

extra is text: Extra information like Floor number.

city is text (token number 10): Example Boston.

state is text (token number 11): Example MASSACHUSETTS

country is text (token number 12): Example USA

postcode is text POSTAL CODE (ZIP CODE) (token number 13): Example 02109

box is text POSTAL BOX NUMBER (token number 14 and 15): Example 02109

unit is text Apartment number or Suite Number (token number 17): Example 3B in APT 3B.

4.7.3 Address Standardizer Tables

4.7.3.1 rules table

rules table — The rules table contains a set of rules that maps address input sequence tokens to standardized output sequence. A rule is defined as a set of input tokens followed by -1 (terminator) followed by set of output tokens followed by -1 followed by number denoting kind of rule followed by ranking of rule.

Description

A rules table must have at least the following columns, though you are allowed to add more for your own uses.

id Primary key of table

rule text field denoting the rule. Details at PAGC Address Standardizer Rule records.

A rule consists of a set of non-negative integers representing input tokens, terminated by a -1, followed by an equal number of non-negative integers representing postal attributes, terminated by a -1, followed by an integer representing a rule type, followed by an integer representing the rank of the rule. The rules are ranked from 0 (lowest) to 17 (highest).

So for example the rule `2 0 2 22 3 -1 5 5 6 7 3 -1 2 6` maps to sequence of output tokens **TYPE NUMBER TYPE DIRECT QUALIF** to the output sequence **STREET STREET SUFTYP SUFDIR QUALIF**. The rule is an ARC_C rule of rank 6.

Numbers for corresponding output tokens are listed in stdaddr.

Input Tokens

Each rule starts with a set of input tokens followed by a terminator −1. Valid input tokens excerpted from PAGC Input Tokens are as follows:

Form-Based Input Tokens

AMPERS (13). The ampersand (&) is frequently used to abbreviate the word "and".

DASH (9). A punctuation character.

DOUBLE (21). A sequence of two letters. Often used as identifiers.

FRACT (25). Fractions are sometimes used in civic numbers or unit numbers.
MIXED (23). An alphanumeric string that contains both letters and digits. Used for identifiers.

NUMBER (0). A string of digits.

ORD (15). Representations such as First or 1st. Often used in street names.

WORD (1). A word is a string of letters of arbitrary length. A single letter can be both a SINGLE and a WORD.

Function-based Input Tokens

BOXH (14). Words used to denote post office boxes. For example Box or PO Box.

BUILDH (19). Words used to denote buildings or building complexes, usually as a prefix. For example: Tower in Tower 7A.

BUILDT (24). Words and abbreviations used to denote buildings or building complexes, usually as a suffix. For example: Shopping Centre.

DIRECT (22). Words used to denote directions, for example North.

MILE (20). Words used to denote milepost addresses.

ROAD (6). Words and abbreviations used to denote highways and roads. For example: the Interstate in Interstate 5

RR (8). Words and abbreviations used to denote rural routes. RR.

TYPE (2). Words and abbreviation used to denote street typess. For example: ST or AVE.

UNITH (16). Words and abbreviation used to denote internal subaddresses. For example, APT or UNIT.

Postal Type Input Tokens

QUINT (28). A 5 digit number. Identifies a Zip Code

PCH (27). A 3 character sequence of letter number letter. Identifies an FSA, the first 3 characters of a Canadian postal code.

PCT (26). A 3 character sequence of number letter number. Identifies an LDU, the last 3 characters of a Canadian postal code.

Stopwords

STOPWORDS combine with WORDS. In rules a string of multiple WORDs and STOPWORDs will be represented by a single WORD token.

STOPWORD (7). A word with low lexical significance, that can be omitted in parsing. For example: THE.

Output Tokens

After the first -1 (terminator), follows the output tokens and their order, followed by a terminator − 1. Numbers for corresponding output tokens are listed in stdaddr. What are allowed is dependent on kind of rule. Output tokens valid for each rule type are listed in the section called “Rule Types and Rank”.
Rule Types and Rank

The final part of the rule is the rule type which is denoted by one of the following, followed by a rule rank. The rules are ranked from 0 (lowest) to 17 (highest).

MACRO_C
(token number = "0"). The class of rules for parsing MACRO clauses such as PLACE STATE ZIP

CITY (token number "10"). Example "Albany"
STATE (token number "11"). Example "NY"
NATION (token number "12"). This attribute is not used in most reference files. Example "USA"
POSTAL (token number "13"). (SADS elements "ZIP CODE", "PLUS 4"). This attribute is used for both the US Zip and the Canadian Postal Codes.

MICRO_C
(token number = "1"). The class of rules for parsing full MICRO clauses (such as House, street, sufdir, predir, pretyp, suftype, qualif) (ie ARC_C plus CIVIC_C). These rules are not used in the build phase.

HOUSE is a text (token number 1): This is the street number on a street. Example 75 in 75 State Street.
predir is text (token number 2): STREET NAME PRE-DIRECTIONAL such as North, South, East, West etc.
qual is text (token number 3): STREET NAME PRE-MODIFIER Example OLD in 3715 OLD HIGHWAY 99.
pertype is text (token number 4): STREET PREFIX TYPE
street is text (token number 5): STREET NAME
sufdir is text (token number 7): STREET POST-DIRECTIONAL A directional modifier that follows the street name.. Example WEST in 3715 TENTH AVENUE WEST.

ARC_C
(token number = "2"). The class of rules for parsing MICRO clauses, excluding the HOUSE attribute. As such uses same set of output tokens as MICRO_C minus the HOUSE token.

CIVIC_C
(token number = "3"). The class of rules for parsing the HOUSE attribute.

EXTRA_C
(token number = "4"). The class of rules for parsing EXTRA attributes - attributes excluded from geocoding. These rules are not used in the build phase.

BLDNG (token number 0): Unparsed building identifiers and types.
BOXH (token number 14): The BOX in BOX 3B
BOXT (token number 15): The 3B in BOX 3B
RR (token number 8): The RR in RR 7
UNITH (token number 16): The APT in APT 3B
UNITT (token number 17): The 3B in APT 3B
UNKNWN (token number 9): An otherwise unclassified output.
4.7.3.2 lex table

A lex table is used to classify alphanumeric input and associate that input with (a) input tokens (See the section called “Input Tokens”) and (b) standardized representations.

Description

A lex (short for lexicon) table is used to classify alphanumeric input and associate that input with the section called “Input Tokens” and (b) standardized representations. Things you will find in these tables are ONE mapped to stdword: 1.

A lex has at least the following columns in the table. You may add:

- **id**: Primary key of table
- **seq**: integer: definition number?
- **word**: text: the input word
- **stdword**: text: the standardized replacement word
- **token**: integer: the kind of word it is. Only if it is used in this context will it be replaced. Refer to PAGC Tokens.

4.7.3.3 gaz table

A gaz table is used to standardize place names and associate that input with (a) input tokens (See the section called “Input Tokens”) and (b) standardized representations.

Description

A gaz (short for gazetteer) table is used to standardize place names and associate that input with the section called “Input Tokens” and (b) standardized representations. For example if you are in US, you may load these with State Names and associated abbreviations.

A gaz table has at least the following columns in the table. You may add more columns if you wish for your own purposes.

- **id**: Primary key of table
- **seq**: integer: definition number? - identifier used for that instance of the word
- **word**: text: the input word
- **stdword**: text: the standardized replacement word
- **token**: integer: the kind of word it is. Only if it is used in this context will it be replaced. Refer to PAGC Tokens.

4.7.4 Address Standardizer Functions

4.7.4.1 parse_address

A parse_address function is used for transforming address strings into a standardized format.

Synopsis

```
record parse_address(text address);
```
Description

Returns takes an address as input, and returns a record output consisting of fields num, street, street2, address1, city, state, zip, zipplus, country.

Availability: 2.2.0

This method needs address_standardizer extension.

Examples

Single Address

```sql
SELECT num, street, city, zip, zipplus
FROM parse_address('1 Devonshire Place, Boston, MA 02109-1234') AS a;
```

<table>
<thead>
<tr>
<th>num</th>
<th>street</th>
<th>city</th>
<th>zip</th>
<th>zipplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Devonshire Place</td>
<td>Boston</td>
<td>02109</td>
<td>1234</td>
</tr>
</tbody>
</table>

Table of addresses

```sql
-- basic table
CREATE TABLE places(addid serial PRIMARY KEY, address text);

INSERT INTO places(address)
VALUES ('529 Main Street, Boston MA, 02129'),
('77 Massachusetts Avenue, Cambridge, MA 02139'),
('25 Wizard of Oz, Walaford, KS 99912323'),
('26 Capen Street, Medford, MA'),
('124 Mount Auburn St, Cambridge, Massachusetts 02138'),
('950 Main Street, Worcester, MA 01610');

-- parse the addresses
-- if you want all fields you can use (a).*
FROM (SELECT addid, parse_address(address) AS a
FROM places) AS p;
```

<table>
<thead>
<tr>
<th>addid</th>
<th>num</th>
<th>street</th>
<th>city</th>
<th>state</th>
<th>zip</th>
<th>zipplus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>529</td>
<td>Main Street</td>
<td>Boston</td>
<td>MA</td>
<td>02129</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>77</td>
<td>Massachusetts Avenue</td>
<td>Cambridge</td>
<td>MA</td>
<td>02139</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>Wizard of Oz</td>
<td>Walaford</td>
<td>KS</td>
<td>99912</td>
<td>323</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>Capen Street</td>
<td>Medford</td>
<td>MA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>124</td>
<td>Mount Auburn St</td>
<td>Cambridge</td>
<td>MA</td>
<td>02138</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>950</td>
<td>Main Street</td>
<td>Worcester</td>
<td>MA</td>
<td>01610</td>
<td></td>
</tr>
</tbody>
</table>

(6 rows)

See Also

4.7.4.2 standardize_address

standardize_address — Returns an stdaddr form of an input address utilizing lex, gaz, and rule tables.

Synopsis

```sql
stdaddr standardize_address(text lextab, text gaztab, text rultab, text address);
stdaddr standardize_address(text lextab, text gaztab, text rultab, text micro, text macro);
```
Description

Returns an stdaddr form of an input address utilizing lex table table name, gaz table, and rules table table names and an address.

Variant 1: Takes an address as a single line.

Variant 2: Takes an address as 2 parts. A micro consisting of standard first line of postal address e.g. house_num street, and a macro consisting of standard postal second line of an address e.g city, state postal_code country.

Availability: 2.2.0

This method needs address_standardizer extension.

Examples

Using address_standardizer_data_us extension

```
CREATE EXTENSION address_standardizer_data_us; -- only needs to be done once
```

Variant 1: Single line address. This doesn’t work well with non-US addresses

```
SELECT house_num, name, suftype, city, country, state, unit FROM standardize_address('us_lex', 'us_gaz', 'us_rules', 'One Devonshire Place, PH 301, Boston, MA 02109');
```

```
house_num | name | suftype | city | country | state | unit
----------+------------+---------+--------+---------+---------------+-----------------
1 | DEVONSHIRE | PLACE | BOSTON | USA | MASSACHUSETTS | # PENTHOUSE 301
```

Using tables packaged with tiger geocoder. This example only works if you installed postgis_tiger_geocoder.

```
SELECT * FROM standardize_address('tiger.pagc_lex', 'tiger.pagc_gaz', 'tiger.pagc_rules', 'One Devonshire Place, PH 301, Boston, MA 02109-1234');
```

```
key | value
----------+-----------------
box | |
city | BOSTON
ame | DEVONSHIRE
qual | |
unit | # PENTHOUSE 301
extra | |
state | MA
predir | |
sufdir | |
country | USA
pretype | |
suftype | PL
building | |
postcode | 02109
house_num | 1
ruralroute | (16 rows)
```

Make easier to read we’ll dump output using hstore extension CREATE EXTENSION hstore: you need to install

```
SELECT (each(hstore(p))).* FROM standardize_address('tiger.pagc_lex', 'tiger.pagc_gaz', 'tiger.pagc_rules', 'One Devonshire Place, PH 301, Boston, MA 02109') As p;
```

```
key | value
----------+-----------------
box | |
city | BOSTON
name | DEVONSHIRE
qual | |
unit | # PENTHOUSE 301
extra | |
state | MA
predir | |
sufdir | |
country | USA
pretype | |
suftype | PL
building | |
postcode | 02109
house_num | 1
ruralroute | (16 rows)
```
Variant 2: As a two part Address

```sql
SELECT (each(hstore(p))).*  
FROM standardize_address('tiger.pagc_lex', 'tiger.pagc_gaz',  
    'tiger.pagc_rules', 'One Devonshire Place, PH 301', 'Boston, MA 02109, US') As p;
```

<table>
<thead>
<tr>
<th>key</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>box</td>
<td></td>
</tr>
<tr>
<td>city</td>
<td>BOSTON</td>
</tr>
<tr>
<td>name</td>
<td>DEVONSHIRE</td>
</tr>
<tr>
<td>qual</td>
<td></td>
</tr>
<tr>
<td>unit</td>
<td># PENTHOUSE 301</td>
</tr>
<tr>
<td>extra</td>
<td></td>
</tr>
<tr>
<td>state</td>
<td>MA</td>
</tr>
<tr>
<td>predir</td>
<td></td>
</tr>
<tr>
<td>sufdir</td>
<td></td>
</tr>
<tr>
<td>country</td>
<td>USA</td>
</tr>
<tr>
<td>pretype</td>
<td></td>
</tr>
<tr>
<td>suftype</td>
<td>PL</td>
</tr>
<tr>
<td>building</td>
<td></td>
</tr>
<tr>
<td>postcode</td>
<td>02109</td>
</tr>
<tr>
<td>house_num</td>
<td>1</td>
</tr>
<tr>
<td>ruralroute</td>
<td></td>
</tr>
</tbody>
</table>

(16 rows)

See Also

stdaddr, rules table, lex table, gaz table, Page_Normalize_Address

4.8 PostGIS Extras

This chapter documents features found in the extras folder of the PostGIS source tarballs and source repository. These are not always packaged with PostGIS binary releases, but are usually plpgsql based or standard shell scripts that can be run as is.

4.8.1 Tiger Geocoder

There are a couple other open source geocoders for PostGIS, that unlike tiger geocoder have the advantage of multi-country geocoding support

- Nominatim uses OpenStreetMap gazetteer formatted data. It requires osm2pgsql for loading the data, PostgreSQL 8.4+ and PostGIS 1.5+ to function. It is packaged as a webservice interface and seems designed to be called as a webservice. Just like the tiger geocoder, it has both a geocoder and a reverse geocoder component. From the documentation, it is unclear if it has a pure SQL interface like the tiger geocoder, or if a good deal of the logic is implemented in the web interface.

- GIS Graphy also utilizes PostGIS and like Nominatim works with OpenStreetMap (OSM) data. It comes with a loader to load OSM data and similar to Nominatim is capable of geocoding not just US. Much like Nominatim, it runs as a webservice and relies on Java 1.5, Servlet apps, Solr. GisGraphy is cross-platform and also has a reverse geocoder among some other neat features.

4.8.1.1 Drop_Indexes_Generate_Script

Drop_Indexes_Generate_Script — Generates a script that drops all non-primary key and non-unique indexes on tiger schema and user specified schema. Defaults schema to tiger_data if no schema is specified.
Synopsis
text Drop_Indexes_Generate_Script(text param_schema=tiger_data);

Description
Generates a script that drops all non-primary key and non-unique indexes on tiger schema and user specified schema. Defaults schema to tiger_data if no schema is specified.
This is useful for minimizing index bloat that may confuse the query planner or take up unnecessary space. Use in combination with Install_Missing_Indexes to add just the indexes used by the geocoder.
Availability: 2.0.0

Examples
```
SELECT drop_indexes_generate_script() As actionsql;
actionsql
---------------------------------------------------------
DROP INDEX tiger.idx_tiger_countysub_lookup_lower_name;
DROP INDEX tiger.idx_tiger_edges_countyfp;
DROP INDEX tiger.idx_tiger_faces_countyfp;
DROP INDEX tiger.idx_tiger_place_the_geom_gist;
DROP INDEX tiger.idx_tiger_edges_the_geom_gist;
DROP INDEX tiger.idx_tiger_state_the_geom_gist;
DROP INDEX tiger.idx_tiger_addr_least_address;
DROP INDEX tiger.idx_tiger_addr_tlid;
DROP INDEX tiger.idx_tiger_addr_zip;
DROP INDEX tiger.idx_tiger_county_countyfp;
DROP INDEX tiger.idx_tiger_county_lookup_lower_name;
DROP INDEX tiger.idx_tiger_county_lookup_snd_name;
DROP INDEX tiger.idx_tiger_county_lower_name;
DROP INDEX tiger.idx_tiger_county_snd_name;
DROP INDEX tiger.idx_tiger_county_the_geom_gist;
DROP INDEX tiger.idx_tiger_countysub_countyfp;
DROP INDEX tiger.idx_tiger_cousub_countyfp;
DROP INDEX tiger.idx_tiger_cousub_countyfp;
DROP INDEX tiger.idx_tiger_cousub_snd_name;
DROP INDEX tiger.idx_tiger_cousub_the_geom_gist;
DROP INDEX tiger.data.idx_tiger_data_ma_addr_least_address;
DROP INDEX tiger.data.idx_tiger_data_ma_addr_tlid;
DROP INDEX tiger.data.idx_tiger_data_ma_addr_zip;
DROP INDEX tiger.data.idx_tiger_data_ma_county_countyfp;
DROP INDEX tiger.data.idx_tiger_data_ma_county_lookup_lower_name;
DROP INDEX tiger.data.idx_tiger_data_ma_county_lookup_snd_name;
DROP INDEX tiger.data.idx_tiger_data_ma_county_lower_name;
DROP INDEX tiger.data.idx_tiger_data_ma_county_snd_name;
```

See Also
Install_Missing_Indexes, Missing_Indexes_Generate_Script

4.8.1.2 Drop_Nation_Tables_Generate_Script

Drop_Nation_Tables_Generate_Script — Generates a script that drops all tables in the specified schema that start with county_all, state_all or state code followed by county or state.
Synopsis
text Drop_Nation_Tables_Generate_Script(text param_schema=tiger_data);

Description
Generates a script that drops all tables in the specified schema that start with county_all, state_all or state code followed by county or state. This is needed if you are upgrading from tiger_2010 to tiger_2011 data.
Availability: 2.1.0

Examples
SELECT drop_nation_tables_generate_script();
DROP TABLE tiger_data.county_all;
DROP TABLE tiger_data.county_all_lookup;
DROP TABLE tiger_data.state_all;
DROP TABLE tiger_data.ma_county;
DROP TABLE tiger_data.ma_state;

See Also
Loader_Generate_Nation_Script

4.8.1.3 Drop_State_Tables_Generate_Script

Drop_State_Tables_Generate_Script — Generates a script that drops all tables in the specified schema that are prefixed with the state abbreviation. Defaults schema to tiger_data if no schema is specified.

Synopsis
text Drop_State_Tables_Generate_Script(text param_state, text param_schema=tiger_data);

Description
Generates a script that drops all tables in the specified schema that are prefixed with the state abbreviation. Defaults schema to tiger_data if no schema is specified. This function is useful for dropping tables of a state just before you reload a state in case something went wrong during your previous load.
Availability: 2.0.0

Examples
SELECT drop_state_tables_generate_script('PA');
DROP TABLE tiger_data.pa_addr;
DROP TABLE tiger_data.pa_county;
DROP TABLE tiger_data.pa_county_lookup;
DROP TABLE tiger_data.pa_cousub;
DROP TABLE tiger_data.pa_edges;
DROP TABLE tiger_data.pa_faces;
DROP TABLE tiger_data.pa_featnames;
DROP TABLE tiger_data.pa_place;
DROP TABLE tiger_data.pa_state;
DROP TABLE tiger_data.pa_zip_lookup_base;
DROP TABLE tiger_data.pa_zip_state;
DROP TABLE tiger_data.pa_zip_state_loc;
See Also

Loader_Generate_Script

4.8.1.4 Geocode

Geocode — Takes in an address as a string (or other normalized address) and outputs a set of possible locations which include a point geometry in NAD 83 long lat, a normalized address for each, and the rating. The lower the rating the more likely the match. Results are sorted by lowest rating first. Can optionally pass in maximum results, defaults to 10, and restrict_region (defaults to NULL)

Synopsis

setof record geocode(varchar address, integer max_results=10, geometry restrict_region=NULL, norm_addy OUT addy, geometry OUT geomout, integer OUT rating);

setof record geocode(norm_addy in_addy, integer max_results=10, geometry restrict_region=NULL, norm_addy OUT addy, geometry OUT geomout, integer OUT rating);

Description

Takes in an address as a string (or already normalized address) and outputs a set of possible locations which include a point geometry in NAD 83 long lat, a normalized_address (addy) for each, and the rating. The lower the rating the more likely the match. Results are sorted by lowest rating first. Uses Tiger data (edges,faces,addr), PostgreSQL fuzzy string matching (soundex,levenshtein) and PostGIS line interpolation functions to interpolate address along the Tiger edges. The higher the rating the less likely the geocode is right. The geocoded point is defaulted to offset 10 meters from center-line off to side (L/R) of street address is located on.

Enhanced: 2.0.0 to support Tiger 2010 structured data and revised some logic to improve speed, accuracy of geocoding, and to offset point from centerline to side of street address is located on. The new parameter max_results useful for specifying number of best results or just returning the best result.

Examples: Basic

The below examples timings are on a 3.0 GHZ single processor Windows 7 machine with 2GB ram running PostgreSQL 9.1rc1/PostGIS 2.0 loaded with all of MA,MN,CA, RI state Tiger data loaded.

Exact matches are faster to compute (61ms)

```
SELECT g.rating, ST_X(g.geomout) As lon, ST_Y(g.geomout) As lat,
       (addy).address As stno, (addy).streetname As street,
       (addy).streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st,
       (addy).zip
FROM geocode('75 State Street, Boston MA 02109', 1) As g;
```

```
<table>
<thead>
<tr>
<th>rating</th>
<th>lon</th>
<th>lat</th>
<th>stno</th>
<th>street</th>
<th>styp</th>
<th>city</th>
<th>st</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-71.0557505845646</td>
<td>42.35897920691</td>
<td>75</td>
<td>State</td>
<td>St</td>
<td>Boston</td>
<td>MA</td>
<td>02109</td>
</tr>
</tbody>
</table>
```

Even if zip is not passed in the geocoder can guess (took about 122-150 ms)

```
SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
       (addy).address As stno, (addy).streetname As street,
       (addy).streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st,
       (addy).zip
FROM geocode('226 Hanover Street, Boston, MA',1) As g;
```

```
<table>
<thead>
<tr>
<th>rating</th>
<th>wktlonlat</th>
<th>stno</th>
<th>street</th>
<th>styp</th>
<th>city</th>
<th>st</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POINT(-71.05528 42.36316)</td>
<td>226</td>
<td>Hanover</td>
<td>St</td>
<td>Boston</td>
<td>MA</td>
<td>02113</td>
</tr>
</tbody>
</table>
```
Can handle misspellings and provides more than one possible solution with ratings and takes longer (500ms).

```sql
SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout, 0.00001)) AS wktlonlat,
       (addy).address AS stno, (addy).streetname AS street,
       (addy).streettypeabbrev AS styp, (addy).location AS city, (addy).stateabbrev AS st,
       (addy).zip
FROM geocode('31 - 37 Stewart Street, Boston, MA 02116', 1) AS g;
```

<table>
<thead>
<tr>
<th>rating</th>
<th>wktlonlat</th>
<th>stno</th>
<th>street</th>
<th>styp</th>
<th>city</th>
<th>st</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>POINT(-71.06466 42.35114)</td>
<td>31</td>
<td>Stuart</td>
<td>St</td>
<td>Boston</td>
<td>MA</td>
<td>02116</td>
</tr>
</tbody>
</table>

Using to do a batch geocode of addresses. Easiest is to set `max_results=1`. Only process those not yet geocoded (have no rating).

```sql
CREATE TABLE addresses_to_geocode(addid serial PRIMARY KEY, address text,
lon numeric, lat numeric, new_address text, rating integer);

INSERT INTO addresses_to_geocode(address)
VALUES ('529 Main Street, Boston MA, 02129'),
       ('77 Massachusetts Avenue, Cambridge, MA 02139'),
       ('25 Wizard of Oz, Walaford, KS 99912323'),
       ('26 Capen Street, Medford, MA'),
       ('124 Mount Auburn St, Cambridge, Massachusetts 02138'),
       ('950 Main Street, Worcester, MA 01610');

-- only update the first 3 addresses (323-704 ms - there are caching and shared memory effects so first geocode you do is always slower) --
-- for large numbers of addresses you don't want to update all at once --
-- since the whole geocode must commit at once --
-- For this example we rejoin with LEFT JOIN --
-- and set to rating to -1 rating if no match --
-- to ensure we don't regeocode a bad address UPDATE addresses_to_geocode
SET (rating, new_address, lon, lat) = (COALESCE(g.rating, -1), pprint_addy(g.addy),
                                    ST_X(g.geomout)::numeric(8, 5), ST_Y(g.geomout)::numeric(8, 5))
FROM (SELECT addid, address
       FROM addresses_to_geocode
       WHERE rating IS NULL ORDER BY addid LIMIT 3) AS a
LEFT JOIN LATERAL geocode(a.address, 1) As g ON true
WHERE a.addid = addresses_to_geocode.addid;
```

Query returned successfully: 3 rows affected, 480 ms execution time.

```sql
SELECT * FROM addresses_to_geocode WHERE rating is not null;
```

<table>
<thead>
<tr>
<th>addid</th>
<th>address</th>
<th>lon</th>
<th>lat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>529 Main Street, Boston MA, 02129</td>
<td>-71.07177</td>
<td>42.38357</td>
</tr>
<tr>
<td></td>
<td>Boston, MA 02129</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>77 Massachusetts Avenue, Cambridge, MA 02139</td>
<td>-71.09396</td>
<td>42.35961</td>
</tr>
<tr>
<td></td>
<td>Massachusetts Ave, Cambridge, MA 02139</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25 Wizard of Oz, Walaford, KS 99912323</td>
<td>-97.92913</td>
<td>38.12717</td>
</tr>
</tbody>
</table>

Examples: Using Geometry filter
SELECT g.rating, ST_AsText(ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
(addy).address As stno, (addy).streetname As street,
(addy).streettypeabbrev As styp,
(addy).location As city, (addy).stateabbrev As st,(addy).zip
FROM geocode('100 Federal Street, MA',
 3,
 (SELECT ST_Union(the_geom)
 FROM place WHERE statefp = '25' AND name = 'Lynn')::geometry
) As g;

rating	wktlonlat	stno	street	styp	city	st	zip
--------+--------------------+------	--------+------	-------+-----+------					
7	POINT(-70.96796 42.4659)	100	Federal	St	Lynn	MA	01905
16	POINT(-70.96786 42.46853)	NULL	Federal	St	Lynn	MA	01905

(2 rows)

Time: 622.939 ms

See Also
Normalize_Address, Pprint_Addy, ST_AsText, ST_SnapToGrid, ST_X, ST_Y

4.8.1.5 Geocode_Intersection

Geocode_Intersection — Takes in 2 streets that intersect and a state, city, zip, and outputs a set of possible locations on the first
cross street that is at the intersection, also includes a geomout as the point location in NAD 83 long lat, a normalized_address
(addy) for each location, and the rating. The lower the rating the more likely the match. Results are sorted by lowest rating first.
Can optionally pass in maximum results, defaults to 10. Uses Tiger data (edges, faces, addr), PostgreSQL fuzzy string matching
(soundex, levenshtein).

Synopsis

setof record geocode_intersection(text roadway1, text roadway2, text in_state, text in_city, text in_zip, integer max_results=10,
norm_addy OUT addy, geometry OUT geomout, integer OUT rating);

Description

Takes in 2 streets that intersect and a state, city, zip, and outputs a set of possible locations on the first cross street that is at the
intersection, also includes a point geometry in NAD 83 long lat, a normalized address for each location, and the rating. The lower
the rating the more likely the match. Results are sorted by lowest rating first. Can optionally pass in maximum results, defaults
to 10. Returns normalized_address (addy) for each, geomout as the point location in nad 83 long lat, and the rating.
The lower the rating the more likely the match. Results are sorted by lowest rating first. Uses Tiger data (edges,faces,addr),
PostgreSQL fuzzy string matching (soundex,levenshtein)

Availability: 2.0.0

Examples: Basic

The below examples timings are on a 3.0 GHZ single processor Windows 7 machine with 2GB ram running PostgreSQL 9.0/Post-
GIS 1.5 loaded with all of MA state Tiger data loaded. Currently a bit slow (3000 ms)

Testing on Windows 2003 64-bit 8GB on PostGIS 2.0 PostgreSQL 64-bit Tiger 2011 data loaded -- (41ms)
SELECT pprint_addy(addy), st_astext(geomout), rating
FROM geocode_intersection('Haverford St', 'Germania St', 'MA', 'Boston', '02130', 1);

<table>
<thead>
<tr>
<th>pprint_addy</th>
<th>st_astext</th>
<th>rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>98 Haverford St, Boston, MA 02130</td>
<td>POINT(-71.101375 42.31376)</td>
<td>0</td>
</tr>
</tbody>
</table>

Even if zip is not passed in the geocoder can guess (took about 3500 ms on the windows 7 box), on the windows 2003 64-bit 741 ms

SELECT pprint_addy(addy), st_astext(geomout), rating
FROM geocode_intersection('Weld', 'School', 'MA', 'Boston');

<table>
<thead>
<tr>
<th>pprint_addy</th>
<th>st_astext</th>
<th>rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>98 Weld Ave, Boston, MA 02119</td>
<td>POINT(-71.099 42.314234)</td>
<td>3</td>
</tr>
<tr>
<td>99 Weld Ave, Boston, MA 02119</td>
<td>POINT(-71.099 42.314234)</td>
<td>3</td>
</tr>
</tbody>
</table>

See Also

Geocode, Pprint_Addy, ST_AsText

4.8.1.6 Get_Geocode_Setting

Get_Geocode_Setting — Returns value of specific setting stored in tiger.geocode_settings table.

Synopsis

text Get_Geocode_Setting(text setting_name);

Description

Returns value of specific setting stored in tiger.geocode_settings table. Settings allow you to toggle debugging of functions. Later plans will be to control rating with settings. Current list of settings are as follows:

<table>
<thead>
<tr>
<th>name</th>
<th>setting</th>
<th>unit</th>
<th>category</th>
<th>short_desc</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug_geocode_address</td>
<td>false</td>
<td>boolean</td>
<td>debug</td>
<td>in notice log such as queries when geocode_address is called if true</td>
</tr>
<tr>
<td>debug_geocode_intersection</td>
<td>false</td>
<td>boolean</td>
<td>debug</td>
<td>in notice log such as queries when geocode_intersection is called if true</td>
</tr>
<tr>
<td>debug_normalize_address</td>
<td>false</td>
<td>boolean</td>
<td>debug</td>
<td>in notice log such as queries and intermediate expressions when normalize_address is called if true</td>
</tr>
<tr>
<td>debug_reverse_geocode</td>
<td>false</td>
<td>boolean</td>
<td>debug</td>
<td>if true, outputs debug in notice log such as queries and intermediate expressions when reverse_geocode</td>
</tr>
<tr>
<td>reverse_geocode_numbered_roads</td>
<td>0</td>
<td>integer</td>
<td>rating</td>
<td>For state and county highways, 0 - no preference in name, 1 - prefer the numbered highway name, 2 - prefer local state/county name</td>
</tr>
<tr>
<td>use_pagc_address_parser</td>
<td>false</td>
<td>boolean</td>
<td>normalize</td>
<td>If set to true, will try to use the address_standardizer extension (via pagc_normalize_address)</td>
</tr>
</tbody>
</table>
Changed: 2.2.0 : default settings are now kept in a table called geocode_settings_default. Use customized settings are in geocode_settings and only contain those that have been set by user.

Availability: 2.1.0

Example return debugging setting

```sql
SELECT get_geocode_setting('debug_geocode_address) As result;
result
---------
false
```

See Also

Set_Geocode_Setting

4.8.1.7 Get_Tract

Get_Tract — Returns census tract or field from tract table of where the geometry is located. Default to returning short name of tract.

Synopsis

text get_tract(geometry loc_geom, text output_field=name);

Description

Given a geometry will return the census tract location of that geometry. NAD 83 long lat is assumed if no spatial ref sys is specified.

Note

This function uses the census tract which is not loaded by default. If you have already loaded your state table, you can load tract as well as bg, and tabblock using the Loader_Generate_Census_Script script.

If you have not loaded your state data yet and want these additional tables loaded, do the following:

```sql
UPDATE tiger.loader_lookuptables SET load = true WHERE load = false AND lookup_name IN('tract', 'bg', 'tabblock');
```

then they will be included by the Loader_Generate_Script.

Availability: 2.0.0

Examples: Basic

```sql
SELECT get_tract(ST_Point(-71.101375, 42.31376) ) As tract_name;
tract_name
---------
1203.01
```
--this one returns the tiger geoid
SELECT get_tract(ST_Point(-71.101375, 42.31376), 'tract_id') As tract_id;
tract_id

25025120301

See Also

Geocode>

4.8.1.8 Install_Missing_Indexes

Install_Missing_Indexes — Finds all tables with key columns used in geocoder joins and filter conditions that are missing used indexes on those columns and will add them.

Synopsis

boolean Install_Missing_Indexes();

Description

Finds all tables in tiger and tiger_data schemas with key columns used in geocoder joins and filters that are missing indexes on those columns and will output the SQL DDL to define the index for those tables and then execute the generated script. This is a helper function that adds new indexes needed to make queries faster that may have been missing during the load process. This function is a companion to Missing_Indexes_Generate_Script that in addition to generating the create index script, also executes it. It is called as part of the update_geocode.sql upgrade script.

Availability: 2.0.0

Examples

SELECT install_missing_indexes();
install_missing_indexes

t

See Also

Loader_Generate_Script, Missing_Indexes_Generate_Script

4.8.1.9 Loader_Generate_Census_Script

Loader_Generate_Census_Script — Generates a shell script for the specified platform for the specified states that will download Tiger census state tract, bg, and tabblocks data tables, stage and load into tiger_data schema. Each state script is returned as a separate record.

Synopsis

setof text loader_generate_census_script(text[] param_states, text os);
Description

Generates a shell script for the specified platform for the specified states that will download Tiger data census state tract, block groups bg, and tabblocks data tables, stage and load into tiger_data schema. Each state script is returned as a separate record.

It uses unzip on Linux (7-zip on Windows by default) and wget to do the downloading. It uses Section 4.1.5.2 to load in the data. Note the smallest unit it does is a whole state. It will only process the files in the staging and temp folders.

It uses the following control tables to control the process and different OS shell syntax variations.

1. loader_variables keeps track of various variables such as census site, year, data and staging schemas
2. loader_platform profiles of various platforms and where the various executables are located. Comes with windows and linux. More can be added.
3. loader_lookuptables each record defines a kind of table (state, county), whether to process records in it and how to load them in. Defines the steps to import data, stage data, add, removes columns, indexes, and constraints for each. Each table is prefixed with the state and inherits from a table in the tiger schema. e.g. creates tiger_data.ma_faces which inherits from tiger.faces

Availability: 2.0.0

Note

Loader_Generate_Script includes this logic, but if you installed tiger geocoder prior to PostGIS 2.0.0 alpha5, you’ll need to run this on the states you have already done to get these additional tables.

Examples

Generate script to load up data for select states in Windows shell script format.

```
SELECT loader_generate_census_script (ARRAY['MA'], 'windows');
```

```bash
-- result --
set STATEDIR="\gisdata\www2.census.gov\geo\pvs\tiger2010st\25_Massachusetts"
set TMPDIR=\gisdata\temp\nset UNZIPTOOL="C:\Program Files\7-Zip\7z.exe"
set WGETTOOL="C:\\wget\\wget.exe"
set PGBIN=C:\projects\pg\pg91win\bin\nset PGPORT=5432
set PGUSER=postgres
set PGPASSWORD=yourpasswordhere
set PGDATABASE=tiger_postgis20
set PSQL="%PGBIN%psql"
set SHP2PGSQL="%PGBIN%shp2pgsql"

cd \gisdata

del %TMPDIR%*.* /Q
%PSQL% -c "DROP SCHEMA tiger_staging CASCADE;"
%PSQL% -c "CREATE SCHEMA tiger_staging;"

cd %STATEDIR%
for /r %%z in (*.zip) do %UNZIPTOOL% e %%z -o%TMPDIR%
%PSQL% -c "CREATE TABLE tiger_data.MA_tract(CONSTRAINT pk_MA_tract PRIMARY KEY (tract_id) ) INHERITS(tiger.tract);"
%SHP2PGSQL% -c -s 4269 -g the_geom -W "latin1" tl_2010_25_tract10.dbf tiger_staging.
```
%PSQL% -c "ALTER TABLE tiger_staging.MA_tract10 RENAME geoid10 TO tract_id; SELECT ←
loader_load_staged_data(lower('MA_tract10'), lower('MA_tract')); "
%PSQL% -c "CREATE INDEX tiger_data_MA_tract_the_geom_gist ON tiger_data.MA_tract USING gist ←
(the_geom);"
%PSQL% -c "VACUUM ANALYZE tiger_data.MA_tract;"
%PSQL% -c "ALTER TABLE tiger_data.MA_tract ADD CONSTRAINT chk_statefp CHECK (statefp = ←
'25');"

Generate sh script

STATEDIR="/gisdata/www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts"
TMPDIR="/gisdata/temp/"
UNZIPTOOL=unzip
WGETTOOL="/usr/bin/wget"
export PGBIN=/usr/pgsql-9.0/bin
export PGPORT=5432
export PGHOST=localhost
export PGUSER=postgres
export PGPASSWORD=yourpasswordhere
export PGDATABASE=geocoder
PSQL=${PGBIN}/psql
SHP2PGSQL=${PGBIN}/shp2pgsql
cd /gisdata
wget http://www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts/25/ --no-parent --relative ←
--accept=*bg10.zip,*tract10.zip,*tabblock10.zip --mirror --reject=html
rm -f ${TMPDIR}/*.*
${PSQL} -c "DROP SCHEMA tiger_staging CASCADE;"
${PSQL} -c "CREATE SCHEMA tiger_staging;"
cd $STATEDIR
for z in *.zip; do $UNZIPTOOL -o -d $TMPDIR $z; done

See Also

Loader_Generate_Script

4.8.1.10 Loader_Generate_Script

Loader_Generate_Script — Generates a shell script for the specified platform for the specified states that will download Tiger
data, stage and load into tiger_data schema. Each state script is returned as a separate record. Latest version supports Tiger
2010 structural changes and also loads census tract, block groups, and blocks tables.

Synopsis

setof text loader_generate_script(text[] param_states, text os);

Description

Generates a shell script for the specified platform for the specified states that will download Tiger data, stage and load into
tiger_data schema. Each state script is returned as a separate record.

It uses unzip on Linux (7-zip on Windows by default) and wget to do the downloading. It uses Section 4.1.5.2 to load in the data.
Note the smallest unit it does is a whole state, but you can overwrite this by downloading the files yourself. It will only process
the files in the staging and temp folders.

It uses the following control tables to control the process and different OS shell syntax variations.
1. **loader_variables** keeps track of various variables such as census site, year, data and staging schemas.

2. **loader_platform** profiles of various platforms and where the various executables are located. Comes with windows and linux. More can be added.

3. **loader_lookuptables** each record defines a kind of table (state, county), whether to process records in it and how to load them in. Defines the steps to import data, stage data, add, removes columns, indexes, and constraints for each. Each table is prefixed with the state and inherits from a table in the tiger schema. e.g. creates `tiger_data.ma_faces` which inherits from `tiger.faces`

Availability: 2.0.0 to support Tiger 2010 structured data and load census tract (tract), block groups (bg), and blocks (tabblocks) tables.

Note

If you are using pgAdmin 3, be warned that by default pgAdmin 3 truncates long text. To fix, change File -> Options -> Query Tool -> Query Editor - > Max. characters per column to larger than 50000 characters.

Examples

Using psql where gistest is your database and `/gisdata/data_load.sh` is the file to create with the shell commands to run.

```
psql -U postgres -h localhost -d gistest -A -t \
-c "SELECT Loader_Generate_Script(ARRAY['MA'], 'gistest')" > /gisdata/data_load.sh;
```

Generate script to load up data for 2 states in Windows shell script format.

```
SELECT loader_generate_script(ARRAY['MA','RI'], 'windows') AS result;
-- result --
set TMPDIR=\gisdata\temp\
set UNZIPTOOL="C:\Program Files\7-Zip\7z.exe"
set WGETTOOL="C:\wget\wget.exe"
set PGBIN=C:\Program Files\PostgreSQL\9.4\bin\
set PGPORT=5432
set PGHOST=localhost
set PUSER=postgres
set PASSWORD=yourpasswordhere
set PGDATABASE=geocoder
set PSQL="%PGBIN%psql"
set SHP2PGSQL="%PGBIN%shp2pgsql"
cd \gisdata
cd \gisdata
%WGETTOOL% ftp://ftp2.census.gov/geo/tiger/TIGER2015/PLACE/tl_*_25_* --no-parent --relative --recursive --level=2 --accept=zip --mirror --reject=html
cd \gisdata/ftp2.census.gov/geo/tiger/TIGER2015/PLACE
:
```

Generate sh script

```
SELECT loader_generate_script(ARRAY['MA','RI'], 'sh') AS result;
-- result --
TMPDIR="/gisdata/temp/"
UNZIPTOOL=unzip
WGETTOOL="/usr/bin/wget"
export PGBIN="/usr/lib/postgresql/9.4/bin"
-- variables used by psql: https://www.postgresql.org/docs/current/static/libpq-envars.html
export PGPORT=5432
export PGHOST=localhost
```
export PGUSER=postgres
export PGPASSWORD=yourpasswordhere
export PGDATABASE=geocoder
PSQL=${PGBIN}/psql
SHP2PGSQL=${PGBIN}/shp2pgsql
cd /gisdata

cd /gisdata
cd /gisdata/ftp2.census.gov/geo/tiger/TIGER2015/PLACE
rm -f ${TMPDIR}/*.*

See Also
Section 2.4.1, Loader_Generate_Nation_Script, Drop_State_Tables_Generate_Script

4.8.1.11 Loader_Generate_Nation_Script

Loader_Generate_Nation_Script — Generates a shell script for the specified platform that loads in the county and state lookup tables.

Synopsis
text loader_generate_nation_script(text os);

Description
Generates a shell script for the specified platform that loads in the county_all, county_all_lookup, state_all tables into tiger_data schema. These inherit respectively from the county, county_lookup, state tables in tiger schema.

It uses unzip on Linux (7-zip on Windows by default) and wget to do the downloading. It uses Section 4.1.5.2 to load in the data. It uses the following control tables tiger.loader_platform, tiger.loader_variables, and tiger.loader_lookuptables to control the process and different OS shell syntax variations.

1. loader_variables keeps track of various variables such as census site, year, data and staging schemas
2. loader_platform profiles of various platforms and where the various executables are located. Comes with windows and linux/unix. More can be added.
3. loader_lookuptables each record defines a kind of table (state, county), whether to process records in it and how to load them in. Defines the steps to import data, stage data, add, removes columns, indexes, and constraints for each. Each table is prefixed with the state and inherits from a table in the tiger schema. e.g. creates tiger_data.ma_faces which inherits from tiger.faces

Enhanced: 2.4.1 zip code 5 tabulation area (zcta5) load step was fixed and when enabled, zcta5 data is loaded as a single table called zcta5_all as part of the nation script load.

Availability: 2.1.0

Note
If you want zip code 5 tabulation area (zcta5) to be included in your nation script load, do the following:

UPDATE tiger.loader_lookuptables SET load = true WHERE table_name = 'zcta510';
Note

If you were running `tiger_2010` version and you want to reload as state with newer tiger data, you'll need to for the very first load generate and run drop statements `Drop_Nation_Tables_Generate_Script` before you run this script.

Examples

Generate script script to load nation data Windows.

```sql
SELECT loader_generate_nation_script('windows');
```

Generate script to load up data for Linux/Unix systems.

```sql
SELECT loader_generate_nation_script('sh');
```

See Also

`Loader_Generate_Script`, `Drop_Nation_Tables_Generate_Script`

4.8.1.12 Missing_Indexes_Generate_Script

Missing_Indexes_Generate_Script — Finds all tables with key columns used in geocoder joins that are missing indexes on those columns and will output the SQL DDL to define the index for those tables.

Synopsis
text Missing_Indexes_Generate_Script();

Description

Finds all tables in `tiger` and `tiger_data` schemas with key columns used in geocoder joins that are missing indexes on those columns and will output the SQL DDL to define the index for those tables. This is a helper function that adds new indexes needed to make queries faster that may have been missing during the load process. As the geocoder is improved, this function will be updated to accommodate new indexes being used. If this function outputs nothing, it means all your tables have what we think are the key indexes already in place.

Availability: 2.0.0

Examples

```sql
SELECT missing_indexes_generate_script();
-- output: This was run on a database that was created before many corrections were made to the loading script ---
CREATE INDEX idx_tiger_county_countyfp ON tiger.county USING btree(countyfp);
CREATE INDEX idx_tiger_cousub_countyfp ON tiger.cousub USING btree(countyfp);
CREATE INDEX idx_tiger_edges_tfidr ON tiger.edges USING btree(tfidr);
CREATE INDEX idx_tiger_edges_tfidl ON tiger.edges USING btree(tfidl);
CREATE INDEX idx_tiger_zip_lookup_all_zip ON tiger.zip_lookup_all USING btree(zip);
CREATE INDEX idx_tiger_data_ma_county_countyfp ON tiger_data.ma_county USING btree(countyfp);
CREATE INDEX idx_tiger_data_ma_cousub_countyfp ON tiger_data.ma_cousub USING btree(countyfp);
CREATE INDEX idx_tiger_data_ma_edges_countyfp ON tiger_data.ma_edges USING btree(countyfp);
CREATE INDEX idx_tiger_data_ma_faces_countyfp ON tiger_data.ma_faces USING btree(countyfp);
```
See Also

Loader_Generate_Script, Install_Missing_Indexes

4.8.1.13 Normalize_Address

Normalize_Address — Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This function will work with just the lookup data packaged with the tiger_geocoder (no need for tiger census data).

Synopsis

norm_addy normalize_address(varchar in_address);

Description

Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This is the first step in the geocoding process to get all addresses into normalized postal form. No other data is required aside from what is packaged with the geocoder.

This function just uses the various direction/state/suffix lookup tables preloaded with the tiger_geocoder and located in the tiger schema, so it doesn’t need you to download tiger census data or any other additional data to make use of it. You may find the need to add more abbreviations or alternative namings to the various lookup tables in the tiger schema.

It uses various control lookup tables located in tiger schema to normalize the input address.

Fields in the norm_addy type object returned by this function in this order where () indicates a field required by the geocoder, [] indicates an optional field:

(address) [predirAbbrev] (streetName) [streetTypeAbbrev] [postdirAbbrev] [internal] [location] [stateAbbrev] [zip] [parsed] [zip4] [address_alphanumeric]

Enhanced: 2.4.0 norm_addy object includes additional fields zip4 and address_alphanumeric.

1. address is an integer: The street number
2. predirAbbrev is varchar: Directional prefix of road such as N, S, E, W etc. These are controlled using the direction_lookup table.
3. streetName varchar
4. streetTypeAbbrev varchar abbreviated version of street type: e.g. St, Ave, Cir. These are controlled using the street_type_lookup table.
5. postdirAbbrev varchar abbreviated directional suffice of road N, S, E, W etc. These are controlled using the direction_lookup table.
6. internal varchar internal address such as an apartment or suite number.
7. location varchar usually a city or governing province.
8. stateAbbrev varchar two character US State. e.g MA, NY, MI. These are controlled by the state_lookup table.
9. zip varchar 5-digit zipcode. e.g. 02109.
10. parsed boolean - denotes if address was formed from normalize process. The normalize_address function sets this to true before returning the address.
11. zip4 last 4 digits of a 9 digit zip code. Availability: PostGIS 2.4.0.
12. address_alphanumeric Full street number even if it has alpha characters like 17R. Parsing of this is better using Page_Normalize_Address function. Availability: PostGIS 2.4.0.
Examples

Output select fields. Use Pprint_Addy if you want a pretty textual output.

```
SELECT address As orig, (g.na).streetname, (g.na).streettypeabbrev
FROM (SELECT address, normalize_address(address) As na
        FROM addresses_to_geocode) As g;
```

<table>
<thead>
<tr>
<th>orig</th>
<th>streetname</th>
<th>streettypeabbrev</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 Capen Street, Medford, MA</td>
<td>Capen</td>
<td>St</td>
</tr>
<tr>
<td>124 Mount Auburn St, Cambridge, Massachusetts 02138</td>
<td>Mount Auburn</td>
<td>St</td>
</tr>
<tr>
<td>950 Main Street, Worcester, MA 01610</td>
<td>Main</td>
<td>St</td>
</tr>
<tr>
<td>529 Main Street, Boston MA, 02129</td>
<td>Main</td>
<td>St</td>
</tr>
<tr>
<td>77 Massachusetts Avenue, Cambridge, MA 02139</td>
<td>Massachusetts</td>
<td>Ave</td>
</tr>
<tr>
<td>25 Wizard of Oz, Walaford, KS 99912323</td>
<td>Wizard of Oz</td>
<td></td>
</tr>
</tbody>
</table>

See Also

Geocode, Pprint_Addy

4.8.1.14 Pagc_Normalize_Address

Page_Normalize_Address — Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This function will work with just the lookup data packaged with the tiger_geocoder (no need for tiger census data). Requires address_standardizer extension.

Synopsis

```
norm_addy page_normalize_address(varchar in_address);
```

Description

Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This is the first step in the geocoding process to get all addresses into normalized postal form. No other data is required aside from what is packaged with the geocoder.

This function just uses the various pagc_* lookup tables preloaded with the tiger_geocoder and located in the tiger schema, so it doesn’t need you to download tiger census data or any other additional data to make use of it. You may find the need to add more abbreviations or alternative namings to the various lookup tables in the tiger schema.

It uses various control lookup tables located in tiger schema to normalize the input address.

Fields in the norm_addy type object returned by this function in this order where () indicates a field required by the geocoder, [] indicates an optional field:

There are slight variations in casing and formatting over the Normalize_Address.

Availability: 2.1.0

This method needs address_standardizer extension.

```
(address) [predirAbbrev] (streetName) [streetTypeAbbrev] [postdirAbbrev] [internal] [location] [stateAbbrev] [zip]
```

The native standardaddr of address_standardizer extension is at this time a bit richer than norm_addy since its designed to support international addresses (including country). standardaddr equivalent fields are:

- house_num,predir, name, suftype, sufdir, unit, city, state, postcode

Enhanced: 2.4.0 norm_addy object includes additional fields zip4 and address_alphanumeric.
1. `address` is an integer: The street number.

2. `predirAbbrev` is `varchar`: Directional prefix of road such as N, S, E, W etc. These are controlled using the `direction_lookup` table.

3. `streetName` `varchar`

4. `streetTypeAbbrev` `varchar` abbreviated version of street type: e.g. St, Ave, Cir. These are controlled using the `street_type_lookup` table.

5. `postdirAbbrev` `varchar` abbreviated directional suffix of road N, S, E, W etc. These are controlled using the `direction_lookup` table.

6. `internal` `varchar` internal address such as an apartment or suite number.

7. `location` `varchar` usually a city or governing province.

8. `stateAbbrev` `varchar` two character US State. e.g MA, NY, MI. These are controlled by the `state_lookup` table.

9. `zip` `varchar` 5-digit zipcode. e.g. 02109.

10. `parsed` `boolean` - denotes if address was from normalized process. The `normalize_address` function sets this to true before returning the address.

11. `zip4` last 4 digits of a 9 digit zip code. Availability: PostGIS 2.4.0.

12. `address_alphanumeric` Full street number even if it has alpha characters like 17R. Parsing of this is better using `Page_Normalize_Address` function. Availability: PostGIS 2.4.0.

Examples

Single call example

```sql
SELECT addy.*
FROM page_normalize_address('9000 E ROO ST STE 999, Springfield, CO') AS addy;
```

<table>
<thead>
<tr>
<th>address</th>
<th>predirabbrev</th>
<th>streetname</th>
<th>streettypeabbrev</th>
<th>postdirabbrev</th>
<th>internal</th>
</tr>
</thead>
<tbody>
<tr>
<td>9000</td>
<td>E</td>
<td>ROO</td>
<td>ST</td>
<td></td>
<td>SUITE 999</td>
</tr>
<tr>
<td>SPRINGFIELD</td>
<td>CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Batch call. There are currently speed issues with the way postgis_tiger_geocoder wraps the address_standardizer. These will hopefully be resolved in later editions. To work around them, if you need speed for batch geocoding to call generate a normaddy in batch mode, you are encouraged to directly call the address_standardizer standardize_address function as shown below which is similar exercise to what we did in Normalize_Address that uses data created in Geocode.

```sql
WITH g AS (SELECT address, ROW((sa).house_num, (sa).predir, (sa).name
    norm_addy As na
FROM (SELECT address, standardize_address('tiger.page_lex' ,
    'tiger.page_gaz', ) As sa
FROM addresses_to_geocode) As g)
SELECT address As orig, (g.na).streetname, (g.na).streettypeabbrev
FROM g;
```

<table>
<thead>
<tr>
<th>orig</th>
<th>streetname</th>
<th>streettypeabbrev</th>
</tr>
</thead>
<tbody>
<tr>
<td>529 Main Street, Boston MA, 02129</td>
<td>MAIN</td>
<td>ST</td>
</tr>
<tr>
<td>77 Massachusetts Avenue, Cambridge, MA 02139</td>
<td>MASSACHUSETTS</td>
<td>AVE</td>
</tr>
</tbody>
</table>
4.8.1.15 Pprint_Addy

Pprint_Addy — Given a norm_addy composite type object, returns a pretty print representation of it. Usually used in conjunction with normalize_address.

Synopsis

```sql
varchar pprint_addy(norm_addy in_addy);
```

Description

Given a norm_addy composite type object, returns a pretty print representation of it. No other data is required aside from what is packaged with the geocoder.

Usually used in conjunction with Normalize_Address.

Examples

Pretty print a single address

```sql
SELECT pprint_addy(normalize_address('202 East Fremont Street, Las Vegas, Nevada 89101')) 
    AS pretty_address;
```

Pretty print address a table of addresses

```sql
SELECT address As orig, pprint_addy(normalize_address(address)) As pretty_address 
FROM addresses_to_geocode;
```

See Also

Normalize_Address, Geocode
4.8.1.16 Reverse_Geocode

Reverse_Geocode — Takes a geometry point in a known spatial ref sys and returns a record containing an array of theoretically possible addresses and an array of cross streets. If include_strnum_range = true, includes the street range in the cross streets.

Synopsis

record Reverse_Geocode(geometry pt, boolean include_strnum_range=false, geometry[] OUT intpt, norm_addy[] OUT addy, varchar[] OUT street);

Description

Takes a geometry point in a known spatial ref and returns a record containing an array of theoretically possible addresses and an array of cross streets. If include_strnum_range = true, includes the street range in the cross streets. include_strnum_range defaults to false if not passed in. Addresses are sorted according to which road a point is closest to so first address is most likely the right one.

Why do we say theoretical instead of actual addresses. The Tiger data doesn’t have real addresses, but just street ranges. As such the theoretical address is an interpolated address based on the street ranges. Like for example interpolating one of my addresses returns a 26 Court St. and 26 Court Sq., though there is no such place as 26 Court Sq. This is because a point may be at a corner of 2 streets and thus the logic interpolates along both streets. The logic also assumes addresses are equally spaced along a street, which of course is wrong since you can have a municipal building taking up a good chunk of the street range and the rest of the buildings are clustered at the end.

Note: Hmm this function relies on Tiger data. If you have not loaded data covering the region of this point, then hmm you will get a record filled with NULLS.

Returned elements of the record are as follows:

1. intpt is an array of points: These are the center line points on the street closest to the input point. There are as many points as there are addresses.

2. addy is an array of norm_addy (normalized addresses): These are an array of possible addresses that fit the input point. The first one in the array is most likely. Generally there should be only one, except in the case when a point is at the corner of 2 or 3 streets, or the point is somewhere on the road and not off to the side.

3. street an array of varchar: These are cross streets (or the street) (streets that intersect or are the street the point is projected to be on).

Enhanced: 2.4.1 if optional zcta5 dataset is loaded, the reverse_geocode function can resolve to state and zip even if the specific state data is not loaded. Refer to Loader_Generate_Nation_Script for details on loading zcta5 data.

Availability: 2.0.0

Examples

Example of a point at the corner of two streets, but closest to one. This is approximate location of MIT: 77 Massachusetts Ave, Cambridge, MA 02139 Note that although we don’t have 3 streets, PostgreSQL will just return null for entries above our upper bound so safe to use. This includes street ranges

```
SELECT pprint_addy(r.addy[1]) As st1, pprint_addy(r.addy[2]) As st2, pprint_addy(r.addy[3]) As st3,
array_to_string(r.street, ',') As cross_streets
FROM reverse_geocode(ST_GeomFromText('POINT(-71.093902 42.359446)',4269),true) As r
```

<table>
<thead>
<tr>
<th>st1</th>
<th>st2</th>
<th>st3</th>
<th>cross_streets</th>
</tr>
</thead>
</table>

result

<table>
<thead>
<tr>
<th>st1</th>
<th>st2</th>
<th>st3</th>
<th>cross_streets</th>
</tr>
</thead>
</table>

Here we choose not to include the address ranges for the cross streets and picked a location really really close to a corner of 2 streets thus could be known by two different addresses.

```sql
SELECT pprint_addy(r.addy[1]) As st1, pprint_addy(r.addy[2]) As st2, pprint_addy(r.addy[3]) As st3, array_to_string(r.street, ',') As cross_str
FROM reverse_geocode(ST_GeomFromText('POINT(-71.06941 42.34225)',4269)) As r;
```

```
result
-------
<table>
<thead>
<tr>
<th>st1</th>
<th>st2</th>
<th>st3</th>
<th>cross_str</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Bradford St, Boston, MA 02118</td>
<td>49 Waltham St, Boston, MA 02118</td>
<td></td>
<td>Waltham St</td>
</tr>
</tbody>
</table>
```

For this one we reuse our geocoded example from `Geocode` and we only want the primary address and at most 2 cross streets.

```sql
FROM (SELECT address As actual_addr, lon, lat,
       reverse_geocode( ST_SetSRID(ST_Point(lon,lat),4326) ) As rg
       FROM addresses_to_geocode WHERE rating > -1) As foo;
```

```
actual_addr | lon    | lat    | int_addr1 | cross1 | cross2
-----------------------------------------------------+-----------+----------+-------------------------------------------+-----------------+------------
529 Main Street, Boston MA, 02129 | -71.07181 | 42.38359 | 527 Main St, | 9 Edison Ave, | Tesla Ave
77 Massachusetts Avenue, Cambridge, MA 02139 | -71.09428 | 42.35988 | 77 | 77 Massachusetts Ave, Cambridge, MA 02139 | Vassar St |
26 Capen Street, Medford, MA | -71.12377 | 42.41101 | 9 Edison Ave, | 3 University | 3 University
124 Mount Auburn St, Cambridge, Massachusetts 02138 | -71.12304 | 42.37328 | 3 University | 3 University | 3 University
950 Main Street, Worcester, MA 01610 | -71.82368 | 42.24956 | 3 Maywood St, | 3 Maywood St, | 3 Maywood St, |
```

See Also

- `Pprint_Addy`, `Geocode`, `Loader_Generate_Nation_Script`

4.8.1.17 Topology_Load_Tiger

Topology_Load_Tiger — Loads a defined region of tiger data into a PostGIS Topology and transforming the tiger data to spatial reference of the topology and snapping to the precision tolerance of the topology.

Synopsis

```
text Topology_Load_Tiger(varchar topo_name, varchar region_type, varchar region_id);
```
Description

Loads a defined region of tiger data into a PostGIS Topology. The faces, nodes and edges are transformed to the spatial reference system of the target topology and points are snapped to the tolerance of the target topology. The created faces, nodes, edges maintain the same ids as the original Tiger data faces, nodes, edges so that datasets can be in the future be more easily reconciled with tiger data. Returns summary details about the process.

This would be useful for example for redistricting data where you require the newly formed polygons to follow the center lines of streets and for the resulting polygons not to overlap.

Note

This function relies on Tiger data as well as the installation of the PostGIS topology module. For more information, refer to Section 4.6 and Section 2.2.3. If you have not loaded data covering the region of interest, then no topology records will be created. This function will also fail if you have not created a topology using the topology functions.

Note

Most topology validation errors are a result of tolerance issues where after transformation the edges points don't quite line up or overlap. To remedy the situation you may want to increase or lower the precision if you get topology validation failures.

Required arguments:

1. **topo_name** The name of an existing PostGIS topology to load data into.
2. **region_type** The type of bounding region. Currently only place and county are supported. Plan is to have several more. This is the table to look into to define the region bounds. eg tiger.place, tiger.county
3. **region_id** This is what TIGER calls the geoid. It is the unique identifier of the region in the table. For place it is the plcidfp column in tiger.place. For county it is the cntyidfp column in tiger.county

Availability: 2.0.0

Example: Boston, Massachusetts Topology

Create a topology for Boston, Massachusetts in Mass State Plane Feet (2249) with tolerance 0.25 feet and then load in Boston city tiger faces, edges, nodes.

```
SELECT topology.CreateTopology('topo_boston', 2249, 0.25);
-- 60,902 ms ~ 1 minute on windows 7 desktop running 9.1 (with 5 states tiger data loaded)
SELECT tiger.topology_load_tiger('topo_boston', 'place', '2507000');
-- topology_loader_tiger --
29722 edges holding in temporary. 11108 faces added. 1875 edges of faces added. 20576 ← nodes added.
19962 nodes contained in a face. 0 edge start end corrected. 31597 edges added.
-- 41 ms --
SELECT topology.TopologySummary('topo_boston');
-- topologysummary--
Topology topo_boston (15), SRID 2249, precision 0.25
20576 nodes, 31597 edges, 11109 faces, 0 topogeoms in 0 layers
-- 28,797 ms to validate yeh returned no errors --
SELECT * FROM
```
Example: Suffolk, Massachusetts Topology

Create a topology for Suffolk, Massachusetts in Mass State Plane Meters (26986) with tolerance 0.25 meters and then load in Suffolk county tiger faces, edges, nodes.

```sql
SELECT topology.CreateTopology('topo_suffolk', 26986, 0.25);
-- this took 56,275 ms ~ 1 minute on Windows 7 32-bit with 5 states of tiger loaded
-- must have been warmed up after loading boston
SELECT tiger.topology_load_tiger('topo_suffolk', 'county', '25025');
-- topology_loader_tiger --
36003 edges holding in temporary. 13518 faces added. 2172 edges of faces added.
24761 nodes added. 24075 nodes contained in a face. 0 edge start end corrected. 38175 ←
edges added.
-- 31 ms --
SELECT topology.TopologySummary('topo_suffolk');
-- topology_summary--
Topology topo_suffolk (14), SRID 26986, precision 0.25
24761 nodes, 38175 edges, 13519 faces, 0 topogeoms in 0 layers
-- 33,606 ms to validate --
SELECT * FROM
topology.ValidateTopology('topo_suffolk');
   error | id1      | id2
-------------------+----------+-----------
 coincident nodes | 81045651 | 81064553
 edge crosses node | 81045651 | 85737793
 edge crosses node | 81045651 | 85742215
 edge crosses node | 81045651 | 620628939
 edge crosses node | 81064553 | 85697815
 edge crosses node | 81064553 | 85728168
 edge crosses node | 81064553 | 85733413
```

See Also

CreateTopology, CreateTopoGeom, TopologySummary, ValidateTopology

4.8.1.18 Set_Geocode_Setting

Set_Geocode_Setting — Sets a setting that affects behavior of geocoder functions.

Synopsis

```sql
text Set_Geocode_Setting(text setting_name, text setting_value);
```

Description

Sets value of specific setting stored in tiger.geocode_settings table. Settings allow you to toggle debugging of functions. Later plans will be to control rating with settings. Current list of settings are listed in Get_Geocode_Setting.

Availability: 2.1.0
Example return debugging setting

If you run Geocode when this function is true, the NOTICE log will output timing and queries.

```
SELECT set_geocode_setting('debug_geocode_address', 'true') As result;
result
---------
true
```

See Also

Get_Geocode_Setting
Chapter 5

PostGIS Reference

The functions given below are the ones which a user of PostGIS is likely to need. There are other functions which are required support functions to the PostGIS objects which are not of use to a general user.

Note

PostGIS has begun a transition from the existing naming convention to an SQL-MM-centric convention. As a result, most of the functions that you know and love have been renamed using the standard spatial type (ST) prefix. Previous functions are still available, though are not listed in this document where updated functions are equivalent. The non ST_ functions not listed in this documentation are deprecated and will be removed in a future release so STOP USING THEM.

5.1 PostGIS Geometry/Geography/Box Data Types

5.1.1 box2d

box2d — A 2-dimensional bounding box. Used to describe the 2D extent of a geometry or collection of geometries.

Description

box2d is a spatial data type used to represent the two-dimensional enclosing box of a geometry or collection of geometries. For example, the ST_Extent aggregate function returns a box2d object.

The representation contains the values xmin, ymin, xmax, ymax. These are the minimum and maximum values of the X and Y extents.

See Also

Section 9.7

5.1.2 box3d

box3d — A 3-dimensional bounding box. Used to describe the 3D extent of a geometry or collection of geometries.
Description

box3d is a PostGIS spatial data type used to represent the three-dimensional enclosing box of a geometry or collection of geometries. For example, the ST_3DExtent aggregate function returns a box3d object.

The representation contains the values xmin, ymin, zmin, xmax, ymax, zmax. These are the minimum and maximum values of the X, Y and Z extents.

Casting Behavior

This section lists the automatic as well as explicit casts allowed for this data type

<table>
<thead>
<tr>
<th>Cast To</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>box</td>
<td>automatic</td>
</tr>
<tr>
<td>box2d</td>
<td>automatic</td>
</tr>
<tr>
<td>geometry</td>
<td>automatic</td>
</tr>
</tbody>
</table>

See Also

Section 9.7

5.1.3 geometry

gometry — The type representing spatial features with planar coordinate systems.

Description

gometry is a fundamental PostGIS spatial data type used to represent a feature in planar (Euclidean) coordinate systems. All spatial operations on geometry use the units of the Spatial Reference System the geometry is in.

Casting Behavior

This section lists the automatic as well as explicit casts allowed for this data type

<table>
<thead>
<tr>
<th>Cast To</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>box</td>
<td>automatic</td>
</tr>
<tr>
<td>box2d</td>
<td>automatic</td>
</tr>
<tr>
<td>box3d</td>
<td>automatic</td>
</tr>
<tr>
<td>bytea</td>
<td>automatic</td>
</tr>
<tr>
<td>geography</td>
<td>automatic</td>
</tr>
<tr>
<td>text</td>
<td>automatic</td>
</tr>
</tbody>
</table>

See Also

Section 4.1.1, Section 9.3

5.1.4 geometry_dump

gometry_dump — A composite type used to describe the parts of complex geometry.
Description

geometry_dump is a composite data type containing the fields:

• geom - a references to a component geometry
• path[] - a 1-dimensional integer array that defines the navigation path within the dumped geometry to the geom component.
 The path array starts at 1 (e.g. path[1] is the first element.)

It is used by the ST_Dump* family of functions as an output type to explode a complex geometry into its constituent parts.

See Also

Section 9.6

5.1.5 geography

geography — The type representing spatial features with geodetic (ellipsoidal) coordinate systems.

Description

description is a spatial data type used to represent a feature in geodetic coordinate systems. Geodetic coordinate systems model the earth using an ellipsoid.
Spatial operations on the geography type provide more accurate results by taking the ellipsoidal model into account.

Casting Behavior

This section lists the automatic as well as explicit casts allowed for this data type

<table>
<thead>
<tr>
<th>Cast To</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>geometry</td>
<td>explicit</td>
</tr>
</tbody>
</table>

See Also

Section 4.1.2, Section 9.4

5.2 Table Management Functions

5.2.1 AddGeometryColumn

AddGeometryColumn — Adds a geometry column to an existing table.

Synopsis

text AddGeometryColumn(varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean use_typmod=true);
text AddGeometryColumn(varchar schema_name, varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean use_typmod=true);
text AddGeometryColumn(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean use_typmod=true);
Description

Adds a geometry column to an existing table of attributes. The `schema_name` is the name of the table schema. The `srid` must be an integer value reference to an entry in the `SPATIAL_REF_SYS` table. The `type` must be a string corresponding to the geometry type, eg, 'POLYGON' or 'MULTILINESTRING'. An error is thrown if the schemaname doesn’t exist (or not visible in the current search_path) or the specified SRID, geometry type, or dimension is invalid.

Note

Changed: 2.0.0 This function no longer updates `geometry_columns` since `geometry_columns` is a view that reads from system catalogs. It by default also does not create constraints, but instead uses the built in type modifier behavior of PostgreSQL. So for example building a wgs84 POINT column with this function is now equivalent to: `ALTER TABLE some_table ADD COLUMN geom geometry(Point,4326);`

Changed: 2.0.0 If you require the old behavior of constraints use the default `use_typmod`, but set it to false.

Note

Changed: 2.0.0 Views can no longer be manually registered in `geometry_columns`, however views built against geometry typmod tables geometries and used without wrapper functions will register themselves correctly because they inherit the typmod behavior of their parent table column. Views that use geometry functions that output other geometries will need to be cast to typmod geometries for these view geometry columns to be registered correctly in `geometry_columns`. Refer to Section 4.1.3.4.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Enhanced: 2.0.0 `use_typmod` argument introduced. Defaults to creating typmod geometry column instead of constraint-based.

Examples

```sql
-- Create schema to hold data
CREATE SCHEMA my_schema;
-- Create a new simple PostgreSQL table
CREATE TABLE my_schema.my_spatial_table (id serial);
-- Describing the table shows a simple table with a single "id" column.
postgis=# \d my_schema.my_spatial_table
Table "my_schema.my_spatial_table"
 Column | Type            | Modifiers
----------------+-----------------+----------------------------------------------------------
   id | integer | not null default nextval('my_schema.my_spatial_table_id_seq'::regclass)
-- Add a spatial column to the table
SELECT AddGeometryColumn ('my_schema', 'my_spatial_table', 'geom',4326,'POINT',2);
-- Add a point using the old constraint based behavior
SELECT AddGeometryColumn ('my_schema', 'my_spatial_table', 'geom_c',4326,'POINT',2, false);
-- Add a curvepolygon using old constraint behavior
SELECT AddGeometryColumn ('my_schema', 'my_spatial_table', 'geomcp_c',4326,'CURVEPOLYGON',2, false);
-- Describe the table again reveals the addition of a new geometry columns.
```
```sql
\d my_schema.my_spatial_table
addgeometrycolumn

-------------------------------------------------------------------------
| my_schema.my_spatial_table.geomcp_c SRID:4326 TYPE:CURVEPOLYGON DIMS:2 |
(1 row)
-------------------------------------------------------------------------

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>integer</td>
<td>not null default nextval('my_schema.my_spatial_table_id_seq'::regclass)</td>
</tr>
<tr>
<td>geom</td>
<td>geometry(Point,4326)</td>
<td></td>
</tr>
<tr>
<td>geom_c</td>
<td>geometry</td>
<td></td>
</tr>
<tr>
<td>geomcp_c</td>
<td>geometry</td>
<td></td>
</tr>
</tbody>
</table>

Check constraints:
- "enforce_dims_geom_c" CHECK (st_ndims(geom_c) = 2)
- "enforce_dims_geomcp_c" CHECK (st_ndims(geomcp_c) = 2)
- "enforce_geotype_geom_c" CHECK (geometrytype(geom_c) = 'POINT'::text OR geom_c IS NULL)
- "enforce_geotype_geomcp_c" CHECK (geometrytype(geomcp_c) = 'CURVEPOLYGON'::text OR geomcp_c IS NULL)
- "enforce_srid_geom_c" CHECK (st_srid(geom_c) = 4326)
- "enforce_srid_geomcp_c" CHECK (st_srid(geomcp_c) = 4326)

-- geometry_columns view also registers the new columns --
SELECT f_geometry_column As col_name, type, srid, coord_dimension As ndims
FROM geometry_columns
WHERE f_table_name = 'my_spatial_table' AND f_table_schema = 'my_schema';

<table>
<thead>
<tr>
<th>col_name</th>
<th>type</th>
<th>srid</th>
<th>ndims</th>
</tr>
</thead>
<tbody>
<tr>
<td>geom</td>
<td>Point</td>
<td>4326</td>
<td>2</td>
</tr>
<tr>
<td>geom_c</td>
<td>Point</td>
<td>4326</td>
<td>2</td>
</tr>
<tr>
<td>geomcp_c</td>
<td>CurvePolygon</td>
<td>4326</td>
<td>2</td>
</tr>
</tbody>
</table>
```

See Also

DropGeometryColumn, DropGeometryTable, Section 4.1.3.2, Section 4.1.3.4

5.2.2 DropGeometryColumn

DropGeometryColumn — Removes a geometry column from a spatial table.

Synopsis

```sql
text DropGeometryColumn(varchar table_name, varchar column_name);
```

drop GeometryColumn(varchar schema_name, varchar table_name, varchar column_name);

drop GeometryColumn(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name);

Description

Removes a geometry column from a spatial table. Note that schema_name will need to match the f_table_schema field of the table’s row in the geometry_columns table.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Note

Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs, you can drop a geometry column like any other table column using `ALTER TABLE`.

Examples

```
SELECT DropGeometryColumn ('my_schema','my_spatial_table','geom');
----RESULT output ---
dropgeometrycolumn
------------------------------------------------------
my_schema.my_spatial_table.geom effectively removed.
```

```
-- In PostGIS 2.0+ the above is also equivalent to the standard
-- the standard alter table. Both will deregister from geometry_columns
ALTER TABLE my_schema.my_spatial_table DROP column geom;
```

See Also

AddGeometryColumn, DropGeometryTable, Section 4.1.3.2

5.2.3 DropGeometryTable

DropGeometryTable — Drops a table and all its references in geometry_columns.

Synopsis

```
boolean DropGeometryTable(varchar table_name);
boolean DropGeometryTable(varchar schema_name, varchar table_name);
boolean DropGeometryTable(varchar catalog_name, varchar schema_name, varchar table_name);
```

Description

Drops a table and all its references in geometry_columns. Note: uses current_schema() on schema-aware pgsql installations if schema is not provided.

Note

Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs, you can drop a table with geometry columns like any other table using `DROP TABLE`.

Examples

```
SELECT DropGeometryTable ('my_schema','my_spatial_table');
----RESULT output ---
my_schema.my_spatial_table dropped.
```

```
-- The above is now equivalent to --
DROP TABLE my_schema.my_spatial_table;
```
See Also

AddGeometryColumn, DropGeometryColumn, Section 4.1.3.2

5.2.4 Find_SRID

Find_SRID — Returns the SRID defined for a geometry column.

Synopsis

integer Find_SRID(varchar a_schema_name, varchar a_table_name, varchar a_geomfield_name);

Description

Returns the integer SRID of the specified geometry column by searching through the GEOMETRY_COLUMNS table. If the geometry column has not been properly added (e.g. with the AddGeometryColumn function), this function will not work.

Examples

```sql
SELECT Find_SRID('public', 'tiger_us_state_2007', 'the_geom_4269');
```

find_srid

4269

See Also

ST_SRID

5.2.5 Populate_Geometry_Columns

Populate_Geometry_Columns — Ensures geometry columns are defined with type modifiers or have appropriate spatial constraints.

Synopsis

text Populate_Geometry_Columns(boolean use_typmod=true);
int Populate_Geometry_Columns(oid relation_oid, boolean use_typmod=true);

Description

Ensures geometry columns have appropriate type modifiers or spatial constraints to ensure they are registered correctly in the geometry_columns view. By default will convert all geometry columns with no type modifier to ones with type modifiers.

For backwards compatibility and for spatial needs such as table inheritance where each child table may have different geometry type, the old check constraint behavior is still supported. If you need the old behavior, you need to pass in the new optional argument as false use_typmod=false. When this is done geometry columns will be created with no type modifiers but will have 3 constraints defined. In particular, this means that every geometry column belonging to a table has at least three constraints:

- enforce_dims_the_geom - ensures every geometry has the same dimension (see ST_NDims)
- enforce_geotype_the_geom - ensures every geometry is of the same type (see GeometryType)
• `enforce_srid_the_geom` - ensures every geometry is in the same projection (see `ST_SRID`)

If a table `oid` is provided, this function tries to determine the srid, dimension, and geometry type of all geometry columns in the table, adding constraints as necessary. If successful, an appropriate row is inserted into the `geometry_columns` table, otherwise, the exception is caught and an error notice is raised describing the problem.

If the `oid` of a view is provided, as with a table `oid`, this function tries to determine the srid, dimension, and type of all the geometries in the view, inserting appropriate entries into the `geometry_columns` table, but nothing is done to enforce constraints.

The parameterless variant is a simple wrapper for the parameterized variant that first truncates and repopulates the `geometry_columns` table for every spatial table and view in the database, adding spatial constraints to tables where appropriate. It returns a summary of the number of geometry columns detected in the database and the number that were inserted into the `geometry_columns` table. The parameterized version simply returns the number of rows inserted into the `geometry_columns` table.

Availability: 1.4.0

Changed: 2.0.0 By default, now uses type modifiers instead of check constraints to constrain geometry types. You can still use check constraint behavior instead by using the new `use_typmod` and setting it to false.

Enhanced: 2.0.0 `use_typmod` optional argument was introduced that allows controlling if columns are created with typmodifiers or with check constraints.

Examples

```sql
CREATE TABLE public.myspatial_table(gid serial, geom geometry);
INSERT INTO myspatial_table(geom) VALUES(ST_GeomFromText('LINESTRING(1 2, 3 4)',4326) );
-- This will now use typ modifiers. For this to work, there must exist data
SELECT Populate_Geometry_Columns('public.myspatial_table':::regclass);

populate_geometry_columns
--------------------------
1

\d myspatial_table

Table "public.myspatial_table"

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>gid</td>
<td>integer</td>
<td>not null default nextval('myspatial_table_gid_seq':如实class)</td>
</tr>
<tr>
<td>geom</td>
<td>geometry(LineString,4326)</td>
<td></td>
</tr>
</tbody>
</table>

-- This will change the geometry columns to use constraints if they are not typmod or have ← constraints already.
--For this to work, there must exist data
CREATE TABLE public.myspatial_table_cs(gid serial, geom geometry);
INSERT INTO myspatial_table_cs(geom) VALUES(ST_GeomFromText('LINESTRING(1 2, 3 4)',4326) );
SELECT Populate_Geometry_Columns('public.myspatial_table_cs':::regclass, false);

populate_geometry_columns
--------------------------
1

\d myspatial_table_cs

Table "public.myspatial_table_cs"

<table>
<thead>
<tr>
<th>Column</th>
<th>Type</th>
<th>Modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>gid</td>
<td>integer</td>
<td>not null default nextval('myspatial_table_cs_gid_seq':如实class)</td>
</tr>
</tbody>
</table>
```
5.2.6 UpdateGeometrySRID

UpdateGeometrySRID — Updates the SRID of all features in a geometry column, and the table metadata.

Synopsis

text UpdateGeometrySRID(varchar table_name, varchar column_name, integer srid);
text UpdateGeometrySRID(varchar schema_name, varchar table_name, varchar column_name, integer srid);
text UpdateGeometrySRID(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer srid);

description

Updates the SRID of all features in a geometry column, updating constraints and reference in geometry_columns. If the column was enforced by a type definition, the type definition will be changed. Note: uses current_schema() on schema-aware psql installations if schema is not provided.

- This function supports 3d and will not drop the z-index.
- This method supports Circular Strings and Curves

Examples

Insert geometries into roads table with a SRID set already using EWKT format:

COPY roads (geom) FROM STDIN;
SRID=4326;LINESTRING(0 0, 10 10)
SRID=4326;LINESTRING(10 10, 15 0)
.

This will change the srid of the roads table to 4326 from whatever it was before:

SELECT UpdateGeometrySRID('roads','geom',4326);

The prior example is equivalent to this DDL statement:

ALTER TABLE roads
ALTER COLUMN geom TYPE geometry(MULTILINESTRING, 4326)
USING ST_SetSRID(geom,4326);

If you got the projection wrong (or brought it in as unknown) in load and you wanted to transform to web mercator all in one shot you can do this with DDL but there is no equivalent PostGIS management function to do so in one go.

ALTER TABLE roads
ALTER COLUMN geom TYPE geometry(MULTILINESTRING, 3857) USING ST_Transform(ST_SetSRID(geom ↩ ,4326),3857) ;
See Also

UpdateRasterSRID, ST_SetSRID, ST_Transform, ST_GeomFromEWKT

5.3 Geometry Constructors

5.3.1 ST_Collect

ST_Collect — Creates a GeometryCollection or Multi* geometry from a set of geometries.

Synopsis

geometry ST_Collect(geometry g1, geometry g2);
geometry ST_Collect(geometry[] g1_array);
geometry ST_Collect(geometry set g1field);

Description

Collects geometries into a geometry collection. The result is either a Multi* or a GeometryCollection, depending on whether the input geometries have the same or different types (homogeneous or heterogeneous). The input geometries are left unchanged within the collection.

Variant 1: accepts two input geometries
Variant 2: accepts an array of geometries
Variant 3: aggregate function accepting a rowset of geometries.

Note

If any of the input geometries are collections (Multi* or GeometryCollection) ST_Collect returns a GeometryCollection (since that is the only type which can contain nested collections). To prevent this, use ST_Dump in a subquery to expand the input collections to their atomic elements (see example below).

Note

ST_Collect and ST_Union appear similar, but in fact operate quite differently. ST_Collect aggregates geometries into a collection without changing them in any way. ST_Union geometrically merges geometries where they overlap, and splits linestrings at intersections. It may return single geometries when it dissolves boundaries.

Availability: 1.4.0 - ST_Collect(geomarray) was introduced. ST_Collect was enhanced to handle more geometries faster.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Examples - Two-input variant

Collect 2D points.

```
SELECT ST_AsText( ST_Collect( ST_GeomFromText('POINT(1 2)'),
    ST_GeomFromText('POINT(-2 3)')));

st_astext
----------
MULTIPOINT(1 2,-2 3)
```
Collect 3D points.

```sql
SELECT ST_AsEWKT( ST_Collect( ST_GeomFromEWKT('POINT(1 2 3)'),
    ST_GeomFromEWKT('POINT(1 2 4)') ) );
```

```
st_asewkt
-------------------------
MULTIPOINT(1 2 3,1 2 4)
```

Collect curves.

```sql
SELECT ST_AsText( ST_Collect( 'CIRCULARSTRING(220268 150415,220227 150505,220227 150406)',
    'CIRCULARSTRING(220227 150406,2220227 150407,220227 150406)') );
```

```
st_astext
------------------------------------------------------------------------------------
MULTICURVE(CIRCULARSTRING(220268 150415,220227 150505,220227 150406),
    CIRCULARSTRING(220227 150406,2220227 150407,220227 150406))
```

Examples - Array variant

Using an array constructor for a subquery.

```sql
SELECT ST_Collect( ARRAY( SELECT the_geom FROM sometable ) );
```

Using an array constructor for values.

```sql
SELECT ST_AsText( ST_Collect( ARRAY[ ST_GeomFromText('LINESTRING(1 2, 3 4)'),
    ST_GeomFromText('LINESTRING(3 4, 4 5)') ] ) ) As wktcollect;
```

```
--wkt collect --
MULTILINESTRING((1 2,3 4),(3 4,4 5))
```

Examples - Aggregate variant

Creating multiple collections by grouping geometries in a table.

```sql
SELECT stusps, ST_Collect(f.the_geom) as geom
FROM (SELECT stusps, (ST_Dump(the_geom)).geom As the_geom
    FROM somestatetable ) As f
GROUP BY stusps
```

See Also

ST_Dump, ST_Union

5.3.2 ST_LineFromMultiPoint

ST_LineFromMultiPoint — Creates a LineString from a MultiPoint geometry.

Synopsis

```sql
geometry ST_LineFromMultiPoint(geometry aMultiPoint);
```
Description

Creates a LineString from a MultiPoint geometry.
Use `ST_MakeLine` to create lines from Point or LineString inputs.

This function supports 3d and will not drop the z-index.

Examples

Create a 3D line string from a 3D MultiPoint

```
SELECT ST_AsEWKT( ST_LineFromMultiPoint('MULTIPOINT(1 2 3, 4 5 6, 7 8 9)') );
```

---result---

LINestring(1 2 3, 4 5 6, 7 8 9)

See Also

`ST_AsEWKT, ST_MakeLine`

5.3.3 ST_MakeEnvelope

`ST_MakeEnvelope` — Creates a rectangular Polygon from minimum and maximum coordinates.

Synopsis

```
geometry ST_MakeEnvelope(float xmin, float ymin, float xmax, float ymax, integer srid=unknown);
```

Description

Creates a rectangular Polygon from the minimum and maximum values for X and Y. Input values must be in the spatial reference system specified by the SRID. If no SRID is specified the unknown spatial reference system (SRID 0) is used.

Availability: 1.5
Enhanced: 2.0: Ability to specify an envelope without specifying an SRID was introduced.

Example: Building a bounding box polygon

```
SELECT ST_AsText( ST_MakeEnvelope(10, 10, 11, 11, 4326) );
```

---result---

POLYGON((10 10, 10 11, 11 11, 11 10, 10 10))

See Also

`ST_MakePoint, ST_MakeLine, ST_MakePolygon, ST_TileEnvelope`

5.3.4 ST_MakeLine

`ST_MakeLine` — Creates a Linestring from Point, MultiPoint, or LineString geometries.
Synopsis

geometry ST_MakeLine(geometry geom1, geometry geom2);
geometry ST_MakeLine(geometry[] geoms_array);
geometry ST_MakeLine(geometry set geoms);

Description

Creates a LineString containing the points of Point, MultiPoint, or LineString geometries. Other geometry types cause an error.

Variant 1: accepts two input geometries

Variant 2: accepts an array of geometries

Variant 3: aggregate function accepting a rowset of geometries. To ensure the order of the input geometries use `ORDER BY` in the function call, or a subquery with an `ORDER BY` clause.

Repeated nodes at the beginning of input LineStrings are collapsed to a single point. Repeated points in Point and MultiPoint inputs are not collapsed. ST_RemoveRepeatedPoints can be used to collapse repeated points from the output LineString.

This function supports 3d and will not drop the z-index.

Availability: 2.3.0 - Support for multipoint input elements was introduced

Availability: 2.0.0 - Support for linestring input elements was introduced

Availability: 1.4.0 - ST_MakeLine(geomarray) was introduced. ST_MakeLine aggregate functions was enhanced to handle more points faster.

Examples: Two-input variant

Create a line composed of two points.

```sql
SELECT ST_AsText( ST_MakeLine(ST_MakePoint(1,2), ST_MakePoint(3,4)) );
```

```
st_astext
---------------------
LINESTRING(1 2,3 4)
```

Create a 3D line from two 3D points.

```sql
SELECT ST_AsEWKT( ST_MakeLine(ST_MakePoint(1,2,3), ST_MakePoint(3,4,5) ));
```

```
st_asetwkt
-------------------------
LINESTRING(1 2 3,3 4 5)
```

Create a line from two disjoint LineStrings.

```sql
select ST_AsText( ST_MakeLine( 'LINESTRING(0 0, 1 1)', 'LINESTRING(2 2, 3 3)' ) );
```

```
st_astext
-----------------------------
LINESTRING(0,0,1,2,3,3)
```
Examples: Array variant

Create a line from an array formed by a subquery with ordering.

```sql
SELECT ST_MakeLine( ARRAY( SELECT ST_Centroid(the_geom) FROM visit_locations ORDER BY visit_time) );
```

Create a 3D line from an array of 3D points

```sql
SELECT ST_AsEWKT( ST_MakeLine(
    ARRAY[ ST_MakePoint(1,2,3), ST_MakePoint(3,4,5), ST_MakePoint(6,6,6) ] ));
```

```
st_asewkt
-------------------------
LINESTRING(1 2 3,3 4 5,6 6 6)
```

Examples: Aggregate variant

This example queries time-based sequences of GPS points from a set of tracks and creates one record for each track. The result geometries are LineStrings composed of the GPS track points in the order of travel.

Using aggregate ORDER BY provides a correctly-ordered linestring.

```sql
SELECT gps.track_id, ST_MakeLine(gps.geom ORDER BY gps_time) As geom
FROM gps_points As gps
GROUP BY track_id;
```

Prior to PostgreSQL 9, ordering in a subquery can be used. However, sometimes the query plan may not respect the order of the subquery.

```sql
SELECT gps.track_id, ST_MakeLine(gps.geom) As geom
FROM ( SELECT track_id, gps_time, geom
    FROM gps_points ORDER BY track_id, gps_time ) As gps
GROUP BY track_id;
```

See Also

ST_RemoveRepeatedPoints, ST_AsEWKT, ST_AsText, ST_GeomFromText, ST_MakePoint

5.3.5 ST_MakePoint

ST_MakePoint — Creates a 2D, 3D or 4D Point.

Synopsis

```sql
geometry ST_MakePoint(float x, float y);
geometry ST_MakePoint(float x, float y, float z);
geometry ST_MakePoint(float x, float y, float z, float m);
```
Description

Creates a 2D, 3D Z or 4D ZM Point geometry.

Use `ST_MakePointM` to make points with XYM coordinates.

While not OGC-compliant, `ST_MakePoint` is faster and more precise than `ST_GeomFromText` and `ST_PointFromText`. It is also easier to use for numeric coordinate values.

Note

For geodetic coordinates, X is longitude and Y is latitude

This function supports 3d and will not drop the z-index.

Examples

```
--Return point with unknown SRID
SELECT ST_MakePoint(-71.1043443253471, 42.3150676015829);

--Return point marked as WGS 84 long lat
SELECT ST_SetSRID(ST_MakePoint(-71.1043443253471, 42.3150676015829), 4326);

--Return a 3D point (e.g. has altitude)
SELECT ST_MakePoint(1, 2, 1.5);

--Get z of point
SELECT ST_Z(ST_MakePoint(1, 2, 1.5));
result
-------
1.5
```

See Also

`ST_GeomFromText`, `ST_PointFromText`, `ST_SetSRID`, `ST_MakePointM`

5.3.6 ST_MakePointM

ST_MakePointM — Creates a Point from X, Y and M values.

Synopsis

gameyty `ST_MakePointM(float x, float y, float m);`

Description

Creates a point with X, Y and M (measure) coordinates.

Use `ST_MakePoint` to make points with XY, XYZ, or XYZM coordinates.

Note

For geodetic coordinates, X is longitude and Y is latitude
Examples

Note

ST_AsEWKT is used for text output because ST_AsText does not support M values.

Create point with unknown SRID.

```sql
SELECT ST_AsEWKT( ST_MakePointM(-71.1043443253471, 42.3150676015829, 10) );
```

```
st_asewkt
-----------------------------------------------
POINTM(-71.1043443253471 42.3150676015829 10)
```

Create point with a measure in the WGS 84 geodetic coordinate system.

```sql
SELECT ST_AsEWKT( ST_SetSRID( ST_MakePointM(-71.104, 42.315, 10), 4326));
```

```
st_asewkt
---------------------------------------------------------
SRID=4326;POINTM(-71.104 42.315 10)
```

Get measure of created point.

```sql
SELECT ST_M( ST_MakePointM(-71.104, 42.315, 10) );
```

```
result
-------
10
```

See Also

ST_AsEWKT, ST_MakePoint, ST_SetSRID

5.3.7 **ST_MakePolygon**

ST_MakePolygon — Creates a Polygon from a shell and optional list of holes.

Synopsis

```sql
geometry ST_MakePolygon( geometry linestring);
game geometry ST_MakePolygon( geometry outerlinestring, geometry[] interiorlinestrings);
```

Description

Creates a Polygon formed by the given shell and optional array of holes. Input geometries must be closed LineStrings (rings).

Variant 1: Accepts one shell LineString.

Variant 2: Accepts a shell LineString and an array of inner (hole) LineStrings. A geometry array can be constructed using the PostgreSQL array_agg(), ARRAY[] or ARRAY() constructs.
Note

This function does not accept MultiLineStrings. Use `ST_LineMerge` to generate a LineString, or `ST_Dump` to extract LineStrings.

This function supports 3d and will not drop the z-index.

Examples: Single input variant

Create a Polygon from a 2D LineString.

```sql
SELECT ST_MakePolygon( ST_GeomFromText('LINESTRING(75 29,77 29,77 29, 75 29)'));
```

Create a Polygon from an open LineString, using `ST_StartPoint` and `ST_AddPoint` to close it.

```sql
SELECT ST_MakePolygon( ST_AddPoint(foo.open_line, ST_StartPoint(foo.open_line)) )
FROM (SELECT ST_GeomFromText('LINESTRING(75 29,77 29,77 29, 75 29)') As open_line) As foo;
```

Create a Polygon from a 3D LineString

```sql
SELECT ST_AsEWKT( ST_MakePolygon( 'LINESTRING(75.15 29.53 1,77 29 1,77.6 29.5 1, 75.15 29.53 1)'));
```

Create a Polygon from a LineString with measures

```sql
SELECT ST_AsEWKT( ST_MakePolygon( 'LINESTRINGM(75.15 29.53 1,77 29 1,77.6 29.5 2, 75.15 29.53 1)'));
```

Examples: Outer shell with inner holes variant

Create a donut Polygon with an extra hole

```sql
SELECT ST_MakePolygon( ST_ExteriorRing( ST_Buffer(ring.line,10)),
ARRAY[( ST_Translate(ring.line, 1, 1),
   ST_ExteriorRing(ST_Buffer(ST_MakePoint(20,20),1)) ])
   FROM (SELECT ST_ExteriorRing( ST_Buffer(ST_MakePoint(10,10),10,10)) AS line ) AS ring;
```

Create a set of province boundaries with holes representing lakes. The input is a table of province Polygons/MultiPolygons and a table of water linestrings. Using a LEFT JOIN ensures all provinces are included even if they have no lakes.

```
Note

The CASE construct is used because passing a null array into ST_MakePolygon results in a NULL return value.
```

```sql
SELECT ST_MakePolygon( ST_ExteriorRing( ST_Buffer(ring.line,10)),
ARRAY[( ST_Translate(ring.line, 1, 1),
   ST_ExteriorRing(ST_Buffer(ST_MakePoint(20,20),1)) ])
   FROM (SELECT ST_ExteriorRing( ST_Buffer(ST_MakePoint(10,10),10,10)) AS line ) AS ring;
```

Create a set of province boundaries with holes representing lakes. The input is a table of province Polygons/MultiPolygons and a table of water linestrings. Using a LEFT JOIN ensures all provinces are included even if they have no lakes.
SELECT p.gid, p.province_name,
 CASE WHEN array_agg(w.the_geom) IS NULL
 THEN p.the_geom
 ELSE ST_MakePolygon(ST_LineMerge(ST_Boundary(p.the_geom)), array_agg(w.the_geom)) END
FROM provinces p LEFT JOIN waterlines w
 ON (ST_Within(w.the_geom, p.the_geom) AND ST_IsClosed(w.the_geom))
GROUP BY p.gid, p.province_name, p.the_geom;

Another technique is to utilize a correlated subquery and the ARRAY() constructor that converts a row set to an array.

SELECT p.gid, p.province_name,
 CASE WHEN EXISTS(SELECT w.the_geom
 FROM waterlines w
 WHERE ST_Within(w.the_geom, p.the_geom)
 AND ST_IsClosed(w.the_geom))
 THEN ST_MakePolygon(
 ST_LineMerge(ST_Boundary(p.the_geom)),
 ARRAY(SELECT w.the_geom
 FROM waterlines w
 WHERE ST_Within(w.the_geom, p.the_geom)
 AND ST_IsClosed(w.the_geom)))
 ELSE p.the_geom
 END AS the_geom
FROM provinces p;

See Also

ST_Boundary, ST_AddPoint, ST_IsClosed, ST_LineMerge, ST_StartPoint, ST_BuildArea

5.3.8 ST_Point

ST_Point — Creates a Point with the given coordinate values. Alias for ST_MakePoint.

Synopsis

gamey ST_Point(float x, float y);

Description

Returns an Point with the given X and Y coordinate values. This is the SQL-MM alias for ST_MakePoint that takes just X and Y.

Note

For geodetic coordinates, X is longitude and Y is latitude

This method implements the SQL/MM specification. SQL-MM 3: 6.1.2

Examples: Geometry

SELECT ST_SetSRID(ST_Point(-71.104, 42.315), 4326)
Examples: Geography

```
SELECT CAST(ST_SetSRID( ST_Point( -71.104, 42.315), 4326) AS geography);
```

PostgreSQL also provides the :: short-hand for casting

```
SELECT ST_SetSRID( ST_Point( -71.104, 42.315), 4326)::geography;
```

If the point coordinates are not in a geodetic coordinate system (such as WGS84), then they must be reprojected before casting to a geography. In this example a point in Pennsylvania State Plane feet (SRID 2273) is projected to WGS84 (SRID 4326).

```
SELECT ST_Transform(ST_SetSRID( ST_Point( 3637510, 3014852 ), 2273), 4326)::geography;
```

See Also

Section 4.1.2.1, ST_MakePoint, ST_SetSRID, ST_Transform

5.3.9 ST_Polygon

ST_Polygon — Creates a Polygon from a LineString with a specified SRID.

Synopsis

```
geometry ST_Polygon( geometry lineString, integer srid);
```

Description

Returns a polygon built from the given LineString and sets the spatial reference system from the srid.

ST_Polygon is similar to ST_MakePolygon Variant 1 with the addition of setting the SRID.

To create polygons with holes use ST_MakePolygon Variant 2 and then ST_SetSRID.

Note

This function does not accept MultiLineStrings. Use ST_LineMerge to generate a LineString, or ST_Dump to extract LineStrings.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 8.3.2

This function supports 3d and will not drop the z-index.

Examples

Create a 2D polygon.

```
SELECT ST_AsText( ST_Polygon('LINESTRING(75 29, 77 29, 77 29, 75 29)::geometry, 4326)');
```

-- result --

```
POLYGON((75 29, 77 29, 77 29, 75 29))
```
Create a 3D polygon.

```sql
SELECT ST_AsEWKT( ST_Polygon( ST_GeomFromEWKT('LINESTRING(75 29 1, 77 29 2, 77 29 3, 75 29 1)'), 4326) );
```

-- result --
SRID=4326;POLYGON((75 29 1, 77 29 2, 77 29 3, 75 29 1))

See Also

ST_AsEWKT, ST_AsText, ST_GeomFromEWKT, ST_GeomFromText, ST_LineMerge, ST_MakePolygon

5.3.10 ST_TileEnvelope

ST_TileEnvelope — Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.

Synopsis

```sql
geometry ST_TileEnvelope(integer tileZoom, integer tileX, integer tileY, geometry bounds=SRID=3857;LINESTRING(-20037508.342789 -20037508.342789,20037508.342789 20037508.342789), float margin=0.0);
```

Description

Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system. By default, the bounds are the in EPSG:3857 using the standard range of the Web Mercator system (-20037508.342789, 20037508.342789). The optional bounds parameter can be used to generate envelopes for any tiling scheme: provide a geometry that has the SRID and extent of the initial "zoom level zero" square within which the tile system is to be inscribed.

The optional margin parameter can be used to grow a tile by the given percentage, e.g. margin=0.125 grows the tile by 12.5%, which is equivalent to buffer=512 when extent is 4096, as used in ST_AsMVTGeom. This is useful to create a tile buffer -- to include data lying outside of the tile’s visible area, but whose existence affects current tile’s rendering. For example, a city name (a geopoint) could be near an edge of a tile, but the text would need to render on two tiles, even though the geopoint is located in the visible area of just one tile. Using an expanded tile in a search would include the city geopoint for both tiles. Use negative value to shrink the tile instead. Values less than -0.5 are prohibited because that would eliminate the tile completely. Do not use margin with ST_AsMVTGeom(). See example in ST_AsMVT.

Enhanced: 3.1.0 Added margin parameter.

Availability: 3.0.0

Example: Building a tile envelope

```sql
SELECT ST_AsText( ST_TileEnvelope(2, 1, 1) );
```

```
st_astext
-------------------------------
POLYGON((-10018754.1713945 0,-10018754.1713945 10018754.1713945 0 10018754.1713945 0 -10018754.1713945 0))
```

```sql
SELECT ST_AsText( ST_TileEnvelope(3, 1, 1, ST_MakeEnvelope(-180, -90, 180, 90, 4326) ) );
```

```
-------------------------------
POLYGON((-135 45,-135 67.5,-90 67.5,-90 45,-135 45))
```
See Also

ST_MakeEnvelope

5.3.11 ST_HexagonGrid

ST_HexagonGrid — Returns a set of hexagons and cell indices that completely cover the bounds of the geometry argument.

Synopsis

setof record ST_HexagonGrid(float8 size, geometry bounds);

Description

Starts with the concept of a hexagon tiling of the plane. (Not a hexagon tiling of the globe, this is not the H3 tiling scheme.) For a given planar SRS, and a given edge size, starting at the origin of the SRS, there is one unique hexagonal tiling of the plane, Tiling(SRS, Size). This function answers the question: what hexagons in a given Tiling(SRS, Size) overlap with a given bounds.

The SRS for the output hexagons is the SRS provided by the bounds geometry.

Doubling or tripling the edge size of the hexagon generates a new parent tiling that fits with the origin tiling. Unfortunately, it is not possible to generate parent hexagon tilings that the child tiles perfectly fit inside.
Example: Counting points in hexagons

To do a point summary against a hexagonal tiling, generate a hexagon grid using the extent of the points as the bounds, then spatially join to that grid.

```
SELECT COUNT(*), hexes.geom
FROM
    ST_HexagonGrid(
        10000,
        ST_SetSRID(ST_EstimatedExtent('pointtable', 'geom'), 3857)
    ) AS hexes
INNER JOIN
    pointtable AS pts
ON ST_Intersects(pts.geom, hexes.geom)
GROUP BY hexes.geom;
```

Example: Generating hex coverage of polygons

If we generate a set of hexagons for each polygon boundary and filter out those that do not intersect their hexagons, we end up with a tiling for each polygon.
Tiling states results in a hexagon coverage of each state, and multiple hexagons overlapping at the borders between states.

Note
The LATERAL keyword is implied for set-returning functions when referring to a prior table in the FROM list. So CROSS JOIN LATERAL, CROSS JOIN, or just plain , are equivalent constructs for this example.

```sql
SELECT admin1.gid, hex.geom
FROM admin1
  CROSS JOIN ST_HexagonGrid(100000, admin1.geom) AS hex
WHERE adm0_a3 = 'USA'
  AND ST_Intersection(admin1.geom, hex.geom)
```

See Also

ST_EstimatedExtent, ST_SetSRID, ST_SquareGrid, ST_TileEnvelope

5.3.12 ST_SquareGrid

ST_SquareGrid — Returns a set of grid squares and cell indices that completely cover the bounds of the geometry argument.

Synopsis

setof record ST_SquareGrid(float8 size, geometry bounds);
Description

Starts with the concept of a square tiling of the plane. For a given planar SRS, and a given edge size, starting at the origin of the SRS, there is one unique square tiling of the plane, Tiling(SRS, Size). This function answers the question: what grids in a given Tiling(SRS, Size) overlap with a given bounds.

The SRS for the output squares is the SRS provided by the bounds geometry.

Doubling or edge size of the square generates a new parent tiling that perfectly fits with the original tiling. Standard web map tilings in mercator are just powers-of-two square grids in the mercator plane.

Availability: 3.1.0

Example: Counting points in squares (using single chopped grid)

To do a point summary against a square tiling, generate a square grid using the extent of the points as the bounds, then spatially join to that grid. Note the estimated extent might be off from actual extent, so be cautious and at very least make sure you’ve analyzed your table.

```sql
SELECT COUNT(*), squares.geom
FROM pointtable AS pts
INNER JOIN ST_SquareGrid(1000, ST_SetSRID(ST_EstimatedExtent('pointtable', 'geom'), 3857)) AS squares
ON ST_Intersects(pts.geom, squares.geom)
GROUP BY squares.geom
```

Example: Counting points in squares using set of grid per point

This yields the same result as the first example but will be slower for a large number of points

```sql
SELECT COUNT(*), squares.geom
FROM pointtable AS pts
INNER JOIN ST_SquareGrid(1000, pts.geom) AS squares
ON ST_Intersects(pts.geom, squares.geom)
GROUP BY squares.geom
```

See Also

ST_TileEnvelope, ST_HexagonGrid, ST_EstimatedExtent, ST_SetSRID

5.3.13 ST_Hexagon

ST_Hexagon — Returns a single hexagon, using the provided edge size and cell coordinate within the hexagon grid space.

Synopsis

gameometry ST_Hexagon(float8 size, integer cell_i, integer cell_j, geometry origin);
Description

Uses the same hexagon tiling concept as `ST_HexagonGrid`, but generates just one hexagon at the desired cell coordinate. Optionally, can adjust origin coordinate of the tiling, the default origin is at 0,0.

Hexagons are generated with no SRID set, so use `ST_SetSRID` to set the SRID to the one you expect.

Availability: 3.1.0

Example: Creating a hexagon at the origin

```sql
SELECT ST_AsText(ST_SetSRID(ST_Hexagon(1.0, 0, 0), 3857));
```

```
POLYGON((-1 0,-0.5
     -0.866025403784439,0.5
     -0.866025403784439,1
     0,0.5
     0.866025403784439,-0.5
     0.866025403784439,-1 0))
```

See Also

`ST_TileEnvelope`, `ST_HexagonGrid`, `ST_Square`

5.3.14 ST_Square

ST_Square — Returns a single square, using the provided edge size and cell coordinate within the hexagon grid space.

Synopsis

```sql
geometry ST_Square(float8 size, integer cell_i, integer cell_j, geometry origin);
```

Description

Uses the same square tiling concept as `ST_SquareGrid`, but generates just one square at the desired cell coordinate. Optionally, can adjust origin coordinate of the tiling, the default origin is at 0,0.

Squares are generated with no SRID set, so use `ST_SetSRID` to set the SRID to the one you expect.

Availability: 3.1.0

Example: Creating a square at the origin

```sql
SELECT ST_AsText(ST_SetSRID(ST_Square(1.0, 0, 0), 3857));
```

```
POLYGON((0 0,0 1,1 1,1 0,0 0))
```

See Also

`ST_TileEnvelope`, `ST_SquareGrid`, `ST_Hexagon`
5.4 Geometry Accessors

5.4.1 GeometryType

GeometryType — Returns the type of a geometry as text.

Synopsis

text GeometryType(geometry geomA);

Description

Returns the type of the geometry as a string. Eg: 'LINESTRING', 'POLYGON', 'MULTIPOINT', etc.

OGC SPEC s2.1.1.1 - Returns the name of the instantiable subtype of Geometry of which this Geometry instance is a member. The name of the instantiable subtype of Geometry is returned as a string.

Note

This function also indicates if the geometry is measured, by returning a string of the form 'POINTM'.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method supports Circular Strings and Curves

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

```sql
SELECT GeometryType(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
gameType
--------------
LINESTRING
```

```sql
SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 1 0, 1 1 0, 1 0 0, 0 0 0)),
((0 0 0, 1 0 0, 0 1 1)),
((0 0 1, 0 1 0, 1 0 0, 1 0 0)),
((0 1 0, 0 0 1, 1 1 1)),
((0 0 1, 0 1 1, 1 1 1, 0 1 0)),
((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));
--result
POLYHEDRALSURFACE
```
SELECT GeometryType(geom) as result
FROM
(SELECT
 ST_GeomFromEWKT('TIN (((
 0 0 0,
 0 0 1,
 0 1 0,
 0 0 0
))) , ((
 0 0 0,
 0 1 0,
 1 1 0,
 0 0 0
))) AS geom
) AS g;

result

TIN

See Also

ST_GeometryType

5.4.2 ST_Boundary

ST_Boundary — Returns the boundary of a geometry.

Synopsis

gometry ST_Boundary(geometry geomA);

Description

Returns the closure of the combinatorial boundary of this Geometry. The combinatorial boundary is defined as described in section 3.12.3.2 of the OGC SPEC. Because the result of this function is a closure, and hence topologically closed, the resulting boundary can be represented using representational geometry primitives as discussed in the OGC SPEC, section 3.12.2.

Performed by the GEOS module

Note

Prior to 2.0.0, this function throws an exception if used with GEOMETRYCOLLECTION. From 2.0.0 up it will return NULL instead (unsupported input).

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. OGC SPEC s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.14

This function supports 3d and will not drop the z-index.

Enhanced: 2.1.0 support for Triangle was introduced

Examples
Linestring with boundary points overlaid

```
SELECT ST_Boundary(geom)
FROM (SELECT 'LINESTRING(100 150,50 60, 70 80, 160 170)'::geometry As geom) As f;
```

```
SELECT ST_AsText(ST_Boundary(ST_GeomFromText('LINESTRING(1 1,0 0, -1 1)')));
```

```
st_asext
-----------
MULTIPOINT(1 1,-1 1)
```

```
SELECT ST_AsText(ST_Boundary(ST_GeomFromText('POLYGON((1 1,0 0, -1 1, 1 1))')));
```

```
st_asext
--------
LINESTRING(1 1,0 0,-1 1,1 1)
```

-- Using a 3d polygon
```
SELECT ST_AsEWKT(ST_Boundary(ST_GeomFromEWKT('POLYGON((1 1,0 0, -1 1, 1 1))')));
```

```
st_asewkt
-----------------
LINESTRING(1 1,0 0,-1 1,1 1)
```

-- Using a 3d multilinestring
```
SELECT ST_AsEWKT(ST_Boundary(ST_GeomFromEWKT('MULTILINESTRING((1 1,0 0 0.5, -1 1 0), (0.5 0 0.5, -1 1 0.5))')));
```

```
st_asewkt
--------
MULTIPOINT(-1 1,1 1 0.75)
```
5.4.3 ST_CoordDim

ST_CoordDim — Return the coordinate dimension of a geometry.

Synopsis

integer \texttt{ST_CoordDim}(\texttt{geometry} \texttt{geomA});

Description

Return the coordinate dimension of the \texttt{ST_Geometry} value.

This is the MM compliant alias name for \texttt{ST_NDims}

- This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
- This method implements the SQL/MM specification. SQL-MM 3: 5.1.3
- This method supports Circular Strings and Curves
- This function supports 3d and will not drop the z-index.
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

\begin{verbatim}
SELECT ST_CoordDim('CIRCULARSTRING(1 2 3, 1 3 4, 5 6 7, 8 9 10, 11 12 13)');
---result---
 3

SELECT ST_CoordDim(ST_Point(1,2));
---result---
 2
\end{verbatim}

See Also

ST_NDims

5.4.4 ST_Dimension

ST_Dimension — Returns the topological dimension of a geometry.

Synopsis

integer \texttt{ST_Dimension}(\texttt{geometry} \texttt{g});
Description

Return the topological dimension of this Geometry object, which must be less than or equal to the coordinate dimension. OGC SPEC s2.1.1.1 - returns 0 for POINT, 1 for LINESTRING, 2 for POLYGON, and the largest dimension of the components of a GEOMETRYCOLLECTION. If the dimension is unknown (e.g. for an empty GEOMETRYCOLLECTION) 0 is returned.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.2
Enhanced: 2.0.0 support for Polyhedral surfaces and TINs was introduced. No longer throws an exception if given empty geometry.

Note

Prior to 2.0.0, this function throws an exception if used with empty geometry.

This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

```sql
SELECT ST_Dimension('GEOMETRYCOLLECTION(LINESTRING(1 1,0 0),POINT(0 0))');
```

<table>
<thead>
<tr>
<th>ST_Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

See Also

ST_NDims

5.4.5 ST_Dump

ST_Dump — Returns a set of geometry_dump rows for the components of a geometry.

Synopsis

```sql
geometry_dump[] ST_Dump(geometry g1);
```

Description

This is a set-returning function (SRF). It returns a set of geometry_dump rows, formed by a geometry (geom) and an array of integers (path). When the input geometry is a simple type (POINT,LINESTRING,POLYGON) a single record will be returned with an empty path array and the input geometry as geom. When the input geometry is a collection or multi it will return a record for each of the collection components, and the path will express the position of the component inside the collection.

ST_Dump is useful for expanding geometries. It is the reverse of a GROUP BY in that it creates new rows. For example it can be use to expand MULTIPOLYGONS into POLYGONS.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: PostGIS 1.0.0RC1. Requires PostgreSQL 7.3 or higher.
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This function supports 3d and will not drop the z-index.

Standard Examples

```sql
SELECT sometable.field1, sometable.field1,
       (ST_Dump(sometable.the_geom)).geom AS the_geom
FROM sometable;
```

```sql
-- Break a compound curve into its constituent linestrings and circularstrings
SELECT ST_AsEWKT(a.geom), ST_HasArc(a.geom)
FROM ( SELECT (ST_Dump(p_geom)).geom AS geom
       FROM (SELECT ST_GeomFromEWKT('COMPOUNDCURVE(CIRCULARSTRING(0 0, 1 1, 1 0),(1 0, 0 1))') AS p_geom) AS b
     ) AS a;
```

<table>
<thead>
<tr>
<th>st_asewkt</th>
<th>st_hasarc</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCULARSTRING(0 0,1 1,1 0)</td>
<td>t</td>
</tr>
<tr>
<td>LINESTRING(1 0,0 1)</td>
<td>f</td>
</tr>
</tbody>
</table>

(2 rows)

Polyhedral Surfaces, TIN and Triangle Examples

```sql
-- Polyhedral surface example
-- Break a Polyhedral surface into its faces
FROM (SELECT ST_Dump(ST_GeomFromEWKT('POLYHEDRALSURFACE(
((0 0 0, 0 1 0, 1 1 0,1 0 0,0 0 0)),
((0 0 0, 0 1 0, 1 1 0,1 0 0,0 0 0)),
((0 0 0, 0 1 0, 1 1 0,1 0 0,0 0 0)),
((1 1 0, 1 1 1, 1 0 1,1 0 0,1 1 0),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0))
)') ) AS p_geom ) AS a;
```

<table>
<thead>
<tr>
<th>path</th>
<th>geom_ewkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POLYGON((0 0 0,0 0 0,1,0 0 1,0 0 1,0 0 0))</td>
</tr>
<tr>
<td>2</td>
<td>POLYGON((0 0 0,0 0 0,1,0 0 1,0 0 1,0 0 0))</td>
</tr>
<tr>
<td>3</td>
<td>POLYGON((0 0 0,0 0 0,1,0 0 1,0 0 1,0 0 0))</td>
</tr>
<tr>
<td>4</td>
<td>POLYGON((1 1 0,1 1 1,1 0 1,1 0 1,0 1 0))</td>
</tr>
<tr>
<td>5</td>
<td>POLYGON((0 0 0,0 0 0,1,0 0 1,0 0 1,0 0 0))</td>
</tr>
<tr>
<td>6</td>
<td>POLYGON((0 0 0,0 0 0,1,0 0 1,0 0 1,0 0 0))</td>
</tr>
</tbody>
</table>

```sql
-- TIN --
SELECT (g.gdump).path, ST_AsEWKT((g.gdump).geom) as wkt
FROM
```

(2 rows)
```sql
ST_Dump( ST_GeomFromEWKT('TIN (((
0 0 0,
0 0 1,
0 1 0,
0 0 0
)), ((
0 0 0,
0 1 0,
1 1 0,
0 0 0
))
}) AS gdump
) AS g;
```

<table>
<thead>
<tr>
<th>path</th>
<th>wkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>TRIANGLE((0 0 0, 0 1 0, 0 0 0))</td>
</tr>
<tr>
<td>{2}</td>
<td>TRIANGLE((0 0 0, 1 0 0, 0 0 0))</td>
</tr>
</tbody>
</table>

See Also

- `geometry_dump`, Section 9.6, `ST_Collect, ST_Collect`, `ST_GeometryN`

5.4.6 ST_DumpPoints

ST_DumpPoints — Returns a set of `geometry_dump` rows for the points in a geometry.

Synopsis

```sql
geometry_dump[]ST_DumpPoints(geometry geom);
```

Description

This set-returning function (SRF) returns a set of `geometry_dump` rows formed by a geometry (`geom`) and an array of integers (`path`).

The `geom` component of `geometry_dump` are all the POINTs that make up the supplied geometry.

The `path` component of `geometry_dump` (an integer[]) is an index reference enumerating the POINTs of the supplied geometry. For example, if a LINESTRING is supplied, a path of `{i}` is returned where `i` is the `n`th coordinate in the LINESTRING. If a POLYGON is supplied, a path of `{i,j}` is returned where `i` is the ring number (1 is outer; inner rings follow) and `j` enumerates the POINTs (again 1-based index).

Enhanced: 2.1.0 Faster speed. Reimplemented as native-C.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

Availability: 1.5.0

- This method supports Circular Strings and Curves
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
- This function supports 3d and will not drop the z-index.
Classic Explode a Table of LineStrings into nodes

```sql
SELECT edge_id, (dp).path[1] As index, ST_AsText((dp).geom) As wktnode
FROM (SELECT 1 As edge_id,
    ST_DumpPoints(ST_GeomFromText('LINESTRING(1 2, 3 4, 10 10)')) AS dp
UNION ALL
    SELECT 2 As edge_id,
    ST_DumpPoints(ST_GeomFromText('LINESTRING(3 5, 5 6, 9 10)')) AS dp
) As foo;
```

<table>
<thead>
<tr>
<th>edge_id</th>
<th>index</th>
<th>wktnode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>POINT(1 2)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>POINT(3 4)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>POINT(10 10)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>POINT(3 5)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>POINT(5 6)</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>POINT(9 10)</td>
</tr>
</tbody>
</table>

Standard Geometry Examples

```sql
SELECT path, ST_AsText(geom)
FROM (SELECT (ST_DumpPoints(g.geom)).* FROM
    (SELECT 'GEOMETRYCOLLECTION(
        POINT ( 0 1 ),
        LINESTRING ( 0 3, 3 4 ),
        POLYGON (( 2 0, 2 3, 0 2, 2 0 )),
        POLYGON (( 3 0, 3 3, 6 3, 6 0, 3 0 ),
            ( 5 1, 4 2, 5 2, 5 1 )),
        MULTIPOLYGON {
            ( ( 0 5, 0 8, 4 8, 4 5, 0 5 ),
            ( 1 6, 3 6, 2 7, 1 6 )),
            ( ( 5 4, 5 8, 6 7, 5 4 ))
        }
    )::geometry AS geom
    ) AS g
) j;
```

<table>
<thead>
<tr>
<th>path</th>
<th>st_astext</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Polyhedral Surfaces, TIN and Triangle Examples

-- Polyhedral surface cube --

```sql
SELECT (g.gdump).path, ST_AsEWKT((g.gdump).geom) as wkt
FROM
  (SELECT
    ST_DumpPoints(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
    ((1 0 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
    ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )') ) AS gdump
  ) AS g;
```

-- result --

<table>
<thead>
<tr>
<th>path</th>
<th>wkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,1,1}</td>
<td>POINT(0 0 0)</td>
</tr>
<tr>
<td>{1,1,2}</td>
<td>POINT(0 0 1)</td>
</tr>
<tr>
<td>{1,1,3}</td>
<td>POINT(0 1 1)</td>
</tr>
<tr>
<td>{1,1,4}</td>
<td>POINT(0 1 0)</td>
</tr>
<tr>
<td>{1,1,5}</td>
<td>POINT(0 0 0)</td>
</tr>
<tr>
<td>{1,2,1}</td>
<td>POINT(0 0 0)</td>
</tr>
<tr>
<td>{1,2,2}</td>
<td>POINT(0 0 0)</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>POINT(1 0 0)</td>
</tr>
<tr>
<td>{2,1,1}</td>
<td>POINT(1 0 0)</td>
</tr>
<tr>
<td>{2,1,2}</td>
<td>POINT(1 0 0)</td>
</tr>
<tr>
<td>{2,1,3}</td>
<td>POINT(1 0 0)</td>
</tr>
<tr>
<td>{2,1,4}</td>
<td>POINT(1 0 0)</td>
</tr>
<tr>
<td>{2,1,5}</td>
<td>POINT(1 0 0)</td>
</tr>
<tr>
<td>{3,1,1}</td>
<td>POINT(0 0 0)</td>
</tr>
<tr>
<td>{3,1,2}</td>
<td>POINT(0 0 0)</td>
</tr>
<tr>
<td>{3,1,3}</td>
<td>POINT(0 1 0)</td>
</tr>
</tbody>
</table>

(29 rows)
(3,1,4) | POINT(0 0 1)
(3,1,5) | POINT(0 0 0)
(4,1,1) | POINT(1 1 0)
(4,1,2) | POINT(1 1 1)
(4,1,3) | POINT(1 0 1)
(4,1,4) | POINT(1 0 0)
(4,1,5) | POINT(1 1 0)
(5,1,1) | POINT(0 1 0)
(5,1,2) | POINT(0 1 1)
(5,1,3) | POINT(1 1 1)
(5,1,4) | POINT(1 1 0)
(5,1,5) | POINT(0 1 0)
(6,1,1) | POINT(0 0 1)
(6,1,2) | POINT(1 0 1)
(6,1,3) | POINT(1 1 1)
(6,1,4) | POINT(0 1 1)
(6,1,5) | POINT(0 0 1)
(30 rows)

-- Triangle --
SELECT (g.gdump).path, ST_AsText((g.gdump).geom) as wkt
FROM
 (SELECT
 ST_DumpPoints(ST_GeomFromEWKT('TRIANGLE ((
 0 0,
 0 9,
 9 0,
 0 0
)))) AS gdump
) AS g;

-- result --
path | wkt
---------+--------------
{1} | POINT(0 0)
{2} | POINT(0 9)
{3} | POINT(9 0)
{4} | POINT(0 0)

-- TIN --
SELECT (g.gdump).path, ST_AsEWKT((g.gdump).geom) as wkt
FROM
 (SELECT
 ST_DumpPoints(ST_GeomFromEWKT('TIN ((
 0 0 0,
 0 0 1,
 0 1 0,
 0 0 0
)), (;
 0 0 0,
 0 1 0,
 1 1 0,
 0 0 0
)))) AS gdump
) AS g;

-- result --
path | wkt
---------+--------------
{1,1,1} | POINT(0 0 0)
{1,1,2} | POINT(0 0 1)
{1,1,3} | POINT(0 1 0)
See Also

geometry_dump, Section 9.6, ST_Dump, ST_DumpRings

5.4.7 ST_DumpRings

ST_DumpRings — Returns a set of geometry_dump rows for the exterior and interior rings of a Polygon.

Synopsis

geometry_dump[] ST_DumpRings(geometry a_polygon);

Description

This is a set-returning function (SRF). It returns a set of geometry_dump rows, defined as an integer[] and a geometry, aliased "path" and "geom" respectively. The "path" field holds the polygon ring index containing a single integer: 0 for the shell, >0 for holes. The "geom" field contains the corresponding ring as a polygon.

Availability: PostGIS 1.1.3. Requires PostgreSQL 7.3 or higher.

Note

This only works for POLYGON geometries. It will not work for MULTIPOLYGONS

This function supports 3d and will not drop the z-index.

Examples

```
SELECT sometable.field1, sometable.field1,
       (ST_DumpRings(sometable.the_geom)).geom As the_geom
FROM sometableOfpolys;

SELECT ST_AsEWKT(geom) As the_geom, path
FROM ST_DumpRings(
    ST_GeomFromEWKT('POLYGON((-8149064 5133092 1,-8149064 5132986 1,-8148996 5132839 1,-8148972 5132767 1,-8148958 5132508 1,-8148941 5132466 1,-8148924 5132394 1,
                           -8148903 5132210 1,-8148930 5131967 1,-8148992 5131978 1,-8149237 5132093 1,-8149404 5132211 1,-8149647 5132310 1,-8149757 5132394 1,
                           -8150305 5132788 1,-8149064 5133092 1),
                           (-8149362 5132394 1,-8149446 5132501 1,-8149548 5132597 1,-8149695 5132675 1,-8149362 5132394 1))')
) as foo;
```

<table>
<thead>
<tr>
<th>path</th>
<th>the_geom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
{0} | POLYGON((-8149064 5133092 1,-8149064 5132986 1,-8148996 5132839 1,-8148972 5132767 1,-8148958 5132508 1,-8148941 5132466 1,-8148903 5132210 1,-8148930 5131967 1,-8148992 5131978 1,-8149237 5132093 1,-8149404 5132211 1,-8149647 5132310 1,-8149757 5132394 1,-8150305 5132788 1,-8149064 5133092 1))
{1} | POLYGON((-8149362 5132394 1,-8149446 5132501 1,-8149548 5132597 1,-8149695 5132675 1,-8149362 5132394 1))

See Also

geometry_dump, Section 9.6, ST_Dump, ST_ExteriorRing, ST_InteriorRingN

5.4.8 ST_EndPoint

ST_EndPoint — Returns the last point of a LineString or CircularLineString.

Synopsis

gamey ST_EndPoint(geometry g);

Description

Returns the last point of a LINESTRING as a POINT. Returns NULL if the input is not a LINESTRING.

✅ This method implements the SQL/MM specification. SQL-MM 3: 7.1.4
✅ This function supports 3d and will not drop the z-index.
✅ This method supports Circular Strings and Curves

Note

Changed: 2.0.0 no longer works with single geometry multilinestrings. In older versions of PostGIS -- a single line multilinestring would work happily with this function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring. The older behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING may experience these returning NULL in 2.0 now.

Examples

postgis=# SELECT ST_AsText(ST_EndPoint('LINESTRING(1 1, 2 2, 3 3)::geometry));
st_astext

POINT(3 3)
(1 row)
postgis=# SELECT ST_EndPoint('POINT(1 1)::geometry') IS NULL AS is_null;
 is_null

 t
(1 row)
-- 3d endpoint
SELECT ST_AsEWKT(ST_EndPoint('LINESTRING(1 1 2, 1 2 3, 0 0 5)'));

st_asewkt

POINT(0 0 5)
(1 row)

See Also

ST_PointN, ST_StartPoint

5.4.9 ST_Envelope

ST_Envelope — Returns a geometry representing the bounding box of a geometry.

Synopsis

gamey ST_Envelope(geometry g1);

Description

Returns the double-precision (float8) minimum bounding box for the supplied geometry, as a geometry. The polygon is defined by the corner points of the bounding box ((MINX, MINY), (MINX, MAXY), (MAXX, MAXY), (MAXX, MINY), (MINX, MINY)). (PostGIS will add a ZMIN/ZMAX coordinate as well).

Degenerate cases (vertical lines, points) will return a geometry of lower dimension than POLYGON, ie. POINT or LINESTRING.

Availability: 1.5.0 behavior changed to output double precision instead of float4

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.15

Examples

SELECT ST_AsText(ST_Envelope('POINT(1 3) '::geometry));

st_astext

POINT(1 3)
(1 row)

SELECT ST_AsText(ST_Envelope('LINESTRING(0 0, 1 3) '::geometry));

st_astext

POLYGON((0 0, 0 3, 1 3, 1 0, 0 0))
(1 row)

SELECT ST_AsText(ST_Envelope('POLYGON((0 0, 0 1, 1.00000001, 1.00000001, 0, 0)) '::geometry));

st_astext

POLYGON((0 0, 0 1, 1.000000001920929 1, 1.00000011920929 0, 0))
(1 row)
SELECT ST_AsText(ST_Envelope('POLYGON((0 0, 0 1, 1.0000000001 1, 1.0000000001 0, 0 0))')::geometry));

st_astext
--
POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)

SELECT Box3D(geom), Box2D(geom), ST_AsText(ST_Envelope(geom)) As envelopewkt
FROM (SELECT 'POLYGON((0 0, 0 1000012333334.34545678, 1.0000001 1, 1.0000001 0, 0 0))'::geometry As geom) As foo;

Envelope of a point and linestring.

SELECT ST_AsText(ST_Envelope(
 ST_Collect(
 ST_GeomFromText('LINESTRING(55 75,125 150)'),
 ST_Point(20, 80))
) As wktenv
wktenv

POLYGON((20 75,20 150,125 150,125 75,20 75))

See Also
Box2D, Box3D, ST_OrientedEnvelope

5.4.10 ST_BoundingDiagonal

ST_BoundingDiagonal — Returns the diagonal of a geometry’s bounding box.

Synopsis

geometry ST_BoundingDiagonal(geometry geom, boolean fits=false);
Description

Returns the diagonal of the supplied geometry’s bounding box as a LineString. If the input geometry is empty, the diagonal line is also empty, otherwise it is a 2-point LineString with the minimum values of each dimension in its start point and the maximum values in its end point.

The returned linestring geometry always retains SRID and dimensionality (Z and M presence) of the input geometry.

The fits parameter specifies if the best fit is needed. If false, the diagonal of a somewhat larger bounding box can be accepted (is faster to obtain for geometries with a lot of vertices). In any case the bounding box of the returned diagonal line always covers the input geometry.

Note
In degenerate cases (a single vertex in input) the returned linestring will be topologically invalid (no interior). This does not make the return semantically invalid.

Availability: 2.2.0

☑️ This function supports 3d and will not drop the z-index.
☑️ This function supports M coordinates.

Examples

```sql
-- Get the minimum X in a buffer around a point
SELECT ST_X(ST_StartPoint(ST_BoundingDiagonal(
    ST_Buffer(ST_MakePoint(0,0),10)
)));

st_x
-----
-10
```

See Also

ST_StartPoint, ST_EndPoint, ST_X, ST_Y, ST_Z, ST_M, &&&

5.4.11 ST_ExteriorRing

ST_ExteriorRing — Returns a LineString representing the exterior ring of a Polygon.

Synopsis

geometry ST_ExteriorRing(geometry a_polygon);

Description

Returns a line string representing the exterior ring of the POLYGON geometry. Return NULL if the geometry is not a polygon.

Note

Only works with POLYGON geometry types
This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. 2.1.5.1
This method implements the SQL/MM specification. SQL-MM 3: 8.2.3, 8.3.3
This function supports 3d and will not drop the z-index.

Examples

--If you have a table of polygons
SELECT gid, ST_ExteriorRing(the_geom) AS ering
FROM sometable;

--If you have a table of MULTIPOLYGONs
--and want to return a MULTILINESTRING composed of the exterior rings of each polygon
SELECT gid, ST_Collect(ST_ExteriorRing(the_geom)) AS erings
FROM (SELECT gid, (ST_Dump(the_geom)).geom As the_geom
 FROM sometable) As foo
GROUP BY gid;

--3d Example
SELECT ST_AsEWKT(
 ST_ExteriorRing(
 ST_GeomFromEWKT('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))')
)
);

st_asewkt

LINESTRING(0 0 1,1 1 1,1 2 1,1 1 1,0 0 1)

See Also

ST_InteriorRingN, ST_Boundary, ST_NumInteriorRings

5.4.12 ST_GeometryN

ST_GeometryN — Return the Nth geometry element of a geometry collection.

Synopsis

geometry ST_GeometryN(geometry geomA, integer n);

Description

Return the 1-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, (MULTI)POINT, (MULTI)LINestring, MULTICURVE or (MULTI)POLYGON, POLYHEDRALSURFACE Otherwise, return NULL.

Note

Index is 1-based as for OGC specs since version 0.8.0. Previous versions implemented this as 0-based instead.
Note

If you want to extract all geometries, of a geometry, `ST_Dump` is more efficient, and also works for singular geoms.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

Changed: 2.0.0 Prior versions would return NULL for singular geometries. This was changed to return the geometry for `ST_GeometryN(...)` case.

- This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
- This method implements the SQL/MM specification. SQL-MM 3: 9.1.5
- This function supports 3d and will not drop the z-index.
- This method supports Circular Strings and Curves
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Standard Examples

```sql
--Extracting a subset of points from a 3d multipoint
SELECT n, ST_AsEWKT(ST_GeometryN(the_geom, n)) As geomewkt
FROM
VALUES (ST_GeomFromEWKT('MULTIPOINT(1 2 7, 3 4 7, 5 6 7, 8 9 10)') ),
( ST_GeomFromEWKT('MULTICURVE(CIRCULARSTRING(2.5 2.5,4.5 2.5, 3.5 3.5), (10 11, 12 11))') )
)As foo(the_geom)
CROSS JOIN generate_series(1,100) n
WHERE n <= ST_NumGeometries(the_geom);

<table>
<thead>
<tr>
<th>n</th>
<th>geomewkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POINT(1 2 7)</td>
</tr>
<tr>
<td>2</td>
<td>POINT(3 4 7)</td>
</tr>
<tr>
<td>3</td>
<td>POINT(5 6 7)</td>
</tr>
<tr>
<td>4</td>
<td>POINT(8 9 10)</td>
</tr>
<tr>
<td>1</td>
<td>CIRCULARSTRING(2.5 2.5,4.5 2.5, 3.5 3.5)</td>
</tr>
<tr>
<td>2</td>
<td>LINESTRING(10 11 ,12 11)</td>
</tr>
</tbody>
</table>
```

--Extracting all geometries (useful when you want to assign an id)
```sql
SELECT gid, n, ST_GeometryN(the_geom, n)
FROM sometable CROSS JOIN generate_series(1,100) n
WHERE n <= ST_NumGeometries(the_geom);
```

Polyhedral Surfaces, TIN and Triangle Examples

```sql
-- Polyhedral surface example
-- Break a Polyhedral surface into its faces
SELECT ST_AsEWKT(ST_GeometryN(p_geom,3)) As geom ewkt
FROM (SELECT ST_GeomFromEWKT('POLYHEDRALSURFACE(
((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
```
((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1))'' AS p_geom AS a;

geom_ewkt
--
POLYGON((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0))

-- TIN --
SELECT ST_AsEWKT(ST_GeometryN(geom,2)) as wkt
FROM
 (SELECT
 ST_GeomFromEWKT('TIN {{{
 0 0 0,
 0 1 0,
 0 0 0
 }}, {{{
 0 0 0,
 0 1 0,
 1 1 0,
 0 0 0
 }}}} AS geom
) AS g;
-- result --
 wkt

TRIANGLE((0 0 0,0 1 0,1 1 0,0 0 0))

See Also

ST_Dump, ST_NumGeometries

5.4.13 ST_GeometryType

ST_GeometryType — Returns the SQL-MM type of a geometry as text.

Synopsis
text ST_GeometryType(geom g1);

Description

Returns the type of the geometry as a string. EG: ’ST_LineString’, ’ST_Polygon’,’ST_MultiPolygon’ etc. This function differs
from GeometryType(geom) in the case of the string and ST in front that is returned, as well as the fact that it will not indicate
whether the geometry is measured.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.4

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.
Examples

```sql
SELECT ST_GeometryType(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 ← 29.31,77.29 29.07)'));
--result
ST_LineString
```

```sql
SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 ← 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));
--result
ST_PolyhedralSurface
```

```sql
SELECT ST_GeometryType(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 ← 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));
--result
ST_PolyhedralSurface
```

```sql
SELECT ST_GeometryType(geom) as result
FROM
(SELECT
   ST_GeomFromEWKT('TIN (((
   0 0 0,
   0 0 1,
   0 1 0,
   0 0 0
   )))
   ),
   (0 0 0,
   0 1 0,
   1 1 0,
   0 0 0
   )) AS geom
) AS g;
result
--------
ST_Tin
```

See Also

GeometryType

5.4.14 ST_HasArc

ST_HasArc — Tests if a geometry contains a circular arc

Synopsis

boolean **ST_HasArc**(geometry geomA);
Description

Returns true if a geometry or geometry collection contains a circular string

Availability: 1.2.3?

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Examples

```sql
SELECT ST_HasArc(ST_Collect('LINESTRING(1 2, 3 4, 5 6)', 'CIRCULARSTRING(1 1, 2 3, 4 5, 6 ← 7, 5 6)'));
```

See Also

ST_CurveToLine, ST_LineToCurve

5.4.15 ST_InteriorRingN

ST_InteriorRingN — Returns the Nth interior ring (hole) of a Polygon.

Synopsis

geometry ST_InteriorRingN(geomtry a_polygon, integer n);

Description

Returns the Nth interior linestring ring of the polygon geometry. Returns NULL if the geometry is not a polygon or the given N is out of range. The index starts at 1.

Note

This function does not support for MULTIPOLYGONs. Use in conjunction with ST_Dump for MULTIPOLYGONS

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5

This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_AsText(ST_InteriorRingN(the_geom, 1)) As the_geom
FROM (SELECT ST_BuildArea(
    ST_Collect(ST_Buffer(ST_Point(1,2), 20,3),
    ST_Buffer(ST_Point(1, 2), 10,3))) As the_geom
) as foo
```
See Also

ST_ExtentRing ST_BuildArea, ST_Collect, ST_Dump, ST_NumInteriorRing, ST_NumInteriorRings

5.4.16 ST_IsPolygonCCW

ST_IsPolygonCCW — Tests if Polygons have exterior rings oriented counter-clockwise and interior rings oriented clockwise.

Synopsis

boolean ST_IsPolygonCCW (geometry geom);

Description

Returns true if all polygonal components of the input geometry use a counter-clockwise orientation for their exterior ring, and a clockwise direction for all interior rings.

Returns true if the geometry has no polygonal components.

Note

Closed linestrings are not considered polygonal components, so you would still get a true return by passing a single closed linestring no matter its orientation.

Note

If a polygonal geometry does not use reversed orientation for interior rings (i.e., if one or more interior rings are oriented in the same direction as an exterior ring) then both ST_IsPolygonCW and ST_IsPolygonCCW will return false.

Availability: 2.4.0

☐ This function supports 3d and will not drop the z-index.

☐ This function supports M coordinates.

See Also

ST_ForcePolygonCW , ST_ForcePolygonCCW , ST_IsPolygonCW

5.4.17 ST_IsPolygonCW

ST_IsPolygonCW — Tests if Polygons have exterior rings oriented clockwise and interior rings oriented counter-clockwise.

Synopsis

boolean ST_IsPolygonCW (geometry geom);
Description

Returns true if all polygonal components of the input geometry use a clockwise orientation for their exterior ring, and a counterclockwise direction for all interior rings.

Returns true if the geometry has no polygonal components.

Note

Closed linestrings are not considered polygonal components, so you would still get a true return by passing a single closed linestring no matter its orientation.

Note

If a polygonal geometry does not use reversed orientation for interior rings (i.e., if one or more interior rings are oriented in the same direction as an exterior ring) then both ST_IsPolygonCW and ST_IsPolygonCCW will return false.

Availability: 2.4.0

This function supports 3d and will not drop the z-index.

This function supports M coordinates.

See Also

ST_ForcePolygonCW, ST_ForcePolygonCCW, ST_IsPolygonCW

5.4.18 ST_IsClosed

ST_IsClosed — Tests if a LineStrings’s start and end points are coincident. For a PolyhedralSurface tests if it is closed (volumetric).

Synopsis

boolean ST_IsClosed(geometry g);

Description

Returns TRUE if the LINestring’s start and end points are coincident. For Polyhedral Surfaces, reports if the surface is areal (open) or volumetric (closed).

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 7.1.5, 9.3.3

Note

SQL-MM defines the result of ST_IsClosed(NULL) to be 0, while PostGIS returns NULL.
This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

This function supports Polyhedral surfaces.

Line String and Point Examples

```sql
postgis=# SELECT ST_IsClosed('LINESTRING(0 0, 1 1)'::geometry);
 st_isclosed
 -------------
 f  (1 row)

postgis=# SELECT ST_IsClosed('LINESTRING(0 0, 0 1, 1 1, 0 0)'::geometry);
 st_isclosed
 -------------
 t  (1 row)

postgis=# SELECT ST_IsClosed('MULTILINESTRING((0 0, 0 1, 1 1, 0 0),(0 0, 1 1))'::geometry);
 st_isclosed
 -------------
 f  (1 row)

postgis=# SELECT ST_IsClosed('POINT(0 0)'::geometry);
 st_isclosed
 -------------
 t  (1 row)

postgis=# SELECT ST_IsClosed('MULTIPOINT((0 0), (1 1))'::geometry);
 st_isclosed
 -------------
 t  (1 row)
```

Polyhedral Surface Examples

```sql
-- A cube --
SELECT ST_IsClosed(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 0 1 0, 1 0 1, 0 0 1, 0 0 0)),
 ((0 0 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
 ((0 0 0, 0 1 1, 1 1 0, 0 1 0)), ((0 0 0, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )')));
 st_isclosed
 -------------
 t

-- Same as cube but missing a side --
SELECT ST_IsClosed(ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
```
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)) ')));

st_isclosed

 f

See Also

ST_IsRing

5.4.19 ST_IsCollection

ST_IsCollection — Tests if a geometry is a geometry collection type.

Synopsis

boolean ST_IsCollection(geometry g);

Description

Returns **TRUE** if the geometry type of the argument a geometry collection type. Collection types are the following:

- **GEOMETRYCOLLECTION**
- **MULTI{POINT,POLYGON,LINESTRING,CURVE,SURFACE}**
- **COMPOUNDCURVE**

Note

This function analyzes the type of the geometry. This means that it will return **TRUE** on collections that are empty or that contain a single element.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Examples

```
postgis=# SELECT ST_IsCollection('LINESTRING(0 0, 1 1)::geometry);
 st_iscollection
-------------
 f
 (1 row)

postgis=# SELECT ST_IsCollection('MULTIPOINT EMPTY'::geometry);
 st_iscollection
-------------
 t
 (1 row)
```
postgis=# SELECT ST_IsCollection('MULTIPOINT((0 0))'::geometry);
 st_iscollection

 t
 (1 row)

postgis=# SELECT ST_IsCollection('MULTIPOINT((0 0), (42 42))'::geometry);
 st_iscollection

 t
 (1 row)

postgis=# SELECT ST_IsCollection('GEOMETRYCOLLECTION(POINT(0 0))'::geometry);
 st_iscollection

 t
 (1 row)

See Also

ST_NumGeometries

5.4.20 ST_IsEmpty

ST_IsEmpty — Tests if a geometry is empty.

Synopsis

boolean ST_IsEmpty(geometry geomA);

Description

Returns true if this Geometry is an empty geometry. If true, then this Geometry represents an empty geometry collection, polygon, point etc.

Note

SQL-MM defines the result of ST_IsEmpty(NULL) to be 0, while PostGIS returns NULL.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.7

This method supports Circular Strings and Curves

Warning

Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards
Examples

```
SELECT ST_IsEmpty(ST_GeomFromText('GEOMETRYCOLLECTION EMPTY'));
st_isempty
----------
t
(1 row)

SELECT ST_IsEmpty(ST_GeomFromText('POLYGON EMPTY'));
st_isempty
----------
t
(1 row)

SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))'));
st_isempty
----------
f
(1 row)

SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))')) = false;
?column?
----------
t
(1 row)

SELECT ST_IsEmpty(ST_GeomFromText('CIRCULARSTRING EMPTY'));
st_isempty
----------
t
(1 row)
```

5.4.21 ST_IsRing

ST_IsRing — Tests if a LineString is closed and simple.

Synopsis

```
boolean ST_IsRing(geometry g);
```

Description

Returns TRUE if this LINESTRING is both ST_IsClosed (ST_StartPoint ((g)) ~ ST_Endpoint ((g))) and ST_IsSimple (does not self intersect).

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. 2.1.5.1

This method implements the SQL/MM specification. SQL-MM 3: 7.1.6

Note

SQL-MM defines the result of ST_IsRing(NULL) to be 0, while PostGIS returns NULL.
Examples

```sql
SELECT ST_IsRing(the_geom), ST_IsClosed(the_geom), ST_IsSimple(the_geom)
FROM (SELECT 'LINESTRING(0 0, 0 1, 1 1, 1 0, 0 0)'::geometry AS the_geom) AS foo;
```

<table>
<thead>
<tr>
<th>st_isring</th>
<th>st_isclosed</th>
<th>st_issimple</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

(1 row)

```sql
SELECT ST_IsRing(the_geom), ST_IsClosed(the_geom), ST_IsSimple(the_geom)
FROM (SELECT 'LINESTRING(0 0, 0 1, 1 0, 1 1, 0 0)'::geometry AS the_geom) AS foo;
```

<table>
<thead>
<tr>
<th>st_isring</th>
<th>st_isclosed</th>
<th>st_issimple</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
</tr>
</tbody>
</table>

(1 row)

See Also

ST_IsClosed, ST_IsSimple, ST_StartPoint, ST_EndPoint

5.4.22 ST_IsSimple

ST_IsSimple — Tests if a geometry has no points of self-intersection or self-tangency.

Synopsis

```sql
boolean ST_IsSimple(\text{geometry geomA});
```

Description

Returns true if this Geometry has no anomalous geometric points, such as self intersection or self tangency. For more information on the OGC’s definition of geometry simplicity and validity, refer to "Ensuring OpenGIS compliancy of geometries"

Note

SQL-MM defines the result of ST_IsSimple(NULL) to be 0, while PostGIS returns NULL.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.8

This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_IsSimple(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))'));
```

<table>
<thead>
<tr>
<th>st_issimple</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
</tr>
</tbody>
</table>

(1 row)

```sql
SELECT ST_IsSimple(ST_GeomFromText('LINESTRING(1 1,2 2,2 3.5,1 3,1 2,2 1)'));
```


ST_M

ST_M — Returns the M coordinate of a Point.

Synopsis

```c
float ST_M(geometry a_point);
```

Description

Return the M coordinate of a Point, or NULL if not available. Input must be a Point.

Note

This is not (yet) part of the OGC spec, but is listed here to complete the point coordinate extractor function list.

- This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
- This method implements the SQL/MM specification.
- This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_M(ST_GeomFromEWKT('POINT(1 2 3 4)'));
```

<table>
<thead>
<tr>
<th>st_m</th>
<th>------</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(1 row)</td>
</tr>
</tbody>
</table>

See Also

ST_GeomFromEWKT, ST_X, ST_Y, ST_Z

ST_MemSize

ST_MemSize — Returns the amount of memory space a geometry takes.
Synopsis

integer \textbf{ST\textunderscore MemSize}(geometry geomA);

Description

Returns the amount of memory space (in bytes) the geometry takes.

This complements the PostgreSQL built-in \texttt{database object functions pg_column_size, pg_size_pretty, pg_relation_size, pg_total_relation_size}.

\begin{itemize}
\item \textbf{Note}\pg_relation_size which gives the byte size of a table may return byte size lower than \textbf{ST_MemSize}. This is because \pg_relation_size does not add toasted table contribution and large geometries are stored in TOAST tables.
\item \pg_total_relation_size - includes, the table, the toasted tables, and the indexes.
\item \pg_column_size returns how much space a geometry would take in a column considering compression, so may be lower than \textbf{ST_MemSize}
\end{itemize}

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Changed: 2.2.0 name changed to \textbf{ST_MemSize} to follow naming convention.

Examples

--Return how much byte space Boston takes up in our Mass data set
SELECT pg_size_pretty(SUM(ST_MemSize(the_geom))) as totgeomsum,
pg_size_pretty(SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize(the_geom) ELSE 0 END)) As bossum,
CAST(SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize(the_geom) ELSE 0 END)*1.00 /
SUM(ST_MemSize(the_geom))*100 As numeric(10,2)) As perbos
FROM towns;

totgeomsum bossum perbos
---------- ------ -----
1522 kB 30 kB 1.99

SELECT ST_MemSize(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)'));

73

--What percentage of our table is taken up by just the geometry
SELECT pg_total_relation_size('public.neighborhoods') As fulltable_size, sum(ST_MemSize(the_geom)) As geomsize,
sum(ST_MemSize(the_geom))*1.00/pg_total_relation_size('public.neighborhoods')*100 As pergeom
FROM neighborhoods;

fulltable_size geomsize pergeom

262144 96238 36.71188354492187500000
5.4.25 ST_NDims

ST_NDims — Returns the coordinate dimension of a geometry.

Synopsis

integer ST_NDim(geometry g1);

Description

Returns the coordinate dimension of the geometry. PostGIS supports 2 - (x,y), 3 - (x,y,z) or 2D with measure - x,y,m, and 4 - 3D with measure space x,y,z,m

This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_NDims(ST_GeomFromText('POINT(1 1)')) As d2point,
       ST_NDims(ST_GeomFromEWKT('POINT(1 1 2)')) As d3point,
       ST_NDims(ST_GeomFromEWKT('POINTM(1 1 0.5)')) As d2pointm;
```

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d2point</td>
<td>d3point</td>
<td>d2pointm</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

See Also

ST_CoordDim, ST_Dimension, ST_GeomFromEWKT

5.4.26 ST_NPoints

ST_NPoints — Returns the number of points (vertices) in a geometry.

Synopsis

integer ST_NPoints(geometry g1);

Description

Return the number of points in a geometry. Works for all geometries. Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.
Examples

```sql
SELECT ST_NPoints(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 ← 29.07)'));
--result
4

--Polygon in 3D space
SELECT ST_NPoints(ST_GeomFromEWKT('LINESTRING(77.29 29.07 1,77.42 29.26 0,77.27 29.31 ← -1,77.29 29.07 3)'))
--result
4
```

See Also

ST_NumPoints

5.4.27 ST_NRings

ST_NRings — Returns the number of rings in a polygonal geometry.

Synopsis

```sql
integer ST_NRings(geomA);
```

Description

If the geometry is a polygon or multi-polygon returns the number of rings. Unlike NumInteriorRings, it counts the outer rings as well.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Examples

```sql
SELECT ST_NRings(the_geom) As Nrings, ST_NumInteriorRings(the_geom) As ninterrings
FROM (SELECT ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))') As the_geom) As foo ;

<table>
<thead>
<tr>
<th>nrings</th>
<th>ninterrings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
(1 row)
```

See Also

ST_NumInteriorRings

5.4.28 ST_NumGeometries

ST_NumGeometries — Returns the number of elements in a geometry collection.
Synopsis

integer \texttt{ST_NumGeometries}(geometry \texttt{geom});

Description

Returns the number of Geometries. If geometry is a \texttt{GEOMETRYCOLLECTION} (or \texttt{MULTI*}) return the number of geometries, for single geometries will return 1, otherwise return NULL.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

Changed: 2.0.0 In prior versions this would return NULL if the geometry was not a collection/MULTI type. 2.0.0+ now returns 1 for single geometries e.g \texttt{POLYGON}, \texttt{LINESTRING}, \texttt{POINT}.

- This method implements the SQL/MM specification. SQL-MM 3: 9.1.4
- This function supports 3d and will not drop the z-index.
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

--Prior versions would have returned NULL for this -- in 2.0.0 this returns 1
SELECT \texttt{ST_NumGeometries} (\texttt{ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 \leftarrow 29.31,77.29 29.07)')});
--result 1

--Geometry Collection Example - multis count as one geom in a collection
SELECT \texttt{ST_NumGeometries} (\texttt{ST_GeomFromEWKT('GEOMETRYCOLLECTION(MULTIPOINT(-2 3 , -2 2), LINESTRING(5 5 ,10 10), POLYGON((-7 4.2,-7.1 5,-7.1 4.3,-7 4.2))))});
--result 3

See Also

\texttt{ST_GeometryN}, \texttt{ST_Multi}

5.4.29 \texttt{ST_NumInteriorRings}

\texttt{ST_NumInteriorRings} — Returns the number of interior rings (holes) of a Polygon.

Synopsis

integer \texttt{ST_NumInteriorRings}(geometry \texttt{a_polygon});

Description

Return the number of interior rings of a polygon geometry. Return NULL if the geometry is not a polygon.

- This method implements the SQL/MM specification. SQL-MM 3: 8.2.5

Changed: 2.0.0 - in prior versions it would allow passing a \texttt{MULTIPOLYGON}, returning the number of interior rings of first \texttt{POLYGON}.

Examples

```sql
-- If you have a regular polygon
SELECT gid, field1, field2, ST_NumInteriorRings( the_geom ) AS numholes
FROM sometable;

-- If you have multipolygons
-- And you want to know the total number of interior rings in the MULTIPOLYGON
SELECT gid, field1, field2, SUM(ST_NumInteriorRings( the_geom )) AS numholes
FROM (SELECT gid, field1, field2, (ST_Dump( the_geom )).geom As the_geom
     FROM sometable) As foo
GROUP BY gid, field1, field2;
```

See Also

ST_NumInteriorRing

5.4.30 ST_NumInteriorRing

ST_NumInteriorRing — Returns the number of interior rings (holes) of a Polygon. Alias for ST_NumInteriorRings

Synopsis

```sql
integer ST_NumInteriorRing( geometry a_polygon );
```

See Also

ST_NumInteriorRings

5.4.31 ST_NumPatches

ST_NumPatches — Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.

Synopsis

```sql
integer ST_NumPatches( geometry g1 );
```

Description

Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries. This is an alias for ST_NumGeometries to support MM naming. Faster to use ST_NumGeometries if you don’t care about MM convention.

Availability: 2.0.0

- ✔️ This function supports 3d and will not drop the z-index.
- ✔️ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
- ✔️ This method implements the SQL/MM specification. SQL-MM 3: ?
- ✔️ This function supports Polyhedral surfaces.
Examples

```
SELECT ST_NumPatches(ST_GeomFromEWKT('POLYHEDRALSURFACE ( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 1 0, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )')));
```

--result
6

See Also

ST_GeomFromEWKT, ST_NumGeometries

5.4.32 ST_NumPoints

ST_NumPoints — Returns the number of points in a LineString or CircularString.

Synopsis

```
integer ST_NumPoints(geom g1);
```

Description

Return the number of points in an ST_LineString or ST_CircularString value. Prior to 1.4 only works with Linestrings as the specs state. From 1.4 forward this is an alias for ST_NPoints which returns number of vertexes for not just line strings. Consider using ST_NPoints instead which is multi-purpose and works with many geometry types.

✅ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

✅ This method implements the SQL/MM specification. SQL-MM 3: 7.2.4

Examples

```
SELECT ST_NumPoints(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
```

--result
4

See Also

ST_NPoints

5.4.33 ST_PatchN

ST_PatchN — Returns the Nth geometry (face) of a PolyhedralSurface.

Synopsis

```
geometry ST_PatchN(geom geomA, integer n);
```
Description

> Returns the 1-based Nth geometry (face) if the geometry is a POLYHEDRALSURFACE or POLYHEDRALSURFACEM. Otherwise, returns NULL. This returns the same answer as ST_GeometryN for PolyhedralSurfaces. Using ST_GeometryN is faster.

Note

Index is 1-based.

Note

If you want to extract all elements of a geometry ST_Dump is more efficient.

Availability: 2.0.0

- This method implements the SQL/MM specification. SQL-MM 3: ?
- This function supports 3d and will not drop the z-index.
- This function supports Polyhedral surfaces.

Examples

```
-- Extract the 2nd face of the polyhedral surface
SELECT ST_AsEWKT(ST_PatchN(geom, 2)) As geomewkt
FROM (VALUES (ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) ))) AS foo(geom);
```

See Also

ST_AsEWKT, ST_GeomFromEWKT, ST_Dump, ST_GeometryN, ST_NumGeometries

5.4.34 ST_PointN

ST_PointN — Returns the Nth point in the first LineString or circular LineString in a geometry.

Synopsis

```
geometry ST_PointN(geometry a_linestring, integer n);
```
Description

Return the Nth point in a single linestring or circular linestring in the geometry. Negative values are counted backwards from the end of the LineString, so that -1 is the last point. Returns NULL if there is no linestring in the geometry.

Note

Index is 1-based as for OGC specs since version 0.8.0. Backward indexing (negative index) is not in OGC Previous versions implemented this as 0-based instead.

Note

If you want to get the Nth point of each LineString in a MultiLineString, use in conjunction with ST_Dump

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 7.2.5, 7.3.5

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Note

Changed: 2.0.0 no longer works with single geometry multilinestrings. In older versions of PostGIS -- a single line multilinestring would work happily with this function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring.

Changed: 2.3.0 : negative indexing available (-1 is last point)

Examples

```sql
-- Extract all POINTs from a LINESTRING
SELECT ST_AsText(
    ST_PointN(
        column1,
        generate_series(1, ST_NPoints(column1))
    ))
FROM ( VALUES ('LINESTRING(0 0, 1 1, 2 2)'::geometry) ) AS foo;

st_astext
---------
POINT(0 0)
POINT(1 1)
POINT(2 2)
(3 rows)

--Example circular string
SELECT ST_AsText(ST_PointN(ST_GeomFromText('CIRCULARSTRING(1 2, 3 2, 1 2)'), 2));

st_astext
---------
POINT(3 2)
(1 row)
```
SELECT ST_AsText(f)
FROM ST_GeomFromText('LINESTRING(0 0 0, 1 1 1, 2 2 2)') AS g
 ,ST_PointN(g, -2) AS f; -- 1 based index

st_astext

POINT Z (1 1 1)
(1 row)

See Also

ST_NPoints

5.4.35 ST_Points

ST_Points — Returns a MultiPoint containing all the coordinates of a geometry.

Synopsis

g{}metry ST_Points({}eometry geom);

Description

Returns a MultiPoint containing all of the coordinates of a geometry. Does not remove points that are duplicated in the input geometry, including start and end points of ring geometries. (If this behavior is undesired, duplicates may be removed using ST_RemoveRepeatedPoints).

M and Z coordinates will be preserved if present.

✓ This method supports Circular Strings and Curves
✓ This function supports 3d and will not drop the z-index.

Availability: 2.3.0

Examples

SELECT ST_AsText(ST_Points('POLYGON Z ((30 10 4,10 30 5,40 40 6, 30 10))'));

--result
MULTIPOINT Z (30 10 4,10 30 5,40 40 6, 30 10 4)

See Also

ST_RemoveRepeatedPoints

5.4.36 ST_StartPoint

ST_StartPoint — Returns the first point of a LineString.
PostGIS 3.1.10 Manual

Synopsis

geometry ST_StartPoint(geometry geomA);

Description

Returns the first point of a LINESTRING or CIRCULARLINESTRING geometry as a POINT or NULL if the input parameter is not a LINESTRING or CIRCULARLINESTRING.

- This method implements the SQL/MM specification. SQL-MM 3: 7.1.3
- This function supports 3d and will not drop the z-index.
- This method supports Circular Strings and Curves

Note

Changed: 2.0.0 no longer works with single geometry multilinestrings. In older versions of PostGIS -- a single line multilinestring would work happily with this function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring. The older behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING may experience these returning NULL in 2.0 now.

Examples

```sql
SELECT ST_AsText(ST_StartPoint('LINESTRING(0 1, 0 2)'::geometry));
   st_astext
--------------
POINT(0 1)
   (1 row)

SELECT ST_StartPoint('POINT(0 1)'::geometry) IS NULL AS is_null;
   is_null
----------
   t
   (1 row)

--3d line
SELECT ST_AsEWKT(ST_StartPoint('LINESTRING(0 1 1, 0 2 2)'::geometry));
   st_asewkt
--------------
POINT(0 1 1)
   (1 row)

-- circular linestring --
SELECT ST_AsText(ST_StartPoint('CIRCULARSTRING(5 2,-3 1.999999, -2 1, -4 2, 5 2)'::geometry));
   st_astext
--------------
POINT(5 2)
```

See Also

ST_EndPoint, ST_PointN
5.4.37 ST_Summary

ST_Summary — Returns a text summary of the contents of a geometry.

Synopsis

text ST_Summary(geom g);
text ST_Summary(geog g);

Description

Returns a text summary of the contents of the geometry.

Flags shown square brackets after the geometry type have the following meaning:

- M: has M coordinate
- Z: has Z coordinate
- B: has a cached bounding box
- G: is geodetic (geography)
- S: has spatial reference system

This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Availability: 1.2.2
Enhanced: 2.0.0 added support for geography
Enhanced: 2.1.0 S flag to denote if has a known spatial reference system
Enhanced: 2.2.0 Added support for TIN and Curves

Examples

```sql
=# SELECT ST_Summary(ST_GeomFromText('LINESTRING(0 0, 1 1)')) as geom,
     ST_Summary(ST_GeomFromText('POLYGON((0 0, 1 1, 1 2, 1 1, 0 0))')) as geog;
  geom | geog
  +-----------------------------+--------------------------
   LineString[B] with 2 points | Polygon[BGS] with 1 rings
   : ring 0 has 5 points

(1 row)
```

```sql
=# SELECT ST_Summary(ST_GeogFromText('LINESTRING(0 0 1, 1 1 1)')) as geog_line,
     ST_Summary(ST_GeomFromText('SRID=4326;POLYGON((0 0 1, 1 1 2, 1 2 3, 1 1 1, 0 0 1)) ↔')) as geom_poly;
    geog_line | geom_poly
   +-----------------------------------+-----------------------------------
     LineString[ZBGS] with 2 points | Polygon[ZBS] with 1 rings
     : ring 0 has 5 points

(1 row)
```
5.4.38 ST_X

ST_X — Returns the X coordinate of a Point.

Synopsis

float ST_X(geometry a_point);

Description

Return the X coordinate of the point, or NULL if not available. Input must be a point.

Note

To get the minimum and maximum X value of geometry coordinates use the functions ST_XMin and ST_XMax.

Examples

SELECT ST_X(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_x

 1
 (1 row)

SELECT ST_Y(ST_Centroid(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)')));
 st_y

 1.5
 (1 row)

See Also

ST_Centroid, ST_GeomFromEWKT, ST_M, ST_XMax, ST_XMin, ST_Y, ST_Z

5.4.39 ST_Y

ST_Y — Returns the Y coordinate of a Point.
Synopsis

float ST_Y(geom a_point);

Description

Return the Y coordinate of the point, or NULL if not available. Input must be a point.

Note

To get the minimum and maximum Y value of geometry coordinates use the functions `ST_YMin` and `ST_YMax`.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 6.1.4

This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_Y(ST_GeomFromEWKT('POINT(1 2 3 4)'));

st_y
-----
2
(1 row)

SELECT ST_Y(ST_Centroid(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)')));

st_y
-----
1.5
(1 row)
```

See Also

`ST_Centroid, ST_GeomFromEWKT, ST_M, ST_X, ST_YMax, ST_YMin, ST_Z`

5.4.40 ST_Z

ST_Z — Returns the Z coordinate of a Point.

Synopsis

float ST_Z(geom a_point);
Description

Return the Z coordinate of the point, or NULL if not available. Input must be a point.

Note
To get the minimum and maximum Z value of geometry coordinates use the functions **ST_ZMin** and **ST_ZMax**.

- ✓ This method implements the SQL/MM specification.
- ✓ This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_Z(ST_GeomFromEWKT('POINT(1 2 3 4)'))

st_z
-----
3
(1 row)
```

See Also

5.4.41 ST_Zmflag

ST_Zmflag — Returns a code indicating the ZM coordinate dimension of a geometry.

Synopsis

```sql
smallint ST_Zmflag(geography geomA);
```

Description

Returns a code indicating the ZM coordinate dimension of a geometry.

Values are: 0 = 2D, 1 = 3D-M, 2 = 3D-Z, 3 = 4D.

- ✓ This function supports 3d and will not drop the z-index.
- ✓ This method supports Circular Strings and Curves

Examples

```sql
SELECT ST_Zmflag(ST_GeomFromEWKT('LINESTRING(1 2 3 4)'))

st_zmflag
----------
0

SELECT ST_Zmflag(ST_GeomFromEWKT('LINESTRINGM(1 2 3, 3 4 3)'))
```
st_zmflag

1
SELECT ST_Zmflag(ST_GeomFromEWKT('CIRCULARSTRING(1 2 3, 3 4 3, 5 6 3)'));

st_zmflag

2
SELECT ST_Zmflag(ST_GeomFromEWKT('POINT(1 2 3 4)'));

st_zmflag

3

See Also

ST_CoordDim, ST_NDims, ST_Dimension

5.5 Geometry Editors

5.5.1 ST_AddPoint

ST_AddPoint — Add a point to a LineString.

Synopsis

gamey ST_AddPoint(geometry linestring, geometry point);
gamey ST_AddPoint(geometry linestring, geometry point, integer position);

Description

Adds a point to a LineString before point <position> (0-based index). Third parameter can be omitted or set to -1 for appending.

Availability: 1.1.0

This function supports 3d and will not drop the z-index.

Examples

--guarantee all linestrings in a table are closed
--by adding the start point of each linestring to the end of the line string
--only for those that are not closed
UPDATE sometable
SET the_geom = ST_AddPoint(the_geom, ST_StartPoint(the_geom))
FROM sometable
WHERE ST_IsClosed(the_geom) = false;

--Adding point to a 3-d line
SELECT ST_AsEWKT(ST_AddPoint(ST_GeomFromEWKT('LINESTRING(0 0 1, 1 1 1)'), ST_MakePoint (1, 2, 3)));

--result
st_asewkt

LINESTRING(0 0 1, 1 1 1, 1 2 3)
5.5.2 ST_CollectionExtract

ST_CollectionExtract — Given a (multi)geometry, return a (multi)geometry consisting only of elements of the specified type.

Synopsis

geometry ST_CollectionExtract(geometry collection);
geometry ST_CollectionExtract(geometry collection, integer type);

Description

Given a geometry collection, return a homogeneous multi-geometry. If the type is specified, return a multi-geometry containing only that type, and an EMPTY multigeometry otherwise. If the type is not specified, return a multi-geometry containing only geometries of the highest coordinate dimension. So polygons are preferred over lines, which are preferred over points. Sub-geometries that are not the desired type are ignored. If there are no sub-geometries of the right type, an EMPTY geometry will be returned.

Only points, lines and polygons are supported. The type numbers are:

- 1 == POINT
- 2 == LINestring
- 3 == POLYGON

Availability: 1.5.0

Note

Prior to 1.5.3 this function returned non-collection inputs untouched, no matter type. In 1.5.3 non-matching single geometries result in a NULL return. In 2.0.0 every case of missing match results in a typed EMPTY return.

Warning

When specifying 3 == POLYGON a multipolygon is returned even when the edges are shared. This results in an invalid multipolygon for many cases such as applying this function on an ST_Split result.

Examples

```sql
-- Constants: 1 == POINT, 2 == LINESTRING, 3 == POLYGON
SELECT ST_AsText(ST_CollectionExtract(ST_GeomFromText('GEOMETRYCOLLECTION(
    GEOMETRYCOLLECTION(POINT(0 0)))'),1));
st_astext
---------------
MULTIPOINT(0 0)
(1 row)
```

```sql
SELECT ST_AsText(ST_CollectionExtract(ST_GeomFromText('GEOMETRYCOLLECTION(
    GEOMETRYCOLLECTION(LINESTRING(0 0, 1 1)),LINESTRING(2 2, 3 3))'),2));
```
ST_CollectionHomogenize — Given a geometry collection, return the "simplest" representation of the contents.

Synopsis

geometry \texttt{ST_CollectionHomogenize}(geometry collection);

Description

Given a geometry collection, returns the "simplest" representation of the contents. Singletons will be returned as singletons. Collections that are homogeneous will be returned as the appropriate multi-type.

Warning

When specifying \texttt{3 == POLYGON} a multipolygon is returned even when the edges are shared. This results in an invalid multipolygon for many cases such as applying this function on an \texttt{ST_Split} result.

Availability: 2.0.0

Examples

```sql
SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(POINT(0 0))'));
```

```
st_astext
-----------
POINT(0 0)
(1 row)
```

```sql
SELECT ST_AsText(ST_CollectionHomogenize('GEOMETRYCOLLECTION(POINT(0 0), POINT(1 1))'));
```

```
st_astext
----------
MULTIPOINT(0 0, 1 1)
(1 row)
```

See Also

\texttt{ST_Multi, ST_CollectionExtract}
5.5.4 ST_CurveToLine

ST_CurveToLine — Converts a geometry containing curves to a linear geometry.

Synopsis

geometry ST_CurveToLine(geometry curveGeom, float tolerance, integer tolerance_type, integer flags);

Description

Converts a CIRCULAR STRING to regular LINESTRING or CURVEPOLYGON to POLYGON or MULTISURFACE to MULTIPOLYGON. Useful for outputting to devices that can’t support CIRCULARSTRING geometry types.

Converts a given geometry to a linear geometry. Each curved geometry or segment is converted into a linear approximation using the given 'tolerance' and options (32 segments per quadrant and no options by default).

The 'tolerance_type' argument determines interpretation of the 'tolerance' argument. It can take the following values:

- 0 (default): Tolerance is max segments per quadrant.
- 1: Tolerance is max-deviation of line from curve, in source units.
- 2: Tolerance is max-angle, in radians, between generating radii.

The 'flags' argument is a bitfield. 0 by default. Supported bits are:

- 1: Symmetric (orientation independent) output.
- 2: Retain angle, avoids reducing angles (segment lengths) when producing symmetric output. Has no effect when Symmetric flag is off.

Availability: 1.3.0

Enhanced: 2.4.0 added support for max-deviation and max-angle tolerance, and for symmetric output.

Enhanced: 3.0.0 implemented a minimum number of segments per linearized arc to prevent topological collapse.

✅ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

✅ This method implements the SQL/MM specification. SQL-MM 3: 7.1.7

✅ This function supports 3d and will not drop the z-index.

✅ This method supports Circular Strings and Curves

Examples

```
SELECT ST_AsText(ST_CurveToLine(ST_GeomFromText ('CIRCULARSTRING(220268 150415,220227 ←
150505,220227 150406)')));
```

--Result --
LINESTRING(220268 150415,220269.95064912 150416.539364228,220271.823415575
←
150418.17258804,220273.613787707 150419.895736857,
220275.317452352 150421.704659462,220276.930302347 150423.594998003,220278.448460847
←
150425.562198489,
220279.868261823 150427.60152176,220281.186287736 150429.708054909,220282.399363347
←
150431.876723113,
```
--3d example
SELECT ST_AsEWKT(ST_CurveToLine(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 ←
 150406 3)')));

Output
-------
LINESTRING(220268 150415 1,220269.95064912 150416.539364228 1.0181172856673,
 220271.823415575 150418.17258804 1.03623457133459,220273.613787707 150419.895736857 ←
 1.05435185700189,....AD INFINITUM ....
220225.586657991 150406.324522731 1.32611114201132,220227 150406 3)

--use only 2 segments to approximate quarter circle
SELECT ST_AsText(ST_CurveToLine(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 ←
 150406)'),2));

st_astext
----------------------------
LINESTRING(220268 150415,220287.740300149 150448.342699654,220278.12195122 ←
 150485.87804878,
 220244.779251566 150505.61834893,220207.243902439 150496,220187.505360229 150462.657300346,
 220197.12195122 150425.12195122,220227 150406)

-- Ensure approximated line is no further than 20 units away from
-- original curve, and make the result direction-neutral
SELECT ST_AsText(ST_CurveToLine('CIRCULARSTRING(0 0,100 -100,200 0)'::geometry,
  20, -- Tolerance
  1, -- Above is max distance between curve and line
  1 -- Symmetric flag
));

st_astext
-------------------------------------------------------------------------------------------
LINESTRING(0 0,50 -86.6025403784438,150 -86.6025403784439,200 -1.1331077795296e-13,200 0)

See Also

ST_LineToCurve

5.5.5 ST_FlipCoordinates

ST_FlipCoordinates — Returns a version of a geometry with X and Y axis flipped.

Synopsis

gameometry ST_FlipCoordinates(geom

Description

Returns a version of the given geometry with X and Y axis flipped. Useful for fixing geometries which contain coordinates expressed as latitude/longitude (Y,X).

Availability: 2.0.0

- This method supports Circular Strings and Curves
- This function supports 3d and will not drop the z-index.
This function supports M coordinates.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Example

```sql
SELECT ST_AsEWKT(ST_FlipCoordinates(GeomFromEWKT('POINT(1 2)')));
```

```
st_asewkt

POINT(2 1)
```

See Also

ST_SwapOrdinates

5.5.6  ST_Force2D

ST_Force2D — Force the geometries into a "2-dimensional mode".

Synopsis

```sql
geometry
ST_Force2D(geometry geomA);
```

Description

Forces the geometries into a "2-dimensional mode" so that all output representations will only have the X and Y coordinates. This is useful for force OGC-compliant output (since OGC only specifies 2-D geometries).

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_2D.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_AsEWKT(ST_Force2D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
```

```
st_asewkt

CIRCULARSTRING(1 1,2 3,4 5,6 7,5 6)
```

```sql
SELECT ST_AsEWKT(ST_Force2D('POLYGON((0 0 2, 0 5 2, 5 0 2, 0 0 2), (1 1 2, 3 1 2, 1 3 2, 1 1 2))
```

```
st_asewkt
--
POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))
```
See Also

ST_Force3D

5.5.7 ST_Force3D

ST_Force3D — Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.

Synopsis

gamey ST_Force3D(geom geomA, float Zvalue = 0.0);

Description

Forces the geometries into XYZ mode. This is an alias for ST_Force3DZ. If a geometry has no Z component, then a \texttt{Zvalue} \texttt{Z} coordinate is tacked on.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3D.

Changed: 3.1.0. Added support for supplying a non-zero \texttt{Z} value.

This function supports Polyhedral surfaces.

This method supports Circular Strings and Curves

This function supports 3d and will not drop the \texttt{z}-index.

Examples

```sql
-- Nothing happens to an already 3D geometry
SELECT ST_AsEWKT(ST_Force3D('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, ←
5 6 2)'));
```

```
CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)
```

```sql
SELECT ST_AsEWKT(ST_Force3D('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,3 1 1))'));
```

```
POLYGON((0 0 0, 0 5, 5 0, 0 0, 0 0),(1 1 0, 1 3 0, 1 1 0))
```

See Also

ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3DZ

5.5.8 ST_Force3DZ

ST_Force3DZ — Force the geometries into XYZ mode.
Synopsis

geometry ST_Force3DZ(geomA, float Zvalue = 0.0);

Description

Forces the geometries into XYZ mode. If a geometry has no Z component, then a Zvalue Z coordinate is tacked on. Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DZ.
Changed: 3.1.0. Added support for supplying a non-zero Z value.

- This function supports Polyhedral surfaces.
- This function supports 3d and will not drop the z-index.
- This method supports Circular Strings and Curves

Examples

```sql
--Nothing happens to an already 3D geometry
SELECT ST_AsEWKT(ST_Force3DZ(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 ← 6 2)')));
st_asewkt

CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST_AsEWKT(ST_Force3DZ('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))'));
st_asewkt
--
POLYGON((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))
```

See Also

ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3D

5.5.9 ST_Force3DM

ST_Force3DM — Force the geometries into XYM mode.

Synopsis

geometry ST_Force3DM(geomA, float Mvalue = 0.0);

Description

Forces the geometries into XYM mode. If a geometry has no M component, then a Mvalue M coordinate is tacked on. If it has a Z component, then Z is removed
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DM.
Changed: 3.1.0. Added support for supplying a non-zero M value.

- This method supports Circular Strings and Curves
Examples

--Nothing happens to an already 3D geometry
SELECT ST_AsEWKT(ST_Force3DM(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 ← 6 2)')));

st_asewkt
------------------------------------------------
CIRCULARSTRINGM(1 1 0,2 3 0,4 5 0,6 7 0,5 6 0)

SELECT ST_AsEWKT(ST_Force3DM('POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 3 1 1,1 3 1,1 1 1)) ← '));

st_asewkt
---------------------------------------------------------------
POLYGONM((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))

See Also

ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3D, ST_GeomFromEWKT

5.5.10 ST_Force4D

ST_Force4D — Force the geometries into XYZM mode.

Synopsis

geometry ST_Force4D(geomA, float Zvalue = 0.0, float Mvalue = 0.0);

Description

Forces the geometries into XYZM mode. Zvalue and Mvalue is tacked on for missing Z and M dimensions, respectively.

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_4D.

Changed: 3.1.0. Added support for supplying non-zero Z and M values.

✅ This function supports 3d and will not drop the z-index.

✅ This method supports Circular Strings and Curves

Examples

--Nothing happens to an already 3D geometry
SELECT ST_AsEWKT(ST_Force4D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 ← 2)')));

st_asewkt
------------------------------------------------
CIRCULARSTRING(1 1 2 0,2 3 2 0,4 5 2 0,6 7 2 0,5 6 2 0)

SELECT ST_AsEWKT(ST_Force4D('MULTILINESTRINGM((0 0 0 1,0 5 2 5 0 3,0 0 4),(1 1 1 3 1 1,1 3 1 1 1 1) ← 1,1 1 1))');
See Also

ST_ASEWK, ST_Force2D, ST_Force3DM, ST_Force3D

5.5.11  ST_ForcePolygonCCW

ST_ForcePolygonCCW — Orients all exterior rings counter-clockwise and all interior rings clockwise.

Synopsis

geometry ST_ForcePolygonCCW ( geometry geom );

Description

Forces (Multi)Polygons to use a counter-clockwise orientation for their exterior ring, and a clockwise orientation for their interior rings. Non-polygonal geometries are returned unchanged.

Availability: 2.4.0

This function supports 3d and will not drop the z-index.

This function supports M coordinates.

See Also

ST_ForcePolygonCW, ST_IsPolygonCCW, ST_IsPolygonCW

5.5.12  ST_ForceCollection

ST_ForceCollection — Convert the geometry into a GEOMETRYCOLLECTION.

Synopsis

geometry ST_ForceCollection( geometry geomA );

Description

Converts the geometry into a GEOMETRYCOLLECTION. This is useful for simplifying the WKB representation.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Availability: 1.2.2, prior to 1.3.4 this function will crash with Curves. This is fixed in 1.3.4+

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_Collection.

This function supports Polyhedral surfaces.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves
Examples

```sql
SELECT ST_AsEWKT(ST_ForceCollection('POLYGON((0 0 5,1,5 0,1,0 0,1),(1 1,3 1,1,3 1,1 1))'));
```

```
GEOMETRYCOLLECTION(POLYGON((0 0 5,1,5 0,1,0 0,1),(1 1,3 1,1,3 1,1 1)))
```

```sql
-- POLYHEDRAL example --
SELECT ST_AsEWKT(ST_ForceCollection('POLYHEDRALSURFACE(((0 0 0 0,0 0 1,0 0 0,0 0 0)),
((0 0 0 0,0 0 1,0 0 0,0 0 0)),
((1 1 0 1,1 1 0,1 0 0,0 0 0)),
((0 0 0 0,0 0 0,0 0 0,0 0 0))'))
```

```
GEOMETRYCOLLECTION(
 POLYGON((0 0 0 0,0 0 1,0 0 0,0 0 0)),
 POLYGON((0 0 0 0,0 0 1,0 0 0,0 0 0)),
 POLYGON((1 1 0 1,1 1 0,1 0 0,0 0 0)),
 POLYGON((0 0 0 0,0 0 0,0 0 0,0 0 0)))
```

See Also

ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3D, ST_GeomFromEWKT

5.5.13 ST_ForcePolygonCW

ST_ForcePolygonCW — Orienters all exterior rings clockwise and all interior rings counter-clockwise.

Synopsis

```sql
geometry ST_ForcePolygonCW (geometry geom);
```

Description

Forces (Multi)Polygons to use a clockwise orientation for their exterior ring, and a counter-clockwise orientation for their interior rings. Non-polygonal geometries are returned unchanged.

Availability: 2.4.0
This function supports 3D and will not drop the z-index.

This function supports M coordinates.

See Also

ST_ForcePolygonCCW, ST_IsPolygonCCW, ST_IsPolygonCW

5.5.14 ST_ForceSFS

ST_ForceSFS — Force the geometries to use SFS 1.1 geometry types only.

Synopsis

gometry ST_ForceSFS(geometry geomA);
gometry ST_ForceSFS(geometry geomA, text version);

Description

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

This method supports Circular Strings and Curves

This function supports 3D and will not drop the z-index.

5.5.15 ST_ForceRHR

ST_ForceRHR — Force the orientation of the vertices in a polygon to follow the Right-Hand-Rule.

Synopsis

gometry ST_ForceRHR(geometry g);

Description

Forces the orientation of the vertices in a polygon to follow a Right-Hand-Rule, in which the area that is bounded by the polygon is to the right of the boundary. In particular, the exterior ring is orientated in a clockwise direction and the interior rings in a counter-clockwise direction. This function is a synonym for ST_ForcePolygonCW

Note

The above definition of the Right-Hand-Rule conflicts with definitions used in other contexts. To avoid confusion, it is recommended to use ST_ForcePolygonCW.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

This function supports 3D and will not drop the z-index.

This function supports Polyhedral surfaces.
Examples

```sql
SELECT ST_AsEWKT(
 ST_ForceRHR(
 'POLYGON((0 0 2, 5 0 2, 0 5 2, 0 0 2),(1 1 2, 1 3 2, 3 1 2, 1 1 2))'::geometry
)
);
 st_asewkt
```

```sql
POLYGON ((0 0 2, 0 5 2, 5 0 2, 0 0 2), (1 1 2, 1 3 2, 3 1 2, 1 1 2))
```

(1 row)

See Also

ST_ForcePolygonCCW, ST_ForcePolygonCW, ST_IsPolygonCCW, ST_IsPolygonCW, ST_BuildArea, ST_Polygonize, ST_Reverse

5.5.16 ST_ForceCurve

ST_ForceCurve — Upcast a geometry into its curved type, if applicable.

Synopsis

```sql
geometry ST_ForceCurve(geometry g);
```

Description

Turns a geometry into its curved representation, if applicable: lines become compoundcurves, multilines become multicurves polygons become curvepolygons multipolygons become multisurfaces. If the geometry input is already a curved representation returns back same as input.

Availability: 2.2.0

✅ This function supports 3d and will not drop the z-index.

✅ This method supports Circular Strings and Curves

Examples

```sql
SELECT ST_AsText(
 ST_ForceCurve(
 'POLYGON((0 0 2, 5 0 2, 0 5 2, 0 0 2),(1 1 2, 1 3 2, 3 1 2, 1 1 2))':::geometry
)
);
 st_astext
```

```
CURVEPOLYGON Z ((0 0 2, 5 0 2, 0 5 2, 0 0 2), (1 1 2, 1 3 2, 3 1 2, 1 1 2))
```

(1 row)

See Also

ST_LineToCurve
5.5.17 ST_LineMerge

ST_LineMerge — Return a (set of) LineString(s) formed by sewing together a MULTILINESTRING.

Synopsis

geometry ST_LineMerge(geometry amultilinestring);

Description

Returns a (set of) LineString(s) formed by sewing together the constituent line work of a MULTILINESTRING.

Note

Only use with MULTILINESTRING/LINESTRINGs. If you feed a polygon or geometry collection into this function, it will return an empty GEOMETRYCOLLECTION

Performed by the GEOS module.

Availability: 1.1.0

Warning

Will strip the M dimension.

Examples

```sql
SELECT ST_AsText(ST_LineMerge(
 ST_GeomFromText('MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33),(-45 -33,-46 -32))')
);

st_astext
--
LINESTRING(-29 -27,-30 -29.7,-36 -31,-45 -33,-46 -32)
(1 row)

-- If can't be merged - original MULTILINESTRING is returned
SELECT ST_AsText(ST_LineMerge(
 ST_GeomFromText('MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33),(-45.2 -33.2,-46 -32))')
);

st_astext

MULTILINESTRING((-45.2 -33.2,-46 -32),(-29 -27,-30 -29.7,-36 -31,-45 -33))

-- example with Z dimension
SELECT ST_AsText(ST_LineMerge(
 ST_GeomFromText('MULTILINESTRING((-29 -27 11,-30 -29.7 10,-36 -31 5,-45 -33 6),(-29 -27 12,-30 -29.7 5), (-45 -33 1,-46 -32 11))')
);

st_astext
```

LINESTRING Z (-30 -29.7 5,-29 -27 11,-30 -29.7 10,-36 -31 5,-45 -33 1,-46 -32 11)
(1 row)

See Also

ST_Segmentize, ST_LineSubstring

5.5.18 ST_LineToCurve

ST_LineToCurve — Converts a linear geometry to a curved geometry.

Synopsis

geometry ST_LineToCurve(geometry geomANoncircular);

Description

Converts plain LINESTRING/POLYGON to CIRCULAR STRINGs and Curved Polygons. Note much fewer points are needed to describe the curved equivalent.

Note

If the input LINESTRING/POLYGON is not curved enough to clearly represent a curve, the function will return the same input geometry.

Availability: 1.3.0

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Examples

-- 2D Example
SELECT ST_AsText(ST_LineToCurve(foo.the_geom)) As curvedastext,ST_AsText(foo.the_geom) As non_curvedastext
    FROM (SELECT ST_Buffer('POINT(1 3)'::geometry, 3) As the_geom) As foo;

curvedastext non_curvedastext
--------------------------|---------------------------
CURVEPOLYGON(CIRCULARSTRING(4 3,3.12132034355964 0.878679656440359, 1 POLYGON((4 3,3.94235584120969 2.4147290395162,3.77163859753386 1.85194970290473,1 0,-1.12132034355965 5.12132034355963,4 3)),1.33328930094119,3.12132034355964 0.878679656440359),
0.228361402466141,1.58527096604839 0.0576441587903094,1 0, ERROR: Exception ocurred during geometry conversion

3D example

SELECT ST_AsText(ST_LineToCurve(geom)) AS curved, ST_AsText(geom) AS not_curved
FROM (SELECT ST_Translate(ST_Force3D(ST_Boundary(ST_Buffer(ST_Point(1,3), 2,2))),0,0,3) AS geom) AS foo;

<table>
<thead>
<tr>
<th>curved</th>
<th>not_curved</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCULARSTRING Z (3 3 3,-1 2.99999999999999 3,3 3 3)</td>
<td>LINESTRING Z (3 3 3,2.4142135623731 1.58578643762691 3,1 1 3,)</td>
</tr>
<tr>
<td>(-0.414213562373101 1.58578643762691 3,-1 2.99999999999999 3,</td>
<td>(-0.414213562373101 1.58578643762691 3,-1 2.99999999999999 3,</td>
</tr>
<tr>
<td>-0.414213562373101 4.41421356237309 3,</td>
<td>0.99999999999999 5 3,</td>
</tr>
<tr>
<td>0.99999999999999 5 3,</td>
<td></td>
</tr>
<tr>
<td>3,3 3 3)</td>
<td>3,3 3 3)</td>
</tr>
</tbody>
</table>

(1 row)

See Also

ST_CurveToLine

5.5.19 ST_Multi

ST_Multi — Return the geometry as a MULTI* geometry.

Synopsis

gamey ST_Multi(geom g1);

Description

Returns the geometry as a MULTI* geometry. If the geometry is already a MULTI*, it is returned unchanged.

Examples

SELECT ST_AsText(ST_Multi(ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,
743265 2967450,743265.625 2967416,743238 2967416))')));

st_astext
MULTIPOLYGON(((743238 2967416, 743238 2967450, 743265 2967450, 743265.625 2967416, 743238 2967416)))
(1 row)

See Also

ST_AsText

5.5.20 ST_Normalize

ST_Normalize — Return the geometry in its canonical form.

Synopsis

gometry ST_Normalize(geometry geom);

Description

Returns the geometry in its normalized/canonical form. May reorder vertices in polygon rings, rings in a polygon, elements in a multi-geometry complex.

Mostly only useful for testing purposes (comparing expected and obtained results).

Availability: 2.3.0

Examples

```
SELECT ST_AsText(ST_Normalize(ST_GeomFromText('GEOMETRYCOLLECTION(
 POINT(2 3),
 MULTILINESTRING((0 0, 1 1),(2 2, 3 3)),
 POLYGON(
 (0 10,0 10,10 10,10 0,0 0),
 (4 2,2 2,4 4,4 4,2),
 (6 8,8 8,6 6,6 8)
)
)));
```

GEOMETRYCOLLECTION(POLYGON((0 0 10, 10 10 0 0),(6 8 8,6 8,6 6 6),(2 2 4,4 4 4,2 2)), MULTILINESTRING((2 3,2 3),(0 0,1 1)), POINT(2 3))
(1 row)

See Also

ST_Equals,

5.5.21 ST_QuantizeCoordinates

ST_QuantizeCoordinates — Sets least significant bits of coordinates to zero
Synopsis

geometry ST_QuantizeCoordinates (geometry g, int prec_x, int prec_y, int prec_z, int prec_m);

Description

ST_QuantizeCoordinates determines the number of bits (N) required to represent a coordinate value with a specified number of digits after the decimal point, and then sets all but the N most significant bits to zero. The resulting coordinate value will still round to the original value, but will have improved compressibility. This can result in a significant disk usage reduction provided that the geometry column is using a compressible storage type. The function allows specification of a different number of digits after the decimal point in each dimension; unspecified dimensions are assumed to have the precision of the x dimension. Negative digits are interpreted to refer digits to the left of the decimal point, (i.e., prec_x=-2 will preserve coordinate values to the nearest 100.

The coordinates produced by ST_QuantizeCoordinates are independent of the geometry that contains those coordinates and the relative position of those coordinates within the geometry. As a result, existing topological relationships between geometries are unaffected by use of this function. The function may produce invalid geometry when it is called with a number of digits lower than the intrinsic precision of the geometry.

Availability: 2.5.0

Technical Background

PostGIS stores all coordinate values as double-precision floating point integers, which can reliably represent 15 significant digits. However, PostGIS may be used to manage data that intrinsically has fewer than 15 significant digits. An example is TIGER data, which is provided as geographic coordinates with six digits of precision after the decimal point (thus requiring only nine significant digits of longitude and eight significant digits of latitude.)

When 15 significant digits are available, there are many possible representations of a number with 9 significant digits. A double precision floating point number uses 52 explicit bits to represent the significand (mantissa) of the coordinate. Only 30 bits are needed to represent a mantissa with 9 significant digits, leaving 22 insignificant bits; we can set their value to anything we like and still end up with a number that rounds to our input value. For example, the value 100.123456 can be represented by the floating point numbers closest to 100.123456000000, 100.123456000001, and 100.123456432199. All are equally valid, in that ST_AsText(geom, 6) will return the same result with any of these inputs. As we can set these bits to any value, ST_QuantizeCoordinates sets the 22 insignificant bits to zero. For a long coordinate sequence this creates a pattern of blocks of consecutive zeros that is compressed by PostgreSQL more efficiently.

Note

Only the on-disk size of the geometry is potentially affected by ST_QuantizeCoordinates. ST_MemSize, which reports the in-memory usage of the geometry, will return the the same value regardless of the disk space used by a geometry.

Examples

```
SELECT ST_AsText(ST_QuantizeCoordinates('POINT (100.123456 0)'::geometry, 4));

st_astext

POINT(100.123455047607 0)

WITH test AS (SELECT 'POINT (123.456789123456 123.456789123456)'::geometry AS geom)
SELECT digits,
 encode(ST_QuantizeCoordinates(geom, digits), 'hex'),
 ST_AsText(ST_QuantizeCoordinates(geom, digits))
FROM test, generate_series(15, -15, -1) AS digits;
```
### PostGIS 3.1.10 Manual

#### 5.5.22 ST_RemovePoint

ST_RemovePoint — Remove point from a linestring.

<table>
<thead>
<tr>
<th>digits</th>
<th>encode</th>
<th>st_astext</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>14</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>13</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>12</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>11</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>10</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>9</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>8</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>7</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>6</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>5</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>4</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>3</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>2</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>1</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>0</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-1</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-2</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-3</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-4</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-5</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-6</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-7</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-8</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-9</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-10</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-11</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-12</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-13</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-14</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
<tr>
<td>-15</td>
<td>01010000005f9a72083ccd5e405f9a72083ccd5e40</td>
<td>POINT(123.456789123456 123.456789123456)</td>
</tr>
</tbody>
</table>

See Also

**ST_SnapToGrid**

**5.5.22 ST_RemovePoint**

ST_RemovePoint — Remove point from a linestring.

---
**Synopsis**

`geometry ST_RemovePoint(geometry linestring, integer offset);`

**Description**

Remove a point from a linestring, given its 0-based index. Useful for turning a closed ring into an open line string.

Availability: 1.1.0

- This function supports 3d and will not drop the z-index.

**Examples**

```
--guarantee no LINESTRINGS are closed
--by removing the end point. The below assumes the_geom is of type LINESTRING
UPDATE sometable
SET the_geom = ST_RemovePoint(the_geom, ST_NPoints(the_geom) - 1)
FROM sometable
WHERE ST_IsClosed(the_geom) = true;
```

**See Also**

ST_AddPoint, ST_NPoints, ST_NumPoints

**5.5.23 ST_RemoveRepeatedPoints**

ST_RemoveRepeatedPoints — Returns a version of the given geometry with duplicated points removed.

**Synopsis**

`geometry ST_RemoveRepeatedPoints(geometry geom, float8 tolerance);`

**Description**

Returns a version of the given geometry with duplicated points removed. Will actually do something only with (multi)lines, (multi)polygons and multipoints but you can safely call it with any kind of geometry. Since simplification occurs on a object-by-object basis you can also feed a GeometryCollection to this function.

If the tolerance parameter is provided, vertices within the tolerance of one another will be considered the "same" for the purposes of removal.

Availability: 2.2.0

- This function supports Polyhedral surfaces.
- This function supports 3d and will not drop the z-index.

**See Also**

ST_Simplify
5.5.24  ST_Reverse

ST_Reverse — Return the geometry with vertex order reversed.

Synopsis

geometry ST_Reverse(geometry g1);

Description

Can be used on any geometry and reverses the order of the vertexes.

Enhanced: 2.4.0 support for curves was introduced.

- This function supports 3d and will not drop the z-index.
- This function supports Polyhedral surfaces.

Examples

```sql
SELECT ST_AsText(the_geom) as line, ST_AsText(ST_Reverse(the_geom)) As reverseline
FROM
(SELECT ST_MakeLine(ST_MakePoint(1,2),
 ST_MakePoint(1,10)) As the_geom) as foo;
```

---

5.5.25  ST_Segmentize

ST_Segmentize — Return a modified geometry/geography having no segment longer than the given distance.

Synopsis

geometry ST_Segmentize(geometry geom, float max_segment_length);
geography ST_Segmentize(geography geog, float max_segment_length);

Description

Returns a modified geometry having no segment longer than the given `max_segment_length`. Distance computation is performed in 2d only. For geometry, length units are in units of spatial reference. For geography, units are in meters.

Availability: 1.2.2

Enhanced: 3.0.0 Segmentize geometry now uses equal length segments

Enhanced: 2.3.0 Segmentize geography now uses equal length segments

Enhanced: 2.1.0 support for geography was introduced.

Changed: 2.1.0 As a result of the introduction of geography support: The construct `SELECT ST_Segmentize('LINESTRING(1 2, 3 4)', 0.5);` will result in ambiguous function error. You need to have properly typed object e.g. a geometry/geography column, use ST_GeomFromText, ST_GeogFromText or `SELECT ST_Segmentize('LINESTRING(1 2, 3 4)::geometry, 0.5);`
Note
This will only increase segments. It will not lengthen segments shorter than max length

Examples

```sql
SELECT ST_AsText(ST_Segmentize(
 ST_GeomFromText('MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33),(-45 -33,-46 -32))'),
 5)
);
```

```
MULTILINESTRING((-29 -27,-30 -29.7,-34.886615700134 -30.758766735029,-36 -31,
 -40.8809353009198 -32.0846522890933,-45 -33),
 (-45 -33,-46 -32))
(1 row)
```

```sql
SELECT ST_AsText(ST_Segmentize(ST_GeomFromText('POLYGON((-29 28, -30 40, -29 28))'),10));
```

```
POLYGON((-29 28,-29.8304547985374 37.9654575824488,-30 40,-29.1695452014626 30.0345424175512,-29 28))
(1 row)
```

See Also

ST_LineSubstring

5.5.26 ST_SetPoint

ST_SetPoint — Replace point of a linestring with a given point.

Synopsis

```
geometry ST_SetPoint(geometry linestring, integer zerobasedposition, geometry point);
```

Description

Replace point N of linestring with given point. Index is 0-based. Negative index are counted backwards, so that -1 is last point. This is especially useful in triggers when trying to maintain relationship of joints when one vertex moves.

Availability: 1.1.0

Updated 2.3.0: negative indexing

This function supports 3d and will not drop the z-index.
Examples

--Change first point in line string from -1 3 to -1 1
SELECT ST_AsText(ST_SetPoint('LINESTRING(-1 2, -1 3)', 0, 'POINT(-1 1)'));

st_astext
-----------------------
LINESTRING(-1 1, -1 3)

---Change last point in a line string (lets play with 3d linestring this time)
SELECT ST_AsEWKT(ST_SetPoint(foo.the_geom, ST_NumPoints(foo.the_geom) - 1, ST_GeomFromEWKT ('POINT(-1 1 3)'))
FROM (SELECT ST_GeomFromEWKT('LINESTRING(-1 2 3, -1 3 4, 5 6 7)') As the_geom) As foo;

st_asewkt
-----------------------
LINESTRING(-1 2 3, -1 3 4, -1 1 3)

SELECT ST_AsText(ST_SetPoint(g, -3, p))
FROM ST_GeomFromText('LINESTRING(0 0, 1 1, 2 2, 3 3, 4 4)') AS g,
     ST_PointN(g, 1) as p;

st_astext
-----------------------
LINESTRING(0 0, 1 1, 0 0, 3 3, 4 4)

See Also

ST_AddPoint, ST_NPoints, ST_NumPoints, ST_PointN, ST_RemovePoint

5.5.27 ST_ShiftLongitude

ST_ShiftLongitude — Shifts the longitude coordinates of a geometry between -180..180 and 0..360.

Synopsis

geometry ST_ShiftLongitude(geometry geom);

Description

Reads every point/vertex in a geometry, and shifts its longitude coordinate from -180..0 to 180..360 and vice versa if between these ranges. This function is symmetrical so the result is a 0..360 representation of a -180..180 data and a -180..180 representation of a 0..360 data.

Note

This is only useful for data with coordinates in longitude/latitude; e.g. SRID 4326 (WGS 84 geographic)

Warning

Pre-1.3.4 bug prevented this from working for MULTIPoint. 1.3.4+ works with MULTIPoint as well.
This function supports 3d and will not drop the z-index.
Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.

NOTE: this function was renamed from "ST_Shift_Longitude" in 2.2.0

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

```
--single point forward transformation
SELECT ST_AsText(ST_ShiftLongitude('SRID=4326;POINT(270 0) '::geometry))
 st_astext

 POINT(-90 0)

--single point reverse transformation
SELECT ST_AsText(ST_ShiftLongitude('SRID=4326;POINT(-90 0) '::geometry))
 st_astext

 POINT(270 0)

--for linestrings the functions affects only to the sufficient coordinates
SELECT ST_AsText(ST_ShiftLongitude('SRID=4326;LINESTRING(174 12, 182 13) '::geometry))
 st_astext

 LINESTRING(174 12,-178 13)
```

See Also

ST_WrapX

5.5.28 ST_WrapX

ST_WrapX — Wrap a geometry around an X value.

Synopsis

gamey ST_WrapX(geometry geom, float8 wrap, float8 move);

Description

This function splits the input geometries and then moves every resulting component falling on the right (for negative 'move') or on the left (for positive 'move') of given 'wrap' line in the direction specified by the 'move' parameter, finally re-unioning the pieces togheter.
Note
This is useful to "recenter" long-lat input to have features of interest not spawned from one side to the other.

Availability: 2.3.0 requires GEOS

This function supports 3d and will not drop the z-index.

Examples

```sql
-- Move all components of the given geometries whose bounding box
-- falls completely on the left of x=0 to +360
select ST_WrapX(the_geom, 0, 360);

-- Move all components of the given geometries whose bounding box
-- falls completely on the left of x=-30 to +360
select ST_WrapX(the_geom, -30, 360);
```

See Also

ST_ShiftLongitude

5.5.29 ST_SnapToGrid

ST_SnapToGrid — Snap all points of the input geometry to a regular grid.

Synopsis

```sql
geometry ST_SnapToGrid(geomA, float originX, float originY, float sizeX, float sizeY);
geometry ST_SnapToGrid(geomA, float sizeX, float sizeY);
geometry ST_SnapToGrid(geomA, float size);
geometry ST_SnapToGrid(geomA, geomOrigin, float sizeX, float sizeY, float sizeZ, float sizeM);
```

Description

Variant 1,2,3: Snap all points of the input geometry to the grid defined by its origin and cell size. Remove consecutive points falling on the same cell, eventually returning NULL if output points are not enough to define a geometry of the given type. Collapsed geometries in a collection are stripped from it. Useful for reducing precision.

Variant 4: Introduced 1.1.0 - Snap all points of the input geometry to the grid defined by its origin (the second argument, must be a point) and cell sizes. Specify 0 as size for any dimension you don't want to snap to a grid.

Note
The returned geometry might lose its simplicity (see ST_IsSimple).

Note
Before release 1.1.0 this function always returned a 2d geometry. Starting at 1.1.0 the returned geometry will have same dimensionality as the input one with higher dimension values untouched. Use the version taking a second geometry argument to define all grid dimensions.
Availability: 1.0.0RC1
Availability: 1.1.0 - Z and M support

This function supports 3d and will not drop the z-index.

Examples

```sql
--Snap your geometries to a precision grid of 10^-3
UPDATE mytable
 SET the_geom = ST_SnapToGrid(the_geom, 0.001);

SELECT ST_AsText(ST_SnapToGrid(
 ST_GeomFromText('LINESTRING(1.1115678 2.123, 4.111111 3.2374897, 4.11112 3.23748667)
←
'),
0.001)
);
 st_astext

LINESTRING(1.112 2.123,4.111 3.237)
--Snap a 4d geometry
SELECT ST_AsEWKT(ST_SnapToGrid(
 ST_GeomFromEWKT('LINESTRING(-1.1115678 2.123 2.3456 1.11111,
4.111111 3.2374897 3.1234 1.1111) ,
-1.11111112 2.123 2.3456 1.1111112'),
ST_GeomFromEWKT('POINT(1.12 2.22 3.2 4.4444)'),
0.1, 0.1, 0.1, 0.01));
 st_asewkt

LINESTRING(-1.08 2.12 2.3 1.1144,4.12 3.22 3.1 1.1144,-1.08 2.12 2.3 1.1144)

--With a 4d geometry - the ST_SnapToGrid(geom,size) only touches x and y coords but keeps m ←
and z the same
SELECT ST_AsEWKT(ST_SnapToGrid(ST_GeomFromEWKT('LINESTRING(-1.1115678 2.123 3 2.3456,
4.11111 3.2374897 3.1234 1.1111) '),
0.01));
 st_asewkt

LINESTRING(-1.11 2.12 3 2.3456,4.11 3.24 3.1234 1.1111)
```

See Also

`ST_Snap, ST_AsEWKT, ST_AsText, ST_GeomFromText, ST_GeomFromEWKT, ST_Simplify`

5.5.30 ST_Snap

ST_Snap — Snap segments and vertices of input geometry to vertices of a reference geometry.

Synopsis

```
geometry ST_Snap(geometry input, geometry reference, float tolerance);
```
Description

Snaps the vertices and segments of a geometry to another Geometry’s vertices. A snap distance tolerance is used to control where snapping is performed. The result geometry is the input geometry with the vertices snapped. If no snapping occurs then the input geometry is returned unchanged.

Snapping one geometry to another can improve robustness for overlay operations by eliminating nearly-coincident edges (which cause problems during noding and intersection calculation).

Too much snapping can result in invalid topology being created, so the number and location of snapped vertices is decided using heuristics to determine when it is safe to snap. This can result in some potential snaps being omitted, however.

Note

The returned geometry might lose its simplicity (see ST_IsSimple) and validity (see ST_IsValid).

Performed by the GEOS module.

Availability: 2.0.0

Examples

A multipolygon shown with a linestring (before any snapping)
A multipolygon snapped to linestring to tolerance: 1.01 of distance. The new multipolygon is shown with reference linestring

```
SELECT ST_AsText(ST_Snap(poly,line, ST_Distance(poly,line)*1.01)) AS polysnapped
FROM (SELECT
 ST_GeomFromText('MULTIPOLYGON(
 ((26 125, 26 200, 126 200, 126 125, 26 125),
 (51 150, 101 150, 76 175, 51 150)),
 ((151 100, 151 200, 176 175, 151 100)))') As poly,
 ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line
) As foo;
```

polysnapped

MULTIPOLYGON(((26 125,26 200,126 200,126 125 ↔
125,101 100,26 125),
(51 150,101 150,76 175,51 150)),(151 ↔
100,151 200,176 175,151 100))

A multipolygon snapped to linestring to tolerance: 1.25 of distance. The new multipolygon is shown with reference linestring

```
SELECT ST_AsText(
 ST_Snap(poly,line, ST_Distance(poly, line)*1.25)
) AS polysnapped
FROM (SELECT
 ST_GeomFromText('MULTIPOLYGON(
 ((26 125, 26 200, 126 200, 126 125, 26 125),
 (51 150, 101 150, 76 175, 51 150)),
 ((151 100, 151 200, 176 175, 151 100)))') As poly,
 ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line
) As foo;
```

polysnapped

MULTIPOLYGON(((5 107,26 200,126 200,126 ↔
125,101 100,54 84,5 107),
(51 150,101 150,76 175,51 150)),(151 ↔
100,151 200,176 175,151 100))
The linestring snapped to the original multipolygon at tolerance 1.01 of distance. The new linestring is shown with reference multipolygon

```
SELECT ST_AsText(
 ST_Snap(line, poly, ST_Distance(poly, line)*1.01)
) AS linesnapped
FROM (SELECT
 ST_GeomFromText('MULTIPOLYGON(
 ((26 125, 26 200, 126 200, 126 125, 26 125),
 (51 150, 101 150, 76 175, 51 150))
 ,
 ((151 100, 151 200, 176 175, 151 100)))') As poly,
 ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line) As foo;
linesnapped
--
LINESTRING(5 107,26 125,54 84,101 100)
```

The linestring snapped to the original multipolygon at tolerance 1.25 of distance. The new linestring is shown with reference multipolygon

```
SELECT ST_AsText(
 ST_Snap(line, poly, ST_Distance(poly, line)*1.25)
) AS linesnapped
FROM (SELECT
 ST_GeomFromText('MULTIPOLYGON(
 ((26 125, 26 200, 126 200, 126 125, 26 125),
 (51 150, 101 150, 76 175, 51 150))
 ,
 ((151 100, 151 200, 176 175, 151 100)))') As poly,
 ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line) As foo;
linesnapped

LINESTRING(26 125,54 84,101 100)
```

See Also

ST_SnapToGrid

5.5.31 ST_SwapOrdinates

ST_SwapOrdinates — Returns a version of the given geometry with given ordinate values swapped.

Synopsis

geometry ST_SwapOrdinates(geometry geom, cstring ords);
Description

Returns a version of the given geometry with given ordinates swapped.
The `ords` parameter is a 2-characters string naming the ordinates to swap. Valid names are: x,y,z and m.
Availability: 2.2.0

- This method supports Circular Strings and Curves
- This function supports 3d and will not drop the z-index.
- This function supports M coordinates.
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Example

```sql
-- Scale M value by 2
SELECT ST_AsText(
 ST_SwapOrdinates(
 ST_Scale(
 ST_SwapOrdinates('POINT ZM (0 0 0 2)'.::geometry g),
 2, 1
),
 'xm')
) FROM (SELECT 'POINT ZM (0 0 0 2)'::geometry g) foo;
```

See Also

`ST_FlipCoordinates`

5.6 Geometry Validation

5.6.1 ST_IsValid

`ST_IsValid` — Tests if a geometry is well-formed in 2D.

Synopsis

```sql
boolean ST_IsValid(geometry g);
boolean ST_IsValid(geometry g, integer flags);
```
Description

Test if an ST_Geometry value is well-formed in 2D according to the OGC rules. For geometries that are invalid, the PostgreSQL NOTICE will provide details of why it is not valid. For geometries with 3 and 4 dimensions, the validity still only tested in 2 dimensions.

For the version with flags, supported flags are documented in `ST_IsValidDetail` This version does not print a NOTICE explaining invalidity.

For more information on the definition of geometry validity, refer to “Ensuring OpenGIS compliancy of geometries”

---

**Note**

SQL-MM defines the result of `ST_IsValid(NULL)` to be 0, while PostGIS returns NULL.

---

Performed by the GEOS module.

The version accepting flags is available starting with 2.0.0.

✔️ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

✔️ This method implements the SQL/MM specification. SQL-MM 3: 5.1.9

---

**Note**

Neither OGC-SFS nor SQL-MM specifications include a flag argument for `ST_IsValid`. The flag is a PostGIS extension.

---

Examples

```sql
SELECT ST_IsValid(ST_GeomFromText('LINESTRING(0 0, 1 1)')) As good_line,
 ST_IsValid(ST_GeomFromText('POLYGON((0 0, 1 1, 1 2, 1 1, 0 0))')) As bad_poly
--results
NOTICE: Self-intersection at or near point 0 0
good_line | bad_poly
-----------+----------
t | f
```

See Also

- `ST_IsSimple`, `ST_IsValidReason`, `ST_IsValidDetail`, `ST_Summary`

### 5.6.2 `ST_IsValidDetail`

`ST_IsValidDetail` — Returns a valid_detail row stating if a geometry is valid, and if not a reason why and a location.

#### Synopsis

```sql
valid_detail ST_IsValidDetail(geom geometry, integer flags);
```
Description

Returns a valid_detail row, formed by a boolean (valid) stating if a geometry is valid, a varchar (reason) stating a reason why it is invalid and a geometry (location) pointing out where it is invalid.

Useful to substitute and improve the combination of ST_IsValid and ST_IsValidReason to generate a detailed report of invalid geometries.

The 'flags' argument is a bitfield. It can have the following values:

- 1: Consider self-intersecting rings forming holes as valid. This is also know as "the ESRI flag". Note that this is against the OGC model.

Performed by the GEOS module.

Availability: 2.0.0

Examples

```sql
--First 3 Rejects from a successful quintuplet experiment
SELECT gid, reason(ST_IsValidDetail(the_geom)), ST_AsText(location(ST_IsValidDetail(the_geom))) as location
FROM
(SELECT ST_MakePolygon(ST_ExteriorRing(e.buff), array_agg(f.line)) As the_geom, gid
FROM (SELECT ST_Buffer(ST_MakePoint(x1*10,y1), z1) As buff, x1*10 + y1*100 + z1*1000 As gid
FROM generate_series(-4,6) x1
CROSS JOIN generate_series(2,5) y1
CROSS JOIN generate_series(1,8) z1
WHERE x1 > y1*0.5 AND z1 < x1*y1) As e
INNER JOIN (SELECT ST_Translate(ST_ExteriorRing(ST_Buffer(ST_MakePoint(x1*10,y1), z1)),y1=x1, z1=2) As line
FROM generate_series(-3,6) x1
CROSS JOIN generate_series(2,5) y1
CROSS JOIN generate_series(1,10) z1
WHERE x1 > y1*0.75 AND z1 < x1*y1) As f
ON (ST_Area(e.buff) > 78 AND ST_Contains(e.buff, f.line))
GROUP BY gid, e.buff) As quintuplet_experiment
WHERE ST_IsValid(the_geom) = false
ORDER BY gid
LIMIT 3;
```

<table>
<thead>
<tr>
<th>gid</th>
<th>reason</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>5330</td>
<td>Self-intersection</td>
<td>POINT(32 5)</td>
</tr>
<tr>
<td>5340</td>
<td>Self-intersection</td>
<td>POINT(42 5)</td>
</tr>
<tr>
<td>5350</td>
<td>Self-intersection</td>
<td>POINT(52 5)</td>
</tr>
</tbody>
</table>

```sql
--simple example
SELECT * FROM ST_IsValidDetail('LINESTRING(220227 150406,2220227 150407,222020 150410)');
```

<table>
<thead>
<tr>
<th>valid</th>
<th>reason</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See Also

ST_IsValid, ST_IsValidReason
5.6.3 ST_IsValidReason

ST_IsValidReason — Returns text stating if a geometry is valid, or a reason for invalidity.

Synopsis

text ST_IsValidReason(geometry geomA, integer flags);
text ST_IsValidReason(geometry geomA);

Description

Returns text stating if a geometry is valid or not an if not valid, a reason why.

Useful in combination with ST_IsValid to generate a detailed report of invalid geometries and reasons.

Allowed flags are documented in ST_IsValidDetail.

Performed by the GEOS module.

Availability: 1.4

Availability: 2.0 version taking flags.

Examples

```
--First 3 Rejects from a successful quintuplet experiment
SELECT gid, ST_IsValidReason(the_geom) as validity_info
FROM (SELECT ST_MakePolygon(ST_ExteriorRing(e.buff), array_agg(f.line)) As the_geom, gid
FROM (SELECT ST_Buffer(ST_MakePoint(x1*10,y1), z1) As buff, x1*10 + y1*100 + z1*1000 As gid
 FROM generate_series(-4,6) x1
 CROSS JOIN generate_series(2,5) y1
 CROSS JOIN generate_series(1,8) z1
 WHERE x1 > y1*0.5 AND z1 < x1*y1) As e
INNER JOIN (SELECT ST_Translate(ST_ExteriorRing(ST_Buffer(ST_MakePoint(x1*10,y1), z1)),y1 ← x1, z1*2) As line
 FROM generate_series(-3,6) x1
 CROSS JOIN generate_series(2,5) y1
 CROSS JOIN generate_series(1,10) z1
 WHERE x1 > y1*0.75 AND z1 < x1*y1) As f
ON (ST_Area(e.buff) > 78 AND ST_Contains(e.buff, f.line))
GROUP BY gid, e.buff) As quintuplet_experiment
WHERE ST_IsValid(the_geom) = false
ORDER BY gid
LIMIT 3;

<table>
<thead>
<tr>
<th>gid</th>
<th>validity_info</th>
</tr>
</thead>
<tbody>
<tr>
<td>5330</td>
<td>Self-intersection [32 5]</td>
</tr>
<tr>
<td>5340</td>
<td>Self-intersection [42 5]</td>
</tr>
<tr>
<td>5350</td>
<td>Self-intersection [52 5]</td>
</tr>
</tbody>
</table>

--simple example
SELECT ST_IsValidReason('LINESTRING(220227 150406,2220227 150407,220220 150410)');

st_isvalidreason

Valid Geometry
```
See Also

ST_IsValid, ST_Summary

5.6.4 ST_MakeValid

ST_MakeValid — Attempts to make an invalid geometry valid without losing vertices.

Synopsis

geometry ST_MakeValid( geometry input );

Description

The function attempts to create a valid representation of a given invalid geometry without losing any of the input vertices. Already-valid geometries are returned without further intervention.

Supported inputs are: POINTS, MULTIPOINTS, LINESTRINGS, MULTILINESTRINGS, POLYGONS, MULTIPOLYGONS and GEOMETRYCOLLECTIONS containing any mix of them.

In case of full or partial dimensional collapses, the output geometry may be a collection of lower-to-equal dimension geometries or a geometry of lower dimension.

Single polygons may become multi-geometries in case of self-intersections.

Performed by the GEOS module.

Availability: 2.0.0

Enhanced: 2.0.1, speed improvements

Enhanced: 2.1.0, added support for GEOMETRYCOLLECTION and MULTIPOINT.

Enhanced: 3.1.0, added removal of Coordinates with NaN values.

This function supports 3d and will not drop the z-index.

Examples
before_geom: MULTIPOLYGON of 2 overlapping polygons

```
SELECT f.geom AS before_geom, ST_MakeValid(f.geom) AS after_geom
FROM (SELECT 'MULTIPOLYGON(((186 194,187 194,188 195,189 195,190 195,
191 195,192 195,193 194,194 194,194 193,195 192,195 191,
195 190,195 189,189,186,187,194,186,14 6,13 6,12 5,11 5,
10 5,9 5,8 5,7 6,6 6,6 7,5 8,5 9,5 10,5 11,5 12,6 13,6 14,186 194)),
((150 90,149 80,146 71,142 62,135 55,128 48,119 44,110 41,100 40,
90 41,81 44,72 48,65 55,58 62,54 71,51 80,50 90,51 100,
54 109,58 118,65 125,72 132,81 136,90 139,100 140,110 139,
119 136,128 132,135 125,142 118,146 109,149 100,150 90)))'::geometry AS geom) AS f;
```
before_geom: MULTIPOLYGON of 6 overlapping polygons

```
SELECT c.geom AS before_geom, ST_MakeValid(c.geom) AS after_geom
FROM (SELECT 'MULTIPOLYGON(((91 50,79 22,51 10,23 22,11 50,23 78,51 90,79 78,91 50),
 ((91 100,79 72,51 60,23 72,11 100,23 128,51 140,79 128,91 100)),
 ((91 150,79 122,51 110,23 122,11 150,23 178,51 190,79 178,91 150)),
 ((141 50,129 22,101 10,73 22,61 50,73 78,101 90,129 78,141 50)),
 ((141 100,129 72,101 60,73 72,61 100,73 128,101 140,129 128,141 100)),
 ((141 150,129 122,101 110,73 122,61 150,73 178,101 190,129 178,141 150)))'::geometry AS geom) AS c;
```

after_geom: MULTIPOLYGON of 14 Non-overlapping polygons

```
SELECT c.geom AS before_geom, ST_MakeValid(c.geom) AS after_geom
FROM (SELECT 'MULTIPOLYGON(((91 50,79 22,51 10,23 22,11 50,23 78,51 90,79 78,91 50),
 ((91 100,79 72,51 60,23 72,11 100,23 128,51 140,79 128,91 100)),
 ((91 150,79 122,51 110,23 122,11 150,23 178,51 190,79 178,91 150)),
 ((141 50,129 22,101 10,73 22,61 50,73 78,101 90,129 78,141 50)),
 ((141 100,129 72,101 60,73 72,61 100,73 128,101 140,129 128,141 100))
 ,
 ((141 150,129 122,101 110,73 122,61 150,73 178,101 190,129 178,141 150)))'::geometry AS geom) AS c;
```

See Also

ST_IsValid, ST_Collect, ST_CollectionExtract
5.7 Spatial Reference System Functions

5.7.1 ST_SetSRID

ST_SetSRID — Set the SRID on a geometry to a particular integer value.

Synopsis

\[
\text{geometry \text{ST\_SetSRID}(\text{geometry geom, integer srid});}
\]

Description

Sets the SRID on a geometry to a particular integer value. Useful in constructing bounding boxes for queries.

Note

This function does not transform the geometry coordinates in any way - it simply sets the meta data defining the spatial reference system the geometry is assumed to be in. Use \text{ST\_Transform} if you want to transform the geometry into a new projection.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method supports Circular Strings and Curves

Examples

-- Mark a point as WGS 84 long lat --

\[
\text{SELECT ST\_SetSRID(ST\_Point(-123.365556, 48.428611),4326) As wgs84long\_lat;}
\]

-- the ewkt representation (wrap with ST\_AsEWKT) --

\[
\text{SRID=4326;POINT(-123.365556 48.428611)}
\]

-- Mark a point as WGS 84 long lat and then transform to web mercator (Spherical Mercator) --

\[
\text{SELECT ST\_Transform(ST\_SetSRID(ST\_Point(-123.365556, 48.428611),4326),3785) As spere\_merc;}
\]

-- the ewkt representation (wrap with ST\_AsEWKT) --

\[
\text{SRID=3785;POINT(-13732990.8753491 6178458.96425423)}
\]

See Also

Section 4.1.3.1, \text{ST\_AsEWKT, ST\_SRID, ST\_Transform, UpdateGeometrySRID}

5.7.2 ST_SRID

ST_SRID — Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table.

Synopsis

\[
\text{integer \text{ST\_SRID}(\text{geometry g1});}
\]
Description

Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table. Section 4.1.3.1

**Note**

spatial_ref_sys table is a table that catalogs all spatial reference systems known to PostGIS and is used for transformations from one spatial reference system to another. So verifying you have the right spatial reference system identifier is important if you plan to ever transform your geometries.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
This method implements the SQL/MM specification. SQL-MM 3: 5.1.5
This method supports Circular Strings and Curves

Examples

```sql
SELECT ST_SRID(ST_GeomFromText('POINT(-71.1043 42.315)',4326));
```

--result

4326

See Also

Section 4.1.3.1, ST_GeomFromText, ST_SetSRID, ST_Transform

5.7.3 ST_Transform

ST_Transform — Return a new geometry with its coordinates transformed to a different spatial reference system.

Synopsis

```sql
geometry ST_Transform(geometry g1, integer srid);
geometry ST_Transform(geometry geom, text to_proj);
geometry ST_Transform(geometry geom, text from_proj, text to_proj);
geometry ST_Transform(geometry geom, text from_proj, integer to_srid);
```

Description

Returns a new geometry with its coordinates transformed to a different spatial reference system. The destination spatial reference `to_srid` may be identified by a valid SRID integer parameter (i.e. it must exist in the `spatial_ref_sys` table). Alternatively, a spatial reference defined as a PROJ.4 string can be used for `to_proj` and/or `from_proj`, however these methods are not optimized. If the destination spatial reference system is expressed with a PROJ.4 string instead of an SRID, the SRID of the output geometry will be set to zero. With the exception of functions with `from_proj`, input geometries must have a defined SRID.

ST_Transform is often confused with ST_SetSRID. ST_Transform actually changes the coordinates of a geometry from one spatial reference system to another, while ST_SetSRID() simply changes the SRID identifier of the geometry.

**Note**

Requires PostGIS be compiled with Proj support. Use PostGIS_Full_Version to confirm you have proj support compiled in.
Note: If using more than one transformation, it is useful to have a functional index on the commonly used transformations to take advantage of index usage.

Note: Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Enhanced: 2.3.0 support for direct PROJ.4 text was introduced.

- This method implements the SQL/MM specification. SQL-MM 3: 5.1.6
- This method supports Circular Strings and Curves
- This function supports Polyhedral surfaces.

Examples

Change Massachusetts state plane US feet geometry to WGS 84 long lat

```sql
SELECT ST_AsText(ST_Transform(ST_GeomFromText('POLYGON((743238 2967416,743238 2967450, 743265 2967450,743265.625 2967416,743238 2967416))',2249),4326)) As wgs_geom;
```

<table>
<thead>
<tr>
<th>wgs_geom</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLYGON((-71.1776848522251 42.3902896512902,-71.1776843766326 42.3903829478009, -71.1775825927231 42.3902893647987,-71.1776848522251 42.3902896512902)); (1 row)</td>
</tr>
</tbody>
</table>

--3D Circular String example

```sql
SELECT ST_AsEWKT(ST_Transform(ST_GeomFromEWKT('SRID=2249;CIRCULARSTRING(743238 2967416 ← 1,743238 2967450 2,743265 2967450 3,743265.625 2967416 3,743238 2967416 4)'),4326));
```

<table>
<thead>
<tr>
<th>st_asewkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRID=4326;CIRCULARSTRING(-71.1776848522251 42.3902896512902 1,-71.1776843766326 ← 42.3903829478009 2, -71.1775825927231 42.3902893647987 3,-71.1776848522251 42.3902896512902 4)</td>
</tr>
</tbody>
</table>

Example of creating a partial functional index. For tables where you are not sure all the geometries will be filled in, its best to use a partial index that leaves out null geometries which will both conserve space and make your index smaller and more efficient.

```sql
CREATE INDEX idx_the_geom_26986_parcel
ON parcels
USING gist
(ST_Transform(the_geom, 26986))
WHERE the_geom IS NOT NULL;
```

Examples of using PROJ.4 text to transform with custom spatial references.
-- Find intersection of two polygons near the North pole, using a custom Gnomic projection
-- See http://boundlessgeo.com/2012/02/flattening-the-peel/
WITH data AS (
    SELECT
        ST_GeomFromText('POLYGON((170 50,170 72,-130 72,-130 50,170 50))', 4326) AS p1,
        ST_GeomFromText('POLYGON((-170 68,-170 90,-141 90,-141 68,-170 68))', 4326) AS p2,
        '+proj=gnom +ellps=WGS84 +lat_0=70 +lon_0=-160 +no_defs':::text AS gnom
    )
SELECT ST_AsText(
    ST_Transform(
        ST_Intersection(ST_Transform(p1, gnom), ST_Transform(p2, gnom)),
        gnom, 4326)
) FROM data;

Configuring transformation behaviour

Sometimes coordinate transformation involving a grid-shift can fail, for example if PROJ.4 has not been built with grid-shift files or the coordinate does not lie within the range for which the grid shift is defined. By default, PostGIS will throw an error if a grid shift file is not present, but this behaviour can be configured on a per-SRID basis either by testing different to_proj values of PROJ.4 text, or altering the proj4text value within the spatial_ref_sys table.

For example, the proj4text parameter +datum=NAD87 is a shorthand form for the following +nadgrids parameter:

```
+nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat
```

The @ prefix means no error is reported if the files are not present, but if the end of the list is reached with no file having been appropriate (ie. found and overlapping) then an error is issued.

If, conversely, you wanted to ensure that at least the standard files were present, but that if all files were scanned without a hit a null transformation is applied you could use:

```
+nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat,null
```

The null grid shift file is a valid grid shift file covering the whole world and applying no shift. So for a complete example, if you wanted to alter PostGIS so that transformations to SRID 4267 that didn’t lie within the correct range did not throw an ERROR, you would use the following:

```
UPDATE spatial_ref_sys SET proj4text = '+proj=longlat +ellps=clrk66 +nadgrids=@conus, @alaska,@ntv2_0.gsb,@ntv1_can.dat,null +no_defs' WHERE srid = 4267;
```

See Also

PostGIS_Full_Version, ST_AsText, ST_SetSRID, UpdateGeometrySRID

5.8 Geometry Input

5.8.1 Well-Known Text (WKT)

5.8.1.1 ST_BdPolyFromText

ST_BdPolyFromText — Construct a Polygon given an arbitrary collection of closed linestrings as a MultiLineString Well-Known text representation.
Synopsis

geometry ST_BdPolyFromText(text WKT, integer srid);

Description

Construct a Polygon given an arbitrary collection of closed linestrings as a MultiLineString Well-Known text representation.

Note

Throws an error if WKT is not a MULTILINESTRING. Throws an error if output is a MULTIPOLYGON; use ST_BdMPolyFromText in that case, or see ST_BuildArea() for a postgres-specific approach.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

Performed by the GEOS module.

Availability: 1.1.0

See Also

ST_BuildArea, ST_BdPolyFromText

5.8.1.2 ST_BdMPolyFromText

ST_BdMPolyFromText — Construct a MultiPolygon given an arbitrary collection of closed linestrings as a MultiLineString text representation Well-Known text representation.

Synopsis

geometry ST_BdMPolyFromText(text WKT, integer srid);

Description

Construct a Polygon given an arbitrary collection of closed linestrings, polygons, MultiLineStrings as Well-Known text representation.

Note

Throws an error if WKT is not a MULTILINESTRING. Forces MULTIPOLYGON output even when result is really only composed by a single POLYGON; use ST_BdPolyFromText if you’re sure a single POLYGON will result from operation, or see ST_BuildArea() for a postgres-specific approach.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

Performed by the GEOS module.

Availability: 1.1.0

See Also

ST_BuildArea, ST_BdPolyFromText
5.8.1.3 ST_GeogFromText

ST_GeogFromText — Return a specified geography value from Well-Known Text representation or extended (WKT).

Synopsis

gеography ST_GeogFromText(тext EWKT);

Description

Returns a geography object from the well-known text or extended well-known representation. SRID 4326 is assumed if unspecified. This is an alias for ST_GeographyFromText. Points are always expressed in long lat form.

Examples

--- converting lon lat coords to geography
ALTER TABLE sometable ADD COLUMN geog geography(POINT,4326);
UPDATE sometable SET geog = ST_GeogFromText('SRID=4326;POINT(' || lon || ' ' || lat || ')') →
;
--- specify a geography point using EPSG:4267, NAD27
SELECT ST_AsEWKT(ST_GeogFromText('SRID=4267;POINT(-77.0092 38.889588)'));

See Also

ST_AsText, ST_GeographyFromText

5.8.1.4 ST_GeographyFromText

ST_GeographyFromText — Return a specified geography value from Well-Known Text representation or extended (WKT).

Synopsis

gеography ST_GeographyFromText(тext EWKT);

Description

Returns a geography object from the well-known text representation. SRID 4326 is assumed if unspecified.

See Also

ST_GeogFromText, ST_AsText

5.8.1.5 ST_GeomCollFromText

ST_GeomCollFromText — Makes a collection Geometry from collection WKT with the given SRID. If SRID is not given, it defaults to 0.

Synopsis

gеometry ST_GeomCollFromText(тext WKT, integer srid);
geometry ST_GeomCollFromText(тext WKT);
Description

Makes a collection Geometry from the Well-Known-Text (WKT) representation with the given SRID. If SRID is not given, it defaults to 0.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Returns null if the WKT is not a GEOMETRYCOLLECTION

Note

If you are absolutely sure all your WKT geometries are collections, don’t use this function. It is slower than ST_GeomFromText since it adds an additional validation step.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

This method implements the SQL/MM specification.

Examples

SELECT ST_GeomCollFromText('GEOMETRYCOLLECTION(POINT(1 2),LINESTRING(1 2, 3 4))');

See Also

ST_GeomFromText, ST_SRID

5.8.1.6 ST_GeomFromEWKT

ST_GeomFromEWKT — Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).

Synopsis

geometry ST_GeomFromEWKT(text EWKT);

Description

Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known text (EWKT) representation.

Note

The EWKT format is not an OGC standard, but an PostGIS specific format that includes the spatial reference system (SRID) identifier

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Examples

```
SELECT ST_GeomFromEWKT('SRID=4269;LINESTRING(-71.160281 42.258729,-71.160837 ←
42.259113,-71.161144 42.25932)');
SELECT ST_GeomFromEWKT('SRID=4269;MULTILINESTRING((-71.160281 42.258729,-71.160837
←
42.259113,-71.161144 42.25932))');
SELECT ST_GeomFromEWKT('SRID=4269;POINT(-71.064544 42.28787)');
SELECT ST_GeomFromEWKT('SRID=4269;POLYGON((-71.1776826583081 42.3903033653531,
-71.1776585052917 ←
42.39029793571)));
SELECT ST_GeomFromEWKT('SRID=4269;MULTIPOLYGON(((-71.103188099493 42.3152774590236,
-71.1031627617667 42.3152960829043, -71.102923838298 42.3149156848307,
-71.1023097974109 42.3151969047397, -71.1019285062273 42.3147384934248,
-71.102505233663 42.3144722937587, -71.10277487471 42.3141658254797,
-71.10311395163 42.3142739188902, -71.10324876416 42.31402489987,
-71.1033002961013 42.3140393340215, -71.1033488797549 42.3139495090772,
-71.103396240451 42.3138632439557, -71.1041521907712 42.3141153348029,
-71.1041411411543 42.3141545014533, -71.1041287795912 42.314214839058,
-71.1041188134329 42.3142693656241, -71.10411124282575 42.314327556118,
-71.1041072845732 42.3143851580048, -71.1041057218871 42.3144430686681,
-71.1041065602059 42.3145009876017, -71.1041097995362 42.3145589148055,
-71.1041166403905 42.3146168544148, -71.1041258822717 42.3146748022936,
-71.1041375307579 42.3147318674446, -71.1041492906949 42.3147711126569,
-71.104159612795 42.314808571739, -71.1042515013869 42.3151287620809,
-71.1041173835118 42.3150739481917, -71.1040809891419 42.315134419048,
-71.104043687912 42.3151191367447, -71.1040194562988 42.3151832057859,
-71.1038734225584 42.3151140942995, -71.1038466938243 42.315106300338,
-71.103835271889 42.315094347535, -71.1037393329282 42.315054824985,
-71.1035475555574 42.3152608696313, -71.1033436658644 42.3151648730544,
-71.1032580383161 42.3152269126061, -71.103223066939 42.3152517433219,
-71.1031880899493 42.3152774590236)),
((-71.1043632495873 42.315113108546, -71.1043583974082 42.3151211109857,
-71.104343253471 42.3150676015829, -71.1043850704575 42.3150793250568, -71.1043632495873 ←
42.315113108546));

--3d circular string
SELECT ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)');

--Polyhedral Surface example
SELECT ST_GeomFromEWKT('POLYHEDRALSURFACE(
 (0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
 (0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
 (0 0 0, 1 0 0, 1 0 1, 0 1 0, 0 0 0)),
 ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
 ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 0 0)),
 ((0 0 0, 0 1 0, 1 0 1, 0 1 0, 0 0 0)))
');
```

See Also

ST_AsEWKT, ST_GeomFromText, ST_GeomFromEWKT

5.8.1.7 ST_GeometryFromText

ST_GeometryFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText
Synopsis

geometry ST_GeometryFromText(text WKT);
geometry ST_GeometryFromText(text WKT, integer srid);

Description

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.40

See Also

ST_GeomFromText

5.8.1.8 ST_GeomFromText

ST_GeomFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT).

Synopsis

geometry ST_GeomFromText(text WKT);
geometry ST_GeomFromText(text WKT, integer srid);

Description

Constructs a PostGIS ST_Geometry object from the OGC Well-Known text representation.

Note

There are two variants of ST_GeomFromText function. The first takes no SRID and returns a geometry with no defined spatial reference system (SRID=0). The second takes a SRID as the second argument and returns a geometry that includes this SRID as part of its metadata.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2 - option SRID is from the conformance suite.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.40
This method supports Circular Strings and Curves

Note

While not OGC-compliant, ST_MakePoint is faster than ST_GeomFromText and ST_PointFromText. It is also easier to use for numeric coordinate values. ST_Point is another option similar in speed to ST_MakePoint and is OGC-compliant, but doesn’t support anything but 2D points.

Warning

Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards. This should now be written as ST_GeomFromText('GEOMETRYCOLLECTION EMPTY')
Examples

```
SELECT ST_GeomFromText('LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932)');
```

```
SELECT ST_GeomFromText('LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932)',4269);
```

```
SELECT ST_GeomFromText('MULTILINESTRING((-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932))');
```

```
SELECT ST_GeomFromText('POINT(-71.064544 42.28787)');
```

```
SELECT ST_GeomFromText('POLYGON((-71.1776585052917 42.3902909739571,-71.1776820268866 42.3903701743239,-71.177603012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 42.3902909739571)'));
```

```
SELECT ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)');
```

See Also

ST_GeomFromEWKT, ST_GeomFromWKB, ST_SRID

5.8.1.9 ST_LineFromText

ST_LineFromText — Makes a Geometry from WKT representation with the given SRID. If SRID is not given, it defaults to 0.

Synopsis

```
geometry ST_LineFromText(text WKT);
geometry ST_LineFromText(text WKT, integer srid);
```
Description

Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0. If WKT passed in is not a LINESTRING, then null is returned.

**Note**

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite.

**Note**

If you know all your geometries are LINESTRINGS, it's more efficient to just use ST_GeomFromText. This just calls ST_GeomFromText and adds additional validation that it returns a linestring.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

This method implements the SQL/MM specification. SQL-MM 3: 7.2.8

**Examples**

```sql
SELECT ST_LineFromText('LINESTRING(1 2, 3 4)') AS aline, ST_LineFromText('POINT(1 2)') AS null_return;
```

<table>
<thead>
<tr>
<th>aline</th>
<th>null_return</th>
</tr>
</thead>
<tbody>
<tr>
<td>01020000000000000000000000000000F ...</td>
<td>t</td>
</tr>
</tbody>
</table>

**See Also**

ST_GeomFromText

5.8.1.10 ST_MLineFromText

ST_MLineFromText — Return a specified ST_MultiLineString value from WKT representation.

**Synopsis**

```
geometry ST_MLineFromText(text WKT, integer srid);
geometry ST_MLineFromText(text WKT);
```

**Description**

Makes a Geometry from Well-Known-Text (WKT) with the given SRID. If SRID is not given, it defaults to 0.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Returns null if the WKT is not a MULTILINESTRING

**Note**

If you are absolutely sure all your WKT geometries are points, don't use this function. It is slower than ST_GeomFromText since it adds an additional validation step.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

This method implements the SQL/MM specification. SQL-MM 3: 9.4.4
Examples

```sql
SELECT ST_MLineFromText('MULTILINESTRING((1 2, 3 4), (4 5, 6 7))');
```

See Also

`ST_GeomFromText`

5.8.1.11  ST_MPointFromText

ST_MPointFromText — Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.

Synopsis

```sql
game
ST_MPointFromText (text WKT, integer srid);
game
ST_MPointFromText (text WKT);
```

Description

Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Returns null if the WKT is not a MULTIPOINT

Note

If you are absolutely sure all your WKT geometries are points, don’t use this function. It is slower than `ST_GeomFromText` since it adds an additional validation step.

This method implements the **OpenGIS Simple Features Implementation Specification for SQL 1.1. 3.2.6.2**

This method implements the **SQL/MM specification. SQL-MM 3: 9.2.4**

Examples

```sql
SELECT ST_MPointFromText('MULTIPOINT(1 2, 3 4)');
SELECT ST_MPointFromText('MULTIPOINT(-70.9590 42.1180, -70.9611 42.1223)', 4326);
```

See Also

`ST_GeomFromText`

5.8.1.12  ST_MPolyFromText

ST_MPolyFromText — Make a MultiPolygon Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.

Synopsis

```sql
game
ST_MPolyFromText (text WKT, integer srid);
game
ST_MPolyFromText (text WKT);
```

Description

Makes a MultiPolygon Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Returns null if the WKT is not a MULTIPOLYGON

This method implements the **OpenGIS Simple Features Implementation Specification for SQL 1.1. 3.2.6.2**

This method implements the **SQL/MM specification. SQL-MM 3: 9.2.4**

Examples

```sql
SELECT ST_MPolyFromText('MULTIPOLYGON(((1 2, 3 4), (4 5, 6 7)))');
SELECT ST_MPolyFromText('MULTIPOLYGON((-70.9590 42.1180, -70.9611 42.1223))', 4326);
```

See Also

`ST_GeomFromText`
Description

Makes a MultiPolygon from WKT with the given SRID. If SRID is not given, it defaults to 0.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Throws an error if the WKT is not a MULTIPOLYGON

**Note**

If you are absolutely sure all your WKT geometries are multipolygons, don’t use this function. It is slower than ST_GeomFromText since it adds an additional validation step.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

This method implements the SQL/MM specification. SQL-MM 3: 9.6.4

Examples

```sql
SELECT ST_MPolyFromText('MULTIPOLYGON(((0 0 1,20 0 1,20 20 1,0 20 1,0 0 1),(5 5 3,5 7 3,7 5 3,5 5 3)))');
SELECT ST_MPolyFromText('MULTIPOLYGON(((-70.916 42.1002,-70.9468 42.0946,-70.9765 ↔
42.0872,-70.9754 42.0875,-70.9749 42.0879,-70.9752 42.0881,-70.9754 42.0891,-70.9758 ↔
42.0894,-70.9759 42.0897,-70.9759 42.0899,-70.9754 42.0902,-70.9756 42.0906,-70.9753 ↔
42.0907,-70.9753 42.0917,-70.9757 42.0924,-70.9755 42.0928,-70.9755 42.0942,-70.9751 ↔
42.0948,-70.9755 42.0953,-70.9751 42.0958,-70.9751 42.0962,-70.9759 42.0983,-70.9767 ↔
42.0987,-70.9768 42.0991,-70.9771 42.0997,-70.9771 42.1003,-70.9768 42.1005,-70.977 ↔
42.1011,-70.9766 42.1019,-70.9768 42.1026,-70.9769 42.1033,-70.9775 42.1042,-70.9773 ↔
42.1043,-70.9776 42.1043,-70.9778 42.1048,-70.9778 42.1058,-70.9774 42.1061,-70.9779 ↔
42.1065,-70.9782 42.1078,-70.9788 42.1085,-70.9798 42.1087,-70.9806 42.109, -70.9807 ↔
42.1093,-70.9806 42.1099,-70.9809 42.1109,-70.9808 42.1112,-70.9798 42.1116,-70.9792 ↔
42.1127,-70.979 42.1129,-70.9787 42.1134,-70.979 42.1139,-70.9791 42.1141,-70.9987 ↔
42.1116,-71.0022 42.1273,
-70.9408 42.1513, -70.9315 42.1165, -70.916 42.1002)));',4326);
```

See Also

ST_GeomFromText, ST_SRID

5.8.1.13 ST_PointFromText

**ST_PointFromText** — Makes a point Geometry from WKT with the given SRID. If SRID is not given, it defaults to unknown.

**Synopsis**

```sql
geometry ST_PointFromText(text WKT);
generator ST_PointFromText(text WKT, integer srid);
```

**Description**

Constructs a PostGIS ST_Geometry point object from the OGC Well-Known text representation. If SRID is not given, it defaults to unknown (currently 0). If geometry is not a WKT point representation, returns null. If completely invalid WKT, then throws an error.
Note
There are 2 variants of ST_PointFromText function, the first takes no SRID and returns a geometry with no defined spatial reference system. The second takes a spatial reference id as the second argument and returns an ST_Geometry that includes this srid as part of its meta-data. The srid must be defined in the spatial_ref_sys table.

Note
If you are absolutely sure all your WKT geometries are points, don’t use this function. It is slower than ST_GeomFromText since it adds an additional validation step. If you are building points from long lat coordinates and care more about performance and accuracy than OGC compliance, use ST_MakePoint or OGC compliant alias ST_Point.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2 - option SRID is from the conformance suite.

This method implements the SQL/MM specification. SQL-MM 3: 6.1.8

Examples

```
SELECT ST_PointFromText('POINT(-71.064544 42.28787)');
SELECT ST_PointFromText('POINT(-71.064544 42.28787)', 4326);
```

See Also

ST_GeomFromText, ST_MakePoint, ST_Point, ST_SRID

5.8.1.14 ST_PolygonFromText

ST_PolygonFromText — Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.

Synopsis

```
geometry ST_PolygonFromText(text WKT);
geometry ST_PolygonFromText(text WKT, integer srid);
```

Description

Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0. Returns null if WKT is not a polygon.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Note
If you are absolutely sure all your WKT geometries are polygons, don’t use this function. It is slower than ST_GeomFromText since it adds an additional validation step.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

This method implements the SQL/MM specification. SQL-MM 3: 8.3.6
Examples

```
SELECT ST_PolygonFromText('POLYGON((-71.1776585052917 42.3902909739571,-71.1776820268866 42.3903701743239,
-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 42.3902909739571))
');
```

```
st_polygonfromtext

01030000000100000050000006...
```

```
SELECT ST_PolygonFromText('POINT(1 2)') IS NULL as point_is_notpoly;
point_is_not_poly

t
```

See Also

ST_GeomFromText

5.8.1.15 ST_WKToSQL

ST_WKToSQL — Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText

Synopsis

```
geometry ST_WKToSQL(text WKT);
```

Description

✅ This method implements the SQL/MM specification. SQL-MM 3: 5.1.34

See Also

ST_GeomFromText

5.8.2 Well-Known Binary (WKB)

5.8.2.1 ST_GeogFromWKB

ST_GeogFromWKB — Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended Well Known Binary (EWKB).

Synopsis

```
geography ST_GeogFromWKB(bytea wkb);
```
Description

The ST_GeogFromWKB function, takes a well-known binary representation (WKB) of a geometry or PostGIS Extended WKB and creates an instance of the appropriate geography type. This function plays the role of the Geometry Factory in SQL.

If SRID is not specified, it defaults to 4326 (WGS 84 long lat).

This method supports Circular Strings and Curves

Examples

```sql
--Although bytea rep contains single \, these need to be escaped when inserting into a table
SELECT ST_AsText(ST_GeogFromWKB(E'\001\002\000\000\000\002\000\000\000\037\205\353Q
\270~\\\300\323Mb\020X\231C@\020X9\264\310~\\\300)\\\217\302\365\230
C@'))
); st_astext
--
LINESTRING(-113.98 39.198,-113.981 39.195)
(1 row)
```

See Also

ST_GeogFromText, ST_AsBinary

5.8.2.2 ST_GeomFromEWKB

ST_GeomFromEWKB — Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).

Synopsis

```sql
geometry ST_GeomFromEWKB(bytea EWKB);
```

Description

Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known binary (EWKT) representation.

**Note**

The EWKB format is not an OGC standard, but a PostGIS specific format that includes the spatial reference system (SRID) identifier

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.

This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Examples

line string binary rep of LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932) in NAD 83 long lat (4269).

Note

NOTE: Even though byte arrays are delimited with \ and may have ', we need to escape both out with \ and " if standard_conforming_strings is off. So it does not look exactly like its AsEWKB representation.

```
SELECT ST_GeomFromEWKB(E'\001\002\000\000 \255\020\000\000\003\000\000\000\344J=
\013B\312Q\300n\303(\010\036!E@''\277E''K
\312Q\300\366{b\235*!E@\225|\354.P\312Q
\300p\231\323e1!E@');
```

Note

In PostgreSQL 9.1+ - standard_conforming_strings is set to on by default, where as in past versions it was set to off. You can change defaults as needed for a single query or at the database or server level. Below is how you would do it with standard_conforming_strings = on. In this case we escape the ' with standard ansi ', but slashes are not escaped.

```
set standard_conforming_strings = on;
SELECT ST_GeomFromEWKB('\001\002\000\000 \255\020\000\000\003\000\000\000\344J=
\013B\312Q\300n\303(\010\036!E@''\277E''K\012\312Q\300\366{b\235*!E@\225|\354.P\312Q\012\300p\231\323e1!E@');
```

See Also

ST_AsBinary, ST_AsEWKB, ST_GeomFromWKB

5.8.2.3 ST_GeomFromWKB

ST_GeomFromWKB — Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional SRID.

Synopsis

geometry ST_GeomFromWKB(bytea geom);
geometry ST_GeomFromWKB(bytea geom, integer srid);

Description

The ST_GeomFromWKB function, takes a well-known binary representation of a geometry and a Spatial Reference System ID (SRID) and creates an instance of the appropriate geometry type. This function plays the role of the Geometry Factory in SQL. This is an alternate name for ST_WKBToSQL.

If SRID is not specified, it defaults to 0 (Unknown).

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.7.2 - the optional SRID is from the conformance suite

This method implements the SQL/MM specification. SQL-MM 3: 5.1.41

This method supports Circular Strings and Curves
Examples

-- Although bytea rep contains single \, these need to be escaped when inserting into a →
table
→ unless standard_conforming_strings is set to on.

SELECT ST_AsEWKT(
  ST_GeomFromWKB(E'\001\002\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\353Q←
  \270~\\\300\323Mb\020X\231C@\020X9\264\310~\\\300)\\\217\302\365\230→
C@',4326)
);

-----

SELECT
  ST_AsText(
    ST_GeomFromWKB(ST_AsEWKB('POINT(2 5)'::geometry))
  );

-----

See Also

ST_WKBTOSQL, ST_AsBinary, ST_GeomFromEWKB

5.8.2.4 ST_LineFromWKB

ST_LineFromWKB — Makes a LINESTRING from WKB with the given SRID

Synopsis

geometry ST_LineFromWKB(bytea WKB);
geometry ST_LineFromWKB(bytea WKB, integer srid);

Description

The ST_LineFromWKB function, takes a well-known binary representation of geometry and a Spatial Reference System ID (SRID) and creates an instance of the appropriate geometry type - in this case, a LINESTRING geometry. This function plays the role of the Geometry Factory in SQL.

If an SRID is not specified, it defaults to 0. NULL is returned if the input bytea does not represent a LINESTRING.

Note

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite.

Note

If you know all your geometries are LINESTRINGs, its more efficient to just use ST_GeomFromWKB. This function just calls ST_GeomFromWKB and adds additional validation that it returns a linestring.
This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

This method implements the SQL/MM specification. SQL-MM 3: 7.2.9

Examples

```sql
SELECT ST_LineFromWKB(ST_AsBinary(ST_GeomFromText('LINESTRING(1 2, 3 4)'))) AS aline,
 ST_LineFromWKB(ST_AsBinary(ST_GeomFromText('POINT(1 2)'))) IS NULL AS null_return;
```

```
aline | null_return
----------------- | ---------
0102000000200000000000000000000E'... | t
```

See Also

ST_GeomFromWKB, ST_LinestringFromWKB

5.8.2.5 ST_LinestringFromWKB

ST_LinestringFromWKB — Makes a geometry from WKB with the given SRID.

Synopsis

```sql
geometry ST_LinestringFromWKB(bytea WKB);
geometry ST_LinestringFromWKB(bytea WKB, integer srid);
```

Description

The `ST_LinestringFromWKB` function, takes a well-known binary representation of geometry and a Spatial Reference System ID (SRID) and creates an instance of the appropriate geometry type - in this case, a LINESTRING geometry. This function plays the role of the Geometry Factory in SQL.

If an SRID is not specified, it defaults to 0. NULL is returned if the input `bytea` does not represent a LINESTRING geometry. This an alias for `ST_LineFromWKB`.

---

**Note**

OGC SPEC 3.2.6.2 - optional SRID is from the conformance suite.

---

**Note**

If you know all your geometries are LINESTRINGs, it's more efficient to just use `ST_GeomFromWKB`. This function just calls `ST_GeomFromWKB` and adds additional validation that it returns a LINESTRING.

---

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

This method implements the SQL/MM specification. SQL-MM 3: 7.2.9
Examples

```sql
SELECT
 ST_LineStringFromWKB(
 ST_AsBinary(ST_GeomFromText('LINESTRING(1 2, 3 4)'))
) AS aline,
 ST_LineStringFromWKB(
 ST_AsBinary(ST_GeomFromText('POINT(1 2)'))
) IS NULL AS null_return;

aline | null_return

01020000000000000000000000000000... | t
```

See Also

ST_GeomFromWKB, ST_LineStringFromWKB

5.8.2.6 ST_PointFromWKB

ST_PointFromWKB — Makes a geometry from WKB with the given SRID

Synopsis

```sql
geometry ST_GeomFromWKB(bytea geom);
geometry ST_GeomFromWKB(bytea geom, integer srid);
```

Description

The `ST_PointFromWKB` function, takes a well-known binary representation of geometry and a Spatial Reference System ID (SRID) and creates an instance of the appropriate geometry type - in this case, a POINT geometry. This function plays the role of the Geometry Factory in SQL.

If an SRID is not specified, it defaults to 0. NULL is returned if the input `bytea` does not represent a POINT geometry.

✔️ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.7.2

✔️ This method implements the SQL/MM specification. SQL-MM 3: 6.1.9

✔️ This function supports 3d and will not drop the z-index.

✔️ This method supports Circular Strings and Curves

Examples

```sql
SELECT
 ST_AsText(
 ST_PointFromWKB(
 ST_AsEWKB('POINT(2 5)'::geometry)
)
);

st_astext

POINT(2 5)
```

(1 row)
```
SELECT
 ST_AsText(
 ST_PointFromWKB(
 ST_AsEWKB('LINESTRING(2 5, 2 6)::geometry')
)
);
```

See Also

ST_GeomFromWKB, ST_LineFromWKB

5.8.2.7 ST_WKBToSQL

ST_WKBToSQL — Return a specified ST_Geometry value from Well-Known Binary representation (WKB). This is an alias name for ST_GeomFromWKB that takes no srid

Synopsis

gamey ST_WKBToSQL(bytea WKB);

Description

This method implements the SQL/MM specification. SQL-MM 3: 5.1.36

See Also

ST_GeomFromWKB

5.8.3 Other Formats

5.8.3.1 ST_Box2dFromGeoHash

ST_Box2dFromGeoHash — Return a BOX2D from a GeoHash string.

Synopsis

box2d ST_Box2dFromGeoHash(text geohash, integer precision=full_precision_of_geohash);

Description

Return a BOX2D from a GeoHash string.

If no precision is specified ST_Box2dFromGeoHash returns a BOX2D based on full precision of the input GeoHash string.

If precision is specified ST_Box2dFromGeoHash will use that many characters from the GeoHash to create the BOX2D. Lower precision values results in larger BOX2Ds and larger values increase the precision.

Availability: 2.1.0
Examples

```sql
SELECT ST_Box2dFromGeoHash('9qqj7nmxnggyy40dbxqz0');

st_geomfromgeohash
--
BOX(-115.172816 36.114646, -115.172816 36.114646)
```

```sql
SELECT ST_Box2dFromGeoHash('9qqj7nmxnggyy40dbxqz0', 0);

st_box2dfromgeohash

BOX(-180 -90,180 90)
```

```sql
SELECT ST_Box2dFromGeoHash('9qqj7nmxnggyy40dbxqz0', 10);

st_box2dfromgeohash
--
BOX(-115.17282128334 36.1146408319473, -115.172810554504 36.1146461963654)
```

See Also

ST_Geohash, ST_GeomFromGeoHash, ST_PointFromGeoHash

5.8.3.2 ST_GeomFromGeoHash

**ST_GeomFromGeoHash** — Return a geometry from a GeoHash string.

**Synopsis**

```sql
geometry ST_GeomFromGeoHash(text geohash, integer precision=full_precision_of_geohash);
```

**Description**

Return a geometry from a GeoHash string. The geometry will be a polygon representing the GeoHash bounds.

If no precision is specified `ST_GeomFromGeoHash` returns a polygon based on full precision of the input GeoHash string.

If precision is specified `ST_GeomFromGeoHash` will use that many characters from the GeoHash to create the polygon.

**Availability:** 2.1.0

**Examples**

```sql
SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxnggyy40dbxqz0'));

st_astext
--
```

```sql
SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxnggyy40dbxqz0', 4));

st_astext
--
```
SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 10));

POLYGON((-115.17282128334 36.1146408319473,-115.17282128334
36.1146461963654,-115.172810554504 36.1146461963654,-115.172810554504
36.1146408319473,-115.17282128334 36.1146408319473))

See Also

ST_GeoHash, ST_Box2dFromGeoHash, ST_PointFromGeoHash

5.8.3.3 ST_GeomFromGML

ST_GeomFromGML — Takes as input GML representation of geometry and outputs a PostGIS geometry object

Synopsis

geometry ST_GeomFromGML(text geomgml);
geometry ST_GeomFromGML(text geomgml, integer srid);

Description

Constructs a PostGIS ST_Geometry object from the OGC GML representation.

ST_GeomFromGML works only for GML Geometry fragments. It throws an error if you try to use it on a whole GML document.

OGC GML versions supported:

• GML 3.2.1 Namespace
• GML 3.1.1 Simple Features profile SF-2 (with GML 3.1.0 and 3.0.0 backward compatibility)
• GML 2.1.2

OGC GML standards, cf: http://www.opengeospatial.org/standards/gml:

Availability: 1.5, requires libxml2 1.6+

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.

Enhanced: 2.0.0 default srid optional parameter added.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

GML allow mixed dimensions (2D and 3D inside the same MultiGeometry for instance). As PostGIS geometries don’t, ST_GeomFromGML convert the whole geometry to 2D if a missing Z dimension is found once.

GML support mixed SRS inside the same MultiGeometry. As PostGIS geometries don’t, ST_GeomFromGML, in this case, reproject all subgeometries to the SRS root node. If no srsName attribute available for the GML root node, the function throw an error.

ST_GeomFromGML function is not pedantic about an explicit GML namespace. You could avoid to mention it explicitly for common usages. But you need it if you want to use XLink feature inside GML.
Note
ST_GeomFromGML function not support SQL/MM curves geometries.

Examples - A single geometry with srsName

```sql
SELECT ST_GeomFromGML('
 <gml:LineString srsName="EPSG:4269">
 <gml:coordinates>
 -71.16028,42.258729 -71.160837,42.259112 -71.161143,42.25932
 </gml:coordinates>
 </gml:LineString>');
```

Examples - XLink usage

```sql
SELECT ST_GeomFromGML('
 <gml:LineString xmlns:gml="http://www.opengis.net/gml"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 srsName="urn:ogc:def:crs:EPSG::4269">
 <gml:pointProperty>
 <gml:Point xlink:id="p1"><gml:pos>42.258729 -71.16028</gml:pos></gml:Point>
 <gml:pointProperty>
 <gml:Point gml:id="p1"><gml:pos>42.259112 -71.160837</gml:pos></gml:Point>
 </gml:pointProperty>
 </gml:pointProperty>
 </gml:LineString>');
```

Examples - Polyhedral Surface

```sql
SELECT ST_AsEWKT(ST_GeomFromGML('
 <gml:PolyhedralSurface>
 <gml:polygonPatches>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing><gml:posList srsDimension="3">0 0 0 0 1 0 1 1 0 1 0 0 0 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing><gml:posList srsDimension="3">0 0 0 1 0 1 1 0 1 0 0 0 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing><gml:posList srsDimension="3">0 0 1 0 0 1 0 1 0 0 1 0 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing><gml:posList srsDimension="3">1 1 0 1 1 1 0 1 1 0 0 1 1 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 </gml:polygonPatches>
 </gml:PolyhedralSurface>
');
```
<gml:PolygonPatch>
  <gml:PolygonPatch>
    <gml:exterior>
      <gml:LinearRing><gml:posList srsDimension="3">0 1 0 0 1 1 1 1 1 1 0 0 1 0</gml:posList>
      </gml:LinearRing>
    </gml:exterior>
  </gml:PolygonPatch>
</gml:PolyhedralSurface>''

-- result --
POLYHEDRALSURFACE(((0 0 0 0 1,0 1 1 0 0 0 0 0 0)),
((0 0 0 1 0 1 0 0 0 0 0 0)),
((0 1 1 0 0 1 0 1 0 0 0 0)),
((1 1 0 0 1 0 1 0 0 0 0 0)),
((0 1 1 0 1 1 0 0 0 0 0 0)),
((0 0 0 1 0 1 1 0 0 0 0 0 )))

See Also
Section 2.2.3, ST_AsGML, ST_GMLToSQL

5.8.3.4 ST_GeomFromGeoJSON

ST_GeomFromGeoJSON — Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object

Synopsis

geometry ST_GeomFromGeoJSON(text geomjson);
geometry ST_GeomFromGeoJSON(json geomjson);
geometry ST_GeomFromGeoJSON(jsonb geomjson);

Description

Constructs a PostGIS geometry object from the GeoJSON representation.

ST_GeomFromGeoJSON works only for JSON Geometry fragments. It throws an error if you try to use it on a whole JSON document.

Enhanced: 3.0.0 parsed geometry defaults to SRID=4326 if not specified otherwise.

Enhanced: 2.5.0 can now accept json and jsonb as inputs.

Availability: 2.0.0 requires - JSON-C >= 0.9

Note

If you do not have JSON-C enabled, support you will get an error notice instead of seeing an output. To enable JSON-C, run configure --with-jsondir=/path/to/json-c. See Section 2.2.3 for details.

This function supports 3d and will not drop the z-index.
Examples

```sql
SELECT ST_AsText(ST_GeomFromGeoJSON('{{"type":"Point","coordinates":[-48.23456,20.12345]}') As wkt;
wkt

POINT(-48.23456 20.12345)

-- a 3d linestring
SELECT ST_AsText(ST_GeomFromGeoJSON('{{"type":"LineString","coordinates":
 ":[[1,2,3],[4,5,6],[7,8,9]]'}}) As wkt;
wkt

LINESTRING(1,2,4,5,7,8)
```

See Also

ST_AsText, ST_AsGeoJSON, Section 2.2.3

5.8.3.5 ST_GeomFromKML

ST_GeomFromKML — Takes as input KML representation of geometry and outputs a PostGIS geometry object

Synopsis

```sql
geometry ST_GeomFromKML(text geomkml);
```

Description

Constructs a PostGIS ST_Geometry object from the OGC KML representation.

ST_GeomFromKML works only for KML Geometry fragments. It throws an error if you try to use it on a whole KML document.

OGC KML versions supported:

- KML 2.2.0 Namespace


Availability: 1.5, requires libxml2 2.6+

This function supports 3d and will not drop the z-index.

### Note

ST_GeomFromKML function not support SQL/MM curves geometries.

Examples - A single geometry with srsName

```sql
SELECT ST_GeomFromKML(''
 <LineString>
 <coordinates>-71.1663,42.2614
 -71.1667,42.2616</coordinates>
 </LineString>'');
```
See Also

Section 2.2.3, ST_AsKML

5.8.3.6 ST_GeomFromTWKB

ST_GeomFromTWKB — Creates a geometry instance from a TWKB ("Tiny Well-Known Binary") geometry representation.

Synopsis

```plaintext
gEometry ST_GeomFromTWKB(bytea twkb);
```

Description

The `ST_GeomFromTWKB` function takes a TWKB ("Tiny Well-Known Binary") geometry representation (WKB) and creates an instance of the appropriate geometry type.

Examples

```sql
SELECT ST_AsText(ST_GeomFromTWKB(ST_AsTWKB('LINESTRING(126 34, 127 35) '::geometry)));
```

```
 st_asText

 LINESTRING(126 34, 127 35)
 (1 row)
```

```sql
SELECT ST_AsEWKT(ST_GeomFromTWKB(E'\x620002f7f40dbce4040105'));
```

```
 st_asewkt

 LINESTRING(-113.98 39.198,-113.981 39.195)
 (1 row)
```

See Also

ST_AsTWKB

5.8.3.7 ST_GMLToSQL

ST_GMLToSQL — Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML.

Synopsis

```plaintext
gEometry ST_GMLToSQL(text geomgml);
gEometry ST_GMLToSQL(text geomgml, integer srid);
```

Description

This method implements the SQL/MM specification. SQL-MM 3: 5.1.50 (except for curves support).
Availability: 1.5, requires libxml2 1.6+
Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
Enhanced: 2.0.0 default srid optional parameter added.
See Also

Section 2.2.3, ST_GeomFromGML, ST_AsGML

5.8.3.8 ST_LineFromEncodedPolyline

ST_LineFromEncodedPolyline — Creates a LineString from an Encoded Polyline.

Synopsis

gt

ST_LineFromEncodedPolyline(text polyline, integer precision=5);

Description

Creates a LineString from an Encoded Polyline string.

Optional precision specifies how many decimal places will be preserved in Encoded Polyline. Value should be the same on encoding and decoding, or coordinates will be incorrect.

See http://developers.google.com/maps/documentation/utilities/polylinealgorithm

Availability: 2.2.0

Examples

-- Create a line string from a polyline
SELECT ST_AsEWKT(ST_LineFromEncodedPolyline('_p~iF~ps|U_ulLnnqC_mqNvxq"@'));
-- result --
SRID=4326;LINESTRING(-120.2 38.5,-120.95 40.7,-126.453 43.252)

-- Select different precision that was used for polyline encoding
SELECT ST_AsEWKT(ST_LineFromEncodedPolyline('_p~iF~ps|U_ulLnnqC_mqNvxq"@',6));
-- result --
SRID=4326;LINESTRING(-12.02 3.85,-12.095 4.07,-12.6453 4.3252)

See Also

ST_AsEncodedPolyline

5.8.3.9 ST_PointFromGeoHash

ST_PointFromGeoHash — Return a point from a GeoHash string.

Synopsis

point ST_PointFromGeoHash(text geohash, integer precision=full_precision_of_geohash);

Description

Return a point from a GeoHash string. The point represents the center point of the GeoHash.

If no precision is specified ST_PointFromGeoHash returns a point based on full precision of the input GeoHash string.

If precision is specified ST_PointFromGeoHash will use that many characters from the GeoHash to create the point.

Availability: 2.1.0
Examples

```
SELECT ST_AsText(ST_PointFromGeoHash('9qqj7nmxncgyy4d0dbxqz0'));
st_astext

POINT(-115.172816 36.114646)

SELECT ST_AsText(ST_PointFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 4));
st_astext

POINT(-115.13671875 36.123046875)

SELECT ST_AsText(ST_PointFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 10));
st_astext

POINT(-115.172815918922 36.1146435141563)
```

See Also

`ST_GeoHash`, `ST_Box2dFromGeoHash`, `ST_GeomFromGeoHash`

5.9 Geometry Output

5.9.1 Well-Known Text (WKT)

5.9.1.1 ST_AsEWKT

**ST_AsEWKT** — Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.

**Synopsis**

```
text ST_AsEWKT(geometry g1);
text ST_AsEWKT(geography g1);
text ST_AsEWKT(geography g1, integer maxdecimaldigits=15);
text ST_AsEWKT(geography g1, integer maxdecimaldigits=15);
```

**Description**

Returns the Well-Known Text representation of the geometry prefixed with the SRID. Optional argument may be used to reduce the maximum number of decimal digits after floating point used in output (defaults to 15).

**Note**

The WKT spec does not include the SRID. To get the OGC WKT format use `ST_AsText`.

**Warning**

WKT format does not maintain precision so to prevent floating truncation, use `ST_AsBinary` or `ST_AsEWKB` format for transport.
PostGIS 3.1.10 Manual

294 / 848

Note
ST_AsEWKT is the reverse of ST_GeomFromEWKT. Use ST_GeomFromEWKT to convert to a postgis geometry from
ST_AsEWKT representation.

Enhanced: 3.1.0 support for optional precision parameter.
Enhanced: 2.0.0 support for Geography, Polyhedral surfaces, Triangles and TIN was introduced.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Examples

SELECT ST_AsEWKT('0103000020E61000000100000005000000000000
000000000000000000000000000000000000000000000000000000
F03F000000000000F03F000000000000F03F000000000000F03
F000000000000000000000000000000000000000000000000'::geometry);
st_asewkt
-------------------------------SRID=4326;POLYGON((0 0,0 1,1 1,1 0,0 0))
(1 row)
SELECT ST_AsEWKT('0108000080030000000000000060 ←E30A4100000000785C0241000000000000F03F0000000018
E20A4100000000485F024100000000000000400000000018
E20A4100000000305C02410000000000000840')
--st_asewkt--CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)

See Also

ST_AsBinary, ST_AsEWKB, ST_AsText, ST_GeomFromEWKT
5.9.1.2

ST_AsText

ST_AsText — Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
Synopsis

text ST_AsText(geometry g1);
text ST_AsText(geometry g1, integer maxdecimaldigits=15);
text ST_AsText(geography g1);
text ST_AsText(geography g1, integer maxdecimaldigits=15);


Description

Returns the Well-Known Text representation of the geometry/geography. Optional argument may be used to reduce the maximum number of decimal digits after floating point used in output (defaults to 15).

**Note**

The WKT spec does not include the SRID. To get the SRID as part of the data, use the non-standard PostGIS ST_AsEWKT

**Warning**

WKT format does not maintain precision so to prevent floating truncation, use ST_AsBinary or ST_AsEWKB format for transport.

**Note**

ST_AsText is the reverse of ST_GeomFromText. Use ST_GeomFromText to convert to a postgis geometry from ST_AsText representation.

Availability: 1.5 - support for geography was introduced.
Enhanced: 2.5 - optional parameter precision introduced.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.  s2.1.1.1

This method implements the SQL/MM specification. SQL-MM 3: 5.1.25

This method supports Circular Strings and Curves

### Examples

```sql
SELECT ST_AsText('01030000000100000050000000000000000000
F03F000000000000F03F000000000000F03F000000000000F03
F00
');

st_astext

POLYGON((0 0,0 1,1 1,1 0,0 0))
(1 row)
```

Providing the precision is optional.

```sql
SELECT ST_AsText(GeomFromEWKT('SRID=4326;POINT(111.1111111 1.111111)'))

st_astext

POINT(111.1111111 1.111111)
(1 row)
```

```sql
SELECT ST_AsText(GeomFromEWKT('SRID=4326;POINT(111.1111111 1.111111)'),2)

st_astext

POINT(111.11 1.11)
(1 row)
```
5.9.2 Well-Known Binary (WKB)

5.9.2.1 ST_AsBinary

ST_AsBinary — Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.

Synopsis

bytea ST_AsBinary(geometry g1);
bytea ST_AsBinary(geography g1);

Description

Returns the Well-Known Binary representation of the geometry. There are 2 variants of the function. The first variant takes no endian encoding parameter and defaults to server machine endian. The second variant takes a second argument denoting the encoding - using little-endian ("NDR") or big-endian ("XDR") encoding.

This is useful in binary cursors to pull data out of the database without converting it to a string representation.

Note

The WKB spec does not include the SRID. To get the WKB with SRID format use ST_AsEWKB

Note

ST_AsBinary is the reverse of ST_GeomFromWKB for geometry. Use ST_GeomFromWKB to convert to a postgis geometry from ST_AsBinary representation.

Note

The default behavior in PostgreSQL 9.0 has been changed to output bytea in hex encoding. ST_AsBinary is the reverse of ST_GeomFromWKB for geometry. If your GUI tools require the old behavior, then SET bytea_output='escape' in your database.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.0.0 support for higher coordinate dimensions was introduced.
Enhanced: 2.0.0 support for specifying endian with geography was introduced.
Availability: 1.5.0 geography support was introduced.
Changed: 2.0.0 Inputs to this function can not be unknown -- must be geometry. Constructs such as ST_AsBinary('POINT(1 2)') are no longer valid and you will get an st_asbinary(unknown) is not unique error. Code like that needs to be changed to ST_AsBinary('POINT(1 2)::geometry'); If that is not possible, then install legacy.sql.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
This method implements the SQL/MM specification. SQL-MM 3: 5.1.37
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_AsBinary(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));
```

```
001 003 000 000 000 001 000 000 005
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
```

(1 row)

```sql
SELECT ST_AsBinary(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326), 'XDR');
```

```
000 000 000 000 000 000 000 000 005
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
```

(1 row)

See Also

ST_GeomFromWKB, ST_AsEWKB, ST_AsTWKB, ST_AsText.

5.9.2.2 ST_AsEWKB

ST_AsEWKB — Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.

Synopsis

`bytea ST_AsEWKB(geometry g1);`
`bytea ST_AsEWKB(geometry g1, text NDR_or_XDR);`
Description

Returns the Well-Known Binary representation of the geometry with SRID metadata. There are 2 variants of the function. The first variant takes no endian encoding parameter and defaults to little endian. The second variant takes a second argument denoting the encoding - using little-endian ("NDR") or big-endian ("XDR") encoding.

This is useful in binary cursors to pull data out of the database without converting it to a string representation.

Note

The WKB spec does not include the SRID. To get the OGC WKB format use ST_AsBinary

Note

ST_AsEWKB is the reverse of ST_GeomFromEWKB. Use ST_GeomFromEWKB to convert to a postgis geometry from ST_AsEWKB representation.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

- This function supports 3d and will not drop the z-index.
- This method supports Circular Strings and Curves
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

```
SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));
```

```
st_asewkb

\001\003\000\000 \346\020\000\000\001\000
\000\000\005\000\000\000\000
\000\000\000\000\000\000\000
\000\000\000\000\000\000\000
\000\000\360?\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000
\000\000\360?\000\000\000\000\000\000
\000\360?\000\000\000\000\000\000\000
\000\000\000\000\000\000\000
{1 row}
```

```
SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,0 0))','4326'), 'XDR');
```

```
st_asewkb

\000 \000\000\003\000\000\000\020\346\000
```
(1 row)
See Also

ST_AsBinary, ST_AsEWKT, ST_AsText, ST_GeomFromEWKT, ST_SRID

5.9.2.3 ST_AsHEXEWKB

ST_AsHEXEWKB — Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR) encoding.

Synopsis

```plaintext
text ST_AsHEXEWKB(geometry g1, text NDRorXDR);
text ST_AsHEXEWKB(geometry g1);
```

Description

Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR) encoding. If no encoding is specified, then NDR is used.

Note

Availability: 1.2.2

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves

Examples

```sql
SELECT ST_AsHEXEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));
```

which gives same answer as

```sql
SELECT ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326)::text;
```

st_ashexewkb

--------
0103000020E610000010000000500
00000000000000000000000000000000
00000000000000000000000000000000F03F
000000000000F03F000000000000F03F000000000000F03F000000000000F03F
F0000000000000000000000000000000000000000000000000000000000000000
```

5.9.3 Other Formats

5.9.3.1 ST_AsEncodedPolyline

ST_AsEncodedPolyline — Returns an Encoded Polyline from a LineString geometry.

Synopsis

```plaintext
text ST_AsEncodedPolyline(geometry geom, integer precision=5);
```
Description

Returns the geometry as an Encoded Polyline. This format is used by Google Maps with precision=5 and by Open Source Routing Machine with precision=5 and 6.

Optional precision specifies how many decimal places will be preserved in Encoded Polyline. Value should be the same on encoding and decoding, or coordinates will be incorrect.

Availability: 2.2.0

Examples

Basic

```
SELECT ST_AsEncodedPolyline(GeomFromEWKT('SRID=4326;LINESTRING(-120.2 38.5,-120.95 40.7,-126.453 43.252)'));
```

Use in conjunction with geography linestring and geography segmentize, and put on google maps

```
-- the SQL for Boston to San Francisco, segments every 100 KM
SELECT ST_AsEncodedPolyline(
ST_Segmentize(
   ST_GeogFromText('LINESTRING(-71.0519 42.4935,-122.4483 37.64)'),
   100000)::geometry) As encodedFlightPath;
```

javascript will look something like this where $ variable you replace with query result

```
<script type="text/javascript" src="http://maps.googleapis.com/maps/api/js?libraries=geometry"></script>
<script type="text/javascript">
   flightPath = new google.maps.Polyline({
      path: google.maps.geometry.encoding.decodePath("$encodedFlightPath"),
      map: map,
      strokeColor: '#0000CC',
      strokeOpacity: 1.0,
      strokeWeight: 4
   });
</script>
```

See Also

ST_LineFromEncodedPolyline, ST_Segmentize

5.9.3.2 ST_AsGeobuf

ST_AsGeobuf — Return a Geobuf representation of a set of rows.

Synopsis

```
bytea ST_AsGeobuf(anyelement set row);
bytea ST_AsGeobuf(anyelement row, text geom_name);
```
Description

Return a Geobuf representation (https://github.com/mapbox/geobuf) of a set of rows corresponding to a FeatureCollection. Every input geometry is analyzed to determine maximum precision for optimal storage. Note that Geobuf in its current form cannot be streamed so the full output will be assembled in memory.

row row data with at least a geometry column.

geom_name is the name of the geometry column in the row data. If NULL it will default to the first found geometry column.

Availability: 2.4.0

Examples

```sql
SELECT encode(ST_AsGeobuf(q, 'geom'), 'base64')
FROM (SELECT ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))') AS geom) AS q;
```

```
GAAiEAcwIBBoIAAAAAgIAAAE=
```

5.9.3.3 ST_AsGeoJSON

ST_AsGeoJSON — Return the geometry as a GeoJSON element.

Synopsis

text ST_AsGeoJSON(record feature, text geomcolumnname, integer maxdecimaldigits=9, boolean pretty_bool=false);
text ST_AsGeoJSON(geometry geom, integer maxdecimaldigits=9, integer options=8);
text ST_AsGeoJSON(geography geog, integer maxdecimaldigits=9, integer options=0);

Description

Return the geometry as a GeoJSON "geometry" object, or the row as a GeoJSON "feature" object. (Cf GeoJSON specifications RFC 7946). 2D and 3D Geometries are both supported. GeoJSON only support SFS 1.1 geometry types (no curve support for example).

The `maxdecimaldigits` argument may be used to reduce the maximum number of decimal places used in output (defaults to 9). If you are using EPSG:4326 and are outputting the geometry only for display, `maxdecimaldigits=6` can be a good choice for many maps.

The `options` argument could be used to add BBOX or CRS in GeoJSON output:

- 0: means no option
- 1: GeoJSON BBOX
- 2: GeoJSON Short CRS (e.g EPSG:4326)
- 4: GeoJSON Long CRS (e.g urn:ogc:def:crs:EPSG::4326)
- 8: GeoJSON Short CRS if not EPSG:4326 (default)

Availability: 1.3.4

Availability: 1.5.0 geography support was introduced.

Changed: 2.0.0 support default args and named args.

Changed: 3.0.0 support records as input

Changed: 3.0.0 output SRID if not EPSG:4326.

This function supports 3d and will not drop the z-index.
PostGIS 3.1.10 Manual

302 / 848

Examples

GeoJSON format is popular among web mapping frameworks.
• OpenLayers GeoJSON Example
• Leaflet GeoJSON Example
• Mapbox GL GeoJSON Example
You can test and view your GeoJSON data online on geojson.io.
To build FeatureCollection:
select json_build_object(
'type', 'FeatureCollection',
'features', json_agg(ST_AsGeoJSON(t.*)::json)
)
from (values (1, 'one', 'POINT(1 1)'::geometry),
(2, 'two', 'POINT(2 2)'),
(3, 'three', 'POINT(3 3)')
) as t(id, name, geom);
{"type" : "FeatureCollection", "features" : [{"type": "Feature", "geometry": {"type":"Point ←","coordinates":[1,1]}, "properties": {"id": 1, "name": "one"}}, {"type": "Feature", " ←geometry": {"type":"Point","coordinates":[2,2]}, "properties": {"id": 2, "name": "two ←"}}, {"type": "Feature", "geometry": {"type":"Point","coordinates":[3,3]}, "properties": ←{"id": 3, "name": "three"}}]}

To get Features as records:
SELECT ST_AsGeoJSON(t.*)
FROM (VALUES
(1, 'one', 'POINT(1 1)'::geometry),
(2, 'two', 'POINT(2 2)'),
(3, 'three', 'POINT(3 3)'))
AS t(id, name, geom);

st_asgeojson
--{"type": "Feature", "geometry": {"type":"Point","coordinates":[1,1]}, "properties": {"id": ←1, "name": "one"}}
{"type": "Feature", "geometry": {"type":"Point","coordinates":[2,2]}, "properties": {"id": ←2, "name": "two"}}
{"type": "Feature", "geometry": {"type":"Point","coordinates":[3,3]}, "properties": {"id": ←3, "name": "three"}}

Don’t forget to transform your data to WGS84 longitude, latitude to conform with RFC7946:
SELECT ST_AsGeoJSON(ST_Transform(geom,4326)) from fe_edges limit 1;

st_asgeojson

{"type":"MultiLineString","coordinates":[[[-89.734634999999997,31.492072000000000],
[-89.734955999999997,31.492237999999997]]]}
(1 row)

You can also use it with 3D geometries:


SELECT ST_AsGeoJSON('LINESTRING(1 2 3, 4 5 6)');

{"type":"LineString","coordinates":[[1,2,3],[4,5,6]]}

See Also

ST_GeomFromGeoJSON, ST_AsMVT, ST_AsGeobuf

5.9.3.4 ST_AsGML

ST_AsGML — Return the geometry as a GML version 2 or 3 element.

Synopsis

text ST_AsGML(geometry geom, integer maxdecimaldigits=15, integer options=0);
text ST_AsGML(geography geog, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text id=null);
text ST_AsGML(integer version, geometry geom, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text id=null);
text ST_AsGML(integer version, geography geog, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text id=null);

Description

Return the geometry as a Geography Markup Language (GML) element. The version parameter, if specified, may be either 2 or 3. If no version parameter is specified then the default is assumed to be 2. The maxdecimaldigits argument may be used to reduce the maximum number of decimal places used in output (defaults to 15).

GML 2 refer to 2.1.2 version, GML 3 to 3.1.1 version

The `options` argument is a bitfield. It could be used to define CRS output type in GML output, and to declare data as lat/lon:

- 0: GML Short CRS (e.g EPSG:4326), default value
- 1: GML Long CRS (e.g urn:ogc:def:crs:EPSG::4326)
- 2: For GML 3 only, remove srsDimension attribute from output.
- 4: For GML 3 only, use `<LineString>` rather than `<Curve>` tag for lines.
- 16: Declare that datas are lat/lon (e.g srid=4326). Default is to assume that data are planars. This option is useful for GML 3.1.1 output only, related to axis order. So if you set it, it will swap the coordinates so order is lat lon instead of database lon lat.
- 32: Output the box of the geometry (envelope).

The `namespace prefix` argument may be used to specify a custom namespace prefix or no prefix (if empty). If null or omitted `gml` prefix is used

Availability: 1.3.2

Availability: 1.5.0 geography support was introduced.

Enhanced: 2.0.0 prefix support was introduced. Option 4 for GML3 was introduced to allow using LineString instead of Curve tag for lines. GML3 Support for Polyhedral surfaces and TINS was introduced. Option 32 was introduced to output the box.

Changed: 2.0.0 use default named args

Enhanced: 2.1.0 id support was introduced, for GML 3.
Note
Only version 3+ of ST_AsGML supports Polyhedral Surfaces and TINS.

This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples: Version 2

```
SELECT ST_AsGML(ST_GeomFromText('POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))',4326));
```

```
<gml:Polygon srsName="EPSG:4326">
  <gml:outerBoundaryIs>
    <gml:LinearRing>
      <gml:coordinates>
        0,0 0,1 1,1 1,0 0,0
      </gml:coordinates>
    </gml:LinearRing>
  </gml:outerBoundaryIs>
</gml:Polygon>
```

Examples: Version 3

```
-- Flip coordinates and output extended EPSG (16 | 1)--
SELECT ST_AsGML(3, ST_GeomFromText('POINT(5.234234233242 6.34534534534)',4326), 5, 17);
```

```
<gml:Point srsName="urn:ogc:def:crs:EPSG::4326">
  <gml:pos>6.34535 5.23423</gml:pos>
</gml:Point>
```

```
-- Output the envelope (32) --
SELECT ST_AsGML(3, ST_GeomFromText('LINESTRING(1 2, 3 4, 10 20)',4326), 5, 32);
```

```
<gml:Envelope srsName="EPSG:4326">
  <gml:lowerCorner>1 2</gml:lowerCorner>
  <gml:upperCorner>10 20</gml:upperCorner>
</gml:Envelope>
```

```
-- Polyhedral Example --
SELECT ST_AsGML(3, ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0) )

  ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
  ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
  ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
  ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
  ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )'));
```

```
<st_asgml>
</st_asgml>
```
<gml:PolyhedralSurface>
 <gml:polygonPatches>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList srsDimension="3">0 0 0 0 0 1 0 1 1 0 1 0 0 0 0</gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList srsDimension="3">0 0 0 0 1 0 1 1 0 1 0 0 0 0</gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList srsDimension="3">0 0 1 0 1 0 1 0 0 0 0 0</gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList srsDimension="3">1 1 0 1 1 1 1 0 1 1 0 1 1 0</gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList srsDimension="3">0 1 1 0 1 1 1 1 1 0 0 1 0</gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList srsDimension="3">0 0 1 1 0 1 1 1 0 1 1 0 0</gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 </gml:PolygonPatch>
 </gml:polygonPatches>
</gml:PolyhedralSurface>

See Also

ST_GeomFromGML

5.9.3.5 ST_AsKML

ST_AsKML — Return the geometry as a KML element. Several variants. Default version=2, default maxdecimaldigits=15

Synopsis

text ST_AsKML(geometry geom, integer maxdecimaldigits=15, text nprefix=NULL);
text ST_AsKML(geography geog, integer maxdecimaldigits=15, text nprefix=NULL);
Description

Return the geometry as a Keyhole Markup Language (KML) element. There are several variants of this function. maximum number of decimal places used in output (defaults to 15), version default to 2 and default namespace is no prefix.

Version 1: ST_AsKML(geom_or_geog, maxdecimaldigits) / version=2 / maxdecimaldigits=15
Version 2: ST_AsKML(version, geom_or_geog, maxdecimaldigits, nprefix) maxdecimaldigits=15 / nprefix=NULL

Note
Requires PostGIS be compiled with Proj support. Use PostGIS_Full_Version to confirm you have proj support compiled in.

Note
Availability: 1.2.2 - later variants that include version param came in 1.3.2

Note
Enhanced: 2.0.0 - Add prefix namespace. Default is no prefix

Note
Changed: 2.0.0 - uses default args and supports named args

Note
AsKML output will not work with geometries that do not have an SRID

This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_AsKML(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

st_askml
--------
<Polygon><outerBoundaryIs><LinearRing><coordinates>0,0 0,1 1,1 1,0 0,0</coordinates></LinearRing></outerBoundaryIs></Polygon>
```

--3d linestring
SELECT ST_AsKML('SRID=4326;LINESTRING(1 2 3, 4 5 6)');

See Also

ST_AsSVG, ST_AsGML
5.9.3.6 ST_AsLatLonText

ST_AsLatLonText — Return the Degrees, Minutes, Seconds representation of the given point.

Synopsis

text ST_AsLatLonText(geometrype, text format="");

Description

Returns the Degrees, Minutes, Seconds representation of the point.

Note

It is assumed the point is in a lat/lon projection. The X (lon) and Y (lat) coordinates are normalized in the output to the "normal" range (-180 to +180 for lon, -90 to +90 for lat).

The text parameter is a format string containing the format for the resulting text, similar to a date format string. Valid tokens are "D" for degrees, "M" for minutes, "S" for seconds, and "C" for cardinal direction (N, S, E, W). DMS tokens may be repeated to indicate desired width and precision ("SSS.SSSS" means 1.0023).

"M", "S", and "C" are optional. If "C" is omitted, degrees are shown with a "-" sign if south or west. If "S" is omitted, minutes will be shown as decimal with as many digits of precision as you specify. If "M" is also omitted, degrees are shown as decimal with as many digits precision as you specify.

If the format string is omitted (or zero-length) a default format will be used.

Availability: 2.0

Examples

Default format.

```sql
SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)'));
```

```
2\textdegree{}19'29.928"S 3\textdegree{}14'3.243"W
```

Providing a format (same as the default).

```sql
SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D\textdegree{}M''S.SSS"C'));
```

```
2\textdegree{}19'29.928"S 3\textdegree{}14'3.243"W
```

Characters other than D, M, S, C and . are just passed through.

```sql
SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D degrees, M minutes, S seconds to \the C'));
```

```
2 degrees, 19 minutes, 30 seconds to the S 3 degrees, 14 minutes, 3 seconds to the W
```

Signed degrees instead of cardinal directions.

```sql
SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D\textdegree{}M''S.SSS"'));
```

```
-2\textdegree{}19'29.928" -3\textdegree{}14'3.243"W
```
Decimal degrees.

```sql
SELECT (ST_AsLatLonText('POINT (-3.2342342 -2.32498)', 'D.DDDD degrees C'));
```

```
st_aslatlontext
-------------------
2.3250 degrees S 3.2342 degrees W
```

Excessively large values are normalized.

```sql
SELECT (ST_AsLatLonText('POINT (-302.2342342 -792.32498)'));
```

```
st_aslatlontext
-------------------
72\textdegree{}19'29.928"S 57\textdegree{}45'56.757"E
```

5.9.3.7 ST_AsMVTGeom

ST_AsMVTGeom — Transform a geometry into the coordinate space of a Mapbox Vector Tile.

Synopsis

```sql
geometry ST_AsMVTGeom(geometry geom, box2d bounds, integer extent=4096, integer buffer=256, boolean clip_geom=true);
```

Description

Transform a geometry into the coordinate space of a Mapbox Vector Tile of a set of rows corresponding to a Layer. Makes best effort to keep and even correct validity and might collapse geometry into a lower dimension in the process.

- `geom` is the geometry to transform.
- `bounds` is the geometric bounds of the tile contents without buffer.
- `extent` is the tile extent in tile coordinate space as defined by the specification. If NULL it will default to 4096.
- `buffer` is the buffer distance in tile coordinate space to optionally clip geometries. If NULL it will default to 256.
- `clip_geom` is a boolean to control if geometries should be clipped or encoded as is. If NULL it will default to true.

Availability: 2.4.0

Note

From 3.0, Wagyu can be chosen at configure time to clip and validate MVT polygons. This library is faster and produces more correct results than the GEOS default, but it might drop small polygons.

Examples

```sql
SELECT ST_AsText(ST_AsMVTGeom(
  ST_GeomFromText('POLYGON ((0 0, 10 0, 10 5, 0 -5, 0 0))'),
  ST_MakeBox2D(ST_Point(0, 0), ST_Point(4096, 4096)),
  4096, 0, false));
```

```
st_astext
--------------------------------------------------------------------
MULTIPOLYGON(((5 4096,10 4091,10 4096,5 4096)),((5 4096,0 4101,0 4096,5 4096)))
```
See Also

ST_AsMVT, ST_TileEnvelope, PostGIS_Wagyu_Version

5.9.3.8 ST_AsMVT

ST_AsMVT — Aggregate function returning a Mapbox Vector Tile representation of a set of rows.

Synopsis

bytea ST_AsMVT(anyelement set row);
bytea ST_AsMVT(anyelement row, text name);
bytea ST_AsMVT(anyelement row, text name, integer extent);
bytea ST_AsMVT(anyelement row, text name, integer extent, text geom_name);
bytea ST_AsMVT(anyelement row, text name, integer extent, text geom_name, text feature_id_name);

Description

An aggregate function which returns a binary Mapbox Vector Tile representation of a set of rows corresponding to a tile layer. The rows should contain a geometry column which will be encoded as a feature geometry. The geometry should be in tile coordinate space and valid as per the MVT specification. ST_AsMVTGeom can be used to transform geometry into tile coordinate space. Other row columns are encoded as feature attributes.

The Mapbox Vector Tile format can store features with varying sets of attributes. To use this capability supply a JSONB column in the row data containing Json objects one level deep. The keys and values in the JSONB values will be encoded as feature attributes.

Tiles with multiple layers can be created by concatenating multiple calls to this function using ||.

Important

Do not call with a GEOMETRYCOLLECTION as an element in the row. However you can use ST_AsMVTGeom to prepare a geometry collection for inclusion.

row row data with at least a geometry column.
name is the name of the layer. Default is the string "default".
extent is the tile extent in screen space as defined by the specification. Default is 4096.
geom_name is the name of the geometry column in the row data. Default is the first geometry column.
feature_id_name is the name of the Feature ID column in the row data. If NULL or negative the Feature ID is not set. The first column matching name and valid type (smallint, integer, bigint) will be used as Feature ID, and any subsequent column will be added as a property. JSON properties are not supported.

Enhanced: 3.0 - added support for Feature ID.
Enhanced: 2.5.0 - added support parallel query.
Availability: 2.4.0

Examples
WITH mvtgeom AS
 (SELECT ST_AsMVTGeom(geom, ST_TileEnvelope(12, 513, 412), extent => 4096, buffer => 64) AS ← geom, name, description
 FROM points_of_interest
 WHERE geom && ST_TileEnvelope(12, 513, 412, margin => (64.0 / 4096))
)
SELECT ST_AsMVT(mvtgeom.*)
FROM mvtgeom;

See Also
ST_AsMVTGeom, ST_TileEnvelope

5.9.3.9 ST_AsSVG

ST_AsSVG — Returns SVG path data for a geometry.

Synopsis
text ST_AsSVG(geometry geom, integer rel=0, integer maxdecimaldigits=15);
text ST_AsSVG(geography geog, integer rel=0, integer maxdecimaldigits=15);

Description
Return the geometry as Scalar Vector Graphics (SVG) path data. Use 1 as second argument to have the path data implemented
in terms of relative moves, the default (or 0) uses absolute moves. Third argument may be used to reduce the maximum number
of decimal digits used in output (defaults to 15). Point geometries will be rendered as cx/cy when 'rel' arg is 0, x/y when 'rel' is
1. Multipoint geometries are delimited by commas (","). GeometryCollection geometries are delimited by semicolons (";").

Note
Availability: 1.2.2. Availability: 1.4.0 Changed in PostGIS 1.4.0 to include L command in absolute path to conform to
http://www.w3.org/TR/SVG/paths.html#PathDataBNF

Changed: 2.0.0 to use default args and support named args

Examples
SELECT ST_AsSVG('POLYGON((0 0,0 1,1 1,1 0,0 0))');

st_assvg

M 0 0 L 0 -1 L -1 1 0 Z

5.9.3.10 ST_AsTWKB

ST_AsTWKB — Returns the geometry as TWKB, aka "Tiny Well-Known Binary"
Synopsis

bytea \texttt{ST_AsTWKB}(geometry g1, integer decimaldigits_xy=0, integer decimaldigits_z=0, integer decimaldigits_m=0, boolean include_sizes=false, boolean include_bounding_boxes=false);

bytea \texttt{ST_AsTWKB}(geometry[] geometries, bigint[] unique_ids, integer decimaldigits_xy=0, integer decimaldigits_z=0, integer decimaldigits_m=0, boolean include_sizes=false, boolean include_bounding_boxes=false);

Description

Returns the geometry in TWKB (Tiny Well-Known Binary) format. TWKB is a compressed binary format with a focus on minimizing the size of the output.

The decimal digits parameters control how much precision is stored in the output. By default, values are rounded to the nearest unit before encoding. If you want to transfer more precision, increase the number. For example, a value of 1 implies that the first digit to the right of the decimal point will be preserved.

The sizes and bounding boxes parameters control whether optional information about the encoded length of the object and the bounds of the object are included in the output. By default they are not. Do not turn them on unless your client software has a use for them, as they just use up space (and saving space is the point of TWKB).

The array-input form of the function is used to convert a collection of geometries and unique identifiers into a TWKB collection that preserves the identifiers. This is useful for clients that expect to unpack a collection and then access further information about the objects inside. You can create the arrays using the \texttt{array_agg} function. The other parameters operate the same as for the simple form of the function.

\textbf{Note}

The format specification is available online at \url{https://github.com/TWKB/Specification}, and code for building a JavaScript client can be found at \url{https://github.com/TWKB/twkb.js}.

Enhanced: 2.4.0 memory and speed improvements.

Availability: 2.2.0

Examples

\begin{verbatim}
SELECT ST_AsTWKB('LINESTRING(1 1,5 5)'::geometry);
\texttt{st_astwkb}

\texttt{--}
\texttt{\x02000202020808}
\end{verbatim}

To create an aggregate TWKB object including identifiers aggregate the desired geometries and objects first, using "array_agg()", then call the appropriate TWKB function.

\begin{verbatim}
SELECT ST_AsTWKB(array_agg(geom), array_agg(gid)) FROM mytable;
\texttt{st_astwkb}

\texttt{--}
\texttt{\x040402020400000202}
\end{verbatim}

See Also

\texttt{ST_GeomFromTWKB, ST_AsBinary, ST_AsEWKB, ST_AsEWKT, ST_GeomFromText}

5.9.3.11 \texttt{ST_AsX3D}

\texttt{ST_AsX3D} — Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML
Synopsis

text ST_AsX3D(geometry g1, integer maxdecimaldigits=15, integer options=0);

Description

Returns a geometry as an X3D xml formatted node element http://www.web3d.org/standards/number/19776-1. If maxdecimaldigits (precision) is not specified then defaults to 15.

Note

There are various options for translating PostGIS geometries to X3D since X3D geometry types don’t map directly to PostGIS geometry types and some newer X3D types that might be better mappings we have avoided since most rendering tools don’t currently support them. These are the mappings we have settled on. Feel free to post a bug ticket if you have thoughts on the idea or ways we can allow people to denote their preferred mappings.

Below is how we currently map PostGIS 2D/3D types to X3D types

The ’options’ argument is a bitfield. For PostGIS 2.2+, this is used to denote whether to represent coordinates with X3D GeoCoordinates Geospatial node and also whether to flip the x/y axis. By default, ST_AsX3D outputs in database form (long,lat or X,Y), but X3D default of lat/lon, y/x may be preferred.

• 0: X/Y in database order (e.g. long/lat = X,Y is standard database order), default value, and non-spatial coordinates (just regular old Coordinate tag).
• 1: Flip X and Y. If used in conjunction with the GeoCoordinate option switch, then output will be default "latitude_first" and coordinates will be flipped as well.
• 2: Output coordinates in GeoSpatial GeoCoordinates. This option will throw an error if geometries are not in WGS 84 long lat (srid: 4326). This is currently the only GeoCoordinate type supported. Refer to X3D specs specifying a spatial reference system. Default output will be GeoCoordinate geoSystem="GD" "WE" "longitude_first". If you prefer the X3D default of GeoCoordinate geoSystem="GD" "WE" "latitude_first" use (2 + 1) = 3

<table>
<thead>
<tr>
<th>PostGIS Type</th>
<th>2D X3D Type</th>
<th>3D X3D Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINESTRING</td>
<td>not yet implemented - will be</td>
<td>LineSet</td>
</tr>
<tr>
<td></td>
<td>PolyLine2D</td>
<td></td>
</tr>
<tr>
<td>MULTILINESTRING</td>
<td>not yet implemented - will be</td>
<td>IndexedLineSet</td>
</tr>
<tr>
<td></td>
<td>PolyLine2D</td>
<td></td>
</tr>
<tr>
<td>MULTIPOINT</td>
<td>Polypoint2D</td>
<td>PointSet</td>
</tr>
<tr>
<td>POINT</td>
<td>outputs the space delimited</td>
<td>outputs the space delimited</td>
</tr>
<tr>
<td></td>
<td>coordinates</td>
<td>coordinates</td>
</tr>
<tr>
<td>[MULTI]POLYGON,</td>
<td>Invalid X3D markup</td>
<td>IndexedFaceSet (inner rings</td>
</tr>
<tr>
<td>POLYHEDRALSURFACE</td>
<td></td>
<td>currently output as another</td>
</tr>
<tr>
<td>TIN</td>
<td>TriangleSet2D (Not Yet Implemented)</td>
<td>faceset)</td>
</tr>
</tbody>
</table>

Note

2D geometry support not yet complete. Inner rings currently just drawn as separate polygons. We are working on these.

Lots of advancements happening in 3D space particularly with X3D Integration with HTML5

There is also a nice open source X3D viewer you can use to view rendered geometries. Free Wrl http://freewrl.sourceforge.net/ binaries available for Mac, Linux, and Windows. Use the FreeWRL_Launcher packaged to view the geometries.

Also check out PostGIS minimalist X3D viewer that utilizes this function and x3dDom html/js open source toolkit.
Availability: 2.0.0: ISO-IEC-19776-1.2-X3DEncodings-XML
Enhanced: 2.2.0: Support for GeoCoordinates and axis (x/y, long/lat) flipping. Look at options for details.

- This function supports 3d and will not drop the z-index.
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Example: Create a fully functional X3D document - This will generate a cube that is viewable in FreeWrl and other X3D viewers.

```sql
SELECT '<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN" "http://www.web3d.org/specifications/x3d-3.0.dtd">
<X3D>
  <Scene>
    <Transform>
      <Shape>
        <Appearance>
          <Material emissiveColor='0 0 1'/>
          ST_AsX3D( ST_GeomFromEWKT('POLYHEDRALSURFACE( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
                                             ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
                                             ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
                                             ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)) )') )
        </Appearance>
      </Shape>
    </Transform>
  </Scene>
</X3D>' As x3ddoc;
```

Example: An Octagon elevated 3 Units and decimal precision of 6

```sql
SELECT ST_AsX3D(
  ST_Translate(
```

ST_Force_3d(
 ST_Buffer(ST_Point(10,10),5, 'quad_segs=2'), 0,0,
 3)
,6) As x3dfrag;

x3dfrag

<IndexedFaceSet coordIndex="0 1 2 3 4 5 6 7">
</IndexedFaceSet>

Example: TIN

SELECT ST_AsX3D(ST_GeomFromEWKT('TIN (((
 0 0 0,
 0 0 1,
 0 1 0,
 0 0 0
), ((
 0 0 0,
 0 1 0,
 1 1 0,
 0 0 0
))
))') As x3dfrag;

x3dfrag

<IndexedTriangleSet index='0 1 2 3 4 5'><Coordinate point='0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0'/></IndexedTriangleSet>

Example: Closed multilinestring (the boundary of a polygon with holes)

SELECT ST_AsX3D(
 ST_GeomFromEWKT('MULTILINESTRING((20 0 10,16 -12 10,0 -16 10,-12 -12 10,-20 0 10,-12 16 10,0 24 10,16 10,20 0 10),
 (12 0 10,8 8 10,0 12 10,-8 8 10,-8 0 10,-8 -4 10,0 -8 10,8 -4 10,12 0 10))'))
) As x3dfrag;

x3dfrag

<IndexedLineSet coordIndex='0 1 2 3 4 5 6 7 0 -1 8 9 10 11 12 13 14 15 8'>
 <Coordinate point='20 0 10 16 -12 10 0 -16 10 -12 -12 10 -20 0 10 -12 16 10 0 24 10 16 -16 10 12 0 10 8 8 10 0 12 10 -8 8 10 -8 0 10 -8 -4 10 0 -8 10 8 -4 10 '/ />
</IndexedLineSet>

5.9.3.12 ST_GeoHash

ST_GeoHash — Return a GeoHash representation of the geometry.

Synopsis

text ST_GeoHash(geometry geom, integer maxchars=full_precision_of_point);
Description

Return a GeoHash representation (http://en.wikipedia.org/wiki/Geohash) of the geometry. A GeoHash encodes a point into a text form that is sortable and searchable based on prefixing. A shorter GeoHash is a less precise representation of a point. It can also be thought of as a box, that contains the actual point.

If no maxchars is specified ST_GeoHash returns a GeoHash based on full precision of the input geometry type. Points return a GeoHash with 20 characters of precision (about enough to hold the full double precision of the input). Other types return a GeoHash with a variable amount of precision, based on the size of the feature. Larger features are represented with less precision, smaller features with more precision. The idea is that the box implied by the GeoHash will always contain the input feature.

If maxchars is specified ST_GeoHash returns a GeoHash with at most that many characters so a possibly lower precision representation of the input geometry. For non-points, the starting point of the calculation is the center of the bounding box of the geometry.

Availability: 1.4.0

Note

ST_GeoHash will not work with geometries that are not in geographic (lon/lat) coordinates.

This method supports Circular Strings and Curves

Examples

```sql
SELECT ST_GeoHash(ST_SetSRID(ST_MakePoint(-126,48),4326));
```

```
st_geohash
----------------
c0w3hf1s70w3hf1s70w3
```

```sql
SELECT ST_GeoHash(ST_SetSRID(ST_MakePoint(-126,48),4326),5);
```

```
st_geohash
----------
c0w3h
```

See Also

ST_GeomFromGeoHash

5.10 Operators

5.10.1 Bounding Box Operators

5.10.1.1 &&

&& — Returns TRUE if A’s 2D bounding box intersects B’s 2D bounding box.

Synopsis

```sql
boolean &&( geometry A , geometry B );
boolean &&( geography A , geography B );
```
Description

The && operator returns TRUE if the 2D bounding box of geometry A intersects the 2D bounding box of geometry B.

Note

This operand will make use of any indexes that may be available on the geometries.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Availability: 1.5.0 support for geography was introduced.

- This method supports Circular Strings and Curves
- This function supports Polyhedral surfaces.

Examples

```sql
SELECT tbl1.column1, tbl2.column1, tbl1.column2 && tbl2.column2 AS overlaps
FROM ( VALUES
      (1, 'LINESTRING(0 0, 3 3)'::geometry),
      (2, 'LINESTRING(0 1, 0 5)'::geometry)) AS tbl1,
      ( VALUES
      (3, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl2;
```

<table>
<thead>
<tr>
<th>column1</th>
<th>column1</th>
<th>overlaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>t</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>f</td>
</tr>
</tbody>
</table>

(2 rows)

See Also

ST_Intersects, ST_Extent, |&>, &>, &<|, &<, ~, @

5.10.1.2 &&(geometry,box2df)

&&(geometry,box2df) — Returns TRUE if a geometry’s (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).

Synopsis

```sql
boolean &&( geometry A , box2df B );
```

Description

The && operator returns TRUE if the cached 2D bounding box of geometry A intersects the 2D bounding box B, using float precision. This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

Note

This operand is intended to be used internally by BRIN indexes, more than by users.
Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.

Examples

```
SELECT ST_MakePoint(1,1) && ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(2,2)) AS overlaps;
```

```
overlaps
----------
t
(1 row)
```

See Also

&& (box2df, geometry), && (box2df, box2df), ~(geometry, box2df), ~(box2df, geometry), @(geometry, box2df), @(box2df, geometry),@(box2df, box2df)

5.10.1.3 && (box2df, geometry)

&& (box2df, geometry) — Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry’s (cached) 2D bounding box.

Synopsis

boolean && (box2df A , geometry B);

Description

The && operator returns TRUE if the 2D bounding box A intersects the cached 2D bounding box of geometry B, using float precision. This means that if A is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

Note

This operand is intended to be used internally by BRIN indexes, more than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.

Examples

```
SELECT ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(2,2)) && ST_MakePoint(1,1) AS overlaps;
```

```
overlaps
----------
t
(1 row)
```
See Also

&& (geometry, box2df), && (box2df, box2df), ~(geometry, box2df), ~(box2df, geometry), ~(box2df, box2df), @(geometry, box2df), @(box2df, geometry), @(box2df, box2df)

5.10.1.4 && (box2df, box2df)

&& (box2df, box2df) — Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.

Synopsis

boolean && (box2df A, box2df B);

Description

The && operator returns TRUE if two 2D bounding boxes A and B intersect each other, using float precision. This means that if A (or B) is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF).

Note

This operator is intended to be used internally by BRIN indexes, more than by users.

Availability: 2.3.0 support for Block Range Indexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Examples

```sql
SELECT ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(2,2)) && ST_MakeBox2D(ST_MakePoint(1,1), ST_MakePoint(3,3)) AS overlaps;
```

overlaps

t
(1 row)

See Also

&& (geometry, box2df), && (box2df, geometry), ~(geometry, box2df), ~(box2df, geometry), ~(box2df, box2df), @(geometry, box2df), @(box2df, geometry), @(box2df, box2df)

5.10.1.5 &&

&& — Returns TRUE if A’s n-D bounding box intersects B’s n-D bounding box.

Synopsis

boolean && (geometry A, geometry B);
Description

The `&&&` operator returns `TRUE` if the n-D bounding box of geometry A intersects the n-D bounding box of geometry B.

Note

This operand will make use of any indexes that may be available on the geometries.

Availability: 2.0.0

- This method supports Circular Strings and Curves
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangled Irregular Network Surfaces (TIN).
- This function supports 3d and will not drop the z-index.

Examples: 3D LineStrings

```sql
SELECT tbl1.column1, tbl2.column1, tbl1.column2 &&& tbl2.column2 AS overlaps_3d, 
      tbl1.column2 && tbl2.column2 AS overlaps_2d 
FROM ( VALUES 
    (1, 'LINESTRING Z(0 0 1, 3 3 2)': :geometry),
    (2, 'LINESTRING Z(1 2 0, 0 5 -1)': :geometry) AS tbl1,
    ( VALUES 
    (3, 'LINESTRING Z(1 2 1, 4 6 1)': :geometry)) AS tbl2;

<table>
<thead>
<tr>
<th>column1</th>
<th>column1</th>
<th>overlaps_3d</th>
<th>overlaps_2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>f</td>
<td>t</td>
</tr>
</tbody>
</table>
```

Examples: 3M LineStrings

```sql
SELECT tbl1.column1, tbl2.column1, tbl1.column2 &&& tbl2.column2 AS overlaps_3zm, 
      tbl1.column2 && tbl2.column2 AS overlaps_2d 
FROM ( VALUES 
    (1, 'LINESTRING M(0 0 1, 3 3 2)': :geometry),
    (2, 'LINESTRING M(1 2 0, 0 5 -1)': :geometry) AS tbl1,
    ( VALUES 
    (3, 'LINESTRING M(1 2 1, 4 6 1)': :geometry)) AS tbl2;

<table>
<thead>
<tr>
<th>column1</th>
<th>column1</th>
<th>overlaps_3zm</th>
<th>overlaps_2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>f</td>
<td>t</td>
</tr>
</tbody>
</table>
```

See Also

`&&&`
5.10.1.6 &&(geometry,gidx)

&& (geometry,gidx) — Returns **TRUE** if a geometry’s (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).

Synopsis

boolean && (geometry A , gidx B);

Description

The && operator returns **TRUE** if the cached n-D bounding box of geometry A intersects the n-D bounding box B, using float precision. This means that if B is a (double precision) box3d, it will be internally converted to a float precision 3D bounding box (GIDX).

Note

This operator is intended to be used internally by BRIN indexes, more than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

- This method supports Circular Strings and Curves
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
- This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_MakePoint(1,1,1) && ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) AS overlaps;
```

<table>
<thead>
<tr>
<th>overlaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
</tr>
</tbody>
</table>

(1 row)

See Also

&& (gidx,geometry), && (gidx,gidx)

5.10.1.7 &&(gidx,geometry)

&& (gidx,geometry) — Returns **TRUE** if a n-D float precision bounding box (GIDX) intersects a geometry’s (cached) n-D bounding box.

Synopsis

boolean && (gidx A , geometry B);
Description

The &&& operator returns TRUE if the n-D bounding box A intersects the cached n-D bounding box of geometry B, using float precision. This means that if A is a (double precision) box3d, it will be internally converted to a float precision 3D bounding box (GIDX).

Note

This operator is intended to be used internally by BRIN indexes, more than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

- This method supports Circular Strings and Curves
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
- This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) &&& ST_MakePoint(1,1,1) AS overlaps;
```

```
overlaps
---------
t
(1 row)
```

See Also

&&&(geometry,gidx), &&&(gidx,gidx)

5.10.1.8 &&&(gidx,gidx)

&&&(gidx,gidx) — Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.

Synopsis

boolean &&&(gidx A , gidx B);

Description

The &&& operator returns TRUE if two n-D bounding boxes A and B intersect each other, using float precision. This means that if A (or B) is a (double precision) box3d, it will be internally converted to a float precision 3D bounding box (GIDX).

Note

This operator is intended to be used internally by BRIN indexes, more than by users.
Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+

- This method supports Circular Strings and Curves
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
- This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) &&& ST_3DMakeBox(ST_MakePoint(1,1,1), ST_MakePoint(3,3,3)) AS overlaps;
```

<table>
<thead>
<tr>
<th>overlaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
</tr>
</tbody>
</table>

See Also

`&&&` (geometry.gidx), `&&&` (gidx, geometry)

5.10.1.9 &<

&< — Returns TRUE if A’s bounding box overlaps or is to the left of B’s.

Synopsis

```sql
boolean &<( geometry A , geometry B );
```

Description

The `&<` operator returns TRUE if the bounding box of geometry A overlaps or is to the left of the bounding box of geometry B, or more accurately, overlaps or is NOT to the right of the bounding box of geometry B.

Note

This operand will make use of any indexes that may be available on the geometries.

Examples

```sql
SELECT tbl1.column1, tbl2.column1, tbl1.column2 &< tbl2.column2 AS overleft
FROM
  ( VALUES
    (1, 'LINESTRING(1 2, 4 6)::geometry)) AS tbl1,
  ( VALUES
    (2, 'LINESTRING(0 0, 3 3)::geometry),
    (3, 'LINESTRING(0 1, 0 5)::geometry),
    (4, 'LINESTRING(6 0, 6 1)::geometry)) AS tbl2;
```
See Also

&&, |&>, &>, &<| 5.10.1.10 &<|

&<| — Returns TRUE if A’s bounding box overlaps or is below B’s.

Synopsis

boolean &<| (geometry A, geometry B);

Description

The &<| operator returns TRUE if the bounding box of geometry A overlaps or is below of the bounding box of geometry B, or more accurately, overlaps or is NOT above the bounding box of geometry B.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Note

This operand will make use of any indexes that may be available on the geometries.

Examples

```
SELECT tbl1.column1, tbl2.column1, tbl1.column2 &<| tbl2.column2 AS overbelow
FROM
( VALUES
(1, 'LINESTRING(6 0, 6 4)::geometry)) AS tbl1,
( VALUES
(2, 'LINESTRING(0 0, 3 3)::geometry),
(3, 'LINESTRING(0 1, 0 5)::geometry),
(4, 'LINESTRING(1 2, 4 6)::geometry)) AS tbl2;
```

See Also

&&, |&>, &>, &<|
5.10.1.11 &>

&> — Returns TRUE if A’s bounding box overlaps or is to the right of B’s.

Synopsis

boolean &>(geometry A, geometry B);

Description

The &> operator returns TRUE if the bounding box of geometry A overlaps or is to the right of the bounding box of geometry B, or more accurately, overlaps or is NOT to the left of the bounding box of geometry B.

Note

This operand will make use of any indexes that may be available on the geometries.

Examples

```sql
SELECT tbl1.column1, tbl2.column1, tbl1.column2 &> tbl2.column2 AS overright
FROM
  ( VALUES
    (1, 'LINESTRING(1 2, 4 6)'::geometry) ) AS tbl1,
  ( VALUES
    (2, 'LINESTRING(0 0, 3 3)'::geometry),
    (3, 'LINESTRING(0 1, 0 5)'::geometry),
    (4, 'LINESTRING(6 0, 6 1)'::geometry) ) AS tbl2;
```

<table>
<thead>
<tr>
<th>column1</th>
<th>column1</th>
<th>overright</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>f</td>
</tr>
</tbody>
</table>

(3 rows)

See Also

&&, !&>, &<, &<

5.10.1.12 <<

<< — Returns TRUE if A’s bounding box is strictly to the left of B’s.

Synopsis

boolean <<(geometry A, geometry B);

Description

The << operator returns TRUE if the bounding box of geometry A is strictly to the left of the bounding box of geometry B.

Note

This operand will make use of any indexes that may be available on the geometries.
Examples

```sql
SELECT tbl1.column1, tbl2.column1, tbl1.column2 << tbl2.column2 AS left
FROM
    ( VALUES
        (1, 'LINESTRING (1 2, 1 5)'::geometry)) AS tbl1,
    ( VALUES
        (2, 'LINESTRING (0 0, 4 3)'::geometry),
        (3, 'LINESTRING (6 0, 6 5)'::geometry),
        (4, 'LINESTRING (2 2, 5 6)'::geometry)) AS tbl2;
```

<table>
<thead>
<tr>
<th>column1</th>
<th>column1</th>
<th>left</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>f</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>t</td>
</tr>
</tbody>
</table>

(3 rows)

See Also

>>, |>>, <<|

5.10.1.13 <<|

<<| — Returns TRUE if A’s bounding box is strictly below B’s.

Synopsis

```sql
boolean <<| ( geometry A , geometry B );
```

Description

The <<| operator returns TRUE if the bounding box of geometry A is strictly below the bounding box of geometry B.

Note

This operand will make use of any indexes that may be available on the geometries.

Examples

```sql
SELECT tbl1.column1, tbl2.column1, tbl1.column2 <<= tbl2.column2 AS below
FROM
    ( VALUES
        (1, 'LINESTRING (0 0, 4 3)'::geometry)) AS tbl1,
    ( VALUES
        (2, 'LINESTRING (1 4, 1 7)'::geometry),
        (3, 'LINESTRING (6 1, 6 5)'::geometry),
        (4, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl2;
```

<table>
<thead>
<tr>
<th>column1</th>
<th>column1</th>
<th>below</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>f</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>f</td>
</tr>
</tbody>
</table>

(3 rows)
5.10.1.14 =

= — Returns TRUE if the coordinates and coordinate order geometry/geography A are the same as the coordinates and coordinate order of geometry/geography B.

Synopsis

boolean = (geometry A , geometry B);
boolean = (geography A , geography B);

Description

The = operator returns TRUE if the coordinates and coordinate order geometry/geography A are the same as the coordinates and coordinate order of geometry/geography B. PostgreSQL uses the =, <, and > operators defined for geometries to perform internal orderings and comparison of geometries (ie. in a GROUP BY or ORDER BY clause).

Note

Only geometry/geography that are exactly equal in all respects, with the same coordinates, in the same order, are considered equal by this operator. For "spatial equality", that ignores things like coordinate order, and can detect features that cover the same spatial area with different representations, use ST_OrderingEquals or ST_Equals

Caution

This operand will NOT make use of any indexes that may be available on the geometries. For an index assisted exact equality test, combine = with &&.

Changed: 2.4.0, in prior versions this was bounding box equality not a geometric equality. If you need bounding box equality, use ~= instead.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Examples

SELECT 'LINESTRING(0 0, 0 1, 1 0)':::geometry = 'LINESTRING(1 1, 0 0)':::geometry;
?column?

f (1 row)

SELECT ST_AsText(column1)
FROM (VALUES
('LINESTRING(0 0, 1 1)':::geometry),
('LINESTRING(1 1, 0 0)':::geometry)) AS foo;
st_astext

LINESTRING(0 0,1 1)
LINESTRING(1 1,0 0)
-- Note: the GROUP BY uses the "=" to compare for geometry equivalency.
SELECT ST_AsText(column1)
FROM (VALUES
 ('LINESTRING(0 0, 1 1)'::geometry),
 ('LINESTRING(1 1, 0 0)'::geometry)) AS foo
GROUP BY column1;

st_astext

LINESTRING(0 0,1 1)
LINESTRING(1 1,0 0)
(2 rows)

-- In versions prior to 2.0, this used to return true --
SELECT ST_GeomFromText('POINT(1707296.37 4820536.77)') =
 ST_GeomFromText('POINT(1707296.27 4820536.87)') As pt_intersect;

--pt_intersect --
f

See Also

ST_Equals, ST_OrderingEquals, ~=

5.10.1.15 >>

>> — Returns TRUE if A’s bounding box is strictly to the right of B’s.

Synopsis

boolean >>(geometry A , geometry B);

Description

The >> operator returns TRUE if the bounding box of geometry A is strictly to the right of the bounding box of geometry B.

Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbl1.column1, tbl2.column1, tbl1.column2 >> tbl2.column2 AS right
FROM (VALUES
 (1, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl1,
 (VALUES
 (2, 'LINESTRING (1 4, 1 7)'::geometry),
 (3, 'LINESTRING (6 1, 6 5)'::geometry),
 (4, 'LINESTRING (0 0, 4 3)'::geometry)) AS tbl2;

<table>
<thead>
<tr>
<th>column1</th>
<th>column1</th>
<th>right</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Synopsis

```sql
boolean @ ( geometry A, geometry B );
```

Description

The `@` operator returns `TRUE` if the bounding box of geometry A is completely contained by the bounding box of geometry B.

Note

This operand will make use of any indexes that may be available on the geometries.

Examples

```sql
SELECT tbl1.column1, tbl2.column1, tbl1.column2 @ tbl2.column2 AS contained
FROM
  ( VALUES
    (1, 'LINESTRING (1 1, 3 3)'::geometry)) AS tbl1,
  ( VALUES
    (2, 'LINESTRING (0 0, 4 4)'::geometry),
    (3, 'LINESTRING (2 2, 4 4)'::geometry),
    (4, 'LINESTRING (1 1, 3 3)'::geometry)) AS tbl2;
```

<table>
<thead>
<tr>
<th>column1</th>
<th>column1</th>
<th>contained</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>t</td>
</tr>
</tbody>
</table>

(3 rows)

See Also

`<<, |>>, <<|`

5.10.1.17 @ (geometry,box2df)

`@ (geometry,box2df)` — Returns `TRUE` if a geometry’s 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).
Synopsis

boolean @(geometry A, box2df B);

Description

The @ operator returns TRUE if the A geometry’s 2D bounding box is contained in the 2D bounding box B, using float precision. This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

Note

This operand is intended to be used internally by BRIN indexes, more than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Examples

```sql
SELECT ST_Buffer(ST_GeomFromText('POINT(2 2)'), 1) @ ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(5,5)) AS is_contained;
```

<table>
<thead>
<tr>
<th>is_contained</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
</tr>
</tbody>
</table>

See Also

&&(geometry.box2df), &&(box2df,geometry), &&(box2df,box2df), ~(geometry,box2df), ~(box2df,geometry), ~(box2df,box2df), @(box2df,geometry), @(box2df,box2df)

5.10.1.18 @(box2df,geometry)

 @(box2df,geometry) — Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry’s 2D bounding box.

Synopsis

boolean @(box2df A, geometry B);

Description

The @ operator returns TRUE if the 2D bounding box A is contained into the B geometry’s 2D bounding box, using float precision. This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

Note

This operand is intended to be used internally by BRIN indexes, more than by users.
Availability: 2.3.0 support for Block Range Indexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Examples

```sql
SELECT ST_MakeBox2D(ST_MakePoint(2,2), ST_MakePoint(3,3)) @ ST_Buffer(ST_GeomFromText('← POINT(1 1)'), 10) AS is_contained;
```

<table>
<thead>
<tr>
<th>is_contained</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
</tr>
</tbody>
</table>

(1 row)

See Also

&(& (geometry,box2df), &(& (box2df,geometry), &(& (box2df,box2df), ~(geometry,box2df), ~(box2df,geometry), ~(box2df,box2df), @(geometry,box2df), @(box2df,box2df))

5.10.1.19 @(box2df,box2df)

@ (box2df,box2df) — Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision bounding box.

Synopsis

```sql
boolean @( box2df A , box2df B );
```

Description

The @ operator returns TRUE if the 2D bounding box A is contained into the 2D bounding box B, using float precision. This means that if A (or B) is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

Note

This operand is intended to be used internally by BRIN indexes, more than by users.

Availability: 2.3.0 support for Block Range Indexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Examples

```sql
SELECT ST_MakeBox2D(ST_MakePoint(2,2), ST_MakePoint(3,3)) @ ST_MakeBox2D(ST_MakePoint(0,0), ← ST_MakePoint(5,5)) AS is_contained;
```

<table>
<thead>
<tr>
<th>is_contained</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
</tr>
</tbody>
</table>

(1 row)
See Also

&& (geometry, box2df), &&(box2df, geometry), &&(box2df, box2df), ~(geometry, box2df), ~(box2df, geometry), ~(box2df, box2df), @(geometry, box2df), @(box2df, geometry)

5.10.1.20 |&>

|&> — Returns TRUE if A’s bounding box overlaps or is above B’s.

Synopsis

boolean |&>(geometry A, geometry B);

Description

The |&> operator returns TRUE if the bounding box of geometry A overlaps or is above the bounding box of geometry B, or more accurately, overlaps or is NOT below the bounding box of geometry B.

Note

This operand will make use of any indexes that may be available on the geometries.

Examples

```sql
SELECT tbl1.column1, tbl2.column1, tbl1.column2 |&> tbl2.column2 AS overabove
FROM
  ( VALUES
    (1, 'LINESTRING(6 0, 6 4)::geometry) AS tbl1,
    ( VALUES
      (2, 'LINESTRING(0 0, 3 3)::geometry),
      (3, 'LINESTRING(0 1, 0 5)::geometry),
      (4, 'LINESTRING(1 2, 4 6)::geometry)) AS tbl2;
```

<table>
<thead>
<tr>
<th>column1</th>
<th>column1</th>
<th>overabove</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>f</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>f</td>
</tr>
</tbody>
</table>

(3 rows)

See Also

&&, &>, &<|, &<

5.10.1.21 |>>

|>> — Returns TRUE if A’s bounding box is strictly above B’s.

Synopsis

boolean |>>(geometry A, geometry B);
Description

The `|>>` operator returns `TRUE` if the bounding box of geometry A is strictly above the bounding box of geometry B.

Note

This operand will make use of any indexes that may be available on the geometries.

Examples

```sql
SELECT tbl1.column1, tbl2.column1, tbl1.column2 |>> tbl2.column2 AS above
FROM
  ( VALUES
    (1, 'LINESTRING (1 4, 1 7)'::geometry) AS tbl1,
    ( VALUES
      (2, 'LINESTRING (0 0, 4 2)'::geometry),
      (3, 'LINESTRING (6 1, 6 5)'::geometry),
      (4, 'LINESTRING (2 3, 5 6)'::geometry) AS tbl2;

<table>
<thead>
<tr>
<th>column1</th>
<th>column1</th>
<th>above</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>f</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>f</td>
</tr>
</tbody>
</table>

(3 rows)
```

See Also

`<<, >>, <<-`

5.10.1.22 ~

~ — Returns `TRUE` if A's bounding box contains B's.

Synopsis

```sql
boolean ~( geometry A , geometry B );
```

Description

The `~` operator returns `TRUE` if the bounding box of geometry A completely contains the bounding box of geometry B.
Examples

```sql
SELECT tbl1.column1, tbl2.column1, tbl1.column2 ~ tbl2.column2 AS contains
FROM
  ( VALUES
    (1, 'LINESTRING (0 0, 3 3)'::geometry) ) AS tbl1,
  ( VALUES
    (2, 'LINESTRING (0 0, 4 4)'::geometry),
    (3, 'LINESTRING (1 1, 2 2)'::geometry),
    (4, 'LINESTRING (0 0, 3 3)'::geometry) ) AS tbl2;
```

<table>
<thead>
<tr>
<th>column1</th>
<th>column1</th>
<th>contains</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>f</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>t</td>
</tr>
</tbody>
</table>

(3 rows)

See Also

@, &&

5.10.1.23 ~(geometry,box2df)

~(geometry,box2df) — Returns TRUE if a geometry’s 2D bonding box contains a 2D float precision bounding box (GIDX).

Synopsis

```sql
boolean ~( geometry A , box2df B );
```

Description

The ~ operator returns TRUE if the 2D bounding box of a geometry A contains the 2D bounding box B, using float precision. This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

Note

This operand is intended to be used internally by BRIN indexes, more than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Examples

```sql
SELECT ST_Buffer(ST_GeomFromText('POINT(1 1)'), 10) ~ ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(2,2)) AS contains;
```

contains

t
(1 row)
See Also
&&((geometry,box2df), &&((box2df,geometry), &&((box2df,box2df), ~(box2df,geometry), ~(box2df,box2df), @(geometry,box2df), @(box2df,geometry), @(box2df,box2df))

5.10.1.24 ~(box2df,geometry)

~(box2df,geometry) — Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry’s 2D bonding box.

Synopsis

boolean ~(box2df A , geometry B);

Description

The ~ operator returns TRUE if the 2D bounding box A contains the B geometry’s bounding box, using float precision. This means that if A is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

Note

This operand is intended to be used internally by BRIN indexes, more than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

This method supports Circular Strings and Curves

This function supports Polyhedral surfaces.

Examples

```
SELECT ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(5,5)) ~ ST_Buffer(ST_GeomFromText('POINT(2 2)'), 1) AS contains;
```

contains

t
(1 row)

See Also

&&((geometry,box2df), &&((box2df,geometry), &&((box2df,box2df), ~(geometry,box2df), ~(box2df,box2df), @(geometry,box2df), @(box2df,geometry), @(box2df,box2df))

5.10.1.25 ~(box2df,box2df)

~(box2df,box2df) — Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).

Synopsis

boolean ~(box2df A , box2df B);
Description

The `~` operator returns TRUE if the 2D bounding box A contains the 2D bounding box B, using float precision. This means that if A is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF).

Note
This operand is intended to be used internally by BRIN indexes, more than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

✅ This method supports Circular Strings and Curves

✅ This function supports Polyhedral surfaces.

Examples

```sql
SELECT ST_MakeBox2D(ST_MakePoint(0,0), ST_MakePoint(5,5)) ~ ST_MakeBox2D(ST_MakePoint(2,2), ST_MakePoint(3,3)) AS contains;
```

```
contains
----------
t
(1 row)
```

See Also

`&&` (geometry,box2df), `&&` (box2df,geometry), `~` (box2df,box2df), `~` (box2df,geography), `@` (box2df,geometry), `@` (box2df,box2df)

5.10.1.26 `~=`

`~=` — Returns TRUE if A’s bounding box is the same as B’s.

Synopsis

```sql
boolean ~=( geometry A , geometry B );
```

Description

The `~=` operator returns TRUE if the bounding box of geometry/geography A is the same as the bounding box of geometry/geography B.

Note
This operand will make use of any indexes that may be available on the geometries.

Availability: 1.5.0 changed behavior

✅ This function supports Polyhedral surfaces.
Warning
This operator has changed behavior in PostGIS 1.5 from testing for actual geometric equality to only checking for bounding box equality. To complicate things it also depends on if you have done a hard or soft upgrade which behavior your database has. To find out which behavior your database has you can run the query below. To check for true equality use ST_OrderingEquals or ST_Equals.

Examples

```sql
select 'LINESTRING(0 0, 1 1)':'::geometry ~= 'LINESTRING(0 1, 1 0)':'::geometry as equality;
```

<table>
<thead>
<tr>
<th>equality</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
</tr>
</tbody>
</table>

See Also

ST_Equals, ST_OrderingEquals, =

5.10.2 Distance Operators

5.10.2.1 <->

<-> — Returns the 2D distance between A and B.

Synopsis

double precision <->(geometry A , geometry B);
double precision <->(geography A , geography B);

Description

The <-> operator returns the 2D distance between two geometries. Used in the "ORDER BY" clause provides index-assisted nearest-neighbor result sets. For PostgreSQL below 9.5 only gives centroid distance of bounding boxes and for PostgreSQL 9.5+, does true KNN distance search giving true distance between geometries, and distance sphere for geographies.

Note

This operand will make use of 2D GiST indexes that may be available on the geometries. It is different from other operators that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

Note

Index only kicks in if one of the geometries is a constant (not in a subquery/cte). e.g. 'SRID=3005;POINT(1011102 450541)':'::geometry instead of a.geom

Refer to OpenGeo workshop: Nearest-Neighbour Searching for real live example.

Enhanced: 2.2.0 -- True KNN ("K nearest neighbor") behavior for geometry and geography for PostgreSQL 9.5+. Note for geography KNN is based on sphere rather than spheroid. For PostgreSQL 9.4 and below, geography support is new but only supports centroid box.
Changed: 2.2.0 -- For PostgreSQL 9.5 users, old Hybrid syntax may be slower, so you’ll want to get rid of that hack if you are running your code only on PostGIS 2.2+ 9.5+. See examples below.

Availability: 2.0.0 -- Weak KNN provides nearest neighbors based on geometry centroid distances instead of true distances. Exact results for points, inexact for all other types. Available for PostgreSQL 9.1+

Examples

```sql
SELECT ST_Distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d, edabbr, vaabbr
FROM va2005
ORDER BY d limit 10;
```

```
<table>
<thead>
<tr>
<th>d</th>
<th>edabbr</th>
<th>vaabbr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ALQ</td>
<td>128</td>
</tr>
<tr>
<td>5541.57712511724</td>
<td>ALQ</td>
<td>129A</td>
</tr>
<tr>
<td>5579.67450712005</td>
<td>ALQ</td>
<td>001</td>
</tr>
<tr>
<td>6083.4207708641</td>
<td>ALQ</td>
<td>131</td>
</tr>
<tr>
<td>7691.2205404848</td>
<td>ALQ</td>
<td>003</td>
</tr>
<tr>
<td>7900.75451037313</td>
<td>ALQ</td>
<td>122</td>
</tr>
<tr>
<td>8694.2071066982</td>
<td>ALQ</td>
<td>129B</td>
</tr>
<tr>
<td>9564.24289057111</td>
<td>ALQ</td>
<td>130</td>
</tr>
<tr>
<td>12089.665931705</td>
<td>ALQ</td>
<td>127</td>
</tr>
<tr>
<td>18472.5531479404</td>
<td>ALQ</td>
<td>002</td>
</tr>
</tbody>
</table>
```

(10 rows)

Then the KNN raw answer:

```sql
SELECT st_distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d, edabbr, vaabbr
FROM va2005
ORDER BY geom <-> 'SRID=3005;POINT(1011102 450541)'::geometry limit 10;
```

```
<table>
<thead>
<tr>
<th>d</th>
<th>edabbr</th>
<th>vaabbr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ALQ</td>
<td>128</td>
</tr>
<tr>
<td>5541.57712511724</td>
<td>ALQ</td>
<td>129A</td>
</tr>
<tr>
<td>5579.67450712005</td>
<td>ALQ</td>
<td>001</td>
</tr>
<tr>
<td>6083.4207708641</td>
<td>ALQ</td>
<td>131</td>
</tr>
<tr>
<td>7691.2205404848</td>
<td>ALQ</td>
<td>003</td>
</tr>
<tr>
<td>7900.75451037313</td>
<td>ALQ</td>
<td>122</td>
</tr>
<tr>
<td>8694.2071066982</td>
<td>ALQ</td>
<td>129B</td>
</tr>
<tr>
<td>9564.24289057111</td>
<td>ALQ</td>
<td>130</td>
</tr>
<tr>
<td>12089.665931705</td>
<td>ALQ</td>
<td>127</td>
</tr>
<tr>
<td>18472.5531479404</td>
<td>ALQ</td>
<td>002</td>
</tr>
</tbody>
</table>
```

(10 rows)

If you run "EXPLAIN ANALYZE" on the two queries you would see a performance improvement for the second.

For users running with PostgreSQL < 9.5, use a hybrid query to find the true nearest neighbors. First a CTE query using the index-assisted KNN, then an exact query to get correct ordering:

```sql
WITH index_query AS (SELECT ST_Distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d, edabbr, vaabbr
FROM va2005
ORDER BY geom <-> 'SRID=3005;POINT(1011102 450541)'::geometry LIMIT 100)
SELECT *
FROM index_query
ORDER BY d limit 10;
```

```
<table>
<thead>
<tr>
<th>d</th>
<th>edabbr</th>
<th>vaabbr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ALQ</td>
<td>128</td>
</tr>
</tbody>
</table>
```

(10 rows)
The \(\|=\ \) operator returns the 3D distance between two trajectories (See \(\text{ST_IsValidTrajectory} \)). This is the same as \(\text{ST_DistanceCPA} \) but as an operator it can be used for doing nearest neighbor searches using an N-dimensional index (requires PostgreSQL 9.5.0 or higher).

Note

This operand will make use of ND GiST indexes that may be available on the geometries. It is different from other operators that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

Note

Index only kicks in if one of the geometries is a constant (not in a subquery/cte). e.g. ‘SRID=3005;LINESTRINGM(0 0 0,0 0 1)’::geometry instead of a.geom

Availability: 2.2.0. Index-supported only available for PostgreSQL 9.5+

Examples

```sql
-- Save a literal query trajectory in a psql variable...
\set qt 'ST\_AddMeasure(ST\_MakeLine(ST\_MakePointM(-350,300,0),ST\_MakePointM(-410,490,0)) ←
10,20)'

-- Run the query!
SELECT track_id, dist FROM (SELECT track_id, ST\_DistanceCPA(tr,:qt) dist
FROM trajectories
ORDER BY tr \|=\ :qt
LIMIT 5
```
Synopsis

double precision <#>(geometry A , geometry B);

Description

The <#> operator returns distance between two floating point bounding boxes, possibly reading them from a spatial index (PostgreSQL 9.1+ required). Useful for doing nearest neighbor approximate distance ordering.

Notes

Note

This operand will make use of any indexes that may be available on the geometries. It is different from other operators that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

Note

Index only kicks in if one of the geometries is a constant e.g. ORDER BY (ST_GeomFromText('POINT(1 2)') <#> geom) instead of g1.geom <#>.

Availability

2.0.0 -- KNN only available for PostgreSQL 9.1+

Examples

```sql
SELECT *
FROM ( SELECT b.tlid, b.mtfcc,
    b.geom <#> ST_GeomFromText('LINESTRING(746149 2948672,745954 2948576,
    745787 2948499,745740 2948468,745712 2948438,
    745690 2948384,745677 2948319)',2249)' AS b_dist,
    ST_Distance(b.geom, ST_GeomFromText('LINESTRING(746149 2948672,745954 2948576,
    745787 2948499,745740 2948468,745712 2948438,
    745690 2948384,745677 2948319)',2249)) AS act_dist
    FROM bos_roads AS b
    ORDER BY b_dist, b.tlid
    LIMIT 100) AS foo
```
ORDER BY act_dist, tlid LIMIT 10;

<table>
<thead>
<tr>
<th>tlid</th>
<th>mtfcc</th>
<th>b_dist</th>
<th>act_dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>85732027</td>
<td>S1400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85732029</td>
<td>S1400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85732031</td>
<td>S1400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85734335</td>
<td>S1400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85736037</td>
<td>S1400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>624683742</td>
<td>S1400</td>
<td>0</td>
<td>128.528874268666</td>
</tr>
<tr>
<td>85719343</td>
<td>S1400</td>
<td>260.839270432962</td>
<td>260.839270432962</td>
</tr>
<tr>
<td>85741826</td>
<td>S1400</td>
<td>164.759294123275</td>
<td>260.839270432962</td>
</tr>
<tr>
<td>85732032</td>
<td>S1400</td>
<td>277.75</td>
<td>311.830282365264</td>
</tr>
<tr>
<td>85735592</td>
<td>S1400</td>
<td>222.25</td>
<td>311.830282365264</td>
</tr>
</tbody>
</table>

(10 rows)

See Also

ST_DWithin, ST_Distance, ><

5.10.2.4 <<>>

<<>> — Returns the n-D distance between the centroids of A and B bounding boxes.

Synopsis
double precision <<>>(geometry A , geometry B);

Description

The <<>> operator returns the n-D (euclidean) distance between the centroids of the bounding boxes of two geometries. Useful for doing nearest neighbor approximate distance ordering.

Note

This operand will make use of n-D GiST indexes that may be available on the geometries. It is different from other operators that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

Note

Index only kicks in if one of the geometries is a constant (not in a subquery/cte). e.g. 'SRID=3005;POINT(1011102 450541)':::geometry instead of a.geom

Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+

See Also

<<#>>, <>

5.10.2.5 <<#>>

<<#>> — Returns the n-D distance between A and B bounding boxes.
Synopsis

double precision <<#>>(geometry A , geometry B);

Description

The <<#>> operator returns distance between two floating point bounding boxes, possibly reading them from a spatial index (PostgreSQL 9.1+ required). Useful for doing nearest neighbor approximate distance ordering.

Note

This operand will make use of any indexes that may be available on the geometries. It is different from other operators that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

Note

Index only kicks in if one of the geometries is a constant e.g. ORDER BY (ST_GeomFromText('POINT(1 2)') <<#>> geom) instead of g1.geom <<#>>.

Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+

See Also

<<->, <#>

5.11 Spatial Relationships

5.11.1 Topological Relationships

5.11.1.1 ST_3DIntersects

ST_3DIntersects — Returns true if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area).

Synopsis

boolean ST_3DIntersects(geometry geomA , geometry geomB);

Description

Overlaps, Touches, Within all imply spatial intersection. If any of the aforementioned returns true, then the geometries also spatially intersect. Disjoint implies false for spatial intersection.

Changed: 3.0.0 SFCGAL backend removed, GEOS backend supports TINs.

Availability: 2.0.0

Note

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on the geometries.
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
This method is also provided by SFCGAL backend.
This method implements the SQL/MM specification. SQL-MM 3: ?

Geometry Examples

```
SELECT ST_3DIntersects(pt, line), ST_Intersects(pt, line)
FROM (SELECT 'POINT(0 0 2)'::geometry As pt, 'LINESTRING (0 0 1, 0 2 3)'::geometry As line) As foo;
```


<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>st_3dintersects</td>
<td>st_intersects</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
</tr>
</tbody>
</table>

(1 row)

TIN Examples

```
SELECT ST_3DIntersects('TIN(((0 0 0,1 0 0,0 1 0,0 0 0)))'::geometry, 'POINT(.1 .1 0)'::geometry);
```


```
st_3dintersects
```

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
</tr>
</tbody>
</table>

See Also

ST_Intersects

5.11.1.2 ST_Contains

ST_Contains — Returns true if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies in the interior of A.

Synopsis

```
boolean ST_Contains(geometry geomA, geometry geomB);
```

Description

Geometry A contains Geometry B if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies in the interior of A. An important subtlety of this definition is that A does not contain its boundary, but A does contain itself. Contrast that to ST_ContainsProperly where geometry A does not Contain Properly itself.

Returns TRUE if geometry B is completely inside geometry A. For this function to make sense, the source geometries must both be of the same coordinate projection, having the same SRID. ST_Contains is the inverse of ST_Within. So ST_Contains(A,B) implies ST_Within(B,A) except in the case of invalid geometries where the result is always false regardless or not defined.

Performed by the GEOS module

Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.
Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important
Do not use this function with invalid geometries. You will get unexpected results.

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on the geometries. To avoid index use, use the function _ST_Contains.

NOTE: this is the “allowable” version that returns a boolean, not an integer.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3 - same as within(geometry B, geometry A)

This method implements the SQL/MM specification. SQL-MM 3: 5.1.31

There are certain subtleties to ST_Contains and ST_Within that are not intuitively obvious. For details check out Subtleties of OGC Covers, Contains, Within

Examples

The ST_Contains predicate returns TRUE in all the following illustrations.
The `ST_CONTAINS` predicate returns `FALSE` in all the following illustrations.

```sql
-- A circle within a circle
SELECT ST_CONTAINS(smalc, bigc) As smallcontainsbig,
    ST_CONTAINS(bigc, smallo) As bigcontainssmall,
    ST_EQUALS(bigc, ST_Union(smallo, bigc)) As bigcontainsunion,
    ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
    ST_CONTAINS(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smalc,
    ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;
```

```
<table>
<thead>
<tr>
<th>smallcontainsbig</th>
<th>bigcontainssmall</th>
<th>bigcontainsunion</th>
<th>bigisunion</th>
<th>bigcoversexterior</th>
<th>bigcontainsexterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

-- Result

smallcontainsbig | bigcontainssmall | bigcontainsunion | bigisunion | bigcoversexterior | bigcontainsexterior
```
```
Example demonstrating difference between contains and contains properly

```
SELECT ST_GeometryType(geomA) As geomtype, ST_Contains(geomA,geomA) AS acontainsa, ST_ContainsProperly(geomA, geomA) AS acontainspropa, ST_Contains(geomA, ST_Boundary(geomA)) As acontainsba, ST_ContainsProperly(geomA, ST_Boundary(geomA)) As acontainspropba
FROM (VALUES (ST_Buffer(ST_Point(1,1), 5,1) ), (ST_MakeLine(ST_Point(1,1), ST_Point(-1,-1)) ), (ST_Point(1,1)) ) As foo(geomA);
```

<table>
<thead>
<tr>
<th>geomtype</th>
<th>acontainsa</th>
<th>acontainspropa</th>
<th>acontainsba</th>
<th>acontainspropba</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST_Polygon</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>ST_LineString</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>ST_Point</td>
<td>t</td>
<td>t</td>
<td>f</td>
<td>f</td>
</tr>
</tbody>
</table>

See Also

ST_Boundary, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Equals, ST_Within

5.11.1.3 ST_ContainsProperly

ST_ContainsProperly — Returns true if B intersects the interior of A but not the boundary (or exterior). A does not contain properly itself, but does contain itself.

Synopsis

```c
boolean ST_ContainsProperly(geometry geomA, geometry geomB);
```

Description

Returns true if B intersects the interior of A but not the boundary (or exterior).

A does not contain properly itself, but does contain itself.

Every point of the other geometry is a point of this geometry’s interior. The DE-9IM Intersection Matrix for the two geometries matches [T**FF*FF*] used in ST_Relate

Note

From JTS docs slightly reworded: The advantage to using this predicate over ST_Contains and ST_Intersects is that it can be computed efficiently, with no need to compute topology at individual points.

An example use case for this predicate is computing the intersections of a set of geometries with a large polygonal geometry. Since intersection is a fairly slow operation, it can be more efficient to use containsProperly to filter out test geometries which lie wholly inside the area. In these cases the intersection is known a priori to be exactly the original test geometry.

Performed by the GEOS module.

Availability: 1.4.0
Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important
Do not use this function with invalid geometries. You will get unexpected results.

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on the geometries. To avoid index use, use the function _ST_ContainsProperly.

Examples

```sql
-- a circle within a circle
SELECT ST_ContainsProperly(smallc, bigc) As smallcontainspropbig,
       ST_ContainsProperly(bigc, smallc) As bigcontainspropsmall,
       ST_ContainsProperly(bigc, ST_Union(smallc, bigc)) As bigcontainspropunion,
       ST_Equals(bigc, ST_Union(smallc, bigc)) As bigisunion,
       ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
       ST_ContainsProperly(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
       ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;
-- Result
smallcontainspropbig | bigcontainspropsmall | bigcontainspropunion | bigisunion | bigcoversexterior | bigcontainsexterior
-------------------+-------------------+-------------------+----------+-------------------+---------------------
      f             |       t            |         f         |    t    |         t         |                     
-- example demonstrating difference between contains and contains properly
SELECT ST_GeometryType(geomA) As geomtype, ST_Contains(geomA,geomA) AS acontainsa,  
       ST_ContainsProperly(geomA, geomA) AS acontainspropa,  
       ST_Contains(geomA, ST_Boundary(geomA)) As acontainsba, ST_ContainsProperly(geomA,  
       ST_Boundary(geomA)) As acontainspropba
FROM (VALUES ( ST_Buffer(ST_Point(1,1), 5,1) ),  
              ( ST_MakeLine(ST_Point(1,1), ST_Point(-1,-1) ) ),  
              ( ST_Point(1,1) )  
) As foo(geomA);
geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
----------+------------+----------------+-------------+-------------------
 ST_Polygon  |   t         |      f          |      f      |   f               
 ST_LineString |   t         |      f          |      f      |   f               
 ST_Point  |   t         |      t          |      f      |   f               
```

See Also

ST_GeometryType, ST_Boundary, ST_Contains, ST_Covers, ST_CoveredBy, ST_Equals, ST_Relate, ST_Within

5.11.1.4 ST_Covers

ST_Covers — Returns true if no point in B is outside A
Synopsis

boolean ST_Covers(geom geomA, geom geomB);
boolean ST_Covers(geog geogpolyA, geog geogpointB);

Description

Returns 1 (TRUE) if no point in Geometry/Geography B is outside Geometry/Geography A

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important
Do not use this function with invalid geometries. You will get unexpected results.

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on the geometries. To avoid index use, use the function _ST_Covers.

Performed by the GEOS module

Enhanced: 2.4.0 Support for polygon in polygon and line in polygon added for geography type
Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon.
Availability: 1.5 - support for geography was introduced.
Availability: 1.2.2
NOTE: this is the “allowable” version that returns a boolean, not an integer.
Not an OGC standard, but Oracle has it too.
There are certain subtleties to ST_Contains and ST_Within that are not intuitively obvious. For details check out Subtleties of OGC Covers, Contains, Within

Examples

Geometry example

```sql
--a circle covering a circle
SELECT ST_Covers(smallc, smallc) As smallinsmall,
    ST_Covers(smallc, bigc) As smallcoversbig,
    ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
    ST_Contains(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
            ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;
```

```
--Result
smallinsmall | smallcoversbig | bigcoversexterior | bigcontainsexterior
-------------+----------------+-------------------+---------------------
t | f | t | f
```

(1 row)

Geography Example
-- a point with a 300 meter buffer compared to a point, a point and its 10 meter buffer
SELECT ST_Covers(geog_poly, geog_pt) As poly_covers_pt,
 ST_Covers(ST_Buffer(geog_pt,10), geog_pt) As buff_10m_covers_cent
FROM (SELECT ST_Buffer(ST_GeogFromText('SRID=4326;POINT(-99.327 31.4821)'), 300) As ←
 geog_poly,
 ST_GeogFromText('SRID=4326;POINT(-99.33 31.483)') As geog_pt) As foo;

<table>
<thead>
<tr>
<th>poly_covers_pt</th>
<th>buff_10m_covers_cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>t</td>
</tr>
</tbody>
</table>

See Also

ST_Contains, ST_CoveredBy, ST_Within

5.11.1.5 ST_CoveredBy

ST_CoveredBy — Returns true if no point in Geometry/Geography A is outside Geometry/Geography B

Synopsis

boolean ST_CoveredBy(geometry geomA, geometry geomB);
boolean ST_CoveredBy(geography geogA, geography geogB);

Description

Returns 1 (TRUE) if no point in Geometry/Geography A is outside Geometry/Geography B

Important

Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important

Do not use this function with invalid geometries. You will get unexpected results.

Performed by the GEOS module

Availability: 1.2.2

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on the geometries. To avoid index use, use the function _ST_CoveredBy.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

Not an OGC standard, but Oracle has it too.

There are certain subtleties to ST_Contains and ST_Within that are not intuitively obvious. For details check out Subtleties of OGC Covers, Contains, Within
Examples

```sql
-- a circle covered by a circle
SELECT ST_CoveredBy(smallc,smallc) As smallinsmall,
     ST_CoveredBy(smallc, bigc) As smallcoveredbybig,
     ST_CoveredBy(ST_ExteriorRing(bigc), bigc) As exteriorcoveredbybig,
     ST_Within(ST_ExteriorRing(bigc), bigc) As exeriorwithinbig
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
           ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;
```

-- Result

<table>
<thead>
<tr>
<th>smallinsmall</th>
<th>smallcoveredbybig</th>
<th>exteriorcoveredbybig</th>
<th>exeriorwithinbig</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>f</td>
</tr>
</tbody>
</table>

See Also

ST_Contains, ST_Covers, ST_ExteriorRing, ST_Within

5.11.1.6 ST_Crosses

ST_Crosses — Returns true if two geometries have some, but not all, interior points in common.

Synopsis

```sql
boolean ST_Crosses(geometry g1, geometry g2);
```

Description

ST_Crosses takes two geometry objects and returns TRUE if their intersection "spatially cross", that is, the geometries have some, but not all interior points in common. The intersection of the interiors of the geometries must not be the empty set and must have a dimensionality less than the maximum dimension of the two input geometries. Additionally, the intersection of the two geometries must not equal either of the source geometries. Otherwise, it returns FALSE.

In mathematical terms, this is expressed as:

\[
\text{a.Crosses(b)} \iff (\dim(I(a) \cap I(b)) < \max(\dim(I(a)), \dim(I(b)))) \land (a \cap b \neq a) \land (a \cap b \neq b)
\]

The DE-9IM Intersection Matrix for the two geometries is:

- **T** for Point/Line, Point/Area, and Line/Area situations
- **T** for Line/Point, Area/Point, and Area/Line situations
- **0** for Line/Line situations

For any other combination of dimensions this predicate returns false.

The OpenGIS Simple Features Specification defines this predicate only for Point/Line, Point/Area, Line/Line, and Line/Area situations. JTS / GEOS extends the definition to apply to Line/Point, Area/Point and Area/Line situations as well. This makes the relation symmetric.

Important

Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION
Note
This function call will automatically include a bounding box comparison that will make use of any indexes that are available on the geometries.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.13.3
This method implements the SQL/MM specification. SQL-MM 3: 5.1.29

Examples
The following illustrations all return TRUE.
Consider a situation where a user has two tables: a table of roads and a table of highways.

```sql
CREATE TABLE roads (  
id serial NOT NULL,
the_geom geometry,
CONSTRAINT roads_pkey PRIMARY KEY (road_id)  
);
CREATE TABLE highways (  
id serial NOT NULL,
the_geom geometry,
CONSTRAINT roads_pkey PRIMARY KEY (road_id)  
);
```

To determine a list of roads that cross a highway, use a query similar to:

```sql
SELECT roads.id  
FROM roads, highways  
WHERE ST_Crosses(roads.the_geom, highways.the_geom);
```

5.11.1.7 ST_LineCrossingDirection

ST_LineCrossingDirection — Returns a number indicating the crossing behavior of two LineStrings.

Synopsis

```
i nteger ST_LineCrossingDirection(geomet ry linestringA, geometry linestringB);
```

Description

Given 2 linestrings, returns an integer between -3 and 3 indicating what kind of crossing behavior exists between them. 0 indicates no crossing. This is only supported for LINESTRINGS.

The crossing number has the following meaning:

- **0**: LINE NO CROSS
- **-1**: LINE CROSS LEFT
- **1**: LINE CROSS RIGHT
- **-2**: LINE MULTICROSS END LEFT
- **2**: LINE MULTICROSS END RIGHT
- **-3**: LINE MULTICROSS END SAME FIRST LEFT
- **3**: LINE MULTICROSS END SAME FIRST RIGHT

Availability: 1.4

Examples
Line 1 (green), Line 2 ball is start point, triangle are end points. Query below.

```
SELECT ST_LineCrossingDirection(foo.line1 ← , foo.line2) As l1_cross_l2 ,
ST_LineCrossingDirection(foo. ← line2, foo.line1) As l2_cross_l1
FROM (SELECT
  ST_GeomFromText('LINESTRING(25 169, 89 ← 114, 40 70, 86 43)') As line1,
  ST_GeomFromText('LINESTRING(171 154, 20 ← 71 74, 161 53)') As line2
) As foo;
```

<table>
<thead>
<tr>
<th>l1_cross_l2</th>
<th>l2_cross_l1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-3</td>
</tr>
</tbody>
</table>

Line 1 (green), Line 2 (blue) ball is start point, triangle are end points. Query below.

```
SELECT ST_LineCrossingDirection(foo.line1 ← , foo.line2) As l1_cross_l2 ,
ST_LineCrossingDirection(foo. ← line2, foo.line1) As l2_cross_l1
FROM (SELECT
  ST_GeomFromText('LINESTRING(25 169, 89 ← 114, 40 70, 86 43)') As line1,
  ST_GeomFromText('LINESTRING(171 154, 20 ← 140, 71, 74, 161, 53)') As line2
) As foo;
```

<table>
<thead>
<tr>
<th>l1_cross_l2</th>
<th>l2_cross_l1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-2</td>
</tr>
</tbody>
</table>
Line 1 (green), Line 2 (blue) ball is start point, triangle are end points. Query below.

```
SELECT ST_LineCrossingDirection(foo.line1, foo.line2) As l1_cross_l2,
     ST_LineCrossingDirection(foo.line2, foo.line1) As l2_cross_l1
FROM (SELECT ST_GeomFromText('LINESTRING(25 169,89 114,40 70,86 43)') As line1,
           ST_GeomFromText('LINESTRING(20 140,71 74,161 53)') As line2 ) As foo;
```

<table>
<thead>
<tr>
<th>l1_cross_l2</th>
<th>l2_cross_l1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

Line 1 (green), Line 2 (blue) ball is start point, triangle are end points. Query below.

```
SELECT ST_LineCrossingDirection(foo.line1, foo.line2) As l1_cross_l2,
     ST_LineCrossingDirection(foo.line2, foo.line1) As l2_cross_l1
FROM (SELECT ST_GeomFromText('LINESTRING(25 169,89 114,40 70,86 43)') As line1,
           ST_GeomFromText('LINESTRING(2.99 90.16,71 74,161 54)') As line2 ) As foo;
```

<table>
<thead>
<tr>
<th>l1_cross_l2</th>
<th>l2_cross_l1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>2</td>
</tr>
</tbody>
</table>

```
SELECT s1.gid, s2.gid, ST_LineCrossingDirection(s1.the_geom, s2.the_geom)
FROM streets s1 CROSS JOIN streets s2 ON (s1.gid != s2.gid AND s1.the_geom && s2.the_geom)
WHERE ST_CrossingDirection(s1.the_geom, s2.the_geom) > 0;
```

See Also

ST_Crosses

5.11.1.8 ST_Disjoint

ST_Disjoint — Returns true if two geometries do not spatially intersect (they have no point in common).

Synopsis

```
boolean ST_Disjoint( geometry A , geometry B );
```
Description

Overlaps, Touches, Within all imply geometries are not spatially disjoint. If any of the aforementioned returns true, then the geometries are not spatially disjoint. Disjoint implies false for spatial intersection.

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Performed by the GEOS module

Note
This function call does not use indexes

Note
NOTE: this is the "allowable" version that returns a boolean, not an integer.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3 - a.Relate(b, 'FF*FF****')

This method implements the SQL/MM specification. SQL-MM 3: 5.1.26

Examples

```sql
SELECT ST_Disjoint('POINT(0 0)'::geometry, 'LINESTRING ( 2 0, 0 2 )'::geometry);
  st_disjoint
-----------------
t
(1 row)
SELECT ST_Disjoint('POINT(0 0)'::geometry, 'LINESTRING ( 0 0, 0 2 )'::geometry);
  st_disjoint
-----------------
f
(1 row)
```

See Also

ST_Intersects

5.11.1.9 ST_Equals

ST_Equals — Returns true if two geometries include the same set of points in space.

Synopsis

boolean ST_Equals(geometry A, geometry B);
Description

Returns TRUE if the given Geometries are "spatially equal". Use this for a 'better' answer than '='. Note by spatially equal we mean \text{ST_Within}(A,B) = \text{true} and \text{ST_Within}(B,A) = \text{true} and also mean ordering of points can be different but represent the same geometry structure. To verify the order of points is consistent, use \text{ST_OrderingEquals} (it must be noted \text{ST_OrderingEquals} is a little more stringent than simply verifying order of points are the same).

Important

This function will return false if either geometry is invalid except in the case where they are binary equal.

Important

Enhanced: 3.0.0 enabled support for \text{GEOMETRYCOLLECTION}

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2

This method implements the SQL/MM specification. SQL-MM 3: 5.1.24

Changed: 2.2.0 Returns true even for invalid geometries if they are binary equal

Examples

```sql
SELECT ST_Equals(ST_GeomFromText('LINESTRING(0 0, 10 10)'),
                 ST_GeomFromText('LINESTRING(0 0, 5 5, 10 10)'));
```

```
st_equals
-----------
t
(1 row)
```

```sql
SELECT ST_Equals(ST_Reverse(ST_GeomFromText('LINESTRING(0 0, 10 10)')),
                 ST_GeomFromText('LINESTRING(0 0, 5 5, 10 10)'));
```

```
st_equals
-----------
t
(1 row)
```

See Also

\text{ST_IsValid}, \text{ST_OrderingEquals}, \text{ST_Reverse}, \text{ST_Within}

5.11.1.10 \text{ST_Intersects}

\text{ST_Intersects} — Returns true if two Geometries/Geography spatially intersect in 2D (have at least one point in common).

Synopsis

```sql
boolean \text{ST\_Intersects}(\text{geometry geomA}, \text{geometry geomB});
boolean \text{ST\_Intersects}(\text{geography geogA}, \text{geography geogB});
```
Description

If a geometry or geography shares any portion of space then they intersect. For geography -- tolerance is 0.00001 meters (so any points that are close are considered to intersect).

ST_Overlaps, ST_Touches, ST_Within all imply spatial intersection. If any of the aforementioned returns true, then the geometries also spatially intersect. Disjoint implies false for spatial intersection.

Changed: 3.0.0 SFCGAL version removed and native support for 2D TINS added.
Enhanced: 2.5.0 Supports GEOMETRYCOLLECTION.
Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.

Performed by the GEOS module (for geometry), geography is native

Availability: 1.5 support for geography was introduced.

Note

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on the geometries.

Note

For geography, this function has a distance tolerance of about 0.00001 meters and uses the sphere rather than spheroid calculation.

Note

NOTE: this is the "allowable" version that returns a boolean, not an integer.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3 -
ST_Intersects(g1, g2) --> Not (ST_Disjoint(g1, g2))

This method implements the SQL/MM specification. SQL-MM 3: 5.1.27
This method supports Circular Strings and Curves
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Geometry Examples

```
SELECT ST_Intersects('POINT(0 0)':'geometry', 'LINESTRING ( 2 0, 0 2)':'geometry');
-- st_intersects
---------------
f
(1 row)
SELECT ST_Intersects('POINT(0 0)':'geometry', 'LINESTRING ( 0 0, 0 2)':'geometry');
-- st_intersects
---------------
t
(1 row)
```

-- Look up in table. Make sure table has a GiST index on geometry column for faster lookup.
SELECT id, name FROM cities WHERE ST_Intersects(geom, 'SRID=4326;POLYGON((28 53,27.707 52.293,27 52,26.293 52.293,26 53,26.293 53.707,27 54,27.707 53.707,28 53))');

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Minsk</td>
</tr>
</tbody>
</table>

(1 row)

Geography Examples

SELECT ST_Intersects(
 'SRID=4326;LINESTRING(-43.23456 72.4567,-43.23456 72.4568)'::geography,
 'SRID=4326;POINT(-43.23456 72.4567772)'::geography
);

st_intersects

t

See Also

&&, ST_3DIntersects, ST_Disjoint

5.11.1.11 ST_OrderingEquals

ST_OrderingEquals — Returns true if two geometries represent the same geometry and have points in the same directional order.

Synopsis

boolean ST_OrderingEquals(geography A, geography B);

Description

ST_OrderingEquals compares two geometries and returns t (TRUE) if the geometries are equal and the coordinates are in the same order; otherwise it returns f (FALSE).

Note

This function is implemented as per the ArcSDE SQL specification rather than SQL-MM.

This method implements the SQL/MM specification. SQL-MM 3: 5.1.43

Examples

SELECT ST_OrderingEquals(ST_GeomFromText('LINESTRING(0 0, 10 10)'),
 ST_GeomFromText('LINESTRING(0 0, 5 5, 10 10)'));

st_orderingequals

f

(1 row)

SELECT ST_OrderingEquals(ST_GeomFromText('LINESTRING(0 0, 10 10)'),
 ST_GeomFromText('LINESTRING(0 0, 10 10)'));
\begin{verbatim}
 ST_GeomFromText('LINESTRING(0 0, 0 0, 10 10)'));
 st_orderingequals

 t
 (1 row)

 SELECT ST_OrderingEquals(ST Reverse(ST_GeomFromText('LINESTRING(0 0, 10 10)'),
 ST_GeomFromText('LINESTRING(0 0, 0 0, 10 10)')));
 st_orderingequals

 f
 (1 row)
\end{verbatim}

See Also

&&, ST_Equals, ST_Reverse

5.11.1.12 ST_Overlaps

ST Overlaps — Returns true if two geometries intersect and have the same dimension, but are not completely contained by each other.

Synopsis

boolean ST_Overlaps(geometry A, geometry B);

Description

Returns TRUE if the Geometries "spatially overlap". By that we mean they intersect, but one does not completely contain another.

Performed by the GEOS module

Important

Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on the geometries. To avoid index use, use the function _ST_Overlaps.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3

This method implements the SQL/MM specification. SQL-MM 3: 5.1.32

Examples

The following illustrations all return TRUE.
MULTIPOINT/MULTIPOINT
LINESTRING/LINESTRING
POLYGON/POLYGON

-- a point on a line is contained by the line and is of a lower dimension, and therefore does not overlap the line nor crosses

SELECT ST_Overlaps(a,b) As a_overlap_b,
 ST_Crosses(a,b) As a_crosses_b,
 ST_Intersects(a,b) As a_intersects_b,
 ST_Contains(b,a) As b_contains_a
FROM (SELECT ST_GeomFromText('POINT(1 0.5)') As a, ST_GeomFromText('LINESTRING(1 0, 1 1, 3 5)') As b)
As foo

<table>
<thead>
<tr>
<th>a_overlap_b</th>
<th>a_crosses_b</th>
<th>a_intersects_b</th>
<th>b_contains_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

-- a line that is partly contained by circle, but not fully is defined as intersecting and crossing, but since of different dimension it does not overlap

SELECT ST_Overlaps(a,b) As a_overlap_b,
 ST_Crosses(a,b) As a_crosses_b,
 ST_Intersects(a,b) As a_intersects_b,
 ST_Contains(a,b) As a_contains_b
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 0.5)'), 3) As a, ST_GeomFromText('LINESTRING(1 0, 1 1, 3 5)') As b)
As foo;

<table>
<thead>
<tr>
<th>a_overlap_b</th>
<th>a_crosses_b</th>
<th>a_intersects_b</th>
<th>a_contains_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
</tr>
</tbody>
</table>

-- a 2-dimensional bent hot dog (aka buffered line string) that intersects a circle, but is not fully contained by the circle is defined as overlapping since they are of the same dimension, but it does not cross, because the intersection of the 2 is of the same dimension as the maximum dimension of the 2

SELECT ST_Overlaps(a,b) As a_overlap_b,
 ST_Crosses(a,b) As a_crosses_b,
 ST_Intersects(a,b) As a_intersects_b,
 ST_Contains(b,a) As b_contains_a,
 ST_Dimension(a) As dim_a, ST_Dimension(b) as dim_b, ST_Dimension(ST_Intersection(a,b)) As dima_intersection_b
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 0.5)'), 3) As a, ST_Buffer(ST_GeomFromText('LINESTRING(1 0, 1 1, 3 5)'),0.5) As b)
See Also

ST_Contains, ST_Crosses, ST_Dimension, ST_Intersects

5.11.1.13 ST_Relate

ST_Relate — Tests if two geometries have a topological relationship matching a given Intersection Matrix pattern, or computes their Intersection Matrix

Synopsis

boolean ST_Relate(geometry geomA, geometry geomB, text intersectionMatrixPattern);
text ST_Relate(geometry geomA, geometry geomB);
text ST_Relate(geometry geomA, geometry geomB, integer boundaryNodeRule);

Description

These functions allow testing and evaluating the spatial (topological) relationship between two geometries, as defined by the Dimensionally Extended 9-Intersection Model (DE-9IM).

The DE-9IM is specified as a 9-element matrix indicating the dimension of the intersections between the Interior, Boundary and Exterior of two geometries. It is represented by a 9-character text string using the symbols 'F', '0', '1', '2' (e.g. 'FF1FF0102').

A specific kind of spatial relationships is evaluated by comparing the intersection matrix to an intersection matrix pattern. A pattern can include the additional symbols 'T' and '*'. Common spatial relationships are provided by the named functions ST_Contains, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Crosses, ST_Disjoint, ST_Equals, ST_Intersects, ST_Overlaps, ST_Touches, and ST_Within. Using an explicit pattern allows testing multiple conditions of intersects, crosses, etc in one step. It also allows testing spatial relationships which do not have a named spatial relationship function. For example, the relationship "Interior-Intersects" has the DE-9IM pattern T********, which is not evaluated by any named predicate.

For more information refer to Section 4.2.1.

Variant 1: Tests if two geometries are spatially related according to the given intersectionMatrixPattern.

Note

Unlike most of the named spatial relationship predicates, this does NOT automatically include an index call. The reason is that some relationships are true for geometries which do NOT intersect (e.g. Disjoint). If you are using a relationship pattern that requires intersection, then include the && index call.

Note

It is better to use a named relationship function if available, since they automatically use a spatial index where one exists. Also, they may implement performance optimizations which are not available with full relate evaluation.
Variant 2: Returns the DE-9IM matrix string for the spatial relationship between the two input geometries. The matrix string can be tested for matching a DE-9IM pattern using `ST_RelateMatch`.

Variant 3: Like variant 2, but allows specifying a Boundary Node Rule. A boundary node rule allows finer control over whether geometry boundary points are considered to lie in the DE-9IM Interior or Boundary. The `boundaryNodeRule` code is: 1: OGC/MOD2, 2: Endpoint, 3: MultivalentEndpoint, 4: MonovalentEndpoint.

This function is not in the OGC spec, but is implied. see s2.1.13.2

- This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3
- This method implements the SQL/MM specification. SQL-MM 3: 5.1.25

Performed by the GEOS module

Enhanced: 2.0.0 - added support for specifying boundary node rule.

Important

Enhanced: 3.0.0 enabled support for `GEOMETRYCOLLECTION`

Examples

Using the boolean-valued function to test spatial relationships.

```sql
SELECT ST_Relate('POINT(1 2)', ST_Buffer( 'POINT(1 2)', 2), '0FFFFF212');
---
st_relate
---
t
```

```sql
SELECT ST_Relate(POINT(1 2)', ST_Buffer( 'POINT(1 2)', 2), '*FF*FF212');
---
st_relate
---
t
```

Testing a custom spatial relationship pattern as a query condition, with `&&` to enable using a spatial index.

```sql
-- Find compounds that properly intersect (not just touch) a poly (Interior Intersects)
SELECT c.*, p.name As poly_name
FROM polys AS p
INNER JOIN compounds AS c
ON c.geom && p.geom
AND ST_Relate(p.geom, c.geom,'T********');
```

Computing the intersection matrix for spatial relationships.

```sql
SELECT ST_Relate( 'POINT(1 2)',
    ST_Buffer( 'POINT(1 2)', 2));
---
st_relate
---
0FFFFF212

SELECT ST_Relate( 'LINESTRING(1 2, 3 4)',
    'LINESTRING(5 6, 7 8)');
---
st_relate
---
FF1FF0102
```
See Also
Section 4.2.1, ST_RelateMatch, ST_Contains, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Crosses, ST_Disjoint, ST_Equals, ST_Intersects, ST_Overlaps, ST_Touches, ST_Within

5.11.1.14 ST_RelateMatch

ST_RelateMatch — Tests if a DE-9IM Intersection Matrix matches an Intersection Matrix pattern

Synopsis

boolean ST_RelateMatch(text intersectionMatrix, text intersectionMatrixPattern);

Description

Tests if a Dimensionally Extended 9-Intersection Model (DE-9IM) intersectionMatrix value satisfies an intersectionMatrixPattern. Intersection matrix values can be computed by ST_Relate.

For more information refer to Section 4.2.1.

Performed by the GEOS module

Availability: 2.0.0

Examples

SELECT ST_RelateMatch('101202FFF', 'TTTTTTFFF') ;
-- result --
t

Patterns for common spatial relationships matched against intersection matrix values, for a line in various positions relative to a polygon

```sql
SELECT pat.name AS relationship, pat.val AS pattern,
       mat.name AS position, mat.val AS matrix,
       ST_RelateMatch(mat.val, pat.val) AS match
FROM (VALUES ( 'Equality', 'T1FF1FFF1' ),
              ( 'Overlaps', 'T*T***T**' ),
              ( 'Within', 'T+F**F***' ),
              ( 'Disjoint', 'FF*FF****' )) AS pat(name,val)
CROSS JOIN (VALUES ('non-intersecting', 'FF1FF0212'),
              ('overlapping', '1010F0212'),
              ('inside', '1FF0FF212')) AS mat(name,val);
```

<table>
<thead>
<tr>
<th>relationship</th>
<th>pattern</th>
<th>position</th>
<th>matrix</th>
<th>match</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equality</td>
<td>T1FF1FFF1</td>
<td>non-intersecting</td>
<td>FF1FF0212</td>
<td>f</td>
</tr>
<tr>
<td>Equality</td>
<td>T1FF1FFF1</td>
<td>overlapping</td>
<td>1010F0212</td>
<td>f</td>
</tr>
<tr>
<td>Equality</td>
<td>T1FF1FFF1</td>
<td>inside</td>
<td>1FF0FF212</td>
<td>f</td>
</tr>
<tr>
<td>Overlaps</td>
<td>TTT</td>
<td>non-intersecting</td>
<td>FF1FF0212</td>
<td>f</td>
</tr>
<tr>
<td>Overlaps</td>
<td>TTT</td>
<td>overlapping</td>
<td>1010F0212</td>
<td>t</td>
</tr>
<tr>
<td>Overlaps</td>
<td>TTT</td>
<td>inside</td>
<td>1FF0FF212</td>
<td>f</td>
</tr>
<tr>
<td>Within</td>
<td>T+FF*</td>
<td>non-intersecting</td>
<td>FF1FF0212</td>
<td>t</td>
</tr>
<tr>
<td>Within</td>
<td>T+FF*</td>
<td>overlapping</td>
<td>1010F0212</td>
<td>f</td>
</tr>
<tr>
<td>Within</td>
<td>T+FF*</td>
<td>inside</td>
<td>1FF0FF212</td>
<td>t</td>
</tr>
<tr>
<td>Disjoint</td>
<td>FFFF***</td>
<td>non-intersecting</td>
<td>FF1FF0212</td>
<td>f</td>
</tr>
<tr>
<td>Disjoint</td>
<td>FFFF***</td>
<td>overlapping</td>
<td>1010F0212</td>
<td>f</td>
</tr>
<tr>
<td>Disjoint</td>
<td>FFFF***</td>
<td>inside</td>
<td>1FF0FF212</td>
<td>f</td>
</tr>
</tbody>
</table>
See Also
Section 4.2.1, ST_Relate

5.11.1.15 ST_Touches

ST_Touches — Returns true if two geometries have at least one point in common, but their interiors do not intersect.

Synopsis

boolean ST_Touches(geometry g1, geometry g2);

Description

Returns TRUE if the only points in common between \(g1 \) and \(g2 \) lie in the union of the boundaries of \(g1 \) and \(g2 \). The ST_Touches relation applies to all Area/Area, Line/Line, Line/Area, Point/Area and Point/Line pairs of relationships, but not to the Point/Point pair.

In mathematical terms, this predicate is expressed as:

\[a.\text{Touches}(b) \iff (I(a) \cap I(b) = \emptyset) \land (a \cap b) \neq \emptyset \]

The allowable DE-9IM Intersection Matrices for the two geometries are:

- FT******
- F**T*****
- F***T****

Important

Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Note

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on the geometries. To avoid using an index, use _ST_Touches instead.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3

This method implements the SQL/MM specification. SQL-MM 3: 5.1.28

Examples

The ST_Touches predicate returns TRUE in all the following illustrations.
SELECT ST_Touches('LINESTRING(0 0, 1 1, 0 2)')::geometry, 'POINT(1 1)'::geometry);
 stTouches

 f
(1 row)

SELECT ST_Touches('LINESTRING(0 0, 1 1, 0 2)')::geometry, 'POINT(0 2)'::geometry);
 stTouches

 t
(1 row)

5.11.1.16 ST_Within

ST_Within — Returns true if geometry A is completely inside geometry B

Synopsis

boolean ST_Within(geometry A, geometry B);
Description

Returns TRUE if geometry A is completely inside geometry B. For this function to make sense, the source geometries must both be of the same coordinate projection, having the same SRID. It is a given that if ST_Within(A,B) is true and ST_Within(B,A) is true, then the two geometries are considered spatially equal.

Performed by the GEOS module

Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon.

Important

Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important

Do not use this function with invalid geometries. You will get unexpected results.

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on the geometries. To avoid index use, use the function _ST_Within.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3 - a.Relate(b, 'T*F**F***')

This method implements the SQL/MM specification. SQL-MM 3: 5.1.30

Examples

```sql
-- a circle within a circle
SELECT ST_Within(smallback, smallback) As smallinsmall,
       ST_Within(smallback, bigc) As smallinbig,
       ST_Within(ST_Union(smallback, bigc), bigc) as unioninbig,
       ST_Within(bigc, ST_Union(smallback, bigc)) as biginunion,
       ST_Equals(bigc, ST_Union(smallback, bigc)) as bigisunion
FROM
  (SELECT ST_Buffer(ST_GeomFromText('POINT(50 50)'), 20) As smallback,
       ST_Buffer(ST_GeomFromText('POINT(50 50)'), 40) As bigc) As foo;
-- Result
```

<table>
<thead>
<tr>
<th>smallinsmall</th>
<th>smallinbig</th>
<th>bigsmall</th>
<th>unioninbig</th>
<th>bigunion</th>
<th>bigisunion</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

(1 row)
See Also

ST_Contains, ST_Equals, ST_IsValid

5.11.2 Distance Relationships

5.11.2.1 ST_3DDWithin

ST_3DDWithin — Returns true if two 3D geometries are within a given 3D distance

Synopsis

boolean ST_3DDWithin(geometry g1, geometry g2, double precision distance_of_srid);

Description

For geometry type returns true if the 3d distance between two objects is within distance_of_srid specified projected units (spatial ref units).

- This function supports 3d and will not drop the z-index.
- This function supports Polyhedral surfaces.
- This method implements the SQL/MM specification. SQL-MM

Availability: 2.0.0

Examples

```sql
-- Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point and line compared 2D point and line)
-- Note: currently no vertical datum support so Z is not transformed and assumed to be same units as final.
SELECT ST_3DDWithin(
    ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 4)'),2163),
    ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163),
    1,
    1
);
```
126.8
) As within_dist_3d,
ST_DWithin(
 ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 4)'),2163),
 ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 ←
 20)'),2163),
 126.8
) As within_dist_2d;

within_dist_3d | within_dist_2d
----------------+----------------
 f | t

See Also

ST_3DDistance, ST_Distance, ST_DWithin, ST_3DMaxDistance, ST_Transform

5.11.2.2 ST_3DDFullyWithin

ST_3DDFullyWithin — Returns true if two 3D geometries are entirely within a given 3D distance

Synopsis

boolean ST_3DDFullyWithin(geom g1, geom g2, double precision distance);

Description

Returns true if the 3D geometries are fully within the specified distance of one another. The distance is specified in units defined by the spatial reference system of the geometries. For this function to make sense, the source geometries must both be of the same coordinate projection, having the same SRID.

Note

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on the geometries.

Availability: 2.0.0

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Examples

-- This compares the difference between fully within and distance within as well
-- as the distance fully within for the 2D footprint of the line/point vs. the 3d fully within
SELECT ST_3DDFullyWithin(geom_a, geom_b, 10) as D3DFullyWithin10, ST_3DDWithin(geom_a, geom_b, 10) as D3DWithin10,
 ST_DFullyWithin(geom_a, geom_b, 20) as D2DFullyWithin20,
 ST_3DDFullyWithin(geom_a, geom_b, 20) as D3DFullyWithin20 from
 (select ST_GeomFromEWKT('POINT(1 1 2)') as geom_a,
 ST_GeomFromEWKT('LINESTRING(1 5 2, 2 7 20, 1 9 100, 14 12 3)') as geom_b) t1;
d3dfullwithin10 | d3dwithin10 | d2dfullwithin20 | d3dfullwithin20
----------------+-------------+-----------------+------------------
 f | t | t | f

See Also

ST_3DMaxDistance, ST_3DDWithin, ST_DWithin, ST_DFullyWithin

5.11.2.3 ST_DFullyWithin

ST_DFullyWithin — Returns true if two geometries are entirely within a given distance

Synopsis

boolean ST_DFullyWithin(geography g1, geography g2, double precision distance);

Description

Returns true if the geometries are entirely within the specified distance of one another. The distance is specified in units defined by the spatial reference system of the geometries. For this function to make sense, the source geometries must both be of the same coordinate projection, having the same SRID.

Note

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on the geometries.

Availability: 1.5.0

Examples

```
postgis=# SELECT ST_DFullyWithin(geom_a, geom_b, 10) as DFullyWithin10, ST_DWithin(geom_a, geom_b, 10) as DWithin10, ST_DFullyWithin(geom_a, geom_b, 20) as DFullyWithin20 from (select ST_GeomFromText('POINT(1 1)') as geom_a, ST_GeomFromText('LINESTRING(1 5, 2 7, 1 9, 14 12)') as geom_b) t1;
```

<table>
<thead>
<tr>
<th>DFullyWithin10</th>
<th>DWithin10</th>
<th>DFullyWithin20</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

See Also

ST_MaxDistance, ST_DWithin

5.11.2.4 ST_DWithin

ST_DWithin — Returns true if two geometries are within a given distance

Synopsis

boolean ST_DWithin(geography gg1, geography gg2, double precision distance_meters, boolean use_spheroid = true);
Description

Returns true if the geometries are within a given distance

For geometry: The distance is specified in units defined by the spatial reference system of the geometries. For this function to make sense, the source geometries must be in the same coordinate system (have the same SRID).

For geography: units are in meters and distance measurement defaults to use_spheroid=true. For faster evaluation use use_spheroid=false to measure on the sphere.

Note

Use ST_3DDWithin for 3D geometries.

Note

This function call includes a bounding box comparison that makes use of any indexes that are available on the geometries.

Note

Prior to 1.3, ST_Expand was commonly used in conjunction with && and ST_Distance to test for distance, and in pre-1.3.4 this function used that logic. From 1.3.4, ST_DWithin uses a faster short-circuit distance function.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

Availability: 1.5.0 support for geography was introduced
Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.
Enhanced: 2.1.0 support for curved geometries was introduced.

Examples

```
-- Find the nearest hospital to each school
-- that is within 3000 units of the school.
-- We do an ST_DWithin search to utilize indexes to limit our search list
-- that the non-indexable ST_Distance needs to process
-- If the units of the spatial reference is meters then units would be meters
SELECT DISTINCT ON (s.gid) s.gid, s.school_name, s.geom, h.hospital_name
FROM schools s
  LEFT JOIN hospitals h ON ST_DWithin(s.the_geom, h.geom, 3000)
ORDER BY s.gid, ST_Distance(s.geom, h.geom);

-- The schools with no close hospitals
-- Find all schools with no hospital within 3000 units
-- away from the school. Units is in units of spatial ref (e.g. meters, feet, degrees)
SELECT s.gid, s.school_name
FROM schools s
  LEFT JOIN hospitals h ON ST_DWithin(s.geom, h.geom, 3000)
WHERE h.gid IS NULL;

-- Find broadcasting towers that receiver with limited range can receive.
-- Data is geometry in Spherical Mercator (SRID=3857), ranges are approximate.
-- Create geometry index that will check proximity limit of user to tower
```
CREATE INDEX ON broadcasting_towers using gist (geom);

-- Create geometry index that will check proximity limit of tower to user
CREATE INDEX ON broadcasting_towers using gist (ST_Expand(geom, sending_range));

-- Query towers that 4-kilometer receiver in Minsk Hackerspace can get
-- Note: two conditions, because shorter LEAST(b.sending_range, 4000) will not use index.
SELECT b.tower_id, b.geom
FROM broadcasting_towers b
WHERE ST_DWithin(b.geom, 'SRID=3857;POINT(3072163.4 7159374.1)', 4000)
 AND ST_DWithin(b.geom, 'SRID=3857;POINT(3072163.4 7159374.1)', b.sending_range);

See Also

ST_Distance, ST_Expand, ST_3DDWithin

5.11.2.5 ST_PointInsideCircle

ST_PointInsideCircle — Tests if a point geometry is inside a circle defined by a center and radius.

Synopsis

boolean ST_PointInsideCircle(geometry a_point, float center_x, float center_y, float radius);

Description

Returns true if the geometry is a point and is inside the circle with center center_x,center_y and radius radius.

Warning

Does not use spatial indexes. Use ST_DWithin instead.

Availability: 1.2

Changed: 2.2.0 In prior versions this was called ST_Point_Inside_Circle

Examples

SELECT ST_PointInsideCircle(ST_Point(1,2), 0.5, 2, 3);

See Also

ST_DWithin
5.12 Measurement Functions

5.12.1 ST_Area

ST_Area — Returns the area of a polygonal geometry.

Synopsis

```sql
float ST_Area( geometry g1);
float ST_Area( geography geog, boolean use_spheroid=true);
```

Description

Returns the area of a polygonal geometry. For geometry types a 2D Cartesian (planar) area is computed, with units specified by the SRID. For geography types by default area is determined on a spheroid with units in square meters. To compute the area using the faster but less accurate spherical model use `ST_Area(geog,false)`.

Enhanced: 2.0.0 - support for 2D polyhedral surfaces was introduced.

Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires Proj >= 4.9.0 to take advantage of the new feature.

Changed: 3.0.0 - does not depend on SFCGAL anymore.

- This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
- This method implements the SQL/MM specification. SQL-MM 3: 8.1.2, 9.5.3
- This function supports Polyhedral surfaces.

Note

For polyhedral surfaces, only supports 2D polyhedral surfaces (not 2.5D). For 2.5D, may give a non-zero answer, but only for the faces that sit completely in XY plane.

Examples

Return area in square feet for a plot of Massachusetts land and multiply by conversion to get square meters. Note this is in square feet because EPSG:2249 is Massachusetts State Plane Feet

```sql
select ST_Area(geom) sqft,
       ST_Area(geom) * 0.3048 ^ 2 sqm
from (SELECT 'SRID=2249;POLYGON((743238 2967416,743238 2967450,
                         743265 2967450,743265.625 2967416,743238 2967416))' :: geometry geom
      ) subquery;
```

<table>
<thead>
<tr>
<th>sqft</th>
<th>sqm</th>
</tr>
</thead>
<tbody>
<tr>
<td>928.625</td>
<td>86.27208552</td>
</tr>
</tbody>
</table>

Return area square feet and transform to Massachusetts state plane meters (EPSG:26986) to get square meters. Note this is in square feet because 2249 is Massachusetts State Plane Feet and transformed area is in square meters since EPSG:26986 is state plane Massachusetts meters

```sql
select ST_Area(geom) sqft,
       ST_Area(geom) * 0.3048 ^ 2 sqm
from (SELECT 'SRID=2249;POLYGON((743238 2967416,743238 2967450,
                         743265 2967450,743265.625 2967416,743238 2967416))' :: geometry geom
      ) subquery;
```
select ST_Area(geom) sqft,
 ST_Area(ST_Transform(geom, 26986)) As sqm
from (
 select
 'SRID=2249;POLYGON((743238 2967416,743238 2967450,
 743265 2967450,743265.625 2967416,743238 2967416))' :: geometry geom
) subquery;

<table>
<thead>
<tr>
<th>sqft</th>
<th>sqm</th>
</tr>
</thead>
<tbody>
<tr>
<td>928.625</td>
<td>86.272430607008</td>
</tr>
</tbody>
</table>

Return area square feet and square meters using geography data type. Note that we transform to our geometry to geography
(before you can do that make sure your geometry is in WGS 84 long lat 4326). Geography always measures in meters. This is
just for demonstration to compare. Normally your table will be stored in geography data type already.

select ST_Area(geog) / 0.3048 ^ 2 sqft_spheroid,
 ST_Area(geog, false) / 0.3048 ^ 2 sqft_sphere,
 ST_Area(geog) sqm_spheroid
from (
 select ST_Transform(
 'SRID=2249;POLYGON((743238 2967416,743238 2967450,743265
 ...table(743265.625 2967416,743238 2967416))'::geometry,
 4326
) :: geography geog
) as subquery;

<table>
<thead>
<tr>
<th>sqft_spheroid</th>
<th>sqft_sphere</th>
<th>sqm_spheroid</th>
</tr>
</thead>
<tbody>
<tr>
<td>928.684405784452</td>
<td>927.049336105925</td>
<td>86.2776044979692</td>
</tr>
</tbody>
</table>

If your data is in geography already:

select ST_Area(geog) / 0.3048 ^ 2 sqft,
 ST_Area(the_geog) sqm
from somegeogtable;

See Also

ST_3DArea, ST_GeomFromText, ST_GeographyFromText, ST_SetSRID, ST_Transform

5.12.2 ST_Azimuth

ST_Azimuth — Returns the north-based azimuth as the angle in radians measured clockwise from the vertical on pointA to
pointB.

Synopsis

float ST_Azimuth(geometry pointA, geometry pointB);
float ST_Azimuth(geography pointA, geography pointB);
Description

Returns the azimuth in radians of the segment defined by the given point geometries, or NULL if the two points are coincident. The azimuth is angle is referenced from north, and is positive clockwise: North = 0; Northeast = $\pi/4$; East = $\pi/2$; Southeast = $3\pi/4$; South = π; Southwest = $5\pi/4$; West = $3\pi/2$; Northwest = $7\pi/4$.

For the geography type, the forward azimuth is solved as part of the inverse geodesic problem.

The azimuth is mathematical concept defined as the angle between a reference plane and a point, with angular units in radians. Units can be converted to degrees using a built-in PostgreSQL function degrees(), as shown in the example.

Availability: 1.1.0

Enhanced: 2.0.0 support for geography was introduced.

Enhanced: 2.2.0 measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires Proj \geq 4.9.0 to take advantage of the new feature.

Azimuth is especially useful in conjunction with ST_Translate for shifting an object along its perpendicular axis. See upgis_lineshift Plpgsqlfunctions PostGIS wiki section for example of this.

Examples

Geometry Azimuth in degrees

<table>
<thead>
<tr>
<th>degra_b</th>
<th>degb_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.2736890060937</td>
<td>222.273689006094</td>
</tr>
</tbody>
</table>

Green: the start Point(25,45) with its vertical. Yellow: degA_B as the path to travel (azimuth).

Green: the start Point(75,100) with its vertical. Yellow: degB_A as the path to travel (azimuth).

See Also

ST_Point, ST_Translate, ST_Project, PostgreSQL Math Functions
5.12.3 ST_Angle

ST_Angle — Returns the angle between 3 points, or between 2 vectors (4 points or 2 lines).

Synopsis

float ST_Angle(geometry point1, geometry point2, geometry point3, geometry point4);
float ST_Angle(geometry line1, geometry line2);

Description

For 3 points, computes the angle measured clockwise of P1P2P3. If input are 2 lines, get first and last point of the lines as 4 points. For 4 points, compute the angle measured clockwise of P1P2,P3P4. Results are always positive, between 0 and 2*Pi radians. Uses azimuth of pairs or points.

ST_Angle(P1,P2,P3) = ST_Angle(P2,P1,P2,P3)

Result is in radian and can be converted to degrees using a built-in PostgreSQL function degrees(), as shown in the example.

Availability: 2.5.0

Examples

Geometry Azimuth in degrees

WITH rand AS (
 SELECT s, random() * 2 * PI() AS rad1, random() * 2 * PI() AS rad2
 FROM generate_series(1,2,2) AS s
)
, points AS (
 SELECT s, rad1, rad2, ST_MakePoint(cos1+s, sin1+s) as p1, ST_MakePoint(s, s) AS p2,
 ST_MakePoint(cos2+s, sin2+s) as p3
 FROM rand
 ,cos(rad1) cos1, sin(rad1) sin1
 ,cos(rad2) cos2, sin(rad2) sin2
)
SELECT s, ST_AsText(ST_SnapToGrid(ST_MakeLine(ARRAY[p1, p2, p3]), 0.001)) AS line
, degrees(ST_Angle(p1, p2, p3)) as computed_angle
, round(degrees(2*PI()-rad2 -2*PI()+rad1+2*PI())::int%360) AS reference
FROM points ;

<table>
<thead>
<tr>
<th>line</th>
<th>computed_angle</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINESTRING(1.511 1.86, 1, 0.896 0.005)</td>
<td>155.27033848688</td>
<td>155</td>
</tr>
</tbody>
</table>

5.12.4 ST_ClosestPoint

ST_ClosestPoint — Returns the 2D point on g1 that is closest to g2. This is the first point of the shortest line.

Synopsis

geometry ST_ClosestPoint(geometry g1, geometry g2);
Description

Returns the 2-dimensional point on g1 that is closest to g2. This is the first point of the shortest line.

Note

If you have a 3D Geometry, you may prefer to use `ST_3DClosestPoint`.

Availability: 1.5.0

Examples

CLOSEST BETWEEN POINT AND LINESTRING IS THE POINT ITSELF, BUT
CLOSEST POINT BETWEEN A LINESTRING AND POINT IS THE POINT ON
LINE STRING THAT IS CLOSEST.

```sql
SELECT ST_AsText(ST_ClosestPoint(pt,line)) AS cp_pt_line,
       ST_AsText(ST_ClosestPoint(line,pt)) AS cp_line_pt
FROM (SELECT 'POINT(100 100)'::geometry AS pt,
        'LINESTRING (20 80, 98 190, 110 180, 50 75 )'::geometry AS line
     ) AS foo;

+----------------+------------------------------------------+
<table>
<thead>
<tr>
<th>cp_pt_line</th>
<th>cp_line_pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT(100 100)</td>
<td>POINT(73.0769230769231 115.384615384615)</td>
</tr>
</tbody>
</table>
```

CLOSEST POINT ON POLYGON A TO POLYGON B

```sql
SELECT ST_AsText(ST_ClosestPoint(  
    ST_ClosestPoint(  
        ST_GeomFromText('POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'),  
        ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)  
    )  
) AS ptwkt;

ptwkt
```

POINT(140.752120669087 125.695053378061)
See Also

ST_3DClosestPoint, ST_Distance, ST_LongestLine, ST_ShortestLine, ST_MaxDistance

5.12.5 ST_3DClosestPoint

ST_3DClosestPoint — Returns the 3D point on g1 that is closest to g2. This is the first point of the 3D shortest line.

Synopsis

gameyty ST_3DClosestPoint(geometry g1, geometry g2);

Description

Returns the 3-dimensional point on g1 that is closest to g2. This is the first point of the 3D shortest line. The 3D length of the 3D shortest line is the 3D distance.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

Availability: 2.0.0

Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

Examples

linestring and point -- both 3d and 2d closest point

```
SELECT ST_AsEWKT(ST_3DClosestPoint(line,pt)) AS cp3d_line_pt,
     ST_AsEWKT(ST_ClosestPoint(line,pt)) As cp2d_line_pt
FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
       'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
 ) As foo;
```

<table>
<thead>
<tr>
<th>cp3d_line_pt</th>
<th>cp2d_line_pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT(54.6993798867619 128.935022917228 11.5475869506606)</td>
<td>POINT(73.0769230769231 115.384615384615)</td>
</tr>
</tbody>
</table>

linestring and multipoint -- both 3d and 2d closest point

```
SELECT ST_AsEWKT(ST_3DClosestPoint(line,pt)) AS cp3d_line_pt,
     ST_AsEWKT(ST_ClosestPoint(line,pt)) As cp2d_line_pt
FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
       'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
 ) As foo;
```

<table>
<thead>
<tr>
<th>cp3d_line_pt</th>
<th>cp2d_line_pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT(54.6993798867619 128.935022917228 11.5475869506606)</td>
<td>POINT(50 75)</td>
</tr>
</tbody>
</table>
Multilinestring and polygon both 3d and 2d closest point

```sql
SELECT ST_AsEWKT(ST_3DClosestPoint(poly, mline)) As cp3d,
       ST_AsEWKT(ST_ClosestPoint(poly, mline)) As cp2d
FROM (SELECT ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
          ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
          (1 10 2, 5 20 1))') As mline ) As foo;
```

<table>
<thead>
<tr>
<th>cp3d</th>
<th>cp2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT(39.993580415989 54.1889925532825 5)</td>
<td>POINT(20 40)</td>
</tr>
</tbody>
</table>

See Also

ST_AsEWKT, ST_ClosestPoint, ST_3DDistance, ST_3DShortestLine

5.12.6 ST_Distance

ST_Distance — Returns the distance between two geometry or geography values.

Synopsis

```sql
float ST_Distance(geometry g1, geometry g2);
float ST_Distance(geography geog1, geography geog2, boolean use_spheroid=true);
```

Description

For `geometry` types returns the minimum 2D Cartesian (planar) distance between two geometries, in projected units (spatial ref units).

For `geography` types defaults to return the minimum geodesic distance between two geographies in meters, compute on the spheroid determined by the SRID. If `use_spheroid` is false, a faster spherical calculation is used.

👍 This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

👍 This method implements the SQL/MM specification. SQL-MM 3: 5.1.23

👍 This method supports Circular Strings and Curves

Availability: 1.5.0 geography support was introduced in 1.5. Speed improvements for planar to better handle large or many vertex geometries

Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.

Enhanced: 2.1.0 - support for curved geometries was introduced.

Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires Proj >= 4.9.0 to take advantage of the new feature.

Changed: 3.0.0 - does not depend on SFCGAL anymore.
Basic Geometry Examples

Geometry example - units in planar degrees 4326 is WGS 84 long lat, units are degrees.

```
SELECT ST_Distance(
    'SRID=4326;POINT(-72.1235 42.3521)'::geometry,
    'SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry
);
```

```
st_distance
-----------------
0.00150567726382282
```

Geometry example - units in meters (SRID: 3857, proportional to pixels on popular web maps). Although the value is off, nearby ones can be compared correctly, which makes it a good choice for algorithms like KNN or KMeans.

```
SELECT ST_Distance(
    ST_Transform('SRID=4326;POINT(-72.1235 42.3521)'::geometry, 3857),
    ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry, 3857)
);
```

```
st_distance
-----------------
167.441410065196
```

Geometry example - units in meters (SRID: 3857 as above, but corrected by cos(lat) to account for distortion)

```
SELECT ST_Distance(
    ST_Transform('SRID=4326;POINT(-72.1235 42.3521)'::geometry, 3857),
    ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry, 3857)
) * cosd(42.3521);
```

```
st_distance
-----------------
123.742351254151
```

Geometry example - units in meters (SRID: 26986 Massachusetts state plane meters) (most accurate for Massachusetts)

```
SELECT ST_Distance(
    ST_Transform('SRID=4326;POINT(-72.1235 42.3521)'::geometry, 26986),
    ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry, 26986)
);
```

```
st_distance
-----------------
123.797937878454
```

Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (least accurate)

```
SELECT ST_Distance(
    ST_Transform('SRID=4326;POINT(-72.1235 42.3521)'::geometry, 2163),
    ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry, 2163)
);
```

```
st_distance
-----------------
126.664256056812
```

Geography Examples

Same as geometry example but note units in meters - use sphere for slightly faster and less accurate computation.
SELECT ST_Distance(gg1, gg2) As spheroid_dist, ST_Distance(gg1, gg2, false) As sphere_dist
FROM (SELECT 'SRID=4326;POINT(-72.1235 42.3521)'::geography as gg1,
 'SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geography as gg2
) As foo ;
spheroid_dist	sphere_dist
123.802076746848 | 123.475736916397

See Also

ST_3DDistance, ST_DWithin, ST_DistanceSphere, ST_DistanceSpheroid, ST_MaxDistance, ST_HausdorffDistance, ST_FrechetDistance,
ST_Transform

5.12.7 ST_3DDistance

ST_3DDistance — Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.

Synopsis

float ST_3DDistance(geometry g1, geometry g2);

Description

Returns the 3-dimensional minimum cartesian distance between two geometries in projected units (spatial ref units).

✔ This function supports 3d and will not drop the z-index.

✔ This function supports Polyhedral surfaces.

✔ This method implements the SQL/MM specification. SQL-MM

Availability: 2.0.0

Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

Changed: 3.0.0 - SFCGAL version removed

Examples

-- Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point and line compared 2D point and line)
-- Note: currently no vertical datum support so Z is not transformed and assumed to be same units as final.
SELECT ST_3DDistance(
 ST_Transform('SRID=4326;POINT(-72.1235 42.3521 4)'::geometry,2163),
 ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546 20)'::geometry,2163)
) As dist_3d,
 ST_Distance(
 ST_Transform('SRID=4326;POINT(-72.1235 42.3521)'::geometry,2163),
 ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry,2163)
) As dist_2d;
<table>
<thead>
<tr>
<th>dist_3d</th>
<th>dist_2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.295059324629</td>
<td>126.66425605671</td>
</tr>
</tbody>
</table>

-- Multilinestring and polygon both 3d and 2d distance
-- Same example as 3D closest point example
SELECT ST_3DDistance(poly, mline) As dist3d,
 ST_Distance(poly, mline) As dist2d
FROM (SELECT 'POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5)
 ←
)'::geometry as poly,
 'MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1), (1 ←
 10 2, 5 20 1))'::geometry as mline) as foo;

<table>
<thead>
<tr>
<th>dist3d</th>
<th>dist2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.716635696066337</td>
<td>0</td>
</tr>
</tbody>
</table>

See Also

ST_Distance, ST_3DClosestPoint, ST_3DDWithin, ST_3DMaxDistance, ST_3DShortestLine, ST_Transform

5.12.8 ST_DistanceSphere

ST_DistanceSphere — Returns minimum distance in meters between two lon/lat geometries using a spherical earth model.

Synopsis

float ST_DistanceSphere(overlap geomlonlatA, overlap geomlonlatB);

Description

Returns minimum distance in meters between two lon/lat points. Uses a spherical earth and radius derived from the spheroid defined by the SRID. Faster than ST_DistanceSpheroid, but less accurate. PostGIS Versions prior to 1.5 only implemented for points.

Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.

Changed: 2.2.0 In prior versions this used to be called ST_Distance_Sphere

Examples

SELECT round(CAST(ST_DistanceSphere(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38) ←
 4326)) As numeric),2) As dist_meters,
 round(CAST(ST_Distance(ST_Transform(ST_Centroid(the_geom),32611),
 ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As dist_utm11_meters,
 round(CAST(ST_Distance(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)', 4326)) As
 numeric),5) As dist_degrees,
 round(CAST(ST_Distance(ST_Transform(the_geom,32611),
 ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As min_dist_line_point_meters
FROM
 (SELECT ST_GeomFromText('LINESTRING(-118.584 38.374,-118.583 38.5)', 4326) As the_geom) ←
 as foo;

<table>
<thead>
<tr>
<th>dist_meters</th>
<th>dist_utm11_meters</th>
<th>dist_degrees</th>
<th>min_dist_line_point_meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>70424.47</td>
<td>70438.00</td>
<td>0.72900</td>
<td>65871.18</td>
</tr>
</tbody>
</table>
5.12.9 ST_DistanceSpheroid

ST_DistanceSpheroid — Returns the minimum distance between two lon/lat geometries using a spheroidal earth model.

Synopsis

float ST_DistanceSpheroid(geomlonlatA, geomlonlatB, spheroid measurement_spheroid);

Description

Returns minimum distance in meters between two lon/lat geometries given a particular spheroid. See the explanation of spheroids given for ST_LengthSpheroid.

Note

This function does not look at the SRID of the geometry. It assumes the geometry coordinates are based on the provided spheroid.

Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.

Changed: 2.2.0 In prior versions this was called ST_Distance_Spheroid

Examples

```
SELECT round(CAST(ST_DistanceSpheroid(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326), 'SPHEROID["WGS 84",6378137,298.257223563]') As numeric),2) As dist_meters_spheroid,
round(CAST(ST_DistanceSphere(ST_Centroid(the_geom), ST_GeomFromText('POINT(-118 38)',4326)) As numeric),2) As dist_meters_sphere,
round(CAST(ST_Distance(ST_Transform(ST_Centroid(the_geom),32611),
ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As dist_utm11_meters
FROM (SELECT ST_GeomFromText('LINESTRING(-118.584 38.374,-118.583 38.5)', 4326) As the_geom)
As foo;
```

<table>
<thead>
<tr>
<th>dist_meters_spheroid</th>
<th>dist_meters_sphere</th>
<th>dist_utm11_meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>70454.92</td>
<td>70424.47</td>
<td>70438.00</td>
</tr>
</tbody>
</table>

See Also

ST_Distance, ST_DistanceSphere

5.12.10 ST_FrechetDistance

ST_FrechetDistance — Returns the Fréchet distance between two geometries.
Synopsis

float ST_FrechetDistance(geometry g1, geometry g2, float densifyFrac = -1);

Description

Implements algorithm for computing the Fréchet distance restricted to discrete points for both geometries, based on Computing Discrete Fréchet Distance. The Fréchet distance is a measure of similarity between curves that takes into account the location and ordering of the points along the curves. Therefore it is often better than the Hausdorff distance.

When the optional densifyFrac is specified, this function performs a segment densification before computing the discrete Fréchet distance. The densifyFrac parameter sets the fraction by which to densify each segment. Each segment will be split into a number of equal-length subsegments, whose fraction of the total length is closest to the given fraction.

Units are in the units of the spatial reference system of the geometries.

Note
The current implementation supports only vertices as the discrete locations. This could be extended to allow an arbitrary density of points to be used.

Note
The smaller densifyFrac we specify, the more accurate Fréchet distance we get. But, the computation time and the memory usage increase with the square of the number of subsegments.

Performed by the GEOS module.

Availability: 2.4.0 - requires GEOS >= 3.7.0

Examples

```
SELECT st_frechetdistance('LINESTRING (0 0, 100 0)'::geometry, 'LINESTRING (0 0, 50 50, 100 0)'::geometry);
```

```
70.7106781186548
```

```
SELECT st_frechetdistance('LINESTRING (0 0, 100 0)'::geometry, 'LINESTRING (0 0, 50 50, 100 0)'::geometry, 0.5);
```

```
50
```

See Also

ST_HausdorffDistance

5.12.11 ST_HausdorffDistance

ST_HausdorffDistance — Returns the Hausdorff distance between two geometries.
Synopsis

float ST_HausdorffDistance(geometry g1, geometry g2);
float ST_HausdorffDistance(geometry g1, geometry g2, float densifyFrac);

Description

Returns the Hausdorff distance between two geometries, a measure of how similar or dissimilar 2 geometries are.

Implements algorithm for computing a distance metric which can be thought of as the "Discrete Hausdorff Distance". This is the Hausdorff distance restricted to discrete points for one of the geometries. Wikipedia article on Hausdorff distance Martin Davis note on how Hausdorff Distance calculation was used to prove correctness of the CascadePolygonUnion approach.

When densifyFrac is specified, this function performs a segment densification before computing the discrete hausdorff distance. The densifyFrac parameter sets the fraction by which to densify each segment. Each segment will be split into a number of equal-length subsegments, whose fraction of the total length is closest to the given fraction.

Units are in the units of the spatial reference system of the geometries.

Note

The current implementation supports only vertices as the discrete locations. This could be extended to allow an arbitrary density of points to be used.

Note

This algorithm is NOT equivalent to the standard Hausdorff distance. However, it computes an approximation that is correct for a large subset of useful cases. One important part of this subset is Linestrings that are roughly parallel to each other, and roughly equal in length. This is a useful metric for line matching.

Availability: 1.5.0

Examples

For each building, find the parcel that best represents it. First we require the parcel intersect with the geometry. DISTINCT ON guarantees we get each building listed only once, the ORDER BY .. ST_HausdorffDistance gives us a preference of parcel that is most similar to the building.

```
SELECT DISTINCT ON(buildings.gid) buildings.gid, parcels.parcel_id
FROM buildings INNER JOIN parcels ON ST_Intersects(buildings.geom, parcels.geom)
ORDER BY buildings.gid, ST_HausdorffDistance(buildings.geom, parcels.geom);
```

```
postgis=# SELECT ST_HausdorffDistance('LINESTRING (0 0, 2 0)':'geometry,'MULTIPOINT (0 1, 1 0, 2 1)':'geometry);
  st_hausdorffdistance
----------------------
     1
(1 row)
```

```
postgis=# SELECT st_hausdorffdistance('LINESTRING (130 0, 0 0, 0 150)':'geometry,'  
   LINestring (10 10, 10 150, 130 10)':'geometry, 0.5);
  st_hausdorffdistance
----------------------
    70
(1 row)
```
5.12.12 ST_Length

ST_Length — Returns the 2D length of a linear geometry.

Synopsis

float \texttt{ST_Length}(\texttt{geometry} \ a\texttt{2dlinestring});
float \texttt{ST_Length}(\texttt{geography} \ \texttt{geog}, \texttt{boolean} \ \texttt{use_spheroid=true});

Description

For geometry types: returns the 2D Cartesian length of the geometry if it is a LineString, MultiLineString, ST_Curve, ST_MultiCurve. For areal geometries 0 is returned; use \texttt{ST_Perimeter} instead. The units of length is determined by the spatial reference system of the geometry.

For geography types: computation is performed using the inverse geodesic calculation. Units of length are in meters. If PostGIS is compiled with PROJ version 4.8.0 or later, the spheroid is specified by the SRID, otherwise it is exclusive to WGS84. If \texttt{use_spheroid=false}, then the calculation is based on a sphere instead of a spheroid.

Currently for geometry this is an alias for \texttt{ST_Length2D}, but this may change to support higher dimensions.

Warning

Changed: 2.0.0 Breaking change — in prior versions applying this to a MULTI/POLYGON of type geography would give you the perimeter of the POLYGON/MULTIPOLYGON. In 2.0.0 this was changed to return 0 to be in line with geometry behavior. Please use \texttt{ST_Perimeter} if you want the perimeter of a polygon

Note

For geography the calculation defaults to using a spheroidal model. To use the faster but less accurate spherical calculation use \texttt{ST_Length(gg,false)};

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.5.1

This method implements the SQL/MM specification. SQL-MM 3: 7.1.2, 9.3.4

Availability: 1.5.0 geography support was introduced in 1.5.

This method is also provided by SFCGAL backend.

Geometry Examples

Return length in feet for line string. Note this is in feet because EPSG:2249 is Massachusetts State Plane Feet

```
SELECT \texttt{ST\_Length}(`\texttt{ST\_GeomFromText('LINESTRING(743238 2967416,743238 2967450,743265 2967450,743265.625 2967416,743238 2967416)',2249));}
```

```
st\_length
---------
122.630744000095
```
--Transforming WGS 84 LineString to Massachusetts state plane meters
SELECT ST_Length(
 ST_Transform(
 ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.126 42.45, -72.124 42.45666, -72.123 42.1546)'),'26986'),
 26986
)
);

st_length

34309.4563576191

Geography Examples

Return length of WGS 84 geography line

```
-- the default calculation uses a spheroid
SELECT ST_Length(the_geog) As length_spheroid, ST_Length(the_geog,false) As length_sphere
FROM (SELECT ST_GeographyFromText('SRID=4326;LINESTRING(-72.126 42.45, -72.124 42.45666, -72.123 42.1546)') As the_geog)
As foo;
```

<table>
<thead>
<tr>
<th>length_spheroid</th>
<th>length_sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>34310.5703627288</td>
<td>34346.2060960742</td>
</tr>
</tbody>
</table>

See Also

ST_GeographyFromText, ST_GeomFromEWKT, ST_LengthSpheroid, ST_Perimeter, ST_Transform

5.12.13 ST_Length2D

ST_Length2D — Returns the 2D length of a linear geometry. Alias for **ST_Length**

Synopsis

```
float ST_Length2D( geometry a_2dlinestring);
```

Description

Returns the 2D length of the geometry if it is a linestring or multi-linestring. This is an alias for **ST_Length**

See Also

ST_Length, ST_3DLength

5.12.14 ST_3DLength

ST_3DLength — Returns the 3D length of a linear geometry.
Synopsis

float ST_3DLength(geometry a_3dlinestring);

Description

Returns the 3-dimensional or 2-dimensional length of the geometry if it is a linestring or multi-linestring. For 2-d lines it will just return the 2-d length (same as ST_Length and ST_Length2D)

This function supports 3d and will not drop the z-index.

Changed: 2.0.0 In prior versions this used to be called ST_Length3D

Examples

Return length in feet for a 3D cable. Note this is in feet because EPSG:2249 is Massachusetts State Plane Feet

```sql
SELECT ST_3DLength(ST_GeomFromText('LINESTRING(743238 2967416 1,743238 2967450 1,743265 2967450 3,743265.625 2967416 3,743238 2967416 3)',2249));
```

ST_3DLength

122.704716741457

See Also

ST_Length, ST_Length2D

5.12.15 ST_LengthSpheroid

ST_LengthSpheroid — Returns the 2D or 3D length/perimeter of a lon/lat geometry on a spheroid.

Synopsis

float ST_LengthSpheroid(geometry a_geometry, spheroid a_spheroid);

Description

Calculates the length or perimeter of a geometry on an ellipsoid. This is useful if the coordinates of the geometry are in longitude/latitude and a length is desired without reprojection. The spheroid is specified by a text value as follows:

```
SPHEROID[<NAME>,<SEMI-MAJOR AXIS>,<INVERSE FLATTENING>]
```

For example:

```
SPHEROID["GRS_1980",6378137,298.25722101]
```

Availability: 1.2.2

Changed: 2.2.0 In prior versions this was called ST_Length_Spheroid and had the alias ST_3DLength_Spheroid

This function supports 3d and will not drop the z-index.
PostGIS 3.1.10 Manual

387 / 848

Examples

SELECT ST_LengthSpheroid(geometry_column,
'SPHEROID["GRS_1980",6378137,298.257222101]')
FROM geometry_table;
SELECT ST_LengthSpheroid(the_geom, sph_m) As tot_len,
ST_LengthSpheroid(ST_GeometryN(the_geom,1), sph_m) As len_line1,
ST_LengthSpheroid(ST_GeometryN(the_geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromText('MULTILINESTRING((-118.584 38.374,-118.583 38.5),
(-71.05957 42.3589 , -71.061 43))') As the_geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m) as foo;
tot_len
|
len_line1
|
len_line2
------------------+------------------+-----------------85204.5207562955 | 13986.8725229309 | 71217.6482333646
--3D
SELECT ST_LengthSpheroid(the_geom, sph_m) As tot_len,
ST_LengthSpheroid(ST_GeometryN(the_geom,1), sph_m) As len_line1,
ST_LengthSpheroid(ST_GeometryN(the_geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromEWKT('MULTILINESTRING((-118.584 38.374 20,-118.583 38.5 30) ←,
(-71.05957 42.3589 75, -71.061 43 90))') As the_geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m) as foo;
tot_len
|
len_line1
|
len_line2
------------------+-----------------+-----------------85204.5259107402 | 13986.876097711 | 71217.6498130292

See Also

ST_GeometryN, ST_Length

5.12.16

ST_LongestLine

ST_LongestLine — Returns the 2D longest line between two geometries.
Synopsis

geometry ST_LongestLine(geometry g1, geometry g2);
Description

Returns the 2-dimensional longest line between the points of two geometries.
The function returns the first longest line if more than one is found. The line returned starts on g1 and ends on g2. The length of
the line is equal to the distance returned by ST_MaxDistance.
Availability: 1.5.0
Examples


Longest line between a point and a line

SELECT ST_AsText(
 ST_LongestLine('POINT(100 100)'::geometry,
 'LINESTRING (20 80, 98 190, 110 180, 50 75)'::geometry)
) As lline;

lline

LINESTRING(100 100,98 190)
SELECT ST_AsText(
 ST_LongestLine(
 ST_GeomFromText('POLYGON((175 150, 20 40,
 50 60, 125 100, 175 150))'),
 ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
)
) As llinewkt;

lline

LINESTRING(20 40,121.111404660392 186.629392246051)
Longest straight distance to travel from one part of a city to another. Note that the maximum distance is equal to the length of the line.

```
SELECT ST_AsText( ST_LongestLine(c.geom, c.geom)) AS llinewkt,
       ST_MaxDistance( c.geom,c.geom) AS max_dist,
       ST_Length( ST_LongestLine(c.geom, c.geom)) AS lenll
FROM (SELECT ST_MakeValid( ST_Collect(geom)) AS geom
       FROM (SELECT ST_Translate( ST_SnapToGrid(
               ST_Buffer(
               ST_Point(50 ,generate_series(50,190, 50)),
               40, 'quad_segs=2'),l), x, 0) AS geom
               FROM generate_series(1,100,50) As x) AS foo
       ) AS c;

llinewkt  | max_dist    | lenll
---------------------------+-----------------+------------------
LINESTRING(23 22,129 178) | 188.605408193933 | 188.605408193933
```

See Also

ST_MaxDistance, ST_MakeValid, ST_ShortestLine, ST_3DLongestLine

5.12.17 ST_3DLongestLine

ST_3DLongestLine — Returns the 3D longest line between two geometries

Synopsis

geometry **ST_3DLongestLine**(geometry g1, geometry g2);

Description

Returns the 3-dimensional longest line between two geometries. The function returns the first longest line if more than one. The line returned starts in g1 and ends in g2. The 3D length of the line is equal to the distance returned by **ST_3DMaxDistance**.
Availability: 2.0.0

Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

✅ This function supports 3d and will not drop the z-index.

✅ This function supports Polyhedral surfaces.

Examples

LineString and point -- both 3d and 2d longest line

```sql
SELECT ST_AsEWKT(ST_3DLongestLine(line, pt)) AS lol3d_line_pt,
       ST_AsEWKT(ST_LongestLine(line, pt)) AS lol2d_line_pt
FROM (SELECT 'POINT(100 100 30)'::geometry AS pt,
       'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry AS line
       ) AS foo;
```

<table>
<thead>
<tr>
<th>lol3d_line_pt</th>
<th>lol2d_line_pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINESTRING(50 75 1000,100 100 30)</td>
<td>LINESTRING(98 190,100 100)</td>
</tr>
</tbody>
</table>

LineString and multipoint -- both 3d and 2d longest line

```sql
SELECT ST_AsEWKT(ST_3DLongestLine(line, pt)) AS lol3d_line_pt,
       ST_AsEWKT(ST_LONGESTLINE(line, pt)) AS lol2d_line_pt
FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry AS pt,
       'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry AS line
       ) AS foo;
```

<table>
<thead>
<tr>
<th>lol3d_line_pt</th>
<th>lol2d_line_pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINESTRING(98 190 1,50 74 1000)</td>
<td>LINESTRING(98 190,50 74)</td>
</tr>
</tbody>
</table>

Multilinestring and polygon both 3d and 2d longest line

```sql
SELECT ST_AsEWKT(ST_3DLongestLine(poly, mline)) AS lol3, 
       ST_AsEWKT(ST_LONGESTLINE(poly, mline)) AS lol2 
FROM (SELECT ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') AS poly, 
       ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1), 
       (1 10 2, 5 20 1))') AS mline ) AS foo;
```

<table>
<thead>
<tr>
<th>lol3</th>
<th>lol2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINESTRING(175 150 5,1 10 2)</td>
<td>LINESTRING(175 150,1 10)</td>
</tr>
</tbody>
</table>

See Also

ST_3DClosestPoint, ST_3DDistance, ST_LongestLine, ST_3DShortestLine, ST_3DMaxDistance
5.12.18 ST_MaxDistance

ST_MaxDistance — Returns the 2D largest distance between two geometries in projected units.

Synopsis

float ST_MaxDistance(geometry g1, geometry g2);

Description

Returns the 2-dimensional maximum distance between two geometries, in projected units. The maximum distance always occurs between two vertices. This is the length of the line returned by ST_LongestLine.

If g1 and g2 are the same geometry, returns the distance between the two vertices farthest apart in that geometry.

Availability: 1.5.0

Examples

Maximum distance between a point and lines.

<table>
<thead>
<tr>
<th>SQL</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECT ST_MaxDistance('POINT(0 0)'::geometry, 'LINESTRING (2 0, 0 2)'::geometry);</td>
<td>2</td>
</tr>
<tr>
<td>SELECT ST_MaxDistance('POINT(0 0)'::geometry, 'LINESTRING (2 2, 2 2)'::geometry);</td>
<td>2.82842712474619</td>
</tr>
</tbody>
</table>

Maximum distance between vertices of a geometry.

<table>
<thead>
<tr>
<th>SQL</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECT ST_MaxDistance('POLYGON ((10 10, 10 0, 0 0, 10 10))'::geometry, 'POLYGON ((10 10, 10 0, 0 0, 10 10))'::geometry);</td>
<td>14.142135623730951</td>
</tr>
</tbody>
</table>

See Also

ST_Distance, ST_LongestLine, ST_DFullyWithin

5.12.19 ST_3DMaxDistance

ST_3DMaxDistance — Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in projected units.

Synopsis

float ST_3DMaxDistance(geometry g1, geometry g2);
Description

Returns the 3-dimensional maximum cartesian distance between two geometries in projected units (spatial ref units).

- This function supports 3d and will not drop the z-index.
- This function supports Polyhedral surfaces.

Availability: 2.0.0

Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

Examples

```sql
SELECT ST_3DMaxDistance(
    ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 10000)'),2163),
    ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
) As dist_3d,
ST_MaxDistance(
    ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 10000)'),2163),
    ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
) As dist_2d;
```

```
<table>
<thead>
<tr>
<th>dist_3d</th>
<th>dist_2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>24383.7436284441</td>
<td>22247.8472107251</td>
</tr>
</tbody>
</table>
```

See Also

ST_Distance, ST_3DDWithin, ST_3DMaxDistance, ST_Transform

5.12.20 ST_MinimumClearance

ST_MinimumClearance — Returns the minimum clearance of a geometry, a measure of a geometry’s robustness.

Synopsis

```sql
float ST_MinimumClearance( geometry g);
```

Description

It is not uncommon to have a geometry that, while meeting the criteria for validity according to ST_IsValid (polygons) or ST_IsSimple (lines), would become invalid if one of the vertices moved by a slight distance, as can happen during conversion to text-based formats (such as WKT, KML, GML GeoJSON), or binary formats that do not use double-precision floating point coordinates (MapInfo TAB).

A geometry’s "minimum clearance" is the smallest distance by which a vertex of the geometry could be moved to produce an invalid geometry. It can be thought of as a quantitative measure of a geometry’s robustness, where increasing values of minimum clearance indicate increasing robustness.

If a geometry has a minimum clearance of e, it can be said that:
• No two distinct vertices in the geometry are separated by less than \(e \).
• No vertex is closer than \(e \) to a line segment of which it is not an endpoint.

If no minimum clearance exists for a geometry (for example, a single point, or a multipoint whose points are identical), then `ST_MinimumClearance` will return Infinity.

Availability: 2.3.0

Examples

```sql
SELECT ST_MinimumClearance('POLYGON ((0 0, 1 0, 1 1, 0.5 3.2e-4, 0 0))');
```

```
+---------------------+
<table>
<thead>
<tr>
<th>st_minimumclearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00032</td>
</tr>
</tbody>
</table>
+---------------------+
```

See Also

`ST_MinimumClearanceLine`

5.12.21 ST_MinimumClearanceLine

`ST_MinimumClearanceLine` — Returns the two-point LineString spanning a geometry’s minimum clearance.

Synopsis

```
Geometry ST_MinimumClearanceLine(geometry g);
```

Description

Returns the two-point LineString spanning a geometry’s minimum clearance. If the geometry does not have a minimum clearance, `LINESTRING EMPTY` will be returned.

Performed by the GEOS module.

Availability: 2.3.0 - requires GEOS >= 3.6.0

Examples

```sql
SELECT ST_AsText(ST_MinimumClearanceLine('POLYGON ((0 0, 1 0, 1 1, 0.5 3.2e-4, 0 0))'));
```

```
+--------------------------+
<table>
<thead>
<tr>
<th>st_astext</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINESTRING(0.5 0.00032,0.5 0)</td>
</tr>
</tbody>
</table>
+--------------------------+
```

See Also

`ST_MinimumClearance`

5.12.22 ST_Perimeter

`ST_Perimeter` — Returns the length of the boundary of a polygonal geometry or geography.
Synopsis

float ST_Perimeter(geometry g1);
float ST_Perimeter(geography geog, boolean use_spheroid=true);

Description

Returns the 2D perimeter of the geometry/geography if it is a ST_Surface, ST_MultiSurface (Polygon, MultiPolygon). 0 is returned for non-areal geometries. For linear geometries use ST_Length. For geometry types, units for perimeter measures are specified by the spatial reference system of the geometry.

For geography types, the calculations are performed using the inverse geodesic problem, where perimeter units are in meters. If PostGIS is compiled with PROJ version 4.8.0 or later, the spheroid is specified by the SRID, otherwise it is exclusive to WGS84. If use_spheroid=false, then calculations will approximate a sphere instead of a spheroid.

Currently this is an alias for ST_Perimeter2D, but this may change to support higher dimensions.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.5.1

This method implements the SQL/MM specification. SQL-MM 3: 8.1.3, 9.5.4

Availability 2.0.0: Support for geography was introduced

Examples: Geometry

Return perimeter in feet for Polygon and MultiPolygon. Note this is in feet because EPSG:2249 is Massachusetts State Plane Feet

```
SELECT ST_Perimeter(ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,743265 2967450, 743265.625 2967416,743238 2967416))', 2249));

<table>
<thead>
<tr>
<th>st_perimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>122.630744000095</td>
</tr>
<tr>
<td>(1 row)</td>
</tr>
</tbody>
</table>
```

```
SELECT ST_Perimeter(ST_GeomFromText('MULTIPOLYGON(((763104.471273676 2949418.44119003, 763104.471273676 2949418.44119003), (763104.471273676 2949418.44119003,763095.804579742 2949436.33850239, 763086.13205649 2949451.46730207,763078.452329651 2949462.1154907, 763075.35136904 2949466.17407812,763064.362142565 2949477.62491974, 763059.953961626 2949481.28983009,762994.637609571 2949532.04103014, 762990.568508641 2949535.06604077,762986.710889563 2949539.61421415, 763117.237897679 2949709.50493431,763235.236617789 2949617.95619822, 763287.718121842 2949562.20592617,763111.553321674 2949423.91664605, 763104.471273676 2949418.44119003)), 2249));

<table>
<thead>
<tr>
<th>st_perimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>845.227713366825</td>
</tr>
<tr>
<td>(1 row)</td>
</tr>
</tbody>
</table>
```

Examples: Geography

Return perimeter in meters and feet for Polygon and MultiPolygon. Note this is geography (WGS 84 long lat)

```
SELECT ST_Perimeter(geog) As per_meters, ST_Perimeter(geog)/0.3048 As per_ft
FROM ST_GeogFromText('POLYGON((-71.1776848522251 42.3902896512902, -71.1776843766326 42.3903829478009, 763104.471273676 2949418.44119003, 763104.471273676 2949418.44119003), (763104.471273676 2949418.44119003,763095.804579742 2949436.33850239, 763086.13205649 2949451.46730207,763078.452329651 2949462.1154907, 763075.35136904 2949466.17407812,763064.362142565 2949477.62491974, 763059.953961626 2949481.28983009,762994.637609571 2949532.04103014, 762990.568508641 2949535.06604077,762986.710889563 2949539.61421415, 763117.237897679 2949709.50493431,763235.236617789 2949617.95619822, 763287.718121842 2949562.20592617,763111.553321674 2949423.91664605, 763104.471273676 2949418.44119003)), 2249));

<table>
<thead>
<tr>
<th>per_meters</th>
<th>per_ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>122.630744000095</td>
<td>403.021484092211</td>
</tr>
<tr>
<td>(1 row)</td>
<td>(1 row)</td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>per_meters</th>
<th>per_ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>845.227713366825</td>
<td>2776.59465520238</td>
</tr>
<tr>
<td>(1 row)</td>
<td>(1 row)</td>
</tr>
</tbody>
</table>
-- MultiPolygon example --
SELECT ST_Perimeter(geog) As per_meters, ST_Perimeter(geog,false) As per_sphere_meters, ST_Perimeter(geog)/0.3048 As per_ft
FROM ST_GeogFromText('MULTIPOLYGON((-71.1044543107478 42.340674480411,-71.1044543107478 42.340674480411),
((-71.1044543107478 42.340674480411,-71.1044860600303 42.3407237015564,-71.1045215770124 42.3407653385914,
-71.1045498002983 42.3407946553165,-71.1045611902745 42.3408058316308,-71.1046016507427 42.340837442371,
-71.1046178993173 42.3408475056957,-71.1048586153981 42.3409875993595,-71.1048736143677 42.3409995528211,
-71.1048878050242 42.3410084812078,-71.1044020965803 42.3414730072048,
-71.1039672113619 42.3412202916693,-71.103774030072048,42.3410666421308,
-71.1044280218456 42.3406894151355,-71.1044543107478 42.340674480411))') As geog;

<table>
<thead>
<tr>
<th>per_meters</th>
<th>per_sphere_meters</th>
<th>per_ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>257.6328368331</td>
<td>257.412311446337</td>
<td>845.256836231335</td>
</tr>
</tbody>
</table>

See Also

ST_GeogFromText, ST_GeomFromText, ST_Length

5.12.23 ST_Perimeter2D

ST_Perimeter2D — Returns the 2D perimeter of a polygonal geometry. Alias for ST_Perimeter.

Synopsis

float ST_Perimeter2D(geomA);

Description

Returns the 2-dimensional perimeter of a polygonal geometry.

Note

This is currently an alias for ST_Perimeter. In future versions ST_Perimeter may return the highest dimension perimeter for a geometry. This is still under consideration.

See Also

ST_Perimeter
5.12.24 ST_3DPerimeter

ST_3DPerimeter — Returns the 3D perimeter of a polygonal geometry.

Synopsis

float ST_3DPerimeter(geometry geomA);

Description

Returns the 3-dimensional perimeter of the geometry, if it is a polygon or multi-polygon. If the geometry is 2-dimensional, then the 2-dimensional perimeter is returned.

This function supports 3d and will not drop the z-index.

Changed: 2.0.0 In prior versions this used to be called ST_Perimeter3D

Examples

Perimeter of a slightly elevated polygon in the air in Massachusetts state plane feet

```sql
SELECT ST_3DPerimeter(the_geom), ST_Perimeter2d(the_geom), ST_Perimeter(the_geom) FROM (SELECT ST_GeomFromEWKT('SRID=2249;POLYGON((743238 2967416 2,743238 2967450 1, 743265.625 2967416 1,743238 2967416 2))') As the_geom) As foo;
```

<table>
<thead>
<tr>
<th>ST_3DPerimeter</th>
<th>st_perimeter2d</th>
<th>st_perimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>105.465793597674</td>
<td>105.432997272188</td>
<td>105.432997272188</td>
</tr>
</tbody>
</table>

See Also

ST_GeomFromEWKT, ST_Perimeter, ST_Perimeter2D

5.12.25 ST_Project

ST_Project — Returns a point projected from a start point by a distance and bearing (azimuth).

Synopsis

gеography ST_Project(geography g1, float distance, float azimuth);

Description

Returns a point projected from a start point along a geodesic using a given distance and azimuth (bearing). This is known as the direct geodesic problem.

The distance is given in meters. Negative values are supported.

The azimuth (also known as heading or bearing) is given in radians. It is measured clockwise from true north (azimuth zero). East is azimuth π/2 (90 degrees); south is azimuth π (180 degrees); west is azimuth 3π/2 (270 degrees). Negative azimuth values and values greater than 2π (360 degrees) are supported.

Availability: 2.0.0

Enhanced: 2.4.0 Allow negative distance and non-normalized azimuth.
Example: Projected point at 100,000 meters and bearing 45 degrees

```sql
SELECT ST_AsText(ST_Project('POINT(0 0)'::geography, 100000, radians(45.0)));
```

```
st_astext
--------------------------------------------
POINT(0.635231029125537 0.639472334729198)
(1 row)
```

See Also

ST_Azimuth, ST_Distance, PostgreSQL function radians()

5.12.26 ST_ShortestLine

ST_ShortestLine — Returns the 2D shortest line between two geometries

Synopsis

```sql
geometry ST_ShortestLine(geometry g1, geometry g2);
```

Description

Returns the 2-dimensional shortest line between two geometries. The function will only return the first shortest line if more than one, that the function finds. If g1 and g2 intersects in just one point the function will return a line with both start and end in that intersection-point. If g1 and g2 are intersecting with more than one point the function will return a line with start and end in the same point but it can be any of the intersecting points. The line returned will always start in g1 and end in g2. The length of the line this function returns will always be the same as ST_Distance returns for g1 and g2.

Availability: 1.5.0

Examples
Shortest line between point and linestring

```
SELECT ST_AsText(
    ST_ShortestLine('POINT(100 100) ←
        ::geometry, 'LINESTRING (20 80, 98 ←
190, 110 180, 50 75 )':::geometry)
) As sline;
```

```
sline
-----------------
LINESTRING(100 100,73.0769230769231 ←
115.384615384615)
```

shortest line between polygon and polygon

```
SELECT ST_AsText(
    ST_ShortestLine(
        ST_GeomFromText('POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'),
        ST_Buffer(
            ST_GeomFromText('POINT(110 170)'), 20)
    )
) As slinewkt;
```

```
LINestring(140.752120669087 ←
125.695053378061,121.111404660392 153.370607753949
```

See Also

ST_ClosestPoint, ST_Distance, ST_LongestLine, ST_MaxDistance

5.12.27 **ST_3DShortestLine**

ST_3DShortestLine — Returns the 3D shortest line between two geometries

Synopsis

geometry ST_3DShortestLine(geometry g1, geometry g2);

Description

Returns the 3-dimensional shortest line between two geometries. The function will only return the first shortest line if more than one, that the function finds. If g1 and g2 intersects in just one point the function will return a line with both start and end in that intersection-point. If g1 and g2 are intersecting with more than one point the function will return a line with start and end in the same point but it can be any of the intersecting points. The line returned will always start in g1 and end in g2. The 3D length of the line this function returns will always be the same as ST_3DDistance returns for g1 and g2.

Availability: 2.0.0
Changed: 2.2.0 - if 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

- This function supports 3d and will not drop the z-index.
- This function supports Polyhedral surfaces.

Examples

Linestring and point -- both 3d and 2d shortest line

```sql
SELECT ST_AsEWKT(ST_3DShortestLine(line, pt)) AS shl3d_line_pt,
       ST_AsEWKT(ST_ShortestLine(line, pt)) AS shl2d_line_pt
FROM (SELECT 'POINT(100 100 30)'::geometry AS pt,
       'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry AS line
    ) AS foo;
```

<table>
<thead>
<tr>
<th>shl3d_line_pt</th>
<th>shl2d_line_pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINESTRING(54.6993798867619 128.935022917228 11.5475869506606, 100 100 30)</td>
<td>LINESTRING(73.0769230769231 115.384615384615, 100 100)</td>
</tr>
</tbody>
</table>

Linestring and multipoint -- both 3d and 2d shortest line

```sql
SELECT ST_AsEWKT(ST_3DShortestLine(line, pt)) AS shl3d_line_pt,
       ST_AsEWKT(ST_ShortestLine(line, pt)) AS shl2d_line_pt
FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry AS pt,
       'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry AS line
    ) AS foo;
```

<table>
<thead>
<tr>
<th>shl3d_line_pt</th>
<th>shl2d_line_pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINESTRING(54.6993798867619 128.935022917228 11.5475869506606, 100 100 30)</td>
<td>LINESTRING(50 75, 50 74)</td>
</tr>
</tbody>
</table>

Multilinestring and polygon both 3d and 2d shortest line

```sql
SELECT ST_AsEWKT(ST_3DShortestLine(poly, mline)) AS shl3d,
       ST_AsEWKT(ST_ShortestLine(poly, mline)) AS shl2d
FROM (SELECT ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5,
                                      100 100 5, 175 150 5))') AS poly,
       ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 5 20 1))') AS mline
    ) AS foo;
```

<table>
<thead>
<tr>
<th>shl3d</th>
<th>shl2d</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINESTRING(39.993580415989 54.1889925532825 5, 40.4078575708294 53.6052383805529)</td>
<td>LINESTRING(20 40, 20 40)</td>
</tr>
</tbody>
</table>

PostGIS 3.1.10 Manual
5.13 Overlay Functions

5.13.1 ST_ClipByBox2D

ST_ClipByBox2D — Returns the portion of a geometry falling within a rectangle.

Synopsis

geometry ST_ClipByBox2D(geometry geom, box2d box);

Description

Clips a geometry by a 2D box in a fast and tolerant but possibly invalid way. Topologically invalid input geometries do not result in exceptions being thrown. The output geometry is not guaranteed to be valid (in particular, self-intersections for a polygon may be introduced).

Performed by the GEOS module.

Availability: 2.2.0

Examples

```sql
-- Rely on implicit cast from geometry to box2d for the second parameter
SELECT ST_ClipByBox2D(the_geom, ST_MakeEnvelope(0,0,10,10)) FROM mytab;
```

See Also

ST_Intersection, ST_MakeBox2D, ST_MakeEnvelope

5.13.2 ST_Difference

ST_Difference — Returns a geometry representing the part of geometry A that does not intersect geometry B.

Synopsis

geometry ST_Difference(geometry geomA, geometry geomB, float8 gridSize = -1);

Description

Returns a geometry representing the part of geometry A that does not intersect geometry B. This is equivalent to $A - \text{ST_Intersection}(A, B)$.

If A is completely contained in B then an empty geometry is returned.

Note

This is the only overlay function where input order matters. ST_Difference(A, B) always returns a portion of A.
If the optional `gridSize` argument is provided, the inputs are snapped to a grid of the given size, and the result vertices are computed on that same grid. (Requires GEOS-3.9.0 or higher)

Performed by the GEOS module

Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0

- This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3
- This method implements the SQL/MM specification. SQL-MM 3: 5.1.20
- This function supports 3d and will not drop the z-index. However, the result is computed using XY only. The result Z values are copied, averaged or interpolated.

Examples

```
SELECT ST_AsText(
  ST_Difference(
    'LINESTRING(50 100, 50 200)'::geometry,
    'LINESTRING(50 50, 50 150)'::geometry
  )
);
```

```
st_astext
---------
LINESTRING(50 150,50 200)
```

The difference of 2D linestrings.

```
SELECT ST_AsEWKT( ST_Difference(
  'MULTIPOINT(-118.58 38.38 5,-118.60 38.329 6,-118.614 38.281 7)' :: geometry,
  'POINT(-118.614 38.281 5)' :: geometry
) );
```

The difference of 3D points.

```
SELECT ST_AsEWKT( ST_Difference(
  'MULTIPOINT(-118.58 38.38 5,-118.60 38.329 6,-118.614 38.281 7)' :: geometry,
  'POINT(-118.614 38.281 5)' :: geometry
) );
```
\[\text{MULTIPOINT}(-118.6 \ 38.329 \ 6, -118.58 \ 38.38 \ 5) \]

See Also

ST_SymDifference, ST_Intersection, ST_Union

5.13.3 ST_Intersection

ST_Intersection — Returns a geometry representing the shared portion of geometries A and B.

Synopsis

<table>
<thead>
<tr>
<th>Geometry Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td>\texttt{ST_Intersection(geometry geomA , geometry geomB , float8 gridSize = -1);}</td>
</tr>
<tr>
<td>Geography</td>
<td>\texttt{ST_Intersection(geography geogA , geography geogB);}</td>
</tr>
</tbody>
</table>

Description

Returns a geometry representing the point-set intersection of two geometries. In other words, that portion of geometry A and geometry B that is shared between the two geometries.

If the geometries do not share any space (are disjoint), then an empty geometry collection is returned.

ST_Intersection in conjunction with ST_Intersects is very useful for clipping geometries such as in bounding box, buffer, region queries where you only want to return that portion of a geometry that sits in a country or region of interest.

If the optional \texttt{gridSize} argument is provided, the inputs are snapped to a grid of the given size, and the result vertices are computed on that same grid. (Requires GEOS-3.9.0 or higher)

Note

Geography: For geography this is really a thin wrapper around the geometry implementation. It first determines the best SRID that fits the bounding box of the 2 geography objects (if geography objects are within one half zone UTM but not same UTM will pick one of those) (favoring UTM or Lambert Azimuthal Equal Area (LAEA) north/south pole, and falling back on mercator in worst case scenario) and then intersection in that best fit planar spatial ref and retransforms back to WGS84 geography.

Warning

This function will drop the M coordinate values if present.

Warning

If working with 3D geometries, you may want to use SFGCAL based \texttt{ST_3DIntersection} which does a proper 3D intersection for 3D geometries. Although this function works with Z-coordinate, it does an averaging of Z-Coordinate.
Performed by the GEOS module

Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0

Changed: 3.0.0 does not depend on SFCGAL.

Availability: 1.5 support for geography data type was introduced.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

This method implements the SQL/MM specification. SQL-MM 3: 5.1.18

This function supports 3d and will not drop the z-index. However, the result is computed using XY only. The result Z values are copied, averaged or interpolated.

Examples

```
SELECT ST_AsText(ST_Intersection('POINT(0 0)'::geometry, 'LINESTRING ( 2 0, 0 2 )'::geometry));
---
st_astext
---------------
GEOMETRYCOLLECTION EMPTY

SELECT ST_AsText(ST_Intersection('POINT(0 0)'::geometry, 'LINESTRING ( 0 0, 0 2 )'::geometry));
---
st_astext
---------------
POINT(0 0)
```

Clip all lines (trails) by country. Here we assume country geom are POLYGON or MULTIPOLYGONS. NOTE: we are only keeping intersections that result in a LINESTRING or MULTILINESTRING because we don’t care about trails that just share a point. The dump is needed to expand a geometry collection into individual single MULT* parts. The below is fairly generic and will work for polys, etc. by just changing the where clause.

```
select clipped.gid, clipped.f_name, clipped_geom
from (
    select trails.gid, trails.f_name,
            (ST_Dump(ST_Intersection(country.geom, trails.geom))).geom clipped_geom
    from country
    inner join trails on ST_Intersects(country.geom, trails.geom)
) as clipped
where ST_Dimension(clipped.clipped_geom) = 1;
```

For polys e.g. polygon landmarks, you can also use the sometimes faster hack that buffering anything by 0.0 except a polygon results in an empty geometry collection. (So a geometry collection containing polys, lines and points buffered by 0.0 would only leave the polygons and dissolve the collection shell.)

```
select poly.gid,
    ST_MULTI(
        ST_Buffer(
            ST_Intersection(country.geom, poly.geom),
            0.0
        )
    ) clipped_geom
from country
inner join poly on ST_Intersects(country.geom, poly.geom)
where not ST_IsEmpty(ST_Buffer(ST_Intersection(country.geom, poly.geom), 0.0));
```
Examples: 2.5Dish

Note this is not a true intersection, compare to the same example using ST_3DIntersection.

```sql
select ST_AsText(ST_Intersection(linestring, polygon)) As wkt
from ST_GeomFromText('LINESTRING Z (2 2 6,1.5 1.5 7,1 1 8,0.5 0.5 8,0 0 10)') AS ←
    linestring
CROSS JOIN ST_GeomFromText('POLYGON((0 0 8, 0 1 8, 1 1 8, 1 0 8, 0 0 8))') AS polygon;
```

See Also

ST_3DIntersection, ST_Difference, ST_Union, ST_Dimension, ST_Dump, ST_Force2D, ST_SymDifference, ST_Intersects, ST_Multi

5.13.4 ST_MemUnion

ST_MemUnion — Aggregate function which unions geometry in a memory-efficient but slower way

Synopsis

```sql
geometry ST_MemUnion(geometry set geomfield);
```

Description

Unions the input geometries, merging geometry to produce a result geometry with no overlaps. The output may be a single geometry, a MultiGeometry, or a Geometry Collection.

Note

Produces the same result as ST_Union, but uses less memory and more processor time. This aggregate function works by unioning the geometries incrementally, as opposed to the ST_Union aggregate which first accumulates an array and then unions the contents using a fast algorithm.

This function supports 3d and will not drop the z-index. However, the result is computed using XY only. The result Z values are copied, averaged or interpolated.

Examples

See ST_Union

See Also

ST_Union

5.13.5 ST_Node

ST_Node — Nodes a collection of lines.
Synopsis

geometry ST_Node(geoem);

Description

Returns a (Multi)LineString representing the fully noded version of a collection of linestrings. The noding preserves all of the input nodes, and introduces the least possible number of new nodes. The resulting linework is dissolved (duplicate lines are removed).

This is a good way to create fully-noded linework suitable for use as input to ST_Polygonize.

This function supports 3d and will not drop the z-index.

Performed by the GEOS module.

Availability: 2.0.0

Changed: 2.4.0 this function uses GEOSNode internally instead of GEOSUnaryUnion. This may cause the resulting linestings to have a different order and direction compared to Postgis < 2.4.

Examples

Noding a 3D LineString which self-intersects

```sql
SELECT ST_AsText(  
    ST_Node('LINESTRINGZ(0 0 0, 10 10 10, 0 10 5, 10 0 3)'::geometry)  
) As output;  
output  
---------  
MULTILINESTRING Z ((0 0 0,5 5 4.5),(5 5 4.5,10 10 10,0 10 5,5 5 4.5),(5 5 4.5,10 0 3))
```

Noding two LineStrings which share common linework. Note that the result linework is dissolved.

```sql
SELECT ST_AsText(  
    ST_Node('MULTILINESTRING ((2 5, 2 1, 7 1), (6 1, 4 1, 2 3, 2 5))'::geometry)  
) As output;  
output  
---------  
MULTILINESTRING((2 5,2 3),(2 3,2 1,4 1),(4 1,2 3),(4 1.6 1),(6 1.7 1))
```

See Also

ST_UnaryUnion

5.13.6 ST_Split

ST_Split — Returns a collection of geometries created by splitting a geometry by another geometry.

Synopsis

geometry ST_Split(geoem input, geoem blade);
Description

The function supports splitting a line by a (multi)point, (multi)line or (multi)polygon boundary, or a (multi)polygon by line. The returned geometry is always a collection.

Think of this function as the opposite of ST_Union. Theoretically applying ST_Union to the elements of the returned collection should always yield the original geometry.

Availability: 2.0.0 requires GEOS
Enhanced: 2.2.0 support for splitting a line by a multiline, a multipoint or (multi)polygon boundary was introduced.
Enhanced: 2.5.0 support for splitting a polygon by a multiline was introduced.

Note

To improve the robustness of ST_Split it may be convenient to ST_Snap the input to the blade in advance using a very low tolerance. Otherwise the internally used coordinate grid may cause tolerance problems, where coordinates of input and blade do not fall onto each other and the input is not being split correctly (see #2192).

Note

When a (multi)polygon is passed as as the blade, its linear component (the boundary) is used for cutting the input.

Examples

Polygon Cut by Line

```
-- this creates a geometry collection consisting of the 2 halves of the polygon
-- this is similar to the example we demonstrated in ST_BuildArea
SELECT ST_Split(circle, line)
FROM (SELECT
    ST_MakeLine(ST_MakePoint(10, 10),ST_MakePoint(190, 190)) As line,
    ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50) As circle) As foo;
```
-- result --
GEOMETRYCOLLECTION (POLYGON ((150 90, 149.039264020162 80.2454838991936, 146.193976625564 70.8658283817455, ..), POLYGON(..)))

-- To convert to individual polygons, you can use ST_Dump or ST_GeometryN
SELECT ST_AsText ((ST_Dump (ST_Split (circle, line))).geom) As wkt
FROM (SELECT
 ST_MakeLine (ST_MakePoint (10, 10), ST_MakePoint (190, 190)) As line,
 ST_Buffer (ST_GeomFromText ('POINT (100 90)'), 50) As circle) As foo;

-- result --
wkt

POLYGON ((150 90, 149.039264020162 80.2454838991936, ..))
POLYGON ((60.1371179574584 60.1371179574584, 60.1371179574584, 58.4265193848728 62.2214883490198, 53.8060233744357 ..))

Multilinestring Cut by point

```
SELECT ST_AsText (ST_Split (mline, pt)) As wktcut
FROM (SELECT
  ST_GeomFromText ('MULTILINESTRING ((10 10, 190 190), (15 15, 30 30, 100 90))') As mline,
  ST_Point (30, 30) As pt) As foo;

wktcut
-------
GEOMETRYCOLLECTION (LINESTRING (10 10, 30 30), LINESTRING (30 30, 190 190), LINESTRING (15 15, 30 30), LINESTRING (30 30, 100 90))
```
See Also

ST_AsText, ST_BuildArea, ST_CollectionExtract, ST_Dump, ST_GeometryN, ST_Subdivide, ST_Union

5.13.7 ST_Subdivide

ST_Subdivide — Computes a rectilinear subdivision of a geometry.

Synopsis

setof geometry ST_Subdivide(geometry geom, integer max_vertices=256, float8 gridSize = -1);

Description

Divides geometry into parts using rectilinear lines, until each part can be represented using no more than max_vertices. Point-in-polygon and other spatial operations are normally faster for indexed subdivided dataset: "miss" cases are faster to check as boxes for all parts typically cover smaller area than original geometry box, "hit" cases are faster because recheck operates on less points. max_vertices must be 5 or more, as 5 points are needed to represent a closed box. gridSize can be specified to have clipping work in fixed-precision space (requires GEOS-3.9.0+).

Performed by the GEOS module.

Availability: 2.2.0

Enhanced: 2.5.0 reuses existing points on polygon split, vertex count is lowered from 8 to 5.

Enhanced: 3.1.0 accept a gridSize parameter, requires GEOS >= 3.9.0 to use this new feature.

Examples

-- Subdivide complex geometries in table, in place
with complex_areas_to_subdivide as (
 delete from polygons_table
 where ST_NPoints(geom) > 255
 returning id, column1, column2, column3, geom
)
insert into polygons_table (fid, column1, column2, column3, geom)
select
 fid, column1, column2, column3,
 ST_Subdivide(geom, 255) as geom
from complex_areas_to_subdivide;

-- Create a new subdivided table suitable for joining to the original
CREATE TABLE subdivided_geoms AS
SELECT pkey, ST_Subdivide(geom) AS geom
FROM original_geoms;
Subdivide max 10 vertices

```sql
SELECT row_number() OVER() As rn, ST_AsText(geom) As wkt
FROM ( SELECT ST_SubDivide('POLYGON((132 10,119 23,85 35,68 29,66 28,32 56,22 64,32 110,40 119,36 150,57 158,75 171,92 182,114 184,186,146 178,176 184,162,184 141,190 122,190 100,185 79,186 56,186 52,178 34,168 18,147 13,132 10))'::geometry,10)) As f(geom);
```

```
1 \&
2 POLYGON((119 23,85 35,68 29,66 28,32 56,22 64,29.8260869565217 100,119 100,119 23))
2 POLYGON((132 10,119 23,119 56,119 100,190 100,185 79,186 56,186 52,178 34,168 18,147 13,132 10))
3 POLYGON((119 56,119 100,190 100,185 79,186 56,119 56))
4 POLYGON((29.8260869565217 100,32 110,40 119,36 150,57 158,75 171,92 182,114 184,186,146 178,176 184,162,184 141,190 122,190 100,185 79,186 56,186 52,178 34,168 18,147 13,132 10))
Useful in conjunction with \texttt{ST_Segmentize(\texttt{geography})} to create additional vertices that can then be used for splitting.

```
SELECT ST_AsText(ST_Subdivide(ST_Segmentize('LINESTRING(0 0, 85 85)'::geography
←
11.527721155093,1.50101059639722 16.7281035483571,1.94532113630331 21.25)
LINestring(1.94532113630331 21.25,2.04869538062779 22.3020741387339,2.64204641967673 ←
27.8740535351555,3.29994062412787 33.443216802941,4.04836719489742 ←
39.0084282520239,4.59890468420694 42.5)
LINestring(4.59890468420694 42.5,4.92498503922732 44.5680389206321,5.98737409390639 ←
50.119522924701,7.3290919767674 55.6587646879025,8.79638749938413 60.1969505994924)
LINestring(8.79638749938413 60.1969505994924,9.11375579533779 ←
61.1785363177625,11.655816691368 66.6648504160202,15.642041247655 ←
72.0867690601745,22.8716627200212 77.3609628116894,24.6991785131552 77.8939011989848)
LINestring(24.6991785131552 77.8939011989848,39.4046096622744 ←
82.1822848017636,44.7994523421035 82.5156766227011)
LINestring(44.7994523421035 82.5156766227011,85 85))
```

See Also

\texttt{ST_AsText}, \texttt{ST_ClipByBox2D}, \texttt{ST_Segmentize}, \texttt{ST_Split}, \texttt{ST_NPoints}

### 5.13.8 \texttt{ST_SymDifference}

\texttt{ST_SymDifference} — Returns a geometry representing the portions of geometries A and B that do not intersect.

**Synopsis**

```
geometry \texttt{ST_SymDifference}(geometry geomA, geometry geomB, float8 gridSize = -1);
```

**Description**

Returns a geometry representing the portions of geometries A and B that do not intersect. This is equivalent to \texttt{ST_Union(A,B) - ST_Intersection(A,B)}. It is called a symmetric difference because \texttt{ST_SymDifference(A,B) = ST_SymDifference(B,A)}.
If the optional `gridSize` argument is provided, the inputs are snapped to a grid of the given size, and the result vertices are computed on that same grid. (Requires GEOS-3.9.0 or higher)

Performed by the GEOS module

Enhanced: 3.1.0 accept a `gridSize` parameter - requires GEOS >= 3.9.0

- This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3
- This method implements the SQL/MM specification. SQL-MM 3: 5.1.21
- This function supports 3d and will not drop the z-index. However, the result is computed using XY only. The result Z values are copied, averaged or interpolated.

Examples

```
--Safe for 2d - symmetric difference of 2 linestrings
SELECT ST_AsText(
 ST_SymDifference(
 ST_GeomFromText('LINESTRING(50 100, 50 200)'),
 ST_GeomFromText('LINESTRING(50 50, 50 150)')
)
);

st_astext

MULTILINESTRING((50 150,50 200),(50 50,50 100))

--When used in 3d doesn't quite do the right thing
SELECT ST_AsEWKT(ST_SymDifference(ST_GeomFromEWKT('LINESTRING(1 2 1, 1 4 2)'),
 ST_GeomFromEWKT('LINESTRING(1 1 3, 1 3 4)')))

st_astext

MULTILINESTRING((1 3 2.75,1 4 2),(1 1 3,1 2 2.25))
```
See Also

ST_Difference, ST_Intersection, ST_Union

5.13.9 ST_Union

ST_Union — Returns a geometry representing the point-set union of the input geometries.

Synopsis

geometry ST_Union(geometry g1, geometry g2);
geometry ST_Union(geometry g1, geometry g2, float8 gridSize);
geometry ST_Union(geometry[] g1_array);
geometry ST_Union(geometry set g1field);
geometry ST_Union(geometry set g1field, float8 gridSize);

Description

Unions the input geometries, merging geometry to produce a result geometry with no overlaps. The output may be a single geometry, a MultiGeometry, or a Geometry Collection. Comes in several variants:

Two-input variant: returns a geometry that is the union of two input geometries. If either input is NULL, then NULL is returned.

Array variant: returns a geometry that is the union of an array of geometries.

Aggregate variant: returns a geometry that is the union of a rowset of geometries. The ST_Union() function is an "aggregate" function in the terminology of PostgreSQL. That means that it operates on rows of data, in the same way the SUM() and AVG() functions do and like most aggregates, it also ignores NULL geometries.

See also ST_UnaryUnion for a non-aggregate, single-input variant.

The ST_Union array and set variants use the fast Cascaded Union algorithm described in http://blog.cleverelephant.ca/2009/01/-must-faster-unions-in-postgis-14.html

A gridSize can be specified to work in fixed-precision space. The inputs are snapped to a grid of the given size, and the result vertices are computed on that same grid. (Requires GEOS-3.9.0 or higher)

Note

ST_Collect may sometimes be used in place of ST_Union, if the result is not required to be non-overlapping. ST_Collect is usually faster than ST_Union because it performs no processing on the collected geometries.

Performed by the GEOS module.

ST_Union creates MultiLineString and does not sew LineStrings into a single LineString. Use ST_LineMerge to sew LineStrings.

NOTE: this function was formerly called GeomUnion(), which was renamed from "Union" because UNION is an SQL reserved word.

Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0

Changed: 3.0.0 does not depend on SFCGAL.

Availability: 1.4.0 - ST_Union was enhanced. ST_Union(geomarray) was introduced and also faster aggregate collection in PostgreSQL.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3
Note

Aggregate version is not explicitly defined in OGC SPEC.

- This method implements the SQL/MM specification. SQL-MM 3: 5.1.19 the z-index (elevation) when polygons are involved.
- This function supports 3d and will not drop the z-index. However, the result is computed using XY only. The result Z values are copied, averaged or interpolated.

**Examples**

**Aggregate example**

```sql
SELECT stusps,
 ST_Union(f.geom) as singlegeom
FROM sometable f
GROUP BY stusps
```

**Non-Aggregate example**

```sql
select ST_AsText(ST_Union('POINT(1 2)' :: geometry, 'POINT(-2 3)' :: geometry))

st_astext

MULTIPOINT(-2 3,1 2)

select ST_AsText(ST_Union('POINT(1 2)' :: geometry, 'POINT(1 2)' :: geometry))

st_astext

POINT(1 2)
```

**3D example - sort of supports 3D (and with mixed dimensions!)**

```sql
select ST_AsEWKT(ST_Union(geom))
from (
 select 'POLYGON((-7 4.2,-7.1 4.2,-7.1 4.3, -7 4.2))'::geometry geom
 union all
 select 'POINT(5 5 5)'::geometry geom
 union all
 select 'POINT(-2 3 1)'::geometry geom
 union all
 select 'LINESTRING(5 5 5, 10 10 10)'::geometry geom
) as foo;

st_asewkt

GEOMETRYCOLLECTION(POINT(-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 5,-7.1 4.2 5,-7.1 4.3 5,-7 4.2 5)));
```

**3d example not mixing dimensions**

```sql
select ST_AsEWKT(ST_Union(geom))
from (
 select 'POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2, -7 4.2 2))'::geometry geom
 union all
 select 'POINT(5 5 5)'::geometry geom
```
union all
select 'POINT(-2 3 1)'::geometry geom
union all
select 'LINESTRING(5 5 10 10 10)'::geometry geom
) as foo;

st_a sewkt
---------
GEOMETRYCOLLECTION(POINT(-2 3 1), LINESTRING(5 5 10 10 10), POLYGON((-7 4.2 2, -7.1 4.2 2, -7 4.2 2)))

-- Examples using new Array construct
SELECT ST_Union(ARRAY(SELECT the_geom FROM sometable));

SELECT ST_AsText(ST_Union(ARRAY[ST_GeomFromText('LINESTRING(1 2, 3 4)'),
ST_GeomFromText('LINESTRING(3 4, 4 5)')])) As wktunion;

-- wktunion---
MULTILINESTRING((3 4, 4 5, 1 2, 3 4))

See Also

ST_Collect, ST_UnaryUnion, ST_MemUnion, ST_Intersection, ST_Difference, ST_SymDifference

5.13.10 ST_UnaryUnion

ST_UnaryUnion — Computes the union of the components of a single geometry.

Synopsis

gemetry ST_UnaryUnion(geometry geom, float8 gridSize = -1);

Description

A single-input variant of ST_Union. The input may be a single geometry, a MultiGeometry, or a GeometryCollection. The union
is applied to the individual components of the input. This allow using this function to fix MultiPolygons which are invalid due
to overlapping components. (However, the input components must each be valid. An invalid input component such as a bow-tie
polygon may cause an error.)

Another use of this function is to node and dissolve a collection of linestrings. (This can also be done with ST_Node.)

It is possible to mix ST_UnaryUnion with ST_Collect to fine-tune how many geometries are be unioned at once. This allows
trading off between memory usage and compute time, striking a balance between ST_Union and ST_MemUnion.

If the optional gridSize argument is provided, the inputs are snapped to a grid of the given size, and the result vertices are
computed on that same grid. (Requires GEOS-3.9.0 or higher)

This function supports 3d and will not drop the z-index. However, the result is computed using XY only. The result Z values
are copied, averaged or interpolated.

Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0

Availability: 2.0.0

See Also

ST_Union, ST_MemUnion, ST_Collect, ST_Node
5.14 Geometry Processing

5.14.1 ST_Buffer

ST_Buffer — Returns a geometry covering all points within a given distance from a geometry.

Synopsis

geometry ST_Buffer(geometry g1, float radius_of_buffer, text buffer_style_parameters = "");
geometry ST_Buffer(geometry g1, float radius_of_buffer, integer num_seg_quarter_circle);
geography ST_Buffer(geography g1, float radius_of_buffer, text buffer_style_parameters);
geography ST_Buffer(geography g1, float radius_of_buffer, integer num_seg_quarter_circle);

Description

Returns a geometry/geography that represents all points whose distance from this Geometry/geography is less than or equal to distance.

Geometry: Calculations are in the Spatial Reference System of the geometry. Introduced in 1.5 support for different end cap and mitre settings to control shape.

Note

Negative radii: For polygons, a negative radius can be used, which will shrink the polygon rather than expanding it.

Note

Geography: For geography this is really a thin wrapper around the geometry implementation. It first determines the best SRID that fits the bounding box of the geography object (favoring UTM, Lambert Azimuthal Equal Area (LAEA) north/south pole, and falling back on mercator in worst case scenario) and then buffers in that planar spatial ref and retransforms back to WGS84 geography.

Warning

For geography this may not behave as expected if object is sufficiently large that it falls between two UTM zones or crosses the dateline

Enhanced: 2.5.0 - ST_Buffer geometry support was enhanced to allow for side buffering specification side=both|left|right.

Availability: 1.5 - ST_Buffer was enhanced to support different endcaps and join types. These are useful for example to convert road linestrings into polygon roads with flat or square edges instead of rounded edges. Thin wrapper for geography was added.

The optional third parameter (currently only applies to geometry) can either specify number of segments used to approximate a quarter circle (integer case, defaults to 8) or a list of blank-separated key=value pairs (string case) to tweak operations as follows:

- 'quad_segs=#' : number of segments used to approximate a quarter circle (defaults to 8).
- 'endcap=round|flat|square' : endcap style (defaults to "round"). 'butt' is also accepted as a synonym for 'flat'.
- 'join=round|mitre|bevel' : join style (defaults to "round"). 'miter' is also accepted as a synonym for 'mitre'.
- 'mitre_limit=#.#' : mitre ratio limit (only affects mitered join style). 'miter_limit' is also accepted as a synonym for 'mitre_limit'.


• 'side=left|right' ; 'left' or 'right' performs a single-sided buffer on the geometry, with the buffered side relative to the direction of the line. This is only really relevant to LINESTRING geometry and does not affect POINT or POLYGON geometries. By default end caps are square.

Units of radius are measured in units of the spatial reference system.

The inputs can be POINTS, MULTIPOINTS, LINESTRINGS, MULTILINESTRINGS, POLYGONS, MULTIPOLYGONS, and GeometryCollections.

__Note__
This function ignores the third dimension (z) and will always give a 2-d buffer even when presented with a 3d-geometry.

Performed by the GEOS module.

☑️ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3
☑️ This method implements the SQL/MM specification. SQL-MM 3: 5.1.17

__Note__
People often make the mistake of using this function to try to do radius searches. Creating a buffer to a radius search is slow and pointless. Use ST_DWithin instead.

**Examples**

```
quad_segs=8 (default)
SELECT ST_Buffer(
 ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=8');
```

```
quad_segs=2 (lame)
SELECT ST_Buffer(
 ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2');
```
endcap=round join=round (default)

```sql
SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'), 10, 'endcap-round join-round');
```

endcap=square

```sql
SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'), 10, 'endcap-square join-round');
```

join=bevel

```sql
SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'), 10, 'join-bevel');
```

join=mitre mitre_limit=5.0 (default mitre limit)

```sql
SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'), 10, 'join-mitre mitre_limit=5.0');
```
side=left

```sql
SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50, 150 150, 150 50)'), 10, 'side=left');
```

right-hand-winding, polygon boundary side=left

```sql
SELECT ST_Buffer(
 ST_ForceRHR(
 ST_Boundary(
 ST_GeomFromText(
 'POLYGON ((50 50, 50 150, 150 150, 150 ←
 50, 50 50))')))
), 20, 'side-left');
```

side=right

```sql
SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50, 150 150, 150 50)'), 10, 'side=right');
```

right-hand-winding, polygon boundary side=right

```sql
SELECT ST_Buffer(
 ST_ForceRHR(
 ST_Boundary(
 ST_GeomFromText(
 'POLYGON ((50 50, 50 150, 150 150, 150 ←
 50, 50 50))')))
), 20, 'side-right');
```

--A buffered point approximates a circle
-- A buffered point forcing approximation of (see diagram)
**ST_BuildArea**

**Synopsis**

```
geometry ST_BuildArea(geometry geom);
```

**Description**

Creates an areal geometry formed by the constituent linework of the input geometry. The input can be LINESTRINGS, MULTILINESTRINGS, POLYGONS, MULTIPOLYGONS, and GeometryCollections. The result is a Polygon or MultiPolygon, depending on input. If the input linework does not form polygons, NULL is returned.

This function assumes all inner geometries represent holes.

**Note**

Input linework must be correctly noded for this function to work properly

**Availability:** 1.1.0

**Examples**
These will create a donut

--using polygons
SELECT ST_BuildArea(ST_Collect(smallc,bigc))
FROM (SELECT
    ST_Buffer(
        ST_GeomFromText('POINT(100 90)'), 25) As smallc,
        ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50) As bigc) As foo;

--using linestrings
SELECT ST_BuildArea(ST_Collect(smallc,bigc))
FROM (SELECT
    ST_ExteriorRing(ST_Buffer(
        ST_GeomFromText('POINT(100 90)'), 25)) As smallc,
        ST_ExteriorRing(ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50)) As bigc) As foo;

See Also

ST_Node, ST_MakePolygon, ST_MakeValid, ST_BdPolyFromText, ST_BdMPolyFromText (wrappers to this function with standard OGC interface)

5.14.3 ST_Centroid

ST_Centroid — Returns the geometric center of a geometry.

Synopsis

geometry ST_Centroid(geometry g1);
geography ST_Centroid(geography g1, boolean use_spheroid=true);

Description

Computes a point which is the geometric center of mass of a geometry. For [MULTI]POINTS, the centroid is the arithmetic mean of the input coordinates. For [MULTI]LINESTRINGS, the centroid is computed using the weighted length of each line segment. For [MULTI]POLYGONS, the centroid is computed in terms of area. If an empty geometry is supplied, an empty
GEOMETRYCOLLECTION is returned. If NULL is supplied, NULL is returned. If CIRCULARSTRING or COMPOUNDCURVE are supplied, they are converted to linestring with CurveToLine first, then same than for LINESTRING.

For mixed-dimension input, the result is equal to the centroid of the component Geometries of highest dimension (since the lower-dimension geometries contribute zero "weight" to the centroid).

New in 2.3.0: support CIRCULARSTRING and COMPOUNDCURVE (using CurveToLine)

Availability: 2.4.0 support for geography was introduced.

This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

This method implements the SQL/MM specification. SQL-MM 3: 8.1.4, 9.5.5

Examples

In the following illustrations the green dot is the centroid of the source geometry.
SELECT ST_AsText(ST_Centroid('MULTIPOINT ( -1 0, -1 2, -1 3, -1 4, -1 7, 0 1, 0 3, 1 1, 2 0, 6 0, 7 8, 9 8, 10 6 )'));

st_astext
------------------------------------------
POINT(2.30769230769231 3.30769230769231)
(1 row)

SELECT ST_AsText(ST_centroid(g))
FROM ST_GeomFromText('CIRCULARSTRING(0 2, -1 1,0 0, 0.5 0, 1 0, 2 1, 1 2, 0.5 2, 0 2)') AS g ;

------------------------------------------
POINT(0.5 1)

SELECT ST_AsText(ST_centroid(g))
FROM ST_GeomFromText('COMPOUNDCURVE(CIRCULARSTRING(0 2, -1 1,0 0),(0 0, 0.5 0, 1 0),
CIRCULARSTRING( 1 0, 2 1, 1 2),(1 2, 0.5 2, 0 2))' ) AS g;

------------------------------------------
POINT(0.5 1)

See Also

ST_PointOnSurface, ST_GeometricMedian

5.14.4 ST_ConcaveHull

ST_ConcaveHull — Computes a possibly concave geometry that encloses all input geometry vertices

Synopsis

gamey ST_ConcaveHull(geometry geom, float target_percent, boolean allow_holes = false);

Description

The concave hull of a geometry represents a possibly concave geometry that encloses the input geometry. The result is a single polygon, line or point. It will not contain holes unless the optional allow_holes argument is specified as true.

The target_percent is the target percent of area of convex hull the PostGIS solution will try to approach before giving up or exiting. One can think of the concave hull as the geometry you get by vacuum sealing a set of geometries. The target_percent of 1 will give you the same answer as the convex hull. A target_percent between 0 and 0.99 will give you something that should have a smaller area than the convex hull. This is different from a convex hull which is more like wrapping a rubber band around the set of geometries.

It is usually used with MULTI and Geometry Collections. It is not an aggregate function, but can be used with ST_Collect or ST_Union to get the concave hull of a set of points/linestring/polygons (e.g. ST_ConcaveHull(ST_Collect(somepointfield), 0.80)).

It is slower to compute than the convex hull but generally has a smaller result area and represents a more natural bounds of the input geometry.

Note

Note - If you are using with points, linestrings, or geometry collections use ST_Collect. If you are using with polygons, use ST_Union since it may fail with invalid geometries.
**Note**

Note - The smaller you make the target percent, the longer it takes to process the concave hull and more likely to run into topological exceptions. Also the more floating points and number of points you accrue. First try a 0.99 which does a first hop, is usually very fast, sometimes as fast as computing the convex hull, and usually gives much better than 99% of shrink since it almost always overshoots. Second hope of 0.98 it slower, others get slower usually quadratically. To reduce precision and float points, use `ST_SimplifyPreserveTopology` or `ST_SnapToGrid` after `ST_ConcaveHull`. `ST_SnapToGrid` is a bit faster, but could result in invalid geometries where as `ST_SimplifyPreserveTopology` almost always preserves the validity of the geometry.

More real world examples and brief explanation of the technique are shown [http://www.bostongis.com/postgis_concavehull.snippet](http://www.bostongis.com/postgis_concavehull.snippet). Also check out Simon Greener's article on demonstrating ConcaveHull introduced in Oracle 11G R2. [http://www.spatialdbadvisor.com/oracle_spatial_tips_tricks/172/concave-hull-geometries-in-oracle-11gr2](http://www.spatialdbadvisor.com/oracle_spatial_tips_tricks/172/concave-hull-geometries-in-oracle-11gr2). The solution we get at 0.75 target percent of convex hull is similar to the shape Simon gets with Oracle SDO_CONCAVEHULL_BOUNDARY.

**Examples**

```sql
-- Get estimate of infected area based on point observations
SELECT d.disease_type,
 ST_ConcaveHull(ST_Collect(d.pnt_geom), 0.99) As geom
FROM disease_obs As d
GROUP BY d.disease_type;
```
ST_ConcaveHull of 2 polygons encased in target 100% shrink concave hull

-- geometries overlaid with concavehull
-- at target 100% shrink (this is the same as convex hull - since no shrink)
SELECT ST_ConcaveHull(
    ST_Union(ST_GeomFromText('POLYGON ((175 150, 20 40, 50 60, 125 100, 175 150))'),
    ST_Buffer(ST_GeomFromText('POINT (110 170)'), 20)
), 1)
As convexhull;

-- geometries overlaid with concavehull at target 90% of convex hull area
-- geometries overlaid with concavehull at target 90% shrink
SELECT ST_ConcaveHull(
    ST_Union(ST_GeomFromText('POLYGON ((175 150, 20 40, 50 60, 125 100, 175 150))'),
    ST_Buffer(ST_GeomFromText('POINT (110 170)'), 20)
), 0.9)
As target_90;
L Shape points overlaid with convex hull

-- this produces a table of 42 points that form an L shape
SELECT ST_DumpPoints(ST_GeomFromText('MULTIPOINT(14 14,34 14,54 14,74 14,94 14,114 14,134 14,154 14,154 6,134 6,114 6,94 6,74 6,54 6,34 6,14 6,10 6,8 6,7 7,6 8,6 10,6 30,6 50,6 70,6 90,6 110,6 130,6 150,6 170,6 190,6 194,14 194,14 174,14 154,14 134,14 114,14 94,14 74,14 54,14 34,14 14)'))).geom INTO TABLE l_shape;

SELECT ST_ConvexHull(ST_Collect(geom)) FROM l_shape;

ST_ConcaveHull of L points at target 99% of convex hull

SELECT ST_ConcaveHull(ST_Collect(geom), 0.99) FROM l_shape;
Concave Hull of L points at target 80% convex hull area

-- Concave Hull L shape points
-- at target 80% of convexhull
SELECT ST_ConcaveHull(ST_Collect(geom →), 0.80)
FROM l_shape;

multilinestring overlaid with Convex hull

multilinestring with overlaid with Concave hull of linestrings at 99% target -- first hop

SELECT ST_ConcaveHull(ST_GeomFromText('MULTILINESTRING((106 164,30 112,74 70,82 112,130 94,130 62,122 40,156 32,162 76,172 88),
132 178,134 148,128 136,96 128,132 108,150 130,170 142,174 110,156 96,158 90,158 88),
(22 64,66 28,94 38,94 68,114 76,112 30,132 10,168 18,178 34,186 52,184 74,190 100,190 122,182 148,178 170,176 184,156 164,146 178,132 186,92 182,56 158,36 150,62 150,76 128,88 118))'), 0.99)
See Also

ST_Collect, ST_ConvexHull, ST_SimplifyPreserveTopology, ST_SnapToGrid

5.14.5 ST_ConvexHull

ST_ConvexHull — Computes the convex hull of a geometry.

Synopsis

geometry ST_ConvexHull(geomA);

Description

Computes the convex hull of a geometry. The convex hull is the smallest convex geometry that encloses all geometries in the input.

In the general case the convex hull is a Polygon. The convex hull of two or more collinear points is a two-point LineString. The convex hull of one or more identical points is a Point.

It is usually used with Multi* and GeometryCollections. It is not an aggregate function. To compute the convex hull of a set of geometries, use ST_Collect to aggregate them.

One can think of the convex hull as the geometry obtained by wrapping an elastic band around a set of geometries. This is different from a concave hull which is analogous to “shrink-wrapping” the geometries. A convex hull is often used to determine an affected area based on a set of point observations.

Performed by the GEOS module

☑ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3
☑ This method implements the SQL/MM specification. SQL-MM 3: 5.1.16
☑ This function supports 3d and will not drop the z-index.

Examples

Convex Hull of a MultiLinestring and a MultiPoint
SELECT ST_AsText(ST_ConvexHull(
    ST_Collect(
        ST_GeomFromText('MULTILINESTRING((100 190,10 8),(150 10, 20 30))'),
        ST_GeomFromText('MULTIPOINT(50 5, 150 30, 50 10, 10 10)')
    )
))
---st_astext--
POLYGON((50 5,10 8,10 10,100 190,150 30,150 10,50 5))

Using with ST_Collect to compute the convex hulls of geometry sets.

--Get estimate of infected area based on point observations
SELECT d.disease_type,
    ST_ConvexHull(ST_Collect(d.the_geom)) As the_geom
FROM disease_obs As d
GROUP BY d.disease_type;

See Also

ST_Collect, ST_ConcaveHull, ST_MinimumBoundingCircle

5.14.6 ST_DelaunayTriangles

ST_DelaunayTriangles — Returns the Delaunay triangulation of the vertices of a geometry.

Synopsis

gamey ST_DelaunayTriangles(geometry g1, float tolerance, int4 flags);

Description

Return the Delaunay triangulation of the vertices of the input geometry. Output is a COLLECTION of polygons (for flags=0) or
a MULTILINESTRING (for flags=1) or TIN (for flags=2). The tolerance, if any, is used to snap input vertices together.

Performed by the GEOS module.

Availability: 2.1.0

- This function supports 3d and will not drop the z-index.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

2D Examples
Original polygons

-- our original geometry --

```sql
ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
50 60, 125 100, 175 150))'),
ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
)
```
\textit{ST_DelaunayTriangles} of 2 polygons: delaunay triangle polygons each triangle themed in different color

-- geometries overlaid multilinestring triangles
SELECT
  \textit{ST_DelaunayTriangles}(
    \textit{ST_Union}('POLYGON((175, 150, 20 40, 50 60, 125 100, 175 150)))',
    \textit{ST_Buffer}('POINT(110 170)', 20)
  )
As dtriag;
SELECT
  ST_DelaunayTriangles(
    ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
      60 20, 125 100, 175 150))'),
    ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
  ),0.001,1)
As dtriag;
-- delaunay triangles of 45 points as 55 triangle polygons

-- this produces a table of 42 points that form an L shape
SELECT (ST_DumpPoints(ST_GeomFromText('MULTIPOINT(14 14,34 14,54 14,74 14,94 14,114 14,134 14, 150 14,154 14,154 6,114 6,94 6,74 6,54 6,34 6, 14 6,10 6,8 6,7 6,8 6 10,6 30,6 50,6 70,6 90,6 110,6 130, 6 150,6 170,6 190,6 194,14 194,14 174,14 154,14 134,14 114, 14 94,14 74,14 54,14 34,14 14)').geom)) .geom
INTO TABLE l_shape;

-- output as individual polygon triangles
SELECT ST_AsText((ST_Dump(geom)).geom) As wkt
FROM (SELECT ST_DelaunayTriangles(ST_Collect(geom)) As geom
FROM l_shape) As foo;

---wkt---
POLYGON ((6 194, 6 190, 14 194, 6 194))
POLYGON ((14 194, 6 190, 14 174, 14 194))
POLYGON ((14 194, 14 174, 154 14, 14 194))
POLYGON ((154 14, 14 174, 154 14, 14 154))
POLYGON ((154 14, 154 154, 154 14))
POLYGON ((154 14, 150 14, 154 6, 154 14))

--- 3D Examples ---

-- 3D multipoint --
SELECT ST_AsText(ST_DelaunayTriangles(ST_GeomFromText('MULTIPOINT Z(14 14 10, 150 14 100, 34 6 25, 20 10 150)')) As wkt;

-----wkt-----
GEOMETRYCOLLECTION Z (POLYGON Z ((14 14 10, 20 10 150, 34 6 25, 14 14 10)), POLYGON Z ((14 14 10, 34 6 25, 150 14, 100 14, 14 14 10)))
See Also

ST_ConstrainedDelaunayTriangles, ST_ConcaveHull, ST_Dump, ST_Tesselate

5.14.7 ST_FilterByM

ST_FilterByM — Removes vertices based on their M value

Synopsis

geometry ST_FilterByM(geom, double precision min, double precision max = null, boolean returnM = false);

Description

Filters out vertex points based on their M-value. Returns a geometry with only vertex points that have a M-value larger or equal to the min value and smaller or equal to the max value. If max-value argument is left out only min value is considered. If fourth argument is left out the m-value will not be in the resulting geometry. If resulting geometry have too few vertex points left for its geometry type an empty geometry will be returned. In a geometry collection geometries without enough points will just be left out silently.

This function is mainly intended to be used in conjunction with ST_SetEffectiveArea. ST_SetEffectiveArea sets the effective area of a vertex in its m-value. With ST_FilterByM it then is possible to get a simplified version of the geometry without any calculations, just by filtering

```
Note
There is a difference in what ST_SimplifyVW returns when not enough points meet the criteria compared to ST_FilterByM. ST_SimplifyVW returns the geometry with enough points while ST_FilterByM returns an empty geometry
```

```
Note
Note that the returned geometry might be invalid
```

```
Note
This function returns all dimensions, including the Z and M values
```

Availability: 2.5.0

Examples

A linestring is filtered

```sql
SELECT ST_AsText(ST_FilterByM(geom, 30)) simplified
FROM (SELECT ST_SetEffectiveArea('LINESTRING(5 2, 3 8, 6 20, 7 25, 10 10))::geometry) geom AS foo;
```

- result

```
simplified

LINESTRING(5 2, 7 25, 10 10)
```
See Also

ST_SetEffectiveArea, ST_SimplifyVW

5.14.8  ST_GeneratePoints

ST_GeneratePoints — Generates random points contained in a Polygon or MultiPolygon.

Synopsis

geometry ST_GeneratePoints( g geometry , npoints integer );
geometry ST_GeneratePoints( geometry g , integer npoints , integer seed );

Description

ST_GeneratePoints generates a given number of pseudo-random points which lie within the input area. The optional seed is used to regenerate a deterministic sequence of points, and must be greater than zero.

Availability: 2.3.0

Enhanced: 3.0.0, added seed parameter

Examples

Original Polygon

Generated 12 Points overlaid on top of original polygon using a random seed value 1996

SELECT ST_GeneratePoints(geom, 12, 1996) FROM {
    SELECT ST_Buffer(
        ST_GeomFromText(
            'LINESTRING(50 50,150 150,150 50) ←'
        ,
        10, 'endcap=round join=round') AS ←
    geom
    ) AS s;
5.14.9 ST_GeometricMedian

ST_GeometricMedian — Returns the geometric median of a MultiPoint.

Synopsis

gamey
geometry ST_GeometricMedian( geometry geom, float8 tolerance = NULL, int max_iter = 10000, boolean fail_if_not_converged = false);

Description

Computes the approximate geometric median of a MultiPoint geometry using the Weiszfeld algorithm. The geometric median is the point minimizing the sum of distances to the input points. It provides a centrality measure that is less sensitive to outlier points than the centroid (center of mass).

The algorithm iterates until the distance change between successive iterations is less than the supplied tolerance parameter. If this condition has not been met after max_iterations iterations, the function produces an error and exits, unless fail_if_not_converged is set to false (the default).

If a tolerance argument is not provided, the tolerance value is calculated based on the extent of the input geometry.

If present, the input point M values are interpreted as their relative weights.

Availability: 2.3.0

Enhanced: 2.5.0 Added support for M as weight of points.

This function supports 3d and will not drop the z-index.

This function supports M coordinates.

Examples

Comparison of the centroid (turquoise point) and geometric median (red point) of a four-point MultiPoint (yellow points).

WITH test AS (
SELECT 'MULTIPOINT((0 0), (1 1), (2 2), (200 200))'::geometry geom
SELECT ST_AsText(ST_Centroid(geom)) centroid,
ST_AsText(ST_GeometricMedian(geom)) median
### 5.14.10 ST_MaximumInscribedCircle

ST_MaximumInscribedCircle — Computes the largest circle that is fully contained within a geometry.

#### Synopsis

```
(geometry, geometry, double precision) ST_MaximumInscribedCircle(geom);
```

#### Description

Finds the largest circle that is fully contained within a geometry. Returns a record with the center point of the circle, a point on
the geometry that is nearest to the center, and the radius of the circle.

For polygonal inputs, the circle is inscribed within the external ring, using the internal rings as boundaries. For linear and point
inputs, the circle is inscribed within the convex hull of the input, using the input as further boundaries.

Availability: 3.1.0 - requires GEOS >= 3.9.0.

#### See Also

ST_MinimumBoundingCircle

#### Examples

```
SELECT radius, ST_AsText(center) AS center, ST_AsText(nearest) AS nearest FROM ST_MaximumInscribedCircle('POLYGON ((50 50, 150 50, 150 150, 50 150, 50 50))')
```

<table>
<thead>
<tr>
<th>radius</th>
<th>center</th>
<th>nearest</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>POINT(100 100)</td>
<td>POINT(100 50)</td>
</tr>
</tbody>
</table>
Maximum inscribed circle of a triangle polygon. Center, nearest point, and radius are returned.

Maximum inscribed circle of a multi-linestring. Center, nearest point, and radius are returned.

See Also

ST_Collect, ST_MinimumBoundingRadius

5.14.11 ST_MinimumBoundingCircle

ST_MinimumBoundingCircle — Returns the smallest circle polygon that contains a geometry.

Synopsis

geometry ST_MinimumBoundingCircle(geometry geomA, integer num_segs_per_qt_circ=48);

Description

Returns the smallest circle polygon that contains a geometry.
**Note**
The circle is approximated by a polygon with a default of 48 segments per quarter circle. Because the polygon is an approximation of the minimum bounding circle, some points in the input geometry may not be contained within the polygon. The approximation can be improved by increasing the number of segments, with little performance penalty. For applications where a polygonal approximation is not suitable, `ST_MinimumBoundingRadius` may be used.

It is often used with MULTI and Geometry Collections. Although it is not an aggregate - you can use it in conjunction with `ST_Collect` to get the minimum bounding circle of a set of geometries. `ST_MinimumBoundingCircle(ST_Collect(somepointfield))`.

The ratio of the area of a polygon divided by the area of its Minimum Bounding Circle is often referred to as the Roeck test. Performed by the GEOS module.

Availability: 1.4.0

**See Also**

`ST_Collect, ST_MinimumBoundingRadius`

**Examples**

```sql
SELECT d.disease_type,
 ST_MinimumBoundingCircle(ST_Collect(d.the_geom)) As the_geom
FROM disease_obs As d
GROUP BY d.disease_type;
```

Minimum bounding circle of a point and linestring. Using 8 segs to approximate a quarter circle

```sql
SELECT ST_AsText(ST_MinimumBoundingCircle(
 ST_Collect(
 ST_GeomFromText('LINESTRING(55 75,125 150)'),
 ST_Point(20, 80)), 8)
)) As wktmbc;
```

wktmbc
-------
See Also

ST_Collect, ST_MinimumBoundingRadius

5.14.12 ST_MinimumBoundingRadius

ST_MinimumBoundingRadius — Returns the center point and radius of the smallest circle that contains a geometry.

Synopsis

(geom, double precision) ST_MinimumBoundingRadius(geom);

Description

Returns a record containing the center point and radius of the smallest circle that contains a geometry.

Use in conjunction with ST_Collect to get the minimum bounding circle of a set of geometries.

Availability - 2.3.0

See Also

ST_Collect, ST_MinimumBoundingCircle

Examples

```
SELECT ST_AsText(center), radius FROM ST_MinimumBoundingRadius('POLYGON((26426 65078,26531 65242,26075 65136,26096 65427,26426 65078))');
```

```
<table>
<thead>
<tr>
<th>st_astext</th>
<th>radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT(26284.8418027133 65267.1145090825)</td>
<td>247.436045591407</td>
</tr>
</tbody>
</table>
```

5.14.13 ST_OrientedEnvelope

ST_OrientedEnvelope — Returns a minimum-area rectangle containing a geometry.
Synopsis

geometry ST_OrientedEnvelope( geometry geom );

Description

Returns the minimum-area rotated rectangle enclosing a geometry. Note that more than one such rectangle may exist. May return a Point or LineString in the case of degenerate inputs.

Availability: 2.5.0

See Also

ST_Envelope ST_MinimumBoundingCircle

Examples

SELECT ST_AsText(ST_OrientedEnvelope('MULTIPOINT ((0 0), (-1 -1), (3 2)))')

Oriented envelope of a point and linestring.

SELECT ST_AsText(ST_OrientedEnvelope(
    ST_Collect(
        ST_GeomFromText('LINESTRING(55 75,125 150)'),
        ST_Point(20, 80))
    ) As wktenv;

SELECT ST_AsText(ST_OrientedEnvelope(
    ST_Collect(
        ST_GeomFromText('LINESTRING(55 75,125 150)'),
        ST_Point(20, 80))
    ) As wktenv;

Oriented envelope of a point and linestring.
5.14.14 ST_OffsetCurve

ST_OffsetCurve — Returns an offset line at a given distance and side from an input line.

Synopsis

geometry ST_OffsetCurve(geometry line, float signed_distance, text style_parameters="");

Description

Return an offset line at a given distance and side from an input line. All points of the returned geometries are not further than the given distance from the input geometry. Useful for computing parallel lines about a center line.

For positive distance the offset is on the left side of the input line and retains the same direction. For a negative distance it is on the right side and in the opposite direction.

Note that output may be a MULTILINESTRING or EMPTY for some jigsaw-shaped input geometries.

Performed by the GEOS module.

Availability: 2.0

Enhanced: 2.5 - added support for GEOMETRYCOLLECTION and MULTILINESTRING

The optional third parameter allows specifying a list of blank-separated key=value pairs to tweak operations as follows:

- "quad_segs=#" : number of segments used to approximate a quarter circle (defaults to 8).
- "join=round/mitre/bevel" : join style (defaults to "round"). "miter" is also accepted as a synonym for "mitre".
- "mitre_limit=#.#" : mitre ratio limit (only affects mitred join style). "miter_limit" is also accepted as a synonym for "mitre_limit".

Units of distance are measured in units of the spatial reference system.

Performed by the GEOS module.

---

**Note**

This function ignores the third dimension (z) and will always give a 2-d result even when presented with a 3d-geometry.

---

Examples

Compute an open buffer around roads

```
SELECT ST_Union(
 ST_OffsetCurve(f.the_geom, f.width/2, 'quad_segs=4 join=round'),
 ST_OffsetCurve(f.the_geom, -f.width/2, 'quad_segs=4 join=round')
) as track
FROM someroadstable;
```
15. 'quad_segs=4 join=round' original line and its offset 15 units.

```sql
SELECT ST_AsText(ST_OffsetCurve(ST_GeomFromText('LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,44 16,24 16,16 16,16 17,16 18,16 20,16 40,16 60,16 80,16 100,16 120,16 140,16 160,16 180,16 195)'), 15, 'quad_segs=4 join=round'))
```

--output--
```
LINESTRING(164 1,18 1,12.2597485145237 2.14180701233067 7.3939828220179 5.3939828220179 2.14180701233067 12.2597485145237,1 18,1 195)
```

-15. 'quad_segs=4 join=round' original line and its offset -15 units

```sql
SELECT ST_AsText(ST_OffsetCurve(ST_GeomFromText('LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,44 16,24 16,16 16,16 17,16 18,16 20,16 40,16 60,16 80,16 100,16 120,16 140,16 160,16 180,16 195)'), -15, 'quad_segs=4 join=round')) As notsocurvy
FROM ST_GeomFromText('LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,44 16,24 16,16 16,16 17,16 18,16 20,16 40,16 60,16 80,16 100,16 120,16 140,16 160,16 180,16 195)') As geom;
```

--notsocurvy--
```
LINESTRING(31 195,31 31,164 31)
```

```sql
```
double-offset to get more curvy, note the first reverses direction, so -30 + 15 = -15

```sql
SELECT ST_AsText(ST_OffsetCurve(
 ST_OffsetCurve(geom, -30, 'quad_segs=4 join=round'), -15, 'quad_segs=4 join=round'))
AS morecurvy
FROM ST_GeomFromText('LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,44 16,24 16,20 16,18 16,17 17, 16 18,16 20,16 40,16 60,16 80,16 100, 16 120,16 140,16 160,16 180,16 195)')

-- morecurvy --
LINESTRING(164 31,46 31,40.2597485145237 32.1418070123307, 35.3933982822018 35.3933982822018, 32.1418070123307 40.2597485145237,31 46,31 195)
```

double-offset to get more curvy, combined with regular offset 15 to get parallel lines. Overlaid with original.

```sql
SELECT ST_AsText(ST_Collect(
 ST_OffsetCurve(geom, 15, 'quad_segs=4 join=round'),
 ST_OffsetCurve(ST_OffsetCurve(geom, -30, 'quad_segs=4 join=round'), -15, 'quad_segs=4 join=round'))
) AS parallel_curves
FROM ST_GeomFromText('LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,44 16,24 16,20 16,18 16,17 17, 16 18,16 20,16 40,16 60,16 80,16 100, 16 120,16 140,16 160,16 180,16 195)')

-- parallel curves --
MULTILINESTRING((164 1,18 1,12.2597485145237 2.1418070123307, 7.39339828220179 7.39339828220179, 5.39339828220179 5.39339828220179, 7.39339828220179 1.18,1 18,1 195), (164 31,46 31,40.2597485145236 32.1418070123307, 35.3933982822018 35.3933982822018, 32.1418070123307 40.2597485145237,31 46,31 195))
```
15, 'quad_segs=4 join=bevel' shown with original line

SELECT ST_AsText(ST_OffsetCurve(←
ST_GeomFromText('LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,44 16,24 16,20 16,16 16,18 16,20 16,40 16 60,16 80,16 100,16 120,16 140,16 160,16 180,16 195)')←
15, 'quad_segs=4 join=bevel'));
-- output --
LINESTRING(164 1,11.7867965644036 1,1 11.7867965644036,1 195)

-- 15,-15 collected, join=mitre mitre_limit=2.1
SELECT ST_AsText(ST_Collect(
ST_OffsetCurve(geom, 15, 'quad_segs=4 ↔ join=mitre mitre_limit=2.2'),
ST_OffsetCurve(geom, -15, 'quad_segs ↔ 4 join=mitre mitre_limit=2.2')
))
FROM ST_GeomFromText('LINESTRING(164 16,144 16,124 16,104 16,84 16,64 16,44 16,24 16,20 16,16 16,18 16,20 16,40 16 60,16 80,16 100,16 120,16 140,16 160,16 180,16 195)') ↔ As geom;
-- output --
MULTILINESTRING((164 1,11.7867965644036 1,1 11.7867965644036,1 195), (31 195,31 31,164 31))

See Also

ST_Buffer

5.14.15 ST_PointOnSurface

ST_PointOnSurface — Returns a point guaranteed to lie in a polygon or on a geometry.

Synopsis

gamey ST_PointOnSurface(geometry g1);

Description

Returns a POINT guaranteed to intersect a surface.
This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.14.2 // s3.2.18.2

This method implements the SQL/MM specification. SQL-MM 3: 8.1.5, 9.5.6. According to the specs, ST_PointOnSurface works for surface geometries (POLYGONs, MULTIPOLYGONS, CURVED POLYGONS). So PostGIS seems to be extending what the spec allows here. Most databases Oracle, DB II, ESRI SDE seem to only support this function for surfaces. SQL Server 2008 like PostGIS supports for all common geometries.

This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_AsText(ST_PointOnSurface('POINT(0 5)::geometry'));
 st_asext

 POINT(0 5)
 (1 row)

SELECT ST_AsText(ST_PointOnSurface('LINESTRING(0 5, 0 10)::geometry'));
 st_asext

 POINT(0 5)
 (1 row)

SELECT ST_AsText(ST_PointOnSurface('POLYGON((0 0, 0 5, 5 5, 5 0, 0 0))::geometry'));
 st_asext

 POINT(2.5 2.5)
 (1 row)

SELECT ST_AsEWKT(ST_PointOnSurface(ST_GeomFromEWKT('LINESTRING(0 5 1, 0 0 1, 0 10 2)')));
 st_asewkt

 POINT(0 0 1)
 (1 row)
```

See Also

ST_Centroid, ST_PointInsideCircle

5.14.16 ST_Polygonize

ST_Polygonize — Computes a collection of polygons formed from the linework of a set of geometries.

Synopsis

```
geometry ST_Polygonize(geometry set geomfield);
goodetry ST_Polygonize(geometry[] geom_array);
```

Description

Creates a GeometryCollection containing the polygons formed by the constituent linework of a set of geometries. Input linework must be correctly noded for this function to work properly.
Note
To ensure input is fully noded use `ST_Node` on the input geometry before polygonizing.

Note
GeometryCollections are often difficult to deal with with third party tools. Use `ST_Dump` to convert the polygonize result into separate polygons.

Performed by the GEOS module.

Availability: 1.0.0RC1

Examples: Polygonizing single linestrings

```sql
SELECT ST_AsEWKT(ST_Polygonize(the_geom_4269)) As geomtextrep
FROM (SELECT the_geom_4269 FROM ma.suffolk_edges ORDER BY tlid LIMIT 45) As foo;
```

```
geomtextrep

SRID=4269;GEOMETRYCOLLECTION(POLYGON((-71.040878 42.285678,-71.040943 42.2856,-71.04096 42.285752,-71.040878 42.285678)),
POLYGON((-71.17166 42.353675,-71.172026 42.354044,-71.17239 42.354358,-71.171794 42.354971,-71.170511 42.354855,
-71.17112 42.354238,-71.17166 42.353675)))
(1 row)
```

```sql
--Use ST_Dump to dump out the polygonize geoms into individual polygons
SELECT ST_AsEWKT((ST_Dump(foofoo.polycoll)).geom) As geomtextrep
FROM (SELECT ST_Polygonize(the_geom_4269) As polycoll
FROM (SELECT the_geom_4269 FROM ma.suffolk_edges
ORDER BY tlid LIMIT 45) As foo) As foofoo;
```

```
geomtextrep

SRID=4269;POLYGON((-71.040878 42.285678,-71.04096 42.285752,-71.040878 42.285678))
SRID=4269;POLYGON((-71.17166 42.353675,-71.172026 42.354044,-71.17239 42.354358,-71.170511 42.354855,
-71.17112 42.354238,-71.17166 42.353675))
(2 rows)
```

See Also

`ST_Node`, `ST_Dump`

5.14.17 `ST_ReducePrecision`

`ST_ReducePrecision` — Returns a valid geometry with all points rounded to the provided grid tolerance.

Synopsis

`geometry ST_ReducePrecision(geometry g, float8 gridsize);`
Description

Returns a valid geometry with all points rounded to the provided grid tolerance, and features below the tolerance removed. Unlike \texttt{ST\_SnapToGrid} the returned geometry will be valid, with no ring self-intersections or collapsed components.

Availability: 3.1.0 - requires GEOS $\geq$ 3.9.0.

Examples

\begin{verbatim}
SELECT ST_AsText(ST_ReducePrecision('POINT(1.412 19.323)', 0.1));
  st_astext
-----------------
  POINT(1.4 19.3)

SELECT ST_AsText(ST_ReducePrecision('POINT(1.412 19.323)', 1.0));
  st_astext
-------------
  POINT(1 19)

SELECT ST_AsText(ST_ReducePrecision('POINT(1.412 19.323)', 10));
  st_astext
-------------
  POINT(0 20)
\end{verbatim}

See Also

\texttt{ST\_SnapToGrid}, \texttt{ST\_Simplify}, \texttt{ST\_SimplifyVW}

5.14.18 \textbf{ST\_SharedPaths}

\texttt{ST\_SharedPaths} — Returns a collection containing paths shared by the two input linestrings/multilinestrings.

Synopsis

\begin{verbatim}
geometry \texttt{ST\_SharedPaths}(geometry lineal1, geometry lineal2);
\end{verbatim}

Description

Returns a collection containing paths shared by the two input geometries. Those going in the same direction are in the first element of the collection, those going in the opposite direction are in the second element. The paths themselves are given in the direction of the first geometry.

Performed by the GEOS module.

Availability: 2.0.0

Examples: Finding shared paths
A multilinestring and a linestring

SELECT ST_AsText(
  ST_SharedPaths(
    ST_GeomFromText('MULTILINESTRING((26 125,26 200,126 200,126 125,26 125),
                           (51 150,101 150,76 175,51 150))'),
    ST_GeomFromText('LINESTRING(151 100,126 156.25,126 125,90 161, 76 175)')
  )
) As wkt

wkt

GEOMETRYCOLLECTION(MULTILINESTRING((126 156.25,126 125),
                                  (101 150,90 161),(90 161,76 175)),MULTILINESTRING EMPTY)
--- same example but linestring orientation flipped
SELECT ST_AsText(
    ST_SharedPaths(
        ST_GeomFromText('LINESTRING(76 175,90 161,126 125,126 156.25,151 100)'),
        ST_GeomFromText('MULTILINESTRING((26 125,26 200,126 200,126 125),(51 150,101 150,76 175,51 150))')
    )
) As wkt

wkt

GEOMETRYCOLLECTION(MULTILINESTRING EMPTY,
    MULTILINESTRING((76 175,90 161),(90 161,101 150),(126 125,126 156.25)))

See Also

ST_Dump, ST_GeometryN, ST_NumGeometries

5.14.19 ST_Simplify

ST_Simplify — Returns a simplified version of a geometry, using the Douglas-Peucker algorithm.

Synopsis

gamey ST_Simplify(geomA, float tolerance, boolean preserveCollapsed);

Description

Returns a "simplified" version of the given geometry using the Douglas-Peucker algorithm. Will actually do something only with (multi)lines and (multi)polygons but you can safely call it with any kind of geometry. Since simplification occurs on a object-by-object basis you can also feed a GeometryCollection to this function.

The "preserve collapsed" flag will retain objects that would otherwise be too small given the tolerance. For example, a 1m long line simplified with a 10m tolerance. If the preserve flag is given, the line will not disappear. This flag is useful for rendering engines, to avoid having large numbers of very small objects disappear from a map leaving surprising gaps.

Note

Note that returned geometry might lose its simplicity (see ST_IsSimple)

Note

Note topology may not be preserved and may result in invalid geometries. Use (see ST_SimplifyPreserveTopology) to preserve topology.

Availability: 1.2.2
Examples

A circle simplified too much becomes a triangle, medium an octagon,

```sql
SELECT ST_Npoints(the_geom) AS np_before,
 ST_NPoints(ST_Simplify(the_geom,0.1)) AS np01_notbadcircle,
 ST_NPoints(ST_Simplify(the_geom,0.5)) AS np05_notquitecircle,
 ST_NPoints(ST_Simplify(the_geom,1)) AS np1_octagon,
 ST_NPoints(ST_Simplify(the_geom,10)) AS np10_triangle,
 (ST_Simplify(the_geom,100) is null) AS np100_geometrygoesaway
FROM
 (SELECT ST_Buffer('POINT(1 3)', 10,12) AS the_geom) AS foo;
```

<table>
<thead>
<tr>
<th>np_before</th>
<th>np01_notbadcircle</th>
<th>np05_notquitecircle</th>
<th>np1_octagon</th>
<th>np10_triangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>33</td>
<td>17</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

See Also

ST_IsSimple, ST_SimplifyPreserveTopology, Topology ST_Simplify

5.14.20 ST_SimplifyPreserveTopology

ST_SimplifyPreserveTopology — Returns a simplified and valid version of a geometry, using the Douglas-Peucker algorithm.

Synopsis

```sql
geometry ST_SimplifyPreserveTopology(geometry geomA, float tolerance);
```

Description

Returns a "simplified" version of the given geometry using the Douglas-Peucker algorithm. Will avoid creating derived geometries (polygons in particular) that are invalid. Will actually do something only with (multi)lines and (multi)polygons but you can safely call it with any kind of geometry. Since simplification occurs on a object-by-object basis you can also feed a GeometryCollection to this function.

Performed by the GEOS module.

Availability: 1.3.3

Examples

Same example as Simplify, but we see Preserve Topology prevents oversimplification. The circle can at most become a square.

```sql
SELECT ST_Npoints(the_geom) AS np_before, ST_NPoints(ST_SimplifyPreserveTopology(the_geom AS np1_notbadcircle,
 ST_SimplifyPreserveTopology(the_geom,0.5)) AS np05_notquitecircle,
 ST_SimplifyPreserveTopology(the_geom,1)) AS np1_octagon,
 ST_SimplifyPreserveTopology(the_geom,10)) AS np10_square,
 ST_SimplifyPreserveTopology(the_geom,100)) AS np100_stillsquare
FROM (SELECT ST_Buffer('POINT(1 3)', 10,12) AS the_geom) AS foo;
```

---result---

<table>
<thead>
<tr>
<th>np_before</th>
<th>np01_notbadcircle</th>
<th>np05_notquitecircle</th>
<th>np1_octagon</th>
<th>np10_square</th>
<th>np100_stillsquare</th>
</tr>
</thead>
</table>
5.14.21  ST_SimplifyVW

ST_SimplifyVW — Returns a simplified version of a geometry, using the Visvalingam-Whyatt algorithm

Synopsis

gamey ST_SimplifyVW(geometry geomA, float tolerance);

Description

Returns a "simplified" version of the given geometry using the Visvalingam-Whyatt algorithm. Will actually do something only with (multi)lines and (multi)polygons but you can safely call it with any kind of geometry. Since simplification occurs on a object-by-object basis you can also feed a GeometryCollection to this function.

Note

Note that returned geometry might lose its simplicity (see ST_IsSimple)

Note

Note topology may not be preserved and may result in invalid geometries. Use (see ST_SimplifyPreserveTopology) to preserve topology.

Note

This function handles 3D and the third dimension will affect the result.

Availability: 2.2.0

Examples

A LineString is simplified with a minimum area threshold of 30.

```sql
SELECT ST_AsText(ST_SimplifyVW(geom, 30)) AS simplified
FROM (SELECT 'LINESTRING(5 2, 3 8, 6 20, 7 25, 10 10)'::geometry geom) AS foo;
```

```sql
--result
simplified

LINESTRING(5 2, 7 25, 10 10)
```
See Also

ST_SetEffectiveArea, ST_Simplify, ST_SimplifyPreserveTopology, Topology ST_Simplify

5.14.22 ST_ChaikinSmoothing

ST_ChaikinSmoothing — Returns a smoothed version of a geometry, using the Chaikin algorithm

Synopsis

geometry ST_ChaikinSmoothing(geom, integer nIterations = 1, boolean preserveEndPoints = false);

Description

Returns a "smoothed" version of the given geometry using the Chaikin algorithm. See Chaikins-Algorithm for an explanation of the process. For each iteration the number of vertex points will double. The function puts new vertex points at 1/4 of the line before and after each point and removes the original point. To reduce the number of points use one of the simplification functions on the result. The new points gets interpolated values for all included dimensions, also z and m.

Second argument, number of iterations is limited to max 5 iterations

Note third argument is only valid for polygons, and will be ignored for linestrings

This function handles 3D and the third dimension will affect the result.

**Note**

Note that returned geometry will get more points than the original. To reduce the number of points again use one of the simplification functions on the result. (see ST_Simplify and ST_SimplifyVW)

Availability: 2.5.0

Examples

A triangle is smoothed

```sql
select ST_AsText(ST_ChaikinSmoothing(geom)) smoothed
FROM (SELECT 'POLYGON((0 0, 8 8, 0 16, 0 0))'::geometry geom) As foo;
```

<table>
<thead>
<tr>
<th>smoothed</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLYGON((2 2, 6 6, 6 10, 2 14, 0 12, 0 4, 2))</td>
</tr>
</tbody>
</table>

See Also

ST_Simplify, ST_SimplifyVW

5.14.23 ST_SetEffectiveArea

ST_SetEffectiveArea — Sets the effective area for each vertex, using the Visvalingam-Whyatt algorithm.
Synopsis

```
geometry ST_SetEffectiveArea(geometry geomA, float threshold = 0, integer set_area = 1);
```

Description

Sets the effective area for each vertex, using the Visvalingam-Whyatt algorithm. The effective area is stored as the M-value of the vertex. If the optional "threshold" parameter is used, a simplified geometry will be returned, containing only vertices with an effective area greater than or equal to the threshold value.

This function can be used for server-side simplification when a threshold is specified. Another option is to use a threshold value of zero. In this case, the full geometry will be returned with effective areas as M-values, which can be used by the client to simplify very quickly.

Will actually do something only with (multi)lines and (multi)polygons but you can safely call it with any kind of geometry. Since simplification occurs on a object-by-object basis you can also feed a GeometryCollection to this function.

Note

Note that returned geometry might lose its simplicity (see ST_IsSimple)

Note

Note topology may not be preserved and may result in invalid geometries. Use (see ST_SimplifyPreserveTopology) to preserve topology.

Note

The output geometry will lose all previous information in the M-values

Note

This function handles 3D and the third dimension will affect the effective area

Availability: 2.2.0

Examples

Calculating the effective area of a LineString. Because we use a threshold value of zero, all vertices in the input geometry are returned.

```
select ST_AsText(ST_SetEffectiveArea(geom)) all_pts, ST_AsText(ST_SetEffectiveArea(geom,30) as thrshld_30
FROM (SELECT 'LINESTRING(5 2, 3 8, 6 20, 7 25, 10 10)'::geometry geom) As foo;
```

```
<table>
<thead>
<tr>
<th>all_pts</th>
<th>thrshld_30</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINESTRING M (5 2 3.40282346638529e+38,3 8 29,6 20 1.5,7 25 49.5,10 10 3.40282346638529e+38)</td>
<td>LINESTRING M (5 2 3.40282346638529e+38,7 25 49.5,10 10 3.40282346638529e+38)</td>
</tr>
</tbody>
</table>
```
See Also

ST_SimplifyVW

5.14.24 ST_VoronoiLines

ST_VoronoiLines — Returns the boundaries of the Voronoi diagram of the vertices of a geometry.

Synopsis

geometry ST_VoronoiLines( g1 geometry , tolerance float8 , extend_to geometry );

Description

ST_VoronoiLines computes a two-dimensional Voronoi diagram from the vertices of the supplied geometry and returns the boundaries between cells in that diagram as a MultiLineString. Returns null if input geometry is null. Returns an empty geometry collection if the input geometry contains only one vertex. Returns an empty geometry collection if the extend_to envelope has zero area.

Optional parameters:

- 'tolerance' : The distance within which vertices will be considered equivalent. Robustness of the algorithm can be improved by supplying a nonzero tolerance distance. (default = 0.0)
- 'extend_to' : If a geometry is supplied as the "extend_to" parameter, the diagram will be extended to cover the envelope of the "extend_to" geometry, unless that envelope is smaller than the default envelope (default = NULL, default envelope is boundingbox of input geometry extended by about 50% in each direction).

Performed by the GEOS module.

Availability: 2.3.0

Examples
Voronoi lines with tolerance of 30 units

SELECT ST_VoronoiLines(geom, 30) As geom
FROM (SELECT 'MULTIPOINT (50 30, 60 30, 100 100, 10 150, 110 120)'::geometry As geom ) AS g

-- ST_AsText output
MULTILINestring((135.555555555556 270, 36.8181818181818 92.2727272727273) ,
(36.8181818181818 92.2727272727273, -110 43.3333333333333),
(230 -45.7142857142858, 36.8181818181818 92.2727272727273))

See Also

ST_DelaunayTriangles, ST_VoronoiPolygons, ST_Collect

5.14.25  ST_VoronoiPolygons

ST_VoronoiPolygons — Returns the cells of the Voronoi diagram of the vertices of a geometry.

Synopsis

g1 geometry ST_VoronoiPolygons( g1 geometry , tolerance float8 , extend_to geometry );

Description

ST_VoronoiPolygons computes a two-dimensional Voronoi diagram from the vertices of the supplied geometry. The result is a GeometryCollection of Polygons that covers an envelope larger than the extent of the input vertices. Returns null if input geometry is null. Returns an empty geometry collection if the input geometry contains only one vertex. Returns an empty geometry collection if the extend_to envelope has zero area.

Optional parameters:

• 'tolerance' : The distance within which vertices will be considered equivalent. Robustness of the algorithm can be improved by supplying a nonzero tolerance distance. (default = 0.0)
• 'extend_to': If a geometry is supplied as the "extend_to" parameter, the diagram will be extended to cover the envelope of the "extend_to" geometry, unless that envelope is smaller than the default envelope (default = NULL, default envelope is bounding box of input geometry extended by about 50% in each direction).

Performed by the GEOS module.

Availability: 2.3.0

Examples

```sql
SELECT ST_VoronoiPolygons(geom) As geom
FROM (SELECT 'MULTIPOINT (50 30, 60 30, 100 100, 10 150, 110 120)'::geometry As geom) As g;

-- ST_AsText output
GEOMETRYCOLLECTION(POLYGON((-110 43.3333333333333,-110 270,100.5 270,59.3478260869565 -110 43.3333333333333)),
POLYGON((-90,-110 -90,-110 43.3333333333333,59.3478260869565 -110 43.3333333333333),
POLYGON((230 47.5,230 -20.7142857142857,59.3478260869565 132.826086956522,230 47.5)),
POLYGON((230 47.5,230 -20.7142857142857,59.3478260869565 132.826086956522,230 47.5)),
POLYGON((80 270,230 270,230 47.5,59.3478260869565 132.826086956522,80 270)))
```

**Points overlaid on top of Voronoi diagram**
SELECT ST_VoronoiPolygons(geom, 30) As geom
FROM (SELECT 'MULTIPOINT (50 30, 60 30, 100 100, 10 150, 110 120)'::geometry As geom ) AS g;

-- ST_AsText output
GEOMETRYCOLLECTION(POLYGON((-110 43.3333333333333,-110 270,100.5 270,59.3478260869565 132.826086956522,36.8181818181818 92.2727272727273,-110 43.3333333333333)),
POLYGON((230 47.5,230 -45.7142857142858,230 -90,-110 -90,-110 43.3333333333333,36.8181818181818 92.2727272727273,-110 43.3333333333333)),
POLYGON((230 47.5,230 -45.7142857142858,230 -90,-110 -90,-110 43.3333333333333,36.8181818181818 92.2727272727273,-110 43.3333333333333)),
POLYGON((100.5 270,230 270,230 47.5,59.3478260869565 132.826086956522,100.5 270)))
Voronoi with tolerance of 30 units as MultiLineString

```
SELECT ST_VoronoiLines(geom, 30) As geom
FROM (SELECT 'MULTIPOINT (50 30, 60 30, 100 100, 10 150, 110 120)\''::geometry As geom) ←
 AS g
-- ST_AsText output
MULTILINESTRING((135.555555555556 270,36.8181818181818 92.2727272727273) ←
 , (36.8181818181818 92.2727272727273, -110 43.3333333333333), (230 ←
 -45.7142857142858, 36.8181818181818 92.2727272727273))
```

See Also

ST_DelaunayTriangles, ST_VoronoiLines, ST_Collect

5.15 Affine Transformations

5.15.1 ST_Affine

ST_Affine — Apply a 3D affine transformation to a geometry.

**Synopsis**

```
geometry ST_Affine(geometry geomA, float a, float b, float c, float d, float e, float f, float g, float h, float i, float xoff, float yoff, float zoff);
geometry ST_Affine(geometry geomA, float a, float b, float d, float e, float xoff, float yoff);
```

**Description**

Applies a 3D affine transformation to the geometry to do things like translate, rotate, scale in one step.

Version 1: The call

```
ST_Affine(geom, a, b, c, d, e, f, g, h, i, xoff, yoff, zoff)
```

represents the transformation matrix
and the vertices are transformed as follows:
\[
x' = a\cdot x + b\cdot y + c\cdot z + xoff \\
y' = d\cdot x + e\cdot y + f\cdot z + yoff \\
z' = g\cdot x + h\cdot y + i\cdot z + zoff
\]

All of the translate / scale functions below are expressed via such an affine transformation.

Version 2: Applies a 2d affine transformation to the geometry. The call

```
ST_Affine(geom, a, b, d, e, xoff, yoff)
```

represents the transformation matrix

\[
/ a b 0 xoff \
| d e 0 yoff |
| 0 0 1 0 |
\] 

and the vertices are transformed as follows:
\[
x' = a\cdot x + b\cdot y + xoff \\
y' = d\cdot x + e\cdot y + yoff \\
z' = z
\]

This method is a subcase of the 3D method above.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

Availability: 1.1.2. Name changed from Affine to ST_Affine in 1.2.2

**Note**
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
- This function supports 3d and will not drop the z-index.
- This method supports Circular Strings and Curves

**Examples**

```
-- Rotate a 3d line 180 degrees about the z axis. Note this is long-hand for doing ←
ST_Rotate(); SELECT ST_AsEWKT(ST_Affine(the_geom, cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), 0, 0, 1, 0, 0, 0)) As using_affine,
ST_AsEWKT(ST_Rotate(the_geom, pi())) As using_rotate
FROM (SELECT ST_GeomFromEWKT('LINESTRING(1 2 3, 1 4 3)') As the_geom) As foo;
```

using_affine | using_rotate
--Rotate a 3d line 180 degrees in both the x and z axis
SELECT ST_AsEWKT(ST_Affine(the_geom, cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), 0, 0, 0))
FROM (SELECT ST_GeomFromEWKT('LINESTRING(1 2 3, 1 4 3)') As the_geom) As foo;

ST_Rotate, ST_Scale, ST_Translate, ST_TransScale

5.15.2 ST_Rotate

ST_Rotate — Rotates a geometry about an origin point.

Synopsis

geometry ST_Rotate(geometry geomA, float rotRadians);
geometry ST_Rotate(geometry geomA, float rotRadians, float x0, float y0);
geometry ST_Rotate(geometry geomA, float rotRadians, geometry pointOrigin);

Description

Rotates geometry rotRadians counter-clockwise about the origin point. The rotation origin can be specified either as a POINT geometry, or as x and y coordinates. If the origin is not specified, the geometry is rotated about POINT(0 0).

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

Enhanced: 2.0.0 additional parameters for specifying the origin of rotation were added.

Availability: 1.1.2. Name changed from Rotate to ST_Rotate in 1.2.2

- This function supports 3d and will not drop the z-index.
- This method supports Circular Strings and Curves
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

--Rotate 180 degrees
SELECT ST_AsEWKT(ST_Rotate('LINESTRING (50 160, 50 50, 100 50)', pi()));

---

LINESTRING(-1 -2 3,-1 -4 3) | LINESTRING(-1 -2 3,-1 -4 3)
(1 row)

 LINESTRING(-1 -2 -3,-1 -4 -3)
(1 row)
--Rotate 30 degrees counter-clockwise at x=50, y=160
SELECT ST_AsEWKT(ST_Rotate('LINESTRING (50 160, 50 50, 100 50)', pi()/6, 50, 160));
   st_asewkt
______________________________
LINESTRING(50 160,105 64.7372055837117,148.301270189222 89.7372055837117)
   (1 row)

--Rotate 60 degrees clockwise from centroid
SELECT ST_AsEWKT(ST_Rotate(geom, -pi()/3, ST_Centroid(geom)))
FROM (SELECT 'LINESTRING (50 160, 50 50, 100 50)'::geometry AS geom) AS foo;
   st_asewkt
______________________________
LINESTRING(116.4225 130.6721,21.1597 75.6721,46.1597 32.3708)
   (1 row)

See Also

ST_Affine, ST_RotateX, ST_RotateY, ST_RotateZ

5.15.3  ST_RotateX

ST_RotateX — Rotates a geometry about the X axis.

Synopsis

geometry ST_RotateX(geometry geomA, float rotRadians);

Description

Rotates a geometry geomA - rotRadians about the X axis.

Note

ST_RotateX(geomA, rotRadians) is short-hand for ST_Affine(geomA, 1, 0, 0, 0, cos(rotRadians), -sin(rotRadians), 0, sin(rotRadians), cos(rotRadians), 0, 0, 0).

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.1.2. Name changed from RotateX to ST_RotateX in 1.2.2

This function supports Polyhedral surfaces.
This function supports 3d and will not drop the z-index.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

--Rotate a line 90 degrees along x-axis
SELECT ST_AsEWKT(ST_RotateX(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), pi()/2));
   st_asewkt
______________________________
LINESTRING(1 -3 2,1 -1 1)
See Also

ST_Affine, ST_RotateY, ST_RotateZ

5.15.4 ST_RotateY

ST_RotateY — Rotates a geometry about the Y axis.

Synopsis

```
geometry ST_RotateY(geometry geomA, float rotRadians);
```

Description

Rotates a geometry geomA - rotRadians about the y axis.

```
Note
ST_RotateY(geomA, rotRadians) is short-hand for ST_Affine(geomA, cos(rotRadians), 0, sin(rotRadians), 0, 1, 0, -sin(rotRadians), 0, cos(rotRadians), 0, 0, 0).
```

Availability: 1.1.2. Name changed from RotateY to ST_RotateY in 1.2.2
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

✔ This function supports Polyhedral surfaces.
✔ This function supports 3d and will not drop the z-index.
✔ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

```
-- Rotate a line 90 degrees along y-axis
SELECT ST_AsEWKT(ST_RotateY(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), pi()/2));
```

```
LINESTRING(3 2 -1,1 1 -1)
```

See Also

ST_Affine, ST_RotateX, ST_RotateZ

5.15.5 ST_RotateZ

ST_RotateZ — Rotates a geometry about the Z axis.

Synopsis

```
geometry ST_RotateZ(geometry geomA, float rotRadians);
```

Description

Rotates a geometry geomA - rotRadians about the Z axis.

Note
This is a synonym for ST_Rotate

Note
ST_RotateZ(geomA, rotRadians) is short-hand for
SELECT ST_Affine(geomA, cos(rotRadians), -sin(rotRadians), 0, sin(rotRadians), cos(rotRadians), 0,
0, 0, 1, 0, 0, 0).

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.1.2. Name changed from RotateZ to ST_RotateZ in 1.2.2

Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

```sql
-- Rotate a line 90 degrees along z-axis
SELECT ST_AsEWKT(ST_RotateZ(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), pi()/2));
```

```text
st_asewkt

LINESTRING(-2 1 3,-1 1 1)
```

```sql
-- Rotate a curved circle around z-axis
SELECT ST_AsEWKT(ST_RotateZ(the_geom, pi()/2))
FROM (SELECT ST_LineToCurve(ST_Buffer(ST_GeomFromText('POINT(234 567)'), 3)) As the_geom)
```  

```text
st_asewkt
--
CURVEPOLYGON(CIRCULARSTRING(-567 237,-564.87867965644 236.12132034356,-564 234,-569.12132034356 231.87867965644,-567 237))
```

See Also

ST_Affine, ST_RotateX, ST_RotateY
5.15.6  ST_Scale

ST_Scale — Scales a geometry by given factors.

Synopsis

geometry ST_Scale(geometry geomA, float XFactor, float YFactor, float ZFactor);
guessory ST_Scale(geometry geomA, float XFactor, float YFactor);
geometry ST_Scale(geometry geom, geometry factor);
geometry ST_Scale(geometry geom, geometry factor, geometry origin);

Description

Scales the geometry to a new size by multiplying the ordinates with the corresponding factor parameters.

The version taking a geometry as the factor parameter allows passing a 2d, 3dm, 3dz or 4d point to set scaling factor for all supported dimensions. Missing dimensions in the factor point are equivalent to no scaling the corresponding dimension.

The three-geometry variant allows a "false origin" for the scaling to be passed in. This allows "scaling in place", for example using the centroid of the geometry as the false origin. Without a false origin, scaling takes place relative to the actual origin, so all coordinates are just multiplied by the scale factor.

**Note**

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Availability: 1.1.0.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.2.0 support for scaling all dimension (factor parameter) was introduced.
Enhanced: 2.5.0 support for scaling relative to a local origin (origin parameter) was introduced.

This function supports Polyhedral surfaces.
This function supports 3d and will not drop the z-index.
This method supports Circular Strings and Curves
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
This function supports M coordinates.

Examples

```sql
--Version 1: scale X, Y, Z
SELECT ST_AsEWKT(ST_Scale(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), 0.5, 0.75, 0.8));
st_asewkt

LINESTRING(0.5 1.5 2.4,0.5 0.75 0.8)

--Version 2: Scale X Y
SELECT ST_AsEWKT(ST_Scale(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), 0.5, 0.75));
st_asewkt

```
LINESTRING(0.5 1.5 3,0.5 0.75 1)

--Version 3: Scale X Y Z M
SELECT ST_AsEWKT(ST_Scale(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)'),
    ST_MakePoint(0.5, 0.75, 2, -1)));
st_asewkt
----------------------------------------
LINESTRING(0.5 1.5 6 -4,0.5 0.75 2 -1)

--Version 4: Scale X Y using false origin
SELECT ST_AsText(ST_Scale('LINESTRING(1 1, 2 2)', 'POINT(2 2)', 'POINT(1 1)::geometry'));
st_astext
---------------------
LINESTRING(1 1,3 3)

See Also

ST_Affine, ST_TransScale

5.15.7 ST_Translate

ST_Translate — Translates a geometry by given offsets.

Synopsis

geometry ST_Translate(geometry g1, float deltax, float deltay);
geometry ST_Translate(geometry g1, float deltax, float deltay, float deltaz);

Description

Returns a new geometry whose coordinates are translated delta x,delta y,delta z units. Units are based on the units defined in spatial reference (SRID) for this geometry.

Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Availability: 1.2.2

☑️ This function supports 3d and will not drop the z-index.
☑️ This method supports Circular Strings and Curves

Examples

Move a point 1 degree longitude

SELECT ST_AsText(ST_Translate(ST_GeomFromText('POINT(-71.01 42.37)',4326),1,0)) As wgs_transgeomtxt;

wgs_transgeomtxt
---------------------
POINT(-70.01 42.37)
Move a linestring 1 degree longitude and 1/2 degree latitude

```sql
SELECT ST_AsText(ST_Translate(ST_GeomFromText('LINESTRING(-71.01 42.37,-71.11 42.38)',4326),1,0.5)) As wgs_transgeomtxt;
```

```sql
wgs_transgeomtxt

LINESTRING(-70.01 42.87,-70.11 42.88)
```

Move a 3d point

```sql
SELECT ST_AsEWKT(ST_Translate(CAST('POINT(0 0 0)' As geometry), 5, 12,3));
```

```sql
st_asewkt

POINT(5 12 3)
```

Move a curve and a point

```sql
SELECT ST_AsText(ST_Translate(ST_Collect('CURVEPOLYGON(CIRCULARSTRING(4 3,3.12 0.878,1 0,-1.121 5.1213,7 9,9 4 3))','POINT(1 3)'),1,2));
```

```sql
--
GEOMETRYCOLLECTION(CURVEPOLYGON(CIRCULARSTRING(5 5,4.12 2.878,2 2,-0.121 7.1213,7 9,9 11,5 5)),POINT(2 5))
```

See Also

ST_Affine, ST_AsText, ST_GeomFromText

### 5.15.8 ST_TransScale

ST_TransScale — Translates and scales a geometry by given offsets and factors.

#### Synopsis

```sql
geometry ST_TransScale(geometry geomA, float deltaX, float deltaY , float XFactor, float YFactor);
```

#### Description

Translates the geometry using the deltaX and deltaY args, then scales it using the XFactor, YFactor args, working in 2D only.

- **Note**
  - ST_TransScale(geomA, deltaX, deltaY, XFactor, YFactor) is short-hand for ST_Affine(geomA, XFactor, 0, 0, 0, YFactor, 0, 0, 0, 1, deltaX*XFactor, deltaY*YFactor, 0).

- **Note**
  - Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

#### Availability

- 1.1.0.

- This function supports 3d and will not drop the z-index.

- This method supports Circular Strings and Curves
Examples

```
SELECT ST_AsEWKT(ST_TransScale(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), 0.5, 1, 1, 2));
-- st_asewkt

LINESTRING(1.5 6 3, 1.5 4 1)
```

```
-- Buffer a point to get an approximation of a circle, convert to curve and then translate ← 1, 2 and scale it 3, 4
SELECT ST_AsText(ST_TransScale(ST_LineToCurve(ST_Buffer('POINT(234 567)', 3)), 1, 2, 3, 4));
-- st_astext
--
CURVEPOLYGON(CIRCULARSTRING(714 2276, 711.363961030679 2267.51471862576, 705 2264, 698.636038969321 2284.48528137424, 714 2276))
```

See Also

ST_Affine, ST_Translate

5.16 Clustering Functions

5.16.1 ST_ClusterDBSCAN

ST_ClusterDBSCAN — Window function that returns a cluster id for each input geometry using the DBSCAN algorithm.

Synopsis

```
integer ST_ClusterDBSCAN(geometry winset geom, float8 eps, integer minpoints);
```

Description

Returns cluster number for each input geometry, based on a 2D implementation of the Density-based spatial clustering of applications with noise (DBSCAN) algorithm. Unlike ST_ClusterKMeans, it does not require the number of clusters to be specified, but instead uses the desired distance (eps) and density (minpoints) parameters to construct each cluster.

An input geometry will be added to a cluster if it is either:

- A "core" geometry, that is within eps distance of at least minpoints input geometries (including itself) or
- A "border" geometry, that is within eps distance of a core geometry.

Note that border geometries may be within eps distance of core geometries in more than one cluster; in this case, either assignment would be correct, and the border geometry will be arbitrarily assigned to one of the available clusters. In these cases, it is possible for a correct cluster to be generated with fewer than minpoints geometries. When assignment of a border geometry is ambiguous, repeated calls to ST_ClusterDBSCAN will produce identical results if an ORDER BY clause is included in the window definition, but cluster assignments may differ from other implementations of the same algorithm.

```
Note
Input geometries that do not meet the criteria to join any other cluster will be assigned a cluster number of NULL.
```

Availability: 2.3.0
Examples

Assigning a cluster number to each polygon within 50 meters of each other. Require at least 2 polygons per cluster

```sql
SELECT name, ST_ClusterDBSCAN(geom, eps := 50, minpoints := 2) over () AS cid
FROM boston_polys WHERE name > '' AND building > ''
AND ST_DWithin(geom,
ST_Transform(
ST_GeomFromText('POINT (-71.04054 42.35141)', 4326), 26986),
500);
```

<table>
<thead>
<tr>
<th>name</th>
<th>bucket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manulife Tower</td>
<td>0</td>
</tr>
<tr>
<td>Park Lane Seaport I</td>
<td>0</td>
</tr>
<tr>
<td>Park Lane Seaport II</td>
<td>0</td>
</tr>
<tr>
<td>Renaissance Boston Waterfront Hotel</td>
<td>0</td>
</tr>
<tr>
<td>Seaport Boston Hotel</td>
<td>0</td>
</tr>
<tr>
<td>Seaport Hotel &amp; World Trade Center</td>
<td>0</td>
</tr>
<tr>
<td>Waterside Place</td>
<td>0</td>
</tr>
<tr>
<td>World Trade Center East</td>
<td>0</td>
</tr>
<tr>
<td>100 Northern Avenue</td>
<td>1</td>
</tr>
<tr>
<td>100 Pier 4</td>
<td>1</td>
</tr>
<tr>
<td>The Institute of Contemporary Art</td>
<td>1</td>
</tr>
<tr>
<td>101 Seaport</td>
<td>2</td>
</tr>
<tr>
<td>District Hall</td>
<td>2</td>
</tr>
<tr>
<td>One Marina Park Drive</td>
<td>2</td>
</tr>
<tr>
<td>Twenty Two Liberty</td>
<td>2</td>
</tr>
<tr>
<td>Vertex</td>
<td>2</td>
</tr>
<tr>
<td>Vertex</td>
<td>2</td>
</tr>
<tr>
<td>Watermark Seaport</td>
<td>2</td>
</tr>
<tr>
<td>Blue Hills Bank Pavilion</td>
<td>NULL</td>
</tr>
<tr>
<td>World Trade Center West</td>
<td>NULL</td>
</tr>
<tr>
<td>(20 rows)</td>
<td></td>
</tr>
</tbody>
</table>

Combining parcels with the same cluster number into a single geometry. This uses named argument calling

```sql
SELECT cid, ST_Collect(geom) AS cluster_geom, array_agg(parcel_id) AS ids_in_cluster FROM (SELECT parcel_id, ST_ClusterDBSCAN(geom, eps := 0.5, minpoints := 5) over () AS cid, geom FROM parcels) sq GROUP BY cid;
```
5.16.2 ST_ClusterIntersecting

ST_ClusterIntersecting — Aggregate function that clusters the input geometries into connected sets.

Synopsis

geometry[] ST_ClusterIntersecting(geometry set g);

Description

ST_ClusterIntersecting is an aggregate function that returns an array of GeometryCollections, where each GeometryCollection represents an interconnected set of geometries.

Availability: 2.2.0

Examples

WITH testdata AS
  (SELECT unnest(ARRAY['LINESTRING (0 0, 1 1))::geometry,
                  'LINESTRING (5 5, 4 4))::geometry,
                  'LINESTRING (6 6, 7 7))::geometry,
                  'LINESTRING (0 0, -1 -1))::geometry,
                  'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))'::geometry]) AS geom
SELECT ST_AsText(unnest(ST_ClusterIntersecting(geom))) FROM testdata;

--result

st_astext
---------
GEOMETRYCOLLECTION(LINESTRING(0 0,1 1),LINESTRING(5 5,4 4),LINESTRING(0 0,-1 -1),POLYGON((0 ←
0,4,0,4,4,0,4,0,0)))
GEOMETRYCOLLECTION(LINESTRING(6 6,7 7))

See Also

ST_DWithin, ST_ClusterKMeans, ST_ClusterWithin

5.16.3 ST_ClusterKMeans

ST_ClusterKMeans — Window function that returns a cluster id for each input geometry using the K-means algorithm.

Synopsis

integer ST_ClusterKMeans(geometry winset geom, integer number_of_clusters);
Description

Returns 2D distance based K-means cluster number for each input geometry. The distance used for clustering is the distance between the centroids for 2D geometries, and distance between bounding box centers for 3D geometries. For POINT inputs, M coordinate will be treated as weight of input and has to be larger than 0.

Enhanced: 3.1.0 Support for 3D geometries and weights

Availability: 2.3.0

Examples

Generate dummy set of parcels for examples

```sql
CREATE TABLE parcels AS
SELECT lpad((row_number() over())::text,3,'0') As parcel_id, geom,
('{residential, commercial}'::text)[1 + mod(row_number() OVER(),2)] As type
FROM
 ST_Subdivide(ST_Buffer('SRID=3857;LINESTRING(40 100, 98 100, 100 150, 60 90)'::geometry ←
 40, 'endcap=square'),12) As geom;
```

Original Parcels

```
-- Partitioning parcel clusters by type
SELECT ST_ClusterKMeans(geom,3) over (PARTITION BY type) As cid, parcel_id, type
FROM parcels;
-- result
<table>
<thead>
<tr>
<th>cid</th>
<th>parcel_id</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>005</td>
<td>commercial</td>
</tr>
<tr>
<td>1</td>
<td>003</td>
<td>commercial</td>
</tr>
<tr>
<td>2</td>
<td>007</td>
<td>commercial</td>
</tr>
<tr>
<td>0</td>
<td>001</td>
<td>commercial</td>
</tr>
<tr>
<td>1</td>
<td>004</td>
<td>residential</td>
</tr>
<tr>
<td>0</td>
<td>002</td>
<td>residential</td>
</tr>
<tr>
<td>2</td>
<td>006</td>
<td>residential</td>
</tr>
</tbody>
</table>
```

(7 rows)
-- Clustering points around antimeridian can be done in 3D XYZ CRS, EPSG:4978:

SELECT ST_ClusterKMeans(ST_Transform(ST_Force3D(geom), 4978), 3) over () AS cid, parcel_id, type
FROM parcels;

-- result

```
<table>
<thead>
<tr>
<th>cid</th>
<th>parcel_id</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>001</td>
<td>commercial</td>
</tr>
<tr>
<td>2</td>
<td>002</td>
<td>residential</td>
</tr>
<tr>
<td>0</td>
<td>003</td>
<td>commercial</td>
</tr>
<tr>
<td>1</td>
<td>004</td>
<td>residential</td>
</tr>
<tr>
<td>0</td>
<td>005</td>
<td>commercial</td>
</tr>
<tr>
<td>2</td>
<td>006</td>
<td>residential</td>
</tr>
<tr>
<td>0</td>
<td>007</td>
<td>commercial</td>
</tr>
</tbody>
</table>
```

(7 rows)

See Also

ST_ClusterDBSCAN, ST_ClusterIntersecting, ST_ClusterWithin, ST_Subdivide

5.16.4 ST_ClusterWithin

ST_ClusterWithin — Aggregate function that clusters the input geometries by separation distance.

Synopsis

goldenrod[geometry[]] ST_ClusterWithin(geom set g, float8 distance);

description

ST_ClusterWithin is an aggregate function that returns an array of GeometryCollections, where each GeometryCollection represents a set of geometries separated by no more than the specified distance. (Distances are Cartesian distances in the units of the SRID.)

Availability: 2.2.0

Examples

WITH testdata AS
  (SELECT unnest(ARRAY['LINESTRING (0 0, 1 1)'::geometry, 'LINESTRING (5 5, 4 4)'::geometry, 'LINESTRING (6 6, 7 7)'::geometry, 'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))'::geometry]) AS geom)
SELECT ST_AsText(unnest(ST_ClusterWithin(geom, 1.4))) FROM testdata;

-- result

```
st_astext

```

(7 rows)
GEOMETRYCOLLECTION(LINESTRING(0 0,1 1),LINESTRING(5 5,4 4),LINESTRING(0 0,-1 -1),POLYGON((0 0,4 0,4 4,0 4,0 0)))
GEOMETRYCOLLECTION(LINESTRING(6 6,7 7))

See Also
ST_ClusterDBSCAN, ST_ClusterKMeans, ST_ClusterIntersecting

5.17  Bounding Box Functions

5.17.1  Box2D

Box2D — Returns a BOX2D representing the 2D extent of the geometry.

Synopsis

box2d Box2D(geometry geomA);

Description

Returns a BOX2D representing the 2D extent of the geometry.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

This method supports Circular Strings and Curves
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT Box2D(ST_GeomFromText('LINESTRING(1 2, 3 4, 5 6)'));
box2d -------------
BOX(1 2,5 6)

SELECT Box2D(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)'));
box2d -------------
BOX(220186.984375 150406,220288.25 150506.140625)

See Also
Box3D, ST_GeomFromText

5.17.2  Box3D

Box3D — Returns a BOX3D representing the 3D extent of the geometry.
Synopsis

box3d Box3D(geometry geomA);

Description

Returns a BOX3D representing the 3D extent of the geometry.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

- This method supports Circular Strings and Curves
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
- This function supports 3d and will not drop the z-index.

Examples

```
SELECT Box3D(ST_GeomFromEWKT('LINESTRING(1 2 3, 3 4 5, 5 6 5)'));
Box3d

BOX3D(1 2 3,5 6 5)
```

```
SELECT Box3D(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 1,220227 150406 1)'));
Box3d

BOX3D(220227 150406 1,220268 150415 1)
```

See Also

Box2D, ST_GeomFromEWKT

5.17.3 ST_EstimatedExtent

ST_EstimatedExtent — Return the `estimated` extent of a spatial table.

Synopsis

box2d ST_EstimatedExtent(text schema_name, text table_name, text geocolumn_name, boolean parent_only);
box2d ST_EstimatedExtent(text schema_name, text table_name, text geocolumn_name);
box2d ST_EstimatedExtent(text table_name, text geocolumn_name);

Description

Return the `estimated` extent of the given spatial table. The estimated is taken from the geometry column’s statistics. The current schema will be used if not specified. The default behavior is to also use statistics collected from child tables (tables with INHERITS) if available. If `parent_only` is set to TRUE, only statistics for the given table are used and child tables are ignored. For PostgreSQL>=8.0.0 statistics are gathered by VACUUM ANALYZE and resulting extent will be about 95% of the real one.
Note

In absence of statistics (empty table or no ANALYZE called) this function returns NULL. Prior to version 1.5.4 an exception was thrown instead.

For PostgreSQL<8.0.0 statistics are gathered by update_geometry_stats() and resulting extent will be exact.
Availability: 1.0.0
Changed: 2.1.0. Up to 2.0.x this was called ST_Estimated_Extent.

This method supports Circular Strings and Curves

Examples

```sql
SELECT ST_EstimatedExtent('ny', 'edges', 'the_geom');
--result--
BOX(-8877653 4912316,-8010225.5 5589284)
SELECT ST_EstimatedExtent('feature_poly', 'the_geom');
--result--
BOX(-124.659652709961 24.6830825805664,-67.7798080444336 49.0012092590332)
```

See Also

ST_Extent

5.17.4 ST_Expand

ST_Expand — Returns a bounding box expanded from another bounding box or a geometry.

Synopsis

```sql
geometry ST_Expand(geometry geom, float units_to_expand);
geometry ST_Expand(geometry geom, float dx, float dy, float dz=0, float dm=0);
box2d ST_Expand(box2d box, float units_to_expand);
box2d ST_Expand(box2d box, float dx, float dy);
box3d ST_Expand(box3d box, float units_to_expand);
box3d ST_Expand(box3d box, float dx, float dy, float dz=0);
```

Description

This function returns a bounding box expanded from the bounding box of the input, either by specifying a single distance with which the box should be expanded in all directions, or by specifying an expansion distance for each direction. Uses double-precision. Can be very useful for distance queries, or to add a bounding box filter to a query to take advantage of a spatial index.

In addition to the geometry version of ST_Expand, which is the most commonly used, variants are provided that accept and produce internal BOX2D and BOX3D data types.

ST_Expand is similar in concept to ST_Buffer, except while buffer expands the geometry in all directions, ST_Expand expands the bounding box along each axis.

Units are in the units of the spatial reference system in use denoted by the SRID.
Note

Pre version 1.3, ST_Expand was used in conjunction with ST_Distance to do indexable distance queries. For example, `the_geom && ST_Expand('POINT(10 20)', 10) AND ST_Distance(the_geom, 'POINT(10 20)') < 10`. This has been replaced by the easier ST_DWithin construct.

Note

Availability: 1.5.0 behavior changed to output double precision instead of float4 coordinates.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.3.0 support was added to expand a box by different amounts in different dimensions.

This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

Examples below use US National Atlas Equal Area (SRID=2163) which is a meter projection

```sql
--10 meter expanded box around bbox of a linestring
SELECT CAST(ST_Expand(ST_GeomFromText('LINESTRING(2312980 110676,2312923 110701,2312892 110714)', 2163),10) As box2d);
```

```
st_expand

BOX(2312882 110666,2312990 110724)
```

```sql
--10 meter expanded 3D box of a 3D box
SELECT ST_Expand(CAST('BOX3D(778773 2951741 1,794875 2970042.61545891 10)' As box3d),10)
```

```
st_expand

BOX3D(778773 2951731 -9,794885 2970052.61545891 20)
```

```sql
--10 meter geometry astext rep of a expand box around a point geometry
SELECT ST_AsEWKT(ST_Expand(ST_GeomFromEWKT('SRID=2163;POINT(2312980 110676)'),10));
```

```
st_asewkt

SRID=2163;POLYGON((2312970 110666,2312970 110686,2312990 110686,2312990 110666,2312970 110666))
```

See Also

ST_AsEWKT, ST_Buffer, ST_DWithin, ST_GeomFromEWKT, ST_GeomFromText, ST_SRID

5.17.5 ST_Extent

ST_Extent — an aggregate function that returns the bounding box that bounds rows of geometries.
Synopsis

box2d ST_Extent(geometry set geomfield);

Description

ST_Extent returns a bounding box that encloses a set of geometries. The ST_Extent function is an “aggregate” function in the terminology of SQL. That means that it operates on lists of data, in the same way the SUM() and AVG() functions do.

Since it returns a bounding box, the spatial Units are in the units of the spatial reference system in use denoted by the SRID ST_Extent is similar in concept to Oracle Spatial/Locator’s SDO_AGGR_MBR

Note
Since ST_Extent returns a bounding box, the SRID meta-data is lost. Use ST_SetSRID to force it back into a geometry with SRID meta data. The coordinates are in the units of the spatial ref of the original geometries.

Note
ST_Extent will return boxes with only an x and y component even with (x,y,z) coordinate geometries. To maintain x,y,z use ST_3DExtent instead.

Note
Availability: 1.4.0

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

Note
Examples below use Massachusetts State Plane ft (SRID=2249)

SELECT ST_Extent(the_geom) as bextent FROM sometable;

st_bextent
------------------------------------
BOX(739651.875 2908247.25, 794875.8125 2970042.75)

--Return extent of each category of geometries
SELECT ST_Extent(the_geom) as bextent
FROM sometable
GROUP BY category ORDER BY category;
<table>
<thead>
<tr>
<th>bextent</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOX(778783.5625 2951741.25,794875.8125 2970042.75)</td>
<td>A</td>
</tr>
<tr>
<td>BOX(751315.8125 2919164.75,765202.6875 2935417.25)</td>
<td>B</td>
</tr>
<tr>
<td>BOX(739651.875 2917394.75,756688.375 2935866)</td>
<td>C</td>
</tr>
</tbody>
</table>

--Force back into a geometry
--and render the extended text representation of that geometry
SELECT ST_SetSRID(ST_Extent(the_geom),2249) as bextent FROM sometable;

```
SRID=2249;POLYGON((739651.875 2908247.25,739651.875 2970042.75,794875.8125 2970042.75,794875.8125 2908247.25,739651.875 2908247.25))
```

See Also

&&, ST_AsEWKT, ST_3DExtent, ST_SetSRID, ST_SRID

### 5.17.6 ST_3DExtent

ST_3DExtent — an aggregate function that returns the 3D bounding box that bounds rows of geometries.

**Synopsis**

```sql
box3d ST_3DExtent(geometry set geomfield);
```

**Description**

ST_3DExtent returns a box3d (includes Z coordinate) bounding box that encloses a set of geometries. The ST_3DExtent function is an "aggregate" function in the terminology of SQL. That means that it operates on lists of data, in the same way the SUM() and AVG() functions do.

Since it returns a bounding box, the spatial Units are in the units of the spatial reference system in use denoted by the SRID.

---

**Note**

Since ST_3DExtent returns a bounding box, the SRID meta-data is lost. Use ST_SetSRID to force it back into a geometry with SRID meta data. The coordinates are in the units of the spatial ref of the orginal geometries.

---

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

Changed: 2.0.0 In prior versions this used to be called ST_Extent3D

- This function supports 3d and will not drop the z-index.
- This method supports Circular Strings and Curves
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Examples

```sql
SELECT ST_3DExtent(foo.the_geom) As b3extent
FROM (SELECT ST_MakePoint(x,y,z) As the_geom
 FROM generate_series(1,3) As x
 CROSS JOIN generate_series(1,2) As y
 CROSS JOIN generate_series(0,2) As Z) As foo;

b3extent

BOX3D(1 1 0,3 2 2)

-- Get the extent of various elevated circular strings
SELECT ST_3DExtent(foo.the_geom) As b3extent
FROM (SELECT ST_Translate(ST_Force_3DZ(ST_LineToCurve(ST_Buffer(ST_MakePoint(x,y),1))),0,0,z) As the_geom
 FROM generate_series(1,3) As x
 CROSS JOIN generate_series(1,2) As y
 CROSS JOIN generate_series(0,2) As Z) As foo;

b3extent

BOX3D(1 0 0,4 2 2)
```

See Also

ST_Extent, ST_Force3DZ

5.17.7 ST_MakeBox2D

ST_MakeBox2D — Creates a BOX2D defined by two 2D point geometries.

Synopsis

```sql
box2d ST_MakeBox2D(geometry pointLowLeft, geometry pointUpRight);
```

Description

Creates a BOX2D defined by the given two point geometries. This is useful for doing range queries

Examples

```sql
-- Return all features that fall reside or partly reside in a US national atlas coordinate bounding box
-- It is assumed here that the geometries are stored with SRID = 2163 (US National atlas equal area)
SELECT feature_id, feature_name, the_geom
FROM features
WHERE the_geom && ST_SetSRID(ST_MakeBox2D(ST_Point(-989502.1875, 528439.5625),
 ST_Point(-987121.375, 529933.1875)), 2163)
```

See Also

ST_MakePoint, ST_Point, ST_SetSRID, ST_SRID
5.17.8  ST_3DMakeBox

ST_3DMakeBox — Creates a BOX3D defined by two 3D point geometries.

Synopsis

box3d ST_3DMakeBox(geometery point3DLowLeftBottom, geometery point3DUpRightTop);

Description

Creates a BOX3D defined by the given two 3D point geometries.

This function supports 3D and will not drop the z-index.

Changed: 2.0.0 In prior versions this used to be called ST_MakeBox3D

Examples

```
SELECT ST_3DMakeBox(ST_MakePoint(-989502.1875, 528439.5625, 10),
ST_MakePoint(-987121.375 ,529933.1875, 10)) As abb3d

--bb3d--

BOX3D(-989502.1875 528439.5625 10,-987121.375 529933.1875 10)
```

See Also

ST_MakePoint, ST_SetSRID, ST_SRID

5.17.9  ST_XMax

ST_XMax — Returns the X maxima of a 2D or 3D bounding box or a geometry.

Synopsis

float ST_XMax(box3d aGeomorBox2DorBox3D);

Description

Returns the X maxima of a 2D or 3D bounding box or a geometry.

*Note*

Although this function is only defined for box3d, it also works for box2d and geometry values due to automatic casting. However it will not accept a geometry or box2d text representation, since those do not auto-cast.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves
Examples

```sql
SELECT ST_XMax('BOX3D(1 2 3, 4 5 6)');
 st_xmax

 4

SELECT ST_XMax(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'));
 st_xmax

 5

SELECT ST_XMax(CAST('BOX(-3 2, 3 4)' As box2d));
 st_xmax

 3
 --Observe THIS DOES NOT WORK because it will try to autocast the string representation to a BOX3D
SELECT ST_XMax('LINESTRING(1 3, 5 6)');
 --ERROR: BOX3D parser - doesn't start with BOX3D
SELECT ST_XMax(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
 st_xmax

 220288.248780547
```

See Also

ST_XMin, ST_YMax, ST_YMin, ST_ZMax, ST_ZMin

5.17.10 ST_XMin

ST_XMin — Returns the X minima of a 2D or 3D bounding box or a geometry.

Synopsis

```sql
float ST_XMin(box3d aGeomOrBox2DOrBox3D);
```

Description

Returns the X minima of a 2D or 3D bounding box or a geometry.

---

**Note**

Although this function is only defined for box3d, it also works for box2d and geometry values due to automatic casting. However, it will not accept a geometry or box2d text representation, since those do not auto-cast.

- This function supports 3d and will not drop the z-index.
- This method supports Circular Strings and Curves
Examples

```sql
SELECT ST_XMin('BOX3D(1 2 3, 4 5 6)');
st_xmin

 1

SELECT ST_XMin(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'));
st_xmin

 1

SELECT ST_XMin(CAST('BOX(-3 2, 3 4)' As box2d));
st_xmin

 -3
--Observe THIS DOES NOT WORK because it will try to autocast the string representation to a BOX3D

SELECT ST_XMin('LINESTRING(1 3, 5 6)');
--ERROR: BOX3D parser - doesn't start with BOX3D(

SELECT ST_XMin(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
st_xmin

220186.995121892
```

See Also

ST_XMax, ST_YMax, ST_YMin, ST_ZMax, ST_ZMin

5.17.11 ST_YMax

ST_YMax — Returns the Y maxima of a 2D or 3D bounding box or a geometry.

Synopsis

```sql
float ST_YMax(box3d aGeomorBox2DorBox3D);
```

Description

Returns the Y maxima of a 2D or 3D bounding box or a geometry.

---

**Note**

Although this function is only defined for box3d, it also works for box2d and geometry values due to automatic casting. However it will not accept a geometry or box2d text representation, since those do not auto-cast.

This function supports 3d and will not drop the z-index.

This method supports Circular Strings and Curves
Examples

```sql
SELECT ST_YMax('BOX3D(1 2 3, 4 5 6)');
st_ymax

 5

SELECT ST_YMax(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'));
st_ymax

 6

SELECT ST_YMax(CAST('BOX(-3 2, 3 4)' As box2d));
st_ymax

 4
--Observe THIS DOES NOT WORK because it will try to autocast the string representation to a BOX3D
SELECT ST_YMax('LINESTRING(1 3, 5 6)');
--ERROR: BOX3D parser - doesn't start with BOX3D

SELECT ST_YMax(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
st_ymax

150506.126829327
```

See Also

ST_XMin, ST_XMax, ST_YMin, ST_ZMax, ST_ZMin

5.17.12 ST_YMin

ST_YMin — Returns the Y minima of a 2D or 3D bounding box or a geometry.

Synopsis

```sql
float ST_YMin(box3d aGeomorBox2DorBox3D);
```

Description

Returns the Y minima of a 2D or 3D bounding box or a geometry.

**Note**

Although this function is only defined for box3d, it also works for box2d and geometry values due to automatic casting. However it will not accept a geometry or box2d text representation, since those do not auto-cast.

- This function supports 3d and will not drop the z-index.
- This method supports Circular Strings and Curves
Examples

```sql
SELECT ST_YMin('BOX3D(1 2 3, 4 5 6)');
st_ymin

 2

SELECT ST_YMin(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'));
st_ymin

 3

SELECT ST_YMin(CAST('BOX(-3 2, 3 4)' As box2d));
st_ymin

 2

--Observe THIS DOES NOT WORK because it will try to autocast the string representation to a BOX3D
SELECT ST_YMin('LINESTRING(1 3, 5 6)');
--ERROR: BOX3D parser - doesn't start with BOX3D(

SELECT ST_YMin(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
st_ymin

 150406
```

See Also

ST_GeomFromEWKT, ST_XMin, ST_XMax, ST_YMax, ST_ZMax, ST_ZMin

5.17.13 ST_ZMax

ST_ZMax — Returns the Z maxima of a 2D or 3D bounding box or a geometry.

Synopsis

```sql
float ST_ZMax(box3d aGeomorBox2DorBox3D);
```

Description

Returns the Z maxima of a 2D or 3D bounding box or a geometry.

**Note**

Although this function is only defined for box3d, it also works for box2d and geometry values due to automatic casting. However it will not accept a geometry or box2d text representation, since those do not auto-cast.

- This function supports 3d and will not drop the z-index.
- This method supports Circular Strings and Curves
Examples

```sql
SELECT ST_ZMax('BOX3D(1 2 3, 4 5 6)');
st_zmax

 6
SELECT ST_ZMax(ST_GeomFromEWKT('LINESTRING(1 3 4, 5 6 7)'));
st_zmax

 7
SELECT ST_ZMax('BOX3D(-3 2 1, 3 4 1)');
st_zmax

 1
```

```sql
--Observe THIS DOES NOT WORK because it will try to autocast the string representation to a BOX3D
SELECT ST_ZMax('LINESTRING(1 3 4, 5 6 7)');
--ERROR: BOX3D parser - doesn't start with BOX3D(
SELECT ST_ZMax(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
```

“See Also”

ST_GeomFromEWKT, ST_XMin, ST_XMax, ST_YMax, ST_YMin, ST_ZMax

5.17.14 ST_ZMin

ST_ZMin — Returns the Z minima of a 2D or 3D bounding box or a geometry.

Synopsis

```sql
float ST_ZMin(box3d aGeomorBox2DorBox3D);
```

Description

Returns the Z minima of a 2D or 3D bounding box or a geometry.

---

**Note**

Although this function is only defined for box3d, it also works for box2d and geometry values due to automatic casting. However, it will not accept a geometry or box2d text representation, since those do not auto-cast.

- This function supports 3d and will not drop the z-index.
- This method supports Circular Strings and Curves
Examples

```sql
SELECT ST_ZMin('BOX3D(1 2 3, 4 5 6)');
st_zmin

3

SELECT ST_ZMin(ST_GeomFromEWKT('LINESTRING(1 3 4, 5 6 7)'));
st_zmin

4

SELECT ST_ZMin('BOX3D(-3 2 1, 3 4 1)');
st_zmin

1
--Observe THIS DOES NOT WORK because it will try to autocast the string representation to a BOX3D
SELECT ST_ZMin('LINESTRING(1 3 4, 5 6 7)');
--ERROR: BOX3D parser - doesn't start with BOX3D(

SELECT ST_ZMin(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
st_zmin

1
```

See Also

ST_GeomFromEWKT, ST_GeomFromText, ST_XMin, ST_XMax, ST_YMax, ST_YMin, ST_ZMax

5.18 Linear Referencing

5.18.1 ST_LineInterpolatePoint

ST_LineInterpolatePoint — Returns a point interpolated along a line. Second argument is a float8 between 0 and 1 representing fraction of total length of linestring the point has to be located.

Synopsis

```sql
geometry ST_LineInterpolatePoint(geometry a_linestring, float8 a_fraction);
```

Description

Returns a point interpolated along a line. First argument must be a LINESTRING. Second argument is a float8 between 0 and 1 representing fraction of total linestring length the point has to be located.

See ST_LineLocatePoint for computing the line location nearest to a Point.

**Note**

Since release 1.1.1 this function also interpolates M and Z values (when present), while prior releases set them to 0.0.
Availability: 0.8.2, Z and M supported added in 1.1.1

Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Interpolate_Point.

This function supports 3d and will not drop the z-index.

Examples

A linestring with the interpolated point at 20% position (0.20)

```
--Return point 20% along 2d line
SELECT ST_AsEWKT(ST_LineInterpolatePoint(the_line, 0.20))
FROM (SELECT ST_GeomFromEWKT('LINESTRING(25 50, 100 125, 150 190)') as the_line) As foo;
```

```
st_asewkt

POINT(51.5974135047432 76.5974135047432)
```

```
--Return point mid-way of 3d line
SELECT ST_AsEWKT(ST_LineInterpolatePoint(the_line, 0.5))
FROM (SELECT ST_GeomFromEWKT('LINESTRING(1 2 3, 4 5 6, 6 7 8)') as the_line) As foo;
```

```
st_asewkt

POINT(3.5 4.5 5.5)
```

```
--find closest point on a line to a point or other geometry
SELECT ST_AsText(ST_LineInterpolatePoint(foo.the_line, ST_LineLocatePoint(foo.the_line, l
FROM (SELECT ST_GeomFromText('LINESTRING(1 2, 4 5, 6 7)') as the_line) As foo;
```

```
st_astext

POINT(3 4)
```

See Also

ST_AsText, ST_AsEWKT, ST_Length, ST_LineInterpolatePoints ST_3DLineInterpolatePoint ST_LineLocatePoint
5.18.2  **ST_3DLineInterpolatePoint**

`ST_3DLineInterpolatePoint` — Returns a point interpolated along a line in 3D. Second argument is a `float8` between 0 and 1 representing fraction of total length of linestring the point has to be located.

**Synopsis**

```
geometry ST_3DLineInterpolatePoint(geometry a_linestring, float8 a_fraction);
```

**Description**

Returns a point interpolated along a line. First argument must be a `LINESTRING`. Second argument is a `float8` between 0 and 1 representing fraction of total linestring length the point has to be located.

---

**Note**

ST_3DLineInterpolatePoint computes resulting point in 2D and then interpolates value for Z and M, while ST_3DLineInterpolatePoint computes directly point in 3D and only M value is interpolated then.

---

**Availability:** 3.0.0

**Examples**

Return point 20% along 3D line

```
SELECT ST_AsEWKT(ST_3DLineInterpolatePoint(the_line, 0.20))
FROM (SELECT ST_GeomFromEWKT('LINESTRING(25 50 70, 100 125 90, 150 190 200)') as the_line)
 As foo;
```

```
st_asewkt

POINT(59.0675892910822 84.0675892910822 79.0846904776219)
```

**See Also**

`ST_AsText, ST_AsEWKT, ST_Length, ST_LineInterpolatePoint ST_LineInterpolatePoints ST_LineLocatePoint`

5.18.3  **ST_LineInterpolatePoints**

`ST_LineInterpolatePoints` — Returns one or more points interpolated along a line.

**Synopsis**

```
geometry ST_LineInterpolatePoints(geom a_linestring, float8 a_fraction, boolean repeat);
```

**Description**

Returns one or more points interpolated along a line. First argument must be a `LINESTRING`. Second argument is a `float8` between 0 and 1 representing the spacing between the points as a fraction of total LineString length. If the third argument is false, at most one point will be constructed (the function will be equivalent to `ST_LineInterpolatePoint`.)

If the result has zero or one points, it will be returned as a `POINT`. If it has two or more points, it will be returned as a `MULTIPOINT`.
Availability: 2.5.0

- This function supports 3d and will not drop the z-index.
- This function supports M coordinates.

**Examples**

![A linestring with the interpolated points every 20%](image)

```
--Return points each 20% along a 2D line
SELECT ST_AsText(ST_LineInterpolatePoints('LINESTRING(25 50, 100 125, 150 190)', 0.20))
```

See Also

ST_LineInterpolatePoint ST_LineLocatePoint

### 5.18.4 ST_LineLocatePoint

ST_LineLocatePoint — Returns a float between 0 and 1 representing the location of the closest point on LineString to the given Point, as a fraction of total 2d line length.

**Synopsis**

```sql
float8 ST_LineLocatePoint(geometry a_linestring, geometry a_point);
```

**Description**

Returns a float between 0 and 1 representing the location of the closest point on LineString to the given Point, as a fraction of total 2d line length.
You can use the returned location to extract a Point (\texttt{ST\_LineInterpolatePoint}) or a substring (\texttt{ST\_LineSubstring}). This is useful for approximating numbers of addresses.

Availability: 1.1.0

Changed: 2.1.0. Up to 2.0.x this was called \texttt{ST\_Line\_Locate\_Point}.

### Examples

```sql
-- Rough approximation of finding the street number of a point along the street
-- Note the whole foo thing is just to generate dummy data that looks
-- like house centroids and street
-- We use \texttt{ST_DWithin} to exclude
-- houses too far away from the street to be considered on the street
SELECT ST_AsText(house_loc) AS as_text_house_loc,
 startstreet_num +
 CAST((endstreet_num - startstreet_num) * ST_LineLocatePoint(street_line, house_loc) AS integer) AS street_num
FROM
 (SELECT ST_GeomFromText('LINESTRING(1 2, 3 4)') AS street_line,
 ST_MakePoint(x*1.01,y*1.03) AS house_loc, 10 AS startstreet_num,
 20 AS endstreet_num
 FROM generate_series(1,3) x CROSS JOIN generate_series(2,4) As y)
 AS foo
WHERE ST_DWithin(street_line, house_loc, 0.2);
```

<table>
<thead>
<tr>
<th>as_text_house_loc</th>
<th>street_num</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT(1.01 2.06)</td>
<td>10</td>
</tr>
<tr>
<td>POINT(2.02 3.09)</td>
<td>15</td>
</tr>
<tr>
<td>POINT(3.03 4.12)</td>
<td>20</td>
</tr>
</tbody>
</table>

```sql
-- find closest point on a line to a point or other geometry
SELECT ST_AsText(ST_LineInterpolatePoint(foo_the_line, ST_LineLocatePoint(foo_the_line, ST_GeomFromText('POINT(4 3'))))
FROM (SELECT ST_GeomFromText('LINESTRING(1 2, 4 5, 6 7)') AS the_line) AS foo;
s_t_astext

POINT(3 4)
```

### See Also

\texttt{ST\_DWithin, ST\_Length2D, ST\_LineInterpolatePoint, ST\_LineSubstring}

#### 5.18.5 \texttt{ST\_LineSubstring}

\texttt{ST\_LineSubstring} — Return a linestring being a substring of the input one starting and ending at the given fractions of total 2d length. Second and third arguments are float8 values between 0 and 1.

### Synopsis

```sql
geometry \texttt{ST_LineSubstring}(geometry a_linestring, float8 startfraction, float8 endfraction);
```
Description

Return a linestring being a substring of the input one starting and ending at the given fractions of total 2d length. Second and third arguments are float8 values between 0 and 1. This only works with LINESTRINGs. To use with contiguous MULTI-LINESTRINGs use in conjunction with ST_LineMerge.

If 'start' and 'end' have the same value this is equivalent to ST_LineInterpolatePoint.

See ST_LineLocatePoint for computing the line location nearest to a Point.

---

Note
Since release 1.1.1 this function also interpolates M and Z values (when present), while prior releases set them to unspecified values.

---

Availability: 1.1.0, Z and M supported added in 1.1.1

Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Substring.

This function supports 3d and will not drop the z-index.

Examples

---

---

A linestring seen with 1/3 mid-range overlaid (0.333, 0.666)

```sql
--Return the approximate 1/3 mid-range part of a linestring
SELECT ST_AsText(ST_Line_SubString(ST_GeomFromText('LINESTRING(25 50, 100 125, 150 190)'), 0.333, 0.666));

st_astext

LINESTRING(69.2846934853974 94.2846934853974,100 125,111.700356260683 140.210463138888)

--The below example simulates a while loop in
--SQL using PostgreSQL generate_series() to cut all
--linestrings in a table to 100 unit segments
--of which no segment is longer than 100 units
--units are measured in the SRID units of measurement
--It also assumes all geometries are LINESTRING or contiguous MULTILINESTRING
```
--and no geometry is longer than 100 units*10000
--for better performance you can reduce the 10000
--to match max number of segments you expect

SELECT field1, field2, ST_LineSubstring(the_geom, 100.00*n/length,
    CASE
    WHEN 100.00*(n+1) < length THEN 100.00*(n+1)/length
    ELSE 1
    END) As the_geom
FROM
    (SELECT sometable.field1, sometable.field2,
    ST_LineMerge(sometable.the_geom) AS the_geom,
    ST_Length(sometable.the_geom) As length
    FROM sometable
    ) AS t
CROSS JOIN generate_series(0,10000) AS n
WHERE n*100.00/length < 1;

See Also

ST_Length, ST_LineInterpolatePoint, ST_LineMerge

5.18.6 ST_LocateAlong

ST_LocateAlong — Return a derived geometry collection value with elements that match the specified measure. Polygonal elements are not supported.

Synopsis

geometry ST_LocateAlong(geometry ageom_with_measure, float8 a_measure, float8 offset);

Description

Return a derived geometry collection value with elements that match the specified measure. Polygonal elements are not supported.

If an offset is provided, the resultant will be offset to the left or right of the input line by the specified number of units. A positive offset will be to the left, and a negative one to the right.

Semantic is specified by: ISO/IEC CD 13249-3:200x(E) - Text for Continuation CD Editing Meeting

Availability: 1.1.0 by old name ST_Locate_Along_Measure.

Changed: 2.0.0 in prior versions this used to be called ST_Locate_Along_Measure.

---

**Note**

Use this function only for geometries with an M component

This function supports M coordinates.
Examples

```
SELECT ST_AsText(the_geom)
FROM
 (SELECT ST_LocateAlong(
 ST_GeomFromText('MULTILINESTRINGM((1 2 3, 3 4 2, 9 4 3),
 (1 2 3, 5 4 5))'),3) As the_geom) As foo;
```

```
st_asewkt

MULTIPOINT M (1 2 3)
```

```
--Geometry collections are difficult animals so dump them
--to make them more digestable
SELECT ST_AsText((ST_Dump(the_geom)).geom)
FROM
 (SELECT ST_LocateAlong(
 ST_GeomFromText('MULTILINESTRINGM((1 2 3, 3 4 2, 9 4 3),
 (1 2 3, 5 4 5))'),3) As the_geom) As foo;
```

```
st_asewkt

POINTM(1 2 3)
POINTM(9 4 3)
POINTM(1 2 3)
```

See Also

ST_Dump, ST_LocateBetween, ST_LocateBetweenElevations

5.18.7 ST_LocateBetween

ST_LocateBetween — Return a derived geometry collection value with elements that match the specified range of measures inclusively.

Synopsis

gamey ST_LocateBetween(geometry geom, float8 measure_start, float8 measure_end, float8 offset);

Description

Return a derived geometry collection with elements that match the specified range of measures inclusively. Clipping a non-convex POLYGON may produce invalid geometry.

If an offset is provided, the resultant will be offset to the left or right of the input line by the specified number of units. A positive offset will be to the left, and a negative one to the right.

Semantic is specified by: ISO/IEC CD 13249-3:200x(E) - Text for Continuation CD Editing Meeting

Availability: 1.1.0 by old name ST_Locate_Between_Measures.

Changed: 2.0.0 - in prior versions this used to be called ST_Locate_Between_Measures.

Enhanced: 3.0.0 - added support for POLYGON, TIN, TRIANGLE.

✅ This function supports M coordinates.
Examples

```sql
SELECT ST_AsText(the_geom)
FROM (
 SELECT ST_LocateBetween(
 'MULTILINESTRING M ((1 2 3, 3 4 2, 9 4 3),(1 2 3, 5 4 5))',
 1.5,
 3
) as the_geom
) As foo;
```

```
ST_ASEWK
--
GEOMETRYCOLLECTION M (LINESTRING M (1 2 3,3 4 2,9 4 3),POINT M (1 2 3))
---Geometry collections are difficult animals so dump them
to make them more digestable
SELECT ST_AsText((ST_Dump(the_geom)).geom)
FROM (
 SELECT ST_LocateBetween(
 'MULTILINESTRING M ((1 2 3, 3 4 2, 9 4 3),(1 2 3, 5 4 5))',
 1.5,
 3
) as the_geom
) As foo;
```

```
ST_ASEWK

LINESTRING M (1 2 3,3 4 2,9 4 3)
POINT M (1 2 3)
```

See Also

ST_Dump, ST_LocateAlong, ST_LocateBetweenElevations

5.18.8 ST_LocateBetweenElevations

ST_LocateBetweenElevations — Return a derived geometry (collection) value with elements that intersect the specified range of elevations inclusively.

Synopsis

```sql
geometry ST_LocateBetweenElevations(geometric geom, float8 elevation_start, float8 elevation_end);
```

Description

Return a derived geometry (collection) value with elements that intersect the specified range of elevations inclusively.

Clipping a non-convex POLYGON may produce invalid geometry.

Availability: 1.4.0

Enhanced: 3.0.0 - added support for POLYGON, TIN, TRIANGLE.

This function supports 3d and will not drop the z-index.
Examples

```sql
SELECT ST_AsEWKT(ST_LocateBetweenElevations(
 ST_GeomFromEWKT('LINESTRING(1 2 3, 4 5 6)'), 2, 4)) As ewelev;
 ewelev

MULTILINESTRING((1 2 3,2 3 4))

SELECT ST_AsEWKT(ST_LocateBetweenElevations('LINESTRING(1 2 6, 4 5 -1, 7 8 9)', 6, 9)) As ewelev;
 ewelev

GEOMETRYCOLLECTION(POINT(1 2 6),LINESTRING(6.1 7.1 6,7 8 9))

-- Geometry collections are difficult animals so dump them
-- to make them more digestable
SELECT ST_AsEWKT((ST_Dump(the_geom)).geom)
 FROM (SELECT ST_LocateBetweenElevations('LINESTRING(1 2 6, 4 5 -1, 7 8 9)', 6, 9) as the_geom) As foo;
 st_asewkt

POINT(1 2 6)
LINESTRING(6.1 7.1 6,7 8 9)
```

See Also

`ST_Dump`, `ST_LocateBetween`

5.18.9 ST_InterpolatePoint

`ST_InterpolatePoint` — Return the value of the measure dimension of a geometry at the point closed to the provided point.

Synopsis

```sql
float8 ST_InterpolatePoint(geometry line, geometry point);
```

Description

Return the value of the measure dimension of a geometry at the point closed to the provided point.

Availability: 2.0.0

This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_InterpolatePoint('LINESTRING M (0 0 0, 10 0 20)', 'POINT(5 5)');
 st_interpolatepoint

10
```
5.18.10  ST_AddMeasure

ST_AddMeasure — Return a derived geometry with measure elements linearly interpolated between the start and end points.

Synopsis

geometry ST_AddMeasure(geometry geom_mline, float8 measure_start, float8 measure_end);

Description

Return a derived geometry with measure elements linearly interpolated between the start and end points. If the geometry has no measure dimension, one is added. If the geometry has a measure dimension, it is over-written with new values. Only LINESTRINGS and MULTILINESTRINGS are supported.

Availability: 1.5.0

This function supports 3d and will not drop the z-index.

Examples

```sql
SELECT ST_AsText(ST_AddMeasure(ST_GeomFromEWKT('LINESTRING(1 0, 2 0, 4 0)'),1,4)) AS ewelev;
ewelev

LINESTRINGM(1 0 1,2 0 2,4 0 4)

SELECT ST_AsText(ST_AddMeasure(ST_GeomFromEWKT('LINESTRING(1 0 4, 2 0 4, 4 0 4)'),10,40)) AS ewelev;
ewelev

LINESTRING(1 0 4 10,2 0 4 20,4 0 4 40)

SELECT ST_AsText(ST_AddMeasure(ST_GeomFromEWKT('LINESTRINGM(1 0 4, 2 0 4, 4 0 4)'),10,40)) AS ewelev;
ewelev

LINESTRINGM(1 0 10,2 0 20,4 0 40)

SELECT ST_AsText(ST_AddMeasure(ST_GeomFromEWKT('MULTILINESTRING((1 0 4, 2 0 4, 4 0 4),(1 0 4, 2 0 4, 4 0 4))'),10,70)) AS ← ewelev;
ewelev

MULTILINESTRINGM((1 0 10,2 0 20,4 0 40),(1 0 40,2 0 50,4 0 70))
```

5.19  Trajectory Functions

5.19.1  ST_IsValidTrajectory

ST_IsValidTrajectory — Returns true if the geometry is a valid trajectory.
Synopsis

boolean $\texttt{ST_IsValidTrajectory}(\texttt{geometry line});$

Description

Tests if a geometry encodes a valid trajectory. A valid trajectory is represented as a \texttt{LINESTRING} with measures (M values). The measure values must increase from each vertex to the next.

Valid trajectories are expected as input to spatio-temporal functions like $\texttt{ST_ClosestPointOfApproach}$

Availability: 2.2.0

This function supports 3d and will not drop the z-index.

Examples

```sql
-- A valid trajectory
SELECT $\texttt{ST_IsValidTrajectory}(\texttt{ST_MakeLine(}
 \texttt{ST_MakePointM(0,0,1),}
 \texttt{ST_MakePointM(0,1,2)})
);

-- An invalid trajectory
SELECT $\texttt{ST_IsValidTrajectory}(\texttt{ST_MakeLine(ST_MakePointM(0,0,1), ST_MakePointM(0,1,0))});
NOTICE: Measure of vertex 1 (0) not bigger than measure of vertex 0 (1)
```

See Also

$\texttt{ST_ClosestPointOfApproach}$

5.19.2 $\texttt{ST_ClosestPointOfApproach}$

$\texttt{ST_ClosestPointOfApproach}$ — Returns the measure at which points interpolated along two trajectories are closest.

Synopsis

float8 $\texttt{ST_ClosestPointOfApproach}(\texttt{geometry track1, geometry track2});$

Description

Returns the smallest measure at which points interpolated along the given trajectories are at the smallest distance.

Inputs must be valid trajectories as checked by $\texttt{ST_IsValidTrajectory}$. Null is returned if the trajectories do not overlap in their M ranges.

See $\texttt{ST_LocateAlong}$ for getting the actual points at the given measure.

Availability: 2.2.0

This function supports 3d and will not drop the z-index.
Examples

```sql
-- Return the time in which two objects moving between 10:00 and 11:00
-- are closest to each other and their distance at that point
WITH inp AS (SELECT
 ST_AddMeasure('LINESTRING Z (0 0 0, 10 0 5)''::geometry,
 extract(epoch from '2015-05-26 10:00''::timestamptz),
 extract(epoch from '2015-05-26 11:00''::timestamptz)
) a,
 ST_AddMeasure('LINESTRING Z (0 2 10, 12 1 2)''::geometry,
 extract(epoch from '2015-05-26 10:00''::timestamptz),
 extract(epoch from '2015-05-26 11:00''::timestamptz)
) b
), cpa AS (SELECT ST_ClosestPointOfApproach(a,b) m FROM inp
), points AS (SELECT ST_Force3DZ(ST_GeometryN(ST_LocateAlong(a,m),1)) pa,
 ST_Force3DZ(ST_GeometryN(ST_LocateAlong(b,m),1)) pb
 FROM inp, cpa
) SELECT to_timestamp(m) t,
 ST_Distance(pa,pb) distance
 FROM points, cpa;
```

<table>
<thead>
<tr>
<th>t</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-05-26 10:45:31.034483+02</td>
<td>1.96036833151395</td>
</tr>
</tbody>
</table>

See Also

ST_IsValidTrajectory, ST_DistanceCPA, ST_LocateAlong, ST_AddMeasure

5.19.3 ST_DistanceCPA

ST_DistanceCPA — Returns the distance between the closest point of approach of two trajectories.

Synopsis

```sql
float8 ST_DistanceCPA(geography track1, geography track2);
```

Description

Returns the minimum distance two moving objects have ever been each other.

Inputs must be valid trajectories as checked by ST_IsValidTrajectory. Null is returned if the trajectories do not overlap in their M ranges.

Availability: 2.2.0

This function supports 3d and will not drop the z-index.

Examples
-- Return the minimum distance of two objects moving between 10:00 and 11:00
WITH inp AS ( SELECT
  ST_AddMeasure('LINESTRING Z (0 0 0, 10 0 5) '::geometry,
    extract(epoch from '2015-05-26 10:00'::timestamptz),
    extract(epoch from '2015-05-26 11:00'::timestamptz)
  ) a,
  ST_AddMeasure('LINESTRING Z (0 2 10, 12 1 2) '::geometry,
    extract(epoch from '2015-05-26 10:00'::timestamptz),
    extract(epoch from '2015-05-26 11:00'::timestamptz)
  ) b
)
SELECT ST_DistanceCPA(a,b) distance FROM inp;

  distance
  --------------
   1.96036833151395

See Also

ST_IsValidTrajectory, ST_ClosestPointOfApproach, ST_AddMeasure, |=|

5.19.4  ST_CPAWithin

ST_CPAWithin — Returns true if the closest point of approach of two trajectories is within the specified distance.

Synopsis

boolean ST_CPAWithin(geometry track1, geometry track2, float8 maxdist);

Description

Checks whether two moving objects have ever been within the specified maximum distance.
Inputs must be valid trajectories as checked by ST_IsValidTrajectory. False is returned if the trajectories do not overlap in their M ranges.
Availability: 2.2.0

This function supports 3d and will not drop the z-index.

Examples

WITH inp AS ( SELECT
  ST_AddMeasure('LINESTRING Z (0 0 0, 10 0 5) '::geometry,
    extract(epoch from '2015-05-26 10:00'::timestamptz),
    extract(epoch from '2015-05-26 11:00'::timestamptz)
  ) a,
  ST_AddMeasure('LINESTRING Z (0 2 10, 12 1 2) '::geometry,
    extract(epoch from '2015-05-26 10:00'::timestamptz),
    extract(epoch from '2015-05-26 11:00'::timestamptz)
  ) b
)
SELECT ST_CPAWithin(a,b,2), ST_DistanceCPA(a,b) distance FROM inp;

  st_cpawithin |   distance
  --------------+------------------
     t          |  1.96521473776207
See Also

ST_IsValidTrajectory, ST_ClosestPointOfApproach, ST_DistanceCPA, \( \| \| \)

5.20 SFCGAL Functions

5.20.1 postgis_sfcgal_version

postgis_sfcgal_version — Returns the version of SFCGAL in use

Synopsis

text `postgis_sfcgal_version(void);`

Description

Availability: 2.1.0

- This method needs SFCGAL backend.
- This function supports 3d and will not drop the z-index.
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

5.20.2 ST_Extrude

ST_Extrude — Extrude a surface to a related volume

Synopsis

gometry `ST_Extrude(geom, float x, float y, float z);`

Description

Availability: 2.1.0

- This method needs SFCGAL backend.
- This function supports 3d and will not drop the z-index.
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

3D images were generated using PostGIS `ST_AsX3D` and rendering in HTML using X3Dom HTML Javascript rendering library.
### SELECT ST_Buffer(ST_GeomFromText('POINT (100 90)'), 50, 'quad_segs=2'),0,0,30);

**Original octagon formed from buffering point**

### ST_Exturde(ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50, 'quad_segs=2'),0,0,30);

**Hexagon extruded 30 units along Z produces a PolyhedralSurfaceZ**

### SELECT ST_GeomFromText('LINESTRING(50 50, 100 90, 95 150)')

**Original linestring**

### SELECT ST_Exturde(ST_GeomFromText('LINESTRING(50 50, 100 90, 95 150)'),0,0,10));

**LineString Extruded along Z produces a PolyhedralSurfaceZ**

### See Also

- **ST_AsX3D**

### 5.20.3 ST_StraightSkeleton

**ST_StraightSkeleton** — Compute a straight skeleton from a geometry
Synopsis

geometry ST_StraightSkeleton(geom);

Description

Availability: 2.1.0

- This method needs SFCGAL backend.
- This function supports 3d and will not drop the z-index.
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

```sql
SELECT ST_StraightSkeleton(ST_GeomFromText('POLYGON ((190 190, 10 190, 10 10, 190 10, 190 20, 160 30, 60 30, 60 130, 190 140, 190 190))'));
```

![Original polygon](image1)

![Straight Skeleton of polygon](image2)

5.20.4 ST_ApproximateMedialAxis

ST_ApproximateMedialAxis — Compute the approximate medial axis of an areal geometry.

Synopsis

geometry ST_ApproximateMedialAxis(geom);
Description

Return an approximate medial axis for the areal input based on its straight skeleton. Uses an SFCGAL specific API when built against a capable version (1.2.0+). Otherwise the function is just a wrapper around ST_StraightSkeleton (slower case).

Availability: 2.2.0

This method needs SFCGAL backend.
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

```sql
SELECT ST_ApproximateMedialAxis(ST_GeomFromText('POLYGON ((190 190, 10 190, 10 10, 190 10,
190 20, 160 30, 60 30, 60 130, 190 140, 190 190))'));
```

A polygon and its approximate medial axis

See Also

ST_StraightSkeleton

5.20.5 ST_IsPlanar

ST_IsPlanar — Check if a surface is or not planar

Synopsis

boolean ST_IsPlanar( geometry geom );
Description

Availability: 2.2.0: This was documented in 2.1.0 but got accidentally left out in 2.1 release.

This method needs SFCGAL backend.
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

5.20.6 **ST_Orientation**

ST_Orientation — Determine surface orientation

Synopsis

```c
integer ST_Orientation(geometry geom);
```

Description

The function only applies to polygons. It returns -1 if the polygon is counterclockwise oriented and 1 if the polygon is clockwise oriented.

Availability: 2.1.0

This method needs SFCGAL backend.
This function supports 3d and will not drop the z-index.

5.20.7 **ST_ForceLHR**

ST_ForceLHR — Force LHR orientation

Synopsis

```c
geometry ST_ForceLHR(geometry geom);
```

Description

Availability: 2.1.0

This method needs SFCGAL backend.
This function supports 3d and will not drop the z-index.
This function supports Polyhedral surfaces.
This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
5.20.8 ST_MinkowskiSum

ST_MinkowskiSum — Performs Minkowski sum

Synopsis

geometry ST_MinkowskiSum(geometry geom1, geometry geom2);

Description

This function performs a 2D minkowski sum of a point, line or polygon with a polygon.

A minkowski sum of two geometries A and B is the set of all points that are the sum of any point in A and B. Minkowski sums are often used in motion planning and computer-aided design. More details on Wikipedia Minkowski addition.

The first parameter can be any 2D geometry (point, linestring, polygon). If a 3D geometry is passed, it will be converted to 2D by forcing Z to 0, leading to possible cases of invalidity. The second parameter must be a 2D polygon.

Implementation utilizes CGAL 2D MinkowskiSum.

Availability: 2.1.0

This method needs SFCGAL backend.

Examples

Minkowski Sum of Linestring and circle polygon where Linestring cuts thru the circle

![Before Summing](image1.png)  ![After summing](image2.png)

SELECT ST_MinkowskiSum(line, circle))
FROM (SELECT
    ST_MakeLine(ST_MakePoint(10, 10),ST_MakePoint(100, 100)) As line,
    ST_Buffer(ST_GeomFromText('POINT(50 50)'), 30) As circle) As foo;

-- wkt --
MULTIPOLYGON((
    (30 59.999999999999999, 30.576415879031 54.1472903395161, 32.2836140246614, 30.576415879031 54.1472903395161, 30 59.999999999999999)
))
Minkowski Sum of a polygon and multipoint

![Before Summing](image1)

![After summing: polygon is duplicated and translated to position of points](image2)

```sql
SELECT ST_MinkowskiSum(mp, poly)
FROM (SELECT 'MULTIPOINT(25 50,70 25)'::geometry As mp,
 'POLYGON((130 150, 20 40, 50 60, 125 100, 130 150))'::geometry As poly
) As foo

-- wkt --
MULTIPOLYGON(
 ((70 115,100 135,175 175,225 225,70 115)),
 ((120 65,150 85,225 125,275 175,120 65))
)
```

### 5.20.9 `ST_ConstrainedDelaunayTriangles`

`ST_ConstrainedDelaunayTriangles` — Return a constrained Delaunay triangulation around the given input geometry.
Synopsis

geometry ST_ConstrainedDelaunayTriangles(geometry g1);

Description

Return a Constrained Delaunay triangulation around the vertices of the input geometry. Output is a TIN.

☑️ This method needs SFCGAL backend.

Availability: 3.0.0

☑️ This function supports 3d and will not drop the z-index.

Examples

<table>
<thead>
<tr>
<th>ST_ConstrainedDelaunayTriangles of 2 polygons</th>
<th>ST_DelaunayTriangles of 2 polygons. Triangle edges cross polygon boundaries.</th>
</tr>
</thead>
<tbody>
<tr>
<td>select ST_ConstrainedDelaunayTriangles(</td>
<td>select ST_DelaunayTriangles(</td>
</tr>
<tr>
<td>ST_Union(</td>
<td>ST_Union(</td>
</tr>
<tr>
<td>'POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))':geometry,</td>
<td>'POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))':geometry,</td>
</tr>
<tr>
<td>ST_Buffer('POINT &lt;- (110 170)':geometry, 20) )</td>
<td>ST_Buffer('POINT &lt;- (110 170)':geometry, 20) )</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See Also

ST_DelaunayTriangles, ST_Tesselate, ST_ConcaveHull, ST_Dump

5.20.10 ST_3DIntersection

ST_3DIntersection — Perform 3D intersection
Synopsis

geometry ST_3DIntersection(geometry geom1, geometry geom2);

Description

Return a geometry that is the shared portion between geom1 and geom2.

Availability: 2.1.0

- This method needs SFCGAL backend.
- This function supports 3d and will not drop the z-index.
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

3D images were generated using PostGIS ST_AsX3D and rendering in HTML using X3Dom HTML Javascript rendering library.

```
SELECT ST_3DIntersection(geom1, geom2)
FROM (SELECT ST_Extrude(ST_Buffer(
 ST_GeomFromText('POINT(100 90)'), 50, 'quad_segs=2'), 0, 0, 30) AS geom1,
 ST_Extrude(ST_Buffer(
 ST_GeomFromText('POINT(80 80)'), 50, 'quad_segs=1'), 0, 0, 30) AS geom2) AS t;
```

```
SELECT ST_AsText(ST_3DIntersection(linestring, polygon)) AS wkt
FROM ST_GeomFromText('LINESTRING Z (2 2 6, 1.5 1.5 7, 1 1 8, 0.5 0.5 8, 0 0 10)') AS linestring
CROSS JOIN ST_GeomFromText('POLYGON((0 0 8, 0 1 8, 1 1 8, 1 0 8, 0 0 8))') AS polygon;
```

Original 3D geometries overlaid. geom2 is shown semi-transparent

Intersection of geom1 and geom2
LINESTRING Z (1 1 8, 0.5 0.5 8)

Cube (closed Polyhedral Surface) and Polygon Z

```sql
SELECT ST_AsText(ST_3DIntersection(
 ST_GeomFromText('POLYHEDRALSURFACE Z((0 0 0, 0 0 1, 0 1 0, 0 0 0)),
 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
 ((0 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
 ((0 1 0, 0 1 1, 1 1 1, 0 1 0)), (0 0 1, 1 0 1, 0 1 1, 0 0 1))))),
'POLYGON Z((0 0 0, 0 0 0.5, 0 0.5 0.5, 0 0.5 0, 0 0 0))'::geometry)
```

TIN Z (((0 0 0, 0 0 0.5, 0 0.5 0.5, 0 0.5 0, 0 0 0)),
      ((0 0.5 0, 0 0 0, 0 0.5 0.5, 0 0.5 0)))

Intersection of 2 solids that result in volumetric intersection is also a solid (ST_Dimension returns 3)

```sql
SELECT ST_AsText(ST_3DIntersection(
 ST_Extrude(ST_Buffer('POINT(10 20)'::geometry,10,1) ←
 0,0,30),
 ST_Extrude(ST_Buffer('POINT(10 20)'::geometry,10,1),2,0,10)));
```

5.20.11 ST_3DDifference

ST_3DDifference — Perform 3D difference

**Synopsis**

```sql
geometry ST_3DDifference(geometry geom1, geometry geom2);
```

**Description**

Returns that part of geom1 that is not part of geom2.

**Availability:** 2.2.0
This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

### Examples

3D images were generated using PostGIS `ST_AsX3D` and rendering in HTML using X3Dom HTML Javascript rendering library.

```sql
SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50, 'quad_segs=2'), 0, 0, 30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'), 50, 'quad_segs=1'), 0, 0, 30) AS geom2;
```

Original 3D geometries overlaid. geom2 is the part that will be removed.

```sql
SELECT ST_3DDifference(geom1, geom2) FROM (SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50, 'quad_segs=2'), 0, 0, 30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'), 50, 'quad_segs=1'), 0, 0, 30) AS geom2) t;
```

What’s left after removing geom2

### See Also

`ST_Extrude`, `ST_AsX3D`, `ST_3DIntersection`, `ST_3DUnion`  

### 5.20.12 ST_3DUnion

#### Synopsis

```sql
geometry ST_3DUnion(geometry geom1, geometry geom2);
```

#### Description

Availability: 2.2.0
This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

3D images were generated using PostGIS ST_AsX3D and rendering in HTML using X3Dom HTML Javascript rendering library.

```
SELECT ST_Extrude(ST_Buffer(
 ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(
 ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2;
```

```
SELECT ST_3DUnion(geom1,geom2)
FROM (SELECT ST_Extrude(ST_Buffer(
 ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(
 ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2) As t;
```

See Also

ST_Extrude, ST_AsX3D, ST_3DIntersection, ST_3DDifference

5.20.13 ST_3DArea

ST_3DArea — Computes area of 3D surface geometries. Will return 0 for solids.

Synopsis

```
float ST_3DArea(geometry geom1);
```

Description

Availability: 2.1.0
This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

**Examples**

Note: By default a PolyhedralSurface built from WKT is a surface geometry, not solid. It therefore has surface area. Once converted to a solid, no area.

```sql
SELECT ST_3DArea(geom) As cube_surface_area,
 ST_3DArea(ST_MakeSolid(geom)) As solid_surface_area
FROM (SELECT 'POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),
 ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
 ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),
 ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))::geometry) As f(geom);
```

<table>
<thead>
<tr>
<th>cube_surface_area</th>
<th>solid_surface_area</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

**See Also**

ST_Area, ST_MakeSolid, ST_IsSolid, ST_Area

### 5.20.14 ST_Tesselate

**ST_Tesselate** — Perform surface Tessellation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS

**Synopsis**

```sql
geometry ST_Tesselate(geom);
```

**Description**

Takes as input a surface such a MULTI(POLYGON) or POLYHEDRALSURFACE and returns a TIN representation via the process of tessellation using triangles.

Availability: 2.1.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

**Examples**
SELECT ST_GeomFromText('POLYHEDRALSURFACE Z( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 ← 0)), ((0 0 0, 1 0 0, 1 0 1, 0 1 ← 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 ← 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 ← 0)));

Original Cube

SELECT ST_Tesselate(ST_GeomFromText('POLYHEDRALSURFACE Z( ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 ← 0)), ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 ← 0)), ((0 0 0, 1 0 0, 1 0 1, 0 1 ← 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 ← 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 ← 0)));

ST_AsText output:

Tesselated Cube with triangles colored
SELECT 'POLYGON (( 10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190 ))'::geometry;

Original polygon

SELECT ST_Tesselate('POLYGON (( 10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190 ))'::geometry);

ST_AsText output

TIN(((80 130,50 160,80 70,80 130)),((50 160,10 190,10 70,50 160)),
((80 70,50 160,10 70,80 70)),
((120 160,120 190,50 160,120 160)),
((120 190,10 190,50 160,120 190)))

Tesselated Polygon

See Also

ST_ConstrainedDelaunayTriangles, ST_DelaunayTriangles

5.20.15 ST_Volume

ST_Volume — Computes the volume of a 3D solid. If applied to surface (even closed) geometries will return 0.

Synopsis

float ST_Volume(geometry geom1);

Description

Availability: 2.2.0

This method needs SFCGAL backend.

This function supports 3d and will not drop the z-index.

This function supports Polyhedral surfaces.

This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Example

When closed surfaces are created with WKT, they are treated as areal rather than solid. To make them solid, you need to use \texttt{ST\_MakeSolid}. Areal geometries have no volume. Here is an example to demonstrate.

```sql
SELECT ST_Volume(geom) As cube_surface_vol,
 ST_Volume(ST_MakeSolid(geom)) As solid_surface_vol
FROM (SELECT 'POLYHEDRALSURFACE(((0 \ 0 \ 0, 0 \ 0 \ 1, 0 \ 1 \ 1, 0 \ 1 \ 0, 0 \ 0 \ 0)),
 ((0 \ 0 \ 0, 1 \ 0 \ 0, 1 \ 0 \ 1, 0 \ 0 \ 1, 0 \ 0 \ 0)),
 ((1 \ 1 \ 0, 1 \ 1 \ 1, 1 \ 0 \ 1, 1 \ 0 \ 0, 1 \ 1 \ 0)),
 ((0 \ 1 \ 0, 0 \ 1 \ 1, 1 \ 1 \ 1, 1 \ 1 \ 0, 0 \ 1 \ 0)),
 ((0 \ 0 \ 1, 1 \ 0 \ 1, 1 \ 1 \ 1, 0 \ 1 \ 1, 0 \ 0 \ 1)))::geometry) As f(geom);
```

<table>
<thead>
<tr>
<th>cube_surface_vol</th>
<th>solid_surface_vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

See Also

\texttt{ST\_3DArea, ST\_MakeSolid, ST\_IsSolid}

### 5.20.16 \texttt{ST\_MakeSolid}

\texttt{ST\_MakeSolid} — Cast the geometry into a solid. No check is performed. To obtain a valid solid, the input geometry must be a closed Polyhedral Surface or a closed TIN.

#### Synopsis

```sql
geometry \texttt{ST_MakeSolid}(geometry geom1);
```

#### Description

Availability: \texttt{2.2.0}

- This method needs SFCGAL backend.
- This function supports 3d and will not drop the z-index.
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

### 5.20.17 \texttt{ST\_IsSolid}

\texttt{ST\_IsSolid} — Test if the geometry is a solid. No validity check is performed.

#### Synopsis

```sql
boolean \texttt{ST_IsSolid}(geometry geom1);
```
Description

Availability: 2.2.0

- This method needs SFCGAL backend.
- This function supports 3d and will not drop the z-index.
- This function supports Polyhedral surfaces.
- This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

5.21 Long Transaction Support

Note

For the locking mechanism to operate correctly the serializable transaction isolation level must be used.

5.21.1 AddAuth

AddAuth — Adds an authorization token to be used in the current transaction.

Synopsis

boolean AddAuth(text auth_token);

Description

Adds an authorization token to be used in the current transaction.

Adds the current transaction identifier and authorization token to a temporary table called temp_lock_have_table.

Availability: 1.1.3

Examples

```
SELECT LockRow('towns', '353', 'priscilla');
BEGIN TRANSACTION;
 SELECT AddAuth('joey');
 UPDATE towns SET the_geom = ST_Translate(the_geom,2,2) WHERE gid = 353;
 COMMIT;

---Error--
ERROR: UPDATE where "gid" = '353' requires authorization 'priscilla'
```

See Also

LockRow
5.21.2 CheckAuth

CheckAuth — Creates a trigger on a table to prevent/allow updates and deletes of rows based on authorization token.

Synopsis

integer CheckAuth(text a_schema_name, text a_table_name, text a_key_column_name);
integer CheckAuth(text a_table_name, text a_key_column_name);

Description

Creates trigger on a table to prevent/allow updates and deletes of rows based on an authorization token. Identify rows using <rowid_col> column.

If a_schema_name is not passed in, then searches for table in current schema.

Note

If an authorization trigger already exists on this table function errors.

If Transaction support is not enabled, function throws an exception.

Availability: 1.1.3

Examples

```
SELECT CheckAuth('public', 'towns', 'gid');
```

result

```

0
```

See Also

DisableLongTransactions

5.21.3 DisableLongTransactions

DisableLongTransactions — Disables long transaction support.

Synopsis

text DisableLongTransactions();

Description

Disables long transaction support. This function removes the long transaction support metadata tables, and drops all triggers attached to lock-checked tables.

Drops meta table called authorization_table and a view called authorized_tables and all triggers called checkauthtrigger.

Availability: 1.1.3
Examples

```sql
SELECT DisableLongTransactions();
--result--
Long transactions support disabled
```

See Also

EnableLongTransactions

5.21.4 EnableLongTransactions

EnableLongTransactions — Enables long transaction support.

Synopsis

text EnableLongTransactions();

Description

Enables long transaction support. This function creates the required metadata tables. It must be called once before using the other functions in this section. Calling it twice is harmless.

Creates a meta table called `authorization_table` and a view called `authorized_tables`.
Availability: 1.1.3

Examples

```sql
SELECT EnableLongTransactions();
--result--
Long transactions support enabled
```

See Also

DisableLongTransactions

5.21.5 LockRow

LockRow — Sets lock/authorization for a row in a table.

Synopsis

```sql
integer LockRow(text a_schema_name, text a_table_name, text a_row_key, text an_auth_token, timestamp expire_dt);
integer LockRow(text a_table_name, text a_row_key, text an_auth_token, timestamp expire_dt);
integer LockRow(text a_table_name, text a_row_key, text an_auth_token);
```

Description

Sets lock/authorization for a specific row in a table. `an_auth_token` is a text value. `expire_dt` is a timestamp which defaults to `now() + 1 hour`. Returns 1 if lock has been assigned, 0 otherwise (i.e. row is already locked by another auth.)
Availability: 1.1.3
Examples

```sql
SELECT LockRow('public', 'towns', '2', 'joey');
LockRow

1

--Joey has already locked the record and Priscilla is out of luck
SELECT LockRow('public', 'towns', '2', 'priscilla');
LockRow

0
```

See Also

UnlockRows

5.21.6 UnlockRows

UnlockRows — Removes all locks held by an authorization token.

Synopsis

```sql
integer UnlockRows(text auth_token);
```

Description

Removes all locks held by specified authorization token. Returns the number of locks released.

Availability: 1.1.3

Examples

```sql
SELECT LockRow('towns', '353', 'priscilla');
SELECT LockRow('towns', '2', 'priscilla');
SELECT UnlockRows('priscilla');
UnlockRows

2
```

See Also

LockRow

5.22 Version Functions

5.22.1 PostGIS_Extensions_Upgrade

PostGIS_Extensions_Upgrade — Packages and upgrades postgis extensions (e.g. postgis_raster, postgis_topology, postgis_sfcgal) to latest available version.
Synopsis
text PostGIS_Extensions_Upgrade();

Description
Packages and upgrades postgis extensions to latest version. Only extensions you have installed in the database will be packaged and upgraded if needed. Reports full postgis version and build configuration infos after. This is short-hand for doing multiple CREATE EXTENSION .. FROM unpackaged and ALTER EXTENSION .. UPDATE for each postgis extension. Currently only tries to upgrade extensions postgis, postgis_raster, postgis_sfcgal, postgis_topology, and postgis_tiger_geocoder.
Availability: 2.5.0

Note
Changed: 3.0.0 to repackage loose extensions and support postgis_raster.

Examples

```
SELECT PostGIS_Extensions_Upgrade();
```

```
NOTICE: Packaging extension postgis
NOTICE: Packaging extension postgis_raster
NOTICE: Packaging extension postgis_sfcgal
NOTICE: Extension postgis_topology is not available or not packagable for some reason
NOTICE: Extension postgis_tiger_geocoder is not available or not packagable for some reason
```

postgis_extensions_upgrade
-------------------------------------------------------------------
Up upgrade completed, run SELECT postgis_full_version(); for details

(1 row)

See Also

5.22.2 PostGIS_Full_Version

PostGIS_Full_Version — Reports full postgis version and build configuration infos.

Synopsis
text PostGIS_Full_Version();

Description
Reports full postgis version and build configuration infos. Also informs about synchronization between libraries and scripts suggesting upgrades as needed.
Examples

```
SELECT PostGIS_Full_Version();
```

```
<table>
<thead>
<tr>
<th>postgis_full_version</th>
</tr>
</thead>
<tbody>
<tr>
<td>"POSTGIS="3.0.0dev r17211" [EXTENSION] PGSQL="110" GEOS="3.8.0dev-CAPI-1.11.0 df24b6bb" ← SFCGAL="1.3.6" PROJ="Rel. 5.2.0, September 15th, 2018" GDAL="GDAL 2.3.2, released 2018/09/21" LIBXML="2.9.9" LIBJSON="0.13.1" LIBPROTOBUF="1.3.1" ← WAGYU="0.4.3 (Internal)" TOPOLOGY RASTER</td>
</tr>
</tbody>
</table>
```

See Also


5.22.3 PostGIS_GEOS_Version

PostGIS_GEOS_Version — Returns the version number of the GEOS library.

Synopsis

```
text PostGIS_GEOS_Version();
```

Description

Returns the version number of the GEOS library, or NULL if GEOS support is not enabled.

Examples

```
SELECT PostGIS_GEOS_Version();
```

```
<table>
<thead>
<tr>
<th>postgis_geos_version</th>
</tr>
</thead>
<tbody>
<tr>
<td>"3.1.0-CAPI-1.5.0"</td>
</tr>
</tbody>
</table>
```

See Also


5.22.4 PostGIS_Liblwgeom_Version

PostGIS_Liblwgeom_Version — Returns the version number of the liblwgeom library. This should match the version of PostGIS.

Synopsis

```
text PostGIS_Liblwgeom_Version();
```

Description

Returns the version number of the liblwgeom library/
Examples

```sql
SELECT PostGIS_Liblwgeom_Version();
postgis_liblwgeom_version

2.3.3 r15473
(1 row)
```

See Also


5.22.5 PostGIS_LibXML_Version

PostGIS_LibXML_Version — Returns the version number of the libxml2 library.

Synopsis

text PostGIS_LibXML_Version();

Description

Returns the version number of the LibXML2 library.

Availability: 1.5

Examples

```sql
SELECT PostGIS_LibXML_Version();
postgis_libxml_version

2.7.6
(1 row)
```

See Also


5.22.6 PostGIS_Lib_Build_Date

PostGIS_Lib_Build_Date — Returns build date of the PostGIS library.

Synopsis

text PostGIS_Lib_Build_Date();

Description

Returns build date of the PostGIS library.
Examples

```sql
SELECT PostGIS_Lib_Build_Date();
postgis_lib_build_date

2008-06-21 17:53:21
(1 row)
```

5.22.7 PostGIS_Lib_Version

PostGIS_Lib_Version — Returns the version number of the PostGIS library.

Synopsis

text PostGIS_Lib_Version();

Description

Returns the version number of the PostGIS library.

Examples

```sql
SELECT PostGIS_Lib_Version();
postgis_lib_version

1.3.3
(1 row)
```

See Also


5.22.8 PostGIS_PROJ_Version

PostGIS_PROJ_Version — Returns the version number of the PROJ4 library.

Synopsis

text PostGIS_PROJ_Version();

Description

Returns the version number of the PROJ4 library, or NULL if PROJ4 support is not enabled.

Examples

```sql
SELECT PostGIS_PROJ_Version();
postgis_proj_version

Rel. 4.4.9, 29 Oct 2004
(1 row)
```
See Also

5.22.9 PostGIS_Wagyu_Version

PostGIS_Wagyu_Version — Returns the version number of the internal Wagyu library.

Synopsis
text PostGIS_Wagyu_Version();

Description
Returns the version number of the internal Wagyu library, or NULL if Wagyu support is not enabled.

Examples

```
SELECT PostGIS_Wagyu_Version();
postgis_wagyu_version

0.4.3 (Internal)
(1 row)
```

See Also

5.22.10 PostGIS_Scripts_Build_Date

PostGIS_Scripts_Build_Date — Returns build date of the PostGIS scripts.

Synopsis
text PostGIS_Scripts_Build_Date();

Description
Returns build date of the PostGIS scripts.
Availability: 1.0.0RC1

Examples

```
SELECT PostGIS_Scripts_Build_Date();
postgis_scripts_build_date

2007-08-18 09:09:26
(1 row)
```
### PostGIS_Scripts_Installed

**Synopsis**

```text
PostGIS_Scripts_Installed();
```

**Description**

Returns version of the postgis scripts installed in this database.

**Note**

If the output of this function doesn’t match the output of `PostGIS_Scripts_Released` you probably missed to properly upgrade an existing database. See the Upgrading section for more info.

**Availability:** 0.9.0

**Examples**

```sql
SELECT PostGIS_Scripts_Installed();
```

```
postgis_scripts_installed

1.5.0SVN
(1 row)
```

### PostGIS_ScriptsReleased

**Synopsis**

```text
PostGIS_Scripts_Released();
```

**Description**

Returns the version number of the postgis.sql script released with the installed postgis lib.

**Note**

Starting with version 1.1.0 this function returns the same value of `PostGIS_Lib_Version`. Kept for backward compatibility.

**Availability:** 0.9.0
Examples

```sql
SELECT PostGIS_Scripts_Released();
postgis_scripts_released

 1.3.4SVN
(1 row)
```

See Also

PostGIS_Full_Version, PostGIS_Scripts_Installed, PostGIS_Lib_Version

### 5.22.13 PostGIS_Version

PostGIS_Version — Returns PostGIS version number and compile-time options.

**Synopsis**

```sql
text PostGIS_Version();
```

**Description**

Returns PostGIS version number and compile-time options.

**Examples**

```sql
SELECT PostGIS_Version();
postgis_version

 1.3 USE_GEOS=1 USE_PROJ=1 USE_STATS=1
(1 row)
```

See Also


### 5.23 Grand Unified Custom Variables (GUCs)

#### 5.23.1 postgis.backend

postgis.backend — The backend to service a function where GEOS and SFCGAL overlap. Options: geos or sfeggal. Defaults to geos.

**Description**

This GUC is only relevant if you compiled PostGIS with sfeggal support. By default geos backend is used for functions where both GEOS and SFCGAL have the same named function. This variable allows you to override and make sfeggal the backend to service the request.

**Availability:** 2.1.0
Examples

Sets backend just for life of connection

```
set postgis.backend = sfcgal;
```

Sets backend for new connections to database

```
ALTER DATABASE mygisdb SET postgis.backend = sfcgal;
```

See Also

Section 5.20

5.23.2 postgis.gdal_datapath

postgis.gdal_datapath — A configuration option to assign the value of GDAL’s GDAL_DATA option. If not set, the environment-
tally set GDAL_DATA variable is used.

Description

A PostgreSQL GUC variable for setting the value of GDAL’s GDAL_DATA option. The `postgis.gdal_datapath` value
should be the complete physical path to GDAL’s data files.

This configuration option is of most use for Windows platforms where GDAL’s data files path is not hard-coded. This option
should also be set when GDAL’s data files are not located in GDAL’s expected path.

Note

This option can be set in PostgreSQL’s configuration file `postgresql.conf`. It can also be set by connection or transaction.

Availability: 2.2.0

Note

Additional information about GDAL_DATA is available at GDAL’s Configuration Options.

Examples

Set and reset `postgis.gdal_datapath`

```
SET postgis.gdal_datapath TO '/usr/local/share/gdal.hidden';
SET postgis.gdal_datapath TO default;
```

Setting on windows for a particular database

```
ALTER DATABASE gisdb
SET postgis.gdal_datapath = 'C:/Program Files/PostgreSQL/9.3/gdal-data';
```
5.23.3  postgis.gdal_enabled_drivers

postgis.gdal_enabled_drivers — A configuration option to set the enabled GDAL drivers in the PostGIS environment. Affects the GDAL configuration variable GDAL_SKIP.

Description

A configuration option to set the enabled GDAL drivers in the PostGIS environment. Affects the GDAL configuration variable GDAL_SKIP. This option can be set in PostgreSQL’s configuration file: postgresql.conf. It can also be set by connection or transaction.

The initial value of postgis.gdal_enabled_drivers may also be set by passing the environment variable POSTGIS_GDAL_ENABLED_DRIVERS with the list of enabled drivers to the process starting PostgreSQL.

Enabled GDAL specified drivers can be specified by the driver’s short-name or code. Driver short-names or codes can be found at GDAL Raster Formats. Multiple drivers can be specified by putting a space between each driver.

Note

There are three special codes available for postgis.gdal_enabled_drivers. The codes are case-sensitive.

- DISABLE_ALL disables all GDAL drivers. If present, DISABLE_ALL overrides all other values in postgis.gdal_enabled_drivers.
- ENABLE_ALL enables all GDAL drivers.
- VSICURL enables GDAL's /vsicurl/ virtual file system.

When postgis.gdal_enabled_drivers is set to DISABLE_ALL, attempts to use out-db rasters, ST_FromGDALRaster(), ST_AsGDALRaster(), ST_AsTIFF(), ST_AsJPEG() and ST_AsPNG() will result in error messages.

Note

In the standard PostGIS installation, postgis.gdal_enabled_drivers is set to DISABLE_ALL.

Note

Additional information about GDAL_SKIP is available at GDAL's Configuration Options.

Availability: 2.2.0

Examples

Set and reset postgis.gdal_enabled_drivers

Sets backend for all new connections to database

ALTER DATABASE mygisdb SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';
Sets default enabled drivers for all new connections to server. Requires super user access and PostgreSQL 9.4+. Also note that database, session, and user settings override this.

```
ALTER_SYSTEM SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';
SELECT pg_reload_conf();
```

```
SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';
SET postgis.gdal_enabled_drivers = default;
```

Enable all GDAL Drivers

```
SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
```

Disable all GDAL Drivers

```
SET postgis.gdal_enabled_drivers = 'DISABLE_ALL';
```

See Also

ST_FromGDALRaster, ST_AsGDALRaster, ST_AsTIFF, ST_AsPNG, ST_AsJPEG, postgis.enable_outdb_rasters

### 5.23.4 postgis.enable_outdb_rasters

postgis.enable_outdb_rasters — A boolean configuration option to enable access to out-db raster bands.

**Description**

A boolean configuration option to enable access to out-db raster bands. This option can be set in PostgreSQL’s configuration file: postgresql.conf. It can also be set by connection or transaction.

The initial value of `postgis.enable_outdb_rasters` may also be set by passing the environment variable `POSTGIS_ENABLE_OUTDB_RASTERS` with a non-zero value to the process starting PostgreSQL.

**Note**

Even if `postgis.enable_outdb_rasters` is True, the GUC `postgis.gdal_enabled_drivers` determines the accessible raster formats.

**Note**

In the standard PostGIS installation, `postgis.enable_outdb_rasters` is set to False.

**Availability:** 2.2.0

**Examples**

Set and reset `postgis.enable_outdb_rasters` for current session

```
SET postgis.enable_outdb_rasters TO True;
SET postgis.enable_outdb_rasters = default;
SET postgis.enable_outdb_rasters = True;
SET postgis.enable_outdb_rasters = False;
```
Set for specific database

```
ALTER DATABASE gisdb SET postgis.enable_outdb_rasters = true;
```

Setting for whole database cluster. You need to reconnect to the database for changes to take effect.

```
--writes to postgres.auto.conf
ALTER SYSTEM postgis.enable_outdb_rasters = true;
--Reloads postgres conf
SELECT pg_reload_conf();
```

See Also

`postgis.gdal_enabled_drivers`

## 5.24 Troubleshooting Functions

### 5.24.1 PostGIS_AddBBox

PostGIS_AddBBox — Add bounding box to the geometry.

**Synopsis**

```
geometry PostGIS_AddBBox(geometry geomA);
```

**Description**

Add bounding box to the geometry. This would make bounding box based queries faster, but will increase the size of the geometry.

**Note**

Bounding boxes are automatically added to geometries so in general this is not needed unless the generated bounding box somehow becomes corrupted or you have an old install that is lacking bounding boxes. Then you need to drop the old and readd.

This method supports Circular Strings and Curves

**Examples**

```
UPDATE sometable
SET the_geom = PostGIS_AddBBox(the_geom)
WHERE PostGIS_HasBBox(the_geom) = false;
```

See Also

`PostGIS_DropBBox, PostGIS_HasBBox`

### 5.24.2 PostGIS_DropBBox

PostGIS_DropBBox — Drop the bounding box cache from the geometry.
Synopsis

geometry PostGIS_DropBBox(geomA);

Description

Drop the bounding box cache from the geometry. This reduces geometry size, but makes bounding-box based queries slower. It is also used to drop a corrupt bounding box. A tale-tell sign of a corrupt cached bounding box is when your ST_Intersects and other relation queries leave out geometries that rightfully should return true.

Note

Bounding boxes are automatically added to geometries and improve speed of queries so in general this is not needed unless the generated bounding box somehow becomes corrupted or you have an old install that is lacking bounding boxes. Then you need to drop the old and readd. This kind of corruption has been observed in 8.3-8.3.6 series whereby cached bboxes were not always recalculated when a geometry changed and upgrading to a newer version without a dump reload will not correct already corrupted boxes. So one can manually correct using below and readd the bbox or do a dump reload.

This method supports Circular Strings and Curves

Examples

```
--This example drops bounding boxes where the cached box is not correct
--The force to ST_AsBinary before applying Box2D forces a recalculation of the box, ←
and Box2D applied to the table geometry always
-- returns the cached bounding box.
UPDATE sometable
SET the_geom = PostGIS_DropBBox(the_geom)
WHERE Not (Box2D(ST_AsBinary(the_geom)) = Box2D(the_geom));

UPDATE sometable
SET the_geom = PostGIS_AddBBox(the_geom)
WHERE Not PostGIS_HasBBOX(the_geom);
```

See Also

PostGIS_AddBBox, PostGIS_HasBBox, Box2D

5.24.3 PostGIS_HasBBox

PostGIS_HasBBox — Returns TRUE if the bbox of this geometry is cached, FALSE otherwise.

Synopsis

boolean PostGIS_HasBBox(geomA);

Description

Returns TRUE if the bbox of this geometry is cached, FALSE otherwise. Use PostGIS_AddBBox and PostGIS_DropBBox to control caching.

This method supports Circular Strings and Curves
Examples

```sql
SELECT the_geom
FROM sometable WHERE PostGIS_HasBBox(the_geom) = false;
```

See Also

PostGIS_AddBBox, PostGIS_DropBBox
Chapter 6

Raster Reference

The functions given below are the ones which a user of PostGIS Raster is likely to need and which are currently available in PostGIS Raster. There are other functions which are required support functions to the raster objects which are not of use to a general user.

`raster` is a new PostGIS type for storing and analyzing raster data.

For loading rasters from raster files please refer to Section 4.5.1

For the examples in this reference we will be using a raster table of dummy rasters - Formed with the following code

```
CREATE TABLE dummy_rast(rid integer, rast raster);
INSERT INTO dummy_rast(rid, rast)
VALUES (1,
('01' -- little endian (uint8 ndr)
||
'0000' -- version (uint16 0)
||
'0000' -- nBands (uint16 0)
||
'0000000000000040' -- scaleX (float64 2)
||
'0000000000000840' -- scaleY (float64 3)
||
'00000000000000000000E03F' -- ipX (float64 0.5)
||
'00000000000000000000E03F' -- ipY (float64 0.5)
||
'00
-- skewX (float64 0)
||
'00
-- skewY (float64 0)
||
'00000000' -- SRID (int32 0)
||
'0A00' -- width (uint16 10)
||
'1400' -- height (uint16 20)
)::raster
);

-- Raster: 5 x 5 pixels, 3 bands, PT_8BUI pixel type, NODATA = 0

(2,
('0100
-- little endian (uint8 ndr)
||
'0A00' -- width (uint16 10)
||
'1400' -- height (uint16 20)
)::raster
);```

```
6.1 Raster Support Data types

6.1.1 geomval

gemval — A spatial datatype with two fields - geom (holding a geometry object) and val (holding a double precision pixel value from a raster band).

Description

gemval is a compound data type consisting of a geometry object referenced by the .geom field and val, a double precision value that represents the pixel value at a particular geometric location in a raster band. It is used by the ST_DumpAsPolygon and Raster intersection family of functions as an output type to explode a raster band into geometry polygons.

See Also

Section 9.6

6.1.2 addbandarg

addbandarg — A composite type used as input into the ST_AddBand function defining the attributes and initial value of the new band.

Description

A composite type used as input into the ST_AddBand function defining the attributes and initial value of the new band.

index integer 1-based value indicating the position where the new band will be added amongst the raster’s bands. If NULL, the new band will be added at the end of the raster’s bands.

pixeltype text Pixel type of the new band. One of defined pixel types as described in ST_BandPixelType.

initialvalue double precision Initial value that all pixels of new band will be set to.

nodataval double precision NODATA value of the new band. If NULL, the new band will not have a NODATA value assigned.

See Also

ST_AddBand

6.1.3 rastbandarg

rastbandarg — A composite type for use when needing to express a raster and a band index of that raster.

Description

A composite type for use when needing to express a raster and a band index of that raster.

rast raster The raster in question/

nband integer 1-based value indicating the band of raster
See Also

ST_MapAlgebra (callback function version)

6.1.4 raster

raster — raster spatial data type.

Description

raster is a spatial data type used to represent raster data such as those imported from JPEGs, TIFFs, PNGs, digital elevation models. Each raster has 1 or more bands each having a set of pixel values. Rasters can be georeferenced.

Note

Requires PostGIS be compiled with GDAL support. Currently rasters can be implicitly converted to geometry type, but the conversion returns the ST_ConvexHull of the raster. This auto casting may be removed in the near future so don’t rely on it.

Casting Behavior

This section lists the automatic as well as explicit casts allowed for this data type

<table>
<thead>
<tr>
<th>Cast To</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>geometry</td>
<td>automatic</td>
</tr>
</tbody>
</table>

See Also

Chapter 6

6.1.5 reclassarg

reclassarg — A composite type used as input into the ST_Reclass function defining the behavior of reclassification.

Description

A composite type used as input into the ST_Reclass function defining the behavior of reclassification.

nband integer The band number of band to reclassify.

reclassexpr text range expression consisting of comma delimited range:map_range mappings. : to define mapping that defines how to map old band values to new band values. ( means >, ) means less than, ] means > or equal, [ means > or equal

1. [a-b] = a <= x <= b
2. (a-b] = a < x <= b
3. [a-b) = a <= x < b
4. (a-b) = a < x < b

( notation is optional so a-b means the same as (a-b)

pixelttype text One of defined pixel types as described in ST_BandPixelType

nodataval double precision Value to treat as no data. For image outputs that support transparency, these will be blank.
Example: Reclassify band 2 as an 8BUI where 255 is nodata value

```sql
```

Example: Reclassify band 1 as an 1BB and no nodata value defined

```sql
SELECT ROW(1, '0-100]:0, (100-255:1', '1BB', NULL)::reclassarg;
```

See Also

ST_Reclass

### 6.1.6 summarystats

**summarystats** — A composite type returned by the ST_SummaryStats and ST_SummaryStatsAgg functions.

**Description**

A composite type returned by the ST_SummaryStats and ST_SummaryStatsAgg functions.

- **count** integer Number of pixels counted for the summary statistics.
- **sum** double precision Sum of all counted pixel values.
- **mean** double precision Arithmetic mean of all counted pixel values.
- **stddev** double precision Standard deviation of all counted pixel values.
- **min** double precision Minimum value of counted pixel values.
- **max** double precision Maximum value of counted pixel values.

See Also

ST_SummaryStats, ST_SummaryStatsAgg

### 6.1.7 unionarg

**unionarg** — A composite type used as input into the ST_Union function defining the bands to be processed and behavior of the UNION operation.

**Description**

A composite type used as input into the ST_Union function defining the bands to be processed and behavior of the UNION operation.

- **nband** integer 1-based value indicating the band of each input raster to be processed.
- **uniontype** text Type of UNION operation. One of defined types as described in ST_Union.

See Also

ST_Union
6.2 Raster Management

6.2.1 AddRasterConstraints

AddRasterConstraints — Adds raster constraints to a loaded raster table for a specific column that constrains spatial ref, scaling, blocksize, alignment, bands, band type and a flag to denote if raster column is regularly blocked. The table must be loaded with data for the constraints to be inferred. Returns true if the constraint setting was accomplished and issues a notice otherwise.

Synopsis

boolean AddRasterConstraints(name rasttable, name rastcolumn, boolean srid=true, boolean scale_x=true, boolean scale_y=true, boolean blocksize_x=true, boolean blocksize_y=true, boolean same_alignment=true, boolean regular_blocking=false, boolean num_bands=true, boolean pixel_types=true, boolean nodata_values=true, boolean out_db=true, boolean extent=true);

boolean AddRasterConstraints(name rasttable, name rastcolumn, text[] VARIADIC constraints);

boolean AddRasterConstraints(name rastschema, name rasttable, name rastcolumn, text[] VARIADIC constraints);

boolean AddRasterConstraints(name rastschema, name rasttable, name rastcolumn, boolean srid=true, boolean scale_x=true, boolean scale_y=true, boolean blocksize_x=true, boolean blocksize_y=true, boolean same_alignment=true, boolean regular_blocking=false, boolean num_bands=true, boolean pixel_types=true, boolean nodata_values=true, boolean out_db=true, boolean extent=true);

Description

Generates constraints on a raster column that are used to display information in the raster_columns raster catalog. The rastschema is the name of the table schema the table resides in. The srid must be an integer value reference to an entry in the SPATIAL_REF_SYS table.

raster2pgsql loader uses this function to register raster tables

Valid constraint names to pass in: refer to Section 4.5.2.1 for more details.

- blocksize sets both X and Y blocksize
- blocksize_x sets X tile (width in pixels of each tile)
- blocksize_y sets Y tile (height in pixels of each tile)
- extent computes extent of whole table and applies constraint all rasters must be within that extent
- num_bands number of bands
- pixel_types reads array of pixel types for each band ensure all band n have same pixel type
- regular_blocking sets spatially unique (no two rasters can be spatially the same) and coverage tile (raster is aligned to a coverage) constraints
- same_alignment ensures they all have same alignment meaning any two tiles you compare will return true for. Refer to ST_SameAlignment.
- srid ensures all have same srid
- More -- any listed as inputs into the above functions

Note

This function infers the constraints from the data already present in the table. As such for it to work, you must create the raster column first and then load it with data.
If you need to load more data in your tables after you have already applied constraints, you may want to run the DropRasterConstraints if the extent of your data has changed.

Availability: 2.0.0

Examples: Apply all possible constraints on column based on data

```sql
CREATE TABLE myrasters(rid SERIAL primary key, rast raster);
INSERT INTO myrasters(rast)
SELECT ST_AddBand(ST_MakeEmptyRaster(1000, 1000, 0.3, -0.3, 2, 2, 0, 0,4326), 1, '8BSI':←
text, -129, NULL);
SELECT AddRasterConstraints('myrasters':::name, 'rast':::name);

-- verify if registered correctly in the raster_columns view --
SELECT srid, scale_x, scale_y, blocksize_x, blocksize_y, num_bands, pixel_types, ←
nodata_values
FROM raster_columns
WHERE r_table_name = 'myrasters';
```

```
<table>
<thead>
<tr>
<th>srid</th>
<th>scale_x</th>
<th>scale_y</th>
<th>blocksize_x</th>
<th>blocksize_y</th>
<th>num_bands</th>
<th>pixel_types</th>
<th>nodata_values</th>
</tr>
</thead>
<tbody>
<tr>
<td>4326</td>
<td>2</td>
<td>2</td>
<td>1000</td>
<td>1000</td>
<td>1</td>
<td>{8BSI}</td>
<td>{0}</td>
</tr>
</tbody>
</table>
```

Examples: Apply single constraint

```sql
CREATE TABLE public.myrasters2(rid SERIAL primary key, rast raster);
INSERT INTO myrasters2(rast)
SELECT ST_AddBand(ST_MakeEmptyRaster(1000, 1000, 0.3, -0.3, 2, 2, 0, 0,4326), 1, '8BSI':←
text, -129, NULL);
SELECT AddRasterConstraints('public':::name, 'myrasters2':::name, 'rast':::name, 'regular_blocking', 'blocksize');

-- get notice--
NOTICE: Adding regular blocking constraint
NOTICE: Adding blocksize-X constraint
NOTICE: Adding blocksize-Y constraint
```

See Also

Section 4.5.2.1, ST_AddBand, ST_MakeEmptyRaster, DropRasterConstraints, ST_BandPixelType, ST_SRID

6.2.2 DropRasterConstraints

DropRasterConstraints — Drops PostGIS raster constraints that refer to a raster table column. Useful if you need to reload data or update your raster column data.
Synopsis

boolean DropRasterConstraints(name rasttable, name rastcolumn, boolean srid, boolean scale_x, boolean scale_y, boolean blocksize_x, boolean blocksize_y, boolean same_alignment, boolean regular_blocking, boolean num_bands=true, boolean pixel_types=true, boolean nodata_values=true, boolean out_db=true, boolean extent=true);
boolean DropRasterConstraints(name rastschema, name rasttable, name rastcolumn, boolean srid=true, boolean scale_x=true, boolean scale_y=true, boolean blocksize_x=true, boolean blocksize_y=true, boolean same_alignment=true, boolean regular_blocking=false, boolean num_bands=true, boolean pixel_types=true, boolean nodata_values=true, boolean out_db=true, boolean extent=true);
boolean DropRasterConstraints(name rastschema, name rasttable, name rastcolumn, text[] constraints);

Description

Drops PostGIS raster constraints that refer to a raster table column that were added by AddRasterConstraints. Useful if you need to load more data or update your raster column data. You do not need to do this if you want to get rid of a raster table or a raster column.

To drop a raster table use the standard

DROP TABLE mytable

To drop just a raster column and leave the rest of the table, use standard SQL

ALTER TABLE mytable DROP COLUMN rast

the table will disappear from the raster_columns catalog if the column or table is dropped. However if only the constraints are dropped, the raster column will still be listed in the raster_columns catalog, but there will be no other information about it aside from the column name and table.

Availability: 2.0.0

Examples

```
SELECT DropRasterConstraints('myrasters','rast');
----RESULT output ---
t
-- verify change in raster_columns --
SELECT srid, scale_x, scale_y, blocksize_x, blocksize_y, num_bands, pixel_types, nodata_values
FROM raster_columns
WHERE r_table_name = 'myrasters';
```

See Also

AddRasterConstraints

6.2.3 AddOverviewConstraints

AddOverviewConstraints — Tag a raster column as being an overview of another.
Synopsis

boolean AddOverviewConstraints(name ovschema, name ovtable, name ovcolumn, name refschema, name reftable, name refcolumn, int ovfactor);
boolean AddOverviewConstraints(name ovtable, name ovcolumn, name reftable, name refcolumn, int ovfactor);

Description

Adds constraints on a raster column that are used to display information in the raster_overviews raster catalog. The ovfactor parameter represents the scale multiplier in the overview column: higher overview factors have lower resolution. When the ovschema and refschema parameters are omitted, the first table found scanning the search_path will be used.

Availability: 2.0.0

Examples

```
CREATE TABLE res1 AS SELECT
 ST_AddBand(
 ST_MakeEmptyRaster(1000, 1000, 0, 0, 2),
 1, '8BSI'::text, -129, NULL
) r1;

CREATE TABLE res2 AS SELECT
 ST_AddBand(
 ST_MakeEmptyRaster(500, 500, 0, 0, 4),
 1, '8BSI'::text, -129, NULL
) r2;

SELECT AddOverviewConstraints('res2', 'r2', 'res1', 'r1', 2);

-- verify if registered correctly in the raster_overviews view --
SELECT o_table_name ot, o_raster_column oc,
 r_table_name rt, r_raster_column rc,
 overview_factor f
FROM raster_overviews WHERE o_table_name = 'res2';
```

(1 row)

See Also

Section 4.5.2.2, DropOverviewConstraints, ST_CreateOverview, AddRasterConstraints

6.2.4 DropOverviewConstraints

DropOverviewConstraints — Untag a raster column from being an overview of another.

Synopsis

boolean DropOverviewConstraints(name ovschema, name ovtable, name ovcolumn);
boolean DropOverviewConstraints(name ovtable, name ovcolumn);
Description

Remove from a raster column the constraints used to show it as being an overview of another in the `raster_overviews` raster catalog.

When the `ovschema` parameter is omitted, the first table found scanning the `search_path` will be used.

Availability: 2.0.0

See Also

Section 4.5.2.2, `AddOverviewConstraints`, `DropRasterConstraints`

### 6.2.5 PostGIS_GDAL_Version

**PostGIS_GDAL_Version** — Reports the version of the GDAL library in use by PostGIS.

**Synopsis**

```
PostGIS_GDAL_Version();
```

**Description**

Reports the version of the GDAL library in use by PostGIS. Will also check and report if GDAL can find its data files.

**Examples**

```
SELECT PostGIS_GDAL_Version();
```

```
postgis_gdal_version
GDAL 1.11dev, released 2013/04/13
```

**See Also**

`postgis.gdal_datapath`

### 6.2.6 PostGIS_Raster_Lib_Build_Date

**PostGIS_Raster_Lib_Build_Date** — Reports full raster library build date.

**Synopsis**

```
PostGIS_Raster_Lib_Build_Date();
```

**Description**

Reports raster build date
Examples

```
SELECT PostGIS_Raster_Lib_Build_Date();
postgis_raster_lib_build_date

2010-04-28 21:15:10
```

See Also

PostGIS_Raster_Lib_Version

6.2.7 PostGIS_Raster_Lib_Version

PostGIS_Raster_Lib_Version — Reports full raster version and build configuration infos.

Synopsis

text PostGIS_Raster_Lib_Version();

Description

Reports full raster version and build configuration infos.

Examples

```
SELECT PostGIS_Raster_Lib_Version();
postgis_raster_lib_version

2.0.0
```

See Also

PostGIS_Lib_Version

6.2.8 ST_GDALDrivers

ST_GDALDrivers — Returns a list of raster formats supported by PostGIS through GDAL. Only those formats with can_write=True can be used by ST_AsGDALRaster

Synopsis

setof record ST_GDALDrivers(integer OUT idx, text OUT short_name, text OUT long_name, text OUT can_read, text OUT can_write, text OUT create_options);
Description

Returns a list of raster formats short_name,long_name and creator options of each format supported by GDAL. Use the short_name as input in the format parameter of ST_AsGDALRaster. Options vary depending on what drivers your libgdal was compiled with. create_options returns an xml formatted set of CreationOptionList/Option consisting of name and optional type, description and set of VALUE for each creator option for the specific driver.

Changed: 2.5.0 - add can_read and can_write columns.
Changed: 2.0.6, 2.1.3 - by default no drivers are enabled, unless GUC or Environment variable gdal_enabled_drivers is set.
Availability: 2.0.0 - requires GDAL >= 1.6.0.

Examples: List of Drivers

```
SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
SELECT short_name, long_name, can_write
FROM st_gdaldrivers();
ORDER BY short_name;
```

<table>
<thead>
<tr>
<th>short_name</th>
<th>long_name</th>
<th>can_write</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAIGrid</td>
<td>Arc/Info ASCII Grid</td>
<td>t</td>
</tr>
<tr>
<td>ACE2</td>
<td>ACE2</td>
<td>f</td>
</tr>
<tr>
<td>ADRG</td>
<td>ARC Digitized Raster Graphics</td>
<td>f</td>
</tr>
<tr>
<td>AIG</td>
<td>Arc/Info Binary Grid</td>
<td>f</td>
</tr>
<tr>
<td>AirSAR</td>
<td>AirSAR Polarimetric Image</td>
<td>f</td>
</tr>
<tr>
<td>ARG</td>
<td>Azavea Raster Grid format</td>
<td>t</td>
</tr>
<tr>
<td>BAG</td>
<td>Bathymetry Attributed Grid</td>
<td>f</td>
</tr>
<tr>
<td>BIGGIF</td>
<td>Graphics Interchange Format (.gif)</td>
<td>f</td>
</tr>
<tr>
<td>BLX</td>
<td>Magellan topo (.blx)</td>
<td>t</td>
</tr>
<tr>
<td>BMP</td>
<td>MS Windows Device Independent Bitmap</td>
<td>f</td>
</tr>
<tr>
<td>BSB</td>
<td>Maptech BSB Nautical Charts</td>
<td>f</td>
</tr>
<tr>
<td>PAux</td>
<td>PCI .aux Labelled</td>
<td>f</td>
</tr>
<tr>
<td>PCIDSK</td>
<td>PCIDSK Database File</td>
<td>f</td>
</tr>
<tr>
<td>PCRaster</td>
<td>PCRaster Raster File</td>
<td>f</td>
</tr>
<tr>
<td>PDF</td>
<td>Geospatial PDF</td>
<td>f</td>
</tr>
<tr>
<td>PDS</td>
<td>NASA Planetary Data System</td>
<td>f</td>
</tr>
<tr>
<td>PDS4</td>
<td>NASA Planetary Data System 4</td>
<td>t</td>
</tr>
<tr>
<td>PLMOSAIC</td>
<td>Planet Labs Mosaics API</td>
<td>f</td>
</tr>
<tr>
<td>PLSCENES</td>
<td>Planet Labs Scenes API</td>
<td>f</td>
</tr>
<tr>
<td>PNG</td>
<td>Portable Network Graphics</td>
<td>t</td>
</tr>
<tr>
<td>PNM</td>
<td>Portable Pixmap Format (netpbm)</td>
<td>f</td>
</tr>
<tr>
<td>PRF</td>
<td>Racurs PHOTOMOD PRF</td>
<td>f</td>
</tr>
<tr>
<td>R</td>
<td>R Object Data Store</td>
<td>t</td>
</tr>
<tr>
<td>Rasterlite</td>
<td>Rasterlite</td>
<td>t</td>
</tr>
<tr>
<td>RDA</td>
<td>DigitalGlobe Raster Data Access driver</td>
<td>f</td>
</tr>
<tr>
<td>RIK</td>
<td>Swedish Grid RIK (.rik)</td>
<td>f</td>
</tr>
<tr>
<td>RMF</td>
<td>Raster Matrix Format</td>
<td>f</td>
</tr>
<tr>
<td>ROI_PAC</td>
<td>ROI_PAC raster</td>
<td>f</td>
</tr>
<tr>
<td>RPFTOC</td>
<td>Raster Product Format TOC format</td>
<td>f</td>
</tr>
<tr>
<td>RRASTER</td>
<td>R Raster</td>
<td>f</td>
</tr>
<tr>
<td>RS2</td>
<td>RadarSat 2 XML Product</td>
<td>f</td>
</tr>
<tr>
<td>RST</td>
<td>Idrisi Raster A.1</td>
<td>t</td>
</tr>
<tr>
<td>SAFE</td>
<td>Sentinel-1 SAR SAFE Product</td>
<td>f</td>
</tr>
<tr>
<td>SAGA</td>
<td>SAGA GIS Binary Grid (.sdat, .sg-grd-z)</td>
<td>t</td>
</tr>
<tr>
<td>SAR_CEOS</td>
<td>CEOS SAR Image</td>
<td>f</td>
</tr>
<tr>
<td>SDTS</td>
<td>SDTS Raster</td>
<td>f</td>
</tr>
<tr>
<td>SENTINEL2</td>
<td>Sentinel 2</td>
<td>f</td>
</tr>
<tr>
<td>SGI</td>
<td>SGI Image File Format 1.0</td>
<td>f</td>
</tr>
<tr>
<td>SNODAS</td>
<td>Snow Data Assimilation System</td>
<td>f</td>
</tr>
<tr>
<td>SRP</td>
<td>Standard Raster Product (ASRP/USR)</td>
<td>f</td>
</tr>
</tbody>
</table>
Example: List of options for each driver

-- Output the create options XML column of JPEG as a table --
-- Note you can use these creator options in ST_AsGDALRaster options argument
SELECT (xpath('@name', g.opt))[1]::text As oname,
       (xpath('@type', g.opt))[1]::text As otype,
       (xpath('@description', g.opt))[1]::text As descrip
FROM (SELECT unnest(xpath('/CreationOptionList/Option', create_options::xml)) As opt
      FROM st_gdaldrivers()
      WHERE short_name = 'JPEG') As g;

<table>
<thead>
<tr>
<th>oname</th>
<th>otype</th>
<th>descrip</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRESSIVE</td>
<td>boolean</td>
<td>whether to generate a progressive JPEG</td>
</tr>
<tr>
<td>QUALITY</td>
<td>int</td>
<td>good=100, bad=0, default=75</td>
</tr>
<tr>
<td>WORLDFILE</td>
<td>boolean</td>
<td>whether to generate a worldfile</td>
</tr>
<tr>
<td>INTERNAL_MASK</td>
<td>boolean</td>
<td>whether to generate a validity mask</td>
</tr>
<tr>
<td>COMMENT</td>
<td>string</td>
<td>Comment</td>
</tr>
<tr>
<td>SOURCE_ICC_PROFILE</td>
<td>string</td>
<td>ICC profile encoded in Base64</td>
</tr>
<tr>
<td>EXIF_THUMBNAIL</td>
<td>boolean</td>
<td>whether to generate an EXIF thumbnail(overview). By default its max dimension will be 128</td>
</tr>
<tr>
<td>THUMBNAIL_WIDTH</td>
<td>int</td>
<td>Forced thumbnail width</td>
</tr>
<tr>
<td>THUMBNAIL_HEIGHT</td>
<td>int</td>
<td>Forced thumbnail height</td>
</tr>
</tbody>
</table>

(9 rows)

-- raw xml output for creator options for GeoTiff --
SELECT create_options
FROM st_gdaldrivers()
WHERE short_name = 'GTiff';

<CreationOptionList>
  <Option name="COMPRESS" type="string-select">
    <Value>NONE</Value>
    <Value>LZW</Value>
    <Value>PACKBITS</Value>
    <Value>JPEG</Value>
    <Value>CCITTRE</Value>
    <Value>CCITTFAX3</Value>
    <Value>CCITTFAX4</Value>
    <Value>DEFLATE</Value>
  </Option>
  <Option name="PREDICTOR" type="int" description="Predictor Type"/>
  <Option name="JPEG_QUALITY" type="int" description="JPEG quality 1-100" default="75"/>
  <Option name="ZLEVEL" type="int" description="DEFLATE compression level 1-9" default="5"/>
</CreationOptionList>
<Option name="NBITS" type="int" description="BITS for sub-byte files (1-7), sub-uint16 (9-15), sub-uint32 (17-31)"/>
<Option name="INTERLEAVE" type="string-select" default="PIXEL">
   <Value>BAND</Value>
   <Value>PIXEL</Value>
</Option>
<Option name="TILED" type="boolean" description="Switch to tiled format"/>
<Option name="TFW" type="boolean" description="Write out world file"/>
<Option name="RPB" type="boolean" description="Write out .RPB (RPC) file"/>
<Option name="BLOCKXSIZE" type="int" description="Tile Width"/>
<Option name="BLOCKYSIZE" type="int" description="Tile/Strip Height"/>
<Option name="PHOTOMETRIC" type="string-select">
   <Value>MINISBLACK</Value>
   <Value>MINISWHITE</Value>
   <Value>PALETTE</Value>
   <Value>RGB</Value>
   <Value>CMYK</Value>
   <Value>YCBCR</Value>
   <Value>CIELAB</Value>
   <Value>ICCLAB</Value>
   <Value>ITULAB</Value>
</Option>
<Option name="SPARSE_OK" type="boolean" description="Can newly created files have missing blocks?" default="FALSE"/>
<Option name="ALPHA" type="boolean" description="Mark first extrasample as being alpha"/>
<Option name="PROFILE" type="string-select" default="GDALGeoTIFF">
   <Value>GDALGeoTIFF</Value>
   <Value>GeoTIFF</Value>
   <Value>BASELINE</Value>
</Option>
<Option name="PIXELTYPE" type="string-select">
   <Value>DEFAULT</Value>
   <Value>SIGNEDBYTE</Value>
</Option>
<Option name="BIGTIFF" type="string-select" description="Force creation of BigTIFF file">
   <Value>YES</Value>
   <Value>NO</Value>
   <Value>IF_NEEDED</Value>
   <Value>IF_SAFER</Value>
</Option>
<Option name="ENDIANNESS" type="string-select" default="NATIVE" description="Force endianness of created file. For DEBUG purpose mostly">
   <Value>NATIVE</Value>
   <Value>INVERTED</Value>
   <Value>LITTLE</Value>
   <Value>BIG</Value>
</Option>
<Option name="COPY_SRC_OVERVIEWS" type="boolean" default="NO" description="Force copy of overviews of source dataset (CreateCopy())"/>
</CreationOptionList>

-- Output the create options XML column for GTiff as a table --
SELECT (xpath('@name', g.opt))[1]::text As oname, (xpath('@type', g.opt))[1]::text As otype, (xpath('@description', g.opt))[1]::text As descrip, array_to_string(xpath('Value/text()', g.opt),', ') As vals
FROM (SELECT unnest(xpath('/CreationOptionList/Option', create_options::xml)) As opt
FROM st_gdaldrivers()) As g;


### COMPRESS

| string-select | NONE, LZW, PACKBITS, JPEG, CCITTRLE, CCITTFAX3, CCITTFAX4, DEFLATE |

### PREDICTOR

| int | Predictor Type |

### JPEG_QUALITY

| int | JPEG quality 1-100 |

### ZLEVEL

| int | DEFLATE compression level 1-9 |

### NBITS

| int | BITS for sub-byte files (1-7), sub-uint16 (9-15), sub-uint32 (17-31) |

### INTERLEAVE

| string-select | BAND, PIXEL |

### TILED

| boolean | Switch to tiled format |

### TFW

| boolean | Write out world file |

### RPB

| boolean | Write out .RPB (RPC) file |

### BLOCKXSIZE

| int | Tile Width |

### BLOCKYSIZE

| int | Tile/Strip Height |

### PHOTOMETRIC

| string-select | MINISBLACK, MINISWHITE, PALETTE, RGB, CMYK, YCBCR, CIELAB, ICCLAB, ITULAB |

### SPARSE_OK

| boolean | Can newly created files have missing blocks? |

### ALPHA

| boolean | Mark first extrasample as being alpha |

### PROFILE

| string-select | GDALGeoTIFF, BASELINE |

### PIXELTYPE

| string-select | DEFAULT, SIGNEDBYTE |

### BIGTIFF

| string-select | Force creation of BigTIFF file |

| YES, NO, IF_NEEDED, IF_SAFER |

### ENDIANNESS

| string-select | Force endianness of created file. For DEBUG purpose |

mostly | NATIVE, INVERTED, LITTLE, BIG |

### COPY_SRC_OVERVIEWS

| boolean | Force copy of overviews of source dataset (CreateCopy) |

(19 rows)

**See Also**

ST_AsGDALRaster, ST_SRID, postgis.gdal_enabled_drivers

### 6.2.9 UpdateRasterSRID

UpdateRasterSRID — Change the SRID of all rasters in the user-specified column and table.
Synopsis

raster UpdateRasterSRID(name schema_name, name table_name, name column_name, integer new_srid);
raster UpdateRasterSRID(name table_name, name column_name, integer new_srid);

Description

Change the SRID of all rasters in the user-specified column and table. The function will drop all appropriate column constraints (extent, alignment and SRID) before changing the SRID of the specified column’s rasters.

---

Note

The data (band pixel values) of the rasters are not touched by this function. Only the raster’s metadata is changed.

Availability: 2.1.0

See Also

UpdateGeometrySRID

6.2.10  ST_CreateOverview

ST_CreateOverview — Create an reduced resolution version of a given raster coverage.

Synopsis

regclass ST_CreateOverview(regclass tab, name col, int factor, text algo='NearestNeighbor');

Description

Create an overview table with resampled tiles from the source table. Output tiles will have the same size of input tiles and cover the same spatial extent with a lower resolution (pixel size will be 1/factor of the original in both directions).

The overview table will be made available in the raster_overviews catalog and will have raster constraints enforced.

Algorithm options are: 'NearestNeighbor', 'Bilinear', 'Cubic', 'CubicSpline', and 'Lanczos'. Refer to: GDAL Warp resampling methods for more details.

Availability: 2.2.0

Example

Output to generally better quality but slower to product format

```sql
SELECT ST_CreateOverview('mydata.mytable':regclass, 'rast', 2, 'Lanczos');
```

Output to faster to process default nearest neighbor

```sql
SELECT ST_CreateOverview('mydata.mytable':regclass, 'rast', 2);
```

See Also

ST_Retile, AddOverviewConstraints, AddRasterConstraints, Section 4.5.2.2
6.3 Raster Constructors

6.3.1 ST_AddBand

ST_AddBand — Returns a raster with the new band(s) of given type added with given initial value in the given index location. If no index is specified, the band is added to the end.

Synopsis

(1) raster $\text{ST\_AddBand}(\text{raster rast, addbandarg[]} \text{addbandargset});$
(2) raster $\text{ST\_AddBand}(\text{raster rast, integer index, text pixeltype, double precision initialvalue=0, double precision nodataval=NULL});$
(3) raster $\text{ST\_AddBand}(\text{raster rast, text pixeltype, double precision initialvalue=0, double precision nodataval=NULL});$
(4) raster $\text{ST\_AddBand}(\text{raster torast, raster fromrast, integer fromband=1, integer torastindex=at\_end});$
(5) raster $\text{ST\_AddBand}(\text{raster torast, raster[]} \text{fromrasts, integer fromband=1, integer torastindex=at\_end});$
(6) raster $\text{ST\_AddBand}(\text{raster rast, integer index, text outdbfile, integer[]} \text{outdbindex, double precision nodataval=NULL});$
(7) raster $\text{ST\_AddBand}(\text{raster rast, text outdbfile, integer[]} \text{outdbindex, integer index=at\_end, double precision nodataval=NULL});$

Description

Returns a raster with a new band added in given position (index), of given type, of given initial value, and of given nodata value. If no index is specified, the band is added to the end. If no fromband is specified, band 1 is assumed. Pixel type is a string representation of one of the pixel types specified in $\text{ST\_BandPixelType}$. If an existing index is specified all subsequent bands $\geq$ that index are incremented by 1. If an initial value greater than the max of the pixel type is specified, then the initial value is set to the highest value allowed by the pixel type.

For the variant that takes an array of $\text{addbandarg}$ (Variant 1), a specific addbandarg’s index value is relative to the raster at the time when the band described by that addbandarg is being added to the raster. See the Multiple New Bands example below.

For the variant that takes an array of rasters (Variant 5), if torast is NULL then the fromband band of each raster in the array is accumulated into a new raster.

For the variants that take outdbfile (Variants 6 and 7), the value must include the full path to the raster file. The file must also be accessible to the postgres server process.

Enhanced: 2.1.0 support for addbandarg added.

Enhanced: 2.1.0 support for new out-db bands added.

Examples: Single New Band

```
-- Add another band of type 8 bit unsigned integer with pixels initialized to 200
UPDATE dummy_rast
 SET rast = ST_AddBand(rast,'8BUI'::text,200)
WHERE rid = 1;

-- Create an empty raster 100x100 units, with upper left right at 0, add 2 bands (band 1 ← is 0/1 boolean bit switch, band2 allows values 0-15)
-- uses addbandargs
INSERT INTO dummy_rast(rid,rast)
VALUES(10, ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 1, -1, 0, 0, 0),
ARRAY[
 ROW(1, '1BB'::text, 0, NULL),
 ROW(2, '4BUI'::text, 0, NULL)
]::addbandarg[])
);

-- output meta data of raster bands to verify all is right --
```
```
SELECT (bmd).*
FROM (SELECT ST_BandMetaData(rast, generate_series(1, 2)) As bmd
 FROM dummy_rast WHERE rid = 10) AS foo;
-- result --
pixeltype | nodatavalue | isoutdb | path
-------------+----------------+-------------+---------+------
1BB | | f | |
4BUI | | f | |
-- output meta data of raster --
FROM (SELECT ST_MetaData(rast) As rmd
 FROM dummy_rast WHERE rid = 10) AS foo;
-- result --
upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid |
----------+------------+-------+--------+---------+---------+-------+-------+-----+----------
0 | 0 | 100 | 100 | 1 | -1 | 0 | 0 | 0 | 0 |
2
Examples: Multiple New Bands
SELECT *
FROM ST_BandMetadata(
 ST_AddBand(
 ST_MakeEmptyRaster(10, 10, 0, 0, 1, -1, 0, 0, 0),
 ARRAY[
 ROW(NULL, '8BUI', 255, 0),
 ROW(NULL, '16BUI', 1, 2),
 ROW(2, '32BUI', 100, 12),
 ROW(2, '32BF', 3.14, -1)
]::addbandarg[]
),
 ARRAY[]::integer[]
)

| bandnum | pixeltype | nodatavalue | isoutdb | path |
|---------+-----------+-------------+---------+------|
| 1 | 8BUI | 0 | f | |
| 2 | 32BF | -1 | f | |
| 3 | 32BUI | 12 | f | |
| 4 | 16BUI | 2 | f | |
-- Aggregate the 1st band of a table of like rasters into a single raster
-- with as many bands as there are test_types and as many rows (new rasters) as there are mice
-- NOTE: The ORDER BY test_type is only supported in PostgreSQL 9.0+
-- for 8.4 and below it usually works to order your data in a subselect (but not guaranteed)
-- The resulting raster will have a band for each test_type alphabetical by test_type
-- For mouse lovers: No mice were harmed in this exercise
SELECT mouse,
 ST_AddBand(NULL, array_agg(rast ORDER BY test_type), 1) As rast
FROM mice_studies
GROUP BY mouse;
```
**Examples: New Out-db band**

```sql
SELECT *
FROM ST_BandMetadata(
 ST_AddBand(
 ST_MakeEmptyRaster(10, 10, 0, 0, 1, -1, 0, 0, 0),
 '/home/raster/mytestraster.tif'::text, NULL::int[]
),
 ARRAY[]::integer[]
);
```

<table>
<thead>
<tr>
<th>bandnum</th>
<th>pixeltype</th>
<th>nodatavalue</th>
<th>isoutdb</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8BUI</td>
<td>t</td>
<td></td>
<td>/home/raster/mytestraster.tif</td>
</tr>
<tr>
<td>2</td>
<td>8BUI</td>
<td>t</td>
<td></td>
<td>/home/raster/mytestraster.tif</td>
</tr>
<tr>
<td>3</td>
<td>8BUI</td>
<td>t</td>
<td></td>
<td>/home/raster/mytestraster.tif</td>
</tr>
</tbody>
</table>

**See Also**

ST_BandMetaData, ST_BandPixelType, ST_MakeEmptyRaster, ST_MetaData, ST_NumBands, ST_Reclass

### 6.3.2 ST_AsRaster

**ST_AsRaster** — Converts a PostGIS geometry to a PostGIS raster.

**Synopsis**

```sql
raster ST_AsRaster(geometry geom, raster ref, text pixeltype, double precision value=1, double precision nodataval=0, boolean touched=false);
```

raster ST_AsRaster(geometry geom, raster ref, text pixeltype=ARRAY['8BUI'], double precision value=ARRAY[1], double precision nodataval=ARRAY[0], boolean touched=false);

raster ST_AsRaster(geometry geom, double precision scalex, double precision scaley, double precision gridx, double precision gridy, text pixeltype, double precision value=1, double precision nodataval=0, double precision skewx=0, double precision skewy=0, boolean touched=false);

raster ST_AsRaster(geometry geom, double precision scalex, double precision scaley, double precision gridx=NULL, double precision gridy=NULL, text pixeltype=ARRAY['8BUI'], double precision value=ARRAY[1], double precision nodataval=ARRAY[0], double precision skewx=0, double precision skewy=0, boolean touched=false);

raster ST_AsRaster(geometry geom, integer width, integer height, double precision gridx, double precision gridy, text pixeltype, double precision value=1, double precision nodataval=0, double precision skewx=0, double precision skewy=0, boolean touched=false);

raster ST_AsRaster(geometry geom, integer width, integer height, text pixeltype=ARRAY['8BUI'], double precision value=ARRAY[1], double precision nodataval=ARRAY[0], double precision skewx=0, double precision skewy=0, boolean touched=false);

```sql
raster ST_AsRaster(geometry geom, integer width, integer height, text pixeltype, double precision value=1, double precision nodataval=0, double precision upperleftx=NULL, double precision upperlefty=NULL, double precision skewx=0, double precision skewy=0, boolean touched=false);
```

```sql
raster ST_AsRaster(geometry geom, integer width, integer height, text pixeltype, double precision value=1, double precision nodataval=0, double precision upperleftx=NULL, double precision upperlefty=NULL, double precision skewx=0, double precision skewy=0, boolean touched=false);
```

```sql
raster ST_AsRaster(geom```
Description

Converts a PostGIS geometry to a PostGIS raster. The many variants offers three groups of possibilities for setting the alignment and pixel size of the resulting raster.

The first group, composed of the two first variants, produce a raster having the same alignment (scalex, scaley, gridx and gridy), pixel type and nodata value as the provided reference raster. You generally pass this reference raster by joining the table containing the geometry with the table containing the reference raster.

The second group, composed of four variants, let you set the dimensions of the raster by providing the parameters of a pixel size (scalex & scaley and skewx & skewy). The width & height of the resulting raster will be adjusted to fit the extent of the geometry. In most cases, you must cast integer scalex & scaley arguments to double precision so that PostgreSQL choose the right variant.

The third group, composed of four variants, let you fix the dimensions of the raster by providing the dimensions of the raster (width & height). The parameters of the pixel size (scalex & scaley and skewx & skewy) of the resulting raster will be adjusted to fit the extent of the geometry.

The two first variants of each of those two last groups let you specify the alignment with an arbitrary corner of the alignment grid (gridx & gridy) and the two last variants takes the upper left corner (upperleftx & upperlefty).

Each group of variant allows producing a one band raster or a multiple bands raster. To produce a multiple bands raster, you must provide an array of pixel types (pixeltype[]), an array of initial values (value) and an array of nodata values (nodataval). If not provided pixelpred defaults to 8BUI, values to 1 and nodataval to 0.

The output raster will be in the same spatial reference as the source geometry. The only exception is for variants with a reference raster. In this case the resulting raster will get the same SRID as the reference raster.

The optional touched parameter defaults to false and maps to the GDAL ALL_TOUCHED rasterization option, which determines if pixels touched by lines or polygons will be burned. Not just those on the line render path, or whose center point is within the polygon.

This is particularly useful for rendering jpegs and pngs of geometries directly from the database when using in combination with ST_AsPNG and other ST_AsGDALRaster family of functions.

Availability: 2.0.0 - requires GDAL >= 1.6.0.

Note

Not yet capable of rendering complex geometry types such as curves, TINS, and PolyhedralSurfaces, but should be able too once GDAL can.

Examples: Output geometries as PNG files

```sql
-- this will output a black circle taking up 150 x 150 pixels --
SELECT ST_AsPNG(ST_AsRaster(ST_Buffer(ST_Point(1,5),10),150, 150));
```
-- the bands map to RGB bands - the value (118,154,118) - teal --

```
SELECT ST_AsPNG(
    ST_AsRaster(
        ST_Buffer(
            ST_GeomFromText('LINESTRING(50 50,150 150,150 50)'), 10,'join=bevel'),
            200,200,ARRAY['8BUI', '8BUI', '8BUI'], ARRAY[118,154,118], ARRAY[0,0,0]));
```

See Also

ST_BandPixelType, ST_Buffer, ST_GDALDrivers, ST_AsGDALRaster, ST_AsPNG, ST_AsJPEG, ST_SRID

6.3.3 ST_Band

ST_Band — Returns one or more bands of an existing raster as a new raster. Useful for building new rasters from existing rasters.

Synopsis

```
raster ST_Band(raster rast, integer[] nbands = ARRAY[1]);
raster ST_Band(raster rast, integer nband);
raster ST_Band(raster rast, text nbands, character delimiter=,);
```

Description

Returns one or more bands of an existing raster as a new raster. Useful for building new rasters from existing rasters or export of only selected bands of a raster or rearranging the order of bands in a raster. If no band is specified or any of specified bands does not exist in the raster, then all bands are returned. Used as a helper function in various functions such as for deleting a band.

Warning

For the nbands as text variant of function, the default delimiter is , which means you can ask for ‘1,2,3’ and if you wanted to use a different delimeter you would do ST_Band(rast, ‘1@2@3’, ‘@’). For asking for multiple bands, we strongly suggest you use the array form of this function e.g. ST_Band(rast, ‘(1,2,3)’::int[]); since the text list of bands form may be removed in future versions of PostGIS.

Availability: 2.0.0
Examples

-- Make 2 new rasters: 1 containing band 1 of dummy, second containing band 2 of dummy and then reclassified as a 2BUI

SELECT ST_NumBands(rast1) As numb1, ST_BandPixelType(rast1) As pix1,
 ST_NumBands(rast2) As numb2, ST_BandPixelType(rast2) As pix2
FROM (
 SELECT ST_Band(rast) As rast1, ST_Reclass(ST_Band(rast,3), '100-200):1, [200-254:2', '2 \rightarrow BUI') As rast2
 FROM dummy_rast
 WHERE rid = 2) As foo;

+-------+----------+-------+----------+
| numb1 | pix1 | numb2 | pix2 |
|-------+----------+-------+----------|
| 1 | 8BUI | 1 | 2BUI |

-- Return bands 2 and 3. Using array cast syntax

SELECT ST_NumBands(ST_Band(rast, '{2,3} '::int[])) As num_bands
 FROM dummy_rast WHERE rid=2;

num_bands

 2

-- Return bands 2 and 3. Use array to define bands

SELECT ST_NumBands(ST_Band(rast, ARRAY[2,3])) As num_bands
 FROM dummy_rast WHERE rid=2;

See Also

ST_AddBand, ST_NumBands, ST_Reclass, Chapter 6
6.3.4 ST_MakeEmptyCoverage

ST_MakeEmptyCoverage — Cover georeferenced area with a grid of empty raster tiles.

Synopsis

```
raster ST_MakeEmptyCoverage(integer tilewidth, integer tileheight, integer width, integer height, double precision upperleftx, double precision upperlefty, double precision scalex, double precision scaley, double precision skewx, double precision skewy, integer srid=unknown);
```

Description

Create a set of raster tiles with ST_MakeEmptyRaster. Grid dimension is width & height. Tile dimension is tilewidth & tileheight. The covered georeferenced area is from upper left corner (upperleftx, upperlefty) to lower right corner (upperleftx + width * scalex, upperlefty + height * scaley).

Note

Note that scaley is generally negative for rasters and scalex is generally positive. So lower right corner will have a lower y value and higher x value than the upper left corner.

Availability: 2.4.0

Examples Basic

Create 16 tiles in a 4x4 grid to cover the WGS84 area from upper left corner (22, 77) to lower right corner (55, 33).

```
SELECT (ST_MetaData(tile)).* FROM ST_MakeEmptyCoverage(1, 1, 4, 4, 22, 33, (55 - 22)/(4)::float, (33 - 77)/(4)::float, 0., 0., 4326) tile;
```

<table>
<thead>
<tr>
<th>upperleftx</th>
<th>upperlefty</th>
<th>width</th>
<th>height</th>
<th>scalex</th>
<th>scaley</th>
<th>skewx</th>
<th>skewy</th>
<th>srid</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>33</td>
<td>1</td>
<td>1</td>
<td>8.25</td>
<td>-11</td>
<td>0</td>
<td>0</td>
<td>4326</td>
</tr>
<tr>
<td>30.25</td>
<td>33</td>
<td>1</td>
<td>1</td>
<td>8.25</td>
<td>-11</td>
<td>0</td>
<td>0</td>
<td>4326</td>
</tr>
<tr>
<td>38.5</td>
<td>33</td>
<td>1</td>
<td>1</td>
<td>8.25</td>
<td>-11</td>
<td>0</td>
<td>0</td>
<td>4326</td>
</tr>
<tr>
<td>46.75</td>
<td>33</td>
<td>1</td>
<td>1</td>
<td>8.25</td>
<td>-11</td>
<td>0</td>
<td>0</td>
<td>4326</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>1</td>
<td>1</td>
<td>8.25</td>
<td>-11</td>
<td>0</td>
<td>0</td>
<td>4326</td>
</tr>
<tr>
<td>30.25</td>
<td>22</td>
<td>1</td>
<td>1</td>
<td>8.25</td>
<td>-11</td>
<td>0</td>
<td>0</td>
<td>4326</td>
</tr>
<tr>
<td>38.5</td>
<td>22</td>
<td>1</td>
<td>1</td>
<td>8.25</td>
<td>-11</td>
<td>0</td>
<td>0</td>
<td>4326</td>
</tr>
<tr>
<td>46.75</td>
<td>22</td>
<td>1</td>
<td>1</td>
<td>8.25</td>
<td>-11</td>
<td>0</td>
<td>0</td>
<td>4326</td>
</tr>
<tr>
<td>22</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>8.25</td>
<td>-11</td>
<td>0</td>
<td>0</td>
<td>4326</td>
</tr>
<tr>
<td>30.25</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>8.25</td>
<td>-11</td>
<td>0</td>
<td>0</td>
<td>4326</td>
</tr>
<tr>
<td>38.5</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>8.25</td>
<td>-11</td>
<td>0</td>
<td>0</td>
<td>4326</td>
</tr>
<tr>
<td>46.75</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>8.25</td>
<td>-11</td>
<td>0</td>
<td>0</td>
<td>4326</td>
</tr>
</tbody>
</table>
ST_MakeEmptyRaster

6.3.5 ST_MakeEmptyRaster

ST_MakeEmptyRaster — Returns an empty raster (having no bands) of given dimensions (width & height), upperleft X and Y, pixel size and rotation (scalex, scaley, skewx & skewy) and reference system (srid). If a raster is passed in, returns a new raster with the same size, alignment and SRID. If srid is left out, the spatial ref is set to unknown (0).

Synopsis

raster ST_MakeEmptyRaster(raster rast);
raster ST_MakeEmptyRaster(integer width, integer height, float8 upperleftx, float8 upperlefty, float8 scalex, float8 scaley, float8 skewx, float8 skewy, integer srid=unknown);
raster ST_MakeEmptyRaster(integer width, integer height, float8 pixelsize);

Description

Returns an empty raster (having no band) of given dimensions (width & height) and georeferenced in spatial (or world) coordinates with upper left X (upperleftx), upper left Y (upperlefty), pixel size and rotation (scalex, scaley, skewx & skewy) and reference system (srid).

The last version use a single parameter to specify the pixel size (pixelsize). scalex is set to this argument and scaley is set to the negative value of this argument. skewx and skewy are set to 0.

If an existing raster is passed in, it returns a new raster with the same meta data settings (without the bands).

If no srid is specified it defaults to 0. After you create an empty raster you probably want to add bands to it and maybe edit it. Refer to ST_AddBand to define bands and ST_SetValue to set initial pixel values.

Examples

INSERT INTO dummy_rast(rid,rast)
VALUES(3, ST_MakeEmptyRaster(100, 100, 0.0005, 0.0005, 1, 1, 0, 0, 4326));

--use an existing raster as template for new raster
INSERT INTO dummy_rast(rid,rast)
SELECT 4, ST_MakeEmptyRaster(rast)
FROM dummy_rast WHERE rid = 3;

-- output meta data of rasters we just added
SELECT rid, (md).*
FROM (SELECT rid, ST_MetaData(rast) As md
FROM dummy_rast
WHERE rid IN(3,4)) As foo;
See Also

ST_AddBand, ST_MetaData, ST_ScaleX, ST_ScaleY, ST_SetValue, ST_SkewX, ST_SkewY

6.3.6 ST_Tile

ST_Tile — Returns a set of rasters resulting from the split of the input raster based upon the desired dimensions of the output rasters.

Synopsis

setof raster ST_Tile(raster rast, int[] nband, integer width, integer height, boolean padwithnodata=FALSE, double precision nodataval=NULL);
setof raster ST_Tile(raster rast, integer nband, integer width, integer height, boolean padwithnodata=FALSE, double precision nodataval=NULL);
setof raster ST_Tile(raster rast, integer width, integer height, boolean padwithnodata=FALSE, double precision nodataval=NULL);

Description

Returns a set of rasters resulting from the split of the input raster based upon the desired dimensions of the output rasters.

If padwithnodata = FALSE, edge tiles on the right and bottom sides of the raster may have different dimensions than the rest of the tiles. If padwithnodata = TRUE, all tiles will have the same dimensions with the possibility that edge tiles being padded with NODATA values. If raster band(s) do not have NODATA value(s) specified, one can be specified by setting nodataval.

Note

If a specified band of the input raster is out-of-db, the corresponding band in the output rasters will also be out-of-db.

Availability: 2.1.0

Examples

WITH foo AS (
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 2, '8BUI', 10, 0) AS rast UNION ALL
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 2, 0), 2, '8BUI', 20, 0) AS rast UNION ALL
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 3, 0), 2, '8BUI', 30, 0) AS rast UNION ALL
)
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -3, 1, -1, 0, 0, 0), 1, '8BUI', 4, 0), 2, '8BUI', 40, 0) AS rast UNION ALL
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -3, 1, -1, 0, 0, 0), 1, '8BUI', 5, 0), 2, '8BUI', 50, 0) AS rast UNION ALL
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -3, 1, -1, 0, 0, 0), 1, '8BUI', 6, 0), 2, '8BUI', 60, 0) AS rast UNION ALL
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -6, 1, -1, 0, 0, 0), 1, '8BUI', 7, 0), 2, '8BUI', 70, 0) AS rast UNION ALL
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -6, 1, -1, 0, 0, 0), 1, '8BUI', 8, 0), 2, '8BUI', 80, 0) AS rast UNION ALL
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -6, 1, -1, 0, 0, 0), 1, '8BUI', 9, 0), 2, '8BUI', 90, 0) AS rast
), bar AS (
SELECT ST_Union(rast) AS rast FROM foo
), baz AS (
SELECT ST_Tile(rast, 3, 3, TRUE) AS rast FROM bar
)
SELECT
ST_DumpValues(rast)
FROM baz;

WITH foo AS (
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 2, '8BUI', 10, 0) AS rast UNION ALL
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, 0, 1, -1, 0, 0, 0), 1, '8BUI', 2, 0), 2, '8BUI', 20, 0) AS rast UNION ALL
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, 0, 1, -1, 0, 0, 0), 1, '8BUI', 3, 0), 2, '8BUI', 30, 0) AS rast UNION ALL
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -3, 1, -1, 0, 0, 0), 1, '8BUI', 4, 0), 2, '8BUI', 40, 0) AS rast UNION ALL
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -3, 1, -1, 0, 0, 0), 1, '8BUI', 5, 0), 2, '8BUI', 50, 0) AS rast UNION ALL
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -3, 1, -1, 0, 0, 0), 1, '8BUI', 6, 0), 2, '8BUI', 60, 0) AS rast UNION ALL
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -6, 1, -1, 0, 0, 0), 1, '8BUI', 7, 0), 2, '8BUI', 70, 0) AS rast UNION ALL
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -6, 1, -1, 0, 0, 0), 1, '8BUI', 8, 0), 2, '8BUI', 80, 0) AS rast UNION ALL
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -6, 1, -1, 0, 0, 0), 1, '8BUI', 9, 0), 2, '8BUI', 90, 0) AS rast
)
8, 0), 2, '8BUI', 80, 0) AS rast UNION ALL
SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -6, 1, -1, 0, 0, 0), 1, '8BUI', 9, 0), 2, '8BUI', 90, 0) AS rast
FROM foo
), baz AS (SELECT ST_Tile(rast, 3, 3, 2) AS rast FROM bar)
SELECT
ST_DumpValues(rast)
FROM baz;

```
<table>
<thead>
<tr>
<th>row</th>
<th>st_dumpvalues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>({{10,10,10},{10,10,10},{10,10,10}})</td>
</tr>
<tr>
<td>1</td>
<td>({{20,20,20},{20,20,20},{20,20,20}})</td>
</tr>
<tr>
<td>1</td>
<td>({{30,30,30},{30,30,30},{30,30,30}})</td>
</tr>
<tr>
<td>1</td>
<td>({{40,40,40},{40,40,40},{40,40,40}})</td>
</tr>
<tr>
<td>1</td>
<td>({{50,50,50},{50,50,50},{50,50,50}})</td>
</tr>
<tr>
<td>1</td>
<td>({{60,60,60},{60,60,60},{60,60,60}})</td>
</tr>
<tr>
<td>1</td>
<td>({{70,70,70},{70,70,70},{70,70,70}})</td>
</tr>
<tr>
<td>1</td>
<td>({{80,80,80},{80,80,80},{80,80,80}})</td>
</tr>
<tr>
<td>1</td>
<td>({{90,90,90},{90,90,90},{90,90,90}})</td>
</tr>
</tbody>
</table>
```

See Also

ST_Union, ST_Retile

6.3.7 ST_Retile

ST_Retile — Return a set of configured tiles from an arbitrarily tiled raster coverage.

Synopsis

```sql
SETOF raster ST_Retile(regclass tab, name col, geometry ext, float8 sfx, float8 sfy, int tw, int th, text algo='NearestNeighbor');
```

Description

Return a set of tiles having the specified scale (sfx, sfy) and max size (tw, th) and covering the specified extent (ext) with data coming from the specified raster coverage (tab, col).

Algorithm options are: 'NearestNeighbor', 'Bilinear', 'Cubic', 'CubicSpline', and 'Lanczos'. Refer to: GDAL Warp resampling methods for more details.

Availability: 2.2.0

See Also

ST_CreateOverview

6.3.8 ST_FromGDALRaster

ST_FromGDALRaster — Returns a raster from a supported GDAL raster file.
Synopsis

raster \texttt{ST_FromGDALRaster}(bytea \texttt{gdaldata}, integer \texttt{srid}=NULL);

Description

Returns a raster from a supported GDAL raster file. \texttt{gdaldata} is of type bytea and should be the contents of the GDAL raster file.

If \texttt{srid} is NULL, the function will try to automatically assign the SRID from the GDAL raster. If \texttt{srid} is provided, the value provided will override any automatically assigned SRID.

Availability: 2.1.0

Examples

\begin{verbatim}
WITH foo AS (
 SELECT ST_AsPNG(ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 0.1, ←
-0.1, 0, 0, 4326), 1, '8BUI', 1, 0), 2, '8BUI', 2, 0), 3, '8BUI', 3, 0)) AS png
)
, bar AS (
 SELECT 1 AS rid, ST_FromGDALRaster(png) AS rast FROM foo
 UNION ALL
 SELECT 2 AS rid, ST_FromGDALRaster(png, 3310) AS rast FROM foo
)
SELECT
 rid,
 ST_Metadata(rast) AS metadata,
 ST_SummaryStats(rast, 1) AS stats1,
 ST_SummaryStats(rast, 2) AS stats2,
 ST_SummaryStats(rast, 3) AS stats3
FROM bar
ORDER BY rid;
\end{verbatim}

\begin{verbatim}
+------------+---------------------------+---------------+---------------+----------------+
| rid | metadata | stats1 | stats2 | stats3 |
|-----+---------------------------+---------------+---------------+----------------|
| 1 | (0,0,2,2,1,-1,0,0,0,3) | (4,4,1,0,1,1) | (4,8,2,0,2,2) | (4,12,3,0,3,3) |
| 2 | (0,0,2,2,1,-1,0,0,3310,3) | (4,4,1,0,1,1) | (4,8,2,0,2,2) | (4,12,3,0,3,3) |
+------------+---------------------------+---------------+---------------+----------------+
(2 rows)
\end{verbatim}

See Also

\texttt{ST_AsGDALRaster}

\section*{6.4 Raster Accessors}

\subsection*{6.4.1 \texttt{ST_GeoReference}}

\texttt{ST_GeoReference} — Returns the georeference meta data in GDAL or ESRI format as commonly seen in a world file. Default is GDAL.

Synopsis

text \texttt{ST_GeoReference}(raster rast, text format=GDAL);
Description

Returns the georeference meta data including carriage return in GDAL or ESRI format as commonly seen in a world file. Default is GDAL if no type specified. type is string 'GDAL' or 'ESRI'.

Diference between format representations is as follows:

GDAL:

- scalex
- skewy
- skewx
- scaley
- upperleftx
- upperlefty

ESRI:

- scalex
- skewy
- skewx
- scaley
- upperleftx + scalex*0.5
- upperlefty + scaley*0.5

Examples

```
SELECT ST_GeoReference(rast, 'ESRI') As esri_ref, ST_GeoReference(rast, 'GDAL') As gdal_ref
FROM dummy_rast WHERE rid=1;
```

<table>
<thead>
<tr>
<th>esri_ref</th>
<th>gdal_ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0000000000</td>
<td>2.0000000000</td>
</tr>
<tr>
<td>0.0000000000</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>0.0000000000</td>
<td>0.0000000000</td>
</tr>
<tr>
<td>3.0000000000</td>
<td>3.0000000000</td>
</tr>
<tr>
<td>1.5000000000</td>
<td>0.5000000000</td>
</tr>
<tr>
<td>2.0000000000</td>
<td>0.5000000000</td>
</tr>
</tbody>
</table>

See Also

`ST_SetGeoReference, ST_ScaleX, ST_ScaleY`

6.4.2 ST_Height

ST_Height — Returns the height of the raster in pixels.

Synopsis

```
integer ST_Height(raster rast);
```

Description

Returns the height of the raster.
Examples

```sql
SELECT rid, ST_Height(rast) As rastheight
FROM dummy_rast;
```

```
<table>
<thead>
<tr>
<th>rid</th>
<th>rastheight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
```

See Also

ST_Width

6.4.3 ST_IsEmpty

ST_IsEmpty — Returns true if the raster is empty (width = 0 and height = 0). Otherwise, returns false.

Synopsis

```sql
boolean ST_IsEmpty(raster rast);
```

Description

Returns true if the raster is empty (width = 0 and height = 0). Otherwise, returns false.

Availability: 2.0.0

Examples

```
SELECT ST_IsEmpty(ST_MakeEmptyRaster(100, 100, 0, 0, 0, 0, 0, 0))
st_isempty |
-----------+
 f |
```

```
SELECT ST_IsEmpty(ST_MakeEmptyRaster(0, 0, 0, 0, 0, 0, 0, 0))
st_isempty |
-----------+
 t |
```

See Also

ST_HasNoBand

6.4.4 ST_MemSize

ST_MemSize — Returns the amount of space (in bytes) the raster takes.

Synopsis

```sql
integer ST_MemSize(raster rast);
```
Description

Returns the amount of space (in bytes) the raster takes.

This is a nice compliment to PostgreSQL built in functions pg_column_size, pg_size_pretty, pg_relation_size, pg_total_relation_size.

Note

pg_relation_size which gives the byte size of a table may return byte size lower than ST_MemSize. This is because pg_relation_size does not add toasted table contribution and large geometries are stored in TOAST tables.

pg_column_size might return lower because it returns the compressed size.

pg_total_relation_size - includes, the table, the toasted tables, and the indexes.

Availability: 2.2.0

Examples

```
SELECT ST_MemSize(ST_AsRaster(ST_Buffer(ST_Point(1,5),10,1000),150, 150, '8BUI')) As rast_mem;

rast_mem
--------
22568
```

See Also

6.4.5 ST_MetaData

ST_MetaData — Returns basic meta data about a raster object such as pixel size, rotation (skew), upper, lower left, etc.

Synopsis

```
record ST_MetaData(raster rast);
```

Description

Returns basic meta data about a raster object such as pixel size, rotation (skew), upper, lower left, etc. Columns returned:

<table>
<thead>
<tr>
<th>upperleftx</th>
<th>upperlefty</th>
<th>width</th>
<th>height</th>
<th>scalex</th>
<th>scaley</th>
<th>skewx</th>
<th>skewy</th>
<th>srid</th>
<th>numbands</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>10</td>
<td>20</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3427927.75</td>
<td>5793244</td>
<td>5</td>
<td>5</td>
<td>0.05</td>
<td>-0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Examples

```
SELECT rid, (foo.md).* FROM (SELECT rid, ST_MetaData(rast) As md FROM dummy_rast) As foo;

rid | upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
----+------------+------------+-------+--------+--------+-----------+-------+-------+-------+----------
 1 | 0.5 | 0.5 | 10 | 20 | 2 | 3 | 0 | 0 | 0 | 0 |
 2 | 3427927.75 | 5793244 | 5 | 5 | 0.05 | -0.05 | 0 | 0 | 0 | 0 |
 3 |
```
See Also

ST_BandMetaData, ST_NumBands

### 6.4.6  ST_NumBands

ST_NumBands — Returns the number of bands in the raster object.

**Synopsis**

```
integer ST_NumBands(raster rast);
```

**Description**

Returns the number of bands in the raster object.

**Examples**

```
SELECT rid, ST_NumBands(rast) As numbands
FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>numbands</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

See Also

ST_Value

### 6.4.7  ST_PixelHeight

ST_PixelHeight — Returns the pixel height in geometric units of the spatial reference system.

**Synopsis**

```
double precision ST_PixelHeight(raster rast);
```

**Description**

Returns the height of a pixel in geometric units of the spatial reference system. In the common case where there is no skew, the pixel height is just the scale ratio between geometric coordinates and raster pixels. Refer to ST_PixelWidth for a diagrammatic visualization of the relationship.
Examples: Rasters with no skew

```sql
SELECT ST_Height(rast) As rastheight, ST_PixelHeight(rast) As pixheight,
 ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
 ST_SkewY(rast) As skewy
FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rastheight</th>
<th>pixheight</th>
<th>scalex</th>
<th>scaley</th>
<th>skewx</th>
<th>skewy</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>0.05</td>
<td>-0.05</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Examples: Rasters with skew different than 0

```sql
SELECT ST_Height(rast) As rastheight, ST_PixelHeight(rast) As pixheight,
 ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
 ST_SkewY(rast) As skewy
FROM (SELECT ST_SetSKew(rast,0.5,0.5) As rast
 FROM dummy_rast) As skewed;
```

<table>
<thead>
<tr>
<th>rastheight</th>
<th>pixheight</th>
<th>scalex</th>
<th>scaley</th>
<th>skewx</th>
<th>skewy</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3.04138126514911</td>
<td>2</td>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>0.502493781056044</td>
<td>0.05</td>
<td>-0.05</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

See Also

- `ST_PixelWidth`, `ST_ScaleX`, `ST_ScaleY`, `ST_SkewX`, `ST_SkewY`

### 6.4.8 ST_PixelWidth

`ST_PixelWidth` — Returns the pixel width in geometric units of the spatial reference system.

**Synopsis**

```sql
double precision ST_PixelWidth(raster rast);
```

**Description**

Returns the width of a pixel in geometric units of the spatial reference system. In the common case where there is no skew, the pixel width is just the scale ratio between geometric coordinates and raster pixels.

The following diagram demonstrates the relationship:
Examples: Rasters with no skew

```
SELECT ST_Width(rast) As rastwidth, ST_PixelWidth(rast) As pixwidth,
 ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
 ST_SkewY(rast) As skewy
FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rastwidth</th>
<th>pixwidth</th>
<th>scalex</th>
<th>scaley</th>
<th>skewx</th>
<th>skewy</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>0.05</td>
<td>-0.05</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Examples: Rasters with skew different than 0

```
SELECT ST_Width(rast) As rastwidth, ST_PixelWidth(rast) As pixwidth,
 ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
 ST_SkewY(rast) As skewy
FROM (SELECT ST_SetSkew(rast,0.5,0.5) As rast
 FROM dummy_rast) As skewed;
```

<table>
<thead>
<tr>
<th>rastwidth</th>
<th>pixwidth</th>
<th>scalex</th>
<th>scaley</th>
<th>skewx</th>
<th>skewy</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.06155281280883</td>
<td>2</td>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>0.502493781056044</td>
<td>0.05</td>
<td>-0.05</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

See Also

ST_PixelHeight, ST_ScaleX, ST_ScaleY, ST_SkewX, ST_SkewY

6.4.9 ST_ScaleX

ST_ScaleX — Returns the X component of the pixel width in units of coordinate reference system.
Synopsis

float8 ST_ScaleX(raster rast);

Description

Returns the X component of the pixel width in units of coordinate reference system. Refer to World File for more details.

Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeX.

Examples

```
SELECT rid, ST_ScaleX(rast) As rastpixwidth
FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>rastpixwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
</tr>
</tbody>
</table>

See Also

ST_Width

6.4.10 ST_ScaleY

ST_ScaleY — Returns the Y component of the pixel height in units of coordinate reference system.

Synopsis

float8 ST_ScaleY(raster rast);

Description

Returns the Y component of the pixel height in units of coordinate reference system. May be negative. Refer to World File for more details.

Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeY.

Examples

```
SELECT rid, ST_ScaleY(rast) As rastpixheight
FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>rastpixheight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

See Also

ST_Height
6.4.11  ST_RasterToWorldCoord

ST_RasterToWorldCoord — Returns the raster’s upper left corner as geometric X and Y (longitude and latitude) given a column and row. Column and row starts at 1.

Synopsis

```sql
record ST_RasterToWorldCoord(raster rast, integer xcolumn, integer yrow);
```

Description

Returns the upper left corner as geometric X and Y (longitude and latitude) given a column and row. Returned X and Y are in geometric units of the georeferenced raster. Numbering of column and row starts at 1 but if either parameter is passed a zero, a negative number or a number greater than the respective dimension of the raster, it will return coordinates outside of the raster assuming the raster’s grid is applicable outside the raster’s bounds.

Availability: 2.1.0

Examples

```sql
-- non-skewed raster
SELECT
 rid,
 (ST_RasterToWorldCoord(rast, 1, 1)).*,
 (ST_RasterToWorldCoord(rast, 2, 2)).*
FROM dummy_rast

<table>
<thead>
<tr>
<th>rid</th>
<th>longitude</th>
<th>latitude</th>
<th>longitude</th>
<th>latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>3427927.75</td>
<td>5793244</td>
<td>3427927.8</td>
<td>5793243.95</td>
</tr>
</tbody>
</table>

-- skewed raster
SELECT
 rid,
 (ST_RasterToWorldCoord(rast, 1, 1)).*,
 (ST_RasterToWorldCoord(rast, 2, 3)).*
FROM (SELECT
 rid,
 ST_SetSkew(rast, 100.5, 0) As rast
FROM dummy_rast
) As foo

<table>
<thead>
<tr>
<th>rid</th>
<th>longitude</th>
<th>latitude</th>
<th>longitude</th>
<th>latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>203.5</td>
<td>6.5</td>
</tr>
<tr>
<td>2</td>
<td>3427927.75</td>
<td>5793244</td>
<td>3428128.8</td>
<td>5793243.9</td>
</tr>
</tbody>
</table>
```

See Also

ST_RasterToWorldCoordX, ST_RasterToWorldCoordY, ST_SetSkew

6.4.12  ST_RasterToWorldCoordX

ST_RasterToWorldCoordX — Returns the geometric X coordinate upper left of a raster, column and row. Numbering of columns and rows starts at 1.
Synopsis

float8 ST_RasterToWorldCoordX(raster rast, integer xcolumn);
float8 ST_RasterToWorldCoordX(raster rast, integer xcolumn, integer yrow);

Description

Returns the upper left X coordinate of a raster column row in geometric units of the georeferenced raster. Numbering of columns and rows starts at 1 but if you pass in a negative number or number higher than number of columns in raster, it will give you coordinates outside of the raster file to left or right with the assumption that the skew and pixel sizes are same as selected raster.

**Note**
For non-skewed rasters, providing the X column is sufficient. For skewed rasters, the georeferenced coordinate is a function of the ST_ScaleX and ST_SkewX and row and column. An error will be raised if you give just the X column for a skewed raster.

Changed: 2.1.0 In prior versions, this was called ST_Raster2WorldCoordX

Examples

```sql
-- non-skewed raster providing column is sufficient
SELECT rid, ST_RasterToWorldCoordX(rast,1) As x1coord,
 ST_RasterToWorldCoordX(rast,2) As x2coord,
 ST_ScaleX(rast) As pixelx
FROM dummy_rast;
```

```
rid | x1coord | x2coord | pixelx
---------+---------+---------+--------
1 | 0.5 | 2.5 | 2
2 | 3427927.75 | 3427927.8 | 0.05
```

```sql
-- for fun lets skew it
SELECT rid, ST_RasterToWorldCoordX(rast, 1, 1) As x1coord,
 ST_RasterToWorldCoordX(rast, 2, 3) As x2coord,
 ST_ScaleX(rast) As pixelx
FROM (SELECT rid, ST_SetSkew(rast, 100.5, 0) As rast FROM dummy_rast) As foo;
```

```
rid | x1coord | x2coord | pixelx
---------+---------+---------+--------
1 | 0.5 | 203.5 | 2
2 | 3427927.75 | 3428128.8 | 0.05
```

**See Also**

ST_ScaleX, ST_RasterToWorldCoordY, ST_SetSkew, ST_SkewX

6.4.13 **ST_RasterToWorldCoordY**

ST_RasterToWorldCoordY — Returns the geometric Y coordinate upper left corner of a raster, column and row. Numbering of columns and rows starts at 1.
Synopsis

float8 ST_RasterToWorldCoordY(raster rast, integer yrow);
float8 ST_RasterToWorldCoordY(raster rast, integer xcolumn, integer yrow);

Description

Returns the upper left Y coordinate of a raster column row in geometric units of the georeferenced raster. Numbering of columns and rows starts at 1 but if you pass in a negative number or number higher than number of columns/rows in raster, it will give you coordinates outside of the raster file to left or right with the assumption that the skew and pixel sizes are same as selected raster tile.

Note

For non-skewed rasters, providing the Y column is sufficient. For skewed rasters, the georeferenced coordinate is a function of the ST_ScaleY and ST_SkewY and row and column. An error will be raised if you give just the Y row for a skewed raster.

Changed: 2.1.0 In prior versions, this was called ST_Raster2WorldCoordY

Examples

```sql
-- non-skewed raster providing row is sufficient
SELECT rid, ST_RasterToWorldCoordY(rast,1) As y1coord,
 ST_RasterToWorldCoordY(rast,3) As y2coord,
 ST_ScaleY(rast) As pixely
FROM dummy_rast;

<table>
<thead>
<tr>
<th>rid</th>
<th>y1coord</th>
<th>y2coord</th>
<th>pixely</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>6.5</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5793244</td>
<td>5793243.9</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

-- for fun lets skew it
SELECT rid, ST_RasterToWorldCoordY(rast,1,1) As y1coord,
 ST_RasterToWorldCoordY(rast,2,3) As y2coord,
 ST_ScaleY(rast) As pixely
FROM (SELECT rid, ST_SetSkew(rast,0,100.5) As rast FROM dummy_rast) As foo;

<table>
<thead>
<tr>
<th>rid</th>
<th>y1coord</th>
<th>y2coord</th>
<th>pixely</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>107</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5793244</td>
<td>5793344.4</td>
<td>-0.05</td>
</tr>
</tbody>
</table>
```

See Also

ST_ScaleY, ST_RasterToWorldCoordX, ST_SetSkew, ST_SkewY

6.4.14 ST_Rotation

ST_Rotation — Returns the rotation of the raster in radian.

Synopsis

float8 ST_Rotation(raster rast);
Description

Returns the uniform rotation of the raster in radian. If a raster does not have uniform rotation, NaN is returned. Refer to World File for more details.

Examples

```
SELECT rid, ST_Rotation(ST_SetScale(ST_SetSkew(rast, sqrt(2)), sqrt(2))) as rot FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>rot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.785398163397448</td>
</tr>
<tr>
<td>2</td>
<td>0.785398163397448</td>
</tr>
</tbody>
</table>

See Also

ST_SetRotation, ST_SetScale, ST_SetSkew

6.4.15 ST_SkewX

ST_SkewX — Returns the georeference X skew (or rotation parameter).

Synopsis

```
float8 ST_SkewX(raster rast);
```

Description

Returns the georeference X skew (or rotation parameter). Refer to World File for more details.

Examples

```
SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy, ST_GeoReference(rast) as georef FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>skewx</th>
<th>skewy</th>
<th>georef</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2.00000000000000000000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 0.00000000000000000000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 0.00000000000000000000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 3.00000000000000000000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 0.50000000000000000000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 0.50000000000000000000000000000000</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.0500000000000000000000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 0.00000000000000000000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 0.00000000000000000000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: -0.05000000000000000000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 3427927.75000000000000000000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>: 5793244.00000000000000000000000000</td>
</tr>
</tbody>
</table>
See Also

ST_GeoReference, ST_SkewX, ST_SetSkew

6.4.16  ST_SkewY

ST_SkewY — Returns the georeference Y skew (or rotation parameter).

Synopsis

float8 ST_SkewY(raster rast);

Description

Returns the georeference Y skew (or rotation parameter). Refer to World File for more details.

Examples

```
SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
 ST_GeoReference(rast) as georef
FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>skewx</th>
<th>skewy</th>
<th>georef</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2.0000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.0000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5000000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5000000000</td>
</tr>
</tbody>
</table>

2	0	0	0.0500000000
			0.0000000000
			0.0000000000
			-0.0500000000
			3427927.7500000000
			5793244.0000000000

See Also

ST_GeoReference, ST_SkewX, ST_SetSkew

6.4.17  ST_SRID

ST_SRID — Returns the spatial reference identifier of the raster as defined in spatial_ref_sys table.

Synopsis

integer ST_SRID(raster rast);
Description

Returns the spatial reference identifier of the raster object as defined in the spatial_ref_sys table.

**Note**

From PostGIS 2.0+ the srid of a non-georeferenced raster/geometry is 0 instead of the prior -1.

---

**Examples**

```sql
SELECT ST_SRID(rast) As srid
FROM dummy_rast WHERE rid=1;
```

<table>
<thead>
<tr>
<th>srid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

**See Also**

Section 4.1.3.1, ST_SRID

---

### 6.4.18 ST_Summary

**ST_Summary** — Returns a text summary of the contents of the raster.

**Synopsis**

text **ST_Summary**(raster rast);

**Description**

Returns a text summary of the contents of the raster.

**Availability:** 2.1.0

**Examples**

```sql
SELECT ST_Summary(
 ST_AddBand(
 ST_AddBand(
 ST_AddBand(
 ST_MakeEmptyRaster(10, 10, 0, 0, 1, -1, 0, 0, 0)
 , 1, '8BUI', 1, 0
)
 , 2, '32BF', 0, -9999
)
 , 3, '16BSI', 0, NULL
)
);
```

<table>
<thead>
<tr>
<th>st_summary</th>
</tr>
</thead>
</table>
Raster of 10x10 pixels has 3 bands and extent of BOX(0 -10,10 0)+
   band 1 of pixtype 8BUI is in-db with NODATA value of 0     +
   band 2 of pixtype 32BF is in-db with NODATA value of -9999  +
   band 3 of pixtype 16BSI is in-db with no NODATA value
(1 row)

See Also

ST_MetaData, ST_BandMetaData, ST_Summary ST_Extent

6.4.19   ST_UpperLeftX

ST_UpperLeftX — Returns the upper left X coordinate of raster in projected spatial ref.

Synopsis

float8 ST_UpperLeftX(raster rast);

Description

Returns the upper left X coordinate of raster in projected spatial ref.

Examples

SELECT rid, ST_UpperLeftX(rast) As ulx
FROM dummy_rast;

<table>
<thead>
<tr>
<th>rid</th>
<th>ulx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>3427927.75</td>
</tr>
</tbody>
</table>

See Also

ST_UpperLeftY, ST_GeoReference, Box3D

6.4.20   ST_UpperLeftY

ST_UpperLeftY — Returns the upper left Y coordinate of raster in projected spatial ref.

Synopsis

float8 ST_UpperLeftY(raster rast);

Description

Returns the upper left Y coordinate of raster in projected spatial ref.
### Examples

```sql
SELECT rid, ST_UpperLeftY(rast) As uly
FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>uly</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>5793244</td>
</tr>
</tbody>
</table>

See Also

ST_UpperLeftX, ST_GeoReference, Box3D

### 6.4.21 ST_Width

ST_Width — Returns the width of the raster in pixels.

#### Synopsis

```sql
integer ST_Width(raster rast);
```

#### Description

Returns the width of the raster in pixels.

#### Examples

```sql
SELECT ST_Width(rast) As rastwidth
FROM dummy_rast WHERE rid=1;
```

```plaintext
rastwidth
10
```

See Also

ST_Height

### 6.4.22 ST_WorldToRasterCoord

ST_WorldToRasterCoord — Returns the upper left corner as column and row given geometric X and Y (longitude and latitude) or a point geometry expressed in the spatial reference coordinate system of the raster.

#### Synopsis

```sql
record ST_WorldToRasterCoord(raster rast, geometry pt);
record ST_WorldToRasterCoord(raster rast, double precision longitude, double precision latitude);
```
Description

Returns the upper left corner as column and row given geometric X and Y (longitude and latitude) or a point geometry. This function works regardless of whether or not the geometric X and Y or point geometry is outside the extent of the raster. Geometric X and Y must be expressed in the spatial reference coordinate system of the raster.

Availability: 2.1.0

Examples

```
SELECT
 rid,
 (ST_WorldToRasterCoord(rast,3427927.8,20.5)).*,
 (ST_WorldToRasterCoord(rast,ST_GeomFromText('POINT(3427927.8 20.5)',ST_SRID(rast)))).*
FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>columnx</th>
<th>rowy</th>
<th>columnx</th>
<th>rowy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1713964</td>
<td>7</td>
<td>1713964</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>115864471</td>
<td>2</td>
<td>115864471</td>
<td>2</td>
</tr>
</tbody>
</table>

See Also

ST_WorldToRasterCoordX, ST_WorldToRasterCoordY, ST_RasterToWorldCoordX, ST_RasterToWorldCoordY, ST_SRID

6.4.23 ST_WorldToRasterCoordX

ST_WorldToRasterCoordX — Returns the column in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw) represented in world spatial reference system of raster.

Synopsis

```
integer ST_WorldToRasterCoordX(raster rast, geometry pt);
integer ST_WorldToRasterCoordX(raster rast, double precision xw);
integer ST_WorldToRasterCoordX(raster rast, double precision xw, double precision yw);
```

Description

Returns the column in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw). A point, or (both xw and yw world coordinates are required if a raster is skewed). If a raster is not skewed then xw is sufficient. World coordinates are in the spatial reference coordinate system of the raster.

Changed: 2.1.0 In prior versions, this was called ST_World2RasterCoordX

Examples

```
SELECT rid, ST_WorldToRasterCoordX(rast,3427927.8) As xcoord,
 ST_WorldToRasterCoordX(rast,3427927.8,20.5) As xcoord_xwyw,
 ST_WorldToRasterCoordX(rast,ST_GeomFromText('POINT(3427927.8 20.5)',ST_SRID(rast))) As ptxcoord
FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>xcoord</th>
<th>xcoord_xwyw</th>
<th>ptxcoord</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1713964</td>
<td>1713964</td>
<td>1713964</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
See Also

ST_RasterToWorldCoordX, ST_RasterToWorldCoordY, ST_SRID

6.4.24 ST_WorldToRasterCoordY

ST_WorldToRasterCoordY — Returns the row in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw) represented in world spatial reference system of raster.

Synopsis

integer ST_WorldToRasterCoordY(raster rast, geometry pt);
integer ST_WorldToRasterCoordY(raster rast, double precision xw);
integer ST_WorldToRasterCoordY(raster rast, double precision xw, double precision yw);

Description

Returns the row in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw). A point, or (both xw and yw world coordinates are required if a raster is skewed). If a raster is not skewed then xw is sufficient. World coordinates are in the spatial reference coordinate system of the raster.

Changed: 2.1.0 In prior versions, this was called ST_World2RasterCoordY

Examples

```
SELECT rid, ST_WorldToRasterCoordY(rast,20.5) As ycoord,
 ST_WorldToRasterCoordY(rast,3427927.8,20.5) As ycoord_xwyw,
 ST_WorldToRasterCoordY(rast,ST_GeomFromText('POINT(3427927.8 20.5)',ST_SRID(rast))) As ptycoord
FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>ycoord</th>
<th>ycoord_xwyw</th>
<th>ptycoord</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>115864471</td>
<td>115864471</td>
<td>115864471</td>
</tr>
</tbody>
</table>

See Also

ST_RasterToWorldCoordX, ST_RasterToWorldCoordY, ST_SRID

6.5 Raster Band Accessors

6.5.1 ST_BandMetaData

ST_BandMetaData — Returns basic meta data for a specific raster band. band num 1 is assumed if none-specified.

Synopsis

(1) record ST_BandMetaData(raster rast, integer band=1);
(2) record ST_BandMetaData(raster rast, integer[] band);
Description

Returns basic meta data about a raster band. Columns returned: pixelttype, nodatavalue, isoutdb, path, outdbbandnum, filesize, filetimestamp.

---

**Note**

If raster contains no bands then an error is thrown.

---

**Note**

If band has no NODATA value, nodatavalue are NULL.

---

**Note**

If isoutdb is False, path, outdbbandnum, filesize and filetimestamp are NULL. If outdb access is disabled, filesize and filetimestamp will also be NULL.

---

Enhanced: 2.5.0 to include outdbbandnum, filesize and filetimestamp for outdb rasters.

**Examples: Variant 1**

```sql
SELECT
 rid,
 (foo.md).*
FROM (
 SELECT
 rid,
 ST_BandMetaData(rast, 1) AS md
 FROM dummy_rast
 WHERE rid=2
) As foo;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>pixelttype</th>
<th>nodatavalue</th>
<th>isoutdb</th>
<th>path</th>
<th>outdbbandnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8BUI</td>
<td>0</td>
<td>f</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Examples: Variant 2**

```sql
WITH foo AS {
 SELECT
 ST_AddBand(NULL::raster, '/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif', NULL::int[]) AS rast
}
SELECT *
FROM ST_BandMetadata(
 (SELECT rast FROM foo),
 ARRAY[1,3,2]::int[]
);
```
<table>
<thead>
<tr>
<th>bandnum</th>
<th>pixeltype</th>
<th>nodatavalue</th>
<th>isoutdb</th>
<th>path</th>
<th>outdbbandnum</th>
<th>filesize</th>
<th>filetimestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8BUI</td>
<td></td>
<td>t</td>
<td>/home/pele/devel/geo/postgis-git/raster/test</td>
<td>1</td>
<td>12345</td>
<td>1521807257</td>
</tr>
<tr>
<td>3</td>
<td>8BUI</td>
<td></td>
<td>t</td>
<td>/home/pele/devel/geo/postgis-git/raster/test</td>
<td>3</td>
<td>12345</td>
<td>1521807257</td>
</tr>
<tr>
<td>2</td>
<td>8BUI</td>
<td></td>
<td>t</td>
<td>/home/pele/devel/geo/postgis-git/raster/test</td>
<td>2</td>
<td>12345</td>
<td>1521807257</td>
</tr>
</tbody>
</table>

See Also

ST_MetaData, ST_BandPixelType

### 6.5.2 ST_BandNoDataValue

ST_BandNoDataValue — Returns the value in a given band that represents no data. If no band number is assumed.

**Synopsis**

double precision `ST_BandNoDataValue(raster rast, integer bandnum=1);`

**Description**

Returns the value that represents no data for the band

**Examples**

```sql
SELECT ST_BandNoDataValue(rast,1) As bnval1,
 ST_BandNoDataValue(rast,2) As bnval2,
 ST_BandNoDataValue(rast,3) As bnval3
FROM dummy_rast
WHERE rid = 2;
```

bnval1	bnval2	bnval3
0      | 0      | 0      

See Also

ST_Num Bands

### 6.5.3 ST_BandIsNoData

ST_BandIsNoData — Returns true if the band is filled with only no-data values.

**Synopsis**

boolean `ST_BandIsNoData(raster rast, integer band, boolean forceChecking=true);`

boolean `ST_BandIsNoData(raster rast, boolean forceChecking=true);`
Description

Returns true if the band is filled with only nodata values. Band 1 is assumed if not specified. If the last argument is TRUE, the entire band is checked pixel by pixel. Otherwise, the function simply returns the value of the isnodata flag for the band. The default value for this parameter is FALSE, if not specified.

Availability: 2.0.0

Note

If the flag is dirty (this is, the result is different using TRUE as last parameter and not using it) you should update the raster to set this flag to true, by using ST_SetBandIsNodata(), or ST_SetBandNodataValue() with TRUE as last argument. See ST_SetBandIsNoData.

Examples

```
-- Create dummy table with one raster column
create table dummy_rast (rid integer, rast raster);

-- Add raster with two bands, one pixel/band. In the first band, nodatavalue = pixel value ← = 3.
-- In the second band, nodatavalue = 13, pixel value = 4
insert into dummy_rast values(1,
 '01' -- little endian (uint8 ndr)
 ||
 '0000' -- version (uint16 0)
 ||
 '0200' -- nbands (uint16 0)
 ||
 '17263529ED684A3F' -- scaleX (float64 0.000805965234044584)
 ||
 'F9253529ED684ABF' -- scaleY (float64 -0.00080596523404458)
 ||
 '1C9F33CE69E352C0' -- ipX (float64 -75.5533328537098)
 ||
 '718F0E9A27A44840' -- ipY (float64 49.2824585505576)
 ||
 'ED50EB853EC32B3F' -- skewX (float64 0.0002118123838587)
 ||
 '550EB853EC32B3F' -- skewY (float64 0.0002118123838587)
 ||
 'E6100000' -- SRID (int32 4326)
 ||
 '0100' -- width (uint16 1)
 ||
 '0100' -- height (uint16 1)
 ||
 '5' -- hasnodatavalue and isnodata value set to true.
 ||
 '2' -- first band type (4BUI)
 ||
 '03' -- novalue==3
 ||
 '03' -- pixel(0,0)==3 (same that nodata)
 ||
 '0' -- hasnodatavalue set to false
 ||
 '5' -- second band type (16BSI)
```
'0D00' -- novalue == 13
||
'0400' -- pixel(0,0) == 4
)::raster
);

select st_bandisnodata(rast, 1) from dummy_rast where rid = 1; -- Expected true
select st_bandisnodata(rast, 2) from dummy_rast where rid = 1; -- Expected false

See Also

ST_BandNoDataValue, ST_NumBands, ST_SetBandNoDataValue, ST_SetBandIsNoData

6.5.4  ST_BandPath

ST_BandPath — Returns system file path to a band stored in file system. If no bandnum specified, 1 is assumed.

Synopsis
text ST_BandPath(raster rast, integer bandnum=1);

Description

Returns system file path to a band. Throws an error if called with an in db band.

Examples

See Also

6.5.5  ST_BandFileSize

ST_BandFileSize — Returns the file size of a band stored in file system. If no bandnum specified, 1 is assumed.

Synopsis

bigint ST_BandFileSize(raster rast, integer bandnum=1);

Description

Returns the file size of a band stored in file system. Throws an error if called with an in db band, or if outdb access is not enabled.

This function is typically used in conjunction with ST_BandPath() and ST_BandFileTimestamp() so a client can determine if the filename of a outdb raster as seen by it is the same as the one seen by the server.

Availability: 2.5.0
Examples

```
SELECT ST_BandFileSize(rast,1) FROM dummy_rast WHERE rid = 1;
```

<table>
<thead>
<tr>
<th>st_bandfilesize</th>
</tr>
</thead>
<tbody>
<tr>
<td>240574</td>
</tr>
</tbody>
</table>

6.5.6 **ST_BandFileTimestamp**

ST_BandFileTimestamp — Returns the file timestamp of a band stored in file system. If no bandnum specified, 1 is assumed.

**Synopsis**

bigint **ST_BandFileTimestamp**(raster rast, integer bandnum=1);

**Description**

Returns the file timestamp (number of seconds since Jan 1st 1970 00:00:00 UTC) of a band stored in file system. Throws an error if called with an in db band, or if outdb access is not enabled.

This function is typically used in conjunction with ST_BandPath() and ST_BandFileSize() so a client can determine if the filename of a outdb raster as seen by it is the same as the one seen by the server.

Availability: 2.5.0

**Examples**

```
SELECT ST_BandFileTimestamp(rast,1) FROM dummy_rast WHERE rid = 1;
```

<table>
<thead>
<tr>
<th>st_bandfiletimestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1521807257</td>
</tr>
</tbody>
</table>

6.5.7 **ST_BandPixelType**

ST_BandPixelType — Returns the type of pixel for given band. If no bandnum specified, 1 is assumed.

**Synopsis**

text **ST_BandPixelType**(raster rast, integer bandnum=1);

**Description**

Returns name describing data type and size of values stored in each cell of given band.

There are 11 pixel types. Pixel Types supported are as follows:

- 1BB - 1-bit boolean
- 2BUI - 2-bit unsigned integer
- 4BUI - 4-bit unsigned integer
• 8BSI - 8-bit signed integer
• 8BUI - 8-bit unsigned integer
• 16BSI - 16-bit signed integer
• 16BUI - 16-bit unsigned integer
• 32BSI - 32-bit signed integer
• 32BUI - 32-bit unsigned integer
• 32BF - 32-bit float
• 64BF - 64-bit float

Examples

```
SELECT ST_BandPixelType(rast,1) As btype1,
 ST_BandPixelType(rast,2) As btype2, ST_BandPixelType(rast,3) As btype3
FROM dummy_rast
WHERE rid = 2;
```

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8BUI</td>
<td>8BUI</td>
<td>8BUI</td>
</tr>
</tbody>
</table>

See Also

ST_NumBands

6.5.8 ST_MinPossibleValue

**ST_MinPossibleValue** — Returns the minimum value this pixeltype can store.

**Synopsis**

```
integer ST_MinPossibleValue(text pixeltype);
```

**Description**

Returns the minimum value this pixeltype can store.

**Examples**

```
SELECT ST_MinPossibleValue('16BSI');
```

```
st_minpossiblevalue

-32768
```

```
SELECT ST_MinPossibleValue('8BUI');
```

```
st_minpossiblevalue

 0
```
### 6.5.9  **ST_HasNoBand**

**ST_HasNoBand** — Returns true if there is no band with given band number. If no band number is specified, then band number 1 is assumed.

#### Synopsis

```c
boolean ST_HasNoBand(raster rast, integer bandnum=1);
```

#### Description

Returns true if there is no band with given band number. If no band number is specified, then band number 1 is assumed.

**Availability:** 2.0.0

#### Examples

```sql
SELECT rid, ST_HasNoBand(rast) As hb1, ST_HasNoBand(rast,2) as hb2,
 ST_HasNoBand(rast,4) as hb4, ST_NumBands(rast) As numbands
FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>hb1</th>
<th>hb2</th>
<th>hb4</th>
<th>numbands</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t</td>
<td>t</td>
<td>t</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>3</td>
</tr>
</tbody>
</table>

**See Also**

[ST_NumBands](#)

### 6.6  **Raster Pixel Accessors and Setters**

#### 6.6.1  **ST_PixelAsPolygon**

**ST_PixelAsPolygon** — Returns the polygon geometry that bounds the pixel for a particular row and column.

#### Synopsis

```c
geometry ST_PixelAsPolygon(raster rast, integer columnx, integer rowy);
```

#### Description

Returns the polygon geometry that bounds the pixel for a particular row and column.

**Availability:** 2.0.0
Examples

```sql
-- get raster pixel polygon
SELECT i, j, ST_AsText(ST_PixelAsPolygon(foo.rast, i, j)) As blpgeom
FROM dummy_rast As foo
 CROSS JOIN generate_series(1,2) As i
 CROSS JOIN generate_series(1,1) As j
WHERE rid=2;
```

```
<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>b1pgeom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>POLYGON((3427927.75 5793244,3427927.8 5793244,3427927.8 5793243.95,..</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>POLYGON((3427927.8 5793244,3427927.85 5793244,3427927.85 5793243.95,..</td>
</tr>
</tbody>
</table>
```

See Also

ST_DumpAsPolygons, ST_PixelAsPolygons, ST_PixelAsPoint, ST_PixelAsPoints, ST_PixelAsCentroid, ST_PixelAsCentroids, ST_Intersection, ST_AsText

6.6.2 ST_PixelAsPolygons

ST_PixelAsPolygons — Returns the polygon geometry that bounds every pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel.

Synopsis

```sql
setof record ST_PixelAsPolygons(raster rast, integer band=1, boolean exclude_nodata_value=TRUE);
```

Description

Returns the polygon geometry that bounds every pixel of a raster band along with the value (double precision), the X and the Y raster coordinates (integers) of each pixel.

Return record format: geom geometry, val double precision, x integer, y integers.

---

**Note**

When exclude_nodata_value = TRUE, only those pixels whose values are not NODATA are returned as points.

---

**Note**

ST_PixelAsPolygons returns one polygon geometry for every pixel. This is different than ST_DumpAsPolygons where each geometry represents one or more pixels with the same pixel value.

Availability: 2.0.0

Enhanced: 2.1.0 exclude_nodata_value optional argument was added.

Changed: 2.1.1 Changed behavior of exclude_nodata_value.
Examples

```sql
-- get raster pixel polygon
SELECT (gv).x, (gv).y, (gv).val, ST_AsText((gv).geom) geom
FROM (SELECT ST_PixelAsPolygons(
 ST_SetValue(ST_SetValue(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 0.001, −0.001, 0.001, 0.001, 4269),
 '8BUI'::text, 1, 0),
 2, 2, 10),
 1, 1, NULL)
) gv
) foo;
```

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>val</th>
<th>geom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>POLYGON((0 0,0.001 0.001,0.002 0,0.001 -0.001,0 0))</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td>POLYGON((0.001 -0.001,0.002 0,0.003 -0.001,0.002 -0.002,0.001 -0.001))</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td>POLYGON((0.001 0.001,0.002 0.002,0.003 0.003 0.001,0.002 0,0.001 0.001))</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>10</td>
<td>POLYGON((0.002 0,0.003 0.001,0.004 0,0.003 -0.001,0.002 0))</td>
</tr>
</tbody>
</table>

See Also

ST_DumpAsPolygons, ST_PixelAsPolygon, ST_PixelAsPoint, ST_PixelAsPoints, ST_PixelAsCentroid, ST_PixelAsCentroids, ST_AsText

6.6.3 ST_PixelAsPoint

ST_PixelAsPoint — Returns a point geometry of the pixel’s upper-left corner.

Synopsis

```sql
geometry ST_PixelAsPoint(raster rast, integer columnx, integer rowy);
```

Description

Returns a point geometry of the pixel’s upper-left corner.

Availability: 2.1.0

Examples

```sql
SELECT ST_AsText(ST_PixelAsPoint(rast, 1, 1)) FROM dummy_rast WHERE rid = 1;
```

<table>
<thead>
<tr>
<th>st_astext</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT(0.5 0.5)</td>
</tr>
</tbody>
</table>

See Also

ST_DumpAsPolygons, ST_PixelAsPolygon, ST_PixelAsPolygons, ST_PixelAsPoints, ST_PixelAsCentroid, ST_PixelAsCentroids
6.6.4 ST_PixelAsPoints

ST_PixelAsPoints — Returns a point geometry for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The coordinates of the point geometry are of the pixel’s upper-left corner.

Synopsis

setof record ST_PixelAsPoints(raster rast, integer band=1, boolean exclude_nodata_value=TRUE);

Description

Returns a point geometry for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The coordinates of the point geometry are of the pixel’s upper-left corner.

Return record format: geom geometry, val double precision, x integer, y integers.

Note

When exclude_nodata_value = TRUE, only those pixels whose values are not NODATA are returned as points.

Availability: 2.1.0

Changed: 2.1.1 Changed behavior of exclude_nodata_value.

Examples

```sql
SELECT x, y, val, ST_AsText(geom) FROM (SELECT (ST_PixelAsPoints(rast, 1)).* FROM dummy_rast WHERE rid = 2) foo;
```

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>val</th>
<th>st_astext</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>253</td>
<td>POINT(3427927.75 5793244)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>254</td>
<td>POINT(3427927.8 5793244)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>253</td>
<td>POINT(3427927.85 5793244)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>254</td>
<td>POINT(3427927.9 5793244)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>254</td>
<td>POINT(3427927.95 5793244)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>253</td>
<td>POINT(3427927.75 5793243.95)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>254</td>
<td>POINT(3427927.8 5793243.95)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>254</td>
<td>POINT(3427927.85 5793243.95)</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>253</td>
<td>POINT(3427927.9 5793243.95)</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>249</td>
<td>POINT(3427927.95 5793243.95)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>250</td>
<td>POINT(3427927.75 5793243.9)</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>254</td>
<td>POINT(3427927.8 5793243.9)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>254</td>
<td>POINT(3427927.85 5793243.9)</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>252</td>
<td>POINT(3427927.9 5793243.9)</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>249</td>
<td>POINT(3427927.95 5793243.9)</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>251</td>
<td>POINT(3427927.75 5793243.85)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>253</td>
<td>POINT(3427927.8 5793243.85)</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>254</td>
<td>POINT(3427927.85 5793243.85)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>254</td>
<td>POINT(3427927.9 5793243.85)</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>253</td>
<td>POINT(3427927.95 5793243.85)</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>252</td>
<td>POINT(3427927.75 5793243.8)</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>250</td>
<td>POINT(3427927.8 5793243.8)</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>254</td>
<td>POINT(3427927.85 5793243.8)</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>254</td>
<td>POINT(3427927.9 5793243.8)</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>254</td>
<td>POINT(3427927.95 5793243.8)</td>
</tr>
</tbody>
</table>
6.6.5 ST_PixelAsCentroid

ST_PixelAsCentroid — Returns the centroid (point geometry) of the area represented by a pixel.

Synopsis

geometry ST_PixelAsCentroid(raster rast, integer x, integer y);

Description

Returns the centroid (point geometry) of the area represented by a pixel.

Availability: 2.1.0

Examples

```
SELECT ST_AsText(ST_PixelAsCentroid(rast, 1, 1)) FROM dummy_rast WHERE rid = 1;
```

```
st_astext

POINT(1.5 2)
```  

See Also

ST_DumpAsPolygons, ST_PixelAsPolygon, ST_PixelAsPolygons, ST_PixelAsPoint, ST_PixelAsCentroid, ST_PixelAsCentroids

6.6.6 ST_PixelAsCentroids

ST_PixelAsCentroids — Returns the centroid (point geometry) for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The point geometry is the centroid of the area represented by a pixel.

Synopsis

setof record ST_PixelAsCentroids(raster rast, integer band=1, boolean exclude_nodata_value=TRUE);

Description

Returns the centroid (point geometry) for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The point geometry is the centroid of the area represented by a pixel.

Return record format: `geom geometry, val double precision, x integer, y integers`.

**Note**

When `exclude_nodata_value` = TRUE, only those pixels whose values are not NODATA are returned as points.

Availability: 2.1.0

Changed: 2.1.1 Changed behavior of `exclude_nodata_value`. 

See Also

ST_DumpAsPolygons, ST_PixelAsPolygon, ST_PixelAsPolygons, ST_PixelAsPoint, ST_PixelAsPoints, ST_PixelAsCentroids
### Examples

```sql
--LATERAL syntax requires PostgreSQL 9.3+
SELECT x, y, val, ST_AsText(geom)
FROM (SELECT dp.* FROM dummy_rast, LATERAL ST_PixelAsCentroids(rast, 1) AS dp WHERE rid = 2) foo;
```

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>val</th>
<th>st_astext</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>253</td>
<td>POINT(3427927.775 5793243.975)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>254</td>
<td>POINT(3427927.825 5793243.975)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>253</td>
<td>POINT(3427927.875 5793243.975)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>254</td>
<td>POINT(3427927.925 5793243.975)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>254</td>
<td>POINT(3427927.975 5793243.975)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>253</td>
<td>POINT(3427927.775 5793243.925)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>254</td>
<td>POINT(3427927.825 5793243.925)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>254</td>
<td>POINT(3427927.875 5793243.925)</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>253</td>
<td>POINT(3427927.925 5793243.925)</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>249</td>
<td>POINT(3427927.975 5793243.925)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>250</td>
<td>POINT(3427927.775 5793243.875)</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>254</td>
<td>POINT(3427927.825 5793243.875)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>254</td>
<td>POINT(3427927.875 5793243.875)</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>252</td>
<td>POINT(3427927.925 5793243.875)</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>249</td>
<td>POINT(3427927.975 5793243.875)</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>251</td>
<td>POINT(3427927.775 5793243.825)</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>253</td>
<td>POINT(3427927.825 5793243.825)</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>254</td>
<td>POINT(3427927.875 5793243.825)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>254</td>
<td>POINT(3427927.925 5793243.825)</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>253</td>
<td>POINT(3427927.975 5793243.825)</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>252</td>
<td>POINT(3427927.775 5793243.775)</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>250</td>
<td>POINT(3427927.825 5793243.775)</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>254</td>
<td>POINT(3427927.875 5793243.775)</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>254</td>
<td>POINT(3427927.925 5793243.775)</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>254</td>
<td>POINT(3427927.975 5793243.775)</td>
</tr>
</tbody>
</table>

### See Also

ST_DumpAsPolygons, ST_PixelAsPolygon, ST_PixelAsPolygons, ST_PixelAsPoint, ST_PixelAsPoints, ST_PixelAsCentroid

### 6.6.7 ST_Value

**ST_Value** — Returns the value of a given band in a given columnx, rowy pixel or at a particular geometric point. Band numbers start at 1 and assumed to be 1 if not specified. If `exclude_nodata_value` is set to false, then all pixels include `nodata` pixels are considered to intersect and return value. If `exclude_nodata_value` is not passed in then reads it from metadata of raster.

#### Synopsis

```sql
double precision ST_Value(raster rast, geometry pt, boolean exclude_nodata_value=true);
double precision ST_Value(raster rast, integer band, geometry pt, boolean exclude_nodata_value=true);
double precision ST_Value(raster rast, integer x, integer y, boolean exclude_nodata_value=true);
double precision ST_Value(raster rast, integer band, integer x, integer y, boolean exclude_nodata_value=true);
```

#### Description

Returns the value of a given band in a given columnx, rowy pixel or at a given geometry point. Band numbers start at 1 and band is assumed to be 1 if not specified. If `exclude_nodata_value` is set to true, then only non `nodata` pixels are considered. If `exclude_nodata_value` is set to false, then all pixels are considered.
Enhanced: 2.0.0 exclude_nodata_value optional argument was added.

Examples

```sql
-- get raster values at particular postgis geometry points
-- the srid of your geometry should be same as for your raster
SELECT rid, ST_Value(rast, foo.pt_geom) As b1pval, ST_Value(rast, 2, foo.pt_geom) As b2pval
FROM dummy_rast CROSS JOIN (SELECT ST_SetSRID(ST_Point(3427927.77, 5793243.76), 0) As pt_geom) As foo
WHERE rid=2;
```

```
rid | b1pval | b2pval
---+--------+--------
2 | 252 | 79
```

```
-- general fictitious example using a real table
SELECT rid, ST_Value(rast, 3, sometable.geom) As b3pval
FROM sometable
WHERE ST_Intersects(rast,sometable.geom);
```

```
SELECT rid, ST_Value(rast, 1, 1, 1) As b1pval,
 ST_Value(rast, 2, 1, 1) As b2pval, ST_Value(rast, 3, 1, 1) As b3pval
FROM dummy_rast
WHERE rid=2;
```

```
rid | b1pval | b2pval | b3pval
---+--------+--------+--------
2 | 253 | 78 | 70
```

```
--- Get all values in bands 1,2,3 of each pixel --
SELECT x, y, ST_Value(rast, 1, x, y) As b1val,
 ST_Value(rast, 2, x, y) As b2val, ST_Value(rast, 3, x, y) As b3val
FROM dummy_rast CROSS JOIN
generate_series(1,1000) As x CROSS JOIN generate_series(1,1000) As y
WHERE rid = 2 AND x <= ST_Width(rast) AND y <= ST_Height(rast);
```

```
x | y | b1val | b2val | b3val
---+---+-------+-------+-------
1 | 1 | 253 | 78 | 70
1 | 2 | 253 | 96 | 80
1 | 3 | 250 | 99 | 90
1 | 4 | 251 | 89 | 77
1 | 5 | 252 | 79 | 62
2 | 1 | 254 | 98 | 86
2 | 2 | 254 | 118 | 108
: : : : :
```

```
--- Get all values in bands 1,2,3 of each pixel same as above but returning the upper left point point of each pixel --
SELECT ST_AsText(ST_SetSRID(
 ST_Point(ST_UpperLeftX(rast) + ST_ScaleX(rast)*x,
 ST_UpperLeftY(rast) + ST_ScaleY(rast)*y),
 ST_SRID(rast))) As uplpt,
 ST_Value(rast, 1, x, y) As b1val,
 ST_Value(rast, 2, x, y) As b2val, ST_Value(rast, 3, x, y) As b3val
FROM dummy_rast CROSS JOIN
generate_series(1,1000) As x CROSS JOIN generate_series(1,1000) As y
WHERE rid = 2 AND x <= ST_Width(rast) AND y <= ST_Height(rast);
```

```
```
### Get a polygon formed by union of all pixels that fall in a particular value range and intersect particular polygon

```sql
--

SELECT ST_AsText(ST_Union(pixpolyg)) As shadow
FROM (SELECT ST_Translate(ST_MakeEnvelope(
 ST_UpperLeftX(rast), ST_UpperLeftY(rast),
 ST_UpperLeftX(rast) + ST_ScaleX(rast),
 ST_UpperLeftY(rast) + ST_ScaleY(rast), 0
), ST_ScaleX(rast)*x, ST_ScaleY(rast)*y
) As pixpolyg, ST_Value(rast, 2, x, y) As b2val
FROM dummy_rast CROSS JOIN
generate_series(1,1000) As x CROSS JOIN generate_series(1,1000) As y
WHERE rid = 2
AND x <= ST_Width(rast) AND y <= ST_Height(rast)) As foo
WHERE
 ST_Intersects(pixpolyg, ST_GeomFromText('POLYGON((3427928 5793243.75,3427927.75 5793243.75,3427928 5793243.75,3427928.05 5793243.75,3427928.05 5793243.8,3427928.05 5793243.9,3427927.95 5793243.95)));
```

--- Checking all the pixels of a large raster tile can take a long time.

--- You can dramatically improve speed at some lose of precision by orders of magnitude by sampling pixels using the step optional parameter of generate_series.

--- This next example does the same as previous but by checking 1 for every 4 (2x2) pixels and putting in the last checked.

SELECT ST_AsText(ST_Union(pixpolyg)) As shadow
FROM (SELECT ST_Translate(ST_MakeEnvelope(
    ST_UpperLeftX(rast), ST_UpperLeftY(rast),
    ST_UpperLeftX(rast) + ST_ScaleX(rast)*2,
    ST_UpperLeftY(rast) + ST_ScaleY(rast)*2, 0
) As pixpolyg, ST_Value(rast, 2, x, y) As b2val
FROM dummy_rast CROSS JOIN
generate_series(1,1000) As x CROSS JOIN generate_series(1,1000) As y
WHERE
  (x <= ST_Width(rast)/2 AND y <= ST_Height(rast)/2) AND
  (x > ST_Width(rast)/2 AND y <= ST_Height(rast)/2) AND
  (x <= ST_Width(rast)/2 AND y > ST_Height(rast)/2) AND
  (x > ST_Width(rast)/2 AND y > ST_Height(rast)/2)
WHERE
  ST_Intersects(pixpolyg, ST_GeomFromText('POLYGON((3427928 5793243.75,3427927.75 5793243.75,3427928 5793243.75,3427928.05 5793243.75,3427928.05 5793243.8,3427928.05 5793243.9,3427927.95 5793243.95)),
```
FROM dummy_rast CROSS JOIN
generate_series(1,1000,2) As x CROSS JOIN generate_series(1,1000,2) As y
WHERE rid = 2
AND x <= ST_Width(rast) AND y <= ST_Height(rast)
) As foo
WHERE
ST_Intersects(
pixpolyg,
ST_GeomFromText('POLYGON((3427928 5793244,3427927.75 5793243.75,3427928
←
5793243.75,3427928 5793244))',0)
) AND b2val != 254;

See Also

ST_SetValue, ST_DumpAsPolygons, ST_NumBands, ST_PixelAsPolygon, ST_ScaleX, ST_ScaleY, ST_UpperLeftX, ST_UpperLeftY, ST_SRID, ST_AsText, ST_Point, ST_MakeEnvelope, ST_Intersects, ST_Intersection

6.6.8 ST_NearestValue

ST_NearestValue — Returns the nearest non-NODATA value of a given band’s pixel specified by a columnx and rowy or a geometric point expressed in the same spatial reference coordinate system as the raster.

Synopsis

double precision ST_NearestValue(raster rast, integer bandnum, geometry pt, boolean exclude_nodata_value=true);
double precision ST_NearestValue(raster rast, geometry pt, boolean exclude_nodata_value=true);
double precision ST_NearestValue(raster rast, integer bandnum, integer columnx, integer rowy, boolean exclude_nodata_value=true);
double precision ST_NearestValue(raster rast, integer columnx, integer rowy, boolean exclude_nodata_value=true);

Description

Returns the nearest non-NODATA value of a given band in a given columnx, rowy pixel or at a specific geometric point. If the columnx, rowy pixel or the pixel at the specified geometric point is NODATA, the function will find the nearest pixel to the columnx, rowy pixel or geometric point whose value is not NODATA.

Band numbers start at 1 and bandnum is assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include NODATA pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.

Availability: 2.1.0

Note

ST_NearestValue is a drop-in replacement for ST_Value.
Examples

-- pixel 2x2 has value
SELECT
 ST_Value(rast, 2, 2) AS value,
 ST_NearestValue(rast, 2, 2) AS nearestvalue
FROM (SELECT
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_AddBand(
 ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
 '8BUI':text, 1, 0
),
 1, 1, 0.
),
 2, 3, 0.
),
 3, 5, 0.
),
 4, 2, 0.
),
 5, 4, 0.
) AS rast
) AS foo
value | nearestvalue
--------+-----------------
 1 | 1

-- pixel 2x3 is NODATA
SELECT
 ST_Value(rast, 2, 3) AS value,
 ST_NearestValue(rast, 2, 3) AS nearestvalue
FROM (SELECT
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_AddBand(
 ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
 '8BUI':text, 1, 0
),
 1, 1, 0.
),
 2, 3, 0.
),
 3, 5, 0.
),
 4, 2, 0.
),
 5, 4, 0.
) AS rast
) AS foo
value | nearestvalue
6.6.9 ST_Neighborhood

ST_Neighborhood — Returns a 2-D double precision array of the non-NODATA values around a given band’s pixel specified by either a columnX and rowY or a geometric point expressed in the same spatial reference coordinate system as the raster.

Synopsis

double precision[][] ST_Neighborhood(raster rast, integer bandnum, integer columnX, integer rowY, integer distanceX, integer distanceY, boolean exclude_nodata_value=true);
double precision[][] ST_Neighborhood(raster rast, integer columnX, integer rowY, integer distanceX, integer distanceY, boolean exclude_nodata_value=true);
double precision[][] ST_Neighborhood(raster rast, integer bandnum, geometry pt, integer distanceX, integer distanceY, boolean exclude_nodata_value=true);
double precision[][] ST_Neighborhood(raster rast, geometry pt, integer distanceX, integer distanceY, boolean exclude_nodata_value=true);

Description

Returns a 2-D double precision array of the non-NODATA values around a given band’s pixel specified by either a columnX and rowY or a geometric point expressed in the same spatial reference coordinate system as the raster. The distanceX and distanceY parameters define the number of pixels around the specified pixel in the X and Y axes, e.g. I want all values within 3 pixel distance along the X axis and 2 pixel distance along the Y axis around my pixel of interest. The center value of the 2-D array will be the value at the pixel specified by the columnX and rowY or the geometric point.

Band numbers start at 1 and bandnum is assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include nodata pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.

Note

The number of elements along each axis of the returning 2-D array is 2 * (distanceX|distanceY) + 1. So for a distanceX and distanceY of 1, the returning array will be 3x3.

Note

The 2-D array output can be passed to any of the raster processing builtin functions, e.g. ST_Min4ma, ST_Sum4ma, ST_Mean4ma.

Availability: 2.1.0
Examples

-- pixel 2x2 has value
SELECT
 ST_Neighborhood(rast, 2, 2, 1, 1)
FROM (SELECT
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
 '8BUI':text, 1, 0
),
 1, 1, 1, ARRAY[
 [0, 1, 1, 1, 1],
 [1, 1, 1, 0, 1],
 [1, 0, 1, 1, 1],
 [1, 1, 0, 1, 1]
]::double precision[],
 1
) AS rast
) AS foo

st_neighborhood

{{NULL,1,1},{1,1,1},{1,NULL,1}}

-- pixel 2x3 is NODATA
SELECT
 ST_Neighborhood(rast, 2, 3, 1, 1)
FROM (SELECT
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
 '8BUI':text, 1, 0
),
 1, 1, 1, ARRAY[
 [0, 1, 1, 1, 1],
 [1, 1, 1, 0, 1],
 [1, 0, 1, 1, 1],
 [1, 1, 0, 1, 1]
]::double precision[],
 1
) AS rast
) AS foo

st_neighborhood

{{1,1,1},{1,NULL,1},{1,1,1}}

-- pixel 3x3 has value
-- exclude_nodata_value = FALSE
SELECT
 ST_Neighborhood(rast, 3, 3, 1, 1, false)
FROM ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
 '8BUI':text, 1, 0
),
 1, 1, 1, ARRAY[
 [0, 1, 1, 1, 1],
 [1, 1, 1, 0, 1],
 [1, 0, 1, 1, 1],
 [1, 1, 0, 1, 1]
]::double precision[],
 1
) AS rast

st_neighborhood

{{1,1,1},{1,NULL,1},{1,1,1}}

-- exclude_nodata_value = false
SELECT
 ST_Neighborhood(rast, 3, 3, 1, 1, false)
FROM ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
 '8BUI':text, 1, 0
),
 1, 1, 1, ARRAY[
 [0, 1, 1, 1, 1],
 [1, 1, 1, 0, 1],
 [1, 0, 1, 1, 1],
 [1, 1, 0, 1, 1]
]::double precision[],
 1
) AS rast

st_neighborhood

{{1,1,1},{1,NULL,1},{1,1,1}}
1, 1, 1, ARRAY[
 [0, 1, 1, 1, 1],
 [1, 1, 1, 0, 1],
 [1, 0, 1, 1, 1],
 [1, 1, 1, 1, 0],
 [1, 1, 0, 1, 1]
]::double precision[],
1
) AS rast

st_neighborhood

{{1,1,0},{0,1,1},{1,1,1}}

See Also
ST_NearestValue, ST_Min4ma, ST_Max4ma, ST_Sum4ma, ST_Mean4ma, ST_Range4ma, ST_Distinct4ma, ST_StdDev4ma

6.6.10 ST_SetValue

ST_SetValue — Returns modified raster resulting from setting the value of a given band in a given columnx, rowy pixel or the
pixels that intersect a particular geometry. Band numbers start at 1 and assumed to be 1 if not specified.

Synopsis

raster
raster
raster
raster

ST_SetValue(raster rast, integer bandnum, geometry geom, double precision newvalue);
ST_SetValue(raster rast, geometry geom, double precision newvalue);
ST_SetValue(raster rast, integer bandnum, integer columnx, integer rowy, double precision newvalue);
ST_SetValue(raster rast, integer columnx, integer rowy, double precision newvalue);

Description

Returns modified raster resulting from setting the specified pixels’ values to new value for the designated band given the raster’s
row and column or a geometry. If no band is specified, then band 1 is assumed.

Enhanced: 2.1.0 Geometry variant of ST_SetValue() now supports any geometry type, not just point. The geometry variant is a
wrapper around the geomval[] variant of ST_SetValues()

Examples

-- Geometry example
SELECT (foo.geomval).val, ST_AsText(ST_Union((foo.geomval).geom))
FROM (SELECT ST_DumpAsPolygons(
 ST_SetValue(rast, 1,
 ST_Point(3427927.75, 5793243.95),
 50)
) As geomval
FROM dummy_rast
where rid = 2) As foo
WHERE (foo.geomval).val < 250
GROUP BY (foo.geomval).val;

val | st_astext
-----+---
50 | POLYGON((3427927.75 5793244,3427927.75 5793243.95,3427927.8 57932 ...
-- Store the changed raster --
UPDATE dummy_rast SET rast = ST_SetValue(rast,1, ST_Point(3427927.75, 5793243.95),100)
WHERE rid = 2 ;

See Also
ST_Value, ST_DumpAsPolygons

6.6.11 ST_SetValues

ST_SetValues — Returns modified raster resulting from setting the values of a given band.

Synopsis

raster ST_SetValues(raster rast, integer nband, integer columnx, integer rowy, double precision[][] newvalueset, boolean[][] noset=NULL, boolean keepnodata=FALSE);

raster ST_SetValues(raster rast, integer nband, integer columnx, integer rowy, double precision[][] newvalueset, double precision nosetvalue, boolean keepnodata=FALSE);

raster ST_SetValues(raster rast, integer nband, integer columnx, integer rowy, integer width, integer height, double precision newvalue, boolean keepnodata=FALSE);

raster ST_SetValues(raster rast, integer columnx, integer rowy, integer width, integer height, double precision newvalue, boolean keepnodata=FALSE);

raster ST_SetValues(raster rast, integer nband, geomval[] geomvalset, boolean keepnodata=FALSE);

Description

Returns modified raster resulting from setting specified pixels to new value(s) for the designated band. columnx and rowy are 1-indexed.

If keepnodata is TRUE, those pixels whose values are NODATA will not be set with the corresponding value in newvalueset.

For Variant 1, the specific pixels to be set are determined by the columnx, rowy pixel coordinates and the dimensions of the newvalueset array. noset can be used to prevent pixels with values present in newvalueset from being set (due to PostgreSQL not permitting ragged/jagged arrays). See example Variant 1.

Variant 2 is like Variant 1 but with a simple double precision nosetvalue instead of a boolean noset array. Elements in newvalueset with the nosetvalue value with be skipped. See example Variant 2.

For Variant 3, the specific pixels to be set are determined by the columnx, rowy pixel coordinates, width and height. See example Variant 3.

Variant 4 is the same as Variant 3 with the exception that it assumes that the first band’s pixels of rast will be set.

For Variant 5, an array of geomval is used to determine the specific pixels to be set. If all the geometries in the array are of type POINT or MULTIPOINT, the function uses a shortcut where the longitude and latitude of each point is used to set a pixel directly. Otherwise, the geometries are converted to rasters and then iterated through in one pass. See example Variant 5.

Availability: 2.1.0

Examples: Variant 1
```sql
/*
The ST_SetValues() does the following...

+ - + - + - +               + - + - + - +
| 1 | 1 | 1 | 1 |
+ - + - + - +               + - - - + - +
| 1 | 1 | 1 | 1 | -> | 1 | 9 | 9 | 9 |
+ - + - + - +               + - - - + - +
| 1 | 1 | 1 | 1 | 1 | | 1 | 9 | 9 | 9 |
+ - + - + - +               + - - - + - +
*/
SELECT
  (poly).x,
  (poly).y,
  (poly).val
FROM (n
SELECT
  ST_PixelAsPolygons(
    ST_SetValues(
      ST_AddBand(
        ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
        1, '8BUI', 1, 0 ),
        1, 2, 2, ARRAY[[9, 9], [9, 9]]::double precision[][]
      )
    ) AS poly
) foo
ORDER BY 1, 2;

+-----------+---+-----+
x | y | val |
---+---+-----+
1 | 1 | 1
1 | 2 | 1
1 | 3 | 1
2 | 1 | 1
2 | 2 | 9
2 | 3 | 9
3 | 1 | 1
3 | 2 | 9
3 | 3 | 9
*/

The ST_SetValues() does the following...

+ - + - + - +               + - + - + - +
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
+ - + - + - +               + - - - + - +
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -> | 9 | 9 | 9 |
+ - + - + - +               + - - - + - +
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 | 9 | 9 |
+ - + - + - +               + - - - + - +
*/

SELECT
  (poly).x,
  (poly).y,
  (poly).val
FROM (m
SELECT
  ST_PixelAsPolygons(
    ST_SetValues(
      ST_AddBand(
```
```sql
ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
1, '8BUI', 1, 0
},
1, 1, 1, ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][
}
) AS poly
) foo
ORDER BY 1, 2;

x | y | val
---+---+-----
1 | 1 | 9
1 | 2 | 9
1 | 3 | 9
2 | 1 | 9
2 | 2 |
2 | 3 | 9
3 | 1 | 9
3 | 2 | 9
3 | 3 | 9

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
(poly).x,
(poly).y,
(poly).val
FROM (SELECT
ST_PixelAsPolygons(
ST_SetValues(
ST_AddBand(
ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
1, '8BUI', 1, 0
},
1, 1, 1,
ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][
ARRAY[[false], [true]]::boolean[][
)
) AS poly
) foo
ORDER BY 1, 2;

x | y | val
---+---+-----
1 | 1 | 9
1 | 2 | 1
1 | 3 | 9
2 | 1 | 9
2 | 2 |
2 | 3 | 9
3 | 1 | 9
3 | 2 | 9
```
The `ST_SetValues()` does the following...

```
+ - + - + - + 
| | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + 
| 1 | 1 | 1 | 1 | -> | 1 | 1 | 1 |
+ - + - + - + 
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + 
```

```sql
SELECT (poly).x,
       (poly).y,
       (poly).val
FROM (SELECT
        ST_PixelAsPolygons(
          ST_SetValues(
            ST_SetValue(
              ST_AddBand(
                ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
                1, '8BUI', 1, 0
              ),
              1, 1, 1,
              NULL
            ),
            1, 1, 1,
            ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][],
            ARRAY[[false], [true]]::boolean[][],
            TRUE
          )
        ) AS poly
     ) foo
ORDER BY 1, 2;
```

```
x | y | val
---+---+-----
1 | 1 |
1 | 2 | 1
1 | 3 | 9
2 | 1 | 9
2 | 2 |
2 | 3 | 9
3 | 1 | 9
3 | 2 | 9
3 | 3 | 9
```

Examples: Variant 2

```
+ - + - + - + 
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + 
| 1 | 1 | 1 | 1 | -> | 1 | 1 | 1 |
+ - + - + - + 
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + 
```

```sql
SELECT (poly).x,
       (poly).y,
       (poly).val
FROM (SELECT
        ST_PixelAsPolygons(
          ST_SetValues(
            ST_SetValue(
              ST_AddBand(
                ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
                1, '8BUI', 1, 0
              ),
              1, 1, 1,
              NULL
            ),
            1, 1, 1,
            ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][],
            ARRAY[[false], [true]]::boolean[][],
            TRUE
          )
        ) AS poly
     ) foo
ORDER BY 1, 2;
```
/*
SELECT (poly).x,
(poly).y,
(poly).val
FROM (SELECT ST_PixelAsPolygons(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 1, 1, ARRAY[[-1, -1, -1], [-1, 9, 9], [-1, 9, 9]]::double precision[][], -1
) AS poly
) foo
ORDER BY 1, 2;
*/

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

/*
This example is like the previous one. Instead of nosetvalue = -1, nosetvalue = NULL

The ST_SetValues() does the following...

SELECT (poly).x,
(poly).y,
(poly).val
FROM (SELECT ST_PixelAsPolygons(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 1, 1, ARRAY[NULL, NULL, NULL], [NULL, 9, 9], [NULL, 9, 9]]::double precision[][], NULL::double precision
) AS poly
) foo
*/
ORDER BY 1, 2;

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Examples: Variant 3

```sql
/*
The ST_SetValues() does the following...

+ - + - + - +   + - + - + - +
| 1 | 1 | 1 |       | 1 | 1 | 1 |       
+ - + - + - +   + - + - + - +
| 1 | 1 | 1 | ->    | 1 | 9 | 9 |       
+ - + - + - +   + - + - + - +
| 1 | 1 | 1 |       | 1 | 9 | 9 |       
+ - + - + - +   + - + - + - +
*/
SELECT
  (poly).x,
  (poly).y,
  (poly).val
FROM (  
SELECT
  ST_PixelAsPolygons(  
    ST_SetValues(  
      ST_AddBand(  
        ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),  
        1, '8BUI', 1, 0  
      ),  
      1, 2, 2, 2, 2, 9  
    )  
  ) AS poly
) foo
ORDER BY 1, 2;

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

/*
The ST_SetValues() does the following...
```
Examples: Variant 5

WITH foo AS (
SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, →
0) AS rast
), bar AS (
SELECT 1 AS gid, 'SRID=0;POINT(2.5 -2.5)':'::geometry geom UNION ALL
SELECT 2 AS gid, 'SRID=0;POLYGON((1 -1, 4 -1, 4 -4, 1 -4, 1 -1))':'::geometry geom UNION ←
ALL
SELECT 3 AS gid, 'SRID=0;POLYGON((0 0, 5 0, 5 -1, 1 -1, 1 -4, 0 -4, 0 0))':'::geometry geom ←
UNION ALL
SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0 0, 4 4, 4 -4)':'::geometry
)
SELECT
rid, gid, ST_DumpValues(ST_SetValue(rast, 1, geom, gid))
FROM foo t1
CROSS JOIN bar t2
ORDER BY rid, gid;
The following shows that geomvals later in the array can overwrite prior geomvals

WITH foo AS (SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0) AS rast), bar AS (SELECT 1 AS gid, 'SRID=0;POINT(2.5, -2.5)'::geometry geom UNION ALL SELECT 2 AS gid, 'SRID=0;POLYGON((1.0, 1.0, 4.0, 4.0, 1.0, 1.0))'::geometry geom UNION ALL SELECT 3 AS gid, 'SRID=0;POLYGON((0.0, 0.0, 5.0, 5.0, 1.0, 1.0, 1.0, 1.0))'::geometry geom UNION ALL SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0.0, 4.0, 4.0, 4.0)'::geometry)

SELECT t1.rid, t2.gid, t3.gid, ST_DumpValues(ST_SetValues(rast, 1, ARRAY[ROW(t2.geom, t2.gid), ROW(t3.geom, t3.gid)]::geomval[]))
FROM foo t1
CROSS JOIN bar t2
CROSS JOIN bar t3
WHERE t2.gid = 1
AND t3.gid = 2
ORDER BY t1.rid, t2.gid, t3.gid;

This example is the opposite of the prior example

WITH foo AS (SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0) AS rast), bar AS (SELECT 1 AS gid, 'SRID=0;POINT(2.5, -2.5)'::geometry geom UNION ALL SELECT 2 AS gid, 'SRID=0;POLYGON((1.0, 1.0, 4.0, 4.0, 1.0, 1.0))'::geometry geom UNION ALL SELECT 3 AS gid, 'SRID=0;POLYGON((0.0, 0.0, 5.0, 5.0, 1.0, 1.0, 1.0, 1.0))'::geometry geom UNION ALL SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0.0, 4.0, 4.0, 4.0)'::geometry)

SELECT t1.rid, t2.gid, t3.gid, ST_DumpValues(ST_SetValues(rast, 1, ARRAY[ROW(t2.geom, t2.gid), ROW(t3.geom, t3.gid)]::geomval[]))
FROM foo t1
CROSS JOIN bar t2
CROSS JOIN bar t3
WHERE t2.gid = 2
AND t3.gid = 1
ORDER BY t1.rid, t2.gid, t3.gid;

<table>
<thead>
<tr>
<th>rid</th>
<th>gid</th>
<th>gid</th>
<th>st_dumpvalues</th>
</tr>
</thead>
</table>
| 1 | 2 | 1 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,2,2,2,NULL},{NULL,2,1,2,NULL},
 NULL,2,2,2,NULL},{NULL,NULL,NULL,NULL,NULL}}") |

(1 row)

See Also

ST_Value, ST_SetValue, ST_PixelAsPolygons

6.6.12 ST_DumpValues

ST_DumpValues — Get the values of the specified band as a 2-dimension array.

Synopsis

setof record ST_DumpValues(raster rast , integer[] nband=NULL , boolean exclude_nodata_value=true);
double precision[][] ST_DumpValues(raster rast , integer nband , boolean exclude_nodata_value=true);

Description

Get the values of the specified band as a 2-dimension array (first index is row, second is column). If nband is NULL or not provided, all raster bands are processed.

Availability: 2.1.0

Examples

WITH foo AS (
 SELECT ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI'::text, 1, 0), 2, '32BF'::text, 3, -9999), 3, '16BSI', 0, 0) AS rast
)
SELECT (ST_DumpValues(rast)).*
FROM foo;

<table>
<thead>
<tr>
<th>nband</th>
<th>valarray</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{{1,1,1},{1,1,1},{1,1,1}}</td>
</tr>
<tr>
<td>2</td>
<td>{{3,3,3},{3,3,3},{3,3,3}}</td>
</tr>
<tr>
<td>3</td>
<td>{{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL}}</td>
</tr>
</tbody>
</table>

(3 rows)

WITH foo AS (
 SELECT ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI'::text, 1, 0), 2, '32BF'::text, 3, -9999), 3, '16BSI', 0, 0) AS rast
)
SELECT (ST_DumpValues(rast, ARRAY[3, 1])).*
FROM foo;
WITH foo AS (
 SELECT ST_SetValue(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 1, 2, 5) AS rast
)
SELECT (ST_DumpValues(rast, 1))[2][1]
FROM foo;

See Also

ST_Value, ST_SetValue, ST_SetValues

6.6.13 ST_PixelOfValue

ST_PixelOfValue — Get the columnx, rowy coordinates of the pixel whose value equals the search value.

Synopsis

setof record ST_PixelOfValue(raster rast , integer nband , double precision[] search , boolean exclude_nodata_value=true);
setof record ST_PixelOfValue(raster rast , double precision[] search , boolean exclude_nodata_value=true);
setof record ST_PixelOfValue(raster rast , integer nband , double precision search , boolean exclude_nodata_value=true);
setof record ST_PixelOfValue(raster rast , double precision search , boolean exclude_nodata_value=true);

Description

Get the columnx, rowy coordinates of the pixel whose value equals the search value. If no band is specified, then band 1 is assumed.

Availability: 2.1.0

Examples

SELECT (pixels).*
FROM (
 SELECT ST_PixelOfValue(
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 1, 2, 5)
)
)
)
```
ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
    '8BUI': text, 1, 0
},
    1, 1, 0
},
    2, 3, 0
},
    3, 5, 0
},
    4, 2, 0
},
    5, 4, 255
}), 1, ARRAY[1, 255]) AS pixels
) AS foo
val | x  | y
-----+---+---
1   | 1  | 2
1   | 1  | 3
1   | 1  | 4
1   | 1  | 5
1   | 2  | 1
1   | 2  | 2
1   | 2  | 4
1   | 2  | 5
1   | 3  | 1
1   | 3  | 2
1   | 3  | 3
1   | 3  | 4
1   | 4  | 1
1   | 4  | 3
1   | 4  | 4
1   | 4  | 5
1   | 5  | 1
1   | 5  | 2
1   | 5  | 3
255 | 5  | 4
1   | 5  | 5
```

6.7 Raster Editors

6.7.1 ST_SetGeoReference

ST_SetGeoReference — Set Georeference 6 georeference parameters in a single call. Numbers should be separated by white space. Accepts inputs in GDAL or ESRI format. Default is GDAL.

Synopsis

```
raster ST_SetGeoReference(raster rast, text georefcoords, text format=GDAL);
raster ST_SetGeoReference(raster rast, double precision upperleftx, double precision upperlefty, double precision scalex, double precision scaley, double precision skewx, double precision skewy);
```

Description

Set Georeference 6 georeference parameters in a single call. Accepts inputs in ’GDAL’ or ’ESRI’ format. Default is GDAL. If 6 coordinates are not provided will return null.
Difference between format representations is as follows:

GDAL:

scalex skewy skewx scaley upperleftx upperlefty

ESRI:

scalex skewy scaley upperleftx + scalex*0.5 upperlefty + scaley*0.5

Note

If the raster has out-db bands, changing the georeference may result in incorrect access of the band's externally stored data.

Enhanced: 2.1.0 Addition of ST_SetGeoReference(raster, double precision, ...) variant

Examples

```sql
WITH foo AS (  
  SELECT ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0) AS rast  
)
SELECT  
  0 AS rid, (ST_Metadata(rast)).*  
FROM foo  
UNION ALL  
SELECT  
  1, (ST_Metadata(ST_SetGeoReference(rast, '10 0 0 -10 0.1 0.1', 'GDAL'))).*  
FROM foo  
UNION ALL  
SELECT  
  2, (ST_Metadata(ST_SetGeoReference(rast, '10 0 0 -10 5.1 -4.9', 'ESRI'))).*  
FROM foo  
UNION ALL  
SELECT  
  3, (ST_Metadata(ST_SetGeoReference(rast, 1, 1, 10, -10, 0.001, 0.001))).*  
FROM foo
```

<table>
<thead>
<tr>
<th>rid</th>
<th>upperleftx</th>
<th>upperlefty</th>
<th>width</th>
<th>height</th>
<th>scalex</th>
<th>scaley</th>
<th>skewx</th>
<th>skewy</th>
<th>srid</th>
<th>numbands</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>-10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.0999999999999996</td>
<td>0.0999999999999996</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>-10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>-10</td>
<td>0.001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

See Also

ST_GeoReference, ST_ScaleX, ST_ScaleY, ST_UpperLeftX, ST_UpperLeftY
6.7.2 ST_SetRotation

ST_SetRotation — Set the rotation of the raster in radian.

Synopsis

raster ST_SetRotation(raster rast, float8 rotation);

Description

Uniformly rotate the raster. Rotation is in radian. Refer to World File for more details.

Examples

```sql
SELECT
ST_ScaleX(rast1), ST_ScaleY(rast1), ST_SkewX(rast1), ST_SkewY(rast1),
ST_ScaleX(rast2), ST_ScaleY(rast2), ST_SkewX(rast2), ST_SkewY(rast2)
FROM (SELECT ST_SetRotation(rast, 15) AS rast1, rast AS rast2 FROM dummy_rast ) AS foo;
```

<table>
<thead>
<tr>
<th>st_scalex</th>
<th>st_scaley</th>
<th>st_skewx</th>
<th>st_skewy</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.51937582571764</td>
<td>-2.27906373857646</td>
<td>1.95086352047135</td>
<td>1.30057568031423</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

See Also

ST_Rotation, ST_ScaleX, ST_ScaleY, ST_SkewX, ST_SkewY

6.7.3 ST_SetScale

ST_SetScale — Sets the X and Y size of pixels in units of coordinate reference system. Number units/pixel width/height.

Synopsis

raster ST_SetScale(raster rast, float8 xy);
raster ST_SetScale(raster rast, float8 x, float8 y);

Description

Sets the X and Y size of pixels in units of coordinate reference system. Number units/pixel width/height. If only one unit passed in, assumed X and Y are the same number.

Note

ST_SetScale is different from ST_Rescale in that ST_SetScale do not resample the raster to match the raster extent. It only changes the metadata (or georeference) of the raster to correct an originally mis-specified scaling. ST_Rescale results in a raster having different width and height computed to fit the geographic extent of the input raster. ST_SetScale do not modify the width, nor the height of the raster.

Changed: 2.0.0 In WKTRaster versions this was called ST_SetPixelSize. This was changed in 2.0.0.
Examples

```
UPDATE dummy_rast
    SET rast = ST_SetScale(rast, 1.5)
WHERE rid = 2;

SELECT ST_ScaleX(rast) As pixx, ST_ScaleY(rast) As pixy, Box3D(rast) As newbox
FROM dummy_rast
WHERE rid = 2;
```

<table>
<thead>
<tr>
<th>pixx</th>
<th>pixy</th>
<th>newbox</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.5</td>
<td>BOX(3427927.75 5793244 0, 3427935.25 5793251.5 0)</td>
</tr>
</tbody>
</table>

```
UPDATE dummy_rast
    SET rast = ST_SetScale(rast, 1.5, 0.55)
WHERE rid = 2;

SELECT ST_ScaleX(rast) As pixx, ST_ScaleY(rast) As pixy, Box3D(rast) As newbox
FROM dummy_rast
WHERE rid = 2;
```

<table>
<thead>
<tr>
<th>pixx</th>
<th>pixy</th>
<th>newbox</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.55</td>
<td>BOX(3427927.75 5793244 0, 3427935.25 5793247 0)</td>
</tr>
</tbody>
</table>

See Also

ST_ScaleX, ST_ScaleY, Box3D

6.7.4 ST_SetSkew

ST_SetSkew — Sets the georeference X and Y skew (or rotation parameter). If only one is passed in, sets X and Y to the same value.

Synopsis

```
raster ST_SetSkew(raster rast, float8 skewxy);
raster ST_SetSkew(raster rast, float8 skewx, float8 skewy);
```

Description

Sets the georeference X and Y skew (or rotation parameter). If only one is passed in, sets X and Y to the same value. Refer to World File for more details.

Examples

```
-- Example 1
UPDATE dummy_rast SET rast = ST_SetSkew(rast,1,2) WHERE rid = 1;
SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
     ST_GeoReference(rast) as georef
FROM dummy_rast WHERE rid = 1;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>skewx</th>
<th>skewy</th>
<th>georef</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
-- Example 2 set both to same number:
UPDATE dummy_rast SET rast = ST_SetSkew(rast,0) WHERE rid = 1;
SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
 ST_GeoReference(rast) as georef
FROM dummy_rast WHERE rid = 1;

rid | skewx | skewy | georef
-----+-------+-------+--------------
 1 | 0 | 0 | 2.0000000000
 : 0.0000000000
 : 0.0000000000
 : 3.0000000000
 : 0.5000000000
 : 0.5000000000

See Also

ST_GeoReference, ST_SetGeoReference, ST_SkewX, ST_SkewY

6.7.5 ST_SetSRID

ST_SetSRID — Sets the SRID of a raster to a particular integer srid defined in the spatial_ref_sys table.

Synopsis

raster ST_SetSRID(raster rast, integer srid);

Description

Sets the SRID on a raster to a particular integer value.

Note

This function does not transform the raster in any way - it simply sets meta data defining the spatial ref of the coordinate
reference system that it's currently in. Useful for transformations later.

See Also

Section 4.1.3.1, ST_SRID

6.7.6 ST_SetUpperLeft

ST_SetUpperLeft — Sets the value of the upper left corner of the pixel of the raster to projected X and Y coordinates.
Synopsis

raster \texttt{ST_SetUpperLeft}(raster \texttt{rast}, \texttt{double precision x}, \texttt{double precision y});

Description

Set the value of the upper left corner of raster to the projected X and Y coordinates

Examples

\begin{verbatim}
SELECT \texttt{ST_SetUpperLeft}(\texttt{rast}, -71.01, 42.37)
FROM \texttt{dummy_rast}
WHERE \texttt{rid} = 2;
\end{verbatim}

See Also

\texttt{ST_UpperLeftX, ST_UpperLeftY}

6.7.7 \texttt{ST_Resample}

\texttt{ST_Resample} — Resample a raster using a specified resampling algorithm, new dimensions, an arbitrary grid corner and a set of raster georeferencing attributes defined or borrowed from another raster.

Synopsis

\begin{verbatim}
raster \texttt{ST_Resample}(raster \texttt{rast}, \texttt{integer width}, \texttt{integer height}, \texttt{double precision gridx=NULL}, \texttt{double precision gridy=NULL}, \texttt{double precision skewx=0}, \texttt{double precision skewy=0}, \texttt{text algorithm=NearestNeighbour}, \texttt{double precision maxerr=0.125});
raster \texttt{ST_Resample}(raster \texttt{rast}, \texttt{double precision scalex=0}, \texttt{double precision scaley=0}, \texttt{double precision gridx=NULL}, \texttt{double precision gridy=NULL}, \texttt{double precision skewx=0}, \texttt{double precision skewy=0}, \texttt{text algorithm=NearestNeighbor}, \texttt{double precision maxerr=0.125});
raster \texttt{ST_Resample}(raster \texttt{rast}, raster \texttt{ref}, \texttt{text algorithm=NearestNeighbour}, \texttt{double precision maxerr=0.125}, \texttt{boolean usescale=true});
raster \texttt{ST_Resample}(raster \texttt{rast}, raster \texttt{ref}, \texttt{boolean usescale}, \texttt{text algorithm=NearestNeighbour}, \texttt{double precision maxerr=0.125});
\end{verbatim}

Description

Resample a raster using a specified resampling algorithm, new dimensions (width & height), a grid corner (gridx & gridy) and a set of raster georeferencing attributes (scalex, scaley, skewx & skewy) defined or borrowed from another raster. If using a reference raster, the two rasters must have the same SRID.

New pixel values are computed using the NearestNeighbor (English or American spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor which is the fastest but produce the worst interpolation.

A maxerror percent of 0.125 is used if \texttt{maxerr} is specified.

\begin{itemize}
 \item \texttt{Note} Refer to: GDAL Warp resampling methods for more details.
\end{itemize}

Availability: 2.0.0 Requires GDAL 1.6.1+

Changed: 2.1.0 Parameter \texttt{sr} removed. Variants with a reference raster no longer applies the reference raster’s SRID. Use \texttt{ST_Transform()} to reproject raster. Works on rasters with no SRID.
Examples

```sql
SELECT
    ST_Width(orig) AS orig_width,
    ST_Width(reduce_100) AS new_width
FROM (
    SELECT
        rast AS orig,
        ST_Resample(rast,100,100) AS reduce_100
    FROM aerials.boston
    WHERE ST_Intersects(rast,
        ST_Transform(
            ST_MakeEnvelope(-71.128, 42.2392,-71.1277, 42.2397, 4326),26986)
        )
    LIMIT 1
) AS foo;
```

<table>
<thead>
<tr>
<th>orig_width</th>
<th>new_width</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

See Also

ST_Rescale, ST_Resize, ST_Transform

6.7.8 ST_Rescale

ST_Rescale — Resample a raster by adjusting only its scale (or pixel size). New pixel values are computed using the Nearest Neighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is Nearest-Neighbor.

Synopsis

```sql
raster ST_Rescale(raster rast, double precision scalexy, text algorithm=NearestNeighbour, double precision maxerr=0.125);
raster ST_Rescale(raster rast, double precision scalex, double precision scaley, text algorithm=NearestNeighbour, double precision maxerr=0.125);
```

Description

Resample a raster by adjusting only its scale (or pixel size). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. The default is Nearest-Neighbor which is the fastest but results in the worst interpolation.

scalex and scaley define the new pixel size. scaley must often be negative to get well oriented raster.

When the new scalex or scaley is not a divisor of the raster width or height, the extent of the resulting raster is expanded to encompass the extent of the provided raster. If you want to be sure to retain exact input extent see ST_Resize

maxerr is the threshold for transformation approximation by the resampling algorithm (in pixel units). A default of 0.125 is used if no maxerr is specified, which is the same value used in GDAL gdalwarp utility. If set to zero, no approximation takes place.

Note

Refer to: GDAL Warp resampling methods for more details.
Note

ST_Rescale is different from ST_SetScale in that ST_SetScale do not resample the raster to match the raster extent.
ST_SetScale only changes the metadata (or georeference) of the raster to correct an originally mis-specified scaling.
ST_Rescale results in a raster having different width and height computed to fit the geographic extent of the input raster.
ST_SetScale do not modify the width, nor the height of the raster.

Availability: 2.0.0 Requires GDAL 1.6.1+
Changed: 2.1.0 Works on rasters with no SRID

Examples

A simple example rescaling a raster from a pixel size of 0.001 degree to a pixel size of 0.0015 degree.

A simple example rescaling a raster from a pixel size of 0.001 degree to a pixel size of 0.0015 degree.

```sql
-- the original raster pixel size
SELECT ST_PixelWidth(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI':text, 1, 0)) width
  width
----------
0.001

-- the rescaled raster raster pixel size
SELECT ST_PixelWidth(ST_Rescale(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI':text, 1, 0), 0.0015)) width
  width
----------
0.0015
```

See Also

ST_Resize, ST_Resample, ST_SetScale, ST_ScaleX, ST_ScaleY, ST_Transform

6.7.9 ST_Reskew

ST_Reskew — Resample a raster by adjusting only its skew (or rotation parameters). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.

Synopsis

```sql
raster ST_Reskew(raster rast, double precision skewxy, text algorithm=NearestNeighbour, double precision maxerr=0.125);
```

Description

Resample a raster by adjusting only its skew (or rotation parameters). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. The default is NearestNeighbor which is the fastest but results in the worst interpolation.

skewx and skewy define the new skew.

The extent of the new raster will encompass the extent of the provided raster.

A maxerror percent of 0.125 if no maxerr is specified.
Note
Refer to: GDAL Warp resampling methods for more details.

Note
ST_Reskew is different from ST_SetSkew in that ST_SetSkew do not resample the raster to match the raster extent. ST_SetSkew only changes the metadata (or georeference) of the raster to correct an originally mis-specified skew. ST_Reskew results in a raster having different width and height computed to fit the geographic extent of the input raster. ST_SetSkew do not modify the width, nor the height of the raster.

Availability: 2.0.0 Requires GDAL 1.6.1+
Changed: 2.1.0 Works on rasters with no SRID

Examples
A simple example reskewing a raster from a skew of 0.0 to a skew of 0.0015.

```
-- the original raster non-rotated
SELECT ST_Rotation(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269) ←
    , '8BUI'::text, 1, 0));

-- result
0

-- the reskewed raster raster rotation
SELECT ST_Rotation(ST_Reskew(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, ←
    0, 0, 4269), '8BUI'::text, 1, 0), 0.0015));

-- result
-0.982793723247329
```

See Also
ST_Resample, ST_Rescale, ST_SetSkew, ST_SetRotation, ST_SkewX, ST_SkewY, ST_Transform

6.7.10 ST_SnapToGrid

ST_SnapToGrid — Resample a raster by snapping it to a grid. New pixel values are computed using the NearestNeigbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeigbor.

Synopsis

```
raster ST_SnapToGrid(raster rast, double precision gridx, double precision gridy, text algorithm=NearestNeigbor, double precision maxerr=0.125, double precision scalex=DEFAULT 0, double precision scaley=DEFAULT 0);
raster ST_SnapToGrid(raster rast, double precision gridx, double precision gridy, double precision scalex, double precision scaley, text algorithm=NearestNeigbor, double precision maxerr=0.125);
raster ST_SnapToGrid(raster rast, double precision gridx, double precision gridy, double precision scalex, double precision scaley, text algorithm=NearestNeigbor, double precision maxerr=0.125);
```

Description

Resample a raster by snapping it to a grid defined by an arbitrary pixel corner (gridx & gridy) and optionally a pixel size (scalex & scaley). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. The default is NearestNeighbor which is the fastest but results in the worst interpolation.

gridx and gridy define any arbitrary pixel corner of the new grid. This is not necessarily the upper left corner of the new raster and it does not have to be inside or on the edge of the new raster extent.

You can optionally define the pixel size of the new grid with scalex and scaley.

The extent of the new raster will encompass the extent of the provided raster.

A maxerror percent of 0.125 if no maxerr is specified.

Note

Refer to: GDAL Warp resampling methods for more details.

Note

Use ST_Resample if you need more control over the grid parameters.

Availability: 2.0.0 Requires GDAL 1.6.1+

Changed: 2.1.0 Works on rasters with no SRID

Examples

A simple example snapping a raster to a slightly different grid.

```sql
-- the original raster upper left X
SELECT ST_UpperLeftX(ST_AddBand(ST_MakeEmptyRaster(10, 10, 0, 0, 0.001, -0.001, 0, 0, 4269) <-> '8BUI'::text, 1, 0));
-- result
0

-- the upper left of raster after snapping
SELECT ST_UpperLeftX(ST_SnapToGrid(ST_AddBand(ST_MakeEmptyRaster(10, 10, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0), 0.0002, 0.0002));
--result
-0.0008
```

See Also

ST_Resample, ST_Rescale, ST_UpperLeftX, ST_UpperLeftY

6.7.11 ST_Resize

ST_Resize — Resize a raster to a new width/height
Synopsis

raster ST_Resize(raster rast, integer width, integer height, text algorithm=NearestNeighbor, double precision maxerr=0.125);
raster ST_Resize(raster rast, double precision percentwidth, double precision percentheight, text algorithm=NearestNeighbor, double precision maxerr=0.125);
raster ST_Resize(raster rast, text width, text height, text algorithm=NearestNeighbor, double precision maxerr=0.125);

Description

Resize a raster to a new width/height. The new width/height can be specified in exact number of pixels or a percentage of the raster’s width/height. The extent of the new raster will be the same as the extent of the provided raster.

New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. The default is NearestNeighbor which is the fastest but results in the worst interpolation.

Variant 1 expects the actual width/height of the output raster.

Variant 2 expects decimal values between zero (0) and one (1) indicating the percentage of the input raster’s width/height.

Variant 3 takes either the actual width/height of the output raster or a textual percentage (“20%”) indicating the percentage of the input raster’s width/height.

Availability: 2.1.0 Requires GDAL 1.6.1+

Examples

WITH foo AS(
 SELECT
 1 AS rid,
 ST_Resize(
 ST_AddBand(
 ST_MakeEmptyRaster(1000, 1000, 0, 0, 1, -1, 0, 0, 0)
 , 1, '8BUI', 255, 0
)
 , '50%', '500') AS rast
 UNION ALL
 SELECT
 2 AS rid,
 ST_Resize(
 ST_AddBand(
 ST_MakeEmptyRaster(1000, 1000, 0, 0, 1, -1, 0, 0, 0)
 , 1, '8BUI', 255, 0
)
 , 500, 100) AS rast
 UNION ALL
 SELECT
 3 AS rid,
 ST_Resize(
 ST_AddBand(
 ST_MakeEmptyRaster(1000, 1000, 0, 0, 1, -1, 0, 0, 0)
 , 1, '8BUI', 255, 0
)
 , 0.25, 0.9) AS rast
), bar AS (
 SELECT rid, ST_Metadata(rast) AS meta, rast FROM foo
)
SELECT rid, (meta).* FROM bar

<table>
<thead>
<tr>
<th>rid</th>
<th>upperleftx</th>
<th>upperlefty</th>
<th>width</th>
<th>height</th>
<th>scalex</th>
<th>scaley</th>
<th>skewx</th>
<th>skewy</th>
<th>srid</th>
<th>numbands</th>
</tr>
</thead>
</table>

rid | upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands |
6.7.12 ST_Transform

ST_Transform — Reprojects a raster in a known spatial reference system to another known spatial reference system using specified resampling algorithm. Options are NearestNeighbor, Bilinear, Cubic, CubicSpline, Lanczos defaulting to NearestNeighbor.

Synopsis

raster ST_Transform(raster rast, integer srid, text algorithm=NearestNeighbor, double precision maxerr=0.125, double precision scalex, double precision scaley);

raster ST_Transform(raster rast, integer srid, double precision scalex, double precision scaley, text algorithm=NearestNeighbor, double precision maxerr=0.125);

raster ST_Transform(raster rast, raster alignto, text algorithm=NearestNeighbor, double precision maxerr=0.125);

Description

Reprojects a raster in a known spatial reference system to another known spatial reference system using specified pixel warping algorithm. Uses ‘NearestNeighbor’ if no algorithm is specified and maxerror percent of 0.125 if no maxerr is specified.

ST_Transform is often confused with ST_SetSRID(). ST_Transform actually changes the coordinates of a raster (and resamples the pixel values) from one spatial reference system to another, while ST_SetSRID() simply changes the SRID identifier of the raster.

Unlike the other variants, Variant 3 requires a reference raster as alignto. The transformed raster will be transformed to the spatial reference system (SRID) of the reference raster and be aligned (ST_SameAlignment = TRUE) to the reference raster.

Note

If you find your transformation support is not working right, you may need to set the environment variable PROJSO to the .so or .dll projection library your PostGIS is using. This just needs to have the name of the file. So for example on windows, you would in Control Panel -> System -> Environment Variables add a system variable called PROJSO and set it to libproj.dll (if you are using proj 4.6.1). You’ll have to restart your PostgreSQL service/daemon after this change.

Warning

When transforming a coverage of tiles, you almost always want to use a reference raster to insure same alignment and no gaps in your tiles as demonstrated in example: Variant 3.
Availability: 2.0.0 Requires GDAL 1.6.1+

Enhanced: 2.1.0 Addition of ST_Transform(rast, alignto) variant

Examples

```sql
SELECT ST_Width(mass_stm) As w_before, ST_Width(wgs_84) As w_after,
      ST_Height(mass_stm) As h_before, ST_Height(wgs_84) As h_after
FROM
  ( SELECT rast As mass_stm, ST_Transform(rast,4326) As wgs_84,
         ST_Transform(rast,4326, 'Bilinear') AS wgs_84_bilin
       FROM aerials.o_2_boston
       WHERE ST_Intersects(rast,
         ST_Transform(ST_MakeEnvelope(-71.128, 42.2392,-71.1277, 42.2397, 4326),26986) )
     LIMIT 1 ) As foo;
```

<table>
<thead>
<tr>
<th>w_before</th>
<th>w_after</th>
<th>h_before</th>
<th>h_after</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>228</td>
<td>200</td>
<td>170</td>
</tr>
</tbody>
</table>

original mass state plane meters

After transform to wgs 84 long lat

After transform to wgs 84 long lat with bilinear algorithm instead of NN default

Examples: Variant 3

The following shows the difference between using ST_Transform(raster, srid) and ST_Transform(raster, alignto)

```sql
WITH foo AS (
  SELECT 0 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 1, 0) AS rast UNION ALL
  SELECT 1, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 2, 0) AS rast UNION ALL
  SELECT 2, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 3, 0) AS rast UNION ALL
  SELECT 3, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 10, 0) AS rast UNION ALL
  SELECT 4, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 20, 0) AS rast UNION ALL
  SELECT 5, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 30, 0) AS rast UNION ALL
)
SELECT 6, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 100, 0) AS rast UNION ALL
SELECT 7, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 200, 0) AS rast UNION ALL
SELECT 8, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 300, 0) AS rast
), bar AS (
SELECT
   ST_Transform(rast, 4269) AS alignto
FROM foo
LIMIT 1
), baz AS (
SELECT
   rid,
   rast,
   ST_Transform(rast, 4269) AS not_aligned,
   ST_Transform(rast, alignto) AS aligned
FROM foo
CROSS JOIN bar
)
SELECT
   ST_SameAlignment(rast) AS rast,
   ST_SameAlignment(not_aligned) AS not_aligned,
   ST_SameAlignment(aligned) AS aligned
FROM baz

See Also

ST_Transform, ST_SetSRID
6.8 Raster Band Editors

6.8.1 ST_SetBandNoDataValue

ST_SetBandNoDataValue — Sets the value for the given band that represents no data. Band 1 is assumed if no band is specified. To mark a band as having no nodata value, set the nodata value = NULL.

Synopsis

raster ST_SetBandNoDataValue (raster rast, double precision nodatavalue);
raster ST_SetBandNoDataValue (raster rast, integer band, double precision nodatavalue, boolean forcechecking=false);

Description

Sets the value that represents no data for the band. Band 1 is assumed if not specified. This will affect results from ST_Polygon, ST_DumpAsPolygons, and the ST_PixelAs...() functions.

Examples

```sql
-- change just first band no data value
UPDATE dummy_rast
 SET rast = ST_SetBandNoDataValue(rast,1, 254)
WHERE rid = 2;

-- change no data band value of bands 1,2,3
UPDATE dummy_rast
 SET rast =
 ST_SetBandNoDataValue(
 ST_SetBandNoDataValue(
 ST_SetBandNoDataValue(
 rast,1, 254)
 ,2,99),
 3,108)
WHERE rid = 2;

-- wipe out the nodata value this will ensure all pixels are considered for all processing
UPDATE dummy_rast
 SET rast = ST_SetBandNoDataValue(rast,1, NULL)
WHERE rid = 2;
```

See Also

ST_BandNoDataValue, ST_NumBands

6.8.2 ST_SetBandIsNoData

ST_SetBandIsNoData — Sets the isnodata flag of the band to TRUE.

Synopsis

raster ST_SetBandIsNoData (raster rast, integer band=1);
Description

Sets the isnodata flag for the band to true. Band 1 is assumed if not specified. This function should be called only when the flag is considered dirty. That is, when the result calling ST_BandIsNoData is different using TRUE as last argument and without using it.

Availability: 2.0.0

Examples

```sql
-- Create dummy table with one raster column
create table dummy_rast (rid integer, rast raster);

-- Add raster with two bands, one pixel/band. In the first band, nodatavalue = pixel value <- 3.
-- In the second band, nodatavalue = 13, pixel value = 4
insert into dummy_rast values(1, (
 '01' -- little endian (uint8 ndr)
 ||
 '0000' -- version (uint16 0)
 ||
 '0200' -- nBands (uint16 0)
 ||
 '17263529ED684A3F' -- scaleX (float64 0.000805965234044584)
 ||
 'F9253529ED684ABF' -- scaleY (float64 -0.00080596523404458)
 ||
 '1C9F33CE69E352C0' -- ipX (float64 -75.5533328537098)
 ||
 '718F0E9A44840' -- ipY (float64 49.2824585505576)
 ||
 'ED50EB853EC32B3F' -- skewX (float64 0.000211812383858707)
 ||
 '7550EB853EC32B3F' -- skewY (float64 0.000211812383858704)
 ||
 'E6100000' -- SRID (int32 4326)
 ||
 '0100' -- width (uint16 1)
 ||
 '0100' -- height (uint16 1)
 ||
 '4' -- hasnodatavalue set to true, isnodata value set to false (when it should be true)
 ||
 '2' -- first band type (4BUI)
 ||
 '03' -- novalue==3
 ||
 '03' -- pixel(0,0)==3 (same that nodata)
 ||
 '0' -- hasnodatavalue set to false
 ||
 '5' -- second band type (16BSI)
 ||
 '0D00' -- novalue==13
 ||
 '0400' -- pixel(0,0)==4
)::<raster>
);

select st_bandisnodata(rast, 1) from dummy_rast where rid = 1; -- Expected false
```
select st_bandisnodata(rast, 1, TRUE) from dummy_rast where rid = 1; -- Expected true
-- The isnodata flag is dirty. We are going to set it to true
update dummy_rast set rast = st_setbandisnodata(rast, 1) where rid = 1;
select st_bandisnodata(rast, 1) from dummy_rast where rid = 1; -- Expected true

See Also

ST_BandNoDataValue, ST_NumBands, ST_SetBandNoDataValue, ST_BandIsNoData

6.8.3 ST_SetBandPath

ST_SetBandPath — Update the external path and band number of an out-db band

Synopsis

raster ST_SetBandPath(raster rast, integer band, text outdbpath, integer outdbindex, boolean force=false);

Description

Updates an out-db band’s external raster file path and external band number.

**Note**

If `force` is set to true, no tests are done to ensure compatibility (e.g. alignment, pixel support) between the external raster file and the PostGIS raster. This mode is intended for file system changes where the external raster resides.

**Note**

Internally, this method replaces the PostGIS raster’s band at index `band` with a new band instead of updating the existing path information.

Availability: 2.5.0

Examples

```sql
WITH foo AS {
 SELECT
 ST_AddBand(NULL::raster, '/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif', NULL::int[]) AS rast
}
SELECT
 1 AS query,
 *
FROM ST_BandMetadata(
 (SELECT rast FROM foo),
 ARRAY[1,3,2]::int[]
)
UNION ALL
```
SELECT 2, * FROM ST_BandMetadata(
    SELECT ST_SetBandPath(
        rast, 2, 
        '/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected2.tif', 1 
    ) AS rast 
FROM foo }, ARRAY[1,3,2]::int[]
)
ORDER BY 1, 2;

query | bandnum | pixeltype | nodatavalue | isoutdb | ←
|-------+---------+-----------+-------------+---------+----------------------------------------------+
pixeltype | | | | | ←
path | | | | | ←
outdbbandnum

1	1	8BUI		t	/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif	1
1	2	8BUI		t	/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif	2
1	3	8BUI		t	/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif	3
2	1	8BUI		t	/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif	1
2	2	8BUI		t	/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected2.tif	1
2	3	8BUI		t	/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif	3

See Also

ST_BandMetaData, ST_SetBandIndex

6.8.4 ST_SetBandIndex

ST_SetBandIndex — Update the external band number of an out-db band

Synopsis

raster ST_SetBandIndex(raster rast, integer band, integer outdbindex, boolean force=false);

Description

Updates an out-db band’s external band number. This does not touch the external raster file associated with the out-db band.

Note

If force is set to true, no tests are done to ensure compatibility (e.g. alignment, pixel support) between the external raster file and the PostGIS raster. This mode is intended for where bands are moved around in the external raster file.
Note

Internally, this method replaces the PostGIS raster's band at index `band` with a new band instead of updating the existing path information.

Availability: 2.5.0

Examples

```sql
WITH foo AS (
 SELECT
 ST_AddBand(NULL::raster, '/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif', NULL::int[]) AS rast
)
SELECT 1 AS query,
 * FROM ST_BandMetadata(
 (SELECT rast FROM foo),
 ARRAY[1,3,2]::int[]
)
UNION ALL
SELECT 2,
 * FROM ST_BandMetadata(
 (SELECT ST_SetBandIndex(rast, 2, 1) AS rast FROM foo),
 ARRAY[1,3,2]::int[]
)
ORDER BY 1, 2;
```

```
<table>
<thead>
<tr>
<th>query</th>
<th>bandnum</th>
<th>pixeltype</th>
<th>nodatavalue</th>
<th>isoutdb</th>
<th>path</th>
<th>outdbbandnum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>8BUI</td>
<td></td>
<td>t</td>
<td>/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>8BUI</td>
<td></td>
<td>t</td>
<td>/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8BUI</td>
<td></td>
<td>t</td>
<td>/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>8BUI</td>
<td></td>
<td>t</td>
<td>/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8BUI</td>
<td></td>
<td>t</td>
<td>/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8BUI</td>
<td></td>
<td>t</td>
<td>/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif</td>
<td>2</td>
</tr>
</tbody>
</table>
```
See Also

ST_BandMetaData, ST_SetBandPath

6.9 Raster Band Statistics and Analytics

6.9.1 ST_Count

ST_Count — Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the nodata value.

Synopsis

bigint ST_Count(raster rast, integer nband=1, boolean exclude_nodata_value=true);
bigint ST_Count(raster rast, boolean exclude_nodata_value);

Description

Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified nband defaults to 1.

Note

If exclude_nodata_value is set to true, will only count pixels with value not equal to the nodata value of the raster. Set exclude_nodata_value to false to get count all pixels

Changed: 3.1.0 - The ST_Count(rastertable, rastercolumn, ...) variants removed. Use ST_CountAgg instead.

Availability: 2.0.0

Examples

```sql
--example will count all pixels not 249 and one will count all pixels. --
SELECT rid, ST_Count(ST_SetBandNoDataValue(rast,249)) As exclude_nodata,
 ST_Count(ST_SetBandNoDataValue(rast,249),false) As include_nodata
FROM dummy_rast WHERE rid=2;

<table>
<thead>
<tr>
<th>rid</th>
<th>exclude_nodata</th>
<th>include_nodata</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>23</td>
<td>25</td>
</tr>
</tbody>
</table>
```

See Also

ST_CountAgg, ST_SummaryStats, ST_SetBandNoDataValue

6.9.2 ST_CountAgg

ST_CountAgg — Aggregate. Returns the number of pixels in a given band of a set of rasters. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the NODATA value.
Synopsis

bigint \textbf{ST\_CountAgg}(\text{raster \ rast}, \text{integer \ nb\text{band}}, \text{boolean \ exclude\_nodata\_value}, \text{double precision \ sample\_percent});

bigint \textbf{ST\_CountAgg}(\text{raster \ rast}, \text{integer \ nb\text{band}}, \text{boolean \ exclude\_nodata\_value});

bigint \textbf{ST\_CountAgg}(\text{raster \ rast}, \text{boolean \ exclude\_nodata\_value});

Description

Returns the number of pixels in a given band of a set of rasters. If no band is specified \text{nb\text{band}} defaults to 1.

If \text{exclude\_nodata\_value} is set to true, will only count pixels with value not equal to the \text{NODATA} value of the raster. Set \text{exclude\_nodata\_value} to false to get count all pixels.

By default will sample all pixels. To get faster response, set \text{sample\_percent} to value between zero (0) and one (1).

Availability: 2.2.0

Examples

```sql
WITH foo AS {
 SELECT
 rast.rast
 FROM (SELECT ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_AddBand(
 ST_MakeEmptyRaster(10, 10, 10, 10, 2, 2, 0, 0,0)
 , 1, '64BF', 0, 0
)
 , 1, 1, 1, -10
)
 , 1, 5, 4, 0
)
 , 1, 5, 5, 3.14159
) AS rast
) AS rast
 FULL JOIN (SELECT generate_series(1, 10) AS id) AS id
 ON 1 = 1
)
SELECT
 ST_CountAgg(rast, 1, TRUE)
FROM foo;

st_countagg

 20
(1 row)
```

See Also

\textbf{ST\_Count}, \textbf{ST\_SummaryStats}, \textbf{ST\_SetBand\_No\_Data\_Value}

6.9.3 \textbf{ST\_Histogram}

\textbf{ST\_Histogram} — Returns a set of record summarizing a raster or raster coverage data distribution separate bin ranges. Number of bins are autocomputed if not specified.
Synopsis

SETOF record ST_Histogram(raster rast, integer nband=1, boolean exclude_nodata_value=true, integer bins=autocomputed, double precision[] width=NULL, boolean right=false);
SETOF record ST_Histogram(raster rast, integer nband, integer bins, double precision[] width=NULL, boolean right=false);
SETOF record ST_Histogram(raster rast, integer nband, boolean exclude_nodata_value, integer bins, boolean right);
SETOF record ST_Histogram(raster rast, integer nband, integer bins, boolean right);

Description

Returns set of records consisting of min, max, count, percent for a given raster band for each bin. If no band is specified nband defaults to 1.

Note

By default only considers pixel values not equal to the nodata value. Set exclude_nodata_value to false to get count all pixels.

width double precision[] width: an array indicating the width of each category/bin. If the number of bins is greater than the number of widths, the widths are repeated.

Example: 9 bins, widths are [a, b, c] will have the output be [a, b, c, a, b, c, a, b, c]

bins integer Number of breakouts -- this is the number of records you’ll get back from the function if specified. If not specified then the number of breakouts is autocomputed.

right boolean compute the histogram from the right rather than from the left (default). This changes the criteria for evaluating a value x from [a, b) to (a, b]

Changed: 3.1.0 Removed ST_Histogram(table_name, column_name) variant.

Availability: 2.0.0

Example: Single raster tile - compute histograms for bands 1, 2, 3 and autocompute bins

```
SELECT band, (stats).*
FROM (SELECT rid, band, ST_Histogram(rast, band) As stats
 FROM dummy_rast CROSS JOIN generate_series(1,3) As band
 WHERE rid=2) As foo;
```

<table>
<thead>
<tr>
<th>band</th>
<th>min</th>
<th>max</th>
<th>count</th>
<th>percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>249</td>
<td>250</td>
<td>2</td>
<td>0.08</td>
</tr>
<tr>
<td>1</td>
<td>250</td>
<td>251</td>
<td>2</td>
<td>0.08</td>
</tr>
<tr>
<td>1</td>
<td>251</td>
<td>252</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>1</td>
<td>252</td>
<td>253</td>
<td>2</td>
<td>0.08</td>
</tr>
<tr>
<td>1</td>
<td>253</td>
<td>254</td>
<td>18</td>
<td>0.72</td>
</tr>
<tr>
<td>2</td>
<td>78</td>
<td>113.2</td>
<td>11</td>
<td>0.44</td>
</tr>
<tr>
<td>2</td>
<td>113.2</td>
<td>148.4</td>
<td>4</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>148.4</td>
<td>183.6</td>
<td>4</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>183.6</td>
<td>218.8</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>218.8</td>
<td>254</td>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>62</td>
<td>100.4</td>
<td>11</td>
<td>0.44</td>
</tr>
<tr>
<td>3</td>
<td>100.4</td>
<td>138.8</td>
<td>5</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>138.8</td>
<td>177.2</td>
<td>4</td>
<td>0.16</td>
</tr>
<tr>
<td>3</td>
<td>177.2</td>
<td>215.6</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>215.6</td>
<td>254</td>
<td>4</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Example: Just band 2 but for 6 bins

```sql
SELECT (stats).*
FROM (SELECT rid, ST_Histogram(rast, 2,6) As stats
 FROM dummy_rast
 WHERE rid=2) As foo;

<table>
<thead>
<tr>
<th>min</th>
<th>max</th>
<th>count</th>
<th>percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>107.333333</td>
<td>9</td>
<td>0.36</td>
</tr>
<tr>
<td>107.333333</td>
<td>136.666667</td>
<td>6</td>
<td>0.24</td>
</tr>
<tr>
<td>136.666667</td>
<td>166</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>166</td>
<td>195.333333</td>
<td>4</td>
<td>0.16</td>
</tr>
<tr>
<td>195.333333</td>
<td>224.666667</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>224.666667</td>
<td>254</td>
<td>5</td>
<td>0.2</td>
</tr>
</tbody>
</table>
```

(6 rows)

-- Same as previous but we explicitly control the pixel value range of each bin.

```sql
SELECT (stats).*
FROM (SELECT rid, ST_Histogram(rast, 2,6,ARRAY[0.5,1,4,100,5]) As stats
 FROM dummy_rast
 WHERE rid=2) As foo;

<table>
<thead>
<tr>
<th>min</th>
<th>max</th>
<th>count</th>
<th>percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>78.5</td>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>78.5</td>
<td>79.5</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>79.5</td>
<td>83.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>83.5</td>
<td>183.5</td>
<td>17</td>
<td>0.0068</td>
</tr>
<tr>
<td>183.5</td>
<td>188.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>188.5</td>
<td>254</td>
<td>6</td>
<td>0.003664</td>
</tr>
</tbody>
</table>
```

(6 rows)

See Also

ST_Count, ST_SummaryStats, ST_SummaryStatsAgg

### 6.9.4 ST_Quantile

ST_Quantile — Compute quantiles for a raster or raster table coverage in the context of the sample or population. Thus, a value could be examined to be at the raster’s 25%, 50%, 75% percentile.

**Synopsis**

```sql
SETOF record ST_Quantile(raster rast,
 integer nband=1,
 boolean exclude_nodata_value=true,
 double precision[] quantiles=NULL);
SETOF record ST_Quantile(raster rast,
 double precision[] quantiles);
SETOF record ST_Quantile(raster rast,
 integer nband,
 double precision[] quantiles);
double precision ST_Quantile(raster rast,
 double precision quantile);
double precision ST_Quantile(raster rast,
 boolean exclude_nodata_value,
 double precision quantile=NOT NULL);
double precision ST_Quantile(raster rast,
 integer nband,
 double precision quantile);
double precision ST_Quantile(raster rast,
 integer nband,
 boolean exclude_nodata_value,
 double precision quantile);
double precision ST_Quantile(raster rast,
 integer nband,
 double precision quantile);
```

**Description**

Compute quantiles for a raster or raster table coverage in the context of the sample or population. Thus, a value could be examined to be at the raster’s 25%, 50%, 75% percentile.
Note

If `exclude_nodata_value` is set to false, will also count pixels with no data.

Changed: 3.1.0 Removed `ST_Quantile(table_name, column_name)` variant.

Availability: 2.0.0

Examples

```
UPDATE dummy_rast SET rast = ST_SetBandNoDataValue(rast,249) WHERE rid=2;
--Example will consider only pixels of band 1 that are not 249 and in named quantiles--

SELECT (pvq).*
FROM (SELECT ST_Quantile(rast, ARRAY[0.25,0.75]) As pvq
 FROM dummy_rast WHERE rid=2) As foo
ORDER BY (pvq).quantile;

<table>
<thead>
<tr>
<th>quantile</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>253</td>
</tr>
<tr>
<td>0.75</td>
<td>254</td>
</tr>
</tbody>
</table>

SELECT ST_Quantile(rast, 0.75) As value
FROM dummy_rast WHERE rid=2;

value

254

--real live example. Quantile of all pixels in band 2 intersecting a geometry
SELECT rid, (ST_Quantile(rast,2)).* As pvc
FROM o_4_boston
WHERE ST_Intersects(rast,
 ST_GeomFromText('POLYGON((224486 892151,224486 892200,224706 892200,224706 892151,224486 892151))',26986)
)
ORDER BY value, quantile,rid
;

<table>
<thead>
<tr>
<th>rid</th>
<th>quantile</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>0.25</td>
<td>37</td>
</tr>
<tr>
<td>1</td>
<td>0.25</td>
<td>42</td>
</tr>
<tr>
<td>15</td>
<td>0.25</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>0.5</td>
<td>56</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>64</td>
</tr>
<tr>
<td>15</td>
<td>0.5</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>77</td>
</tr>
<tr>
<td>14</td>
<td>0.75</td>
<td>81</td>
</tr>
<tr>
<td>15</td>
<td>0.75</td>
<td>87</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>0.75</td>
<td>106</td>
</tr>
</tbody>
</table>
```
ST_SummaryStats — Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. Band 1 is assumed is no band is specified.

**Synopsis**

```
summarystats ST_SummaryStats(raster rast, boolean exclude_nodata_value);
summarystats ST_SummaryStats(raster rast, integer nband, boolean exclude_nodata_value);
```

**Description**

Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. If no band is specified `nband` defaults to 1.

**Note**

By default only considers pixel values not equal to the `nodata` value. Set `exclude_nodata_value` to false to get count of all pixels.

**Note**

By default will sample all pixels. To get faster response, set `sample_percent` to lower than 1.

**Example: Single raster tile**

```
SELECT rid, band, (stats).*
FROM (SELECT rid, band, ST_SummaryStats(rast, band) As stats
 FROM dummy_rast CROSS JOIN generate_series(1,3) As band
 WHERE rid=2) As foo;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>band</th>
<th>count</th>
<th>sum</th>
<th>mean</th>
<th>stddev</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>23</td>
<td>5821</td>
<td>253.086957</td>
<td>1.248061</td>
<td>250</td>
<td>254</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>25</td>
<td>3682</td>
<td>147.28</td>
<td>59.862188</td>
<td>78</td>
<td>254</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>25</td>
<td>3290</td>
<td>131.6</td>
<td>61.647384</td>
<td>62</td>
<td>254</td>
</tr>
</tbody>
</table>

Changed: 3.1.0 ST_SummaryStats(rastetable, rastercolumn, ...) variants are removed. Use ST_SummaryStatsAgg instead. Availability: 2.0.0
Example: Summarize pixels that intersect buildings of interest

This example took 574ms on PostGIS windows 64-bit with all of Boston Buildings and aerial Tiles (tiles each 150x150 pixels ~ 134,000 tiles), ~102,000 building records

WITH
-- our features of interest
feat AS (SELECT gid As building_id, geom_26986 As geom FROM buildings AS b
WHERE gid IN(100, 103,150)
),
-- clip band 2 of raster tiles to boundaries of builds
-- then get stats for these clipped regions
b_stats AS
(SELECT building_id, (stats). *
FROM (SELECT building_id, ST_SummaryStats(ST_Clip(rast,2,geom)) As stats
FROM aerials.boston
INNER JOIN feat
ON ST_Intersects(feat.geom,rast)
) As foo
)
-- finally summarize stats
SELECT building_id, SUM(count) As num_pixels,
  MIN(min) As min_pval,
  MAX(max) As max_pval,
  SUM(mean*count)/SUM(count) As avg_pval
FROM b_stats
WHERE count > 0
GROUP BY building_id
ORDER BY building_id;

<table>
<thead>
<tr>
<th>building_id</th>
<th>num_pixels</th>
<th>min_pval</th>
<th>max_pval</th>
<th>avg_pval</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1090</td>
<td>1</td>
<td>255</td>
<td>61.0697247706422</td>
</tr>
<tr>
<td>103</td>
<td>655</td>
<td>7</td>
<td>182</td>
<td>70.5038167938931</td>
</tr>
<tr>
<td>150</td>
<td>895</td>
<td>2</td>
<td>252</td>
<td>185.642458100559</td>
</tr>
</tbody>
</table>

Example: Raster coverage

-- stats for each band --
SELECT band, (stats).*
FROM (SELECT band, ST_SummaryStats('o_4_boston','rast', band) As stats
FROM generate_series(1,3) As band) AS foo;

<table>
<thead>
<tr>
<th>band</th>
<th>count</th>
<th>sum</th>
<th>mean</th>
<th>stddev</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8450000</td>
<td>725799</td>
<td>82.7064349112426</td>
<td>45.6800222638537</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>2</td>
<td>8450000</td>
<td>700487</td>
<td>81.4197705325444</td>
<td>44.2161184161765</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>3</td>
<td>8450000</td>
<td>575943</td>
<td>74.682739408284</td>
<td>44.214385481407</td>
<td>0</td>
<td>255</td>
</tr>
</tbody>
</table>

-- For a table -- will get better speed if set sampling to less than 100%
-- Here we set to 25% and get a much faster answer
SELECT band, (stats).*
FROM (SELECT band, ST_SummaryStats('o_4_boston','rast', band,true,0.25) As stats
FROM generate_series(1,3) As band) AS foo;

<table>
<thead>
<tr>
<th>band</th>
<th>count</th>
<th>sum</th>
<th>mean</th>
<th>stddev</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2112500</td>
<td>180686</td>
<td>82.6890480473373</td>
<td>45.6961043857248</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>2</td>
<td>2112500</td>
<td>174571</td>
<td>81.448503668639</td>
<td>44.2252623171821</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>3</td>
<td>2112500</td>
<td>144364</td>
<td>74.6765884023669</td>
<td>44.2014869384578</td>
<td>0</td>
<td>255</td>
</tr>
</tbody>
</table>
See Also

summarystats, ST_SummaryStatsAgg, ST_Count, ST_Clip

6.9.6 ST_SummaryStatsAgg

ST_SummaryStatsAgg — Aggregate. Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a set of raster. Band 1 is assumed is no band is specified.

Synopsis

summarystats ST_SummaryStatsAgg(raster rast, integer nband, boolean exclude_nodata_value, double precision sample_percent);
summarystats ST_SummaryStatsAgg(raster rast, boolean exclude_nodata_value, double precision sample_percent);
summarystats ST_SummaryStatsAgg(raster rast, integer nband, boolean exclude_nodata_value);

Description

Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. If no band is specified nband defaults to 1.

Note
By default only considers pixel values not equal to the NODATA value. Set exclude_nodata_value to False to get count of all pixels.

Note
By default will sample all pixels. To get faster response, set sample_percent to value between 0 and 1

Availability: 2.2.0

Examples

WITH foo AS {
  SELECT rast.rast
    FROM (SELECT ST_SetValue(
        ST_SetValue(
            ST_SetValue(
                ST_AddBand(
                    ST_MakeEmptyRaster(10, 10, 10, 10, 2, 2, 0, 0, 0), 1, '64BF', 0, 0)
                    , 1, 1, 1, -10
                )
                , 1, 5, 4, 0
            )
            , 1, 5, 5, 3.14159
        ) AS rast
    ) AS rast
  FULL JOIN {
```sql
SELECT generate_series(1, 10) AS id
) AS id ON 1 = 1
)
SELECT
 (stats).count,
 round((stats).sum::numeric, 3),
 round((stats).mean::numeric, 3),
 round((stats).stddev::numeric, 3),
 round((stats).min::numeric, 3),
 round((stats).max::numeric, 3)
FROM (SELECT
 ST_SummaryStatsAgg(rast, 1, TRUE, 1) AS stats
FROM foo) bar;
```

<table>
<thead>
<tr>
<th>count</th>
<th>round</th>
<th>round</th>
<th>round</th>
<th>round</th>
<th>round</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-68.584</td>
<td>-3.429</td>
<td>6.571</td>
<td>-10.000</td>
<td>3.142</td>
</tr>
</tbody>
</table>

(1 row)

See Also

summarystats, ST_SummaryStats, ST_Count, ST_Clip

6.9.7 ST_ValueCount

ST_ValueCount — Returns a set of records containing a pixel band value and count of the number of pixels in a given band of a raster (or a raster coverage) that have a given set of values. If no band is specified defaults to band 1. By default nodata value pixels are not counted. and all other values in the pixel are output and pixel band values are rounded to the nearest integer.

Synopsis

```sql
SETOF record ST_ValueCount(raster rast, integer nband=1, boolean exclude_nodata_value=true, double precision[] searchvalues=NULL, double precision roundto=0, double precision OUT value, integer OUT count);
SETOF record ST_ValueCount(raster rast, integer nband, double precision[] searchvalues, double precision roundto=0, double precision OUT value, integer OUT count);
SETOF record ST_ValueCount(raster rast, double precision[] searchvalues, double precision roundto=0, double precision OUT value, integer OUT count);
bigint ST_ValueCount(raster rast, double precision searchvalue, double precision roundto=0);
bigint ST_ValueCount(raster rast, integer nband, double precision searchvalue, double precision roundto=0);
bigint ST_ValueCount(raster rast, integer nband, boolean exclude_nodata_value, double precision searchvalue, double precision roundto=0);
bigint ST_ValueCount(raster rast, integer nband, double precision searchvalue, double precision roundto=0);
SETOF record ST_ValueCount(text rastertable, text rastercolumn, integer nband=1, boolean exclude_nodata_value=true, double precision[] searchvalues=NULL, double precision roundto=0, double precision OUT value, integer OUT count);
SETOF record ST_ValueCount(text rastertable, text rastercolumn, double precision[] searchvalues, double precision roundto=0, double precision OUT value, integer OUT count);
SETOF record ST_ValueCount(text rastertable, text rastercolumn, double precision[] searchvalues, double precision roundto=0, double precision OUT value, integer OUT count);
bigint ST_ValueCount(text rastertable, text rastercolumn, integer nband, double precision[] searchvalues, double precision roundto=0, double precision OUT value, integer OUT count);
bigint ST_ValueCount(text rastertable, text rastercolumn, integer nband, boolean exclude_nodata_value, double precision searchvalue, double precision roundto=0);
bigint ST_ValueCount(text rastertable, text rastercolumn, integer nband, double precision searchvalue, double precision roundto=0);
bigint ST_ValueCount(text rastertable, text rastercolumn, integer nband, double precision searchvalue, double precision roundto=0);
```
**Description**

Returns a set of records with columns `value` `count` which contain the pixel band value and count of pixels in the raster tile or raster coverage of selected band.

If no band is specified `nband` defaults to 1. If no `searchvalues` are specified, will return all pixel values found in the raster or raster coverage. If one searchvalue is given, will return an integer instead of records denoting the count of pixels having that pixel band value.

---

**Note**

If `exclude_nodata_value` is set to false, will also count pixels with no data.

---

**Availability:** 2.0.0

**Examples**

```sql
UPDATE dummy_rast SET rast = ST_SetBandNoDataValue(rast,249) WHERE rid=2;
-- Example will count only pixels of band 1 that are not 249. --

SELECT (pvc).*
FROM (SELECT ST_ValueCount(rast) As pvc
 FROM dummy_rast WHERE rid=2) As foo
ORDER BY (pvc).value;

<table>
<thead>
<tr>
<th>value</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>2</td>
</tr>
<tr>
<td>251</td>
<td>1</td>
</tr>
<tr>
<td>252</td>
<td>2</td>
</tr>
<tr>
<td>253</td>
<td>6</td>
</tr>
<tr>
<td>254</td>
<td>12</td>
</tr>
</tbody>
</table>

-- Example will count all pixels of band 1 including 249 --

SELECT (pvc).*
FROM (SELECT ST_ValueCount(rast,1,false) As pvc
 FROM dummy_rast WHERE rid=2) As foo
ORDER BY (pvc).value;

<table>
<thead>
<tr>
<th>value</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>249</td>
<td>2</td>
</tr>
<tr>
<td>250</td>
<td>2</td>
</tr>
<tr>
<td>251</td>
<td>1</td>
</tr>
<tr>
<td>252</td>
<td>2</td>
</tr>
<tr>
<td>253</td>
<td>6</td>
</tr>
<tr>
<td>254</td>
<td>12</td>
</tr>
</tbody>
</table>

-- Example will count only non-nodata value pixels of band 2

SELECT (pvc).*
FROM (SELECT ST_ValueCount(rast,2) As pvc
 FROM dummy_rast WHERE rid=2) As foo
ORDER BY (pvc).value;

<table>
<thead>
<tr>
<th>value</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>1</td>
</tr>
<tr>
<td>79</td>
<td>1</td>
</tr>
<tr>
<td>88</td>
<td>1</td>
</tr>
</tbody>
</table>
```
89 | 1
96 | 1
97 | 1
98 | 1
99 | 2
112 | 2

-- real live example. Count all the pixels in an aerial raster tile band 2 intersecting a geometry
-- and return only the pixel band values that have a count > 500
SELECT (pvc).value, SUM((pvc).count) As total
FROM (SELECT ST_ValueCount(rast,2) As pvc
      FROM o_4_boston
      WHERE ST_Intersects(rast,
                     ST_GeomFromText('POLYGON((224486 892151,224486 892200,224706 892200,224706 892151,224486 892151))',26986)
                     ) As foo
      GROUP BY (pvc).value
     ) As foo
     HAVING SUM((pvc).count) > 500
     ORDER BY (pvc).value;

| value | total |
|-------+------|
| 51    | 502  |
| 54    | 521  |

-- Just return count of pixels in each raster tile that have value of 100 of tiles that intersect a specific geometry --
SELECT rid, ST_ValueCount(rast,2,100) As count
FROM o_4_boston
WHERE ST_Intersects(rast,
                     ST_GeomFromText('POLYGON((224486 892151,224486 892200,224706 892200,224706 892151,224486 892151))',26986)
                     )
;
<table>
<thead>
<tr>
<th>rid</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
</tr>
<tr>
<td>14</td>
<td>37</td>
</tr>
<tr>
<td>15</td>
<td>64</td>
</tr>
</tbody>
</table>

See Also

ST_Count, ST_SetBandNoDataValue

6.10 Raster Inputs

6.10.1 ST_RastFromWKB

ST_RastFromWKB — Return a raster value from a Well-Known Binary (WKB) raster.
Synopsis

raster \texttt{ST\_RastFromWKB}(bytea \texttt{wkb});

Description

Given a Well-Known Binary (WKB) raster, return a raster.

Availability: 2.5.0

Examples

\begin{verbatim}
SELECT (ST_Metadata(
    ST_RastFromWKB(
        \texttt{bytea}
    ))).* AS metadata;
\end{verbatim}

\begin{verbatim}
upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
---+-----------+-------+--------+--------+--------+-------+-------+-----+---------------------
 0.5 | 0.5       | 10    | 20     | 2      | 3      | 0     | 0     | 10  | 0                   
\end{verbatim}

See Also

\texttt{ST\_MetaData, ST\_RastFromHexWKB, ST\_AsBinary/ST\_AsWKB, ST\_AsHexWKB}

6.10.2 \texttt{ST\_RastFromHexWKB}

\texttt{ST\_RastFromHexWKB} — Return a raster value from a Hex representation of Well-Known Binary (WKB) raster.

Synopsis

raster \texttt{ST\_RastFromHexWKB}(text \texttt{wkb});

Description

Given a Well-Known Binary (WKB) raster in Hex representation, return a raster.

Availability: 2.5.0

Examples

\begin{verbatim}
SELECT (ST_Metadata(
    ST_RastFromHexWKB(
        \texttt{\texttt{text}} \texttt{wkb} )
    )).* AS metadata;
\end{verbatim}
See Also

ST_MetaData, ST_RastFromWKB, ST_AsBinary/ST_AsWKB, ST_AsHexWKB

6.11 Raster Outputs

6.11.1 ST_AsBinary/ST_AsWKB

ST_AsBinary/ST_AsWKB — Return the Well-Known Binary (WKB) representation of the raster.

Synopsis

```
bytea ST_AsBinary(raster rast, boolean outasin=FALSE);
bytea ST_AsWKB(raster rast, boolean outasin=FALSE);
```

Description

Returns the Binary representation of the raster. If `outasin` is TRUE, out-db bands are treated as in-db. Refer to raster/doc/RFC2-WellKnownBinaryFormat located in the PostGIS source folder for details of the representation.

This is useful in binary cursors to pull data out of the database without converting it to a string representation.

---

**Note**

By default, WKB output contains the external file path for out-db bands. If the client does not have access to the raster file underlying an out-db band, set `outasin` to TRUE.

---

 Enhanced: 2.1.0 Addition of `outasin`

 Enhanced: 2.5.0 Addition of `ST_AsWKB`

Examples

```
SELECT ST_AsBinary(rast) As rastbin FROM dummy_rast WHERE rid=1;
```

---

See Also

ST_RastFromWKB, ST_AsHexWKB
### 6.11.2 ST_AsHexWKB

**ST_AsHexWKB** — Return the Well-Known Binary (WKB) in Hex representation of the raster.

**Synopsis**

```sql
bytea ST_AsHexWKB(raster rast, boolean outasin=FALSE);
```

**Description**

Returns the Binary representation in Hex representation of the raster. If `outasin` is TRUE, out-db bands are treated as in-db. Refer to raster/doc/RFC2-WellKnownBinaryFormat located in the PostGIS source folder for details of the representation.

**Note**

By default, Hex WKB output contains the external file path for out-db bands. If the client does not have access to the raster file underlying an out-db band, set `outasin` to TRUE.

Availability: 2.5.0

**Examples**

```sql
SELECT ST_AsHexWKB(rast) As rastbin FROM dummy_rast WHERE rid=1;
```

```
st_as hexadecimal wkb
01000000000000000000000040000000000000008400000000000000E03F000000000000E03F0000000000000000000000000000000000A0000000A001400
```

**See Also**

`ST_RastFromHexWKB`, `ST_AsBinary/ST_AsWKB`

### 6.11.3 ST_AsGDALRaster

**ST_AsGDALRaster** — Return the raster tile in the designated GDAL Raster format. Raster formats are one of those supported by your compiled library. Use `ST_GDALDrivers()` to get a list of formats supported by your library.

**Synopsis**

```sql
bytea ST_AsGDALRaster(raster rast, text format, text[] options=NULL, integer srid=sameassource);
```

**Description**

Returns the raster tile in the designated format. Arguments are itemized below:

- **format** format to output. This is dependent on the drivers compiled in your libgdal library. Generally available are ’JPEG’, ’GTiff’, ’PNG’. Use `ST_GDALDrivers()` to get a list of formats supported by your library.
- **options** text array of GDAL options. Valid options are dependent on the format. Refer to GDAL Raster format options for more details.
- **srs** The proj4text or srtext (from spatial_ref_sys) to embed in the image

Availability: 2.0.0 - requires GDAL >= 1.6.0.
JPEG Output Example, multiple tiles as single raster

```sql
SELECT ST_AsGDALRaster(ST_Union(rast), 'JPEG', ARRAY['QUALITY=50']) As rastjpg
FROM dummy_rast
WHERE rast && ST_MakeEnvelope(10, 10, 11, 11);
```

Using PostgreSQL Large Object Support to export raster

One way to export raster into another format is using PostgreSQL large object export functions. We’ll repeat the prior example but also exporting. Note for this you’ll need to have super user access to db since it uses server side lo functions. It will also export to path on server network. If you need export locally, use the psql equivalent lo_ functions which export to the local file system instead of the server file system.

```sql
DROP TABLE IF EXISTS tmp_out;
CREATE TABLE tmp_out AS
SELECT lo_from_bytea(0, ST_AsGDALRaster(ST_Union(rast), 'JPEG', ARRAY['QUALITY=50'])) AS loid
FROM dummy_rast
WHERE rast && ST_MakeEnvelope(10, 10, 11, 11);
SELECT lo_export(loid, '/tmp/dummy.jpg')
FROM tmp_out;
SELECT lo_unlink(loid)
FROM tmp_out;
```

GTIFF Output Examples

```sql
SELECT ST_AsGDALRaster(rast, 'GTiff') As rastjpg
FROM dummy_rast WHERE rid=2;
-- Out GeoTiff with jpeg compression, 90% quality
SELECT ST_AsGDALRaster(rast, 'GTiff',
ARRAY['COMPRESS=JPEG', 'JPEG_QUALITY=90'], 4269) As rasttiff
FROM dummy_rast WHERE rid=2;
```

See Also

Section 4.5.3, ST_GDALDrivers, ST_SRID

6.11.4 ST_AsJPEG

ST_AsJPEG — Return the raster tile selected bands as a single Joint Photographic Exports Group (JPEG) image (byte array). If no band is specified and 1 or more than 3 bands, then only the first band is used. If only 3 bands then all 3 bands are used and mapped to RGB.

Synopsis

bytea ST_AsJPEG(raster rast, text[] options=NULL);
bytea ST_AsJPEG(raster rast, integer nband, integer quality);
bytea ST_AsJPEG(raster rast, integer nband, text[] options=NULL);
bytea ST_AsJPEG(raster rast, integer[] nbands, text[] options=NULL);
bytea ST_AsJPEG(raster rast, integer[] nbands, integer quality);
**Description**

Returns the selected bands of the raster as a single Joint Photographic Exports Group Image (JPEG). Use `ST_AsGDALRaster` if you need to export as less common raster types. If no band is specified and 1 or more than 3 bands, then only the first band is used. If 3 bands then all 3 bands are used. There are many variants of the function with many options. These are itemized below:

- `nband` is for single band exports.
- `nbands` is an array of bands to export (note that max is 3 for JPEG) and the order of the bands is RGB. e.g `ARRAY[3,2,1]` means map band 3 to Red, band 2 to green and band 1 to blue
- `quality` number from 0 to 100. The higher the number the crisper the image.
- `options` text Array of GDAL options as defined for JPEG (look at create_options for JPEG ST_GDALDrivers). For JPEG valid ones are `PROGRESSIVE` ON or OFF and `QUALITY` a range from 0 to 100 and default to 75. Refer to GDAL Raster format options for more details.

Availability: 2.0.0 - requires GDAL >= 1.6.0.

**Examples: Output**

```sql
-- output first 3 bands 75% quality
SELECT ST_AsJPEG(rast) As rastjpg
FROM dummy_rast WHERE rid=2;

-- output only first band as 90% quality
SELECT ST_AsJPEG(rast,1,90) As rastjpg
FROM dummy_rast WHERE rid=2;

-- output first 3 bands (but make band 2 Red, band 1 green, and band 3 blue, progressive ←
-- and 90% quality
SELECT ST_AsJPEG(rast,ARRAY[2,1,3],ARRAY['QUALITY=90','PROGRESSIVE=ON']) As rastjpg
FROM dummy_rast WHERE rid=2;
```

**See Also**

Section 4.5.3, ST_GDALDrivers, ST_AsGDALRaster, ST_AsPNG, ST_AsTIFF

### 6.11.5 `ST_AsPNG`

`ST_AsPNG` — Return the raster tile selected bands as a single portable network graphics (PNG) image (byte array). If 1, 3, or 4 bands in raster and no bands are specified, then all bands are used. If more 2 or more than 4 bands and no bands specified, then only band 1 is used. Bands are mapped to RGB or RGBA space.

**Synopsis**

```sql
bytea ST_AsPNG(raster rast, text[] options=NULL);
bytea ST_AsPNG(raster rast, integer nband, integer compression);
bytea ST_AsPNG(raster rast, integer nband, text[] options=NULL);
bytea ST_AsPNG(raster rast, integer[] nbands, integer compression);
bytea ST_AsPNG(raster rast, integer[] nbands, text[] options=NULL);
```
Description

Returns the selected bands of the raster as a single Portable Network Graphics Image (PNG). Use `ST_AsGDALRaster` if you need to export as less common raster types. If no band is specified, then the first 3 bands are exported. There are many variants of the function with many options. If no `srid` is specified then then `srid` of the raster is used. These are itemized below:

- `nband` is for single band exports.
- `nbands` is an array of bands to export (note that max is 4 for PNG) and the order of the bands is RGBA. e.g ARRAY[3,2,1] means map band 3 to Red, band 2 to green and band 1 to blue
- `compression` number from 1 to 9. The higher the number the greater the compression.
- `options` text Array of GDAL options as defined for PNG (look at `create_options` for PNG of `ST_GDALDrivers`). For PNG valid one is only `ZLEVEL` (amount of time to spend on compression -- default 6) e.g. ARRAY["ZLEVEL=9"]. WORLDFILE is not allowed since the function would have to output two outputs. Refer to GDAL Raster format options for more details.

Availability: 2.0.0 - requires GDAL >= 1.6.0.

Examples

```sql
SELECT ST_AsPNG(rast) As rastpng
FROM dummy_rast WHERE rid=2;
-- export the first 3 bands and map band 3 to Red, band 1 to Green, band 2 to blue
SELECT ST_AsPNG(rast, ARRAY[3,1,2]) As rastpng
FROM dummy_rast WHERE rid=2;
```

See Also

`ST_AsGDALRaster`, `ST_ColorMap`, `ST_GDALDrivers`, Section 4.5.3

6.11.6  ST_AsTIFF

`ST_AsTIFF` — Return the raster selected bands as a single TIFF image (byte array). If no band is specified or any of specified bands does not exist in the raster, then will try to use all bands.

Synopsis

```sql
bytea ST_AsTIFF(raster rast, text[] options=",", integer srid=sameassource);
bytea ST_AsTIFF(raster rast, text compression=",", integer srid=sameassource);
bytea ST_AsTIFF(raster rast, integer[] nbands, text compression=",", integer srid=sameassource);
bytea ST_AsTIFF(raster rast, integer[] nbands, text[] options, integer srid=sameassource);
```

Description

Returns the selected bands of the raster as a single Tagged Image File Format (TIFF). If no band is specified, will try to use all bands. This is a wrapper around `ST_AsGDALRaster`. Use `ST_AsGDALRaster` if you need to export as less common raster types. There are many variants of the function with many options. If no spatial reference SRS text is present, the spatial reference of the raster is used. These are itemized below:

- `nbands` is an array of bands to export (note that max is 3 for PNG) and the order of the bands is RGB. e.g ARRAY[3,2,1] means map band 3 to Red, band 2 to green and band 1 to blue
• **compression** Compression expression -- JPEG90 (or some other percent), LZW, JPEG, DEFLATE9.

• **options** text Array of GDAL create options as defined for GTiff (look at create_options for GTiff of ST_GDALDrivers). or refer to GDAL Raster format options for more details.

• **srid** srid of spatial_ref_sys of the raster. This is used to populate the georeference information

Availability: 2.0.0 - requires GDAL >= 1.6.0.

**Examples: Use jpeg compression 90%**

```sql
SELECT ST_AsTIFF(rast, 'JPEG90') As rasttiff
FROM dummy_rast WHERE rid=2;
```

**See Also**

ST_GDALDrivers, ST_AsGDALRaster, ST_SRID

---

### 6.12 Raster Processing: Map Algebra

#### 6.12.1 ST_Clip

**ST_Clip** — Returns the raster clipped by the input geometry. If band number not is specified, all bands are processed. If `crop` is not specified or TRUE, the output raster is cropped.

**Synopsis**

```sql
raster ST_Clip(raster rast, integer\[\] nband, geometry geom, double precision\[\] nodataval=NULL, boolean crop=TRUE);
raster ST_Clip(raster rast, integer nband, geometry geom, double precision nodataval, boolean crop=TRUE);
raster ST_Clip(raster rast, integer nband, geometry geom, boolean crop);
raster ST_Clip(raster rast, geometry geom, double precision\[\] nodataval=NULL, boolean crop=TRUE);
raster ST_Clip(raster rast, geometry geom, double precision nodataval, boolean crop=TRUE);
raster ST_Clip(raster rast, geometry geom, boolean crop);
```

**Description**

Returns a raster that is clipped by the input geometry `geom`. If band index is not specified, all bands are processed.

Rasters resulting from ST_Clip must have a nodata value assigned for areas clipped, one for each band. If none are provided and the input raster do not have a nodata value defined, nodata values of the resulting raster are set to `ST_MinPossibleValue(ST_BandPixelType(rast, band))`. When the number of nodata value in the array is smaller than the number of band, the last one in the array is used for the remaining bands. If the number of nodata value is greater than the number of band, the extra nodata values are ignored. All variants accepting an array of nodata values also accept a single value which will be assigned to each band.

If `crop` is not specified, true is assumed meaning the output raster is cropped to the intersection of the `geom` and `rast` extents.

If `crop` is set to false, the new raster gets the same extent as `rast`.

Availability: 2.0.0

Enhanced: 2.1.0 Rewritten in C

Examples here use Massachusetts aerial data available on MassGIS site MassGIS Aerial Orthos. Coordinates are in Massachusetts State Plane Meters.
Examples: 1 band clipping

-- Clip the first band of an aerial tile by a 20 meter buffer.
SELECT ST_Clip(rast, 1, 
    ST_Buffer(ST_Centroid(ST_Envelope(rast)),20) 
) from aerials.boston
WHERE rid = 4;

-- Demonstrate effect of crop on final dimensions of raster
-- Note how final extent is clipped to that of the geometry
-- if crop = true
SELECT ST_XMax(ST_Envelope(ST_Clip(rast, 1, clipper, true))) As xmax_w_trim, 
    ST_XMax(clipper) As xmax_clipper, 
    ST_XMax(ST_Envelope(ST_Clip(rast, 1, clipper, false))) As xmax_wo_trim, 
    ST_XMax(ST_Envelope(rast)) As xmax_rast_orig 
FROM (SELECT rast, ST_Buffer(ST_Centroid(ST_Envelope(rast)),6) As clipper 
    FROM aerials.boston 
    WHERE rid = 6) As foo;

<table>
<thead>
<tr>
<th>xmax_w_trim</th>
<th>xmax_clipper</th>
<th>xmax_wo_trim</th>
<th>xmax_rast_orig</th>
</tr>
</thead>
<tbody>
<tr>
<td>230657.436173996</td>
<td>230657.436173996</td>
<td>230666.436173996</td>
<td>230666.436173996</td>
</tr>
</tbody>
</table>

Full raster tile before clipping

After Clipping

Examples: 1 band clipping with no crop and add back other bands unchanged

-- Same example as before, but we need to set crop to false to be able to use ST_AddBand
-- because ST_AddBand requires all bands be the same Width and height
SELECT ST_AddBand(ST_Clip(rast, 1, 
    ST_Buffer(ST_Centroid(ST_Envelope(rast)),20),false 
), ARRAY[ST_Band(rast,2),ST_Band(rast,3)]) from aerials.boston
WHERE rid = 6;
Examples: Clip all bands

```sql
-- Clip all bands of an aerial tile by a 20 meter buffer.
-- Only difference is we don't specify a specific band to clip
-- so all bands are clipped
SELECT ST_Clip(rast,
 ST_Buffer(ST_Centroid(ST_Envelope(rast)), 20),
 false
) from aerials.boston
WHERE rid = 4;
```

See Also

ST_AddBand, ST_MapAlgebra (callback function version), ST_Intersection
6.12.2 ST_ColorMap

ST_ColorMap — Creates a new raster of up to four 8BUI bands (grayscale, RGB, RGBA) from the source raster and a specified band. Band 1 is assumed if not specified.

Synopsis

raster ST_ColorMap(raster rast, integer nband=1, text colormap=grayscale, text method=INTERPOLATE);
raster ST_ColorMap(raster rast, text colormap, text method=INTERPOLATE);

Description

Apply a colormap to the band at nband of rast resulting a new raster comprised of up to four 8BUI bands. The number of 8BUI bands in the new raster is determined by the number of color components defined in colormap.

If nband is not specified, then band 1 is assumed.

colormap can be a keyword of a pre-defined colormap or a set of lines defining the value and the color components.

Valid pre-defined colormap keyword:

• grayscale or greyscale for a one 8BUI band raster of shades of gray.
• pseudocolor for a four 8BUI (RGBA) band raster with colors going from blue to green to red.
• fire for a four 8BUI (RGBA) band raster with colors going from black to red to pale yellow.
• bluered for a four 8BUI (RGBA) band raster with colors going from blue to pale white to red.

Users can pass a set of entries (one per line) to colormap to specify custom colormaps. Each entry generally consists of five values: the pixel value and corresponding Red, Green, Blue, Alpha components (color components between 0 and 255). Percent values can be used instead of pixel values where 0% and 100% are the minimum and maximum values found in the raster band. Values can be separated with commas (','), tabs, colons (':') and/or spaces. The pixel value can be set to nv, null or nodata for the NODATA value. An example is provided below.

<table>
<thead>
<tr>
<th>Value</th>
<th>Red</th>
<th>Green</th>
<th>Blue</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>55</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>150</td>
<td>150</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td>255</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>nv</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The syntax of colormap is similar to that of the color-relief mode of GDAL gdaldem.

Valid keywords for method:

• INTERPOLATE to use linear interpolation to smoothly blend the colors between the given pixel values
• EXACT to strictly match only those pixels values found in the colormap. Pixels whose value does not match a colormap entry will be set to 0 0 0 0 (RGBA)
• NEAREST to use the colormap entry whose value is closest to the pixel value

Note

A great reference for colormaps is ColorBrewer.
Warning

The resulting bands of new raster will have no NODATA value set. Use `ST_SetBandNoDataValue` to set a NODATA value if one is needed.

Availability: 2.1.0

Examples

This is a junk table to play with

```
-- setup test raster table --
DROP TABLE IF EXISTS funky_shapes;
CREATE TABLE funky_shapes(rast raster);

INSERT INTO funky_shapes(rast)
WITH ref AS (
 SELECT ST_MakeEmptyRaster(200, 200, 0, 200, 1, -1, 0, 0) AS rast
)
SELECT ST_Union(rast)
FROM (
 SELECT
 ST_AsRaster(
 ST_Rotate(
 ST_Buffer(
 ST_GeomFromText('LINESTRING(0 2,50 50,150 150,125 50)'), i*2
),
 pi() * i * 0.125, ST_Point(50,50)
),
 ref.rast, '8BUI':::text, i * 5
) AS rast
 FROM ref
 CROSS JOIN generate_series(1, 10, 3) AS i
) AS shapes;
```

```
SELECT
 ST_NumBands(rast) As n_orig,
 ST_NumBands(ST_ColorMap(rast,1, 'greyscale')) As ngrey,
 ST_NumBands(ST_ColorMap(rast,1, 'pseudocolor')) As npseudo,
 ST_NumBands(ST_ColorMap(rast,1, 'fire')) As nfire,
 ST_NumBands(ST_ColorMap(rast,1, 'bluered')) As nbluered,
 ST_NumBands(ST_ColorMap(rast,1, '100% 255 0 0
 80% 160 0 0
 50% 130 0 0
 30% 30 0 0
 20% 60 0 0
 0% 0 0 0
 nv 255 255 255
')) As nred
FROM funky_shapes;
```

<table>
<thead>
<tr>
<th>n_orig</th>
<th>ngrey</th>
<th>npseudo</th>
<th>nfire</th>
<th>nbluered</th>
<th>nred</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Examples: Compare different color map looks using ST_AsPNG

```
SELECT
 ST_AsPNG(rast) As orig_png,
 ST_AsPNG(ST_ColorMap(rast,1,'greyscale')) As grey_png,
 ST_AsPNG(ST_ColorMap(rast,1, 'pseudocolor')) As pseudo_png,
 ST_AsPNG(ST_ColorMap(rast,1, 'nfire')) As fire_png,
 ST_AsPNG(ST_ColorMap(rast,1, 'bluered')) As bluered_png,
 ST_AsPNG(ST_ColorMap(rast,1, ',
 100% 255 0 0
 80% 160 0 0
 50% 130 0 0
 30% 30 0 0
 20% 60 0 0
 0% 0 0 0
 nv 255 255 255
 ')) As red_png
FROM funky_shapes;
```
See Also

ST_AsPNG, ST_AsRaster ST_MapAlgebra (callback function version), ST_Grayscale ST_NumBands, ST_Reclass, ST_SetBandNoDataValue, ST_Union

6.12.3 ST_Grayscale

ST_Grayscale — Creates a new one-8BUI band raster from the source raster and specified bands representing Red, Green and Blue

Synopsis

(1) raster ST_Grayscale(raster rast, integer redband=1, integer greenband=2, integer blueband=3, text extenttype=INTERSECTION);
(2) raster ST_Grayscale(rastbandarg[] rastbandargset, text extenttype=INTERSECTION);

Description

Create a raster with one 8BUI band given three input bands (from one or more rasters). Any input band whose pixel type is not 8BUI will be reclassified using ST_Reclass.

\[ 0.2989 \times \text{RED} + 0.5870 \times \text{GREEN} + 0.1140 \times \text{BLUE} \]

Note

This function is not like ST_ColorMap with the grayscale keyword as ST_ColorMap operates on only one band while this function expects three bands for RGB. This function applies the following equation for converting RGB to Grayscale:

Availability: 2.5.0
Examples: Variant 1

```sql
SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
SET postgis.enable_outdb_rasters = True;

WITH apple AS (
 SELECT ST_AddBand(
 ST_MakeEmptyRaster(350, 246, 0, 0, 1, -1, 0, 0, 0),
 '/tmp/apple.png'::text,
 NULL::int[]
) AS rast
)
SELECT
 ST_AsPNG(rast) AS original_png,
 ST_AsPNG(ST_Grayscale(rast)) AS grayscale_png
FROM apple;
```

Examples: Variant 2

```sql
SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
SET postgis.enable_outdb_rasters = True;

WITH apple AS (
 SELECT ST_AddBand(
 ST_MakeEmptyRaster(350, 246, 0, 0, 1, -1, 0, 0, 0),
 '/tmp/apple.png'::text,
 NULL::int[]
) AS rast
)
SELECT
 ST_AsPNG(rast) AS original_png,
 ST_AsPNG(ST_Grayscale(ARRAY[
 ROW(rast, 1)::rastbandarg, -- red
 ROW(rast, 2)::rastbandarg, -- green
 ROW(rast, 3)::rastbandarg, -- blue
]::rastbandarg[])) AS grayscale_png
FROM apple;
```
6.12.4 ST_Intersection

ST_Intersection — Returns a raster or a set of geometry-pixelvalue pairs representing the shared portion of two rasters or the geometrical intersection of a vectorization of the raster and a geometry.

Synopsis

setof geomval ST_Intersection(geometry geom, raster rast, integer band_num=1);
setof geomval ST_Intersection(raster rast, geometry geom);
setof geomval ST_Intersection(raster rast, integer band, geometry geomin);
raster ST_Intersection(raster rast1, raster rast2, double precision[] nodataval);
raster ST_Intersection(raster rast1, raster rast2, text returnband, double precision[] nodataval);
raster ST_Intersection(raster rast1, integer band1, raster rast2, integer band2, double precision[] nodataval);
raster ST_Intersection(raster rast1, integer band1, raster rast2, integer band2, text returnband, double precision[] nodataval);

Description

Returns a raster or a set of geometry-pixelvalue pairs representing the shared portion of two rasters or the geometrical intersection of a vectorization of the raster and a geometry.

The first three variants, returning a setof geomval, works in vector space. The raster is first vectorized (using ST_DumpAsPolygons) into a set of geomval rows and those rows are then intersected with the geometry using the ST_Intersection (geometry, geometry) PostGIS function. Geometries intersecting only with a nodata value area of a raster returns an empty geometry. They are normally excluded from the results by the proper usage of ST_Intersects in the WHERE clause.

You can access the geometry and the value parts of the resulting set of geomval by surrounding them with parenthesis and adding '.geom' or '.val' at the end of the expression. e.g. (ST_Intersection(rast, geom)).geom

The other variants, returning a raster, works in raster space. They are using the two rasters version of ST_MapAlgebraExpr to perform the intersection.

The extent of the resulting raster corresponds to the geometrical intersection of the two raster extents. The resulting raster includes 'BAND1', 'BAND2' or 'BOTH' bands, following what is passed as the returnband parameter. Nodata value areas present in any band results in nodata value areas in every bands of the result. In other words, any pixel intersecting with a nodata value pixel becomes a nodata value pixel in the result.

Rasters resulting from ST_Intersection must have a nodata value assigned for areas not intersecting. You can define or replace the nodata value for any resulting band by providing a nodataval[] array of one or two nodata values depending if you request 'BAND1', 'BAND2' or 'BOTH' bands. The first value in the array replace the nodata value in the first band and the second value replace the nodata value in the second band. If one input band do not have a nodata value defined and none are provided as an array, one is chosen using the ST_MinPossibleValue function. All variant accepting an array of nodata value can also accept a single value which will be assigned to each requested band.

In all variants, if no band number is specified band 1 is assumed. If you need an intersection between a raster and geometry that returns a raster, refer to ST_Clip.

---

Note

To get more control on the resulting extent or on what to return when encountering a nodata value, use the two rasters version of ST_MapAlgebraExpr.
Note
To compute the intersection of a raster band with a geometry in raster space, use \texttt{ST_Clip}. \texttt{ST_Clip} works on multiple bands rasters and does not return a band corresponding to the rasterized geometry.

---

Note
\texttt{ST_Intersection} should be used in conjunction with \texttt{ST_Intersects} and an index on the raster column and/or the geometry column.

Enhanced: 2.0.0 - Intersection in the raster space was introduced. In earlier pre-2.0.0 versions, only intersection performed in vector space were supported.

**Examples: Geometry, Raster -- resulting in geometry vals**

```sql
SELECT foo.rid, foo.gid, ST_AsText((foo.geomval).geom) As geomwkt, (foo.geomval).val
FROM (SELECT A.rid, g.gid, ST_Intersection(A.rast, g.geom) As geomval
FROM dummy_rast AS A
CROSS JOIN (VALUES
(1, ST_Point(3427928, 5793243.85)),
(2, ST_GeomFromText('LINESTRING(3427927.85 5793243.75,3427927.8 5793243.8)')),
(3, ST_GeomFromText('LINESTRING(1 2, 3 4)'))
) As g(gid,geom)
WHERE A.rid = 2)
As foo;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>gid</th>
<th>geomwkt</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>POINT(3427928 5793243.85)</td>
<td>249</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>POINT(3427928 5793243.85)</td>
<td>253</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>POINT(3427927.85 5793243.75)</td>
<td>254</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>POINT(3427927.8 5793243.8)</td>
<td>251</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>POINT(3427927.8 5793243.8)</td>
<td>253</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>LINESTRING(3427927.8 5793243.75,3427927.8 5793243.8)</td>
<td>252</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>MULTILINESTRING((3427927.8 5793243.8,3427927.8 5793243.75),...)</td>
<td>250</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>GEOMETRYCOLLECTION EMPTY</td>
<td></td>
</tr>
</tbody>
</table>

See Also
geomval, \texttt{ST_Intersects}, \texttt{ST_MapAlgebraExpr}, \texttt{ST_Clip}, \texttt{ST_AsText}

### 6.12.5 \texttt{ST_MapAlgebra (callback function version)}

\texttt{ST_MapAlgebra} (callback function version) — Callback function version - Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.
Synopsis

```
raster ST_MapAlgebra(rastbandarg[], rastbandargset, regprocedure callbackfunc, text pixeltype=NULL, text extenttype=INTERSECTION, raster customextent=NULL, integer distancex=0, integer distancey=0, text[] VARIADIC userargs=NULL);
raster ST_MapAlgebra(raster rast, integer[] nbands, regprocedure callbackfunc, text pixeltype=NULL, text extenttype=FIRST, raster customextent=NULL, integer distancex=0, integer distancey=0, text[] VARIADIC userargs=NULL);
raster ST_MapAlgebra(raster rast, integer nbands, regprocedure callbackfunc, text pixeltype=NULL, text extenttype=FIRST, raster customextent=NULL, integer distancex=0, integer distancey=0, text[] VARIADIC userargs=NULL);
raster ST_MapAlgebra(raster rast1, integer nband1, raster rast2, integer nband2, regprocedure callbackfunc, text pixeltype=NULL, text extenttype=INTERSECTION, raster customextent=NULL, integer distancex=0, integer distancey=0, text[] VARIADIC userargs=NULL);
raster ST_MapAlgebra(raster rast, integer nbands, regprocedure callbackfunc, float8[] mask, boolean weighted, text pixeltype=NULL, text extenttype=INTERSECTION, raster customextent=NULL, text[] VARIADIC userargs=NULL);
```

Description

Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.

**rast, rast1, rast2, rastbandargset**  Rasters on which the map algebra process is evaluated.

**rastbandargset** allows the use of a map algebra operation on many rasters and/or many bands. See example Variant 1.

**nbands, nband1, nband2**  Band numbers of the raster to be evaluated. nbands can be an integer or integer[] denoting the bands. nband1 is band on rast1 and nband2 is band on rast2 for the 2 raster/2 band case.

**callbackfunc**  The callbackfunc parameter must be the name and signature of an SQL or PL/pgSQL function, cast to a regprocedure. An example PL/pgSQL function example is:

```sql
CREATE OR REPLACE FUNCTION sample_callbackfunc(value double precision[], position integer[], VARIADIC userargs text[])
RETURNS double precision
AS $$
BEGIN
RETURN 0;
END;
$$ LANGUAGE 'plpgsql' IMMUTABLE;
```

The callbackfunc must have three arguments: a 3-dimension double precision array, a 2-dimension integer array and a variadic 1-dimension text array. The first argument value is the set of values (as double precision) from all input rasters. The three dimensions (where indexes are 1-based) are: raster #, row y, column x. The second argument position is the set of pixel positions from the output raster and input rasters. The outer dimension (where indexes are 0-based) is the raster #. The position at outer dimension index 0 is the output raster’s pixel position. For each outer dimension, there are two elements in the inner dimension for X and Y. The third argument userargs is for passing through any user-specified arguments.

Passing a regprocedure argument to a SQL function requires the full function signature to be passed, then cast to a regprocedure type. To pass the above example PL/pgSQL function as an argument, the SQL for the argument is:

```sql
'sample_callbackfunc(double precision[], integer[], text[])': regprocedure
```

Note that the argument contains the name of the function, the types of the function arguments, quotes around the name and argument types, and a cast to a regprocedure.

**mask** An n-dimensional array (matrix) of numbers used to filter what cells get passed to map algebra call-back function. 0 means a neighbor cell value should be treated as no-data and 1 means value should be treated as data. If weight is set to true, then the values, are used as multipliers to multiple the pixel value of that value in the neighborhood position.

**weighted** boolean (true/false) to denote if a mask value should be weighted (multiplied by original value) or not (only applies to proto that takes a mask).
**pixeltype** If `pixeltype` is passed in, the one band of the new raster will be of that pixeltype. If `pixeltype` is passed NULL or left out, the new raster band will have the same pixeltype as the specified band of the first raster (for extent types: INTERSECTION, UNION, FIRST, CUSTOM) or the specified band of the appropriate raster (for extent types: SECOND, LAST). If in doubt, always specify `pixeltype`.

The resulting pixel type of the output raster must be one listed in `ST_BandPixelType` or left out or set to NULL.

**extenttype** Possible values are INTERSECTION (default), UNION, FIRST (default for one raster variants), SECOND, LAST, CUSTOM.

**customextent** If `extentype` is CUSTOM, a raster must be provided for `customextent`. See example 4 of Variant 1.

**distanceX** The distance in pixels from the reference cell in x direction. So width of resulting matrix would be $2 \cdot \text{distanceX} + 1$. If not specified only the reference cell is considered (neighborhood of 0).

**distanceY** The distance in pixels from reference cell in y direction. Height of resulting matrix would be $2 \cdot \text{distanceY} + 1$. If not specified only the reference cell is considered (neighborhood of 0).

**userargs** The third argument to the `callbackfunc` is a variadic text array. All trailing text arguments are passed through to the specified `callbackfunc`, and are contained in the `userargs` argument.

---

**Note**
For more information about the VARIADIC keyword, please refer to the PostgreSQL documentation and the “SQL Functions with Variable Numbers of Arguments” section of Query Language (SQL) Functions.

---

**Note**
The `text[]` argument to the `callbackfunc` is required, regardless of whether you choose to pass any arguments to the `callbackfunc` for processing or not.

---

Variant 1 accepts an array of `rastbandarg` allowing the use of a map algebra operation on many rasters and/or many bands. See example Variant 1.

Variants 2 and 3 operate upon one or more bands of one raster. See example Variant 2 and 3.

Variant 4 operate upon two rasters with one band per raster. See example Variant 4.

Availability: 2.2.0: Ability to add a mask

Availability: 2.1.0

**Examples: Variant 1**

One raster, one band

```sql
WITH foo AS (
SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI',
1, 0) AS rast
)
SELECT
ST_MapAlgebra(
ARRAY[ROW(rast, 1)]:rastbandarg[],
'sample_callbackfunc(double precision[], int[], text[])':regprocedure
) AS rast
FROM foo
```

One raster, several bands

---
WITH foo AS (  
  SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast  
)  
SELECT  
  ST_MapAlgebra(  
    ARRAY[ROW(rast, 3), ROW(rast, 1), ROW(rast, 3), ROW(rast, 2)]::rastbandarg[],  
    'sample_callbackfunc(double precision[], int[], text[])'::regprocedure  
) AS rast  
FROM foo

Several rasters, several bands

WITH foo AS (  
  SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast UNION ALL  
  SELECT 2 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0), 2, '8BUI', 20, 0), 3, '32BUI', 300, 0) AS rast  
)  
SELECT  
  ST_MapAlgebra(  
    ARRAY[ROW(t1.rast, 3), ROW(t2.rast, 1), ROW(t2.rast, 3), ROW(t1.rast, 2)]::rastbandarg[],  
    'sample_callbackfunc(double precision[], int[], text[])'::regprocedure  
) AS rast  
FROM foo t1  
CROSS JOIN foo t2  
WHERE t1.rid = 1  
AND t2.rid = 2

Complete example of tiles of a coverage with neighborhood. This query only works with PostgreSQL 9.1 or higher.

WITH foo AS (  
  SELECT 0 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0) AS rast UNION ALL  
  SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, 1, -1, 0, 0, 0), 1, '16BUI', 2, 1) AS rast UNION ALL  
  SELECT 2 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 1, 1, 1, -1, 0, 0, 0), 1, '16BUI', 3, 1) AS rast UNION ALL  
  SELECT 3 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -2, 1, -1, 0, 0, 0), 1, '16BUI', 10, 0) AS rast UNION ALL  
  SELECT 4 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, -2, 1, -1, 0, 0, 0), 1, '16BUI', 20, 0) AS rast UNION ALL  
  SELECT 5 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, -2, -1, 1, -1, 0, 0, 0), 1, '16BUI', 30, 0) AS rast UNION ALL  
  SELECT 6 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -4, 1, -1, 0, 0, 0), 1, '16BUI', 100, 0) AS rast UNION ALL  
  SELECT 7 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, -4, 1, -1, 0, 0, 0), 1, '16BUI', 200, 0) AS rast UNION ALL  
  SELECT 8 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, -4, -1, 1, -1, 0, 0, 0), 1, '16BUI', 300, 0) AS rast  
)  
SELECT  
  t1.rid,  
  ST_MapAlgebra(  
    ARRAY[ROW(ST_Union(t2.rast), 1)]::rastbandarg[],  
    'sample_callbackfunc(double precision[], int[], text[])'::regprocedure,  
    '32BUI',  
    'CUSTOM', t1.rast,  
)
Example like the prior one for tiles of a coverage with neighborhood but works with PostgreSQL 9.0.

WITH src AS (  SELECT 0 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 0, 0, 0, 0), 1, '16BUI', 1, 0) AS rast UNION ALL  SELECT 1, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0) AS rast UNION ALL  SELECT 2, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 0, 0, 0, 0), 1, '16BUI', 3, 0) AS rast UNION ALL  SELECT 3, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -4, 0, 0, 0, 0), 1, '16BUI', 10, 0) AS rast UNION ALL  SELECT 4, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -2, 0, 0, 0, 0), 1, '16BUI', 20, 0) AS rast UNION ALL  SELECT 5, ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, -4, 0, 0, 0, 0), 1, '16BUI', 30, 0) AS rast UNION ALL  SELECT 6, ST_AddBand(ST_MakeEmptyRaster(2, 2, -4, 0, 0, 0, 0, 0), 1, '16BUI', 100, 0) AS rast UNION ALL  SELECT 7, ST_AddBand(ST_MakeEmptyRaster(2, 2, -4, 0, 0, 0, 0, 0), 1, '16BUI', 200, 0) AS rast UNION ALL  SELECT 8, ST_AddBand(ST_MakeEmptyRaster(2, 2, -4, 0, 0, 0, 0, 0), 1, '16BUI', 300, 0) AS rast  )  WITH foo AS (  SELECT  t1.rid,  ST_Union(t2.rast) AS rast  FROM src t1  JOIN src t2  ON ST_Intersects(t1.rast, t2.rast)  AND t2.rid BETWEEN 0 AND 8  WHERE t1.rid = 4  GROUP BY t1.rid  ), bar AS (  SELECT  t1.rid,  ST_MapAlgebra(  ARRAY[ROW(t2.rast, 1)]::rastbandarg[],  'raster_nmapalgebra_test(double precision[], int[], text[])'::regprocedure,  '32BUI',  'CUSTOM', t1.rast,  1, 1  ) AS rast  FROM src t1  JOIN foo t2  ON t1.rid = t2.rid  )  SELECT  rid,  (ST_Metadata(rast)),  (ST_BandMetadata(rast, 1)),  ST_Value(rast, 1, 1, 1)
FROM bar;

Examples: Variants 2 and 3

One raster, several bands

WITH foo AS (
    SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, \n        0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast
)
SELECT
    ST_MapAlgebra(
        rast, ARRAY[3, 1, 3, 2]::integer[],
        'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
    ) AS rast
FROM foo

One raster, one band

WITH foo AS (
    SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, \n        0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast
)
SELECT
    ST_MapAlgebra(
        rast, 2,
        'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
    ) AS rast
FROM foo

Examples: Variant 4

Two rasters, two bands

WITH foo AS (
    SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, \n        0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI', 100, 0) AS rast UNION ALL
    SELECT 2 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, 1, -1, \n        0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 20, 0), 3, '32BUI', 300, 0) AS rast
)
SELECT
    ST_MapAlgebra(
        t1.rast, 2,
        t2.rast, 1,
        'sample_callbackfunc(double precision[], int[], text[])'::regprocedure
    ) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 1
    AND t2.rid = 2

Examples: Using Masks

WITH foo AS (SELECT
    ST_SetBandNoDataValue(
        ST_SetValue(ST_SetValue(ST_AsRaster(
            ST_Buffer(
        ) as rast
    ) as rast
FROM foo
```
ST_GeomFromText('LINESTRING(50 50, 100 90, 100 50)'), 5, 'join=bevel'),
200, 200, ARRAY['8BUI'], ARRAY[100], ARRAY[0]), ST_Buffer('POINT(70 70)',::geometry, 10, 'quad_segs=1'), 50),
'LINESTRING(20 20, 100 100, 150 98)'::geometry, (0) AS rast)
SELECT 'original' AS title, rast
FROM foo
UNION ALL
SELECT 'no mask mean value' AS title, ST_MapAlgebra(rast, 1, 'ST_mean4ma(double precision[], int[], text[]):=regprocedure) AS rast
FROM foo
UNION ALL
SELECT 'mask only consider neighbors, exclude center' AS title, ST_MapAlgebra(rast, 1, 'ST_mean4ma(double precision[], int[], text[]):=regprocedure,
[(1,1,1), (1,0,1), (1,1,1)]:=double precision[], false) AS rast
FROM foo
UNION ALL
SELECT 'mask weighted only consider neighbors, exclude center multi other pixel values by 2' AS title, ST_MapAlgebra(rast, 1, 'ST_mean4ma(double precision[], int[], text[]):=regprocedure,
[(2,2,2), (2,0,2), (2,2,2)]:=double precision[], true) AS rast
FROM foo;
```
See Also

rastbandarg, ST_Union, ST_MapAlgebra (expression version)

6.12.6 ST_MapAlgebra (expression version)

ST_MapAlgebra (expression version) — Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.

Synopsis

raster ST_MapAlgebra(raster rast, integer nband, text pixeltype, text expression, double precision nodataval=NULL);
raster ST_MapAlgebra(raster rast, text pixeltype, text expression, double precision nodataval=NULL);
raster ST_MapAlgebra(raster rast1, integer nband1, raster rast2, integer nband2, text expression, text pixeltype=NULL, text extenttype=INTERSECTION, text nodata1expr=NULL, text nodata2expr=NULL, double precision nodatanodataval=NULL);
raster ST_MapAlgebra(raster rast1, raster rast2, text expression, text pixeltype=NULL, text extenttype=INTERSECTION, text nodata1expr=NULL, text nodata2expr=NULL, double precision nodatanodataval=NULL);

Description

Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.

Availability: 2.1.0

Description: Variants 1 and 2 (one raster)

Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation defined by the expression on the input raster (rast). If nband is not provided, band 1 is assumed. The new raster will have the same georeference, width, and height as the original raster but will only have one band.

If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL, then the new raster band will have the same pixeltype as the input rast band.
• Keywords permitted for `expression`
  1. `[rast]` - Pixel value of the pixel of interest
  2. `[rast.val]` - Pixel value of the pixel of interest
  3. `[rast.x]` - 1-based pixel column of the pixel of interest
  4. `[rast.y]` - 1-based pixel row of the pixel of interest

**Description: Variants 3 and 4 (two raster)**

Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation to the two bands defined by the `expression` on the two input raster bands `rast1`, `(rast2)`. If no `band1`, `band2` is specified `band 1` is assumed. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster. The resulting raster will have the extent defined by the `extenttype` parameter.

**expression** A PostgreSQL algebraic expression involving the two rasters and PostgreSQL defined functions/operators that will define the pixel value when pixels intersect. e.g. `([(rast1] + [rast2])/2.0)::integer`

**pixeltype** The resulting pixel type of the output raster. Must be one listed in `ST_BandPixelType`, left out or set to NULL. If not passed in or set to NULL, will default to the pixeltype of the first raster.

**extenttype** Controls the extent of resulting raster

1. **INTERSECTION** - The extent of the new raster is the intersection of the two rasters. This is the default.
2. **UNION** - The extent of the new raster is the union of the two rasters.
3. **FIRST** - The extent of the new raster is the same as the one of the first raster.
4. **SECOND** - The extent of the new raster is the same as the one of the second raster.

**nodata1expr** An algebraic expression involving only `rast2` or a constant that defines what to return when pixels of `rast1` are nodata values and spatially corresponding `rast2` pixels have values.

**nodata2expr** An algebraic expression involving only `rast1` or a constant that defines what to return when pixels of `rast2` are nodata values and spatially corresponding `rast1` pixels have values.

**nodatanodataval** A numeric constant to return when spatially corresponding `rast1` and `rast2` pixels are both nodata values.

• Keywords permitted in `expression`, `nodata1expr` and `nodata2expr`

1. `[rast1]` - Pixel value of the pixel of interest from `rast1`
2. `[rast1.val]` - Pixel value of the pixel of interest from `rast1`
3. `[rast1.x]` - 1-based pixel column of the pixel of interest from `rast1`
4. `[rast1.y]` - 1-based pixel row of the pixel of interest from `rast1`
5. `[rast2]` - Pixel value of the pixel of interest from `rast2`
6. `[rast2.val]` - Pixel value of the pixel of interest from `rast2`
7. `[rast2.x]` - 1-based pixel column of the pixel of interest from `rast2`
8. `[rast2.y]` - 1-based pixel row of the pixel of interest from `rast2`

**Examples: Variants 1 and 2**

```sql
WITH foo AS (
 SELECT ST_AddBand(ST_MakeEmptyRaster(10, 10, 0, 0, 1, 1, 0, 0, 0), '32BF':text, 1, -1) AS rast
)
SELECT ST_MapAlgebra(rast, 1, NULL, 'ceil([rast]*[rast.x]/[rast.y]+[rast.val])')
FROM foo;
```
Examples: Variant 3 and 4

```sql
WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI':text, 100, 0) AS rast
 UNION ALL
 SELECT 2 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 20, 0), 3, '32BUI':text, 300, 0) AS rast
) SELECT
 ST_MapAlgebra(
 t1.rast, 2,
 t2.rast, 1,
 '([rast2] + [rast1].val) / 2'
) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 1
AND t2.rid = 2;
```

See Also

rastbandarg, ST_Union, ST_MapAlgebra (callback function version)

6.12.7 ST_MapAlgebraExpr

ST_MapAlgebraExpr — 1 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the input raster band and of pixeltype provided. Band 1 is assumed if no band is specified.

Synopsis

```sql
raster ST_MapAlgebraExpr(raster rast, integer band, text pixeltype, text expression, double precision nodataval=NULL);
raster ST_MapAlgebraExpr(raster rast, text pixeltype, text expression, double precision nodataval=NULL);
```

Description

Warning

ST_MapAlgebraExpr is deprecated as of 2.1.0. Use ST_MapAlgebra (expression version) instead.

Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation defined by the expression on the input raster (rast). If no band is specified band 1 is assumed. The new raster will have the same georeference, width, and height as the original raster but will only have one band.

If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL, then the new raster band will have the same pixeltype as the input rast band.

In the expression you can use the term [rast] to refer to the pixel value of the original band, [rast.x] to refer to the 1-based pixel column index, [rast.y] to refer to the 1-based pixel row index.

Availability: 2.0.0
Examples

Create a new 1 band raster from our original that is a function of modulo 2 of the original raster band.

```
ALTER TABLE dummy_rast ADD COLUMN map_rast raster;
UPDATE dummy_rast SET map_rast = ST_MapAlgebraExpr(rast,NULL,'mod([rast]::numeric,2)')
WHERE rid = 2;

SELECT
 ST_Value(rast,1,i,j) As origval,
 ST_Value(map_rast, 1, i, j) As mapval
FROM dummy_rast
CROSS JOIN generate_series(1, 3) AS i
CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;
```

<table>
<thead>
<tr>
<th>origval</th>
<th>mapval</th>
</tr>
</thead>
<tbody>
<tr>
<td>253</td>
<td>1</td>
</tr>
<tr>
<td>254</td>
<td>0</td>
</tr>
<tr>
<td>253</td>
<td>1</td>
</tr>
<tr>
<td>253</td>
<td>1</td>
</tr>
<tr>
<td>254</td>
<td>0</td>
</tr>
<tr>
<td>254</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>254</td>
<td>0</td>
</tr>
<tr>
<td>254</td>
<td>0</td>
</tr>
</tbody>
</table>

Create a new 1 band raster of pixel-type 2BUI from our original that is reclassified and set the nodata value to be 0.

```
ALTER TABLE dummy_rast ADD COLUMN map_rast2 raster;
UPDATE dummy_rast SET
 map_rast2 = ST_MapAlgebraExpr(rast,'2BUI'::text,'CASE WHEN [rast] BETWEEN 100 and 250
 THEN 1 WHEN [rast] = 252 THEN 2 WHEN [rast] BETWEEN 253 and 254 THEN 3 ELSE 0 END'::text, '0')
WHERE rid = 2;

SELECT DISTINCT
 ST_Value(rast,1,i,j) As origval,
 ST_Value(map_rast2, 1, i, j) As mapval
FROM dummy_rast
CROSS JOIN generate_series(1, 5) AS i
CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;
```

<table>
<thead>
<tr>
<th>origval</th>
<th>mapval</th>
</tr>
</thead>
<tbody>
<tr>
<td>249</td>
<td>1</td>
</tr>
<tr>
<td>250</td>
<td>1</td>
</tr>
<tr>
<td>251</td>
<td>1</td>
</tr>
<tr>
<td>252</td>
<td>2</td>
</tr>
<tr>
<td>253</td>
<td>3</td>
</tr>
<tr>
<td>254</td>
<td>3</td>
</tr>
</tbody>
</table>

```
SELECT
 ST_BandPixelType(map_rast2) As b1pixtyp
FROM dummy_rast
WHERE rid = 2;
```

<table>
<thead>
<tr>
<th>b1pixtyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2BUI</td>
</tr>
</tbody>
</table>
Create a new 3 band raster same pixel type from our original 3 band raster with first band altered by map algebra and remaining 2 bands unaltered.

```
SELECT ST_AddBand(
 ST_AddBand(
 ST_AddBand(
 ST_MakeEmptyRaster(rast_view),
 ST_MapAlgebraExpr(rast_view,1,NULL,'tan([rast])*[rast]')
),
 ST_Band(rast_view, 2)
),
 ST_Band(rast_view, 3)
) As rast_view_ma
FROM wind
WHERE rid=167;
```

See Also

ST_MapAlgebraExpr, ST_MapAlgebraFct, ST_BandPixelType, ST_GeoReference, ST_Value

### 6.12.8 ST_MapAlgebraExpr

ST_MapAlgebraExpr — 2 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the two input raster bands and of pixeltype provided. band 1 of each raster is assumed if no band numbers are specified. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster and have its extent defined by the "extenttype" parameter. Values for "extenttype" can be: INTERSECTION, UNION, FIRST, SECOND.

**Synopsis**

raster `ST_MapAlgebraExpr`(raster rast1, raster rast2, text expression, text pixeltype=same_as_rast1_band, text extenttype=INTERSECTION, text nodata1expr=NULL, text nodata2expr=NULL, double precision nodatanodataval=NULL);
raster `ST_MapAlgebraExpr`(raster rast1, integer band1, raster rast2, integer band2, text expression, text pixeltype=same_as_rast1_band, text extenttype=INTERSECTION, text nodata1expr=NULL, text nodata2expr=NULL, double precision nodatanodataval=NULL);
Description

**Warning**

ST_MapAlgebraExpr is deprecated as of 2.1.0. Use ST_MapAlgebra (expression version) instead.

Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation to the two bands defined by the expression on the two input raster bands rast1, (rast2). If no band1, band2 is specified band 1 is assumed. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster. The resulting raster will have the extent defined by the extenttype parameter.

**expression** A PostgreSQL algebraic expression involving the two rasters and PostgreSQL defined functions/operators that will define the pixel value when pixels intersect. e.g. (([rast1] + [rast2])/2.0)::integer

**pixeltype** The resulting pixel type of the output raster. Must be one listed in ST_BandPixelType, left out or set to NULL. If not passed in or set to NULL, will default to the pixeltype of the first raster.

**extenttype** Controls the extent of resulting raster

1. INTERSECTION - The extent of the new raster is the intersection of the two rasters. This is the default.
2. UNION - The extent of the new raster is the union of the two rasters.
3. FIRST - The extent of the new raster is the same as the one of the first raster.
4. SECOND - The extent of the new raster is the same as the one of the second raster.

**nodata1expr** An algebraic expression involving only rast2 or a constant that defines what to return when pixels of rast1 are nodata values and spatially corresponding rast2 pixels have values.

**nodata2expr** An algebraic expression involving only rast1 or a constant that defines what to return when pixels of rast2 are nodata values and spatially corresponding rast1 pixels have values.

**nodatanodataval** A numeric constant to return when spatially corresponding rast1 and rast2 pixels are both nodata values.

If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL or no pixel type specified, then the new raster band will have the same pixeltype as the input rast1 band.

Use the term [rast1.val][rast2.val] to refer to the pixel value of the original raster bands and [rast1.x],[rast1.y] etc. to refer to the column / row positions of the pixels.

**Availability:** 2.0.0

**Example: 2 Band Intersection and Union**

Create a new 1 band raster from our original that is a function of modulo 2 of the original raster band.

```sql
--Create a cool set of rasters--
DROP TABLE IF EXISTS fun_shapes;
CREATE TABLE fun_shapes(rid serial PRIMARY KEY, fun_name text, rast raster);

-- Insert some cool shapes around Boston in Massachusetts state plane meters --
INSERT INTO fun_shapes(fun_name, rast)
VALUES ('ref', ST_AsRaster(ST_MakeEnvelope(235229, 899970, 237229, 901930,26986),200,200,'8 ← BUI',0,0));

INSERT INTO fun_shapes(fun_name,rast)
WITH ref(rast) AS (SELECT rast FROM fun_shapes WHERE fun_name = 'ref')
SELECT 'area' AS fun_name, ST_AsRaster(ST_Buffer(ST_SetSRID(ST_Point(236229, 900930),26986)← BUI',0,0));
```
ref.rast,'8BUI', 10, 0) As rast
FROM ref
UNION ALL
SELECT 'rand bubbles',
    ST_AsRaster(
        (SELECT ST_Collect(geom)
         FROM (SELECT ST_Buffer(ST_SetSRID(ST_Point(236229 + i*random() * 100, 900930 + j*random() * 100), 26986), random()*20) As geom
          FROM generate_series(1,10) As i, generate_series(1,10) As j
        ) As foo ), ref.rast,'8BUI', 200, 0)
FROM ref;

--map them--
SELECT ST_MapAlgebraExpr(
    area.rast, bub.rast, '[rast2.val]', '8BUI', 'INTERSECTION', '[rast2.val]', '[rast1.val]') As interrast,
    ST_MapAlgebraExpr(
        area.rast, bub.rast, '[rast2.val]', '8BUI', 'UNION', '[rast2.val]', '[rast1.val]') As unionrast
FROM
    (SELECT rast FROM fun_shapes WHERE fun_name = 'area') As area
CROSS JOIN (SELECT rast FROM fun_shapes WHERE fun_name = 'rand bubbles') As bub

Example: Overlaying rasters on a canvas as separate bands

-- we use ST_AsPNG to render the image so all single band ones look grey --
WITH mygeoms
AS ( SELECT 2 As bnum, ST_Buffer(ST_Point(1,5),10) As geom
    UNION ALL
    SELECT 3 AS bnum,
        ST_Buffer(ST_GeomFromText('LINESTRING(50 50,150 150,150 50)'), 10,'join=bevel') As geom
    UNION ALL
    ...)

map algebra intersection
map algebra union
SELECT 1 As bnum,
    ST_Buffer(ST_GeomFromText('LINESTRING(60 50,150 150,150 50)'), 5,'join=←
    bevel') As geom
),
-- define our canvas to be 1 to 1 pixel to geometry
canvas
AS (SELECT ST_AddBand(ST_MakeEmptyRaster(200, 200,
    ST_XMin(e)::integer, ST_YMax(e)::integer, 1, -1, 0, 0) , '8BUI':text,0) As rast
FROM (SELECT ST_Extent(geom) As e,
    Max(ST_SRID(geom)) As srid
    from mygeoms
) As foo
),
rbands AS (SELECT ARRAY(SELECT ST_MapAlgebraExpr(canvas.rast, ST_AsRaster(m.geom, canvas←
    .rast, '8BUI', 100),
    '[rast2.val]', '8BUI', 'FIRST', '[rast2.val]', '[rast1.val]') As rast
FROM mygeoms AS m CROSS JOIN canvas
ORDER BY m.bnum) As rasts
FROM rbands;
Example: Overlay 2 meter boundary of select parcels over an aerial imagery

```sql
WITH pr AS
 (SELECT ST_Clip(rast, ST_Expand(geom, 50)) AS rast, g.geom
 FROM aerials.o_2_boston AS r INNER JOIN
 (SELECT ST_Union(ST_Transform(the_geom, 26986)) AS geom
 FROM landparcels WHERE pid IN ('0303890000', '0303900000')) AS g
 ON ST_Intersects(rast::geometry, ST_Expand(g.geom, 50))),
 prunion AS
 (SELECT ST_AddBand(NULL, ARRAY[ST_Union(rast, 1), ST_Union(rast, 2), ST_Union(rast, 3)]) AS clipped, geom
 FROM pr
 GROUP BY geom)
SELECT ST_AddBand(ST_Band(clipped, ARRAY[1, 2]), ST_MapAlgebraExpr(ST_Band(clipped, 3), ST_AsRaster(ST_Buffer(ST_Boundary(geom), 2), '8BUI', 250), '[rast2.val]', '8BUI', 'FIRST', '[rast2.val]', '[rast1.val]')) AS rast
FROM prunion;
```

```
Example: Overlay 2 meter boundary of select parcels over an aerial imagery
```

```
-- Create new 3 band raster composed of first 2 clipped bands, and overlay of 3rd band with geometry
-- This query took 3.6 seconds on PostGIS windows 64-bit install
WITH pr AS
-- Note the order of operation: we clip all the rasters to dimensions of our region
 (SELECT ST_Clip(rast, ST_Expand(geom, 50)) AS rast, g.geom
 FROM aerials.o_2_boston AS r INNER JOIN
 (SELECT ST_Union(ST_Transform(the_geom, 26986)) AS geom
 FROM landparcels WHERE pid IN ('0303890000', '0303900000')) AS g
 ON ST_Intersects(rast::geometry, ST_Expand(g.geom, 50))),
-- we then union the raster shards together
-- ST_Union on raster is kinda of slow but much faster the smaller you can get the rasters
-- therefore we want to clip first and then union
prunion AS
(SELECT ST_AddBand(NULL, ARRAY[ST_Union(rast, 1), ST_Union(rast, 2), ST_Union(rast, 3)]) AS clipped, geom
 FROM pr
 GROUP BY geom)
-- return our final raster which is the unioned shard with
-- with the overlay of our parcel boundaries
-- add first 2 bands, then mapalgebra of 3rd band + geometry
SELECT ST_AddBand(ST_Band(clipped, ARRAY[1, 2]), ST_MapAlgebraExpr(ST_Band(clipped, 3), ST_AsRaster(ST_Buffer(ST_Boundary(geom), 2), '8BUI', 250), '[rast2.val]', '8BUI', 'FIRST', '[rast2.val]', '[rast1.val]')) AS rast
FROM prunion;
```
The blue lines are the boundaries of select parcels

See Also

ST_MapAlgebraExpr, ST_AddBand, ST_AsPNG, ST_AsRaster, ST_MapAlgebraFct, ST_BandPixelType, ST_GeoReference, ST_Value, ST_Union, ST_Union

6.12.9 ST_MapAlgebraFct

ST_MapAlgebraFct — 1 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the input raster band and of pixeltype prodived. Band 1 is assumed if no band is specified.

Synopsis

raster ST_MapAlgebraFct(raster rast, regprocedure onerasteruserfunc);
raster ST_MapAlgebraFct(raster rast, regprocedure onerasteruserfunc, text[] VARIADIC args);
raster ST_MapAlgebraFct(raster rast, text pixeltype, regprocedure onerasteruserfunc);
raster ST_MapAlgebraFct(raster rast, text pixeltype, regprocedure onerasteruserfunc, text[] VARIADIC args);
raster ST_MapAlgebraFct(raster rast, integer band, regprocedure onerasteruserfunc);
raster ST_MapAlgebraFct(raster rast, integer band, regprocedure onerasteruserfunc, text[] VARIADIC args);
raster ST_MapAlgebraFct(raster rast, integer band, text pixeltype, regprocedure onerasteruserfunc);
raster ST_MapAlgebraFct(raster rast, integer band, text pixeltype, regprocedure onerasteruserfunc, text[] VARIADIC args);

Description

Warning
ST_MapAlgebraFct is deprecated as of 2.1.0. Use ST_MapAlgebra (callback function version) instead.
Creates a new one band raster formed by applying a valid PostgreSQL function specified by the `onerasteruserfunc` on the input raster (`rast`). If no band is specified, band 1 is assumed. The new raster will have the same georeference, width, and height as the original raster but will only have one band.

If `pixeltype` is passed in, then the new raster will have a band of that pixeltype. If `pixeltype` is passed NULL, then the new raster band will have the same pixeltype as the input `rast` band.

The `onerasteruserfunc` parameter must be the name and signature of a SQL or PL/pgSQL function, cast to a regprocedure. A very simple and quite useless PL/pgSQL function example is:

```sql
CREATE OR REPLACE FUNCTION simple_function(pixel FLOAT, pos INTEGER[], VARIADIC args TEXT[]) RETURNS FLOAT AS $$
BEGIN
 RETURN 0.0;
END;
$$
LANGUAGE 'plpgsql' IMMUTABLE;
```

The `userfunction` may accept two or three arguments: a float value, an optional integer array, and a variadic text array. The first argument is the value of an individual raster cell (regardless of the raster datatype). The second argument is the position of the current processing cell in the form '{x,y}'. The third argument indicates that all remaining parameters to `ST_MapAlgebraFct` shall be passed through to the `userfunction`.

Passing a regprocedure argument to a SQL function requires the full function signature to be passed, then cast to a regprocedure type. To pass the above example PL/pgSQL function as an argument, the SQL for the argument is:

```sql
'simple_function(float,integer[],text[])'::regprocedure
```

Note that the argument contains the name of the function, the types of the function arguments, quotes around the name and argument types, and a cast to a regprocedure.

The third argument to the `userfunction` is a variadic text array. All trailing text arguments to any `ST_MapAlgebraFct` call are passed through to the specified `userfunction`, and are contained in the `args` argument.

---

**Note**

For more information about the VARIADIC keyword, please refer to the PostgreSQL documentation and the "SQL Functions with Variable Numbers of Arguments" section of Query Language (SQL) Functions.

---

**Note**

The text[] argument to the `userfunction` is required, regardless of whether you choose to pass any arguments to your user function for processing or not.

---

**Availability:** 2.0.0

**Examples**

Create a new 1 band raster from our original that is a function of modulo 2 of the original raster band.

```sql
ALTER TABLE dummy_rast ADD COLUMN map_rast raster;
CREATE FUNCTION mod_fct(pixel float, pos integer[], variadic args text[])
RETURNS float AS $$
BEGIN
 RETURN pixel::integer % 2;
END;
$$
```

---


```
LANGUAGE 'plpgsql' IMMUTABLE;

UPDATE dummy_rast SET map_rast = ST_MapAlgebraFct(rast,NULL,'mod_fct(float,integer[],text → [])'::regprocedure) WHERE rid = 2;

SELECT ST_Value(rast,1,i,j) As origval, ST_Value(map_rast, 1, i, j) As mapval
FROM dummy_rast CROSS JOIN generate_series(1, 3) AS i CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;

origval | mapval
---------+--------
 253 | 1
 254 | 0
 253 | 1
 254 | 0
 250 | 0
 254 | 0
 250 | 0
 254 | 0

Create a new 1 band raster of pixel-type 2BUI from our original that is reclassified and set the nodata value to a passed parameter to the user function (0).

ALTER TABLE dummy_rast ADD COLUMN map_rast2 raster;

CREATE FUNCTION classify_fct(pixel float, pos integer[], variadic args text[])
RETURNS float
AS
$$
DECLARE
 nodata float := 0;
BEGIN
 IF NOT args[1] IS NULL THEN
 nodata := args[1];
 END IF;
 IF pixel < 251 THEN
 RETURN 1;
 ELSIF pixel = 252 THEN
 RETURN 2;
 ELSIF pixel > 252 THEN
 RETURN 3;
 ELSE
 RETURN nodata;
 END IF;
END;
$$
LANGUAGE 'plpgsql';

UPDATE dummy_rast SET map_rast2 = ST_MapAlgebraFct(rast,'2BUI','classify_fct(float,integer ↔ [],text[])'::regprocedure, '0') WHERE rid = 2;

SELECT DISTINCT ST_Value(rast,1,i,j) As origval, ST_Value(map_rast2, 1, i, j) As mapval
FROM dummy_rast CROSS JOIN generate_series(1, 5) AS i CROSS JOIN generate_series(1,5) AS j
WHERE rid = 2;

origval | mapval
---------+--------
 249 | 1
 250 | 1
 251 |
 252 | 2
 253 | 3
 254 | 3
```
```
SELECT ST_BandPixelType(map_rast2) As blpixtyp
FROM dummy_rast WHERE rid = 2;
```

```
blpixtyp

2BUI
```

Create a new 3 band raster same pixel type from our original 3 band raster with first band altered by map algebra and remaining 2 bands unaltered.

```sql
CREATE FUNCTION rast_plus_tan(pixel float, pos integer[], variadic args text[])
RETURNS float
AS
$$
BEGIN
RETURN tan(pixel) * pixel;
END;
$$
LANGUAGE 'plpgsql';
```

```sql
SELECT ST_AddBand(
 ST_AddBand(
 ST_AddBand(
 ST_MakeEmptyRaster(rast_view),
 ST_MapAlgebraFct(rast_view,1,NULL,'rast_plus_tan(float,integer[],text[])':: regprocedure)
),
 ST_Band(rast_view, 2)
),
 ST_Band(rast_view, 3) As rast_view_ma
)
FROM wind
WHERE rid=167;
```
See Also

ST_MapAlgebraExpr, ST_BandPixelType, ST_GeoReference, ST_SetValue

6.12.10  ST_MapAlgebraFct

ST_MapAlgebraFct — 2 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the 2 input raster bands and of pixeltype prodvided. Band 1 is assumed if no band is specified. Extent type defaults to INTERSECTION if not specified.

Synopsis

raster ST_MapAlgebraFct(raster rast1, raster rast2, regprocedure tworastuserfunc, text pixeltype=same_as_rast1, text extent-type=INTERSECTION, text[] VARIADIC userargs);
raster ST_MapAlgebraFct(raster rast1, integer band1, raster rast2, integer band2, regprocedure tworastuserfunc, text pixel-type=same_as_rast1, text extenttype=INTERSECTION, text[] VARIADIC userargs);

Description

Warning

ST_MapAlgebraFct is deprecated as of 2.1.0. Use ST_MapAlgebra (callback function version) instead.

Creates a new one band raster formed by applying a valid PostgreSQL function specified by the tworastuserfunc on the input raster rast1, rast2. If no band1 or band2 is specified, band 1 is assumed. The new raster will have the same georeference, width, and height as the original rasters but will only have one band.

If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL or left out, then the new raster band will have the same pixeltype as the input rast1 band.

The tworastuserfunc parameter must be the name and signature of an SQL or PL/pgSQL function, cast to a regprocedure. An example PL/pgSQL function example is:

```sql
CREATE OR REPLACE FUNCTION simple_function_for_two_rasters(pixel1 FLOAT, pixel2 FLOAT, pos INTEGER[], VARIADIC args TEXT[]) RETURNS FLOAT
AS $$
BEGIN
RETURN 0.0;
END;
$$
LANGUAGE 'plpgsql' IMMUTABLE;
```

The tworastuserfunc may accept three or four arguments: a double precision value, a double precision value, an optional integer array, and a variadic text array. The first argument is the value of an individual raster cell in rast1 (regardless of the raster datatype). The second argument is an individual raster cell value in rast2. The third argument is the position of the current processing cell in the form '{x,y}'. The fourth argument indicates that all remaining parameters to ST_MapAlgebraFct shall be passed through to the tworastuserfunc.

Passing a regprocedure argument to a SQL function requires the full function signature to be passed, then cast to a regprocedure type. To pass the above example PL/pgSQL function as an argument, the SQL for the argument is:

```
'simple_function(double precision, double precision, integer[], text[])':'::regprocedure
```

Note that the argument contains the name of the function, the types of the function arguments, quotes around the name and argument types, and a cast to a regprocedure.

The fourth argument to the tworastuserfunc is a variadic text array. All trailing text arguments to any ST_MapAlgebraFct call are passed through to the specified tworastuserfunc, and are contained in the userargs argument.
Note
For more information about the VARIADIC keyword, please refer to the PostgreSQL documentation and the "SQL Functions with Variable Numbers of Arguments" section of Query Language (SQL) Functions.

Note
The text[] argument to the `tworastuserfunc` is required, regardless of whether you choose to pass any arguments to your user function for processing or not.

Availability: 2.0.0

Example: Overlaying rasters on a canvas as separate bands

```sql
-- define our user defined function --
CREATE OR REPLACE FUNCTION raster_mapalgebra_union(
 rast1 double precision,
 rast2 double precision,
 pos integer[],
 VARIADIC userargs text[]
) RETURNS double precision AS $$
DECLARE
 BEGIN
 CASE
 WHEN rast1 IS NOT NULL AND rast2 IS NOT NULL THEN
 RETURN ((rast1 + rast2)/2.);
 WHEN rast1 IS NULL AND rast2 IS NULL THEN
 RETURN NULL;
 WHEN rast1 IS NULL THEN
 RETURN rast2;
 ELSE
 RETURN rast1;
 END CASE;
 RETURN NULL;
END;
$$ LANGUAGE 'plpgsql' IMMUTABLE COST 1000;

-- prep our test table of rasters
DROP TABLE IF EXISTS map_shapes;
CREATE TABLE map_shapes(rid serial PRIMARY KEY, rast raster, bnum integer, descrip text);
INSERT INTO map_shapes(rast,bnum, descrip)
WITH mygeoms
AS (SELECT 2 As bnum, ST_Buffer(ST_Point(90,90),30) As geom, 'circle' As descrip
 UNION ALL
 SELECT 3 AS bnum,
 ST_Buffer(ST_GeomFromText('LINESTRING(50 50,150 150,150 50)'), 15) As geom, 'big road' As descrip
 UNION ALL
 SELECT 1 As bnum,
 ST_Translate(ST_Buffer(ST_GeomFromText('LINESTRING(60 50,150 150,150 50)'), 8,'join=bevel'), 10,-6) As geom, 'small road' As descrip
),
-- define our canvas to be 1 to 1 pixel to geometry
canvas
AS (SELECT ST_AddBand(ST_MakeEmptyRaster(250,
```
250,
    ST_XMin(e)::integer, ST_YMax(e)::integer, 1, -1, 0, 0 ) , '8BUI'::text,0) As rast
FROM (SELECT ST_Extent(geom) As e,
    Max(ST_SRID(geom)) As srid
from mygeoms
    ) As foo
)
-- return our rasters aligned with our canvas
SELECT ST_AsRaster(m.geom, canvas.rast, '8BUI', 240) As rast, bnum, descrip
FROM mygeoms AS m CROSS JOIN canvas
UNION ALL
SELECT canvas.rast, 4, 'canvas'
FROM canvas;

-- Map algebra on single band rasters and then collect with ST_AddBand
INSERT INTO map_shapes(rast,bnum,descrip)
SELECT ST_AddBand(ST_AddBand(rasts[1], rasts[2]),rasts[3]), 4, 'map bands overlay fct union (canvas)' FROM (SELECT ARRAY(SELECT ST_MapAlgebraFct(m1.rast, m2.rast,
    'raster_mapalgebra_union(double precision, double precision, integer[], text[]):: regprocedure, '8BUI', 'FIRST')
    FROM map_shapes As m1 CROSS JOIN map_shapes As m2
    WHERE m1.descrip = 'canvas' AND m2.descrip <> 'canvas' ORDER BY m2.bnum) As rasts) As foo;

map bands overlay (canvas) (R: small road, G: circle, B: big road)

User Defined function that takes extra args

CREATE OR REPLACE FUNCTION raster_mapalgebra_userargs(
    rast1 double precision,
    rast2 double precision,
    pos integer[],
    VARIADIC userargs text[]


```sql
) RETURNS double precision
AS $$
DECLARE
BEGIN
 CASE
 WHEN rast1 IS NOT NULL AND rast2 IS NOT NULL THEN
 RETURN least(userargs[1]::integer,(rast1 + rast2)/2.);
 WHEN rast1 IS NULL AND rast2 IS NULL THEN
 RETURN userargs[2]::integer;
 WHEN rast1 IS NULL THEN
 RETURN greatest(rast2,random()*userargs[3]::integer)::integer;
 ELSE
 RETURN greatest(rast1, random()*userargs[4]::integer)::integer;
 END CASE;
 RETURN NULL;
END;
$$ LANGUAGE 'plpgsql' VOLATILE COST 1000;

SELECT ST_MapAlgebraFct(m1.rast, 1, m1.rast, 3,
 'raster_mapalgebra_userargs(double precision, double precision, integer[], text[])':: regprocedure,
 '8BUI', 'INTERSECT', '100','200','200','0')
FROM map_shapes As m1
WHERE m1.descrip = 'map bands overlay fct union (canvas)';
```

user defined with extra args and different bands from same raster

See Also

ST_MapAlgebraExpr, ST_BandPixelType, ST_GeoReference, ST_SetValue
6.12.11  ST_MapAlgebraFctNgb

ST_MapAlgebraFctNgb — 1-band version: Map Algebra Nearest Neighbor using user-defined PostgreSQL function. Return a raster which values are the result of a PLPGSQL user function involving a neighborhood of values from the input raster band.

Synopsis

```
raster ST_MapAlgebraFctNgb(raster rast, integer band, text pixeltype, integer ngbwidth, integer ngbheight, regprocedure onerastngbuserfunc, text nodatamode, text[] VARIADIC args);
```

Description

**Warning**

ST_MapAlgebraFctNgb is deprecated as of 2.1.0. Use ST_MapAlgebra (callback function version) instead.

(one raster version) Return a raster which values are the result of a PLPGSQL user function involving a neighborhood of values from the input raster band. The user function takes the neighborhood of pixel values as an array of numbers, for each pixel, returns the result from the user function, replacing pixel value of currently inspected pixel with the function result.

rast  Raster on which the user function is evaluated.

band  Band number of the raster to be evaluated. Default to 1.

pixeltype  The resulting pixel type of the output raster. Must be one listed in ST_BandPixelType or left out or set to NULL. If not passed in or set to NULL, will default to the pixeltype of the rast. Results are truncated if they are larger than what is allowed for the pixeltype.

ngbwidth  The width of the neighborhood, in cells.

ngbheight  The height of the neighborhood, in cells.

onerastngbuserfunc  PLPGSQL/psql user function to apply to neighborhood pixels of a single band of a raster. The first element is a 2-dimensional array of numbers representing the rectangular pixel neighborhood.

nodatamode  Defines what value to pass to the function for a neighborhood pixel that is nodata or NULL

- 'ignore': any NODATA values encountered in the neighborhood are ignored by the computation -- this flag must be sent to the user callback function, and the user function decides how to ignore it.
- 'NULL': any NODATA values encountered in the neighborhood will cause the resulting pixel to be NULL -- the user callback function is skipped in this case.
- 'value': any NODATA values encountered in the neighborhood are replaced by the reference pixel (the one in the center of the neighborhood). Note that if this value is NODATA, the behavior is the same as 'NULL' (for the affected neighborhood)

args  Arguments to pass into the user function.

Availability: 2.0.0

Examples

Examples utilize the katrina raster loaded as a single tile described in http://trac.osgeo.org/gdal/wiki/frmts_wtkraster.html and then prepared in the ST_Rescale examples.
-- A simple 'callback' user function that averages up all the values in a neighborhood.

CREATE OR REPLACE FUNCTION rast_avg(matrix float[][], nodatamode text, variadic args text)
RETURNS float AS
$$
DECLARE
_matrix float[][];
  x1 integer;
  x2 integer;
  y1 integer;
  y2 integer;
  sum float;
BEGIN
  _matrix := matrix;
  sum := 0;
  FOR x in array_lower(matrix, 1)..array_upper(matrix, 1) LOOP
    FOR y in array_lower(matrix, 2)..array_upper(matrix, 2) LOOP
      sum := sum + _matrix[x][y];
    END LOOP;
  END LOOP;
  RETURN (sum*1.0/(array_upper(matrix,1)*array_upper(matrix,2) ))::integer ;
END;
$$
LANGUAGE 'plpgsql' IMMUTABLE COST 1000;

-- now we apply to our raster averaging pixels within 2 pixels of each other in X and Y

SELECT ST_MapAlgebraFctNgb(rast, 1, '8BUI', 4,4, 'rast_avg(float[][], text, text[])'::regprocedure, 'NULL', NULL) As nn_with_border
FROM katrinas_rescaled
limit 1;

See Also

ST_MapAlgebraFct, ST_MapAlgebraExpr, ST_Rescale
6.12.12 ST_Reclass

ST_Reclass — Creates a new raster composed of band types reclassified from original. The nband is the band to be changed. If nband is not specified assumed to be 1. All other bands are returned unchanged. Use case: convert a 16BUI band to a 8BUI and so forth for simpler rendering as viewable formats.

Synopsis

raster ST_Reclass(raster rast, integer nband, text reclassexpr, text pixeltype, double precision nodataval=NULL);
raster ST_Reclass(raster rast, reclassarg[] V ARIADIC reclassargset);
raster ST_Reclass(raster rast, text reclassexpr, text pixeltype);

Description

Creates a new raster formed by applying a valid PostgreSQL algebraic operation defined by the reclassexpr on the input raster (rast). If no band is specified band 1 is assumed. The new raster will have the same georeference, width, and height as the original raster. Bands not designated will come back unchanged. Refer to reclassarg for description of valid reclassification expressions.

The bands of the new raster will have pixel type of pixeltype. If reclassargset is passed in then each reclassarg defines behavior of each band generated.

Availability: 2.0.0

Examples Basic

Create a new raster from the original where band 2 is converted from 8BUI to 4BUI and all values from 101-254 are set to nodata value.

ALTER TABLE dummy_rast ADD COLUMN reclass_rast raster;
UPDATE dummy_rast SET reclass_rast = ST_Reclass(rast,2,'0-87:1-10, 88-100:11-15, 101-254:0-0', '4BUI',0) WHERE rid = 2;
SELECT i as col, j as row, ST_Value(rast,2,i,j) As origval, ST_Value(reclass_rast, 2, i, j) As reclassval, ST_Value(reclass_rast, 2, i, j, false) As reclassval_include_nodata FROM dummy_rast CROSS JOIN generate_series(1, 3) AS i CROSS JOIN generate_series(1,3) AS j WHERE rid = 2;

<table>
<thead>
<tr>
<th>col</th>
<th>row</th>
<th>origval</th>
<th>reclassval</th>
<th>reclassval_include_nodata</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>78</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>98</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>122</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>96</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>118</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>180</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>99</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>112</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>169</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Example: Advanced using multiple reclassargs

Create a new raster from the original where band 1,2,3 is converted to 1BB,4BUI, 4BUI respectively and reclassified. Note this uses the variadic reclassarg argument which can take as input an indefinite number of reclassargs (theoretically as many bands as you have)
UPDATE dummy_rast SET reclass_rast =
    ST_Reclass(rast,
        ROW(2,'0-87]:1-10, (87-100]:11-15, (101-254]:0-0', '4BUI',NULL)::reclassarg,
        ROW(1,'0-253]:1, 254:0', '1BB', NULL)::reclassarg,
        ROW(3,'0-70]:1, (70-86:2, [86-150]:3, [150-255:4', '4BUI', NULL)::reclassarg
    ) WHERE rid = 2;

SELECT i as col, j as row,ST_Value(rast,1,i,j) As ov1, ST_Value(reclass_rast, 1, i, j) As rv1,
    ST_Value(rast,2,i,j) As ov2, ST_Value(reclass_rast, 2, i, j) As rv2,
    ST_Value(rast,3,i,j) As ov3, ST_Value(reclass_rast, 3, i, j) As rv3
FROM dummy_rast CROSS JOIN generate_series(1, 3) AS i CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;

<table>
<thead>
<tr>
<th>col</th>
<th>row</th>
<th>ov1</th>
<th>rv1</th>
<th>ov2</th>
<th>rv2</th>
<th>ov3</th>
<th>rv3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>253</td>
<td>1</td>
<td>78</td>
<td>9</td>
<td>70</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>254</td>
<td>0</td>
<td>98</td>
<td>14</td>
<td>86</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>253</td>
<td>1</td>
<td>122</td>
<td>0</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>253</td>
<td>1</td>
<td>96</td>
<td>14</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>254</td>
<td>0</td>
<td>118</td>
<td>0</td>
<td>108</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>254</td>
<td>0</td>
<td>180</td>
<td>0</td>
<td>162</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>250</td>
<td>1</td>
<td>99</td>
<td>15</td>
<td>90</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>254</td>
<td>0</td>
<td>112</td>
<td>0</td>
<td>108</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>254</td>
<td>0</td>
<td>169</td>
<td>0</td>
<td>175</td>
<td>4</td>
</tr>
</tbody>
</table>

Example: Advanced Map a single band 32BF raster to multiple viewable bands

Create a new 3 band (8BUI,8BUI,8BUI viewable raster) from a raster that has only one 32bf band

ALTER TABLE wind ADD COLUMN rast_view raster;

UPDATE wind
    set rast_view = ST_AddBand( NULL,
        ARRAY[
            ST_Reclass(rast, 1,'0.1-10]:1-10,9-10]:11,(11-33:0':text, '8BUI':text,0),
            ST_Reclass(rast,1, '11-33):0-255,[0-32:0,(34-1000:0':text, '8BUI':text,0),
            ST_Reclass(rast,1,'0-32]:0,(32-100:100-255':text, '8BUI':text,0)
        ]);

See Also

ST_AddBand, ST_Band, ST_BandPixelType, ST_MakeEmptyRaster, reclassarg, ST_Value

6.12.13 ST_Union

ST_Union — Returns the union of a set of raster tiles into a single raster composed of 1 or more bands.

Synopsis

raster ST_Union(setof raster rast);
raster ST_Union(setof raster rast, unionarg[] unionargset);
raster ST_Union(setof raster rast, integer nband);
raster ST_Union(setof raster rast, text uniontype);
raster ST_Union(setof raster rast, integer nband, text uniontype);
Description

Returns the union of a set of raster tiles into a single raster composed of at least one band. The resulting raster’s extent is the extent of the whole set. In the case of intersection, the resulting value is defined by `uniontype` which is one of the following: LAST (default), FIRST, MIN, MAX, COUNT, SUM, MEAN, RANGE.

Note

In order for rasters to be unioned, they must all have the same alignment. Use `ST_SameAlignment` and `ST_NotSameAlignmentReason` for more details and help. One way to fix alignment issues is to use `ST_Resample` and use the same reference raster for alignment.

Availability: 2.0.0
Enhanced: 2.1.0 Improved Speed (fully C-Based).
Availability: 2.1.0 `ST_Union(rast, unionarg)` variant was introduced.
Enhanced: 2.1.0 `ST_Union(rast)` (variant 1) unions all bands of all input rasters. Prior versions of PostGIS assumed the first band.
Enhanced: 2.1.0 `ST_Union(rast, uniontype)` (variant 4) unions all bands of all input rasters.

Examples: Reconstitute a single band chunked raster tile

```
-- this creates a single band from first band of raster tiles
-- that form the original file system tile
SELECT filename, ST_Union(rast,1) As file_rast
FROM sometable WHERE filename IN('dem01', 'dem02') GROUP BY filename;
```

Examples: Return a multi-band raster that is the union of tiles intersecting geometry

```
-- this creates a multi band raster collecting all the tiles that intersect a line
-- Note: In 2.0, this would have just returned a single band raster
-- , new union works on all bands by default
-- this is equivalent to unionarg: ARRAY[ROW(1, 'LAST'), ROW(2, 'LAST'), ROW(3, 'LAST')]
SELECT ST_Union(rast)
FROM aerials.boston
WHERE ST_Intersects(rast, ST_GeomFromText('LINESTRING(230486 887771, 230500 88772)',26986));
```

Examples: Return a multi-band raster that is the union of tiles intersecting geometry

Here we use the longer syntax if we only wanted a subset of bands or we want to change order of bands

```
-- this creates a multi band raster collecting all the tiles that intersect a line
SELECT ST_Union(rast,ARRAY[ROW(2, 'LAST'), ROW(1, 'LAST'), ROW(3, 'LAST')]
FROM aerials.boston
WHERE ST_Intersects(rast, ST_GeomFromText('LINESTRING(230486 887771, 230500 88772)',26986));
```

See Also

unionarg, `ST_Envelope`, `ST_ConvexHull`, `ST_Clip`, `ST_Union`
6.13 Built-in Map Algebra Callback Functions

6.13.1 ST_Distinct4ma

ST_Distinct4ma — Raster processing function that calculates the number of unique pixel values in a neighborhood.

Synopsis

float8 ST_Distinct4ma(float8[][] matrix, text nodatamode, text[] VARIADIC args);

double precision ST_Distinct4ma(double precision[][][] value, integer[][] pos, text[] VARIADIC userargs);

Description

Calculate the number of unique pixel values in a neighborhood of pixels.

---

**Note**

Variant 1 is a specialized callback function for use as a callback parameter to ST_MapAlgebraFctNgb.

---

**Note**

Variant 2 is a specialized callback function for use as a callback parameter to ST_MapAlgebra (callback function version).

---

**Warning**

Use of Variant 1 is discouraged since ST_MapAlgebraFctNgb has been deprecated as of 2.1.0.

Availability: 2.0.0

Enhanced: 2.1.0 Addition of Variant 2

Examples

```sql
SELECT
 rid,
 st_value(
 st_mapalgebraftnbgb(rast, 1, NULL, 1, 1, 'st_distinct4ma(float[][],text,text[]):=←
 regprocedure, 'ignore', NULL), 2, 2
) FROM dummy_rast
WHERE rid = 2;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>st_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

(1 row)

See Also

ST_MapAlgebraFct Ngb, ST_MapAlgebra (callback function version), ST_Min4ma, ST_Max4ma, ST_Sum4ma, ST_Mean4ma, ST_Distinct4ma, ST_StdDev4ma
6.13.2 ST_InvDistWeight4ma

ST_InvDistWeight4ma — Raster processing function that interpolates a pixel’s value from the pixel’s neighborhood.

Synopsis
double precision ST_InvDistWeight4ma(double precision[][][] value, integer[] pos, text[] VARIADIC userargs);

Description
Calculate an interpolated value for a pixel using the Inverse Distance Weighted method.

There are two optional parameters that can be passed through userargs. The first parameter is the power factor (variable k in the equation below) between 0 and 1 used in the Inverse Distance Weighted equation. If not specified, default value is 1. The second parameter is the weight percentage applied only when the value of the pixel of interest is included with the interpolated value from the neighborhood. If not specified and the pixel of interest has a value, that value is returned.

The basic inverse distance weight equation is:

\[
\hat{z}(x_o) = \frac{\sum_{j=1}^{m} z(x_j) d_{ij}^{-k}}{\sum_{j=1}^{m} d_{ij}^{-k}}
\]

\[k = \text{power factor, a real number between 0 and 1}\]

Note
This function is a specialized callback function for use as a callback parameter to ST_MapAlgebra (callback function version).

Availability: 2.1.0

Examples

-- NEEDS EXAMPLE

See Also

ST_MapAlgebra (callback function version), ST_MinDist4ma

6.13.3 ST_Max4ma

ST_Max4ma — Raster processing function that calculates the maximum pixel value in a neighborhood.

Synopsis

float8 ST_Max4ma(float8[][] matrix, text nodatamode, text[] VARIADIC args);
double precision ST_Max4ma(double precision[][][] value, integer[] pos, text[] VARIADIC userargs);
Description

Calculate the maximum pixel value in a neighborhood of pixels.
For Variant 2, a substitution value for NODATA pixels can be specified by passing that value to userargs.

**Note**

Variant 1 is a specialized callback function for use as a callback parameter to `ST_MapAlgebraFctNgb`.

**Note**

Variant 2 is a specialized callback function for use as a callback parameter to `ST_MapAlgebra (callback function version)`.

**Warning**

Use of Variant 1 is discouraged since `ST_MapAlgebraFctNgb` has been deprecated as of 2.1.0.

Availability: 2.0.0
Enhanced: 2.1.0 Addition of Variant 2

Examples

```sql
SELECT
 rid,
 st_value(
 st_mapalgebrafctnbg(rast, 1, NULL, 1, 1, 'st_max4ma(float[][],text,text[][])'::regprocedure, 'ignore', NULL), 2, 2
)
FROM dummy_rast
WHERE rid = 2;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>st_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>254</td>
</tr>
</tbody>
</table>

(1 row)

See Also

`ST_MapAlgebraFctNgb`, `ST_MapAlgebra (callback function version)`, `ST_Min4ma`, `ST_Sum4ma`, `ST_Mean4ma`, `ST_Range4ma`, `ST_Distinct4ma`, `ST_StdDev4ma`

### 6.13.4 ST_Mean4ma

ST_Mean4ma — Raster processing function that calculates the mean pixel value in a neighborhood.

**Synopsis**

```c
float8 ST_Mean4ma(float8[][], text nodatamode, text[] VARIADIC args);
double precision ST_Mean4ma(double precision[][], integer[] pos, text[] VARIADIC userargs);
```
Description

Calculate the mean pixel value in a neighborhood of pixels.

For Variant 2, a substitution value for NODATA pixels can be specified by passing that value to userargs.

**Note**

Variant 1 is a specialized callback function for use as a callback parameter to `ST_MapAlgebraFctNgb`.

**Note**

Variant 2 is a specialized callback function for use as a callback parameter to `ST_MapAlgebra` (callback function version).

**Warning**

Use of Variant 1 is discouraged since `ST_MapAlgebraFctNgb` has been deprecated as of 2.1.0.

Availability: 2.0.0

Enhanced: 2.1.0 Addition of Variant 2

**Examples: Variant 1**

```sql
SELECT
 rid,
 st_value(
 st_mapalgebrafctnbg(rast, 1, '32BF', 1, 1, 'st_mean4ma(float[][],text,text[])': regprocedure, 'ignore', NULL), 2, 2
)
FROM dummy_rast
WHERE rid = 2;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>st_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>253.222229003906</td>
</tr>
</tbody>
</table>

(1 row)

**Examples: Variant 2**

```sql
SELECT
 rid,
 st_value(
 ST_MapAlgebra(rast, 1, 'st_mean4ma(double precision[][], integer[][], text -> []): regprocedure,'32BF', 'FIRST', NULL, 1, 1)
 , 2, 2)
FROM dummy_rast
WHERE rid = 2;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>st_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>253.222229003906</td>
</tr>
</tbody>
</table>

(1 row)
See Also

ST_MapAlgebraFctNgb, ST_MapAlgebra (callback function version), ST_Min4ma, ST_Max4ma, ST_Sum4ma, ST_Range4ma, ST_StdDev4ma

6.13.5 ST_Min4ma

ST_Min4ma — Raster processing function that calculates the minimum pixel value in a neighborhood.

Synopsis

float8 ST_Min4ma(float8[][] matrix, text nodatamode, text[] VARIADIC args);

double precision ST_Min4ma(double precision[][][] value, integer[][] pos, text[] VARIADIC userargs);

Description

Calculate the minimum pixel value in a neighborhood of pixels.

For Variant 2, a substitution value for NODATA pixels can be specified by passing that value to userargs.

Note

Variant 1 is a specialized callback function for use as a callback parameter to ST_MapAlgebraFctNgb.

Note

Variant 2 is a specialized callback function for use as a callback parameter to ST_MapAlgebra (callback function version).

Warning

Use of Variant 1 is discouraged since ST_MapAlgebraFctNgb has been deprecated as of 2.1.0.

Availability: 2.0.0

Enhanced: 2.1.0 Addition of Variant 2

Examples

```
SELECT
 rid,
 st_value(
 st_mapalgebrafctngb(rast, 1, NULL, 1, 1, 'st_min4ma(float[][],text,text[]'):: regprocedure, 'ignore', NULL), 2, 2
)
FROM dummy_rast
WHERE rid = 2;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>st_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>250</td>
</tr>
</tbody>
</table>

(1 row)
See Also

ST_MapAlgebraFctNgh, ST_MapAlgebra (callback function version), ST_Max4ma, ST_Sum4ma, ST_Mean4ma, ST_Range4ma,
ST_Distinct4ma, ST_StdDev4ma

6.13.6 **ST_MinDist4ma**

ST_MinDist4ma — Raster processing function that returns the minimum distance (in number of pixels) between the pixel of
interest and a neighboring pixel with value.

**Synopsis**

double precision ST_MinDist4ma(double precision[][[]] value, integer[][[]] pos, text[] VARIADIC userargs);

**Description**

Return the shortest distance (in number of pixels) between the pixel of interest and the closest pixel with value in the neighbor-
hood.

---

**Note**

The intent of this function is to provide an informative data point that helps infer the usefulness of the pixel of interest's
interpolated value from ST_InvDistWeight4ma. This function is particularly useful when the neighborhood is sparsely
populated.

---

**Note**

This function is a specialized callback function for use as a callback parameter to ST_MapAlgebra (callback function
version).

---

**Availability:** 2.1.0

**Examples**

```sql
-- NEEDS EXAMPLE
```

**See Also**

ST_MapAlgebra (callback function version), ST_InvDistWeight4ma

6.13.7 **ST_Range4ma**

ST_Range4ma — Raster processing function that calculates the range of pixel values in a neighborhood.

**Synopsis**

float8 ST_Range4ma(float8[][] matrix, text nodatamode, text[] VARIADIC args);
double precision ST_Range4ma(double precision[][[]] value, integer[][[]] pos, text[] VARIADIC userargs);
Description

Calculate the range of pixel values in a neighborhood of pixels.

For Variant 2, a substitution value for NODATA pixels can be specified by passing that value to userargs.

**Note**

Variant 1 is a specialized callback function for use as a callback parameter to `ST_MapAlgebraFctNgb`.

**Note**

Variant 2 is a specialized callback function for use as a callback parameter to `ST_MapAlgebra` (callback function version).

**Warning**

Use of Variant 1 is discouraged since `ST_MapAlgebraFctNgb` has been deprecated as of 2.1.0.

Availability: 2.0.0

Enhanced: 2.1.0 Addition of Variant 2

Examples

```sql
SELECT
 rid,
 st_value(
 st_mapalgebrafctnbg(rast, 1, NULL, 1, 1, 'st_range4ma(float[][],text,text[]): regprocedure, 'ignore', NULL), 2, 2
)
FROM dummy_rast
WHERE rid = 2;

<table>
<thead>
<tr>
<th>rid</th>
<th>st_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
(1 row)
```

See Also

`ST_MapAlgebraFctNgb`, `ST_MapAlgebra` (callback function version), `ST_Min4ma`, `ST_Max4ma`, `ST_Sum4ma`, `ST_Mean4ma`, `ST_Distinct4ma`, `ST_StdDev4ma`

6.13.8 **ST_StdDev4ma**

`ST_StdDev4ma` — Raster processing function that calculates the standard deviation of pixel values in a neighborhood.

Synopsis

```sql
float8 ST_StdDev4ma(float8[][], text nodatamode, text[] VARIADIC args);
double precision ST_StdDev4ma(double precision[][], text[] VARIADIC userargs);
```
Description

Calculate the standard deviation of pixel values in a neighborhood of pixels.

**Note**

Variant 1 is a specialized callback function for use as a callback parameter to `ST_MapAlgebraFctNgb`.

**Note**

Variant 2 is a specialized callback function for use as a callback parameter to `ST_MapAlgebra (callback function version)`.

**Warning**

Use of Variant 1 is discouraged since `ST_MapAlgebraFctNgb` has been deprecated as of 2.1.0.

Availability: 2.0.0

Enhanced: 2.1.0 Addition of Variant 2

**Examples**

```sql
SELECT
 rid,
 st_value(
 st_mapalgebrafctngb(rast, 1, '32BF', 1, 1, 'st_stddev4ma(float[][],text,text[]')::regprocedure, 'ignore', NULL), 2, 2
)
FROM dummy_rast
WHERE rid = 2;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>st_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.30170822143555</td>
</tr>
</tbody>
</table>

(1 row)

See Also

`ST_MapAlgebraFctNgb`, `ST_MapAlgebra (callback function version)`, `ST_Min4ma`, `ST_Max4ma`, `ST_Sum4ma`, `ST_Mean4ma`, `ST_Distinct4ma`, `ST_StdDev4ma`

**6.13.9 ST_Sum4ma**

`ST_Sum4ma` — Raster processing function that calculates the sum of all pixel values in a neighborhood.

**Synopsis**

```sql
float8 ST_Sum4ma(float8[][] matrix, text nodatamode, text[] VARIADIC args);
double precision ST_Sum4ma(double precision[][][] value, integer[][] pos, text[] VARIADIC userargs);
```
Description

Calculate the sum of all pixel values in a neighborhood of pixels.
For Variant 2, a substitution value for NODATA pixels can be specified by passing that value to userargs.

---

**Note**

Variant 1 is a specialized callback function for use as a callback parameter to `ST_MapAlgebraFctNgb`.

---

**Note**

Variant 2 is a specialized callback function for use as a callback parameter to `ST_MapAlgebra (callback function version)`.

---

**Warning**

Use of Variant 1 is discouraged since `ST_MapAlgebraFctNgb` has been deprecated as of 2.1.0.

---

Availability: 2.0.0
Enhanced: 2.1.0 Addition of Variant 2

**Examples**

```sql
SELECT
 rid,
 st_value(
 st_mapalgebrafctnbg(rast, 1, '32BF', 1, 1, 'st_sum4ma(float[][],text,text[][])':':: regprocedure, 'ignore', NULL), 2, 2
)
FROM dummy_rast
WHERE rid = 2;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>st_value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2279</td>
</tr>
</tbody>
</table>

1 row

**See Also**

`ST_MapAlgebraFctNgb`, `ST_MapAlgebra (callback function version)`, `ST_Min4ma`, `ST_Max4ma`, `ST_Mean4ma`, `ST_Range4ma`, `ST_Distinct4ma`, `ST_StdDev4ma`

---

### 6.14 Raster Processing: DEM (Elevation)

#### 6.14.1 ST_Aspect

ST_Aspect — Returns the aspect (in degrees by default) of an elevation raster band. Useful for analyzing terrain.
Synopsis

raster \texttt{ST_Aspect}(raster \texttt{rast}, integer \texttt{band}=1, text \texttt{pixeltype}=32BF, text \texttt{units}=DEGREES, boolean \texttt{interpolate_nodata}=FALSE);

Description

Returns the aspect (in degrees by default) of an elevation raster band. Utilizes map algebra and applies the aspect equation to neighboring pixels.

\texttt{units} indicates the units of the aspect. Possible values are: RADIANS, DEGREES (default).

When \texttt{units} = RADIANS, values are between 0 and 2 * pi radians measured clockwise from North.

When \texttt{units} = DEGREES, values are between 0 and 360 degrees measured clockwise from North.

If slope of pixel is zero, aspect of pixel is -1.

\textbf{Note}

For more information about Slope, Aspect and Hillshade, please refer to \texttt{ESRI - How hillshade works} and \texttt{ERDAS Field Guide - Aspect Images}.

Availability: 2.0.0

Enhanced: 2.1.0 Uses \texttt{ST_MapAlgebra()} and added optional \texttt{interpolate_nodata} function parameter

Changed: 2.1.0 In prior versions, return values were in radians. Now, return values default to degrees

Examples: Variant 1

WITH foo AS {
    SELECT ST_SetValues{
        ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '32BF', 0, -9999),
        1, 1, 1, ARRAY[
            [1, 1, 1, 1, 1],
            [1, 2, 2, 2, 1],
            [1, 2, 3, 2, 1],
            [1, 2, 2, 2, 1],
            [1, 1, 1, 1, 1]
        ]::double precision[][]}
    ) AS rast
}

SELECT
    ST_DumpValues(ST_Aspect(rast, 1, '32BF'))
FROM foo

(1 row)
Examples: Variant 2

Complete example of tiles of a coverage. This query only works with PostgreSQL 9.1 or higher.

```sql
WITH foo AS (
 SELECT ST_Tile(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(6, 6, 0, 0, 1, -1, 0, 0, 0),
 1, '32BF', 0, -9999
),
 1, 1, 1, ARRAY[
 [1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 2, 1],
 [1, 2, 2, 3, 3, 1],
 [1, 1, 3, 2, 1, 1],
 [1, 2, 2, 1, 2, 1],
 [1, 1, 1, 1, 1, 1]
]::double precision[]
),
 2, 2
) AS rast
)
SELECT
 t1.rast,
 ST_Aspect(ST_Union(t2.rast), 1, t1.rast)
FROM foo t1
CROSS JOIN foo t2
WHERE ST_Intersects(t1.rast, t2.rast)
GROUP BY t1.rast;
```

See Also

ST_MapAlgebra (callback function version), ST_TRI, ST_TPI, ST_Roughness, ST_HillShade, ST_Slope

6.14.2 ST_HillShade

ST_HillShade — Returns the hypothetical illumination of an elevation raster band using provided azimuth, altitude, brightness and scale inputs.

Synopsis

```
(raster rast, integer band=1, text pixeltype=32BF, double precision azimuth=315, double precision altitude=45, double precision max_bright=255, double precision scale=1.0, boolean interpolate_nodata=FALSE);
(raster rast, integer band, raster customextent, text pixeltype=32BF, double precision azimuth=315, double precision altitude=45, double precision max_bright=255, double precision scale=1.0, boolean interpolate_nodata=FALSE);
```

Description

Returns the hypothetical illumination of an elevation raster band using the azimuth, altitude, brightness, and scale inputs. Utilizes map algebra and applies the hill shade equation to neighboring pixels. Return pixel values are between 0 and 255.

- **azimuth** is a value between 0 and 360 degrees measured clockwise from North.
- **altitude** is a value between 0 and 90 degrees where 0 degrees is at the horizon and 90 degrees is directly overhead.
- **max_bright** is a value between 0 and 255 with 0 as no brightness and 255 as max brightness.
scale is the ratio of vertical units to horizontal. For Feet:LatLon use scale=370400, for Meters:LatLon use scale=111120.

If interpolate_nodata is TRUE, values for NODATA pixels from the input raster will be interpolated using ST_InvDistWeight4ma before computing the hillshade illumination.

**Note**

For more information about Hillshade, please refer to How hillshade works.

Availability: 2.0.0

Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional interpolate_nodata function parameter

Changed: 2.1.0 In prior versions, azimuth and altitude were expressed in radians. Now, azimuth and altitude are expressed in degrees

### Examples: Variant 1

```sql
WITH foo AS (
 SELECT ST_SetValues(
 ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '32BF', 0, -9999),
 1, 1, 1, ARRAY[
 [1, 1, 1, 1, 1],
 [1, 2, 2, 2, 1],
 [1, 2, 3, 2, 1],
 [1, 2, 2, 2, 1],
 [1, 1, 1, 1, 1]
]::double precision[]
) AS rast
)
SELECT ST_DumpValues(ST_Hillshade(rast, 1, '32BF'))
FROM foo
```

```
(1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,251.32763671875,220.749786376953,147.224319458008,NULL},{NULL,220.749786376953,180.31225341797,67.7497863769531,NULL},{NULL,147.224319458008,67.7497863769531,43.1210060119629,NULL},{NULL,NULL,NULL,NULL,NULL}}")
(1 row)
```

### Examples: Variant 2

Complete example of tiles of a coverage. This query only works with PostgreSQL 9.1 or higher.

```sql
WITH foo AS (
 SELECT ST_Tile(
 ST_SetValues(
 ST_AddBand(ST_MakeEmptyRaster(6, 6, 0, 0, 1, -1, 0, 0, 0),
 1, '32BF', 0, -9999
),
```

```
```
(1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,251.32763671875,220.749786376953,147.224319458008,NULL},{NULL,220.749786376953,180.31225341797,67.7497863769531,NULL},{NULL,147.224319458008,67.7497863769531,43.1210060119629,NULL},{NULL,NULL,NULL,NULL,NULL}}")
(1 row)
```

Examples: Variant 2

Complete example of tiles of a coverage. This query only works with PostgreSQL 9.1 or higher.

```sql
WITH foo AS (
    SELECT ST_Tile(
        ST_SetValues(
            ST_AddBand(ST_MakeEmptyRaster(6, 6, 0, 0, 1, -1, 0, 0, 0),
            1, '32BF', 0, -9999
        ),
```

```
```
(1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,251.32763671875,220.749786376953,147.224319458008,NULL},{NULL,220.749786376953,180.31225341797,67.7497863769531,NULL},{NULL,147.224319458008,67.7497863769531,43.1210060119629,NULL},{NULL,NULL,NULL,NULL,NULL}}")
(1 row)
```

### Examples: Variant 2

Complete example of tiles of a coverage. This query only works with PostgreSQL 9.1 or higher.

```sql
WITH foo AS (
 SELECT ST_Tile(
 ST_SetValues(
 ST_AddBand(ST_MakeEmptyRaster(6, 6, 0, 0, 1, -1, 0, 0, 0),
 1, '32BF', 0, -9999
),
```
SELECT t1.rast,  
ST_Hillshade(ST_Union(t2.rast), 1, t1.rast)  
FROM foo t1  
CROSS JOIN foo t2  
WHERE ST_Intersects(t1.rast, t2.rast)  
GROUP BY t1.rast;

See Also

ST_MapAlgebra (callback function version), ST_TRI, ST_TPI, ST_Roughness, ST_Aspect, ST_Slope

6.14.3 ST_Roughness

ST_Roughness — Returns a raster with the calculated "roughness" of a DEM.

Synopsis

```
raster ST_Roughness(raster rast, integer nband, raster customextent, text pixeltype="32BF", boolean interpolate_nodata=FALSE);
```

Description

Calculates the "roughness" of a DEM, by subtracting the maximum from the minimum for a given area.

Availability: 2.1.0

Examples

```
-- needs examples
```

See Also

ST_MapAlgebra (callback function version), ST_TRI, ST_TPI, ST_Slope, ST_HillShade, ST_Aspect

6.14.4 ST_Slope

ST_Slope — Returns the slope (in degrees by default) of an elevation raster band. Useful for analyzing terrain.
Synopsis

raster ST_Slope(raster rast, integer nband=1, text pixeltype=32BF, text units=DEGREES, double precision scale=1.0, boolean interpolate_nodata=FALSE);
raster ST_Slope(raster rast, integer nband, raster customextent, text pixeltype=32BF, text units=DEGREES, double precision scale=1.0, boolean interpolate_nodata=FALSE);

Description

Returns the slope (in degrees by default) of an elevation raster band. Utilizes map algebra and applies the slope equation to neighboring pixels.

units indicates the units of the slope. Possible values are: RADIANS, DEGREES (default), PERCENT.

scale is the ratio of vertical units to horizontal. For Feet:LatLon use scale=370400, for Meters:LatLon use scale=111120.

If interpolate_nodata is TRUE, values for NODATA pixels from the input raster will be interpolated using ST_InvDistWeight4ma before computing the surface slope.

Note

For more information about Slope, Aspect and Hillshade, please refer to ESRI - How hillshade works and ERDAS Field Guide - Slope Images.

Availability: 2.0.0

Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional units, scale, interpolate_nodata function parameters

Changed: 2.1.0 In prior versions, return values were in radians. Now, return values default to degrees

Examples: Variant 1

WITH foo AS (
    SELECT ST_SetValues(
        ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '32BF', 0, -9999),
        1, 1, 1, ARRAY[
            [1, 1, 1, 1, 1],
            [1, 2, 2, 2, 1],
            [1, 2, 3, 2, 1],
            [1, 2, 2, 2, 1],
            [1, 1, 1, 1, 1]
        ]::double precision[][]
    ) AS rast
)
SELECT ST_DumpValues(ST_Slope(rast, 1, '32BF'))
FROM foo
st_dumpvalues

(1 row)
Examples: Variant 2

Complete example of tiles of a coverage. This query only works with PostgreSQL 9.1 or higher.

WITH foo AS (
    SELECT ST_Tile(
        SELECT ST_SetValues(
            ST_AddBand(
                SELECT ST_MakeEmptyRaster(6, 6, 0, 0, 1, -1, 0, 0, 0),
                '32BF', 0, -9999
            ),
            1, 1, 1, ARRAY[
                [1, 1, 1, 1, 1, 1],
                [1, 1, 1, 1, 2, 1],
                [1, 2, 2, 3, 3, 1],
                [1, 1, 3, 2, 1, 1],
                [1, 2, 2, 1, 2, 1],
                [1, 1, 1, 1, 1, 1]
            ]::double precision[]
        ),
        2, 2
    ) AS rast
)
    SELECT t1.rast,
           ST_Slope(ST_Union(t2.rast), 1, t1.rast)
    FROM foo t1
    CROSS JOIN foo t2
    WHERE ST_Intersects(t1.rast, t2.rast)
    GROUP BY t1.rast;

See Also

ST_MapAlgebra (callback function version), ST_TRI, ST_TPI, ST_Roughness, ST_HillShade, ST_Aspect

6.14.5 ST_TPI

ST_TPI — Returns a raster with the calculated Topographic Position Index.

Synopsis

raster ST_TPI(raster rast, integer nband, raster customextent, text pixeltype="32BF", boolean interpolate_nodata=FALSE);

Description

Calculates the Topographic Position Index, which is defined as the focal mean with radius of one minus the center cell.

Note

This function only supports a focalmean radius of one.

Availability: 2.1.0
6.14.6 ST_TRI

ST_TRI — Returns a raster with the calculated Terrain Ruggedness Index.

Synopsis

raster \texttt{ST_TRI}(\texttt{rast}, \texttt{integer nband}, \texttt{raster customextent}, \texttt{text pixeltype="32BF"}, \texttt{boolean interpolate_nodata=FALSE});

Description

Terrain Ruggedness Index is calculated by comparing a central pixel with its neighbors, taking the absolute values of the differences, and averaging the result.

\begin{itemize}
\item \textbf{Note} \hfill This function only supports a focalmean radius of one.
\end{itemize}

Availability: 2.1.0

Examples

\begin{verbatim}
-- needs examples
\end{verbatim}

See Also

\texttt{ST_MapAlgebra (callback function version), ST_TRI, ST_Roughness, ST_Slope, ST_HillShade, ST_Aspect}

6.15 Raster Processing: Raster to Geometry

6.15.1 Box3D

Box3D — Returns the box 3d representation of the enclosing box of the raster.

Synopsis

\texttt{box3d Box3D(raster rast)};
Description

Returns the box representing the extent of the raster.

The polygon is defined by the corner points of the bounding box \((\text{MINX}, \text{MINY}), (\text{MAXX}, \text{MAXY})\).

Changed: 2.0.0 In pre-2.0 versions, there used to be a box2d instead of box3d. Since box2d is a deprecated type, this was changed to box3d.

Examples

```sql
SELECT
 rid,
 Box3D(rast) AS rastbox
FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>rastbox</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BOX3D(0.5 0.5 0,20.5 60.5 0)</td>
</tr>
<tr>
<td>2</td>
<td>BOX3D(3427927.75 5793243.5 0,3427928 5793244 0)</td>
</tr>
</tbody>
</table>

See Also

**ST_Envelope**

### 6.15.2 ST_ConvexHull

**ST_ConvexHull** — Return the convex hull geometry of the raster including pixel values equal to BandNoDataValue. For regular shaped and non-skewed rasters, this gives the same result as **ST_Envelope** so only useful for irregularly shaped or skewed rasters.

Synopsis

```sql
geometry ST_ConvexHull(raster rast);
```

Description

Return the convex hull geometry of the raster including the NoDataBandValue band pixels. For regular shaped and non-skewed rasters, this gives more or less the same result as **ST_Envelope** so only useful for irregularly shaped or skewed rasters.

Note

**ST_Envelope** floors the coordinates and hence add a little buffer around the raster so the answer is subtly different from **ST_ConvexHull** which does not floor.

Examples

Refer to **PostGIS Raster Specification** for a diagram of this.

```sql
-- Note envelope and convexhull are more or less the same
SELECT ST_AsText(ST_ConvexHull(rast)) As convhull,
 ST_AsText(ST_Envelope(rast)) As env
FROM dummy_rast WHERE rid=1;
```

<table>
<thead>
<tr>
<th>convhull</th>
<th>env</th>
</tr>
</thead>
</table>
-- now we skew the raster
-- note how the convex hull and envelope are now different
SELECT ST_AsText(ST_ConvexHull(rast)) As convhull,
       ST_AsText(ST_Envelope(rast)) As env
FROM (SELECT ST_SetRotation(rast, 0.1, 0.1) As rast
       FROM dummy_rast WHERE rid=1) As foo;

convhull	env
POLYGON((0.5 0.5,20.5 1.5,22.5 61.5,2.5 60.5,0.5)) | POLYGON((0 0,22 0,22 61,0 61,0 0))

See Also

ST_Envelope, ST_MinConvexHull, ST_ConvexHull, ST_AsText

6.15.3 ST_DumpAsPolygons

ST_DumpAsPolygons — Returns a set of geomval (geom,val) rows, from a given raster band. If no band number is specified, band num defaults to 1.

Synopsis

setof geomval ST_DumpAsPolygons(raster rast, integer band_num=1, boolean exclude_nodata_value=TRUE);

Description

This is a set-returning function (SRF). It returns a set of geomval rows, formed by a geometry (geom) and a pixel band value (val). Each polygon is the union of all pixels for that band that have the same pixel value denoted by val.

ST_DumpAsPolygon is useful for polygonizing rasters. It is the reverse of a GROUP BY in that it creates new rows. For example it can be used to expand a single raster into multiple POLYGONS/MULTIPOLYGONS.

Availability: Requires GDAL 1.7 or higher.

**Note**
If there is a no data value set for a band, pixels with that value will not be returned except in the case of exclude_nodata_value=false.

**Note**
If you only care about count of pixels with a given value in a raster, it is faster to use ST_ValueCount.

**Note**
This is different than ST_PixelAsPolygons where one geometry is returned for each pixel regardless of pixel value.
Examples

```sql
-- this syntax requires PostgreSQL 9.3+
SELECT val, ST_AsText(geom) As geomwkt
FROM (
 SELECT dp.*
 FROM dummy_rast, LATERAL ST_DumpAsPolygons(rast) AS dp
 WHERE rid = 2
) As foo
WHERE val BETWEEN 249 and 251
ORDER BY val;
```

<table>
<thead>
<tr>
<th>val</th>
<th>geomwkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>249</td>
<td>POLYGON((3427927.95 5793243.95,3427927.95 5793243.85,3427928 5793243.85,3427928 5793243.95,3427927.95 5793243.95))</td>
</tr>
<tr>
<td>250</td>
<td>POLYGON((3427927.75 5793243.9,3427927.75 5793243.85,3427927.8 5793243.85,3427927.8 5793243.9,3427927.75 5793243.9))</td>
</tr>
<tr>
<td>250</td>
<td>POLYGON((3427927.8 5793243.8,3427927.8 5793243.75,3427927.85 5793243.75,3427927.85 5793243.8,3427927.8 5793243.8))</td>
</tr>
<tr>
<td>251</td>
<td>POLYGON((3427927.75 5793243.85,3427927.75 5793243.8,3427927.8 5793243.8,3427927.8 5793243.85,3427927.75 5793243.85))</td>
</tr>
</tbody>
</table>

See Also

geomval, ST_Value, ST_Polygon, ST_ValueCount

6.15.4 ST_Envelope

**ST_Envelope** — Returns the polygon representation of the extent of the raster.

**Synopsis**

```sql
geometry ST_Envelope(raster rast);
```

**Description**

Returns the polygon representation of the extent of the raster in spatial coordinate units defined by srid. It is a float8 minimum bounding box represented as a polygon.

The polygon is defined by the corner points of the bounding box ((MINX, MINY), (MINX, MAXY), (MAXX, MAXY), (MAXX, MINY), (MINX, MINY))

**Examples**

```sql
SELECT rid, ST_AsText(ST_Envelope(rast)) As envgeomwkt
FROM dummy_rast;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>envgeomwkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>POLYGON((0 0,0,20 0,20 0,60,0,60,0))</td>
</tr>
<tr>
<td>2</td>
<td>POLYGON((3427927 5793243,3427928 5793243,3427928 5793244,3427927 5793244,3427927 5793243))</td>
</tr>
</tbody>
</table>
See Also

ST_Envelope, ST_AsText, ST_SRID

6.15.5 ST_MinConvexHull

ST_MinConvexHull — Return the convex hull geometry of the raster excluding NODATA pixels.

Synopsis

geometry ST_MinConvexHull(raster rast, integer nband=NULL);

Description

Return the convex hull geometry of the raster excluding NODATA pixels. If nband is NULL, all bands of the raster are considered.

Availability: 2.1.0

Examples

WITH foo AS (
    SELECT
        ST_SetValues(
            ST_SetValues(
                ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(9, 9, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, ←
                0), 2, '8BUI', 1, 0),
                1, 1, 1,
                ARRAY[
                    [0, 0, 0, 0, 0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0, 0, 0, 0, 0]
                ]::double precision[][],
            2, 1, 1,
            ARRAY[
                [0, 0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0, 0, 0, 0],
                [1, 0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 1, 0, 0, 0, 0, 0, 0]
            ]::double precision[][],
        ) AS rast
    )

SELECT
    ST_AsText(ST_ConvexHull(rast)) AS hull,
    ST_AsText(ST_MinConvexHull(rast)) AS mhull,
ST_AsText(ST_MinConvexHull(rast, 1)) AS mhull_1,
ST_AsText(ST_MinConvexHull(rast, 2)) AS mhull_2
FROM foo

<table>
<thead>
<tr>
<th>hull</th>
<th>mhull_1</th>
<th>mhull_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 0, 9 0, -9, -9 0)</td>
<td>(0 -3,9 -3,9 -9,0 -9,0 -3)</td>
<td>(3 -3,9 -3,9 -6,3 -6,3 -3)</td>
</tr>
</tbody>
</table>

See Also

ST_Envelope, ST_ConvexHull, ST_ConvexHull, ST_AsText

### 6.15.6 ST_Polygon

ST_Polygon — Returns a multipolygon geometry formed by the union of pixels that have a pixel value that is not no data value. If no band number is specified, band num defaults to 1.

**Synopsis**

```
geometry ST_Polygon(raster rast, integer band_num=1);
```

**Description**

Availability: 0.1.6 Requires GDAL 1.7 or higher.

Enhanced: 2.1.0 Improved Speed (fully C-Based) and the returning multipolygon is ensured to be valid.

Changed: 2.1.0 In prior versions would sometimes return a polygon, changed to always return multipolygon.

**Examples**

```sql
-- by default no data band value is 0 or not set, so polygon will return a square polygon
SELECT ST_AsText(ST_Polygon(rast)) As geomwkt
FROM dummy_rast
WHERE rid = 2;

geomwkt
--
MULTIPOLYGON(((3427927.75 5793244,3427928 5793244,3427928 5793243.75,3427927.75 5793243.75,3427927.75 5793244)))

-- now we change the no data value of first band
UPDATE dummy_rast SET rast = ST_SetBandNoDataValue(rast,1,254)
WHERE rid = 2;
SELECT rid, ST_BandNoDataValue(rast)
from dummy_rast where rid = 2;

-- ST_Polygon excludes the pixel value 254 and returns a multipolygon
SELECT ST_AsText(ST_Polygon(rast)) As geomwkt
FROM dummy_rast
WHERE rid = 2;
```
--- Or if you want the no data value different for just one time

```
SELECT ST_AsText(
 ST_Polygon(
 ST_SetBandNoDataValue(rast,1,252)
)
) As geomwkt
FROM dummy_rast
WHERE rid = 2;
```

See Also

ST_Value, ST_DumpAsPolygons

### 6.16 Raster Operators

#### 6.16.1 &&

```
&& — Returns TRUE if A’s bounding box intersects B’s bounding box.
```

**Synopsis**

```
boolean &&(raster A , raster B);
boolean &&(raster A , geometry B);
boolean &&(geometry B , raster A);
```

**Description**

The `&&` operator returns TRUE if the bounding box of raster/geometry A intersects the bounding box of raster/geometry B.

**Note**

This operand will make use of any indexes that may be available on the rasters.

**Availability:** 2.0.0
**Examples**

```sql
SELECT A.rid As a_rid, B.rid As b_rid, A.rast && B.rast As intersect
FROM dummy_rast AS A CROSS JOIN dummy_rast AS B LIMIT 3;
```

<table>
<thead>
<tr>
<th>a_rid</th>
<th>b_rid</th>
<th>intersect</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>t</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>f</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>f</td>
</tr>
</tbody>
</table>

**6.16.2 &<**

&< — Returns TRUE if A’s bounding box is to the left of B’s.

**Synopsis**

boolean &< (raster A, raster B);

**Description**

The &< operator returns TRUE if the bounding box of raster A overlaps or is to the left of the bounding box of raster B, or more accurately, overlaps or is NOT to the right of the bounding box of raster B.

**Note**

This operand will make use of any indexes that may be available on the rasters.

**Examples**

```sql
SELECT A.rid As a_rid, B.rid As b_rid, A.rast &< B.rast As overleft
FROM dummy_rast AS A CROSS JOIN dummy_rast AS B;
```

<table>
<thead>
<tr>
<th>a_rid</th>
<th>b_rid</th>
<th>overleft</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>t</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>f</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>f</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>t</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>t</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>f</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>t</td>
</tr>
</tbody>
</table>

**6.16.3 &>**

&> — Returns TRUE if A’s bounding box is to the right of B’s.

**Synopsis**

boolean &> (raster A, raster B);
Description

The \&> operator returns TRUE if the bounding box of raster A overlaps or is to the right of the bounding box of raster B, or more accurately, overlaps or is NOT to the left of the bounding box of raster B.

---

**Note**

This operand will make use of any indexes that may be available on the geometries.

---

Examples

```
SELECT A.rid As a_rid, B.rid As b_rid, A.rast &> B.rast As overright
FROM dummy_rast AS A CROSS JOIN dummy_rast AS B;
```

<table>
<thead>
<tr>
<th>a_rid</th>
<th>b_rid</th>
<th>overright</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>t</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>t</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>t</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>f</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>t</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>f</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>f</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>t</td>
</tr>
</tbody>
</table>
```

6.16.4 =

= — Returns TRUE if A’s bounding box is the same as B’s. Uses double precision bounding box.

Synopsis

```
boolean = ( raster A , raster B );
```

Description

The = operator returns TRUE if the bounding box of raster A is the same as the bounding box of raster B. PostgreSQL uses the =, <, and > operators defined for rasters to perform internal orderings and comparison of rasters (ie. in a GROUP BY or ORDER BY clause).

Caution

This operand will NOT make use of any indexes that may be available on the rasters. Use \~= instead. This operator exists mostly so one can group by the raster column.

Availability: 2.1.0

See Also

\~=
6.16.5 @

@ — Returns TRUE if A’s bounding box is contained by B’s. Uses double precision bounding box.

Synopsis

boolean @(raster A, raster B);
boolean @(geometry A, raster B);
boolean @(raster B, geometry A);

Description

The @ operator returns TRUE if the bounding box of raster/geometry A is contained by bounding box of raster/geometry B.

Note
This operand will use spatial indexes on the rasters.

Availability: 2.0.0 raster @ raster, raster @ geometry introduced
Availability: 2.0.5 geometry @ raster introduced

See Also
~

6.16.6 ~=

~= — Returns TRUE if A’s bounding box is the same as B’s.

Synopsis

boolean ~= (raster A, raster B);

Description

The ~= operator returns TRUE if the bounding box of raster A is the same as the bounding box of raster B.

Note
This operand will make use of any indexes that may be available on the rasters.

Availability: 2.0.0

Examples

Very useful usecase is for taking two sets of single band rasters that are of the same chunk but represent different themes and creating a multi-band raster

```
SELECT ST_AddBand(prec.rast, alt.rast) As new_rast
FROM prec INNER JOIN alt ON (prec.rast ~= alt.rast);
```
See Also

ST_AddBand, =

6.16.7 ~

~ — Returns TRUE if A’s bounding box is contains B’s. Uses double precision bounding box.

Synopsis

boolean ~ (raster A , raster B);
boolean ~ (geometry A , raster B);
boolean ~ (raster B , geometry A);

Description

The ~ operator returns TRUE if the bounding box of raster/geometry A is contains bounding box of raster/geometry B.

Note

This operand will use spatial indexes on the rasters.

Availability: 2.0.0

See Also

@

6.17 Raster and Raster Band Spatial Relationships

6.17.1 ST_Contains

ST_Contains — Return true if no points of raster rastB lie in the exterior of raster rastA and at least one point of the interior of rastB lies in the interior of rastA.

Synopsis

boolean ST_Contains(raster rastA , integer nbandA , raster rastB , integer nbandB);
boolean ST_Contains(raster rastA , raster rastB);

Description

Raster rastA contains rastB if and only if no points of rastB lie in the exterior of rastA and at least one point of the interior of rastB lies in the interior of rastA. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Note

This function will make use of any indexes that may be available on the rasters.
Note

To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g.,
ST_Contains(ST_Polygon(raster), geometry) or ST_Contains(geometry, ST_Polygon(raster)).

Note

ST_Contains() is the inverse of ST_Within(). So, ST_Contains(rastA, rastB) implies ST_Within(rastB, rastA).

Availability: 2.1.0

Examples

```sql
-- specified band numbers
SELECT r1.rid, r2.rid, ST_Contains(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 1;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>rid</th>
<th>st_contains</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>f</td>
</tr>
</tbody>
</table>

```sql
-- no band numbers specified
SELECT r1.rid, r2.rid, ST_Contains(r1.rast, r2.rast) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 1;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>rid</th>
<th>st_contains</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>f</td>
</tr>
</tbody>
</table>

See Also

ST_Intersects, ST_Within

6.17.2 ST_ContainsProperly

ST_ContainsProperly — Return true if rastB intersects the interior of rastA but not the boundary or exterior of rastA.

Synopsis

```sql
boolean ST_ContainsProperly( raster rastA , integer nbandA , raster rastB , integer nbandB );
```

Description

Raster rastA contains properly rastB if rastB intersects the interior of rastA but not the boundary or exterior of rastA. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Raster rastA does not contain properly itself but does contain itself.
Note

This function will make use of any indexes that may be available on the rasters.

Note

To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Contains Properly(ST_Polygon(raster), geometry) or ST_Contains Properly(geometry, ST_Polygon(raster)).

Availability: 2.1.0

Examples

```
SELECT r1.rid, r2.rid, ST_ContainsProperly(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>rid</th>
<th>st_containsproperly</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>f</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>f</td>
</tr>
</tbody>
</table>

See Also

ST_Intersects, ST_Contains

6.17.3 ST_Covers

ST_Covers — Return true if no points of raster rastB lie outside raster rastA.

Synopsis

```sql
boolean ST_Covers( raster rastA , integer nbandA , raster rastB , integer nbandB );
boolean ST_Covers( raster rastA , raster rastB );
```

Description

Raster rastA covers rastB if and only if no points of rastB lie in the exterior of rastA. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Note

This function will make use of any indexes that may be available on the rasters.

Note

To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Covers(ST_Polygon(raster), geometry) or ST_Covers(geometry, ST_Polygon(raster)).

Availability: 2.1.0
Examples

```
SELECT r1.rid, r2.rid, ST_Covers(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>rid</th>
<th>st_covers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>f</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>t</td>
</tr>
</tbody>
</table>

See Also

ST_Intersects, ST_CoveredBy

6.17.4 ST_CoveredBy

ST_CoveredBy — Return true if no points of raster rastA lie outside raster rastB.

Synopsis

```sql
boolean ST_CoveredBy( raster rastA , integer nbandA , raster rastB , integer nbandB );
boolean ST_CoveredBy( raster rastA , raster rastB );
```

Description

Raster rastA is covered by rastB if and only if no points of rastA lie in the exterior of rastB. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Notes

- This function will make use of any indexes that may be available on the rasters.

- To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_CoveredBy(ST_Polygon(raster), geometry) or ST_CoveredBy(geometry, ST_Polygon(raster)).

Availability: 2.1.0

Examples

```
SELECT r1.rid, r2.rid, ST_CoveredBy(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>rid</th>
<th>st_coveredby</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>f</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>t</td>
</tr>
</tbody>
</table>
See Also

ST_Intersects, ST_Covers

6.17.5 ST_Disjoint

ST_Disjoint — Return true if raster rastA does not spatially intersect rastB.

Synopsis

boolean ST_Disjoint(raster rastA , integer nbandA , raster rastB , integer nbandB);
boolean ST_Disjoint(raster rastA , raster rastB);

Description

Raster rastA and rastB are disjointed if they do not share any space together. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Note

This function does NOT use any indexes.

Note

To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Disjoint(ST_Polygon(raster), geometry).

Availability: 2.1.0

Examples

```sql
-- rid = 1 has no bands, hence the NOTICE and the NULL value for st_disjoint
SELECT r1.rid, r2.rid, ST_Disjoint(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;
NOTICE: The second raster provided has no bands
rid | rid | st_disjoint
-----+-----+-------------
2 | 1 |          
2 | 2 | f

-- this time, without specifying band numbers
SELECT r1.rid, r2.rid, ST_Disjoint(r1.rast, r2.rast) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;
rid | rid | st_disjoint
-----+-----+-------------
2 | 1 | t
2 | 2 | f
```
See Also

ST_Intersects

6.17.6 ST_Intersects

ST_Intersects — Return true if raster rastA spatially intersects raster rastB.

Synopsis

boolean \textbf{ST_Intersects}(raster rastA , integer nbandA , raster rastB , integer nbandB);
boolean \textbf{ST_Intersects}(raster rastA , raster rastB);
boolean \textbf{ST_Intersects}(raster rast , integer nband , geometry geommin);
boolean \textbf{ST_Intersects}(raster rast , geometry geommin , integer nband=NULL);
boolean \textbf{ST_Intersects}(geometry geommin , raster rast , integer nband=NULL);

Description

Return true if raster rastA spatially intersects raster rastB. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

\begin{center}
\textbf{Note}
\end{center}
\begin{center}
This function will make use of any indexes that may be available on the rasters.
\end{center}

Enhanced: 2.0.0 support raster/raster intersects was introduced.

\begin{center}
\textbf{Warning}
\end{center}
\begin{center}
Changed: 2.1.0 The behavior of the \textbf{ST_Intersects}(raster, geometry) variants changed to match that of \textbf{ST_Intersects}(geometry, raster).
\end{center}

Examples

\begin{verbatim}
-- different bands of same raster
SELECT ST_Intersects(rast, 2, rast, 3) FROM dummy_rast WHERE rid = 2;
\end{verbatim}

\begin{verbatim}
st_intersects

t
\end{verbatim}

See Also

ST_Intersection, ST_Disjoint

6.17.7 ST_Overlaps

ST_Overlaps — Return true if raster rastA and rastB intersect but one does not completely contain the other.
Synopsis

Boolean `ST_Overlaps(raster rastA , integer nbandA , raster rastB , integer nbandB);`

Boolean `ST_Overlaps(raster rastA , raster rastB);`

Description

Return true if raster `rastA` spatially overlaps raster `rastB`. This means that `rastA` and `rastB` intersect but one does not completely contain the other. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Note

This function will make use of any indexes that may be available on the rasters.

Note

To test the spatial relationship of a raster and a geometry, use `ST_Polygon` on the raster, e.g. `ST_Overlaps(ST_Polygon(raster), geometry)`.

Availability: 2.1.0

Examples

```sql
-- comparing different bands of same raster
SELECT ST_Overlaps(rast, 1, rast, 2) FROM dummy_rast WHERE rid = 2;

st_overlaps
------------
1
```

See Also

- `ST_Intersects`

6.17.8 ST_Touches

`ST_Touches` — Return true if raster `rastA` and `rastB` have at least one point in common but their interiors do not intersect.

Synopsis

Boolean `ST_Touches(raster rastA , integer nbandA , raster rastB , integer nbandB);`

Boolean `ST_Touches(raster rastA , raster rastB);`
Description

Return true if raster rastA spatially touches raster rastB. This means that rastA and rastB have at least one point in common but their interiors do not intersect. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Note

This function will make use of any indexes that may be available on the rasters.

Note

To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Touches(ST_Polygon(raster), geometry).

Availability: 2.1.0

Examples

```sql
SELECT r1.rid, r2.rid, ST_Touches(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>rid</th>
<th>st_touches</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>f</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>f</td>
</tr>
</tbody>
</table>

See Also

ST_Intersects

6.17.9 ST_SameAlignment

ST_SameAlignment — Returns true if rasters have same skew, scale, spatial ref, and offset (pixels can be put on same grid without cutting into pixels) and false if they don’t with notice detailing issue.

Synopsis

```sql
boolean ST_SameAlignment( raster rastA , raster rastB );
boolean ST_SameAlignment( double precision ulx1 , double precision uly1 , double precision scalex1 , double precision scaley1 , double precision skewx1 , double precision skewy1 , double precision ulx2 , double precision uly2 , double precision scalex2 , double precision scaley2 , double precision skewx2 , double precision skewy2 );
boolean ST_SameAlignment( raster set rastfield );
```

Description

Non-Aggregate version (Variants 1 and 2): Returns true if the two rasters (either provided directly or made using the values for upperleft, scale, skew and srid) have the same scale, skew, srid and at least one of any of the four corners of any pixel of one raster falls on any corner of the grid of the other raster. Returns false if they don’t and a NOTICE detailing the alignment issue.
Aggregate version (Variant 3): From a set of rasters, returns true if all rasters in the set are aligned. The \texttt{ST_SameAlignment()} function is an “aggregate” function in the terminology of PostgreSQL. That means that it operates on rows of data, in the same way the \texttt{SUM()} and \texttt{AVG()} functions do.

Availability: 2.0.0

Enhanced: 2.1.0 addition of Aggegrate variant

Examples: Rasters

```sql
SELECT ST_SameAlignment(
    ST_MakeEmptyRaster(1, 1, 0, 0, 1, 1, 0, 0),
    ST_MakeEmptyRaster(1, 1, 0, 0, 1, 1, 0, 0)
) as sm;
```

<table>
<thead>
<tr>
<th>sm</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
</tr>
</tbody>
</table>

```sql
SELECT ST_SameAlignment(A.rast,b.rast)
FROM dummy_rast AS A CROSS JOIN dummy_rast AS B;
```

NOTICE: The two rasters provided have different SRIDs

<table>
<thead>
<tr>
<th>st_samealignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>f</td>
</tr>
</tbody>
</table>

See Also

Section 4.5.1, \texttt{ST_NotSameAlignmentReason}, \texttt{ST_MakeEmptyRaster}

6.17.10 \texttt{ST_NotSameAlignmentReason}

\texttt{ST_NotSameAlignmentReason} — Returns text stating if rasters are aligned and if not aligned, a reason why.

Synopsis

```sql
text \texttt{ST\_NotSameAlignmentReason}(raster rastA, raster rastB);
```

Description

Returns text stating if rasters are aligned and if not aligned, a reason why.

Note

If there are several reasons why the rasters are not aligned, only one reason (the first test to fail) will be returned.

Availability: 2.1.0
Examples

```sql
SELECT
    ST_SameAlignment(
        ST_MakeEmptyRaster(1, 1, 0, 0, 1, 1, 0, 0),
        ST_MakeEmptyRaster(1, 1, 0, 0, 1.1, 1.1, 0, 0)
    ),
    ST_NotSameAlignmentReason(
        ST_MakeEmptyRaster(1, 1, 0, 0, 1, 1, 0, 0),
        ST_MakeEmptyRaster(1, 1, 0, 0, 1.1, 1.1, 0, 0)
    )
;
```

<table>
<thead>
<tr>
<th>st_samealignment</th>
<th>st_notsamealignmentreason</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>The rasters have different scales on the X axis</td>
</tr>
</tbody>
</table>

(1 row)

See Also

Section 4.5.1, ST_SameAlignment

6.17.11 ST_Within

ST_Within — Return true if no points of raster rastA lie in the exterior of raster rastB and at least one point of the interior of rastA lies in the interior of rastB.

Synopsis

```sql
boolean ST_Within( raster rastA , integer nbandA , raster rastB , integer nbandB);
boolean ST_Within( raster rastA , raster rastB );
```

Description

Raster rastA is within rastB if and only if no points of rastA lie in the exterior of rastB and at least one point of the interior of rastA lies in the interior of rastB. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Note

This operand will make use of any indexes that may be available on the rasters.

Note

To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Within(ST_Polygon(raster), geometry) or ST_Within(geometry, ST_Polygon(raster)).

Note

ST_Within() is the inverse of ST_Contains(). So, ST_Within(rastA, rastB) implies ST_Contains(rastB, rastA).

Availability: 2.1.0
Examples

```
SELECT r1.rid, r2.rid, ST_Within(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>rid</th>
<th>st_within</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>f</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>t</td>
</tr>
</tbody>
</table>

See Also

ST_Intersects, ST_Contains, ST_DWithin, ST_DFullyWithin

6.17.12 ST_DWithin

ST_DWithin — Return true if rasters rastA and rastB are within the specified distance of each other.

Synopsis

```
boolean ST_DWithin( raster rastA , integer nbandA , raster rastB , integer nbandB , double precision distance_of_srid );
boolean ST_DWithin( raster rastA , raster rastB , double precision distance_of_srid );
```

Description

Return true if rasters rastA and rastB are within the specified distance of each other. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

The distance is specified in units defined by the spatial reference system of the rasters. For this function to make sense, the source rasters must both be of the same coordinate projection, having the same SRID.

Note

This operand will make use of any indexes that may be available on the rasters.

Note

To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_DWithin(ST_Polygon(raster), geometry).

Availability: 2.1.0

Examples

```
SELECT r1.rid, r2.rid, ST_DWithin(r1.rast, 1, r2.rast, 1, 3.14) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;
```

<table>
<thead>
<tr>
<th>rid</th>
<th>rid</th>
<th>st_dwithin</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>f</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>t</td>
</tr>
</tbody>
</table>
See Also

ST_Within, ST_DFullyWithin

6.17.13 ST_DFullyWithin

ST_DFullyWithin — Return true if rasters rastA and rastB are fully within the specified distance of each other.

Synopsis

boolean ST_DFullyWithin(raster rastA , integer nbandA , raster rastB , integer nbandB , double precision distance_of_srid);
boolean ST_DFullyWithin(raster rastA , raster rastB , double precision distance_of_srid);

Description

Return true if rasters rastA and rastB are fully within the specified distance of each other. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

The distance is specified in units defined by the spatial reference system of the rasters. For this function to make sense, the source rasters must both be of the same coordinate projection, having the same SRID.

**********Note**********

This operand will make use of any indexes that may be available on the rasters.

**********Note**********

To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_DFullyWithin(ST_Polygon(raster), geometry).

Availability: 2.1.0

Examples

```
SELECT r1.rid, r2.rid, ST_DFullyWithin(r1.rast, 1, r2.rast, 1, 3.14) FROM dummy_rast r1 ←
CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;
```

| rid | rid | st_dfullywithin
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>f</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>t</td>
</tr>
</tbody>
</table>

See Also

ST_Within, ST_DWithin
6.18 Raster Tips

6.18.1 Out-DB Rasters

6.18.1.1 Directory containing many files

When GDAL opens a file, GDAL eagerly scans the directory of that file to build a catalog of other files. If this directory contains many files (e.g. thousands, millions), opening that file becomes extremely slow (especially if that file happens to be on a network drive such as NFS).

To control this behavior, GDAL provides the following environment variable: GDAL_DISABLE_READDIR_ON_OPEN. Set GDAL_DISABLE_READDIR_ON_OPEN to TRUE to disable directory scanning.

In Ubuntu (and assuming you are using PostgreSQL’s packages for Ubuntu), GDAL_DISABLE_READDIR_ON_OPEN can be set in /etc/postgresql/POSTGRESQL_VERSION/CLUSTER_NAME/environment (where POSTGRESQL_VERSION is the version of PostgreSQL, e.g. 9.6 and CLUSTER_NAME is the name of the cluster, e.g. maindb). You can also set PostGIS environment variables here as well.

```
# environment variables for postmaster process
# This file has the same syntax as postgresql.conf:
# VARIABLE = simple_value
# VARIABLE2 = 'any value!
# I.e. you need to enclose any value which does not only consist of letters,
# numbers, and '-', '_', '.' in single quotes. Shell commands are not
# evaluated.
POSTGIS_GDAL_ENABLED_DRIVERS = 'ENABLE_ALL'
POSTGIS_ENABLE_OUTDB_RASTERS = 1
GDAL_DISABLE_READDIR_ON_OPEN = 'TRUE'
```

6.18.1.2 Maximum Number of Open Files

The maximum number of open files permitted by Linux and PostgreSQL are typically conservative (typically 1024 open files per process) given the assumption that the system is consumed by human users. For Out-DB Rasters, a single valid query can easily exceed this limit (e.g. a dataset of 10 year’s worth of rasters with one raster for each day containing minimum and maximum temperatures and we want to know the absolute min and max value for a pixel in that dataset).

The easiest change to make is the following PostgreSQL setting: max_files_per_process. The default is set to 1000, which is far too low for Out-DB Rasters. A safe starting value could be 65536 but this really depends on your datasets and the queries run against those datasets. This setting can only be made on server start and probably only in the PostgreSQL configuration file (e.g. /etc/postgresql/POSTGRESQL_VERSION/CLUSTER_NAME/postgresql.conf in Ubuntu environments).

```
... # - Kernel Resource Usage -

max_files_per_process = 65536  # min 25
    # (change requires restart)
...
```

The major change to make is the Linux kernel’s open files limits. There are two parts to this:

- Maximum number of open files for the entire system
- Maximum number of open files per process
6.18.1.2.1 Maximum number of open files for the entire system

You can inspect the current maximum number of open files for the entire system with the following example:

$$\texttt{sysctl -a | grep fs.file-max}
\texttt{fs.file-max = 131072}$$

If the value returned is not large enough, add a file to `/etc/sysctl.d/` as per the following example:

$$\texttt{echo "fs.file-max = 6145324" >> /etc/sysctl.d/fs.conf}
\texttt{$(cat /etc/sysctl.d/fs.conf)}
\texttt{fs.file-max = 6145324}
\texttt{$(sysctl -p --system)}
\texttt{fs.file-max = 2097152}
\texttt{$(sysctl -a | grep fs.file-max)}
\texttt{fs.file-max = 6145324}$$

6.18.1.2.2 Maximum number of open files per process

We need to increase the maximum number of open files per process for the PostgreSQL server processes.

To see what the current PostgreSQL service processes are using for maximum number of open files, do as per the following example (make sure to have PostgreSQL running):

$$\texttt{ps aux | grep postgres}
\text{postgres 31713 0.0 0.4 179012 17564 pts/0 S Dec26 0:03 /home/dustymugs/devel/ →
postgresql/sandbox/10/usr/local/bin/postgres -D /home/dustymugs/devel/postgresql/sandbox ←
/10/pgdata}
\text{postgres 31716 0.0 0.8 179776 33632 ? Ss Dec26 0:01 postgres: checkpoint ←}
p\text{rocess}
\text{postgres 31717 0.0 0.2 179144 9416 ? Ss Dec26 0:05 postgres: writer process}
\text{postgres 31718 0.0 0.2 179012 8708 ? Ss Dec26 0:06 postgres: wal writer ←}
p\text{rocess}
\text{postgres 31719 0.0 0.1 179568 7252 ? Ss Dec26 0:03 postgres: autovacuum ←}
l\text{auncher process}
\text{postgres 31720 0.0 0.1 34228 4124 ? Ss Dec26 0:09 postgres: stats collector ←}
p\text{rocess}
\text{postgres 31721 0.0 0.1 179308 6052 ? Ss Dec26 0:00 postgres: bgworker: ←
logical replication launcher}
\texttt{$(cat /proc/31718/limits)}
\text{Limit} \quad \text{Soft Limit} \quad \text{Hard Limit} \quad \text{Units}
\text{Max cpu time} \quad \text{unlimited} \quad \text{unlimited} \quad \text{seconds}
\text{Max file size} \quad \text{unlimited} \quad \text{unlimited} \quad \text{bytes}
\text{Max data size} \quad \text{unlimited} \quad \text{unlimited} \quad \text{bytes}
\text{Max stack size} \quad \text{8388608} \quad \text{unlimited} \quad \text{bytes}
\text{Max core file size} \quad \text{0} \quad \text{unlimited} \quad \text{bytes}
\text{Max resident set} \quad \text{unlimited} \quad \text{unlimited} \quad \text{bytes}
\text{Max processes} \quad \text{15738} \quad \text{15738} \quad \text{processes}
\textbf{Max open files} \quad \textbf{1024} \quad \textbf{4096} \quad \textbf{files}
\text{Max locked memory} \quad \text{65536} \quad \text{65536} \quad \text{bytes}
\text{Max address space} \quad \text{unlimited} \quad \text{unlimited} \quad \text{bytes}
\text{Max file locks} \quad \text{unlimited} \quad \text{unlimited} \quad \text{locks}
\text{Max pending signals} \quad \text{15738} \quad \text{15738} \quad \text{signals}
\text{Max msgqueue size} \quad \text{819200} \quad \text{819200} \quad \text{bytes}
\text{Max nice priority} \quad \text{0} \quad \text{0} \quad \text{
Max realtime priority 0 0
Max realtime timeout unlimited unlimited us

In the example above, we inspected the open files limit for Process 31718. It doesn’t matter which PostgreSQL process, any of them will do. The response we are interested in is Max open files.

We want to increase Soft Limit and Hard Limit of Max open files to be greater than the value we specified for the PostgreSQL setting max_files_per_process. In our example, we set max_files_per_process to 65536.

In Ubuntu (and assuming you are using PostgreSQL's packages for Ubuntu), the easiest way to change the Soft Limit and Hard Limit is to edit /etc/init.d/postgresql (SysV) or /lib/systemd/system/postgresql*.service (systemd).

Let’s first address the SysV Ubuntu case where we add `ulimit -H -n 262144` and `ulimit -n 131072` to /etc/init.d/postgresql.

```bash
... case "$1" in
  start|stop|restart|reload)
    if [ "$1" = "start" ]; then
      create_socket_directory
    fi
    if [ -z "$pg_lsclusters -h" ]; then
      log_warning_msg 'No PostgreSQL clusters exist; see "man pg_createcluster"'
      exit 0
    fi
    ulimit -H -n 262144
    ulimit -n 131072
    for v in $versions; do
      $1 $v || EXIT=$?
    done
    exit ${EXIT:-0}
  ;;
  status)
  ...;
...```

Now to address the systemd Ubuntu case. We will add `LimitNOFILE=131072` to every /lib/systemd/system/postgresql*.service file in the [Service] section.

```bash
... [Service]

 LimitNOFILE=131072

...;
[Install]
WantedBy=multi-user.target
...```

After making the necessary systemd changes, make sure to reload the daemon

```bash
systemctl daemon-reload
```
Chapter 7

PostGIS Frequently Asked Questions

1. Where can I find tutorials, guides and workshops on working with PostGIS

 A step by step tutorial guide workshop Introduction to PostGIS. It includes packaged data as well as intro to working with OpenGeo Suite. It is probably the best tutorial on PostGIS. BostonGIS also has a PostGIS almost idiot’s guide on getting started. That one is more focused on the windows user.

2. My applications and desktop tools worked with PostGIS 1.5, but they don’t work with PostGIS 2.0. How do I fix this?

 A lot of deprecated functions were removed from the PostGIS code base in PostGIS 2.0. This has affected applications in addition to third-party tools such as Geoserver, MapServer, QuantumGIS, and OpenJump to name a few. There are a couple of ways to resolve this. For the third-party apps, you can try to upgrade to the latest versions of these which have many of these issues fixed. For your own code, you can change your code to not use the functions removed. Most of these functions are non ST_ aliases of ST_Union, ST_Length etc. and as a last resort, install the whole of legacy.sql or just the portions of legacy.sql you need. The legacy.sql file is located in the same folder as postgis.sql. You can install this file after you have installed postgis.sql and spatial_ref_sys.sql to get back all the 200 some-odd old functions we removed.

3. When I load OpenStreetMap data with osm2pgsql, I’m getting an error failed: ERROR: operator class "gist_geometry_ops" does not exist for access method "gist" Error occurred. This worked fine in PostGIS 1.5.

 In PostGIS 2, the default geometry operator class gist_geometry_ops was changed to gist_geometry_ops_2d and the gist_geometry_ops was completely removed. This was done because PostGIS 2 also introduced Nd spatial indexes for 3D support and the old name was deemed confusing and a misnomer. Some older applications that as part of the process create tables and indexes, explicitly referenced the operator class name. This was unnecessary if you want the default 2D index. So if you manage said good, change index creation from:

   ```sql
   CREATE INDEX idx_my_table_geom ON my_table USING gist(geom gist_geometry_ops);
   ```

 To GOOD:

   ```sql
   CREATE INDEX idx_my_table_geom ON my_table USING gist(geom);
   ```

 The only case where you WILL need to specify the operator class is if you want a 3D spatial index as follows:

   ```sql
   CREATE INDEX idx_my_super3d_geom ON my_super3d USING gist(geom gist_geometry_ops_nd);
   ```

 If you are unfortunate to be stuck with compiled code you can’t change that has the old gist_geometry_ops hard-coded, then you can create the old class using the legacy_gist.sql packaged in PostGIS 2.0.2+. However if you use this fix, you are advised to at a later point drop the index and recreate it without the operator class. This will save you grief in the future when you need to upgrade again.

4. I’m running PostgreSQL 9.0 and I can no longer read/view geometries in OpenJump, Safe FME, and some other tools?

 In PostgreSQL 9.0+, the default encoding for bytea data has been changed to hex and older JDBC drivers still assume escape format. This has affected some applications such as Java applications using older JDBC drivers or .NET applications that use the older npgsql driver that expect the old behavior of ST_AsBinary. There are two approaches to
getting this to work again. You can upgrade your JDBC driver to the latest PostgreSQL 9.0 version which you can get from http://jdbc.postgresql.org/download.html. If you are running a .NET app, you can use Npgsql 2.0.11 or higher which you can download from http://pgfoundry.org/frs/?group_id=1000140 and as described on Francisco Figueiredo’s NpgSQL 2.0.11 released blog entry. If upgrading your PostgreSQL driver is not an option, then you can set the default back to the old behavior with the following change:

```
ALTER DATABASE mypostgisdb SET bytea_output='escape';
```

5. I tried to use PgAdmin to view my geometry column and it is blank, what gives?

PgAdmin doesn’t show anything for large geometries. The best ways to verify you do have data in your geometry columns are?

```
-- this should return no records if all your geom fields are filled in
SELECT somefield FROM mytable WHERE geom IS NULL;
```

```
-- To tell just how large your geometry is do a query of the form
-- which will tell you the most number of points you have in any of your geometry columns
SELECT MAX(ST_NPoints(geom)) FROM sometable;
```

6. What kind of geometric objects can I store?

You can store Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and GeometryCollection geometries. In PostGIS 2.0 and above you can also store TINS and Polyhedral Surfaces in the basic geometry type. These are specified in the Open GIS Well Known Text Format (with Z, M, and ZM extensions). There are three data types currently supported. The standard OGC geometry data type which uses a planar coordinate system for measurement, the geography data type which uses a geodetic coordinate system, with calculations on either a sphere or spheroid. The newest family member of the PostGIS spatial type family is raster for storing and analyzing raster data. Raster has its very own FAQ. Refer to Chapter 8 and Chapter 6 for more details.

7. I’m all confused. Which data store should I use geometry or geography?

Short Answer: geography is a newer data type that supports long range distances measurements, but most computations on it are slower than they are on geometry. If you use geography, you don’t need to learn much about planar coordinate systems. Geography is generally best if all you care about is measuring distances and lengths and you have data from all over the world. Geometry data type is an older data type that has many more functions supporting it, enjoys greater support from third party tools, and operations on it are generally faster -- sometimes as much as 10 fold faster for larger geometries. Geometry is best if you are pretty comfortable with spatial reference systems or you are dealing with localized data where all your data fits in a single spatial reference system (SRID), or you need to do a lot of spatial processing. Note: It is fairly easy to do one-off conversions between the two types to gain the benefits of each. Refer to Section 9.11 to see what is currently supported and what is not. Long Answer: Refer to our more lengthy discussion in the Section 4.1.2.2 and function type matrix.

8. I have more intense questions about geography, such as how big of a geographic region can I stuff in a geography column and still get reasonable answers. Are there limitations such as poles, everything in the field must fit in a hemisphere (like SQL Server 2008 has), speed etc?

Your questions are too deep and complex to be adequately answered in this section. Please refer to our Section 4.1.2.3.

9. How do I insert a GIS object into the database?

First, you need to create a table with a column of type "geometry" or "geography" to hold your GIS data. Storing geography type data is a little different than storing geometry. Refer to Section 4.1.2.1 for details on storing geography. For geometry: Connect to your database with psql and try the following SQL:

```
CREATE TABLE gtest (id serial primary key, name varchar(20), geom geometry(LINESTRING)) ;
```

If the geometry column definition fails, you probably have not loaded the PostGIS functions and objects into this database or are using a pre-2.0 version of PostGIS. See the Section 2.2. Then, you can insert a geometry into the table using a SQL insert statement. The GIS object itself is formatted using the OpenGIS Consortium "well-known text" format:
INSERT INTO gtest (ID, NAME, GEOM) VALUES (1, 'First Geometry', ST_GeomFromText('LINESTRING(2 3,4 5,6 5,7 8)'));

For more information about other GIS objects, see the object reference. To view your GIS data in the table:

```sql
SELECT id, name, ST_AsText(geom) AS geom FROM gtest;
```

The return value should look something like this:

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>geom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First Geometry</td>
<td>LINESTRING(2 3,4 5,6 5,7 8)</td>
</tr>
</tbody>
</table>

10. **How do I construct a spatial query?**

The same way you construct any other database query, as an SQL combination of return values, functions, and boolean tests. For spatial queries, there are two issues that are important to keep in mind while constructing your query: is there a spatial index you can make use of; and, are you doing expensive calculations on a large number of geometries. In general, you will want to use the "intersects operator" (&&) which tests whether the bounding boxes of features intersect. The reason the && operator is useful is because if a spatial index is available to speed up the test, the && operator will make use of this. This can make queries much much faster. You will also make use of spatial functions, such as Distance(), ST_Intersects(), ST_Contains() and ST_Within(), among others, to narrow down the results of your search. Most spatial queries include both an indexed test and a spatial function test. The index test serves to limit the number of return tuples to only tuples that might meet the condition of interest. The spatial functions are then used to test the condition exactly.

```sql
SELECT id, the_geom
FROM thetable
WHERE ST_Contains(the_geom, 'POLYGON((0 0, 0 10, 10 10, 10 0, 0 0))');
```

11. **How do I speed up spatial queries on large tables?**

Fast queries on large tables is the **raison d'etre** of spatial databases (along with transaction support) so having a good index is important. To build a spatial index on a table with a geometry column, use the "CREATE INDEX" function as follows:

```sql
CREATE INDEX [indexname] ON [tablename] USING GIST ( [geometrycolumn] );
```

The "USING GIST" option tells the server to use a GiST (Generalized Search Tree) index.

You should also ensure that the PostgreSQL query planner has enough information about your index to make rational decisions about when to use it. To do this, you have to "gather statistics" on your geometry tables. For PostgreSQL 8.0.x and greater, just run the **VACUUM ANALYZE** command. For PostgreSQL 7.4.x and below, run the **SELECT UPDATE_GEOMISTRY_STATS()** command.

12. **Why aren’t PostgreSQL R-Tree indexes supported?**

Early versions of PostGIS used the PostgreSQL R-Tree indexes. However, PostgreSQL R-Trees have been completely discarded since version 0.6, and spatial indexing is provided with an R-Tree-over-GiST scheme. Our tests have shown search speed for native R-Tree and GiST to be comparable. Native PostgresQL R-Trees have two limitations which make them undesirable for use with GIS features (note that these limitations are due to the current PostgreSQL native R-Tree implementation, not the R-Tree concept in general):
• R-Tree indexes in PostgreSQL cannot handle features which are larger than 8K in size. GiST indexes can, using the "lossy" trick of substituting the bounding box for the feature itself.
• R-Tree indexes in PostgreSQL are not "null safe", so building an index on a geometry column which contains null geometries will fail.

13. **Why should I use the AddGeometryColumn() function and all the other OpenGIS stuff?**

If you do not want to use the OpenGIS support functions, you do not have to. Simply create tables as in older versions, defining your geometry columns in the CREATE statement. All your geometries will have SRIDs of -1, and the OpenGIS meta-data tables will *not* be filled in properly. However, this will cause most applications based on PostGIS to fail, and it is generally suggested that you do use AddGeometryColumn() to create geometry tables. MapServer is one application which makes use of the geometry_columns meta-data. Specifically, MapServer can use the SRID of the geometry column to do on-the-fly reprojection of features into the correct map projection.

14. **What is the best way to find all objects within a radius of another object?**

To use the database most efficiently, it is best to do radius queries which combine the radius test with a bounding box test: the bounding box test uses the spatial index, giving fast access to a subset of data which the radius test is then applied to. The `ST_DWithin(geometry, geometry, distance)` function is a handy way of performing an indexed distance search. It works by creating a search rectangle large enough to enclose the distance radius, then performing an exact distance search on the indexed subset of results. For example, to find all objects with 100 meters of `POINT(1000 1000)` the following query would work well:

```sql
SELECT * FROM geotable
WHERE ST_DWithin(geocolumn, 'POINT(1000 1000)', 100.0);
```

15. **How do I perform a coordinate reprojection as part of a query?**

To perform a reprojection, both the source and destination coordinate systems must be defined in the SPATIAL_REF_SYS table, and the geometries being reprojected must already have an SRID set on them. Once that is done, a reprojection is as simple as referring to the desired destination SRID. The below projects a geometry to NAD 83 long lat. The below will only work if the srid of the_geom is not -1 (not undefined spatial ref)

```sql
SELECT ST_Transform(the_geom,4269) FROM geotable;
```

16. **I did an ST_AsEWKT and ST_AsText on my rather large geometry and it returned blank field. What gives?**

You are probably using PgAdmin or some other tool that doesn’t output large text. If your geometry is big enough, it will appear blank in these tools. Use PSQL if you really need to see it or output it in WKT.

```sql
--To check number of geometries are really blank
SELECT count(gid) FROM geotable WHERE the_geom IS NULL;
```

17. **When I do an ST_Intersects, it says my two geometries don’t intersect when I KNOW THEY DO. What gives?**

This generally happens in two common cases. Your geometry is invalid -- check `ST_IsValid` or you are assuming they intersect because `ST_AsText` truncates the numbers and you have lots of decimals after it is not showing you.

18. **I am releasing software that uses PostGIS, does that mean my software has to be licensed using the GPL like PostGIS? Will I have to publish all my code if I use PostGIS?**

Almost certainly not. As an example, consider Oracle database running on Linux. Linux is GPL, Oracle is not: does Oracle running on Linux have to be distributed using the GPL? No. Similarly your software can use a PostgreSQL/PostGIS database as much as it wants and be under any license you like. The only exception would be if you made changes to the PostGIS source code, and *distributed your changed version* of PostGIS. In that case you would have to share the code of your changed PostGIS (but not the code of applications running on top of it). Even in this limited case, you would still only have to distribute source code to people you distributed binaries to. The GPL does not require that you publish your source code, only that you share it with people you give binaries to. The above remains true even if you use PostGIS in conjunction with the optional CGAL-enabled functions. Portions of CGAL are GPL, but so is all of PostGIS already: using CGAL does not make PostGIS any more GPL than it was to start with.
Chapter 8

PostGIS Raster Frequently Asked Questions

1. Where can I find out more about the PostGIS Raster Project?
 Refer to the PostGIS Raster home page.

2. Are there any books or tutorials to get me started with this wonderful invention?
 There is a full length beginner tutorial Intersecting vector buffers with large raster coverage using PostGIS Raster. Jorge has a series of blog articles on PostGIS Raster that demonstrate how to load raster data as well as cross compare to same tasks in Oracle GeoRaster. Check out: Jorge’s PostGIS Raster / Oracle GeoRaster Series. There is a whole chapter (more than 35 pages of content) dedicated to PostGIS Raster with free code and data downloads at PostGIS in Action - Raster chapter. Also covered in second edition. You can buy PostGIS in Action now from Manning in hard-copy (significant discounts for bulk purchases) or just the E-book format. You can also buy from Amazon and various other book distributors. All hard-copy books come with a free coupon to download the E-book version. Here is a review from a PostGIS Raster user PostGIS raster applied to land classification urban forestry

3. How do I install Raster support in my PostGIS database?
 PostGIS Raster is part of the PostGIS codebase and generally available with most PostGIS binary distributions. Starting with PostGIS 3.0, PostGIS raster is now a separate extension and requires: ’CREATE EXTENSION postgis_raster;’ to enable it in your database. If you are compiling your own PostGIS, you will need to compile with GDAL otherwise postgis_raster extension will not be built. Refer to Download PostGIS binaries for popular distributions of PostGIS that include raster support.

4. How do I load Raster data into PostGIS?
 The latest version of PostGIS comes packaged with a raster2pgsql raster loader executable capable of loading many kinds of rasters and also generating lower resolution overviews without any additional software. Please refer to Section 4.5.1.1 for more details.

5. What kind of raster file formats can I load into my database?
 Any that your GDAL library supports. GDAL supported formats are documented GDAL File Formats. Your particular GDAL install may not support all formats. To verify the ones supported by your particular GDAL install, you can use

 raster2pgsql -G

6. Can I export my PostGIS raster data to other raster formats?
 YesPostGIS raster has a function ST_AsGDALRaster that will allow you to use SQL to export to any raster format supported by your GDAL. You can get a list of these using the ST_GDALDrivers SQL function. You can also use GDAL commandline tools to export PostGIS raster to other formats. GDAL has a PostGIS raster driver, but is only compiled in if you choose to compile with PostgresSQL support. The driver currently doesn’t support irregularly blocked rasters, although you can store irregularly blocked rasters in PostGIS raster data type. If you are compiling from source, you need to include in your configure

 --with-pg=path/to/pg_config
to enable the driver. Refer to GDAL Build Hints for tips on building GDAL against in various OS platforms. If your version of GDAL is compiled with the PostGIS Raster driver you should see PostGIS Raster in list when you do

gdalinfo --formats

To get a summary about your raster via GDAL use gdalinfo:

gdalinfo "PG:host=localhost port=5432 dbname='mygisdb' user='postgres' password='whatever' schema='someschema' table=sometable"

To export data to other raster formats, use gdal_translate the below will export all data from a table to a PNG file at 10% size. Depending on your pixel band types, some translations may not work if the export format does not support that Pixel type. For example floating point band types and 32 bit unsigned ints will not translate easily to JPG or some others. Here is an example simple translation

gdal_translate -of PNG -outsize 10% 10% "PG:host=localhost port=5432 dbname='mygisdb' user='postgres' password='whatever' schema='someschema' table=sometable" C:\\somefile.png

You can also use SQL where clauses in your export using the where=... in your driver connection string. Below are some using a where clause

gdal_translate -of PNG -outsize 10% 10% "PG:host=localhost port=5432 dbname='mygisdb' user='postgres' password='whatever' schema='someschema' table=sometable where='filename='abcd.sid''" C:\\somefile.png

gdal_translate -of PNG -outsize 10% 10% "PG:host=localhost port=5432 dbname='mygisdb' user='postgres' password='whatever' schema='someschema' table=sometable where='ST_Intersects(rast, ST_SetSRID(ST_Point(-71.032,42.3793),4326))'" C:\\intersectregion.png

To see more examples and syntax refer to Reading Raster Data of PostGIS Raster section

7. Are their binaries of GDAL available already compiled with PostGIS Raster support?

Yes. Check out the page GDAL Binaries page. Any compiled with PostgreSQL support should have PostGIS Raster in them. GDAL tools is also generally included as part of QGIS. If you want to get the latest nightly build for Windows -- then check out the Tamas Szekeres nightly builds built with Visual Studio which contain GDAL trunk, Python Bindings and MapServer executables and PostGIS Raster driver built-in. Just click the SDK bat and run your commands from there. http://www.gisinternals.com. Also available are VS project files.

8. What tools can I use to view PostGIS raster data?

You can use MapServer compiled with GDAL to view Raster data. QGIS supports viewing of PostGIS Raster if you have PostGIS raster driver installed. In theory any tool that renders data using GDAL can view PostGIS raster data or support it with fairly minimal effort. Again for Windows, Tamas’ binaries (includes Mapserver) http://www.gisinternals.com are a good choice for windows users if you don’t want the hassle of having to setup to compile your own.

9. How can I add a PostGIS raster layer to my MapServer map?

First you need GDAL 1.7 or higher compiled with PostGIS raster support. GDAL 3 or above is preferred since many issues have been fixed in 1.8 and more PostGIS raster issues fixed in trunk version. You can much like you can with any other raster. Refer to MapServer Raster processing options for list of various processing functions you can use with MapServer raster layers. What makes PostGIS raster data particularly interesting, is that since each tile can have various standard database columns, you can segment it in your data source Below is an example of how you would define a PostGIS raster layer in MapServer.

```
Note
The mode=2 is required for tiled rasters and was added in PostGIS 2.0 and GDAL 1.8 drivers. This does not exist in GDAL 1.7 drivers.
```
-- displaying raster with standard raster options
LAYER
 NAME coolwktraster
 TYPE raster
 STATUS ON
 DATA "PG:host=localhost port=5432 dbname='somedb' user='someuser' password='whatever'
 schema='someschema' table='cooltable' mode='2'"
 PROCESSING "NODATA=0"
 PROCESSING "SCALE=AUTO"
 #... other standard raster processing functions here
 #... classes are optional but useful for 1 band data
CLASS
 NAME "boring"
 EXPRESSION ([pixel] < 20)
 COLOR 250 250 250
END
CLASS
 NAME "mildly interesting"
 EXPRESSION ([pixel] > 20 AND [pixel] < 1000)
 COLOR 255 0 0
END
CLASS
 NAME "very interesting"
 EXPRESSION ([pixel] >= 1000)
 COLOR 0 255 0
END
END

-- displaying raster with standard raster options and a where clause
LAYER
 NAME soil_survey2009
 TYPE raster
 STATUS ON
 DATA "PG:host=localhost port=5432 dbname='somedb' user='someuser' password='whatever'
 schema='someschema' table='cooltable' where='survey_year=2009' mode='2'"
 PROCESSING "NODATA=0"
 #... other standard raster processing functions here
 #... classes are optional but useful for 1 band data
END

10. What functions can I currently use with my raster data?

Refer to the list of Chapter 6. There are more, but this is still a work in progress. Refer to the PostGIS Raster roadmap page for details of what you can expect in the future.

11. I am getting error ERROR: function st_intersects(raster, unknown) is not unique or st_union(geometry,text) is not unique. How do I fix?

The function is not unique error happens if one of your arguments is a textual representation of a geometry instead of a geometry. In these cases, PostgreSQL marks the textual representation as an unknown type, which means it can fall into the st_intersects(raster, geometry) or st_intersects(raster, raster) thus resulting in a non-unique case since both functions can in theory support your request. To prevent this, you need to cast the textual representation of the geometry to a geometry. For example if your code looks like this:

```
SELECT rast
FROM my_raster
WHERE ST_Intersects(rast, 'SRID=4326;POINT(-10 10)');
```

Cast the textual geometry representation to a geometry by changing your code to this:

```
SELECT rast
FROM my_raster
WHERE ST_Intersects(rast, ST_GeomFromText('SRID=4326;POINT(-10 10)'));
```
12. **How is PostGIS Raster different from Oracle GeoRaster (SDO_GEORASTER) and SDO_RASTER types?**

For a more extensive discussion on this topic, check out Jorge Arévalo’s *Oracle GeoRaster and PostGIS Raster: First impressions*. The major advantage of one-georeference-by-raster over one-georeference-by-layer is to allow:

- coverages to be not necessarily rectangular (which is often the case of raster coverage covering large extents. See the possible raster arrangements in the documentation)
- rasters to overlaps (which is necessary to implement lossless vector to raster conversion). These arrangements are possible in Oracle as well, but they imply the storage of multiple SDO_GEORASTER objects linked to as many SDO_RASTER tables. A complex coverage can lead to hundreds of tables in the database. With PostGIS Raster you can store a similar raster arrangement into a unique table. It’s a bit like if PostGIS would force you to store only full rectangular vector coverage without gaps or overlaps (a perfect rectangular topological layer). This is very practical in some applications but practice has shown that it is not realistic or desirable for most geographical coverages. Vector structures needs the flexibility to store discontinuous and non-rectangular coverages. We think it is a big advantage that raster structure should benefit as well.

13. **raster2pgsql load of large file fails with String of N bytes is too long for encoding conversion?**

 raster2pgsql doesn’t make any connections to your database when generating the file to load. If your database has set an explicit client encoding different from your database encoding, then when loading large raster files (above 30 MB in size), you may run into a `bytes is too long for encoding conversion`. This generally happens if for example you have your database in UTF8, but to support windows apps, you have the client encoding set to WIN1252. To work around this make sure the client encoding is the same as your database encoding during load. You can do this by explicitly setting the encoding in your load script. Example, if you are on windows:

 set PGCLIENTENCODING=UTF8

 If you are on Unix/Linux

 export PGCLIENTENCODING=UTF8

 Gory details of this issue are detailed in http://trac.osgeo.org/postgis/ticket/2209

14. **I'm getting error**

 ERROR: RASTER_fromGDALRaster: Could not open bytea with GDAL. Check that the bytea is of a GDAL supported format. when using ST_FromGDALRaster or ERROR: rt_raster_to_gdal: Could not load the output GDAL driver when trying to use ST_AsPNG or other raster input functions.

As of PostGIS 2.1.3 and 2.0.5, a security change was made to by default disable all GDAL drivers and out of db rasters. The release notes are at [PostGIS 2.0.6, 2.1.3 security release](http://trac.osgeo.org/postgis/ticket/2209). In order to reenable specific drivers or all drivers and reenable out of database support, refer to Section 2.1.
Chapter 9

PostGIS Special Functions Index

9.1 PostGIS Aggregate Functions

The functions given below are spatial aggregate functions provided with PostGIS that can be used just like any other SQL aggregate function such as sum, average.

- **ST_3DExtent** - an aggregate function that returns the 3D bounding box that bounds rows of geometries.
- **ST_AsGeobuf** - Return a Geobuf representation of a set of rows.
- **ST_AsMVT** - Aggregate function returning a Mapbox Vector Tile representation of a set of rows.
- **ST_ClusterIntersecting** - Aggregate function that clusters the input geometries into connected sets.
- **ST_ClusterWithin** - Aggregate function that clusters the input geometries by separation distance.
- **ST_Collect** - Creates a GeometryCollection or Multi* geometry from a set of geometries.
- **ST_Extent** - an aggregate function that returns the bounding box that bounds rows of geometries.
- **ST_MakeLine** - Creates a Linestring from Point, MultiPoint, or LineString geometries.
- **ST_MemUnion** - Aggregate function which unions geometry in a memory-efficient but slower way.
- **ST_Polygonize** - Computes a collection of polygons formed from the linework of a set of geometries.
- **ST_SameAlignment** - Returns true if rasters have same skew, scale, spatial ref, and offset (pixels can be put on same grid without cutting into pixels) and false if they don’t with notice detailing issue.
- **ST_Union** - Returns a geometry representing the point-set union of the input geometries.
- **TopoElementArray_Agg** - Returns a topoelementarray for a set of element_id, type arrays (topoelements).

9.2 PostGIS Window Functions

The functions given below are spatial window functions provided with PostGIS that can be used just like any other SQL window function such as row_number(), lead(), lag(). All these require an SQL OVER() clause.

- **ST_ClusterDBSCAN** - Window function that returns a cluster id for each input geometry using the DBSCAN algorithm.
- **ST_ClusterKMeans** - Window function that returns a cluster id for each input geometry using the K-means algorithm.
9.3 PostGIS SQL-MM Compliant Functions

The functions given below are PostGIS functions that conform to the SQL/MM 3 standard.

Note
SQL-MM defines the default SRID of all geometry constructors as 0. PostGIS uses a default SRID of -1.

- **ST_3DDWithin** - Returns true if two 3D geometries are within a given 3D distance. This method implements the SQL/MM specification. SQL-MM.

- **ST_3DDistance** - Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units. This method implements the SQL/MM specification. SQL-MM.

- **ST_3DIntersects** - Returns true if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area). This method implements the SQL/MM specification. SQL-MM.

- **ST_AddEdgeModFace** - Add a new edge and, if in doing so it splits a face, modify the original face and add a new face. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.13

- **ST_AddEdgeNewFaces** - Add a new edge and, if in doing so it splits a face, delete the original face and replace it with two new faces. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.12

- **ST_AddIsoEdge** - Adds an isolated edge defined by geometry alinestring to a topology connecting two existing isolated nodes anode and anothernode and returns the edge id of the new edge. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.4

- **ST_AddIsoNode** - Adds an isolated node to a face in a topology and returns the nodeid of the new node. If face is null, the node is still created. This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X+1.3.1

- **ST_Area** - Returns the area of a polygonal geometry. This method implements the SQL/MM specification. SQL-MM 3: 8.1.2, 9.5.3

- **ST_AsBinary** - Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data. This method implements the SQL/MM specification. SQL-MM 3: 5.1.37

- **ST_AsText** - Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata. This method implements the SQL/MM specification. SQL-MM 3: 5.1.25

- **ST_Boundary** - Returns the boundary of a geometry. This method implements the SQL/MM specification. SQL-MM 3: 5.1.16

- **ST_Centroid** - Returns the geometric center of a geometry. This method implements the SQL/MM specification. SQL-MM 3: 8.1.4, 9.5.5

- **ST_ChangeEdgeGeom** - Changes the shape of an edge without affecting the topology structure. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details X.3.6

- **ST_Contains** - Returns true if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies in the interior of A. This method implements the SQL/MM specification. SQL-MM 3: 5.1.31

- **ST_ConvexHull** - Computes the convex hull of a geometry. This method implements the SQL/MM specification. SQL-MM 3: 5.1.16

- **ST_CoordDim** - Return the coordinate dimension of a geometry. This method implements the SQL/MM specification. SQL-MM 3: 5.1.3
• **ST_CreateTopoGeo** - Adds a collection of geometries to a given empty topology and returns a message detailing success. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details -- X.3.18

• **ST_Crosses** - Returns true if two geometries have some, but not all, interior points in common. This method implements the SQL/MM specification. SQL-MM 3: 5.1.29

• **ST_CurveToLine** - Converts a geometry containing curves to a linear geometry. This method implements the SQL/MM specification. SQL-MM 3: 7.1.7

• **ST_Difference** - Returns a geometry representing the part of geometry A that does not intersect geometry B. This method implements the SQL/MM specification. SQL-MM 3: 5.1.20

• **ST_Dimension** - Returns the topological dimension of a geometry. This method implements the SQL/MM specification. SQL-MM 3: 5.1.2

• **ST_Disjoint** - Returns true if two geometries do not spatially intersect (they have no point in common). This method implements the SQL/MM specification. SQL-MM 3: 5.1.26

• **ST_Distance** - Returns the distance between two geometry or geography values. This method implements the SQL/MM specification. SQL-MM 3: 5.1.23

• **ST_EndPoint** - Returns the last point of a LineString or CircularLineString. This method implements the SQL/MM specification. SQL-MM 3: 7.1.4

• **ST_Envelope** - Returns a geometry representing the bounding box of a geometry. This method implements the SQL/MM specification. SQL-MM 3: 5.1.15

• **ST_Equals** - Returns true if two geometries include the same set of points in space. This method implements the SQL/MM specification. SQL-MM 3: 5.1.24

• **ST_ExteriorRing** - Returns a LineString representing the exterior ring of a Polygon. This method implements the SQL/MM specification. SQL-MM 3: 8.2.3, 8.3.3

• **ST_GMLToSQL** - Returns a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML. This method implements the SQL/MM specification. SQL-MM 3: 5.1.50 (except for curves support).

• **ST_GeomCollFromText** - Makes a collection Geometry from collection WKT with the given SRID. If SRID is not given, it defaults to 0. This method implements the SQL/MM specification.

• **ST_GeomFromText** - Returns a specified ST_Geometry value from Well-Known Text representation (WKT). This method implements the SQL/MM specification. SQL-MM 3: 5.1.40

• **ST_GeomFromWKB** - Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional SRID. This method implements the SQL/MM specification. SQL-MM 3: 5.1.41

• **ST_GeometryFromText** - Returns a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText. This method implements the SQL/MM specification. SQL-MM 3: 5.1.40

• **ST_GeometryN** - Returns the Nth geometry element of a geometry collection. This method implements the SQL/MM specification. SQL-MM 3: 9.1.5

• **ST_GeometryType** - Returns the SQL-MM type of a geometry as text. This method implements the SQL/MM specification. SQL-MM 3: 5.1.4

• **ST_GetFaceEdges** - Returns a set of ordered edges that bound a face. This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.5

• **ST_GetFaceGeometry** - Returns the polygon in the given topology with the specified face id. This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.16

• **ST_InitTopoGeo** - Creates a new topology schema and registers this new schema in the topology.topology table and details summary of process. This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.17
• **ST_InteriorRingN** - Returns the Nth interior ring (hole) of a Polygon. This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5

• **ST_Intersection** - Returns a geometry representing the shared portion of geometries A and B. This method implements the SQL/MM specification. SQL-MM 3: 5.1.18

• **ST_Intersects** - Returns true if two Geometries/Geography spatially intersect in 2D (have at least one point in common). This method implements the SQL/MM specification. SQL-MM 3: 5.1.27

• **ST_IsClosed** - Tests if a LineStrings's start and end points are coincident. For a PolyhedralSurface tests if it is closed (volumetric). This method implements the SQL/MM specification. SQL-MM 3: 7.1.5, 9.3.3

• **ST_IsEmpty** - Tests if a geometry is empty. This method implements the SQL/MM specification. SQL-MM 3: 5.1.7

• **ST_IsRing** - Tests if a LineString is closed and simple. This method implements the SQL/MM specification. SQL-MM 3: 7.1.6

• **ST_IsSimple** - Tests if a geometry has no points of self-intersection or self-tangency. This method implements the SQL/MM specification. SQL-MM 3: 5.1.8

• **ST_IsValid** - Tests if a geometry is well-formed in 2D. This method implements the SQL/MM specification. SQL-MM 3: 5.1.9

• **ST_Length** - Returns the 2D length of a linear geometry. This method implements the SQL/MM specification. SQL-MM 3: 7.1.2, 9.3.4

• **ST_LineFromText** - Makes a Geometry from WKT representation with the given SRID. If SRID is not given, it defaults to 0. This method implements the SQL/MM specification. SQL-MM 3: 7.2.8

• **ST_LineFromWKB** - Makes a LINESTRING from WKB with the given SRID. This method implements the SQL/MM specification. SQL-MM 3: 7.2.9

• **ST_LinestringFromWKB** - Makes a geometry from WKB with the given SRID. This method implements the SQL/MM specification. SQL-MM 3: 7.2.9

• **ST_M** - Returns the M coordinate of a Point. This method implements the SQL/MM specification.

• **ST_MLineFromText** - Return a specified ST_MultiLineString value from WKT representation. This method implements the SQL/MM specification. SQL-MM 3: 9.4.4

• **ST_MPointFromText** - Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0. This method implements the SQL/MM specification. SQL-MM 3: 9.2.4

• **ST_MPolyFromText** - Makes a MultiPolygon Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0. This method implements the SQL/MM specification. SQL-MM 3: 9.6.4

• **ST_ModEdgeHeal** - Heals two edges by deleting the node connecting them, modifying the first edge and deleting the second edge. Returns the id of the deleted node. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

• **ST_ModEdgeSplit** - Split an edge by creating a new node along an existing edge, modifying the original edge and adding a new edge. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

• **ST_MoveIsoNode** - Moves an isolated node in a topology from one point to another. If new apoint geometry exists as a node an error is thrown. Returns description of move. This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X.3.2

• **ST_NewEdgeHeal** - Heals two edges by deleting the node connecting them, deleting both edges, and replacing them with an edge whose direction is the same as the first edge provided. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

• **ST_NewEdgesSplit** - Split an edge by creating a new node along an existing edge, deleting the original edge and replacing it with two new edges. Returns the id of the new node created that joins the new edges. This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X.3.8
• **ST_NumGeometries** - Returns the number of elements in a geometry collection. This method implements the SQL/MM specification. SQL-MM 3: 9.1.4

• **ST_NumInteriorRings** - Returns the number of interior rings (holes) of a Polygon. This method implements the SQL/MM specification. SQL-MM 3: 8.2.5

• **ST_NumPatches** - Returns the number of faces on a PolyhedralSurface. Will return null for non-polyhedral geometries. This method implements the SQL/MM specification. SQL-MM 3: ?

• **ST_NumPoints** - Returns the number of points in a LineString or CircularString. This method implements the SQL/MM specification. SQL-MM 3: 7.2.4

• **ST_OrderingEquals** - Returns true if two geometries represent the same geometry and have points in the same directional order. This method implements the SQL/MM specification. SQL-MM 3: 5.1.43

• **ST_Overlaps** - Returns true if two geometries intersect and have the same dimension, but are not completely contained by each other. This method implements the SQL/MM specification. SQL-MM 3: 5.1.32

• **ST_PatchN** - Returns the Nth geometry (face) of a PolyhedralSurface. This method implements the SQL/MM specification. SQL-MM 3: ?

• **ST_Perimeter** - Returns the length of the boundary of a polygonal geometry or geography. This method implements the SQL/MM specification. SQL-MM 3: 8.1.3, 9.5.4

• **ST_Point** - Creates a Point with the given coordinate values. Alias for ST_MakePoint. This method implements the SQL/MM specification. SQL-MM 3: 6.1.2

• **ST_PointFromText** - Makes a point Geometry from WKT with the given SRID. If SRID is not given, it defaults to unknown. This method implements the SQL/MM specification. SQL-MM 3: 6.1.8

• **ST_PointFromWKB** - Makes a geometry from WKB with the given SRID. This method implements the SQL/MM specification. SQL-MM 3: 6.1.9

• **ST_PointN** - Returns the Nth point in the first LineString or circular LineString in a geometry. This method implements the SQL/MM specification. SQL-MM 3: 7.2.5, 7.3.5

• **ST_PointOnSurface** - Returns a point guaranteed to lie in a polygon or on a geometry. This method implements the SQL/MM specification. SQL-MM 3: 8.1.5, 9.5.6. According to the specs, ST_PointOnSurface works for surface geometries (POLYGONs, MULTIPOLYGONS, CURVED POLYGONS). So PostGIS seems to be extending what the spec allows here. Most databases Oracle, DB II, ESRI SDE seem to only support this function for surfaces. SQL Server 2008 like PostGIS supports for all common geometries.

• **ST_Polygon** - Creates a Polygon from a LineString with a specified SRID. This method implements the SQL/MM specification. SQL-MM 3: 8.3.2

• **ST_PolygonFromText** - Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0. This method implements the SQL/MM specification. SQL-MM 3: 8.3.6

• **ST_Relate** - Tests if two geometries have a topological relationship matching a given Intersection Matrix pattern, or computes their Intersection Matrix. This method implements the SQL/MM specification. SQL-MM 3: 5.1.25

• **ST_RemEdgeModFace** - Removes an edge and, if the removed edge separated two faces, delete one of the them and modify the other to take the space of both. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.15

• **ST_RemEdgeNewFace** - Removes an edge and, if the removed edge separated two faces, delete the original faces and replace them with a new face. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.14

• **ST_RemoveIsoEdge** - Removes an isolated edge and returns description of action. If the edge is not isolated, then an exception is thrown. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3
• ST_RemoveIsoNode - Removes an isolated node and returns description of action. If the node is not isolated (is start or end of an edge), then an exception is thrown. This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3

• ST_SRID - Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table. This method implements the SQL/MM specification. SQL-MM 3: 5.1.5

• ST_StartPoint - Returns the first point of a LineString. This method implements the SQL/MM specification. SQL-MM 3: 7.1.3

• ST_SymDifference - Returns a geometry representing the portions of geometries A and B that do not intersect. This method implements the SQL/MM specification. SQL-MM 3: 5.1.21

• ST_Touches - Returns true if two geometries have at least one point in common, but their interiors do not intersect. This method implements the SQL/MM specification. SQL-MM 3: 5.1.28

• ST_Transform - Return a new geometry with its coordinates transformed to a different spatial reference system. This method implements the SQL/MM specification. SQL-MM 3: 5.1.6

• ST_Union - Returns a geometry representing the point-set union of the input geometries. This method implements the SQL/MM specification. SQL-MM 3: 5.1.19 the z-index (elevation) when polygons are involved.

• ST_WKBToSQL - Return a specified ST_Geometry value from Well-Known Binary representation (WKB). This is an alias name for ST_GeomFromWKB that takes no srid This method implements the SQL/MM specification. SQL-MM 3: 5.1.36

• ST_WKTToSQL - Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText This method implements the SQL/MM specification. SQL-MM 3: 5.1.34

• ST_Within - Returns true if geometry A is completely inside geometry B This method implements the SQL/MM specification. SQL-MM 3: 5.1.30

• ST_X - Returns the X coordinate of a Point. This method implements the SQL/MM specification. SQL-MM 3: 6.1.3

• ST_Y - Returns the Y coordinate of a Point. This method implements the SQL/MM specification. SQL-MM 3: 6.1.4

• ST_Z - Returns the Z coordinate of a Point. This method implements the SQL/MM specification.

9.4 PostGIS Geography Support Functions

The functions and operators given below are PostGIS functions/operators that take as input or return as output a geography data type object.

Note

Functions with a (T) are not native geodetic functions, and use a ST_Transform call to and from geometry to do the operation. As a result, they may not behave as expected when going over dateline, poles, and for large geometries or geometry pairs that cover more than one UTM zone. Basic transform - (favoring UTM, Lambert Azimuthal (North/South), and falling back on mercator in worst case scenario)

• ST_Area - Returns the area of a polygonal geometry.

• ST_AsBinary - Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.

• ST_AsEWKT - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.

• ST_AsGML - Return the geometry as a GML version 2 or 3 element.

• ST_AsGeoJSON - Return the geometry as a GeoJSON element.

• ST_AsKML - Return the geometry as a KML element. Several variants. Default version=2, default maxdecimaldigits=15

• ST_AsSVG - Returns SVG path data for a geometry.
• **ST AsText** - Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.

• **ST Azimuth** - Returns the north-based azimuth as the angle in radians measured clockwise from the vertical on pointA to pointB.

• **ST Buffer** - Returns a geometry covering all points within a given distance from a geometry.

• **ST Centroid** - Returns the geometric center of a geometry.

• **ST CoveredBy** - Returns true if no point in Geometry/Geography A is outside Geometry/Geography B

• **ST Covers** - Returns true if no point in B is outside A

• **ST DWithin** - Returns true if two geometries are within a given distance

• **ST Distance** - Returns the distance between two geometry or geography values.

• **ST GeogFromText** - Return a specified geography value from Well-Known Text representation or extended (WKT).

• **ST GeogFromWKB** - Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended Well Known Binary (EWKB).

• **ST GeographyFromText** - Return a specified geography value from Well-Known Text representation or extended (WKT).

• **=** - Returns TRUE if the coordinates and coordinate order geometry/geography A are the same as the coordinates and coordinate order of geometry/geography B.

• **ST Intersection** - Returns a geometry representing the shared portion of geometries A and B.

• **ST Intersects** - Returns true if two Geometries/Geography spatially intersect in 2D (have at least one point in common).

• **ST Length** - Returns the 2D length of a linear geometry.

• **ST Perimeter** - Returns the length of the boundary of a polygonal geometry or geography.

• **ST Project** - Returns a point projected from a start point by a distance and bearing (azimuth).

• **ST Segmentize** - Return a modified geometry/geography having no segment longer than the given distance.

• **ST Summary** - Returns a text summary of the contents of a geometry.

• **<>** - Returns the 2D distance between A and B.

• **&&** - Returns TRUE if A’s 2D bounding box intersects B’s 2D bounding box.

9.5 PostGIS Raster Support Functions

The functions and operators given below are PostGIS functions/operators that take as input or return as output a `raster` data type object. Listed in alphabetical order.

• **Box3D** - Returns the box 3d representation of the enclosing box of the raster.

• **@** - Returns TRUE if A’s bounding box is contained by B’s. Uses double precision bounding box.

• **~** - Returns TRUE if A’s bounding box is contains B’s. Uses double precision bounding box.

• **=** - Returns TRUE if A’s bounding box is the same as B’s. Uses double precision bounding box.

• **&&** - Returns TRUE if A’s bounding box intersects B’s bounding box.

• **&<** - Returns TRUE if A’s bounding box is to the left of B’s.

• **&>** - Returns TRUE if A’s bounding box is to the right of B’s.

• **~=#** - Returns TRUE if A’s bounding box is the same as B’s.
• **ST_Retile** - Return a set of configured tiles from an arbitrarily tiled raster coverage.

• **ST_AddBand** - Returns a raster with the new band(s) of given type added with given initial value in the given index location. If no index is specified, the band is added to the end.

• **ST_AsBinary/ST_AsWKB** - Return the Well-Known Binary (WKB) representation of the raster.

• **ST_AsGDALRaster** - Return the raster tile in the designated GDAL Raster format. Raster formats are one of those supported by your compiled library. Use ST_GDALDrivers() to get a list of formats supported by your library.

• **ST_AsHexWKB** - Return the Well-Known Binary (WKB) in Hex representation of the raster.

• **ST_AsJPEG** - Return the raster tile selected bands as a single Joint Photographic Exports Group (JPEG) image (byte array). If no band is specified and 1 or more than 3 bands, then only the first band is used. If only 3 bands then all 3 bands are used and mapped to RGB.

• **ST_AsPNG** - Return the raster tile selected bands as a single portable network graphics (PNG) image (byte array). If 1, 3, or 4 bands in raster and no bands are specified, then all bands are used. If more 2 or more than 4 bands and no bands specified, then only band 1 is used. Bands are mapped to RGB or RGBA space.

• **ST_AsRaster** - Converts a PostGIS geometry to a PostGIS raster.

• **ST_AsTIFF** - Return the raster selected bands as a single TIFF image (byte array). If no band is specified or any of specified bands does not exist in the raster, then will try to use all bands.

• **ST_Aspect** - Returns the aspect (in degrees by default) of an elevation raster band. Useful for analyzing terrain.

• **ST_Band** - Returns one or more bands of an existing raster as a new raster. Useful for building new rasters from existing rasters.

• **ST_BandFileSize** - Returns the file size of a band stored in file system. If no bandnum specified, 1 is assumed.

• **ST_BandFileTimestamp** - Returns the file timestamp of a band stored in file system. If no bandnum specified, 1 is assumed.

• **ST_BandIsNoData** - Returns true if the band is filled with only nodata values.

• **ST_BandMetaData** - Returns basic meta data for a specific raster band. Band num 1 is assumed if not specified.

• **ST_BandNoDataValue** - Returns the value in a given band that represents no data. If no band num 1 is assumed.

• **ST_BandPath** - Returns system file path to a band stored in file system. If no bandnum specified, 1 is assumed.

• **ST_BandPixelType** - Returns the type of pixel for given band. If no bandnum specified, 1 is assumed.

• **ST_Clip** - Returns the raster clipped by the input geometry. If band number not is specified, all bands are processed. If crop is not specified or TRUE, the output raster is cropped.

• **ST_ColorMap** - Creates a new raster of up to four 8BUI bands (grayscale, RGB, RGBA) from the source raster and a specified band. Band 1 is assumed if not specified.

• **ST_Contains** - Return true if no points of raster rastB lie in the exterior of raster rastA and at least one point of the interior of rastB lies in the interior of rastA.

• **ST_ContainsProperly** - Return true if rastB intersects the interior of rastA but not the boundary or exterior of rastA.

• **ST_ConvexHull** - Return the convex hull geometry of the raster including pixel values equal to BandNoDataValue. For regular shaped and non-skewed rasters, this gives the same result as ST_Envelope so only useful for irregularly shaped or skewed rasters.

• **ST_Count** - Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the nodata value.

• **ST_CountAgg** - Aggregate. Returns the number of pixels in a given band of a set of rasters. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the NODATA value.

• **ST_CoveredBy** - Return true if no points of raster rastA lie outside raster rastB.
- **ST_Covers** - Return true if no points of raster rastB lie outside raster rastA.
- **ST_DFullyWithin** - Return true if rasters rastA and rastB are fully within the specified distance of each other.
- **ST_DWithin** - Return true if rasters rastA and rastB are within the specified distance of each other.
- **ST_Disjoint** - Return true if raster rastA does not spatially intersect rastB.
- **ST_DumpAsPolygons** - Returns a set of geomval (geom,val) rows, from a given raster band. If no band number is specified, band num defaults to 1.
- **ST_DumpValues** - Get the values of the specified band as a 2-dimension array.
- **ST_Envelope** - Returns the polygon representation of the extent of the raster.
- **ST_FromGDALRaster** - Returns a raster from a supported GDAL raster file.
- **ST_GeoReference** - Returns the georeference meta data in GDAL or ESRI format as commonly seen in a world file. Default is GDAL.
- **ST_Grayscale** - Creates a new one-8BUI band raster from the source raster and specified bands representing Red, Green and Blue.
- **ST_HasNoBand** - Returns true if there is no band with given band number. If no band number is specified, then band number 1 is assumed.
- **ST_Height** - Returns the height of the raster in pixels.
- **ST_HillShade** - Returns the hypothetical illumination of an elevation raster band using provided azimuth, altitude, brightness and scale inputs.
- **ST_Histogram** - Returns a set of record summarizing a raster or raster coverage data distribution separate bin ranges. Number of bins are autocomputed if not specified.
- **ST_Intersection** - Returns a raster or a set of geometry-pixelvalue pairs representing the shared portion of two rasters or the geometrical intersection of a vectorization of the raster and a geometry.
- **ST_Intersects** - Return true if raster rastA spatially intersects raster rastB.
- **ST_IsEmpty** - Returns true if the raster is empty (width = 0 and height = 0). Otherwise, returns false.
- **ST_MakeEmptyCoverage** - Cover georeferenced area with a grid of empty raster tiles.
- **ST_MakeEmptyRaster** - Returns an empty raster (having no bands) of given dimensions (width & height), upperleft X and Y, pixel size and rotation (scalex, scaley, skewx & skewy) and reference system (srid). If a raster is passed in, returns a new raster with the same size, alignment and SRID. If srid is left out, the spatial ref is set to unknown (0).
- **ST_MapAlgebra (callback function version)** - Callback function version - Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.
- **ST_MapAlgebraExpr** - 1 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the input raster band and of pixeltype provided. Band 1 is assumed if no band is specified.
- **ST_MapAlgebraExpr** - 2 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the two input raster bands and of pixeltype provided. band 1 of each raster is assumed if no band numbers are specified. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster and have its extent defined by the "extenttype" parameter. Values for "extenttype" can be: INTERSECTION, UNION, FIRST, SECOND.
- **ST_MapAlgebraFct** - 1 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the input raster band and of pixeltype prodive. Band 1 is assumed if no band is specified.
- **ST_MapAlgebraFct** - 2 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the 2 input raster bands and of pixeltype prodive. Band 1 is assumed if no band is specified. Extent type defaults to INTERSECTION if not specified.
• **ST_MapAlgebraFctNgb** - 1-band version: Map Algebra Nearest Neighbor using user-defined PostgreSQL function. Return a raster which values are the result of a PLPGSQL user function involving a neighborhood of values from the input raster band.

• **ST_MapAlgebra (expression version)** - Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.

• **ST_MemSize** - Returns the amount of space (in bytes) the raster takes.

• **ST_MetaData** - Returns basic meta data about a raster object such as pixel size, rotation (skew), upper, lower left, etc.

• **ST_MinConvexHull** - Return the convex hull geometry of the raster excluding NODATA pixels.

• **ST_NearestValue** - Returns the nearest non-NODATA value of a given band’s pixel specified by a columnx and rowy or a geometric point expressed in the same spatial reference coordinate system as the raster.

• **ST_Neighborhood** - Returns a 2-D double precision array of the non-NODATA values around a given band’s pixel specified by either a columnX and rowY or a geometric point expressed in the same spatial reference coordinate system as the raster.

• **ST_NotSameAlignmentReason** - Returns text stating if rasters are aligned and if not aligned, a reason why.

• **ST_NumBands** - Returns the number of bands in the raster object.

• **ST_Overlaps** - Return true if raster rastA and rastB intersect but one does not completely contain the other.

• **ST_PixelAsCentroid** - Returns the centroid (point geometry) of the area represented by a pixel.

• **ST_PixelAsCentroids** - Returns the centroid (point geometry) for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The point geometry is the centroid of the area represented by a pixel.

• **ST_PixelAsPoint** - Returns a point geometry of the pixel’s upper-left corner.

• **ST_PixelAsPoints** - Returns a point geometry for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The coordinates of the point geometry are of the pixel’s upper-left corner.

• **ST_PixelAsPolygon** - Returns the polygon geometry that bounds the pixel for a particular row and column.

• **ST_PixelAsPolygons** - Returns the polygon geometry that bounds every pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel.

• **ST_PixelHeight** - Returns the pixel height in geometric units of the spatial reference system.

• **ST_PixelOfValue** - Get the columnx, rowy coordinates of the pixel whose value equals the search value.

• **ST_PixelWidth** - Returns the pixel width in geometric units of the spatial reference system.

• **ST_Polygon** - Returns a multipolygon geometry formed by the union of pixels that have a pixel value that is not no data value. If no band number is specified, band num defaults to 1.

• **ST_Quantile** - Compute quantiles for a raster or raster table coverage in the context of the sample or population. Thus, a value could be examined to be at the raster’s 25%, 50%, 75% percentile.

• **ST_RastFromHexWKB** - Return a raster value from a Hex representation of Well-Known Binary (WKB) raster.

• **ST_RastFromWKB** - Return a raster value from a Well-Known Binary (WKB) raster.

• **ST_RasterToWorldCoord** - Returns the raster’s upper left corner as geometric X and Y (longitude and latitude) given a column and row. Column and row starts at 1.

• **ST_RasterToWorldCoordX** - Returns the geometric X coordinate upper left of a raster, column and row. Numbering of columns and rows starts at 1.

• **ST_RasterToWorldCoordY** - Returns the geometric Y coordinate upper left corner of a raster, column and row. Numbering of columns and rows starts at 1.

• **ST_Reclass** - Creates a new raster composed of band types reclassified from original. The nband is the band to be changed. If nband is not specified assumed to be 1. All other bands are returned unchanged. Use case: convert a 16BUI band to a 8BUI and so forth for simpler rendering as viewable formats.
• **ST_Resample** - Resample a raster using a specified resampling algorithm, new dimensions, an arbitrary grid corner and a set of raster georeferencing attributes defined or borrowed from another raster.

• **ST_Rescale** - Resample a raster by adjusting only its scale (or pixel size). New pixel values are computed using the Nearest-Neighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is Nearest-Neighbor.

• **ST_Resize** - Resize a raster to a new width/height

• **ST_Reskew** - Resample a raster by adjusting only its skew (or rotation parameters). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.

• **ST_Rotation** - Returns the rotation of the raster in radian.

• **ST_Roughness** - Returns a raster with the calculated "roughness" of a DEM.

• **ST_SRID** - Returns the spatial reference identifier of the raster as defined in spatial_ref_sys table.

• **ST_SameAlignment** - Returns true if rasters have same skew, scale, spatial ref, and offset (pixels can be put on same grid without cutting into pixels) and false if they don’t with notice detailing issue.

• **ST_ScaleX** - Returns the X component of the pixel width in units of coordinate reference system.

• **ST_ScaleY** - Returns the Y component of the pixel height in units of coordinate reference system.

• **ST_SetBandIndex** - Update the external band number of an out-db band

• **ST_SetBandIsNoData** - Sets the isnodata flag of the band to TRUE.

• **ST_SetBandNoDataValue** - Sets the value for the given band that represents no data. Band 1 is assumed if no band is specified. To mark a band as having no nodata value, set the nodata value = NULL.

• **ST_SetBandPath** - Update the external path and band number of an out-db band

• **ST_SetGeoReference** - Set Georeference 6 georeference parameters in a single call. Numbers should be separated by white space. Accepts inputs in GDAL or ESRI format. Default is GDAL.

• **ST_SetRotation** - Set the rotation of the raster in radian.

• **ST_SetSRID** - Sets the SRID of a raster to a particular integer srid defined in the spatial_ref_sys table.

• **ST_SetScale** - Sets the X and Y size of pixels in units of coordinate reference system. Number units/pixel width/height.

• **ST_SetSkew** - Sets the georeference X and Y skew (or rotation parameter). If only one is passed in, sets X and Y to the same value.

• **ST_SetUpperLeft** - Sets the value of the upper left corner of the pixel of the raster to projected X and Y coordinates.

• **ST_SetValue** - Returns modified raster resulting from setting the value of a given band in a given columnx, rowy pixel or the pixels that intersect a particular geometry. Band numbers start at 1 and assumed to be 1 if not specified.

• **ST_SetValues** - Returns modified raster resulting from setting the values of a given band.

• **ST_SkewX** - Returns the georeference X skew (or rotation parameter).

• **ST_SkewY** - Returns the georeference Y skew (or rotation parameter).

• **ST_Slope** - Returns the slope (in degrees by default) of an elevation raster band. Useful for analyzing terrain.

• **ST_SnapToGrid** - Resample a raster by snapping it to a grid. New pixel values are computed using the NearestNeighor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighor.

• **ST_Summary** - Returns a text summary of the contents of the raster.

• **ST_SummaryStats** - Returns summystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. Band 1 is assumed is no band is specified.
• **ST_SummaryStatsAgg** - Aggregate. Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a set of raster. Band 1 is assumed no band is specified.

• **ST_TPI** - Returns a raster with the calculated Topographic Position Index.

• **ST_TRI** - Returns a raster with the calculated Terrain Ruggedness Index.

• **ST_Tile** - Returns a set of rasters resulting from the split of the input raster based upon the desired dimensions of the output rasters.

• **ST_Touches** - Return true if raster rastA and rastB have at least one point in common but their interiors do not intersect.

• **ST_Transform** - Reprojects a raster in a known spatial reference system to another known spatial reference system using specified resampling algorithm. Options are NearestNeighbor, Bilinear, Cubic, CubicSpline, Lanczos defaulting to Nearest-Neighbor.

• **ST_Union** - Returns the union of a set of raster tiles into a single raster composed of 1 or more bands.

• **ST_UpperLeftX** - Returns the upper left X coordinate of raster in projected spatial ref.

• **ST_UpperLeftY** - Returns the upper left Y coordinate of raster in projected spatial ref.

• **ST_Value** - Returns the value of a given band in a given columnx, rowy pixel or at a particular geometric point. Band numbers start at 1 and assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include nodata pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.

• **ST_ValueCount** - Returns a set of records containing a pixel band value and count of the number of pixels in a given band of a raster (or a raster coverage) that have a given set of values. If no band is specified defaults to band 1. By default nodata value pixels are not counted. and all other values in the pixel are output and pixel band values are rounded to the nearest integer.

• **ST_Width** - Returns the width of the raster in pixels.

• **ST_Within** - Return true if no points of raster rastA lie in the exterior of raster rastB and at least one point of the interior of rastA lies in the interior of rastB.

• **ST_WorldToRasterCoord** - Returns the upper left corner as column and row given geometric X and Y (longitude and latitude) or a point geometry expressed in the spatial reference coordinate system of the raster.

• **ST_WorldToRasterCoordX** - Returns the column in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw) represented in world spatial reference system of raster.

• **ST_WorldToRasterCoordY** - Returns the row in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw) represented in world spatial reference system of raster.

• **UpdateRasterSRID** - Change the SRID of all rasters in the user-specified column and table.

9.6 PostGIS Geometry / Geography / Raster Dump Functions

The functions given below are PostGIS functions that take as input or return as output a set of or single `geometry_dump` or `geomval` data type object.

• **ST_DumpAsPolygons** - Returns a set of geomval (geom,val) rows, from a given raster band. If no band number is specified, band num defaults to 1.

• **ST_Intersection** - Returns a raster or a set of geometry-pixelvalue pairs representing the shared portion of two rasters or the geometrical intersection of a vectorization of the raster and a geometry.

• **ST_Dump** - Returns a set of `geometry_dump` rows for the components of a geometry.

• **ST_DumpPoints** - Returns a set of `geometry_dump` rows for the points in a geometry.

• **ST_DumpRings** - Returns a set of `geometry_dump` rows for the exterior and interior rings of a Polygon.
9.7 PostGIS Box Functions

The functions given below are PostGIS functions that take as input or return as output the box* family of PostGIS spatial types. The box family of types consists of box2d, and box3d

- **Box2D** - Returns a BOX2D representing the 2D extent of the geometry.
- **Box3D** - Returns a BOX3D representing the 3D extent of the geometry.
- **Box3D** - Returns the box 3d representation of the enclosing box of the raster.
- **ST_3DEndent** - an aggregate function that returns the 3D bounding box that bounds rows of geometries.
- **ST_3DMakeBox** - Creates a BOX3D defined by two 3D point geometries.
- **ST_AsMVTGeom** - Transform a geometry into the coordinate space of a Mapbox Vector Tile.
- **ST_AsTWKB** - Returns the geometry as TWKB, aka "Tiny Well-Known Binary"
- **ST_Box2dFromGeoHash** - Return a BOX2D from a GeoHash string.
- **ST_ClipByBox2D** - Returns the portion of a geometry falling within a rectangle.
- **ST_EstimatedExtent** - Return the 'estimated' extent of a spatial table.
- **ST_Expand** - Returns a bounding box expanded from another bounding box or a geometry.
- **ST_Extent** - an aggregate function that returns the bounding box that bounds rows of geometries.
- **ST_MakeBox2D** - Creates a BOX2D defined by two 2D point geometries.
- **ST_XMax** - Returns the X maxima of a 2D or 3D bounding box or a geometry.
- **ST_XMin** - Returns the X minima of a 2D or 3D bounding box or a geometry.
- **ST_YMax** - Returns the Y maxima of a 2D or 3D bounding box or a geometry.
- **ST_YMin** - Returns the Y minima of a 2D or 3D bounding box or a geometry.
- **ST_ZMax** - Returns the Z maxima of a 2D or 3D bounding box or a geometry.
- **ST_ZMin** - Returns the Z minima of a 2D or 3D bounding box or a geometry.
- **~(box2df,box2df)** - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).
- **~(box2df,geometry)** - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry’s 2D bonding box.
- **~(geometry,box2df)** - Returns TRUE if a geometry’s 2D bonding box contains a 2D float precision bounding box (GIDX).
- **@(box2df,box2df)** - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision bounding box.
- **@(box2df,geometry)** - Returns TRUE if a geometry’s 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).
- **&@(geometry,box2df)** - Returns TRUE if a geometry’s 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).
- **&@(box2df,box2df)** - Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.
- **&@(box2df,geometry)** - Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry’s (cached) 2D bounding box.
- **&@(geometry,box2df)** - Returns TRUE if a geometry’s (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).
9.8 PostGIS Functions that support 3D

The functions given below are PostGIS functions that do not throw away the Z-Index.

- **AddGeometryColumn** - Adds a geometry column to an existing table.
- **Box3D** - Returns a BOX3D representing the 3D extent of the geometry.
- **DropGeometryColumn** - Removes a geometry column from a spatial table.
- **GeometryType** - Returns the type of a geometry as text.
- **ST_3DArea** - Computes area of 3D surface geometries. Will return 0 for solids.
- **ST_3DClosestPoint** - Returns the 3D point on g1 that is closest to g2. This is the first point of the 3D shortest line.
- **ST_3DDFullyWithin** - Returns true if two 3D geometries are entirely within a given 3D distance
- **ST_3DDWithin** - Returns true if two 3D geometries are within a given 3D distance
- **ST_3DDifference** - Perform 3D difference
- **ST_3DDistance** - Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.
- **ST_3DExtent** - an aggregate function that returns the 3D bounding box that bounds rows of geometries.
- **ST_3DIntersection** - Perform 3D intersection
- **ST_3DDIntersects** - Returns true if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area).
- **ST_3DLength** - Returns the 3D length of a linear geometry.
- **ST_3DLongestLine** - Returns the 3D longest line between two geometries
- **ST_3DMaxDistance** - Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in projected units.
- **ST_3DPerimeter** - Returns the 3D perimeter of a polygonal geometry.
- **ST_3DShortestLine** - Returns the 3D shortest line between two geometries
- **ST_3DUnion** - Perform 3D union
- **ST_AddMeasure** - Return a derived geometry with measure elements linearly interpolated between the start and end points.
- **ST_AddPoint** - Add a point to a LineString.
- **ST_Affine** - Apply a 3D affine transformation to a geometry.
- **ST_ApproximateMedialAxis** - Compute the approximate medial axis of an areal geometry.
- **ST_AsBinary** - Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
- **ST_AsEWKB** - Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.
- **ST_AsEWKT** - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
- **ST_AsGML** - Return the geometry as a GML version 2 or 3 element.
- **ST_AsGeoJSON** - Return the geometry as a GeoJSON element.
- **ST_AsHEXEWKB** - Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR) encoding.
- **ST_AsKML** - Return the geometry as a KML element. Several variants. Default version=2, default maxdecimaldigits=15
• **ST_AsX3D** - Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML
• **ST_Boundary** - Returns the boundary of a geometry.
• **ST_BoundingDiagonal** - Returns the diagonal of a geometry’s bounding box.
• **ST_CPAWithin** - Returns true if the closest point of approach of two trajectories is within the specified distance.
• **ST_ClosestPointOfApproach** - Returns the measure at which points interpolated along two trajectories are closest.
• **ST_Collect** - Creates a GeometryCollection or Multi* geometry from a set of geometries.
• **ST_ConstrainedDelaunayTriangles** - Return a constrained Delaunay triangulation around the given input geometry.
• **ST_ConvexHull** - Computes the convex hull of a geometry.
• **ST_CoordDim** - Return the coordinate dimension of a geometry.
• **ST_CurveToLine** - Converts a geometry containing curves to a linear geometry.
• **ST_DelaunayTriangles** - Returns the Delaunay triangulation of the vertices of a geometry.
• **ST_Difference** - Returns a geometry representing the part of geometry A that does not intersect geometry B.
• **ST_DistanceCPA** - Returns the distance between the closest point of approach of two trajectories.
• **ST_Dump** - Returns a set of geometry_dump rows for the components of a geometry.
• **ST_DumpPoints** - Returns a set of geometry_dump rows for the points in a geometry.
• **ST_DumpRings** - Returns a set of geometry_dump rows for the exterior and interior rings of a Polygon.
• **ST_EndPoint** - Returns the last point of a LineString or CircularLineString.
• **ST_ExteriorRing** - Returns a LineString representing the exterior ring of a Polygon.
• **ST_Extrude** - Extrude a surface to a related volume
• **ST_FlipCoordinates** - Returns a version of a geometry with X and Y axis flipped.
• **ST_Force2D** - Force the geometries into a "2-dimensional mode".
• **ST_ForceCurve** - Upcast a geometry into its curved type, if applicable.
• **ST_ForceLHR** - Force LHR orientation
• **ST_ForcePolygonCCW** - Orient all exterior rings counter-clockwise and all interior rings clockwise.
• **ST_ForcePolygonCW** - Orient all exterior rings clockwise and all interior rings counter-clockwise.
• **ST_ForceRHR** - Force the orientation of the vertices in a polygon to follow the Right-Hand-Rule.
• **ST_ForceSFS** - Force the geometries to use SFS 1.1 geometry types only.
• **ST_Force_3D** - Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.
• **ST_Force_3DZ** - Force the geometries into XYZ mode.
• **ST_Force_4D** - Force the geometries into XYZM mode.
• **ST_Force_Collection** - Convert the geometry into a GEOMETRYCOLLECTION.
• **ST_GeomFromEWKB** - Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).
• **ST_GeomFromEWKT** - Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).
• **ST_GeomFromGML** - Takes as input GML representation of geometry and outputs a PostGIS geometry object
• **ST_GeomFromGeoJSON** - Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object
• **ST_GeomFromKML** - Takes as input KML representation of geometry and outputs a PostGIS geometry object.

• **ST_GeometricMedian** - Returns the geometric median of a MultiPoint.

• **ST_GeometryN** - Return the Nth geometry element of a geometry collection.

• **ST_GeometryType** - Returns the SQL-MM type of a geometry as text.

• **ST_HasArc** - Tests if a geometry contains a circular arc.

• **ST_InteriorRingN** - Returns the Nth interior ring (hole) of a Polygon.

• **ST_InterpolatePoint** - Return the value of the measure dimension of a geometry at the point closed to the provided point.

• **ST_Intersection** - Returns a geometry representing the shared portion of geometries A and B.

• **ST_IsClosed** - Tests if a LineStrings’s start and end points are coincident. For a PolyhedralSurface tests if it is closed (volumetric).

• **ST_IsCollection** - Tests if a geometry is a geometry collection type.

• **ST_IsPlanar** - Check if a surface is or not planar.

• **ST_IsPolygonCCW** - Tests if Polygons have exterior rings oriented counter-clockwise and interior rings oriented clockwise.

• **ST_IsPolygonCW** - Tests if Polygons have exterior rings oriented clockwise and interior rings oriented counter-clockwise.

• **ST_IsSimple** - Tests if a geometry has no points of self-intersection or self-tangency.

• **ST_IsSolid** - Test if the geometry is a solid. No validity check is performed.

• **ST_IsValidTrajectory** - Returns true if the geometry is a valid trajectory.

• **ST_Length_Spheroid** - Returns the 2D or 3D length/perimeter of a lon/lat geometry on a spheroid.

• **ST_LineFromMultiPoint** - Creates a LineString from a MultiPoint geometry.

• **ST_LineInterpolatePoint** - Returns a point interpolated along a line. Second argument is a float8 between 0 and 1 representing fraction of total length of linestring the point has to be located.

• **ST_LineInterpolatePoints** - Returns one or more points interpolated along a line.

• **ST_LineSubstring** - Return a linestring being a substring of the input one starting and ending at the given fractions of total 2d length. Second and third arguments are float8 values between 0 and 1.

• **ST_LineToCurve** - Converts a linear geometry to a curved geometry.

• **ST_LocateBetweenElevations** - Return a derived geometry (collection) value with elements that intersect the specified range of elevations inclusively.

• **ST_M** - Returns the M coordinate of a Point.

• **ST_MakeLine** - Creates a Linestring from Point, MultiPoint, or LineString geometries.

• **ST_MakePoint** - Creates a 2D, 3DZ or 4D Point.

• **ST_MakePolygon** - Creates a Polygon from a shell and optional list of holes.

• **ST_MakeSolid** - Cast the geometry into a solid. No check is performed. To obtain a valid solid, the input geometry must be a closed Polyhedral Surface or a closed TIN.

• **ST_MakeValid** - Attempts to make an invalid geometry valid without losing vertices.

• **ST_MemSize** - Returns the amount of memory space a geometry takes.

• **ST_MemUnion** - Aggregate function which unions geometry in a memory-efficient but slower way.

• **ST_NDims** - Returns the coordinate dimension of a geometry.
• **ST_NPoints** - Returns the number of points (vertices) in a geometry.

• **ST_NRings** - Returns the number of rings in a polygonal geometry.

• **ST_Node** - Nodes a collection of lines.

• **ST_NumGeometries** - Returns the number of elements in a geometry collection.

• **ST_NumPatches** - Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.

• **ST_Orientation** - Determine surface orientation

• **ST_PatchN** - Returns the Nth geometry (face) of a PolyhedralSurface.

• **ST_PointFromWKB** - Makes a geometry from WKB with the given SRID

• **ST_PointN** - Returns the Nth point in the first LineString or circular LineString in a geometry.

• **ST_PointOnSurface** - Returns a point guaranteed to lie in a polygon or on a geometry.

• **ST_Points** - Returns a MultiPoint containing all the coordinates of a geometry.

• **ST_Polygon** - Creates a Polygon from a LineString with a specified SRID.

• **ST_RemovePoint** - Remove point from a linestring.

• **ST_RemoveRepeatedPoints** - Returns a version of the given geometry with duplicated points removed.

• **ST_Reverse** - Return the geometry with vertex order reversed.

• **ST_Rotate** - Rotates a geometry about an origin point.

• **ST_RotateX** - Rotates a geometry about the X axis.

• **ST_RotateY** - Rotates a geometry about the Y axis.

• **ST_RotateZ** - Rotates a geometry about the Z axis.

• **ST_Scale** - Scales a geometry by given factors.

• **ST_SetPoint** - Replace point of a linestring with a given point.

• **ST_Shift_Longitude** - Shifts the longitude coordinates of a geometry between -180..180 and 0..360.

• **ST_SnapToGrid** - Snap all points of the input geometry to a regular grid.

• **ST_StartPoint** - Returns the first point of a LineString.

• **ST_StraightSkeleton** - Compute a straight skeleton from a geometry

• **ST_SwapOrdinates** - Returns a version of the given geometry with given ordinate values swapped.

• **ST_SymDifference** - Returns a geometry representing the portions of geometries A and B that do not intersect.

• **ST_Tesselate** - Perform surface Tesselation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS

• **ST_TransScale** - Translates and scales a geometry by given offsets and factors.

• **ST_Translate** - Translates a geometry by given offsets.

• **ST_UnaryUnion** - Computes the union of the components of a single geometry.

• **ST_Union** - Returns a geometry representing the point-set union of the input geometries.

• **ST_Volume** - Computes the volume of a 3D solid. If applied to surface (even closed) geometries will return 0.

• **ST_WrapX** - Wrap a geometry around an X value.

• **ST_X** - Returns the X coordinate of a Point.
• **ST_XMax** - Returns the X maxima of a 2D or 3D bounding box or a geometry.
• **ST_XMin** - Returns the X minima of a 2D or 3D bounding box or a geometry.
• **ST_Y** - Returns the Y coordinate of a Point.
• **ST_YMax** - Returns the Y maxima of a 2D or 3D bounding box or a geometry.
• **ST_YMin** - Returns the Y minima of a 2D or 3D bounding box or a geometry.
• **ST_Z** - Returns the Z coordinate of a Point.
• **ST_ZMax** - Returns the Z maxima of a 2D or 3D bounding box or a geometry.
• **ST_ZMin** - Returns the Z minima of a 2D or 3D bounding box or a geometry.
• **ST_Zmflag** - Returns a code indicating the ZM coordinate dimension of a geometry.
• **TG_Equals** - Returns true if two topogeometries are composed of the same topology primitives.
• **TG_Intersects** - Returns true if any pair of primitives from the two topogeometries intersect.
• **UpdateGeometrySRID** - Updates the SRID of all features in a geometry column, and the table metadata.

9.9 PostGIS Curved Geometry Support Functions

The functions given below are PostGIS functions that can use CIRCULARSTRING, CURVEPOLYGON, and other curved geometry types

• **AddGeometryColumn** - Adds a geometry column to an existing table.
• **Box2D** - Returns a BOX2D representing the 2D extent of the geometry.
• **Box3D** - Returns a BOX3D representing the 3D extent of the geometry.
• **DropGeometryColumn** - Removes a geometry column from a spatial table.
• **GeometryType** - Returns the type of a geometry as text.
• **PostGIS_AddBBox** - Add bounding box to the geometry.
• **PostGIS_DropBBox** - Drop the bounding box cache from the geometry.
• **PostGIS_HasBBox** - Returns TRUE if the bbox of this geometry is cached, FALSE otherwise.
• **ST_3DExtent** - an aggregate function that returns the 3D bounding box that bounds rows of geometries.
• **ST_Affine** - Apply a 3D affine transformation to a geometry.
• **ST_AsBinary** - Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
• **ST_AsEWKB** - Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.
- **ST_AsEWKT** - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
- **ST_AsHEXEWKB** - Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR) encoding.
- **ST_AsText** - Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
- **ST_Collect** - Creates a GeometryCollection or Multi* geometry from a set of geometries.
- **ST_CoordDim** - Return the coordinate dimension of a geometry.
- **ST_CurveToLine** - Converts a geometry containing curves to a linear geometry.
- **ST_Distance** - Returns the distance between two geometry or geography values.
- **ST_Dump** - Returns a set of geometry_dump rows for the components of a geometry.
- **ST_DumpPoints** - Returns a set of geometry_dump rows for the points in a geometry.
- **ST_EndPoint** - Returns the last point of a LineString or CircularLineString.
- **ST_EstimatedExtent** - Return the ‘estimated’ extent of a spatial table.
- **ST_FlipCoordinates** - Returns a version of a geometry with X and Y axis flipped.
- **ST_Force2D** - Force the geometries into a "2-dimensional mode".
- **ST_ForceCurve** - Upcast a geometry into its curved type, if applicable.
- **ST_ForceSFS** - Force the geometries to use SFS 1.1 geometry types only.
- **ST_Force3D** - Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.
- **ST_Force3DM** - Force the geometries into XYM mode.
- **ST_Force3DZ** - Force the geometries into XYZ mode.
- **ST_Force4D** - Force the geometries into XYZM mode.
- **ST_ForceCollection** - Convert the geometry into a GEOMETRYCOLLECTION.
- **ST_GeoHash** - Return a GeoHash representation of the geometry.
- **ST_GeogFromWKB** - Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended Well Known Binary (EWKB).
- **ST_GeomFromEWKB** - Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).
- **ST_GeomFromEWKT** - Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).
- **ST_GeomFromText** - Return a specified ST_Geometry value from Well-Known Text representation (WKT).
- **ST_GeomFromWKB** - Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional SRID.
- **ST_GeometryN** - Return the Nth geometry element of a geometry collection.
- **=** - Returns TRUE if the coordinates and coordinate order geometry/geography A are the same as the coordinates and coordinate order of geometry/geography B.
- **&<|** - Returns TRUE if A’s bounding box overlaps or is below B’s.
- **ST_HasArc** - Tests if a geometry contains a circular arc
- **ST_Intersection** - Returns true if two Geometries/Geography spatially intersect in 2D (have at least one point in common).
- **ST_IsClosed** - Tests if a LineStrings’s start and end points are coincident. For a PolyhedralSurface tests if it is closed (volumetric).
- **ST_IsCollection** - Tests if a geometry is a geometry collection type.
- **ST_IsEmpty** - Tests if a geometry is empty.
- **ST_LineToCurve** - Converts a linear geometry to a curved geometry.
- **ST_MemSize** - Returns the amount of memory space a geometry takes.
- **ST_NPoints** - Returns the number of points (vertices) in a geometry.
- **ST_NRings** - Returns the number of rings in a polygonal geometry.
- **ST_PointFromWKB** - Makes a geometry from WKB with the given SRID
- **ST_PointN** - Returns the Nth point in the first LineString or circular LineString in a geometry.
- **ST_Points** - Returns a MultiPoint containing all the coordinates of a geometry.
- **ST_Rotate** - Rotates a geometry about an origin point.
- **ST_RotateZ** - Rotates a geometry about the Z axis.
- **ST_SRID** - Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table.
- **ST_Scale** - Scales a geometry by given factors.
- **ST_SetSRID** - Set the SRID on a geometry to a particular integer value.
- **ST_StartPoint** - Returns the first point of a LineString.
- **ST_Summary** - Returns a text summary of the contents of a geometry.
- **ST_SwapOrdinates** - Returns a version of the given geometry with given ordinate values swapped.
- **ST_TransScale** - Translates and scales a geometry by given offsets and factors.
- **ST_Transform** - Return a new geometry with its coordinates transformed to a different spatial reference system.
- **ST_Translate** - Translates a geometry by given offsets.
- **ST_XMax** - Returns the X maxima of a 2D or 3D bounding box or a geometry.
- **ST_XMin** - Returns the X minima of a 2D or 3D bounding box or a geometry.
- **ST_YMax** - Returns the Y maxima of a 2D or 3D bounding box or a geometry.
- **ST_YMin** - Returns the Y minima of a 2D or 3D bounding box or a geometry.
- **ST_ZMax** - Returns the Z maxima of a 2D or 3D bounding box or a geometry.
- **ST_ZMin** - Returns the Z minima of a 2D or 3D bounding box or a geometry.
- **ST_Zmflag** - Returns a code indicating the ZM coordinate dimension of a geometry.
- **UpdateGeometrySRID** - Updates the SRID of all features in a geometry column, and the table metadata.
- ~<box2df,box2df> - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).
- ~<box2df,geometry> - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry’s 2D bonding box.
- ~(geometry,box2df) - Returns TRUE if a geometry’s 2D bonding box contains a 2D float precision bounding box (GIDX).
- && - Returns TRUE if A’s 2D bounding box intersects B’s 2D bounding box.
- &&& - Returns TRUE if A’s n-D bounding box intersects B’s n-D bounding box.
- @(box2df,box2df) - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision bounding box.
• @<box2df,geometry> - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry’s 2D bounding box.

• @<geometry,box2df> - Returns TRUE if a geometry’s 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).

• &&<box2df,box2df> - Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.

• &&<box2df,geometry> - Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry’s (cached) 2D bounding box.

• &&<geometry,box2df> - Returns TRUE if a geometry’s (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).

• &&<(geometry,gidx) - Returns TRUE if a geometry’s (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).

• &&<(gidx,geometry) - Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry’s (cached) n-D bounding box.

• &&<(gidx,gidx) - Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.

9.10 PostGIS Polyhedral Surface Support Functions

The functions given below are PostGIS functions that can use POLYHEDRALSURFACE, POLYHEDRALSURFACEM geometries

• Box2D - Returns a BOX2D representing the 2D extent of the geometry.
• Box3D - Returns a BOX3D representing the 3D extent of the geometry.
• GeometryType - Returns the type of a geometry as text.
• ST_3DArea - Computes area of 3D surface geometries. Will return 0 for solids.
• ST_3DClosestPoint - Returns the 3D point on g1 that is closest to g2. This is the first point of the 3D shortest line.
• ST_3DDFullyWithin - Returns true if two 3D geometries are entirely within a given 3D distance
• ST_3DDWithin - Returns true if two 3D geometries are within a given 3D distance
• ST_3DDifference - Perform 3D difference
• ST_3DDistance - Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.
• ST_3DExtent - an aggregate function that returns the 3D bounding box that bounds rows of geometries.
• ST_3DIntersection - Perform 3D intersection
• ST_3DIntersects - Returns true if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area).
• ST_3DLongestLine - Returns the 3D longest line between two geometries
• ST_3DMaxDistance - Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in projected units.
• ST_3DShortestLine - Returns the 3D shortest line between two geometries
• ST_3DUnion - Perform 3D union
• ST_Affine - Apply a 3D affine transformation to a geometry.
• ST_ApproximateMedialAxis - Compute the approximate medial axis of an areal geometry.
- **ST_Area** - Returns the area of a polygonal geometry.
- **ST_AsBinary** - Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
- **ST_AsEWKB** - Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.
- **ST_AsEWKT** - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
- **ST_AsGML** - Return the geometry as a GML version 2 or 3 element.
- **ST_AsX3D** - Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML
- **ST_CoordDim** - Return the coordinate dimension of a geometry.
- **ST_Dimension** - Returns the topological dimension of a geometry.
- **ST_Dump** - Returns a set of geometry_dump rows for the components of a geometry.
- **ST_DumpPoints** - Returns a set of geometry_dump rows for the points in a geometry.
- **ST_Expand** - Returns a bounding box expanded from another bounding box or a geometry.
- **ST_Extent** - an aggregate function that returns the bounding box that bounds rows of geometries.
- **ST_Extrude** - Extrude a surface to a related volume
- **ST_FlipCoordinates** - Returns a version of a geometry with X and Y axis flipped.
- **ST_Force2D** - Force the geometries into a “2-dimensional mode”.
- **ST_ForceLHR** - Force LHR orientation
- **ST_ForceRHR** - Force the orientation of the vertices in a polygon to follow the Right-Hand-Rule.
- **ST_ForceSFS** - Force the geometries to use SFS 1.1 geometry types only.
- **ST_Force3D** - Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.
- **ST_Force3DZ** - Force the geometries into XYZ mode.
- **ST_ForceCollection** - Convert the geometry into a GEOMETRYCOLLECTION.
- **ST_GeomFromEWKB** - Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).
- **ST_GeomFromEWKT** - Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).
- **ST_GeomFromGML** - Takes as input GML representation of geometry and outputs a PostGIS geometry object
- **ST_GeometryN** - Return the Nth geometry element of a geometry collection.
- **ST_GeometryType** - Returns the SQL-MM type of a geometry as text.
- **=** - Returns TRUE if the coordinates and coordinate order geometry/geography A are the same as the coordinates and coordinate order of geometry/geography B.
- **&<|** - Returns TRUE if A’s bounding box overlaps or is below B’s.
- **|=** - Returns TRUE if A’s bounding box is the same as B’s.
- **ST_IsClosed** - Tests if a LineStrings’s start and end points are coincident. For a PolyhedralSurface tests if it is closed (volumetric).
- **ST_IsPlanar** - Check if a surface is or not planar
- **ST_IsSolid** - Test if the geometry is a solid. No validity check is performed.
- **ST_MakeSolid** - Cast the geometry into a solid. No check is performed. To obtain a valid solid, the input geometry must be a closed Polyhedral Surface or a closed TIN.
• **ST_MemSize** - Returns the amount of memory space a geometry takes.
• **ST_NPoints** - Returns the number of points (vertices) in a geometry.
• **ST_NumGeometries** - Returns the number of elements in a geometry collection.
• **ST_NumPatches** - Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.
• **ST_PatchN** - Returns the Nth geometry (face) of a PolyhedralSurface.
• **ST_RemoveRepeatedPoints** - Returns a version of the given geometry with duplicated points removed.
• **ST_Reverse** - Return the geometry with vertex order reversed.
• **ST_Rotate** - Rotates a geometry about an origin point.
• **ST_RotateX** - Rotates a geometry about the X axis.
• **ST_RotateY** - Rotates a geometry about the Y axis.
• **ST_RotateZ** - Rotates a geometry about the Z axis.
• **ST_Scale** - Scales a geometry by given factors.
• **ST_ShiftLongitude** - Shifts the longitude coordinates of a geometry between -180..180 and 0..360.
• **ST_StraightSkeleton** - Compute a straight skeleton from a geometry
• **ST_Summary** - Returns a text summary of the contents of a geometry.
• **ST_SwapOrdinates** - Returns a version of the given geometry with given ordinate values swapped.
• **ST_Tesselate** - Perform surface Tessellation of a polygon or polyhedral surface and returns as a TIN or collection of TINS
• **ST_Transform** - Return a new geometry with its coordinates transformed to a different spatial reference system.
• **ST_Volume** - Computes the volume of a 3D solid. If applied to surface (even closed) geometries will return 0.
• ~(box2df,box2df) - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).
• ~(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry’s 2D bonding box.
• ~(geometry,box2df) - Returns TRUE if a geometry’s 2D bonding box contains a 2D float precision bounding box (GIDX).
• && - Returns TRUE if A’s 2D bounding box intersects B’s 2D bounding box.
• &&& - Returns TRUE if A’s n-D bounding box intersects B’s n-D bounding box.
• @(box2df,box2df) - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision bounding box.
• @(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry’s 2D bounding box.
• @(geometry,box2df) - Returns TRUE if a geometry’s 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).
• &&(box2df,box2df) - Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.
• &&(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry’s (cached) 2D bounding box.
• &&(geometry,box2df) - Returns TRUE if a geometry’s (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).
• &&&(geometry,gidx) - Returns TRUE if a geometry’s (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).
• &&(gidx, geometry) - Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry’s (cached) n-D bounding box.

• &&(gidx, gidx) - Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.

• postgis_sfcgal_version - Returns the version of SFCGAL in use

9.11 PostGIS Function Support Matrix

Below is an alphabetical listing of spatial specific functions in PostGIS and the kinds of spatial types they work with or OGC/SQL compliance they try to conform to.

• A ✓ means the function works with the type or subtype natively.

• A 😞 means it works but with a transform cast built-in using cast to geometry, transform to a "best srid" spatial ref and then cast back. Results may not be as expected for large areas or areas at poles and may accumulate floating point junk.

• A 🙁 means the function works with the type because of a auto-cast to another such as to box3d rather than direct type support.

• A ⚫ means the function only available if PostGIS compiled with SFCGAL support.

• A 🤨 means the function support is provided by SFCGAL if PostGIS compiled with SFCGAL support, otherwise GEOS/built-in support.

• geom - Basic 2D geometry support (x,y).

• geog - Basic 2D geography support (x,y).

• 2.5D - basic 2D geometries in 3D/4D space (has Z or M coord).

• PS - Polyhedral surfaces

• T - Triangles and Triangulated Irregular Network surfaces (TIN)

<table>
<thead>
<tr>
<th>Function</th>
<th>geom</th>
<th>geog</th>
<th>2.5D</th>
<th>Curves</th>
<th>SQL MM</th>
<th>PS</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box2D</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box3D</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GeometryType</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PostGIS_AddBBox</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostGIS_DropBBox</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostGIS_Extensions_Upgrade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostGIS_Full_Version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostGIS_GEOS_Version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostGIS_HasBBox</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostGIS_LibXML_Version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostGIS_Lib_Build_Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostGIS_Lib_Version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostGIS_LibSgeom_Version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostGIS_PKGJ_Version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>geom</td>
<td>geog</td>
<td>2.5D</td>
<td>Curves</td>
<td>SQL MM</td>
<td>PS</td>
<td>T</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>PostGIS_Scripts_Build_Date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostGIS_Scripts_Installed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostGIS_Scripts_Released</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostGIS_Version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostGIS_Wagyu_Version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_3DArea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_3DClosestPoint</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_3DDifference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_3DDistance</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_3DExtent</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_3DIntersection</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_3DLength</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_3DLineInterpolate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_3DLongetestLine</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_3DMakeBox</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_3DMaxDistance</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_3DPerimeter</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_3DShortestLine</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_3DUnion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_AddMeasure</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_AddPoint</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_Affine</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_Angle</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_ApproximateMedialAxis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Area</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_Azimuth</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_Boundary</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_BoundingDiagonal</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_Buffer</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_BuildArea</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_CPAThrough</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_Centroid</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ST_ChaikinSmooth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ClipByBox2D</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Function</td>
<td>geom</td>
<td>geog</td>
<td>2.5D</td>
<td>Curves</td>
<td>SQL MM</td>
<td>PS</td>
<td>T</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>ST_ClosestPoint</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ClosestPointOfApproach</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ClusterDBSCAN</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ClusterIntersect</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ClusterKMeans</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ClusterWithin</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Collect</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_CollectionExtract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_CollectionHomogenize</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ConcaveHull</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ConstrainedDelaunayTriangles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ConvexHull</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_CoordDim</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_CurveToLine</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_DelaunayTriangles</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Difference</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Dimension</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Distance</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_DistanceCPA</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_DistanceSphere</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_DistanceSpheroid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Dump</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_DumpPoints</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_DumpRings</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_EndPoint</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Envelope</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_EstimatedExtent</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Expand</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Extent</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ExteriorRing</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Extrude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_FilterByM</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_FlipCoordinates</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>geom</td>
<td>geog</td>
<td>2.5D</td>
<td>Curves</td>
<td>SQL MM</td>
<td>PS</td>
<td>T</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>ST_Force2D</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ForceCurve</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ForceLHR</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ForcePolygonC</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ForcePolygonC</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ForceRHR</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ForceSFS</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Force3D</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Force3DM</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Force3DZ</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Force4D</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ForceCollection</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_FrechetDistance</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_GeneratePoints</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_GeometricMedian</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_GeometryN</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_GeometryType</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_HasArc</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_HausdorffDistance</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Hexagon</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_HexagonGrid</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_InteriorRingN</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_InterpolatePoint</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Intersection</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_IsClosed</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_IsCollection</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_IsEmpty</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_IsPlanar</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_IsPolygonCCW</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_IsPolygonCW</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_IsRing</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_IsSimple</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_IsSolid</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>geom</td>
<td>geog</td>
<td>2.5D</td>
<td>Curves</td>
<td>SQL MM</td>
<td>PS</td>
<td>T</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>ST_IsValid</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_IsValidDetail</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_IsValidReason</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_IsValidTrajectory</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Length</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Length2D</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_LengthSpheroid</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_LineFromMultiPoint</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_LineInterpolatePoint</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_LineInterpolatePoints</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_LineLocatePoint</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_LineMerge</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_LineSubstring</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_LineToCurve</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_LocateAlong</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_LocateBetween</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_LocateBetweenElevations</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_LongestLine</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_M</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MakeBox2D</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MakeEnvelope</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MakeLine</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MakePoint</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MakePointM</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MakePolygon</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MakeSolid</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MakeValid</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MaxDistance</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MaximumInscribedCircle</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MemSize</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MemUnion</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MinimumBoundingCircle</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MinimumBoundingRadius</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>geom</td>
<td>geog</td>
<td>2.5D</td>
<td>Curves</td>
<td>SQL MM</td>
<td>PS</td>
<td>T</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>ST_MinimumClear()</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MinimumClear(geom)</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_MinkowskiSum()</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Multi</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_NDims</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_NPoints</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_NRings</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Node</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Normalize</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_NumGeometries</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_NumInteriorRing</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_NumInteriorRingLine</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_NumPatches</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_NumPoints</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_OffsetCurve</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST.Orientation</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_OrientedEnvelope</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_PatchN</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Perimeter</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Perimeter2D</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Point</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_PointN</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_PointOnSurface</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Points</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Polygon</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Polygonize</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Project</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_QuantizeCoordinates</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ReducePrecision</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_RemovePoint</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_RemoveRepeatedPoints</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Reverse</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Rotate</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td>geom</td>
<td>geog</td>
<td>2.5D</td>
<td>Curves</td>
<td>SQL MM</td>
<td>PS</td>
<td>T</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>ST_RotateX</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_RotateY</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_RotateZ</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_SRID</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Scale</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Segmentize</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_SetEffectiveArea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_SetPoint</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_SetSRID</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_SharedPaths</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ShiftLongitude</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ShortestLine</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Simplify</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_SimplifyPreserveTopology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_SimplifyVW</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Snap</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_SnapToGrid</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Split</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Square</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_SquareGrid</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_StartPoint</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_StraightSkeleton</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Subdivide</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Summary</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_SwapOrdinates</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_SymDifference</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Tesselate</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_TileEnvelope</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_TransScale</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Transform</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Translate</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_UnaryUnion</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Union</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.12 New, Enhanced or changed PostGIS Functions

9.12.1 PostGIS Functions new or enhanced in 3.1

The functions given below are PostGIS functions that were added or enhanced.

Functions new in PostGIS 3.1

- **ST_Hexagon** - Availability: 3.1.0 Returns a single hexagon, using the provided edge size and cell coordinate within the hexagon grid space.

- **ST_HexagonGrid** - Availability: 3.1.0 Returns a set of hexagons and cell indices that completely cover the bounds of the geometry argument.

- **ST_MaximumInscribedCircle** - Availability: 3.1.0 - requires GEOS >= 3.9.0. Computes the largest circle that is fully contained within a geometry.

- **ST_ReducePrecision** - Availability: 3.1.0 - requires GEOS >= 3.9.0. Returns a valid geometry with all points rounded to the provided grid tolerance.

- **ST_Square** - Availability: 3.1.0 Returns a single square, using the provided edge size and cell coordinate within the hexagon grid space.

- **ST_SquareGrid** - Availability: 3.1.0 Returns a set of grid squares and cell indices that completely cover the bounds of the geometry argument.

<table>
<thead>
<tr>
<th>Function</th>
<th>geom</th>
<th>geog</th>
<th>2.5D</th>
<th>Curves</th>
<th>SQL MM</th>
<th>PS</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST_Volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_VoronoiLines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_VoronoiPolygon</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_WrapX</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_X</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_XMax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_XMin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Y</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_YMax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_YMin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Z</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ZMax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_ZMin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_Zmflag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>postgis.backend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>postgis.enable_outdb_rasters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>postgis.gdal_datapath</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>postgis.gdal_enabled_drivers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>postgis_sfcgal_version</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functions enhanced in PostGIS 3.1

- **ST_AsEWKT** - Enhanced: 3.1.0 support for optional precision parameter. Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.

- **ST_ClusterKMeans** - Enhanced: 3.1.0 Support for 3D geometries and weights Window function that returns a cluster id for each input geometry using the K-means algorithm.

- **ST_Difference** - Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0 Returns a geometry representing the part of geometry A that does not intersect geometry B.

- **ST_Intersection** - Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0 Returns a geometry representing the shared portion of geometries A and B.

- **ST_MakeValid** - Enhanced: 3.1.0, added removal of Coordinates with NaN values. Attempts to make an invalid geometry valid without losing vertices.

- **ST_Subdivide** - Enhanced: 3.1.0 accept a gridSize parameter, requires GEOS >= 3.9.0 to use this new feature. Computes a rectilinear subdivision of a geometry.

- **ST_SymDifference** - Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0 Returns a geometry representing the portions of geometries A and B that do not intersect.

- **ST_TileEnvelope** - Enhanced: 3.1.0 Added margin parameter. Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.

- **ST_UnaryUnion** - Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0 Computes the union of the components of a single geometry.

- **ST_Union** - Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0 Returns a geometry representing the point-set union of the input geometries.

Functions changed in PostGIS 3.1

- **ST_Count** - Changed: 3.1.0 - The ST_Count(rastertable, rastercolumn, ...) variants removed. Use instead. Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the nodata value.

- **ST_Force3D** - Changed: 3.1.0. Added support for supplying a non-zero Z value. Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.

- **ST_Force3DM** - Changed: 3.1.0. Added support for supplying a non-zero M value. Force the geometries into XYM mode.

- **ST_Force3DZ** - Changed: 3.1.0. Added support for supplying a non-zero Z value. Force the geometries into XYZ mode.

- **ST_Force4D** - Changed: 3.1.0. Added support for supplying non-zero Z and M values. Force the geometries into XYZM mode.

- **ST_Histogram** - Changed: 3.1.0 Removed ST_Histogram(table_name, column_name) variant. Returns a set of record summarizing a raster or raster coverage data distribution separate bin ranges. Number of bins are autocomputed if not specified.

- **ST_Quantile** - Changed: 3.1.0 Removed ST_Quantile(table_name, column_name) variant. Compute quantiles for a raster or raster table coverage in the context of the sample or population. Thus, a value could be examined to be at the raster’s 25%, 50%, 75% percentile.

- **ST_SummaryStats** - Changed: 3.1.0 ST_SummaryStats(rastertable, rastercolumn, ...) variants are removed. Use instead. Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. Band 1 is assumed is no band is specified.
9.12.2 PostGIS Functions new or enhanced in 3.0

The functions given below are PostGIS functions that were added or enhanced.

Functions new in PostGIS 3.0

- **ST_3DLineInterpolatePoint** - Availability: 3.0.0 Returns a point interpolated along a line in 3D. Second argument is a float8 between 0 and 1 representing fraction of total length of linestring the point has to be located.
- **ST_ConstrainedDelaunayTriangles** - Availability: 3.0.0 Return a constrained Delaunay triangulation around the given input geometry.
- **ST_TileEnvelope** - Availability: 3.0.0 Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.

Functions enhanced in PostGIS 3.0

- **ST_AsMVT** - Enhanced: 3.0 - added support for Feature ID. Aggregate function returning a Mapbox Vector Tile representation of a set of rows.
- **ST_Contains** - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies in the interior of A.
- **ST_ContainsProperly** - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if B intersects the interior of A but not the boundary (or exterior). A does not contain properly itself, but does contain itself.
- **ST_CoveredBy** - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if no point in Geometry/Geography A is outside Geometry/Geography B
- **ST_Covers** - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if no point in B is outside A
- **ST_Crosses** - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if two geometries have some, but not all, interior points in common.
- **ST_CurveToLine** - Enhanced: 3.0.0 implemented a minimum number of segments per linearized arc to prevent topological collapse. Converts a geometry containing curves to a linear geometry.
- **ST_Disjoint** - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if two geometries do not spatially intersect (they have no point in common).
- **ST_Equals** - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if two geometries include the same set of points in space.
- **ST_GeneratePoints** - Enhanced: 3.0.0, added seed parameter Generates random points contained in a Polygon or MultiPolygon.
- **ST_GeomFromGeoJSON** - Enhanced: 3.0.0 parsed geometry defaults to SRID=4326 if not specified otherwise. Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object
- **ST_LocateBetween** - Enhanced: 3.0.0 - added support for POLYGON, TIN, TRIANGLE. Return a derived geometry collection value with elements that match the specified range of measures inclusively.
- **ST_LocateBetweenElevations** - Enhanced: 3.0.0 - added support for POLYGON, TIN, TRIANGLE. Return a derived geometry (collection) value with elements that intersect the specified range of elevations inclusively.
- **ST_Overlaps** - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if two geometries intersect and have the same dimension, but are not completely contained by each other.
- **ST_Relate** - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Tests if two geometries have a topological relationship matching a given Intersection Matrix pattern, or computes their Intersection Matrix
- **ST_Segmentize** - Enhanced: 3.0.0 Segmentize geometry now uses equal length segments Return a modified geometry/geography having no segment longer than the given distance.
- **ST_Touches** - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if two geometries have at least one point in common, but their interiors do not intersect.
• **ST_Within** - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if geometry A is completely inside geometry B

Functions changed in PostGIS 3.0

• **PostGIS_Extensions_Upgrade** - Changed: 3.0.0 to repackage loose extensions and support postgis_raster. Packages and upgrades postgis extensions (e.g. postgis_raster, postgis_topology, postgis_sfcgal) to latest available version.

• **ST_3DDistance** - Changed: 3.0.0 - SFCGAL version removed Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.

• **ST_3DIntersects** - Changed: 3.0.0 SFCGAL backend removed, GEOS backend supports TINs. Returns true if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area).

• **ST_Area** - Changed: 3.0.0 - does not depend on SFCGAL anymore. Returns the area of a polygonal geometry.

• **ST_AsGeoJSON** - Changed: 3.0.0 output SRID if not EPSG:4326. Return the geometry as a GeoJSON element.

• **ST_Distance** - Changed: 3.0.0 - does not depend on SFCGAL anymore. Returns the distance between two geometry or geography values.

• **ST_Intersection** - Changed: 3.0.0 does not depend on SFCGAL. Returns a geometry representing the shared portion of geometries A and B.

• **ST_Intersects** - Changed: 3.0.0 SFCGAL version removed and native support for 2D TINs added. Returns true if two Geometries/Geography spatially intersect in 2D (have at least one point in common).

• **ST_Union** - Changed: 3.0.0 does not depend on SFCGAL. Returns a geometry representing the point-set union of the input geometries.

9.12.3 PostGIS Functions new or enhanced in 2.5

The functions given below are PostGIS functions that were added or enhanced.

Functions new in PostGIS 2.5

• **ST_QuantizeCoordinates** - Availability: 2.5.0 Sets least significant bits of coordinates to zero

• **PostGIS_Extensions_Upgrade** - Availability: 2.5.0 Packages and upgrades postgis extensions (e.g. postgis_raster, postgis_topology, postgis_sfcgal) to latest available version.

• **ST_Angle** - Availability: 2.5.0 Returns the angle between 3 points, or between 2 vectors (4 points or 2 lines).

• **ST_AsHexWKB** - Availability: 2.5.0 Return the Well-Known Binary (WKB) in Hex representation of the raster.

• **ST_BandFileSize** - Availability: 2.5.0 Returns the file size of a band stored in file system. If no bandnum specified, 1 is assumed.

• **ST_BandFileTimestamp** - Availability: 2.5.0 Returns the file timestamp of a band stored in file system. If no bandnum specified, 1 is assumed.

• **ST_ChaininSmoothing** - Availability: 2.5.0 Returns a smoothed version of a geometry, using the Chaikin algorithm

• **ST_FilterByM** - Availability: 2.5.0 Removes vertices based on their M value

• **ST_Grayscale** - Availability: 2.5.0 Creates a new one-8BUI band raster from the source raster and specified bands representing Red, Green and Blue

• **ST_LineInterpolatePoints** - Availability: 2.5.0 Returns one or more points interpolated along a line.

• **ST_OrientedEnvelope** - Availability: 2.5.0 Returns a minimum-area rectangle containing a geometry.
• **ST_RastFromHexWKB** - Availability: 2.5.0 Return a raster value from a Hex representation of Well-Known Binary (WKB) raster.

• **ST_RastFromWKB** - Availability: 2.5.0 Return a raster value from a Well-Known Binary (WKB) raster.

• **ST_SetBandIndex** - Availability: 2.5.0 Update the external band number of an out-db band

• **ST_SetBandPath** - Availability: 2.5.0 Update the external path and band number of an out-db band

Functions enhanced in PostGIS 2.5

• **ST_GeometricMedian** - Enhanced: 2.5.0 Added support for M as weight of points. Returns the geometric median of a Multi-Point.

• **ST_AsBinary/ST_AsWKB** - Enhanced: 2.5.0 Addition of ST_AsWKB Return the Well-Known Binary (WKB) representation of the raster.

• **ST_AsMVT** - Enhanced: 2.5.0 - added support parallel query. Aggregate function returning a Mapbox Vector Tile representation of a set of rows.

• **ST_AsText** - Enhanced: 2.5 - optional parameter precision introduced. Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.

• **ST_BandMetaData** - Enhanced: 2.5.0 to include outdbbandnum, filesize and filetimestamp for outdb rasters. Returns basic meta data for a specific raster band. band num 1 is assumed if none-specified.

• **ST_Buffer** - Enhanced: 2.5.0 - ST_Buffer geometry support was enhanced to allow for side buffering specification side=both|left|right. Returns a geometry covering all points within a given distance from a geometry.

• **ST_GeomFromGeoJSON** - Enhanced: 2.5.0 can now accept json and jsonb as inputs. Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object

• **ST_Intersects** - Enhanced: 2.5.0 Supports GEOMETRYCOLLECTION. Returns true if two Geometries/Geography spatially intersect in 2D (have at least one point in common).

• **ST_OffsetCurve** - Enhanced: 2.5 - added support for GEOMETRYCOLLECTION and MULTILINESTRING Returns an offset line at a given distance and side from an input line.

• **ST_Scale** - Enhanced: 2.5.0 support for scaling relative to a local origin (origin parameter) was introduced. Scales a geometry by given factors.

• **ST_Split** - Enhanced: 2.5.0 support for splitting a polygon by a multiline was introduced. Returns a collection of geometries created by splitting a geometry by another geometry.

• **ST_Subdivide** - Enhanced: 2.5.0 reuses existing points on polygon split, vertex count is lowered from 8 to 5. Computes a rectilinear subdivision of a geometry.

Functions changed in PostGIS 2.5

• **ST_GDALDrivers** - Changed: 2.5.0 - add can_read and can_write columns. Returns a list of raster formats supported by PostGIS through GDAL. Only those formats with can_write=True can be used by ST_AsGDALRaster

9.12.4 PostGIS Functions new or enhanced in 2.4

The functions given below are PostGIS functions that were added or enhanced.

Functions new in PostGIS 2.4

• **ST_ForcePolygonCCW** - Availability: 2.4.0 Orients all exterior rings counter-clockwise and all interior rings clockwise.

• **ST_ForcePolygonCW** - Availability: 2.4.0 Orients all exterior rings clockwise and all interior rings counter-clockwise.
• **ST_IsPolygonCCW** - Availability: 2.4.0 Tests if Polygons have exterior rings oriented counter-clockwise and interior rings oriented clockwise.

• **ST_IsPolygonCW** - Availability: 2.4.0 Tests if Polygons have exterior rings oriented clockwise and interior rings oriented counter-clockwise.

• **ST_AsGeobuf** - Availability: 2.4.0 Return a Geobuf representation of a set of rows.

• **ST_AsMVT** - Availability: 2.4.0 Aggregate function returning a Mapbox Vector Tile representation of a set of rows.

• **ST_AsMVTGeom** - Availability: 2.4.0 Transform a geometry into the coordinate space of a Mapbox Vector Tile.

• **ST_Centroid** - Availability: 2.4.0 support for geography was introduced. Returns the geometric center of a geometry.

• **ST_FrechetDistance** - Availability: 2.4.0 - requires GEOS >= 3.7.0 Returns the Fréchet distance between two geometries.

• **ST_MakeEmptyCoverage** - Availability: 2.4.0 Cover georeferenced area with a grid of empty raster tiles.

Functions enhanced in PostGIS 2.4

All aggregates now marked as parallel safe which should allow them to be used in plans that can employ parallelism.

PostGIS 2.4.1 postgis_tiger_geocoder set to load Tiger 2017 data. Can optionally load zip code 5-digit tabulation (zcta) as part of the Loader_Generate_Nation_Script.

• **Loader_Generate_Nation_Script** - Enhanced: 2.4.1 zip code 5 tabulation area (zcta5) load step was fixed and when enabled, zcta5 data is loaded as a single table called zcta5_all as part of the nation script load. Generates a shell script for the specified platform that loads in the county and state lookup tables.

• **Normalize_Address** - Enhanced: 2.4.0 norm_addy object includes additional fields zip4 and address_alphanumeric. Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This function will work with just the lookup data packaged with the tiger_geocoder (no need for tiger census data).

• **Page_Normalize_Address** - Enhanced: 2.4.0 norm_addy object includes additional fields zip4 and address_alphanumeric. Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This function will work with just the lookup data packaged with the tiger_geocoder (no need for tiger census data). Requires address_standardizer extension.

• **Reverse_Geocode** - Enhanced: 2.4.1 if optional zcta5 dataset is loaded, the reverse_geocode function can resolve to state and zip even if the specific state data is not loaded. Refer to for details on loading zcta5 data. Takes a geometry point in a known spatial ref sys and returns a record containing an array of theoretically possible addresses and an array of cross streets. If include_strnum_range = true, includes the street range in the cross streets.

• **ST_AsTWKB** - Enhanced: 2.4.0 memory and speed improvements. Returns the geometry as TWKB, aka "Tiny Well-Known Binary"

• **ST_Covers** - Enhanced: 2.4.0 Support for polygon in polygon and line in polygon added for geography type Returns true if no point in B is outside A

• **ST_CurveToLine** - Enhanced: 2.4.0 added support for max-deviation and max-angle tolerance, and for symmetric output. Converts a geometry containing curves to a linear geometry.

• **ST_Project** - Enhanced: 2.4.0 Allow negative distance and non-normalized azimuth. Returns a point projected from a start point by a distance and bearing (azimuth).

• **ST_Reverse** - Enhanced: 2.4.0 support for curves was introduced. Return the geometry with vertex order reversed.

Functions changed in PostGIS 2.4

All PostGIS aggregates now marked as parallel safe. This will force a drop and recreate of aggregates during upgrade which may fail if any user views or sql functions rely on PostGIS aggregates.
• = - Changed: 2.4.0, in prior versions this was bounding box equality not a geometric equality. If you need bounding box equality, use instead. Returns TRUE if the coordinates and coordinate order geometry/geography A are the same as the coordinates and coordinate order of geometry/geography B.

• ST_Node - Changed: 2.4.0 this function uses GEOSNode internally instead of GEOSUnaryUnion. This may cause the resulting linestrings to have a different order and direction compared to Postgis < 2.4. Nodes a collection of lines.

9.12.5 PostGIS Functions new or enhanced in 2.3

The functions given below are PostGIS functions that were added or enhanced.

Note
PostGIS 2.3.0: PostgreSQL 9.6+ support for parallel queries.

Note
PostGIS 2.3.0: PostGIS extension, all functions schema qualified to reduce issues in database restore.

Note
PostGIS 2.3.0: PostgreSQL 9.4+ support for BRIN indexes. Refer to Section 4.1.7.2.

Note
PostGIS 2.3.0: Tiger Geocoder upgraded to work with TIGER 2016 data.

Functions new in PostGIS 2.3

• **ST_GeometricMedian** - Availability: 2.3.0 Returns the geometric median of a MultiPoint.

• **&&&(geometry,gidx)** - Availability: 2.3.0 support for Block Range InDxes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry’s (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).

• **&&&(gidx,geometry)** - Availability: 2.3.0 support for Block Range InDxes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry’s (cached) n-D bounding box.

• **&&&(gidx,gidx)** - Availability: 2.3.0 support for Block Range InDxes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.

• **&&&(box2df,box2df)** - Availability: 2.3.0 support for Block Range InDxes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.

• **&&&(box2df,geometry)** - Availability: 2.3.0 support for Block Range InDxes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry’s (cached) 2D bounding box.

• **&&&(geometry,box2df)** - Availability: 2.3.0 support for Block Range InDxes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry’s (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).

• **@box2df,box2df** - Availability: 2.3.0 support for Block Range InDxes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision bounding box.
• @box2df,geometry - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry’s 2D bounding box.

• @geometry,box2df - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry’s 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).

• Populate_Topology_Layer - Availability: 2.3.0 Adds missing entries to topology.layer table by reading metadata from topo tables.

• ST_ClusterDBSCAN - Availability: 2.3.0 Window function that returns a cluster id for each input geometry using the DBSCAN algorithm.

• ST_ClusterKMeans - Availability: 2.3.0 Window function that returns a cluster id for each input geometry using the K-means algorithm.

• ST_GeneratePoints - Availability: 2.3.0 Generates random points contained in a Polygon or MultiPolygon.

• ST_MakeLine - Availability: 2.3.0 - Support for multipoint input elements was introduced Creates a Linestring from Point, MultiPoint, or LineString geometries.

• ST_Minimum Clearance - Availability: 2.3.0 Returns the minimum clearance of a geometry, a measure of a geometry’s robustness.

• ST_Minimum ClearanceLine - Availability: 2.3.0 - requires GEOS >= 3.6.0 Returns the two-point LineString spanning a geometry’s minimum clearance.

• ST_Norm alize - Availability: 2.3.0 Return the geometry in its canonical form.

• ST_Points - Availability: 2.3.0 Returns a MultiPoint containing all the coordinates of a geometry.

• ST_VoronoiLines - Availability: 2.3.0 Returns the boundaries of the Voronoi diagram of the vertices of a geometry.

• ST_VoronoiPolygons - Availability: 2.3.0 Returns the cells of the Voronoi diagram of the vertices of a geometry.

• ST_WrapX - Availability: 2.3.0 requires GEOS Wrap a geometry around an X value.

• TopoGeom_addElement - Availability: 2.3 Adds an element to the definition of a TopoGeometry.

• TopoGeom_remElement - Availability: 2.3 Removes an element from the definition of a TopoGeometry.

• ~(box2df,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).

• ~(box2df,geometry) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry’s 2D bounding box contains a 2D float precision bounding box (GIDX).

The functions given below are PostGIS functions that are enhanced in PostGIS 2.3.

• ST_Contains - Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.

• ST_Covers - Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon.

• ST_Expand - Enhanced: 2.3.0 support was added to expand a box by different amounts in different dimensions.

• ST_Intersects - Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.

• ST_Segmentize - Enhanced: 2.3.0 Segmentize geography now uses equal length segments

• ST_Transform - Enhanced: 2.3.0 support for direct PROJ.4 text was introduced.

• ST_Within - Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon.
9.12.6 PostGIS Functions new or enhanced in 2.2

The functions given below are PostGIS functions that were added or enhanced.

Note
postgis_sfcgal now can be installed as an extension using CREATE EXTENSION postgis_sfcgal;

Note
PostGIS 2.2.0: Tiger Geocoder upgraded to work with TIGER 2015 data.

Note
address_standardizer, address_standardizer_data_us extensions for standardizing address data refer to Section 4.7 for details.

Note
Many functions in topology rewritten as C functions for increased performance.

Functions new in PostGIS 2.2

- `<#>` - Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+ Returns the n-D distance between A and B bounding boxes.
- `<->` - Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+ Returns the n-D distance between the centroids of A and B bounding boxes.
- `ST_3DDifference` - Availability: 2.2.0 Perform 3D difference
- `ST_3DUnion` - Availability: 2.2.0 Perform 3D union
- `ST_ApproximateMedialAxis` - Availability: 2.2.0 Compute the approximate medial axis of an areal geometry.
- `ST_AsEncodedPolyline` - Availability: 2.2.0 Returns an Encoded Polyline from a LineString geometry.
- `ST_AsTWKB` - Availability: 2.2.0 Returns the geometry as TWKB, aka "Tiny Well-Known Binary"
- `ST_BoundingDiagonal` - Availability: 2.2.0 Returns the diagonal of a geometry’s bounding box.
- `ST_CPAWithin` - Availability: 2.2.0 Returns true if the closest point of approach of two trajectories is within the specified distance.
- `ST_ClipByBox2D` - Availability: 2.2.0 Returns the portion of a geometry falling within a rectangle.
- `ST_ClosestPointOfApproach` - Availability: 2.2.0 Returns the measure at which points interpolated along two trajectories are closest.
- `ST_ClusterIntersecting` - Availability: 2.2.0 Aggregate function that clusters the input geometries into connected sets.
- `ST_ClusterWithin` - Availability: 2.2.0 Aggregate function that clusters the input geometries by separation distance.
• **ST_CountAgg** - Availability: 2.2.0 Aggregate. Returns the number of pixels in a given band of a set of rasters. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the NODATA value.

• **ST_CreateOverview** - Availability: 2.2.0 Create an reduced resolution version of a given raster coverage.

• **ST_DistanceCPA** - Availability: 2.2.0 Returns the distance between the closest point of approach of two trajectories.

• **ST_ForceCurve** - Availability: 2.2.0 Upcast a geometry into its curved type, if applicable.

• **ST_IsPlanar** - Availability: 2.2.0: This was documented in 2.1.0 but got accidentally left out in 2.1 release. Check if a surface is or not planar.

• **ST_IsSolid** - Availability: 2.2.0 Test if the geometry is a solid. No validity check is performed.

• **ST_IsValidTrajectory** - Availability: 2.2.0 Returns true if the geometry is a valid trajectory.

• **ST_LineFromEncodedPolyline** - Availability: 2.2.0 Creates a LineString from an Encoded Polyline.

• **ST_MakeSolid** - Availability: 2.2.0 Cast the geometry into a solid. No check is performed. To obtain a valid solid, the input geometry must be a closed Polyhedral Surface or a closed TIN.

• **ST_MapAlgebra (callback function version)** - Availability: 2.2.0: Ability to add a mask Callback function version - Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.

• **ST_MemSize** - Availability: 2.2.0 Returns the amount of space (in bytes) the raster takes.

• **ST_RemoveRepeatedPoints** - Availability: 2.2.0 Returns a version of the given geometry with duplicated points removed.

• **ST_Retile** - Availability: 2.2.0 Return a set of configured tiles from an arbitrarily tiled raster coverage.

• **ST_SetEffectiveArea** - Availability: 2.2.0 Sets the effective area for each vertex, using the Visvalingam-Whyatt algorithm.

• **ST_SimplifyVW** - Availability: 2.2.0 Returns a simplified version of a geometry, using the Visvalingam-Whyatt algorithm.

• **ST_Subdivide** - Availability: 2.2.0 Computes a rectilinear subdivision of a geometry.

• **ST_SummaryStatsAgg** - Availability: 2.2.0 Aggregate. Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a set of raster. Band 1 is assumed is no band is specified.

• **ST_SwapOrdinates** - Availability: 2.2.0 Returns a version of the given geometry with given ordinate values swapped.

• **ST_Volume** - Availability: 2.2.0 Computes the volume of a 3D solid. If applied to surface (even closed) geometries will return 0.

• **parse_address** - Availability: 2.2.0 Takes a 1 line address and breaks into parts

• **postgis.enable_outdb_rasters** - Availability: 2.2.0 A boolean configuration option to enable access to out-db raster bands.

• **postgis.gdal_datapath** - Availability: 2.2.0 A configuration option to assign the value of GDAL’s GDAL_DATA option. If not set, the environmentally set GDAL_DATA variable is used.

• **postgis.gdal_enabled_drivers** - Availability: 2.2.0 A configuration option to set the enabled GDAL drivers in the PostGIS environment. Affects the GDAL configuration variable GDAL_SKIP.

• **standardize_address** - Availability: 2.2.0 Returns an stdaddr form of an input address utilizing lex, gaz, and rule tables.

• **=|** - Availability: 2.2.0. Index-supported only available for PostgreSQL 9.5+ Returns the distance between A and B trajectories at their closest point of approach.

The functions given below are PostGIS functions that are enhanced in PostGIS 2.2.

• **AsTopoJSON** - Enhanced: 2.2.1 added support for puntal inputs

• **ST_Area** - Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires Proj >= 4.9.0 to take advantage of the new feature.
• **ST_AsX3D** - Enhanced: 2.2.0: Support for GeoCoordinates and axis (x/y, long/lat) flipping. Look at options for details.

• **ST_Azimuth** - Enhanced: 2.2.0 measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires Proj ≥ 4.9.0 to take advantage of the new feature.

• **ST_Distance** - Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires Proj ≥ 4.9.0 to take advantage of the new feature.

• **ST_Scale** - Enhanced: 2.2.0 support for scaling all dimension (factor parameter) was introduced.

• **ST_Split** - Enhanced: 2.2.0 support for splitting a line by a multilinie, a multipoint or (multi)polygon boundary was introduced.

• **ST_Summary** - Enhanced: 2.2.0 Added support for TIN and Curves

• ** <->** - Enhanced: 2.2.0 -- True KNN (“K nearest neighbor”) behavior for geometry and geography for PostgreSQL 9.5+. Note for geography KNN is based on sphere rather than spheroid. For PostgreSQL 9.4 and below, geography support is new but only supports centroid box.

9.12.7 PostGIS functions breaking changes in 2.2

The functions given below are PostGIS functions that have possibly breaking changes in PostGIS 2.2. If you use any of these, you may need to check your existing code.

• **Get_Geocode_Setting** - Changed: 2.2.0 : default settings are now kept in a table called geocode_settings_default. Use customized settingsa re in geocode_settings and only contain those that have been set by user.

• **ST_3DClosestPoint** - Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

• **ST_3DDistance** - Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

• **ST_3DLongestLine** - Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

• **ST_3DMaxDistance** - Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

• **ST_3DShortestLine** - Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

• **ST_DistanceSphere** - Changed: 2.2.0 In prior versions this used to be called ST_Distance_Sphere

• **ST_DistanceSpheroid** - Changed: 2.2.0 In prior versions this was called ST_Distance_Spheroid

• **ST_Equals** - Changed: 2.2.0 Returns true even for invalid geometries if they are binary equal

• **ST_LengthSpheroid** - Changed: 2.2.0 In prior versions this was called ST_Length_Spheroid and had the alias ST_3DLength_Spheroid

• **ST_MemSize** - Changed: 2.2.0 name changed to ST_MemSize to follow naming convention.

• **ST_PointInsideCircle** - Changed: 2.2.0 In prior versions this was called ST_Point_Inside_Circle

• **ValidateTopology** - Changed: 2.2.0 values for id1 and id2 were swapped for `edge crosses node` to be consistent with error description.

• ** <->** - Changed: 2.2.0 -- For PostgreSQL 9.5 users, old Hybrid syntax may be slower, so you’ll want to get rid of that hack if you are running your code only on PostGIS 2.2+ 9.5+. See examples below.
9.12.8 PostGIS Functions new or enhanced in 2.1

The functions given below are PostGIS functions that were added or enhanced.

Note
More Topology performance Improvements. Please refer to Section 4.6 for more details.

Note
Bug fixes (particularly with handling of out-of-band rasters), many new functions (often shortening code you have to write to accomplish a common task) and massive speed improvements to raster functionality. Refer to Chapter 6 for more details.

Note
PostGIS 2.1.0: Tiger Geocoder upgraded to work with TIGER 2012 census data. geocode_settings added for debugging and tweaking rating preferences, loader made less greedy, now only downloads tables to be loaded. PostGIS 2.1.1: Tiger Geocoder upgraded to work with TIGER 2013 data. Please refer to Section 4.8.1 for more details.

Functions new in PostGIS 2.1

- **AsTopoJSON** - Availability: 2.1.0 Returns the TopoJSON representation of a topogeometry.
- **Drop_Nation_Tables_Generate_Script** - Availability: 2.1.0 Generates a script that drops all tables in the specified schema that start with county_all, state_all or state code followed by county or state.
- **Get_Geocode_Setting** - Availability: 2.1.0 Returns value of specific setting stored in tiger.geocode_settings table.
- **Loader_Generate_Nation_Script** - Availability: 2.1.0 Generates a shell script for the specified platform that loads in the county and state lookup tables.
- **Pagc_Normalize_Address** - Availability: 2.1.0 Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This function will work with just the lookup data packaged with the tiger_geocoder (no need for tiger census data). Requires address_standardizer extension.
- **ST_3DArea** - Availability: 2.1.0 Computes area of 3D surface geometries. Will return 0 for solids.
- **ST_3DIntersection** - Availability: 2.1.0 Perform 3D intersection
- **ST_Box2dFromGeoHash** - Availability: 2.1.0 Return a BOX2D from a GeoHash string.
- **ST_ColorMap** - Availability: 2.1.0 Creates a new raster of up to four 8BUI bands (grayscale, RGB, RGBA) from the source raster and a specified band. Band 1 is assumed if not specified.
- **ST_Contains** - Availability: 2.1.0 Return true if no points of raster rastB lie in the exterior of raster rastA and at least one point of the interior of rastB lies in the interior of rastA.
- **ST_Covers** - Availability: 2.1.0 Return true if rasters rastA and rastB are fully within the specified distance of each other.
- **ST_DFullyWithin** - Availability: 2.1.0 Return true if rasters rastA and rastB are fully within the specified distance of each other.
- **ST_DWithin** - Availability: 2.1.0 Return true if rasters rastA and rastB are within the specified distance of each other.
• **ST_DelaunayTriangles** - Availability: 2.1.0 Returns the Delaunay triangulation of the vertices of a geometry.

• **ST_Disjoint** - Availability: 2.1.0 Return true if raster rastA does not spatially intersect rastB.

• **ST_DumpValues** - Availability: 2.1.0 Get the values of the specified band as a 2-dimension array.

• **ST_Extrude** - Availability: 2.1.0 Extrude a surface to a related volume

• **ST_ForceLHR** - Availability: 2.1.0 Force LHR orientation

• **ST_FromGDALRaster** - Availability: 2.1.0 Returns a raster from a supported GDAL raster file.

• **ST_GeomFromGeoHash** - Availability: 2.1.0 Return a geometry from a GeoHash string.

• **ST_InvDistWeight4ma** - Availability: 2.1.0 Raster processing function that interpolates a pixel’s value from the pixel’s neighborhood.

• **ST_MapAlgebra (callback function version)** - Availability: 2.1.0 Callback function version - Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.

• **ST_MapAlgebra (expression version)** - Availability: 2.1.0 Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.

• **ST_MinConvexHull** - Availability: 2.1.0 Return the convex hull geometry of the raster excluding NODATA pixels.

• **ST_MinDist4ma** - Availability: 2.1.0 Raster processing function that returns the minimum distance (in number of pixels) between the pixel of interest and a neighboring pixel with value.

• **ST_MinkowskiSum** - Availability: 2.1.0 Performs Minkowski sum

• **ST_NearestValue** - Availability: 2.1.0 Returns the nearest non-NODATA value of a given band’s pixel specified by a columnX and rowY or a geometric point expressed in the same spatial reference coordinate system as the raster.

• **ST_Neighborhood** - Availability: 2.1.0 Returns a 2-D double precision array of the non-NODATA values around a given band’s pixel specified by either a columnX and rowY or a geometric point expressed in the same spatial reference coordinate system as the raster.

• **ST_NotSameAlignmentReason** - Availability: 2.1.0 Returns text stating if rasters are aligned and if not aligned, a reason why.

• **ST_Orientation** - Availability: 2.1.0 Determine surface orientation

• **ST_Overlaps** - Availability: 2.1.0 Return true if raster rastA and rastB intersect but one does not completely contain the other.

• **ST_PixelAsCentroid** - Availability: 2.1.0 Returns the centroid (point geometry) of the area represented by a pixel.

• **ST_PixelAsCentroids** - Availability: 2.1.0 Returns the centroid (point geometry) for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The point geometry is the centroid of the area represented by a pixel.

• **ST_PixelAsPoint** - Availability: 2.1.0 Returns a point geometry of the pixel’s upper-left corner.

• **ST_PixelAsPoints** - Availability: 2.1.0 Returns a point geometry for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The coordinates of the point geometry are of the pixel’s upper-left corner.

• **ST_PixelOfValue** - Availability: 2.1.0 Get the columnX, rowY coordinates of the pixel whose value equals the search value.

• **ST_PointFromGeoHash** - Availability: 2.1.0 Return a point from a GeoHash string.

• **ST_RasterToWorldCoord** - Availability: 2.1.0 Returns the raster’s upper left corner as geometric X and Y (longitude and latitude) given a column and row. Column and row starts at 1.

• **ST_Resize** - Availability: 2.1.0 Requires GDAL 1.6.1+ Resize a raster to a new width/height

• **ST_Roughness** - Availability: 2.1.0 Returns a raster with the calculated "roughness" of a DEM.

• **ST_SetValues** - Availability: 2.1.0 Returns modified raster resulting from setting the values of a given band.
• **ST_Simplify** - Availability: 2.1.0 Returns a "simplified" geometry version of the given TopoGeometry using the Douglas-Peucker algorithm.

• **ST_StraightSkeleton** - Availability: 2.1.0 Compute a straight skeleton from a geometry

• **ST_Summary** - Availability: 2.1.0 Returns a text summary of the contents of the raster.

• **ST_TPI** - Availability: 2.1.0 Returns a raster with the calculated Topographic Position Index.

• **ST_TRI** - Availability: 2.1.0 Returns a raster with the calculated Terrain Ruggedness Index.

• **ST_Tesselate** - Availability: 2.1.0 Perform surface Tessellation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS

• **ST_Tile** - Availability: 2.1.0 Returns a set of rasters resulting from the split of the input raster based upon the desired dimensions of the output rasters.

• **ST_Touches** - Availability: 2.1.0 Return true if raster rastA and rastB have at least one point in common but their interiors do not intersect.

• **ST_Union** - Availability: 2.1.0 ST_Union(rast, unionarg) variant was introduced. Returns the union of a set of raster tiles into a single raster composed of 1 or more bands.

• **ST_Within** - Availability: 2.1.0 Return true if no points of raster rastA lie in the exterior of raster rastB and at least one point of the interior of rastA lies in the interior of rastB.

• **ST_WorldToRasterCoord** - Availability: 2.1.0 Returns the upper left corner as column and row given geometric X and Y (longitude and latitude) or a point geometry expressed in the spatial reference coordinate system of the raster.

• **Set_Geocode_Setting** - Availability: 2.1.0 Sets a setting that affects behavior of geocoder functions.

• **UpdateRasterSRID** - Availability: 2.1.0 Change the SRID of all rasters in the user-specified column and table.

• **clearTopoGeom** - Availability: 2.1 Clears the content of a topo geometry.

• **postgis.backend** - Availability: 2.1.0 The backend to service a function where GEOS and SFCGAL overlap. Options: geos or sfcgal. Defaults to geos.

• **postgis_sfcgal_version** - Availability: 2.1.0 Returns the version of SFCGAL in use

The functions given below are PostGIS functions that are enhanced in PostGIS 2.1.

• **ST_AddBand** - Enhanced: 2.1.0 support for addbandarg added.

• **ST_AddBand** - Enhanced: 2.1.0 support for new out-db bands added.

• **ST_AsBinary/ST_AsWKB** - Enhanced: 2.1.0 Addition of outasin

• **ST_Aspect** - Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional interpolate_nodata function parameter

• **ST_Clip** - Enhanced: 2.1.0 Rewritten in C

• **ST_Distinct4ma** - Enhanced: 2.1.0 Addition of Variant 2

• **ST_HillShade** - Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional interpolate_nodata function parameter

• **ST_Max4ma** - Enhanced: 2.1.0 Addition of Variant 2

• **ST_Mean4ma** - Enhanced: 2.1.0 Addition of Variant 2

• **ST_Min4ma** - Enhanced: 2.1.0 Addition of Variant 2

• **ST_PixelAsPolygons** - Enhanced: 2.1.0 exclude_nodata_value optional argument was added.

• **ST_Polygon** - Enhanced: 2.1.0 Improved Speed (fully C-Based) and the returning multipolygon is ensured to be valid.
• ST_Range4ma - Enhanced: 2.1.0 Addition of Variant 2
• ST_SameAlignment - Enhanced: 2.1.0 addition of Aggregate variant
• ST_SetGeoReference - Enhanced: 2.1.0 Addition of ST_SetGeoReference(raster, double precision, ...) variant
• ST_SetValue - Enhanced: 2.1.0 Geometry variant of ST_SetValue() now supports any geometry type, not just point. The geometry variant is a wrapper around the geomval[] variant of ST_SetValues().
• ST_Slope - Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional units, scale, interpolate_nodata function parameters
• ST_StdDev4ma - Enhanced: 2.1.0 Addition of Variant 2
• ST_Sum4ma - Enhanced: 2.1.0 Addition of Variant 2
• ST_Transform - Enhanced: 2.1.0 Addition of ST_Transform(rast, alignto) variant
• ST_Union - Enhanced: 2.1.0 Improved Speed (fully C-Based).
 • ST_Union - Enhanced: 2.1.0 ST_Union(rast) (variant 1) unions all bands of all input rasters. Prior versions of PostGIS assumed the first band.
 • ST_Union - Enhanced: 2.1.0 ST_Union(rast, uniontype) (variant 4) unions all bands of all input rasters.
• ST_AsGML - Enhanced: 2.1.0 id support was introduced, for GML 3.
• ST_Boundary - Enhanced: 2.1.0 support for Triangle was introduced
• ST_DWithin - Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.
• ST_DWithin - Enhanced: 2.1.0 support for curved geometries was introduced.
• ST_Distance - Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.
• ST_Distance - Enhanced: 2.1.0 - support for curved geometries was introduced.
• ST_DumpPoints - Enhanced: 2.1.0 Faster speed. Reimplemented as native-C.
• ST_MakeValid - Enhanced: 2.1.0, added support for GEOMETRYCOLLECTION and MULTIPOINT.
• ST_Segmentize - Enhanced: 2.1.0 support for geography was introduced.
• ST_Summary - Enhanced: 2.1.0 S flag to denote if has a known spatial reference system
• toTopoGeom - Enhanced: 2.1.0 adds the version taking an existing TopoGeometry.

9.12.9 PostGIS functions breaking changes in 2.1

The functions given below are PostGIS functions that have possibly breaking changes in PostGIS 2.1. If you use any of these, you may need to check your existing code.

• ST_Aspect - Changed: 2.1.0 In prior versions, return values were in radians. Now, return values default to degrees
• ST_HillShade - Changed: 2.1.0 In prior versions, azimuth and altitude were expressed in radians. Now, azimuth and altitude are expressed in degrees
• ST_Intersects - Changed: 2.1.0 The behavior of the ST_Intersects(raster, geometry) variants changed to match that of ST_Intersects(geometry, raster).
• ST_PixelAsCentroids - Changed: 2.1.1 Changed behavior of exclude_nodata_value.
• ST_PixelAsPoints - Changed: 2.1.1 Changed behavior of exclude_nodata_value.
• ST_PixelAsPolygons - Changed: 2.1.1 Changed behavior of exclude_nodata_value.
• **ST_Polygon** - Changed: 2.1.0 In prior versions would sometimes return a polygon, changed to always return multipolygon.

• **ST_RasterToWorldCoordX** - Changed: 2.1.0 In prior versions, this was called ST_Raster2WorldCoordX

• **ST_RasterToWorldCoordY** - Changed: 2.1.0 In prior versions, this was called ST_Raster2WorldCoordY

• **ST_Resample** - Changed: 2.1.0 Parameter srid removed. Variants with a reference raster no longer applies the reference raster’s SRID. Use ST_Transform() to reproject raster. Works on rasters with no SRID.

• **ST_Rescale** - Changed: 2.1.0 Works on rasters with no SRID

• **ST_Reskew** - Changed: 2.1.0 Works on rasters with no SRID

• **ST_Slope** - Changed: 2.1.0 In prior versions, return values were in radians. Now, return values default to degrees

• **ST_SnapToGrid** - Changed: 2.1.0 Works on rasters with no SRID

• **ST_WorldToRasterCoordX** - Changed: 2.1.0 In prior versions, this was called ST_World2RasterCoordX

• **ST_WorldToRasterCoordY** - Changed: 2.1.0 In prior versions, this was called ST_World2RasterCoordY

• **ST_EstimatedExtent** - Changed: 2.1.0. Up to 2.0.x this was called ST_Estimated_Extent.

• **ST_Force2D** - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_2D.

• **ST_Force3D** - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3D.

• **ST_Force3DM** - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DM.

• **ST_Force3DZ** - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DZ.

• **ST_Force4D** - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_4D.

• **ST_ForceCollection** - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_Collection.

• **ST_LineInterpolatePoint** - Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Interpolate_Point.

• **ST_LineLocatePoint** - Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Locate_Point.

• **ST_LineSubstring** - Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Substring.

• **ST_Segmentize** - Changed: 2.1.0 As a result of the introduction of geography support: The construct SELECT ST_Segmentize('LINESTRING(1 2, 3 4)',0.5); will result in ambiguous function error. You need to have properly typed object e.g. a geometry/geography column, use ST_GeomFromText, ST_GeogFromText or SELECT ST_Segmentize('LINESTRING(1 2, 3 4)'::geometry,0.5);

9.12.10 PostGIS Functions new, behavior changed, or enhanced in 2.0

The functions given below are PostGIS functions that were added, enhanced, or have Section 9.12.11 breaking changes in 2.0 releases.

New geometry types: TIN and Polyhedral surfaces was introduced in 2.0

Note
Greatly improved support for Topology. Please refer to Section 4.6 for more details.

Note
In PostGIS 2.0, raster type and raster functionality has been integrated. There are way too many new raster functions to list here and all are new so please refer to Chapter 6 for more details of the raster functions available. Earlier pre-2.0 versions had raster_columns/raster_overviews as real tables. These were changed to views before release. Functions such as ST_AddRasterColumn were removed and replaced with AddRasterConstraints, DropRasterConstraints as a result some apps that created raster tables may need changing.
Note

Tiger Geocoder upgraded to work with TIGER 2010 census data and now included in the core PostGIS documentation. A reverse geocoder function was also added. Please refer to Section 4.8.1 for more details.

- **&&** - Availability: 2.0.0 Returns TRUE if A’s bounding box intersects B’s bounding box.
- **&&&** - Availability: 2.0.0 Returns TRUE if A’s n-D bounding box intersects B’s n-D bounding box.
- **<#>** - Availability: 2.0.0 -- KNN only available for PostgreSQL 9.1+ Returns the 2D distance between A and B bounding boxes.
- **<>** - Availability: 2.0.0 -- Weak KNN provides nearest neighbors based on geometry centroid distances instead of true distances. Exact results for points, inexact for all other types. Available for PostgreSQL 9.1+ Returns the 2D distance between A and B.
- **AddEdge** - Availability: 2.0.0 Adds a linestring edge to the edge table and associated start and end points to the point nodes table of the specified topology schema using the specified linestring geometry and returns the edgeid of the new (or existing) edge.
- **AddFace** - Availability: 2.0.0 Registers a face primitive to a topology and gets its identifier.
- **AddNode** - Availability: 2.0.0 Adds a point node to the node table in the specified topology schema and returns the nodeid of new node. If point already exists as node, the existing nodeid is returned.
- **AddOverviewConstraints** - Availability: 2.0.0 Tag a raster column as being an overview of another.
- **AddRasterConstraints** - Availability: 2.0.0 Adds raster constraints to a loaded raster table for a specific column that constrains spatial ref, scaling, blocksize, alignment, bands, band type and a flag to denote if raster column is regularly blocked. The table must be loaded with data for the constraints to be inferred. Returns true if the constraint setting was accomplished and issues a notice otherwise.
- **AsGML** - Availability: 2.0.0 Returns the GML representation of a topogeometry.
- **CopyTopology** - Availability: 2.0.0 Makes a copy of a topology structure (nodes, edges, faces, layers and TopoGeometries).
- **DropOverviewConstraints** - Availability: 2.0.0 Untag a raster column from being an overview of another.
- **DropRasterConstraints** - Availability: 2.0.0 Drops PostGIS raster constraints that refer to a raster table column. Useful if you need to reload data or update your raster column data.
- **Drop_Indexes_Generate_Script** - Availability: 2.0.0 Generates a script that drops all non-primary key and non-unique indexes on tiger schema and user specified schema. Defaults schema to tiger_data if no schema is specified.
- **Drop_State_Tables_Generate_Script** - Availability: 2.0.0 Generates a script that drops all tables in the specified schema that are prefixed with the state abbreviation. Defaults schema to tiger_data if no schema is specified.
- **Geocode_Intersection** - Availability: 2.0.0 Takes in 2 streets that intersect and a state, city, zip, and outputs a set of possible locations on the first cross street that is at the intersection, also includes a geonum as the point location in NAD 83 long lat, a normalized_address (addy) for each location, and the rating. The lower the rating the more likely the match. Results are sorted by lowest rating first. Can optionally pass in maximum results, defaults to 10. Uses Tiger data (edges, faces, addr), PostgreSQL fuzzy string matching (soundex, levenshtein).
- **GetEdgeByPoint** - Availability: 2.0.0 Finds the edge-id of an edge that intersects a given point.
- **GetFaceByPoint** - Availability: 2.0.0 Finds the face-id of a face that intersects a given point.
- **GetNodeByPoint** - Availability: 2.0.0 Finds the node-id of a node at a point location.
- **GetNodeEdges** - Availability: 2.0.0 Returns an ordered set of edges incident to the given node.
- **GetRingEdges** - Availability: 2.0.0 Returns the ordered set of signed edge identifiers met by walking on an edge side.
• GetTopoGeomElements - Availability: 2.0.0 Returns a set of topoelement objects containing the topological element_id,element_type of the given TopoGeometry (primitive elements).

• GetTopologySRID - Availability: 2.0.0 Returns the SRID of a topology in the topology.topology table given the name of the topology.

• Get_Tract - Availability: 2.0.0 Returns census tract or field from tract table of where the geometry is located. Default to returning short name of tract.

• Install_Missing_Indexes - Availability: 2.0.0 Finds all tables with key columns used in geocoder joins and filter conditions that are missing used indexes on those columns and will add them.

• Loader_Generate_Census_Script - Availability: 2.0.0 Generates a shell script for the specified platform for the specified states that will download Tiger census state tract, bg, and tabblocks data tables, stage and load into tiger_data schema. Each state script is returned as a separate record.

• Loader_Generate_Script - Availability: 2.0.0 to support Tiger 2010 structured data and load census tract (tract), block groups (bg), and blocks (tabblocks) tables . Generates a shell script for the specified platform for the specified states that will download Tiger data, stage and load into tiger_data schema. Each state script is returned as a separate record. Latest version supports Tiger 2010 structural changes and also loads census tract, block groups, and blocks tables.

• Missing_Indexes_Generate_Script - Availability: 2.0.0 Finds all tables with key columns used in geocoder joins that are missing indexes on those columns and will output the SQL DDL to define the index for those tables.

• Polygonize - Availability: 2.0.0 Finds and registers all faces defined by topology edges.

• Reverse_Geocode - Availability: 2.0.0 Takes a geometry point in a known spatial ref sys and returns a record containing an array of theoretically possible addresses and an array of cross streets. If include_strnum_range = true, includes the street range in the cross streets.

• ST_3DClosestPoint - Availability: 2.0.0 Returns the 3D point on g1 that is closest to g2. This is the first point of the 3D shortest line.

• ST_3DDFullyWithin - Availability: 2.0.0 Returns true if two 3D geometries are entirely within a given 3D distance

• ST_3DDWithin - Availability: 2.0.0 Returns true if two 3D geometries are within a given 3D distance

• ST_3DDistance - Availability: 2.0.0 Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.

• ST_3DIntersects - Availability: 2.0.0 Returns true if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area).

• ST_3DLongestLine - Availability: 2.0.0 Returns the 3D longest line between two geometries

• ST_3DMaxDistance - Availability: 2.0.0 Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in projected units.

• ST_3DShortestLine - Availability: 2.0.0 Returns the 3D shortest line between two geometries

• ST_AddEdgeModFace - Availability: 2.0 Add a new edge and, if in doing so it splits a face, modify the original face and add a new face.

• ST_AddEdgeNewFaces - Availability: 2.0 Add a new edge and, if in doing so it splits a face, delete the original face and replace it with two new faces.

• ST_AsGDALRaster - Availability: 2.0.0 - requires GDAL >= 1.6.0. Return the raster tile in the designated GDAL Raster format. Raster formats are one of those supported by your compiled library. Use ST_GDALDrivers() to get a list of formats supported by your library.

• ST_AsJPEG - Availability: 2.0.0 - requires GDAL >= 1.6.0. Return the raster tile selected bands as a single Joint Photographic Exports Group (JPEG) image (byte array). If no band is specified and 1 or more than 3 bands, then only the first band is used. If only 3 bands then all 3 bands are used and mapped to RGB.
• **ST_AsLatLonText** - Availability: 2.0 Return the Degrees, Minutes, Seconds representation of the given point.

• **ST_AsPNG** - Availability: 2.0.0 - requires GDAL >= 1.6.0. Return the raster tile selected bands as a single portable network graphics (PNG) image (byte array). If 1, 3, or 4 bands in raster and no bands are specified, then all bands are used. If more 2 or more than 4 bands and no bands specified, then only band 1 is used. Bands are mapped to RGB or RGBA space.

• **ST_AsRaster** - Availability: 2.0.0 - requires GDAL >= 1.6.0. Converts a PostGIS geometry to a PostGIS raster.

• **ST_AsTIFF** - Availability: 2.0.0 - requires GDAL >= 1.6.0. Return the raster selected bands as a single TIFF image (byte array). If no band is specified or any of specified bands does not exist in the raster, then will try to use all bands.

• **ST_AsX3D** - Availability: 2.0.0: ISO-IEC-19776-1.2-X3DEncodings-XML Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML

• **ST_Aspect** - Availability: 2.0.0 Returns the aspect (in degrees by default) of an elevation raster band. Useful for analyzing terrain.

• **ST_Band** - Availability: 2.0.0 Returns one or more bands of an existing raster as a new raster. Useful for building new rasters from existing rasters.

• **ST_BandIsNoData** - Availability: 2.0.0 Returns true if the band is filled with only nodata values.

• **ST_Clip** - Availability: 2.0.0 Returns the raster clipped by the input geometry. If band number not is specified, all bands are processed. If crop is not specified or TRUE, the output raster is cropped.

• **ST_CollectionHomogenize** - Availability: 2.0.0 Given a geometry collection, return the "simplest" representation of the contents.

• **ST_ConcaveHull** - Availability: 2.0.0 Computes a possibly concave geometry that encloses all input geometry vertices

• **ST_Count** - Availability: 2.0.0 Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the nodata value.

• **ST_CreateTopoGeo** - Availability: 2.0 Adds a collection of geometries to a given empty topology and returns a message detailing success.

• **ST_Distinct4ma** - Availability: 2.0.0 Raster processing function that calculates the number of unique pixel values in a neighborhood.

• **ST_FlipCoordinates** - Availability: 2.0.0 Returns a version of a geometry with X and Y axis flipped.

• **ST_GDALDrivers** - Availability: 2.0.0 - requires GDAL >= 1.6.0. Returns a list of raster formats supported by PostGIS through GDAL. Only those formats with can_write=True can be used by ST_AsGDALRaster

• **ST_GeomFromGeoJSON** - Availability: 2.0.0 requires - JSON-C >= 0.9 Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object

• **ST_GetFaceEdges** - Availability: 2.0 Returns a set of ordered edges that bound a face.

• **ST_HasNoBand** - Availability: 2.0.0 Returns true if there is no band with given band number. If no band number is specified, then band number 1 is assumed.

• **ST_HillShade** - Availability: 2.0.0 Returns the hypothetical illumination of an elevation raster band using provided azimuth, altitude, brightness and scale inputs.

• **ST_Histogram** - Availability: 2.0.0 Returns a set of record summarizing a raster or raster coverage data distribution separate bin ranges. Number of bins are autocomputed if not specified.

• **ST_InterpolatePoint** - Availability: 2.0.0 Return the value of the measure dimension of a geometry at the point closed to the provided point.

• **ST_IsEmpty** - Availability: 2.0.0 Returns true if the raster is empty (width = 0 and height = 0). Otherwise, returns false.

• **ST_IsValidDetail** - Availability: 2.0.0 Returns a valid_detail row stating if a geometry is valid, and if not a reason why and a location.
• **ST_IsValidReason** - Availability: 2.0 version taking flags. Returns text stating if a geometry is valid, or a reason for invalidity.

• **ST_MakeLine** - Availability: 2.0.0 - Support for linestring input elements was introduced. Creates a Linestring from Point, MultiPoint, or LineString geometries.

• **ST_MakeValid** - Availability: 2.0.0 Attempts to make an invalid geometry valid without losing vertices.

• **ST_MapAlgebraExpr** - Availability: 2.0.0 1 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the input raster band and of pixeltype provided. Band 1 is assumed if no band is specified.

• **ST_MapAlgebraExpr** - Availability: 2.0.0 2 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the two input raster bands and of pixeltype provided. Band 1 of each raster is assumed if no band numbers are specified. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster and have its extent defined by the "extenttype" parameter. Values for "extenttype" can be: INTERSECTION, UNION, FIRST, SECOND.

• **ST_MapAlgebraFct** - Availability: 2.0.0 1 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the input raster band and of pixeltype provided. Band 1 is assumed if no band is specified.

• **ST_MapAlgebraFct** - Availability: 2.0.0 2 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the 2 input raster bands and of pixeltype provided. Band 1 is assumed if no band is specified. Extent type defaults to INTERSECTION if not specified.

• **ST_MapAlgebraFctNgb** - Availability: 2.0.0 1-band version: Map Algebra Nearest Neighbor using user-defined PostgreSQL function. Return a raster which values are the result of a PLPGSQL user function involving a neighborhood of values from the input raster band.

• **ST_Max4ma** - Availability: 2.0.0 Raster processing function that calculates the maximum pixel value in a neighborhood.

• **ST_Mean4ma** - Availability: 2.0.0 Raster processing function that calculates the mean pixel value in a neighborhood.

• **ST_Min4ma** - Availability: 2.0.0 Raster processing function that calculates the minimum pixel value in a neighborhood.

• **ST_ModEdgeHeal** - Availability: 2.0 Heals two edges by deleting the node connecting them, modifying the first edgeand deleting the second edge. Returns the id of the deleted node.

• **ST_NewEdgeHeal** - Availability: 2.0 Heals two edges by deleting the node connecting them, deleting both edges,and replacing them with an edge whose direction is the same as the first edge provided.

• **ST_Node** - Availability: 2.0.0 Nodes a collection of lines.

• **ST_NumPatches** - Availability: 2.0.0 Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.

• **ST_OffsetCurve** - Availability: 2.0 Returns an offset line at a given distance and side from an input line.

• **ST_PatchN** - Availability: 2.0.0 Returns the Nth geometry (face) of a PolyhedralSurface.

• **ST_PixelAsPolygon** - Availability: 2.0.0 Returns the polygon geometry that bounds the pixel for a particular row and column.

• **ST_PixelAsPolygons** - Availability: 2.0.0 Returns the polygon geometry that bounds every pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel.

• **ST_Project** - Availability: 2.0.0 Returns a point projected from a start point by a distance and bearing (azimuth).

• **ST_Quantile** - Availability: 2.0.0 Compute quantiles for a raster or raster table coverage in the context of the sample or population. Thus, a value could be examined to be at the raster's 25%, 50%, 75% percentile.

• **ST_Range4ma** - Availability: 2.0.0 Raster processing function that calculates the range of pixel values in a neighborhood.

• **ST_Reclass** - Availability: 2.0.0 Creates a new raster composed of band types reclassified from original. The nbands is the band to be changed. If nbands is not specified assumed to be 1. All other bands are returned unchanged. Use case: convert a 16BUI band to a 8BUI and so forth for simpler rendering as viewable formats.

• **ST_RelateMatch** - Availability: 2.0.0 Tests if a DE-9IM Intersection Matrix matches an Intersection Matrix pattern
• **ST_RemEdgeModFace** - Availability: 2.0 Removes an edge and, if the removed edge separated two faces, delete one of the them and modify the other to take the space of both.

• **ST_RemEdgeNewFace** - Availability: 2.0 Removes an edge and, if the removed edge separated two faces, delete the original faces and replace them with a new face.

• **ST_Resample** - Availability: 2.0.0 Requires GDAL 1.6.1+ Resample a raster using a specified resampling algorithm, new dimensions, an arbitrary grid corner and a set of raster georeferencing attributes defined or borrowed from another raster.

• **ST_Rescale** - Availability: 2.0.0 Requires GDAL 1.6.1+ Resample a raster by adjusting only its scale (or pixel size). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.

• **ST_Reskew** - Availability: 2.0.0 Requires GDAL 1.6.1+ Resample a raster by adjusting only its skew (or rotation parameters). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.

• **ST_SameAlignment** - Availability: 2.0.0 Returns true if rasters have same skew, scale, spatial ref, and offset (pixels can be put on same grid without cutting into pixels) and false if they don’t with notice detailing issue.

• **ST_SetBandIsNoData** - Availability: 2.0.0 Sets the isnodata flag of the band to TRUE.

• **ST_SharPedPaths** - Availability: 2.0.0 Returns a collection containing paths shared by the two input linestrings/multilinestrings.

• **ST_Slope** - Availability: 2.0.0 Returns the slope (in degrees by default) of an elevation raster band. Useful for analyzing terrain.

• **ST_Snap** - Availability: 2.0.0 Snap segments and vertices of input geometry to vertices of a reference geometry.

• **ST_SnapToGrid** - Availability: 2.0.0 Requires GDAL 1.6.1+ Resample a raster by snapping it to a grid. New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.

• **ST_Split** - Availability: 2.0.0 requires GEOS Returns a collection of geometries created by splitting a geometry by another geometry.

• **ST_StdDev4ma** - Availability: 2.0.0 Raster processing function that calculates the standard deviation of pixel values in a neighborhood.

• **ST_Sum4ma** - Availability: 2.0.0 Raster processing function that calculates the sum of all pixel values in a neighborhood.

• **ST_SummaryStats** - Availability: 2.0.0 Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. Band 1 is assumed is no band is specified.

• **ST_Transform** - Availability: 2.0.0 Requires GDAL 1.6.1+ Reprojects a raster in a known spatial reference system to another known spatial reference system using specified resampling algorithm. Options are NearestNeighbor, Bilinear, Cubic, CubicSpline, Lanczos defaulting to NearestNeighbor.

• **ST_UnaryUnion** - Availability: 2.0.0 Computes the union of the components of a single geometry.

• **ST_Union** - Availability: 2.0.0 Returns the union of a set of raster tiles into a single raster composed of 1 or more bands.

• **ST_ValueCount** - Availability: 2.0.0 Returns a set of records containing a pixel band value and count of the number of pixels in a given band of a raster (or a raster coverage) that have a given set of values. If no band is specified defaults to band 1. By default nodata value pixels are not counted. All other values in the pixel are output and pixel band values are rounded to the nearest integer.

• **TopoElementArray_Agg** - Availability: 2.0.0 Returns a topoelementarray for a set of element_id, type arrays (topoelements).

• **TopoGeo_AddLineString** - Availability: 2.0.0 Adds a linestring to an existing topology using a tolerance and possibly splitting existing edges/faces. Returns edge identifiers.

• **TopoGeo_AddPoint** - Availability: 2.0.0 Adds a point to an existing topology using a tolerance and possibly splitting an existing edge.
• **TopoGeo_AddPolygon** - Availability: 2.0.0 Adds a polygon to an existing topology using a tolerance and possibly splitting existing edges/faces. Returns face identifiers.

• **TopologySummary** - Availability: 2.0.0 Takes a topology name and provides summary totals of types of objects in topology.

• **Topology_Load_Tiger** - Availability: 2.0.0 Loads a defined region of tiger data into a PostGIS Topology and transforming the tiger data to spatial reference of the topology and snapping to the precision tolerance of the topology.

• **toTopoGeom** - Availability: 2.0 Converts a simple Geometry into a topo geometry.

• **~==** - Availability: 2.0.0 Returns TRUE if A's bounding box is the same as B's.

The functions given below are PostGIS functions that are enhanced in PostGIS 2.0.

• **AddGeometryColumn** - Enhanced: 2.0.0 use_typmod argument introduced. Defaults to creating typmod geometry column instead of constraint-based.

• **Box2D** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

• **Box3D** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

• **Geocode** - Enhanced: 2.0.0 to support Tiger 2010 structured data and revised some logic to improve speed, accuracy of geocoding, and to offset point from centerline to side of street address is located on. The new parameter max_results useful for specifying number of best results or just returning the best result.

• **GeometryType** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

• **Populate_Geometry_Columns** - Enhanced: 2.0.0 use_typmod optional argument was introduced that allows controlling if columns are created with typmodifiers or with check constraints.

• **ST_Intersection** - Enhanced: 2.0.0 - Intersection in the raster space was introduced. In earlier pre-2.0.0 versions, only intersection performed in vector space were supported.

• **ST_Intersects** - Enhanced: 2.0.0 support raster/raster intersects was introduced.

• **ST_Value** - Enhanced: 2.0.0 exclude_nodata_value optional argument was added.

• **ST_3DExtent** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

• **ST_Affine** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

• **ST_Area** - Enhanced: 2.0.0 - support for 2D polyhedral surfaces was introduced.

• **ST_AsBinary** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

• **ST_AsBinary** - Enhanced: 2.0.0 support for higher coordinate dimensions was introduced.

• **ST_AsBinary** - Enhanced: 2.0.0 support for specifying endian with geography was introduced.

• **ST_AsEWKB** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

• **ST_AsEWKT** - Enhanced: 2.0.0 support for Geography, Polyhedral surfaces, Triangles and TIN was introduced.

• **ST_AsGML** - Enhanced: 2.0.0 prefix support was introduced. Option 4 for GML3 was introduced to allow using LineString instead of Curve tag for lines. GML3 Support for Polyhedral surfaces and TINS was introduced. Option 32 was introduced to output the box.

• **ST_AsKML** - Enhanced: 2.0.0 - Add prefix namespace. Default is no prefix

• **ST_Azimuth** - Enhanced: 2.0.0 support for geography was introduced.

• **ST_ChangeEdgeGeom** - Enhanced: 2.0.0 adds topological consistency enforcement

• **ST_Dimension** - Enhanced: 2.0.0 support for Polyhedral surfaces and TINs was introduced. No longer throws an exception if given empty geometry.
The following functions were enhanced in PostGIS 3.1.10:

- **ST_Dump** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
- **ST_DumpPoints** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
- **ST_Expand** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
- **ST_Extent** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
- **ST_Force2D** - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
- **ST_ForceRHR** - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
- **ST_Force3D** - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
- **ST_Force3DZ** - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
- **ST_ForceCollection** - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
- **ST_GMLToSQL** - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
- **ST_GMLToSQL** - Enhanced: 2.0.0 default srid optional parameter added.
- **ST_GeomFromEWKB** - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
- **ST_GeomFromEWKT** - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
- **ST_GeomFromGML** - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
- **ST_GeomFromGML** - Enhanced: 2.0.0 default srid optional parameter added.
- **ST_GeometryN** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
- **ST_GeometryType** - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
- **ST_IsClosed** - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
- **ST_MakeEnvelope** - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
- **ST_MakeValid** - Enhanced: 2.0.1, speed improvements
- **ST_NPoints** - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
- **ST_NumGeometries** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
- **ST_Relate** - Enhanced: 2.0.0 - added support for specifying boundary node rule.
- **ST_Rotate** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
- **ST_Rotate** - Enhanced: 2.0.0 additional parameters for specifying the origin of rotation were added.
- **ST_RotateX** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
- **ST_RotateY** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
- **ST_RotateZ** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
- **ST_Scale** - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
- **ST_ShiftLongitude** - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
- **ST_Summary** - Enhanced: 2.0.0 added support for geography
- **ST_Transform** - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
- **ValidateTopology** - Enhanced: 2.0.0 more efficient edge crossing detection and fixes for false positives that were existent in prior versions.
- **&&** - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
9.12.11 PostGIS Functions changed behavior in 2.0

The functions given below are PostGIS functions that have changed behavior in PostGIS 2.0 and may require application changes.

Note

Most deprecated functions have been removed. These are functions that haven’t been documented since 1.2 or some internal functions that were never documented. If you are using a function that you don’t see documented, it’s probably deprecated, about to be deprecated, or internal and should be avoided. If you have applications or tools that rely on deprecated functions, please refer to [?qandaentry] for more details.

Note

Bounding boxes of geometries have been changed from float4 to double precision (float8). This has an impact on answers you get using bounding box operators and casting of bounding boxes to geometries. E.g ST_SetSRID(abbox) will often return a different more accurate answer in PostGIS 2.0+ than it did in prior versions which may very well slightly change answers to view port queries.

Note

The arguments hasnodata was replaced with exclude_nodata_value which has the same meaning as the older hasnodata but clearer in purpose.

- **AddGeometryColumn** - Changed: 2.0.0 This function no longer updates geometry_columns since geometry_columns is a view that reads from system catalogs. It by default also does not create constraints, but instead uses the built in type modifier behavior of PostgreSQL. So for example building a wgs84 POINT column with this function is now equivalent to: ALTER TABLE some_table ADD COLUMN geom geometry(Point,4326);

- **AddGeometryColumn** - Changed: 2.0.0 If you require the old behavior of constraints use the default use_typmod, but set it to false.

- **AddGeometryColumn** - Changed: 2.0.0 Views can no longer be manually registered in geometry_columns, however views built against geometry typmod tables geometries and used without wrapper functions will register themselves correctly because they inherit the typmod behavior of their parent table column. Views that use geometry functions that output other geometries will need to be cast to typmod geometries for these view geometry columns to be registered correctly in geometry_columns. Refer to .

- **DropGeometryColumn** - Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs, you can drop a geometry column like any other table column using ALTER TABLE

- **DropGeometryTable** - Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs, you can drop a table with geometry columns like any other table using DROP TABLE

- **Populate_Geometry_Columns** - Changed: 2.0.0 By default, now uses type modifiers instead of check constraints to constrain geometry types. You can still use check constraint behavior instead by using the new use_typmod and setting it to false.

- **Box3D** - Changed: 2.0.0 In pre-2.0 versions, there used to be a box2d instead of box3d. Since box2d is a deprecated type, this was changed to box3d.

- **ST_GDALDrivers** - Changed: 2.0.6, 2.1.3 - by default no drivers are enabled, unless GUC or Environment variable gdal_enabled_drivers is set.

- **ST_ScaleX** - Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeX.

- **ST_ScaleY** - Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeY.

- **ST_SetScale** - Changed: 2.0.0 In WKTRaster versions this was called ST_SetPixelSize. This was changed in 2.0.0.
• **ST_3DExtent** - Changed: 2.0.0 In prior versions this used to be called ST_Extent3D

• **ST_3DLength** - Changed: 2.0.0 In prior versions this used to be called ST_Length3D

• **ST_3DMakeBox** - Changed: 2.0.0 In prior versions this used to be called ST_MakeBox3D

• **ST_3DPerimeter** - Changed: 2.0.0 In prior versions this used to be called ST_Perimeter3D

• **ST_AsBinary** - Changed: 2.0.0 Inputs to this function cannot be unknown -- must be geometry. Constructs such as ST_AsBinary('POINT(1 2)') are no longer valid and you will get an n st_asbinary(unknown) is not unique error. Code like that needs to be changed to ST_AsBinary('POINT(1 2)::geometry'). If that is not possible, then install legacy.sql.

• **ST_AsGML** - Changed: 2.0.0 Use default named args

• **ST_AsGeoJSON** - Changed: 2.0.0 Support default args and named args.

• **ST_AsKML** - Changed: 2.0.0 - Uses default args and supports named args

• **ST_AsSVG** - Changed: 2.0.0 To use default args and support named args

• **ST_EndPoint** - Changed: 2.0.0 No longer works with single geometry multilinestrings. In older versions of PostGIS -- a single line multilinestring would work happily with this function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring. The older behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING may experience these returning NULL in 2.0 now.

• **ST_GeomFromText** - Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards. This should now be written as ST_GeomFromText('GEOMETRYCOLLECTION EMPTY')

• **ST_GeometryN** - Changed: 2.0.0 Prior versions would return NULL for singular geometries. This was changed to return the geometry for ST_GeometryN(...1) case.

• **ST_IsEmpty** - Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards

• **ST_Length** - Changed: 2.0.0 Breaking change -- in prior versions applying this to a MULTI/POLYGON of type geography would give you the perimeter of the POLYGON/MULTIPOLYGON. In 2.0.0 this was changed to return 0 to be in line with geometry behavior. Please use ST_Perimeter if you want the perimeter of a polygon

• **ST_LocateAlong** - Changed: 2.0.0 In prior versions this used to be called ST_Locate_Along_Measure.

• **ST_LocateBetween** - Changed: 2.0.0 - In prior versions this used to be called ST_Locate_Between_Measures.

• **ST_ModEdgeSplit** - Changed: 2.0 - In prior versions, this was misnamed ST_ModEdgesSplit

• **ST_NumGeometries** - Changed: 2.0.0 In prior versions this would return NULL if the geometry was not a collection/MULTI type. 2.0.0+ now returns 1 for single geometries e.g POLYGON, LINESTRING, POINT.

• **ST_NumInteriorRings** - Changed: 2.0.0 - In prior versions it would allow passing a MULTIPOLYGON, returning the number of interior rings of first POLYGON.

• **ST_PointN** - Changed: 2.0.0 No longer works with single geometry multilinestrings. In older versions of PostGIS -- a single line multilinestring would work happily with this function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring.

• **ST_StartPoint** - Changed: 2.0.0 No longer works with single geometry multilinestrings. In older versions of PostGIS -- a single line multilinestring would work happily with this function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring. The older behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING may experience these returning NULL in 2.0 now.
9.12.12 PostGIS Functions new, behavior changed, or enhanced in 1.5

The functions given below are PostGIS functions that were introduced or enhanced in this minor release.

- **PostGIS_LibXML_Version** - Availability: 1.5 Returns the version number of the libxml2 library.
- **ST_AddMeasure** - Availability: 1.5.0 Return a derived geometry with measure elements linearly interpolated between the start and end points.
- **ST_AsBinary** - Availability: 1.5.0 geography support was introduced. Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
- **ST_AsGML** - Availability: 1.5.0 geography support was introduced. Return the geometry as a GML version 2 or 3 element.
- **ST_AsGeoJSON** - Availability: 1.5.0 geography support was introduced. Return the geometry as a GeoJSON element.
- **ST_AsText** - Availability: 1.5 - support for geography was introduced. Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
- **ST_Buffer** - Availability: 1.5 - ST_Buffer was enhanced to support different endcaps and join types. These are useful for example to convert road linestrings into polygon roads with flat or square edges instead of rounded edges. Thin wrapper for geography was added. Returns a geometry covering all points within a given distance from a geometry.
- **ST_ClosestPoint** - Availability: 1.5.0 Returns the 2D point on g1 that is closest to g2. This is the first point of the shortest line.
- **ST_CollectionExtract** - Availability: 1.5.0 Given a (multi)geometry, return a (multi)geometry consisting only of elements of the specified type.
- **ST_Covers** - Availability: 1.5 - support for geography was introduced. Returns true if no point in B is outside A
- **ST_DFullyWithin** - Availability: 1.5.0 Returns true if two geometries are entirely within a given distance
- **ST_DWithin** - Availability: 1.5.0 support for geography was introduced Returns true if two geometries are within a given distance
- **ST_Distance** - Availability: 1.5.0 geography support was introduced in 1.5. Speed improvements for planar to better handle large or many vertex geometries Returns the distance between two geometry or geography values.
- **ST_DistanceSphere** - Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points. Returns minimum distance in meters between two lon/lat geometries using a spherical earth model.
- **ST_DistanceSpheroid** - Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points. Returns the minimum distance between two lon/lat geometries using a spheroidal earth model.
- **ST_DumpPoints** - Availability: 1.5.0 Returns a set of geometry_dump rows for the points in a geometry.
- **ST_Envelope** - Availability: 1.5.0 behavior changed to output double precision instead of float4 Returns a geometry representing the bounding box of a geometry.
- **ST_GMLToSQL** - Availability: 1.5, requires libxml2 1.6+ Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML
- **ST_GeomFromGML** - Availability: 1.5, requires libxml2 1.6+ Takes as input GML representation of geometry and outputs a PostGIS geometry object
- **ST_GeomFromKML** - Availability: 1.5, requires libxml2 2.6+ Takes as input KML representation of geometry and outputs a PostGIS geometry object
- **~*~** - Availability: 1.5.0 changed behavior Returns TRUE if A's bounding box is the same as B's.
- **ST_HausdorffDistance** - Availability: 1.5.0 Returns the Hausdorff distance between two geometries.
- **ST_Intersection** - Availability: 1.5 support for geography data type was introduced. Returns a geometry representing the shared portion of geometries A and B.
• **ST_Intersects** - Availability: 1.5 support for geography was introduced. Returns true if two Geometries/Geography spatially intersect in 2D (have at least one point in common).

• **ST_Length** - Availability: 1.5.0 geography support was introduced in 1.5. Returns the 2D length of a linear geometry.

• **ST_LongestLine** - Availability: 1.5.0 Returns the 2D longest line between two geometries.

• **ST_MakeEnvelope** - Availability: 1.5 Creates a rectangular Polygon from minimum and maximum coordinates.

• **ST_MaxDistance** - Availability: 1.5.0 Returns the 2D largest distance between two geometries in projected units.

• **ST_ShortestLine** - Availability: 1.5.0 Returns the 2D shortest line between two geometries.

• **&&** - Availability: 1.5.0 support for geography was introduced. Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.

9.12.13 PostGIS Functions new, behavior changed, or enhanced in 1.4

The functions given below are PostGIS functions that were introduced or enhanced in the 1.4 release.

• **Populate_Geometry_Columns** - Ensures geometry columns are defined with type modifiers or have appropriate spatial constraints. Availability: 1.4.0

• **ST_AsSVG** - Returns SVG path data for a geometry. Availability: 1.2.2. Availability: 1.4.0 Changed in PostGIS 1.4.0 to include L command in absolute path to conform to http://www.w3.org/TR/SVG/paths.html#PathDataBNF

• **ST_Collect** - Creates a GeometryCollection or Multi* geometry from a set of geometries. Availability: 1.4.0 - ST_Collect(geomarray) was introduced. ST_Collect was enhanced to handle more geometries faster.

• **ST_ContainsProperly** - Returns true if B intersects the interior of A but not the boundary (or exterior). A does not contain properly itself, but does contain itself. Availability: 1.4.0

• **ST_Extent** - an aggregate function that returns the bounding box that bounds rows of geometries. Availability: 1.4.0

• **ST_GeoHash** - Return a GeoHash representation of the geometry. Availability: 1.4.0

• **ST_IsValidReason** - Returns text stating if a geometry is valid, or a reason for invalidity. Availability: 1.4

• **ST_LineCrossingDirection** - Returns a number indicating the crossing behavior of two LineStrings. Availability: 1.4

• **ST_LocateBetweenElevations** - Return a derived geometry (collection) value with elements that intersect the specified range of elevations inclusively. Availability: 1.4.0

• **ST_MakeLine** - Creates a Linestring from Point, MultiPoint, or LineString geometries. Availability: 1.4.0 - ST_MakeLine(geomarray) was introduced. ST_MakeLine aggregate functions was enhanced to handle more points faster.

• **ST_MinimumBoundingCircle** - Returns the smallest circle polygon that contains a geometry. Availability: 1.4.0

• **ST_Union** - Returns a geometry representing the point-set union of the input geometries. Availability: 1.4.0 - ST_Union was enhanced. ST_Union(geomarray) was introduced and also faster aggregate collection in PostgreSQL.

9.12.14 PostGIS Functions new in 1.3

The functions given below are PostGIS functions that were introduced in the 1.3 release.

• **ST_AsGML** - Return the geometry as a GML version 2 or 3 element. Availability: 1.3.2

• **ST_AsGeoJSON** - Return the geometry as a GeoJSON element. Availability: 1.3.4

• **ST_CurveToLine** - Converts a geometry containing curves to a linear geometry. Availability: 1.3.0

• **ST_LineToCurve** - Converts a linear geometry to a curved geometry. Availability: 1.3.0

• **ST_SimplifyPreserveTopology** - Returns a simplified and valid version of a geometry, using the Douglas-Peucker algorithm. Availability: 1.3.3
Chapter 10

Reporting Problems

10.1 Reporting Software Bugs

Reporting bugs effectively is a fundamental way to help PostGIS development. The most effective bug report is that enabling PostGIS developers to reproduce it, so it would ideally contain a script triggering it and every information regarding the environment in which it was detected. Good enough info can be extracted running `SELECT postgis_full_version()` [for postgis] and `SELECT version()` [for postgresql].

If you aren’t using the latest release, it’s worth taking a look at its release changelog first, to find out if your bug has already been fixed.

Using the PostGIS bug tracker will ensure your reports are not discarded, and will keep you informed on its handling process.

Before reporting a new bug please query the database to see if it is a known one, and if it is please add any new information you have about it.

You might want to read Simon Tatham’s paper about How to Report Bugs Effectively before filing a new report.

10.2 Reporting Documentation Issues

The documentation should accurately reflect the features and behavior of the software. If it doesn’t, it could be because of a software bug or because the documentation is in error or deficient.

Documentation issues can also be reported to the PostGIS bug tracker.

If your revision is trivial, just describe it in a new bug tracker issue, being specific about its location in the documentation.

If your changes are more extensive, a Subversion patch is definitely preferred. This is a four step process on Unix (assuming you already have Subversion installed):

1. Clone the PostGIS’ git repository. On Unix, type:

   ```
   git clone https://git.osgeo.org/gitea/postgis/postgis.git
   ```

 This will be stored in the directory postgis

2. Make your changes to the documentation with your favorite text editor. On Unix, type (for example):

   ```
   vim doc/postgis.xml
   ```

 Note that the documentation is written in DocBook XML rather than HTML, so if you are not familiar with it please follow the example of the rest of the documentation.

3. Make a patch file containing the differences from the master copy of the documentation. On Unix, type:

   ```
   git diff doc/postgis.xml > doc.patch
   ```

4. Attach the patch to a new issue in bug tracker.
Appendix A

Appendix

A.1 Release 3.1.10

This release works with PostgreSQL 9.6-14.

A.1.1 Bug Fixes

Release date: 2023/11/19

5568, Improve robustness of topology face split handling (Sandro Santilli)
5494, Fix double-upgrade with view using st_dwithin(text, ...) (Sandro Santilli)
5450, Fix macro expansion recursion on powerpc architectures (Bas Couwenberg)
5385, Postgres malloc assertion fail when using pg_cancel_backend with ST_AsMVT (Regina Obe, Paul Ramsey)
Fix JsonB casting issue (Paul Ramsey)
5616, Fix to find docbook on newer docbook installs (Regina Obe)

A.2 Release 3.1.9

This release works with PostgreSQL 9.6-14.

A.2.1 Bug Fixes

Release date: 2023/05/29

5384, Fix crash in ST_AsGML when given id is longer than given prefix (Sandro Santilli)
5380, Fix 2.5 upgrades with views using geography based ST_Distance (Sandro Santilli)
5338, Dump/Restore of raster table fails on enforce_coverage_tile_rast constraint (Regina Obe)
5315, #5318, #5319, #5320, #5342 crashes on infinite coordinates (Regina Obe, Paul Ramsey)
5344, Include topology id sequence state in dumps (Sandro Santilli)
5288, ST_LineCrossingDirection multi-cross error (Paul Ramsey)
5347, _ST_BestSRID crashes on ARM with infinite geometries (Regina Obe)
5331, [postgis_tiger_geocoder] reverse_geocode, prefer addressable ranges (Regina Obe, Locance)
A.3 Release 3.1.8

This release works with PostgreSQL 9.6-14.

A.3.1 Bug and Security Fixes

Release date: 2022/11/12

[security] Add schema qual to upgrade util (Regina Obe)
5240, ST_DumpPoints crash with empty polygon (Regina Obe)
4648, [security] Check function ownership at extension packaging time (Sandro Santilli) Thanks to Sven Klemm (Timescale) for the report
5241, Crash on ST_SnapToGrid with empty multis (Regina Obe)
5234, Fix 2.5d topology building regression (Sandro Santilli)
5280, Handle load of dbase character fields with no width specified (Regina Obe)
5084, Bad rasterization of linestring (Gilles Vuidel)

A.4 Release 3.1.7

This release works with PostgreSQL 9.6-14.

A.4.1 Bug Fixes

Release date: 2022/08/18

5191, Use integer instead of int4 (Regina Obe)
5139, PostGIS causes to_jsonb to no longer be parallel safe, ST_AsGeoJSON and ST_AsGML are also parallel unsafe (Regina Obe, Paul Ramsey)
5202, Guard against downgrades (Sandro Santilli)
5209, 5210, Fix upgrades with CVE-2022-2625 PostgreSQL fix
5032, Correctly read extent off multi-key GIST indexes (Paul Ramsey)
5181, Reset proj error state after failed parse (Paul Ramsey)
5171, Short circuit geodesic distance when inputs equal (Paul Ramsey)
Fix potential buffer overflow in long transaction locks (Paul Ramsey)

A.5 Release 3.1.6

This release works with PostgreSQL 9.6-14.
A.5.1 Bug Fixes

Release date: 2022/07/20

4835, Occasional distance errors in polar area (Paul Ramsey)
5152, Fix infinite loop with ST_Split (Sandro Santilli)
5120, Fix not-null result from ST_EstimatedExtent against truncated tables with spatial index (Sandro Santilli)
5076, Avoid log storm installed with pgaudit enabled (Paul Ramsey)
5100, Stop using pg_atoi, removed in PG 15 (Laurenz Albe)
5115, Allow dropping topologies with pending constraints (Sandro Santilli)
5151, ST_SetPoint with empty geometries (Regina Obe)
5150, Change signature of AddToSearchPath (Regina Obe)
5125, Fix search path function (Sandro Santilli)
5155, More schema qual fixes (Regina Obe)
5114, Crash with long column names in pgsql2shp (Paul Ramsey)
4541, ST_ConcaveHull returns a "geometrycollection" type instead of the expected "polygon" (Regina Obe)
5154, raster ST_Value is undercosted (Regina Obe)

A.6 Release 3.1.5

A.6.1 Bug Fixes

Release date: 2022/02/01

#4994, Random missing INSERT in shp2pgsql (Sandro Santilli)
#5016, loader (shp2pgsql): Respect LDFLAGS (Greg Troxel)
#5018, pgsql2shp basic support for WITH CTE clause (Regina Obe)
#5026, fix DropTopology in presence of UPDATE triggers on topology layers (Sandro Santilli)
#5033, #5035, allow upgrades in presence of views using deprecated functions (Sandro Santilli)
#5046, Fix upgrades in absence of old library (Sandro Santilli)
#5069, search_path vulnerabilty during install/upgrade (Regina Obe)
#5041, postgis_tiger_geocoder: loader_generate_script generates script with invalid syntax (Regina Obe)

A.7 Release 3.1.4

A.7.1 Bug Fixes

Release date: 2021/09/04

#4782, Have postgis_restore.pl use backup postgis schema by default (Sandro Santilli)
#4854, Fix type of TopoGeometry receiving different-type TopoGeometry components (Sandro Santilli)
#4918, Fix rare crash in st_minpossiblevalue (Paul Ramsey)
#4941, Fix loose mbr in topology.face on update (Sandro Santilli)
#4949, Swapped coordinates for N/E planar systems (Paul Ramsey)
#GI617, Fix typo in setting of INVMDIST (Charles Karney)
#4326, Fix CircularPolygon area calculation (Paul Ramsey)
#4917, Fix crasher with '-' regclass (Paul Ramsey)
#4919, Rare crash in selectivity calculation (Paul Ramsey)
#4926, Preserve SRID on unions of empty geometry (Paul Ramsey)
#4910, Allow repeated points in GML input poslists (Paul Ramsey)
#4958, TIGER2020 fix faces and add Tabblock20 (Regina Obe)
#4959, Drop Colorado state files also drops national county tables (Regina Obe)
#4916, #4770, #4724, #4916, Crashes in aggregate functions (Paul Ramsey)
#4982, Problem when calling the buffer function from MobilityDB (Esteban Zimanyi, MobilityDB)

A.8 Release 3.1.3

Release date: 2021/07/02

A.8.1 Bug Fixes

#4929, Fix missing error from GetRingEdges when invoked with unexistent topology or edge (Sandro Santilli)
#4927, Fix PostgreSQL 14 compile FuncnameGetCandidates changes (Regina Obe, Julien Rouhaud)

A.9 Release 3.1.2

Release date: 2021/05/21

A.9.1 Bug Fixes

#4871, TopoGeometry::scrollGeometry cast returns NULL for empty TopoGeometry objects (Sandro Santilli)
#4826, postgis_tiger_geocoder Better answers when no zip is provided (Regina Obe)
#4817, handle more complex compound coordinate systems (Paul Ramsey)
#4842, Only do axis flips on CRS that have a "Lat" as the first column (Paul Ramsey) - Support recent Proj versions that have removed pj_get_release (Paul Ramsey)
#4835, Adjust tolerance for geodetic calculations (Paul Ramsey)
#4840, Improper conversion of negative geographic azimuth to positive (Paul Ramsey)
#4853, DBSCAN cluster not formed when recordset length equal to minPoints (Dan Baston)
#4863, Update bboxes after scale/affine coordinate changes (Paul Ramsey)
#4876, Fix raster issues related to PostgreSQL 14 tablefunc changes (Paul Ramsey, Regina Obe)
#4877, mingw64 PostGIS / PostgreSQL 14 compile (Regina Obe, Tom Lane)
#4838, Update to support Tiger 2020 (Regina Obe)
#4890, Change Proj cache lifetime to last as long as connection (Paul Ramsey)
#4845, Add Pg14 build support (Paul Ramsey)
A.10 Release 3.1.2

Release date: 2021/05/21

A.10.1 Bug Fixes

#4871, TopoGeometry::geometry cast returns NULL for empty TopoGeometry objects (Sandro Santilli)
#4826, postgis_tiger_geocoder Better answers when no zip is provided (Regina Obe)
#4817, handle more complex compound coordinate systems (Paul Ramsey)
#4842, Only do axis flips on CRS that have a "Lat" as the first column (Paul Ramsey)
Support recent Proj versions that have removed pj_get_release (Paul Ramsey)
#4835, Adjust tolerance for geodetic calculations (Paul Ramsey)
#4840, Improper conversion of negative geographic azimuth to positive (Paul Ramsey)
#4853, DBSCAN cluster not formed when recordset length equal to minPoints (Dan Baston)
#4863, Update bboxes after scale/affine coordinate changes (Paul Ramsey)
#4876, Fix raster issues related to PostgreSQL 14 tablefunc changes (Paul Ramsey, Regina Obe)
#4877, mingw64 PostGIS / PostgreSQL 14 compile (Regina Obe, Tom Lane)
#4838, Update to support Tiger 2020 (Regina Obe)
#4890, Change Proj cache lifetime to last as long as connection (Paul Ramsey)
#4845, Add Pg14 build support (Paul Ramsey)

A.11 Release 3.1.1

Release date: 2021/01/28

A.11.1 Bug Fixes

#4814, Crash passing collection with only empty components to ST_MakeValid (Sandro Santilli)
#4818, Make the VSICURL synthetic driver work as documented
#4825, Unstable results from ST_MakeValid (Sandro Santilli)
#4823, Avoid listing the same geometry in different collections

A.12 Release 3.1.0beta1

Release date: 2020/12/09

Only changes since 3.1.0alpha2 are listed. This version requires PostgreSQL 9.6-13 and GEOS >= 3.6+ Additional features and
enhancements enabled if you are running Proj6+, PostgreSQL 12+, and GEOS 3.9.0dev

A.12.1 Breaking changes

4214, Deprecated ST_Count(tablename,...), ST_ApproxCount(tablename, ...) ST_SummaryStats(tablename, ..), ST_Histogram(tablenam...
4214, ST_ApproxHistogram(tablename, ...), ST_Quantile(tablename, ...), ST_ApproxQuantile(tablename, ...) removed. (Darafei
Praliaskouski)
A.12.2 Enhancements

4801, ST_ClusterKMeans supports weights in POINT[Z]M geometries (Darafei Praliaskouski)
4804, ST_ReducePrecision (GEOS 3.9+) allows valid precision reduction (Paul Ramsey)
4805, _ST_SortableHash exposed to work around parallel sorting performance issue in Postgres. If your table is huge, use ORDER BY _ST_SortableHash(geom) instead of ORDER BY geom to make parallel sort faster (Darafei Praliaskouski)
4625, Correlation statistics now calculated. Run ANALYZE for BRIN indexes to start kicking in. (Darafei Praliaskouski)
Fix axis order issue with urn:ogc:def:crs:EPSG in ST_GeomFromGML() (Even Roualt)

A.13 Release 3.1.0alpha3

Release date: 2020/11/19
Only changes since 3.1.0alpha2 are listed. This version requires PostgreSQL 9.6-13 and GEOS >= 3.6+ Additional features and enhancements enabled if you are running Proj6+, PostgreSQL 12+, and GEOS 3.9.0dev

A.13.1 Breaking changes

4737, Bump minimum protobuf-c requirement to 1.1.0 (Raúl Marín) The configure step will now fail if the requirement isn’t met or explicitly disabled (--without-protobuf)
4258, Untangle postgis_sfcgal from postgis into its own lib file (Regina Obe)

A.13.2 New features

4698, Add a precision parameter to ST_AsEWKT (Raúl Marín)
Add a gridSize optional parameter to ST_Union, ST_UnaryUnion, ST_Difference, ST_Intersection, ST_SymDifference, ST_Subdivide Requires GEOS 3.9 (Sandro Santilli)

A.13.3 Enhancements

4789, Speed up TopoJSON output for areal TopoGeometry with many holes (Sandro Santilli)
4758, Improve topology noding robustness (Sandro Santilli)
Make ST_Subdivide interruptable (Sandro Santilli)
4660, Changes in double / coordinate printing (Raúl Marín) - Use the shortest representation (enough to guarantee roundtrip).
- Uses scientific notation for absolute numbers smaller than 1e-8. The previous behaviour was to output 0 for absolute values smaller than 1e-12 and fixed notation for anything bigger than that. - Uses scientific notation for absolute numbers greater than 1e+15 (same behaviour).
- The precision parameter now also affects the scientific notation (before it was fixed [5-8]). - All output functions now respect the requested precision (without any limits). - The default precision is the same (9 for GeoJSON, 15 for everything else).
4729, WKT/KML: Print doubles directly into stringbuffers (Raúl Marín)
4533, Use the standard coordinate printing system for box types (Raúl Marín)
4686, Avoid decompressing geographies when possible (Raúl Marín) Affects ANALYZE, _ST_PointOutside, postgis_geobbox, ST_CombineBox(box2d, geometry), ST_ClipBoxByBox2D when the geometry is fully inside or outside the bbox and ST_BoundingDiagonal.
4741, Don’t use ST_PointInsideCircle if you need indexes, use ST_DWithin instead. Documentation adjusted (Darafei Praliaskouski)
4737, Improve performance and reduce memory usage in ST_AsMVT, especially in queries involving parallelism (Raúl Marín)
4746, Micro optimizations to the serialization process (Raúl Marín)
4719, Fail fast when srids don’t match ST_Intersection(geometry,raster) Also schema qualify calls in function. (Regina Obe)
4784, Add ST_CollectionExtract(geometry) with default behaviour of extracting the components of highest coordinate dimension. (Paul Ramsey)

A.13.4 Bug Fixes

4691, Fix segfault during gist index creation with empty geometries (Raúl Marín)
Fix handling of bad WKB inputs (Oracle types) and unit tests for malformed WKB. Remove memory leaks in malformed WKB cases. (Paul Ramsey)
4740, Round values in geography_distance_tree as we do on geography_distance (Raúl Marín, Paul Ramsey, Regina Obe)
4739, Ensure all functions using postgis_oid initialize the internal cache (Raúl Marín)
4767, #4768, #4771, #4772, Fix segfault when parsing invalid WKB (Raúl Marín)
4769, Fix segfault in st_addband (Raúl Marín)
4790, Fix ST_3dintersects calculations with identical vertices (Nicklas Avén)
3372, TopoElementArray cannot be null - change domain constraint (Regina Obe)

A.14 Release 3.1.0alpha2

Release date: 2020/07/18
Only changes since 3.1.0alpha1 are listed. This version requires PostgreSQL 9.6-13 and GEOS >= 3.6+ Additional features and enhancements enabled if you are running Proj6+, PostgreSQL 12+, and GEOS 3.9.0dev

A.14.1 New Features

4656, Cast a geojson_text::geometry for implicit GeoJSON ingestion (Raúl Marín)
4687, Expose GEOS MaximumInscribedCircle (Paul Ramsey)
4710, ST_ClusterKMeans now works with 3D geometries (Darafei Praliaskouski)

A.14.2 Enhancements

4675, topology.GetRingEdges now implemented in C (Sandro Santilli)
4681, ST_GetFaceGeometry: print corruption information (Sandro Santilli)
4651, ST_Simplify: Don’t copy if nothing is removed (Raúl Marín)
4657, Avoid De-TOASTing where possible (Paul Ramsey)
4490, Tweak function costs (Raúl Marín)
4672, Cache getSRSbySRID and getSRIDbySRS (Raúl Marín)
4676, Avoid decompressing toasted geometries to read only the header (Raúl Marín) Optimize cast to Postgresql point type (Raúl Marín)
4620, Update internal wagyu to 0.5.0 (Raúl Marín)
4623, Optimize varlena returning functions (Raúl Marín)
4677, Share gserialized objects between different cache types (Raúl Marín)
Fix compilation with MSVC compiler / Standardize shebangs (Loïc Bartoletti)
A.14.3 Bug fixes

4652, Fix several memory related bugs in ST_GeomFromGML (Raúl Marín)
4661, Fix access to spatial_ref_sys with a non default schema (Raúl Marín)
4670, ST_AddPoint: Fix bug when a positive position is requested (Raúl Marín)
4699, crash on null input to ST_Union(raster, otherarg) (Jaime Casanova, 2ndQuadrant)
4716, Fix several issues with pkg-config in the configure script (Raúl Marín)

A.15 Release 3.1.0alpha1

Release date: 2020/02/01
This version requires PostgreSQL 9.6+-13 and GEOS >= 3.6+ Additional features and enhancements enabled if you are running Proj6+, PostgreSQL 12+, and GEOS 3.8.0

A.15.1 Breaking Changes

svn number replaced by git hash in version output (Sandro Santilli, Raúl Marín)
4577, Drop support for PostgreSQL 9.5 (Raúl Marín)
4579, Drop postgis_proc_set_search_path.pl (Raúl Marín)
4601, ST_TileEnvelope signature changed.
3057, ST_Force3D, ST_Force3DZ, ST_Force3DM and ST_Force4D signatures changed.

A.15.2 New features

4601, Add ST_TileEnvelope margin argument (Yuri Astrakhan)
2972, Add quiet mode (-q) to pgsql2shp (Kristian Thy)
4617, Add configure switch `--without-phony-revision` (Raúl Marín)
3057, Optional value params for Force3D*, Force4D functions (Kristian Thy)
4624, ST_HexagonGrid and ST_SquareGrid, set returning functions to generate tilings of the plane (Paul Ramsey)

A.15.3 Enhancements

4539, Unify libm includes (Raúl Marín)
4569, Allow unknown SRID geometry insertion into typmod SRID column (Paul Ramsey)
4149, ST_Simplify(geom, 0) is now O(N). ST_Affine (ST_Translate, ST_TransScale, ST_Rotate) optimized. ST_SnapToGrid optimized. (Darafei Praliaskouski)
4574, Link Time Optimizations enabled (Darafei Praliaskouski)
4578, Add paralllelism and cost properties to brin functions (Raúl Marín)
4473, Silence yacc warnings (Raúl Marín)
4589, Disable C asserts when building without "--enable-debug" (Raúl Marín)
4543, Introduce ryu to print doubles (Raúl Marín)
4626, Support pkg-config for libxml2 (Bas Couwenberg)
4615, Speed up geojson output (Raúl Marín)
A.16 Release 3.0.0

Release date: 2019/10/20

This version requires PostgreSQL 9.5+-12 and GEOS >= 3.6+ Additional features and enhancements enabled if you are running Proj6+, PostgreSQL 12, and GEOS 3.8.0

A.16.1 New Features

2902, postgis_geos_noop (Sandro Santilli)
4128, ST_AsMVT support for Feature ID (Stepan Kuzmin)
4230, SP-GiST and GiST support for ND box operators overlaps, contains, within, equals (Esteban Zimányi and Arthur Lesuisse from Université Libre de Bruxelles (ULB), Darafei Praliaskouski)
4171, ST_3DLineInterpolatePoint (Julien Cabieces, Vincent Mora)
4311, Introduce WAGYU to validate MVT polygons. This option requires a C++11 compiler and will use CXXFLAGS (not CFLAGS). Add `--without-wagyu` to disable this option and keep the behaviour from 2.5 (Raúl Marín)
1833, ST_AsGeoJSON(row) generates full GeoJSON Features (Joe Conway)
3687, Casts json(geometry) and jsonb(geometry) for implicit GeoJSON generation (Paul Ramsey)
4198, Add ST_ConstrainedDelaunayTriangles SFCGAL function (Darafei Praliaskouski)

A.16.2 Breaking Changes

4267, Bump minimum GEOS version to 3.6 (Regina Obe, Darafei Praliaskouski)
3888, Raster support now available as a separate extension (Sandro Santilli)
3807, Extension library files no longer include the minor version. Use New configure switch --with-library-minor-version if you need the old behavior (Regina Obe)
4230, ND box operators (overlaps, contains, within, equals) now don’t look on dimensions that aren’t present in both operands. Please REINDEX your ND indexes after upgrade. (Darafei Praliaskouski)
4229, Dropped support for PostgreSQL < 9.5. (Darafei Praliaskouski)
4230, ND box operators (overlaps, contains, within, equals) now don’t look on dimensions that aren’t present in both operands. Please REINDEX your ND indexes after upgrade. (Darafei Praliaskouski)
4230, ND box operators (overlaps, contains, within, equals) now don’t look on dimensions that aren’t present in both operands. Please REINDEX your ND indexes after upgrade. (Darafei Praliaskouski)
4267, Enable Proj 6 deprecated APIs (Darafei Praliaskouski, Raúl Marín)
4268, Bump minimum SFCGAL version to 1.3.1 (Darafei Praliaskouski)
4331, ST_3DMakeBox now returns error instead of a miniscule box (Regina Obe)
4342, Removed "versioned" variants of ST_AsGeoJSON and ST_AsKML (Paul Ramsey)
4356, ST_Accum removed. Use array_agg instead. (Darafei Praliaskouski)
4414, Include version number in address_standardizer lib (Raúl Marín)
4334, Fix upgrade issues related to renamed function parameters (Raúl Marín)
4442, raster2pgsql now skips NODATA tiles. Use -k option if you still want them in database for some reason. (Darafei Praliaskouski)
4433, 32-bit hash fix (requires reindexing hash(geometry) indexes) (Raúl Marín)
3383, Sorting now uses Hilbert curve and Postgres Abbreviated Compare. You need to REINDEX your btree indexes if you had them. (Darafei Praliaskouski)
A.16.3 Enhancements

4341, Using "support function" API in PostgreSQL 12+ to replace SQL inlining as the mechanism for providing index support under ST_Intersects, et al

4330, postgis_restore OOM when output piped to an intermediate process (Hugh Ranalli)

4322, Support for Proj 6+ API, bringing more accurate datum transforms and support for WKT projections

4153, ST_Segmentize now splits segments proportionally (Darafei Praliaskouski).

4162, ST_DWithin documentation examples for storing geometry and radius in table (Darafei Praliaskouski, github user Boscop).

4161 and #4294, ST_AsMVTGeom: Shortcut geometries smaller than the resolution (Raúl Marín)

4176, ST_Intersection supports GEOMETRYCOLLECTION (Darafei Praliaskouski)

4181, ST_AsMVTGeom: Avoid type changes due to validation (Raúl Marín)

4183, ST_AsMVTGeom: Drop invalid geometries after simplification (Raúl Marín)

4196, Have postgis_extensions_upgrade() package unpackaged extensions (Sandro Santilli)

4215, Use floating point compare in ST_DumpAsPolygons (Darafei Praliaskouski)

4155, Support for GEOMETRYCOLLECTION, POLYGON, TIN, TRIANGLE in ST_LocateBetween and ST_LocateBetweenElevation (Darafei Praliaskouski)

2767, Documentation for AddRasterConstraint optional parameters (Sunveer Singh)

4244, Avoid unaligned memory access in BOX2D_out (Raúl Marín)

4139, Make mixed-dimension ND index build tree correctly (Darafei Praliaskouski, Arthur Lesuisse, Andrew Gierth, Raúl Marín)

4262, Document MULTISURFACE compatibility of ST_LineToCurve (Steven Ottens)

4276, ST_AsGeoJSON documentation refresh (Darafei Praliaskouski)

4292, ST_AsMVT: parse JSON numeric values with decimals as doubles (Raúl Marín)

4300, ST_AsMVTGeom: Always return the simplest geometry (Raúl Marín)

4301, ST_Subdivide: fix endless loop on coordinates near coincident to bounds (Darafei Praliaskouski)

4289, ST_AsMVTGeom: Transform coordinates space before clipping (Raúl Marín)

4272, Improve notice message when unable to compute stats (Raúl Marín)

4313, #4307, PostgreSQL 12 compatibility (Laurenz Albe, Raúl Marín)

4299, #4304, ST_GeneratePoints is now VOLATILE. IMMUTABLE version with seed parameter added. (Mike Taves)

4278, ST_3D Distance and ST_3DIntersects now support Solid TIN and Solid POLYHEDRALSURFACE (Darafei Praliaskouski)

4348, ST_AsMVTGeom (GEOS): Enforce validation at all times (Raúl Marín)

4295, Allow GEOMETRYCOLLECTION in ST_Overlaps, ST_Contains, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Crosses, ST_Touches, ST_Disjoint, ST_Relate, ST_Equals (Esteban Zimányi)

4340, ST_Union aggregate now can handle more than 1 GB of geometries (Darafei Praliaskouski)

4378, Allow passing TINs as input to GEOS-backed functions (Darafei Praliaskouski)

4368, Reorder LWGEOM struct members to minimize extra padding (Raúl Marín)

4141, Use uint64 to handle row counts in the topology extension (Raúl Marín)

4412, Support ingesting rasters with NODATA=NaN (Darafei Praliaskouski)

4413, Raster tile size follows GeoTIFF block size on raster2pgsql -t auto (Darafei Praliaskouski)

4422, Modernize Python 2 code to get ready for Python 3 (Christian Clauss)

4352, Use CREATE OR REPLACE AGGREGATE for PG12+ (Raúl Marín)
4394, Allow FULL OUTER JOIN on geometry equality operator (Darafei Praliaskouski)
4441, Make GiST penalty friendly to multi-column indexes and build single-column ones faster. (Darafei Praliaskouski)
4403, Support for shp2pgsql ability to reproject with copy mode (-D) (Regina Obe)
4410, More descriptive error messages about SRID mismatch (Darafei Praliaskouski)
4399, TIN and Triangle output support in all output functions (Darafei Praliaskouski)
3719, Impose minimum number of segments per arc during linearization (Dan Baston / City of Helsinki, Raúl Marín)
4277, ST_GeomFromGeoJSON now marks SRID=4326 by default as per RFC7946, ST_AsGeoJSON sets SRID in JSON output if it differs from 4326. (Darafei Praliaskouski)
3979, postgis_sfcgal_noop() round trip function (Lucas C. Villa Real)
4328, ST_3DIntersects for 2D TINs. (Darafei Praliaskouski)
4509, Update geocoder for tiger 2019 (Regina Obe)

A.17 Release 3.0.0rc2

Release date: 2019/10/13
If compiling with PostgreSQL+JIT, LLVM >= 6 is required
Supported PostgreSQL versions for this release are: PostgreSQL 9.5 - PostgreSQL 12 GEOS >= 3.6. Additional features enabled if you running Proj6+ and/or PostgreSQL 12. Performance enhancements if running GEOS 3.8+

A.17.1 Major highlights

4534, Fix leak in lwcurvepoly_from_wkb_state (Raúl Marín)
4536, Fix leak inlwcollection_from_wkb_state (Raúl Marín)
4537, Fix leak in WKT collection parser (Raúl Marín)
4535, WKB: Avoid buffer overflow (Raúl Marín)

A.18 Release 3.0.0rc1

Release date: 2019/10/08
If compiling with PostgreSQL+JIT, LLVM >= 6 is required
Supported PostgreSQL versions for this release are: PostgreSQL 9.5 - PostgreSQL 12 GEOS >= 3.6. Additional features enabled if you running Proj6+ and/or PostgreSQL 12. Performance enhancements if running GEOS 3.8+

A.18.1 Major highlights

4519, Fix getSRIDbySRS crash (Raúl Marín)
4520, Use a clean environment when detecting C++ libraries (Raúl Marín)
Restore ST_Union() aggregate signature so drop agg not required and re-work performance/size enhancement to continue to avoid using Array type during ST_Union(), hopefully avoiding Array size limitations. (Paul Ramsey)
A.19 Release 3.0.0beta1

Release date: 2019/09/28

If compiling with PostgreSQL+JIT, LLVM >= 6 is required

Supported PostgreSQL versions for this release are: PostgreSQL 9.5 - PostgreSQL 12 GEOS >= 3.6. Additional features enabled if you running Proj6+ and/or PostgreSQL 12. Performance enhancements if running GEOS 3.8+

A.19.1 Major highlights

4492, Fix ST_Simplify ignoring the value of the 3rd parameter (Raúl Marín)
4494, Fix ST_Simplify output having an outdated bbox (Raúl Marín)
4493, Fix ST_RemoveRepeatedPoints output having an outdated bbox (Raúl Marín)
4495, Fix ST_SnapToGrid output having an outdated bbox (Raúl Marín)
4496, Make ST_Simplify(TRIANGLE) collapse if requested (Raúl Marín)
4501, Allow postgis_tiger_geocoder to be installable by non-super users (Regina Obe)
4503, Speed up the calculation of cartesian bbox (Raúl Marín)
4504, shp2pgsql -D not working with schema qualified tables (Regina Obe)
4505, Speed up conversion of geometries to/from GEOS (Dan Baston)
4507, Use GEOSMakeValid and GEOSBuildArea for GEOS 3.8+ (Dan Baston)
4491, Speed up ST_RemoveRepeatedPoints (Raúl Marín)
4509, Update geocoder for tiger 2019 (Regina Obe)
4338, Census block level data (tabblock table) not loading (Regina Obe)

A.20 Release 3.0.0alpha4

Release date: 2019/08/11

If compiling with PostgreSQL+JIT, LLVM >= 6 is required

Supported PostgreSQL versions for this release are: PostgreSQL 9.5 - PostgreSQL 12 GEOS >= 3.6. Additional features enabled if you running Proj6+ and/or PostgreSQL 12

A.20.1 Major highlights

4433, 32-bit hash fix (requires reindexing hash(geometry) indexes) (Raúl Marín)
4445, Fix a bug in geometry_le (Raúl Marín)
4451, Fix the calculation of gserialized_max_header_size (Raúl Marín)
4450, Speed up ST_GeometryType (Raúl Marín)
4452, Add ST_TileEnvelope() (Paul Ramsey)
4403, Support for shp2pgsql ability to reproject with copy mode (-D) (Regina Obe)
4417, Update spatial_ref_sys with new entries (Paul Ramsey)
4449, Speed up ST_X, ST_Y, ST_Z and ST_M (Raúl Marín)
4454, Speed up _ST_OrderingEquals (Raúl Marín)
4453, Speed up ST_IsEmpty (Raúl Marín)
4271, postgis_extensions_upgrade() also updates after pg_upgrade (Raúl Marín)
4466, Fix undefined behaviour in _postgis_gserialized_stats (Raúl Marín)
4209, Handle NULL geometry values in pgsq12shp (Paul Ramsey)
4419, Use protobuf version to enable/disable mvt/geobuf (Paul Ramsey)
4437, Handle POINT EMPTY in shape loader/dumper (Paul Ramsey)
4456, add Rasbery Pi 32-bit jenkins bot for testing (Bruce Rindahl, Regina Obe)
4420, update path does not exists for address_standardizer extension (Regina Obe)

A.21 Release 3.0.0alpha3

Release date: 2019/07/01
If compiling with PostgreSQL+JIT, LLVM >= 6 is required
Supported PostgreSQL versions for this release are: PostgreSQL 9.5 - PostgreSQL 12 GEOS >= 3.6

A.21.1 Major highlights

4414, Include version number in address_standardizer lib (Raúl Marín)
4352, Use CREATE OR REPLACE AGGREGATE for PG12+ (Raúl Marín)
4334, Fix upgrade issues related to renamed parameters (Raúl Marín)
4388, AddRasterConstraints: Ignore NULLs when generating constraints (Raúl Marín)
4327, Avoid pfree‘ing the result of getenv (Raúl Marín)
4406, Throw on invalid characters when decoding geohash (Raúl Marín)
4429, Avoid resource leaks with PROJ6 (Raúl Marín)
4372, PROJ6: Speed improvements (Raúl Marín)
3437, Speed up ST_Intersects with Points (Raúl Marín)
4438, Update serialization to support extended flags area (Paul Ramsey)
4443, Fix wagyu configure dropping CPPFLAGS (Raúl Marín)
4440, Type lookups in FDW fail (Paul Ramsey)
4442, raster2pgsql now skips NODATA tiles. Use -k option if you still want them in database for some reason. (Darafei Praliaskouski)
4441, Make GiST penalty friendly to multi-column indexes and build single-column ones faster. (Darafei Praliaskouski)

A.22 Release 3.0.0alpha2

Release date: 2019/06/02
If compiling with PostgreSQL+JIT, LLVM >= 6 is required
Supported PostgreSQL versions for this release are: PostgreSQL 9.5 - PostgreSQL 12 GEOS >= 3.6
A.22.1 Major highlights

#4404, Fix selectivity issue with support functions (Paul Ramsey)
#4311, Make wagyu the default option to validate polygons. This option requires a C++11 compiler and will use CXXFLAGS (not CFLAGS). It is only enabled if built with MVT support (protobuf) Add '--without-wagyu' to disable this option and keep the behaviour from 2.5 (Raúl Marín)
#4198, Add ST_ConstrainedDelaunayTriangles SFCGAL function (Darafei Praliaskouski)

A.23 Release 3.0.0alpha1

Release date: 2019/05/26
If compiling with PostgreSQL+JIT, LLVM >= 6 is required
Supported PostgreSQL versions for this release are: PostgreSQL 9.5 - PostgreSQL 12 GEOS >= 3.6

A.23.1 New Features

additional features enabled if you are running Proj6+
Read the NEWS file in the included tarball for more details

A.24 Release 2.5.0

Release date: 2018/09/23
If compiling with PostgreSQL+JIT, LLVM >= 6 is required
Supported PostgreSQL versions for this release are: PostgreSQL 9.4 - PostgreSQL 12 (in development) GEOS >= 3.5

A.24.1 New Features

#1847, spgist 2d and 3d support for PG 11+ (Esteban Zimányi and Arthur Lesuisse from Université Libre de Bruxelles (ULB), Darafei Praliaskouski)
#4056, ST_FilterByM (Nicklas Avén)
#4050, ST_ChaikinSmoothing (Nicklas Avén)
#3989, ST_Buffer single sided option (Stephen Knox)
#3876, ST_Angle function (Rémi Cura)
#3564, ST_LineInterpolatePoints (Dan Baston)
#3896, PostGIS_Extensions_Upgrade() (Regina Obe)
#3913, Upgrade when creating extension from unpackaged (Sandro Santilli)
#2256, _postgis_index_extent() for extent from index (Paul Ramsey)
#3176, Add ST_OrientedEnvelope (Dan Baston)
#4029, Add ST_QuantizeCoordinates (Dan Baston)
#4063, Optional false origin point for ST_Scale (Paul Ramsey)
#4082, Add ST_BandFileSize and ST_BandFileTimestamp, extend ST_BandMetadata (Even Rouault)
#2597, Add ST_Grayscale (Bborie Park)
#4007, Add ST_SetBandPath (Bborie Park)
#4008, Add ST_SetBandIndex (Bborie Park)
A.24.2 Breaking Changes

Upgrade scripts from multiple old versions are now all symlinks to a single upgrade script (Sandro Santilli)

#3944, Update to EPSG register v9.2 (Even Rouault)
#3927, Parallel implementation of ST_AsMVT
#3925, Simplify geometry using map grid cell size before generating MVT
#3899, BTree sort order is now defined on collections of EMPTY and same-prefix geometries (Darafei Praliaskouski)
#3864, Performance improvement for sorting POINT geometries (Darafei Praliaskouski)
#3900, GCC warnings fixed, make -j is now working (Darafei Praliaskouski) - TopoGeo_addLinestring robustness improvements
(Sandro Santilli) #1855, #1946, #3718, #3838
#3234, Do not accept EMPTY points as topology nodes (Sandro Santilli)
#1014, Hashable geometry, allowing direct use in CTE signatures (Paul Ramsey)
#3097, Really allow MULTILINESTRING blades in ST_Split() (Paul Ramsey)
#3942, gejson: Do not include private header for json-c => 0.13 (Björn Esser)
#3954, ST_GeometricMedian now supports point weights (Darafei Praliaskouski)
#3965, #3971, #3977, #4071 ST_ClusterKMeans rewritten: better initialization, faster convergence, K=2 even faster (Darafei Praliaskouski)
#3982, ST_AsEncodedPolyline supports LINESTRING EMPTY and MULTIPOINT EMPTY (Darafei Praliaskouski)
#3986, ST_AsText now has second argument to limit decimal digits (Marc Ducobu, Darafei Praliaskouski)
#4020, Casting from box3d to geometry now returns correctly connected PolyhedralSurface (Matthias Bay)
#2508, ST_OffsetCurve now works with collections (Darafei Praliaskouski)
#4006, ST_GeomFromGeoJSON support for json and jsonb as input (Paul Ramsey, Regina Obe)
#4038, ST_Subdivide now selects pivot for geometry split that reuses input vertices. (Darafei Praliaskouski)
#4025, #4032 Fixed precision issue in ST_ClosestPointOfApproach, ST_DistanceCPA, and ST_CPAWithin (Paul Ramsey, Darafei Praliaskouski)
#4076, Reduce use of GEOS in topology implementation (Björn Harrtell)
#4080, Add external raster band index to ST_BandMetaData - Add Raster Tips section to Documentation for information about Raster behavior (e.g. Out-DB performance, maximum open files)
#4084: Fixed wrong code-comment regarding front/back of BOX3D (Matthias Bay)
#4060, #4094, PostgreSQL JIT support (Raúl Marín, Laurenz Albe)
#3960, ST_Centroid now uses lwgeom_centroid (Darafei Praliaskouski)
#4027, Remove duplicated code in lwgeom_geos (Darafei Praliaskouski, Daniel Baston)
#4115, Fix a bug that created MVTs with incorrect property values under parallel plans (Raúl Marín).
#4120, ST_AsMVTGeom: Clip using tile coordinates (Raúl Marín).
#4132, ST_Intersection on Raster now works without throwing TopologyException (Vinícius A.B. Schmidt, Darafei Praliaskouski)
#4177, #4180 Support for PostgreSQL 12 dev branch (Laurenz Albe, Raúl Marín)
#4156, ST_ChaikinSmoothing: also smooth start/end point of polygon by default (Darafei Praliaskouski)

A.25 Release 2.4.5

Release date: 2018/09/12
This is a bug fix and performance improvement release.
A.25.1 Bug Fixes

#4031, Survive to big MaxError tolerances passed to ST_CurveToLine (Sandro Santilli)
#4058, Fix infinite loop in linearization of a big radius small arc (Sandro Santilli)
#4071, ST_ClusterKMeans crash on NULL/EMPTY fixed (Darafei Praliaskouski)
#4079, ensure St_AsMVTGeom outputs CW oriented polygons (Paul Ramsey)
#4070, use standard interruption error code on GEOS interruptions (Paul Ramsey)
#3980, delay freeing input until processing complete (lucasvr)
#4090, PG 11 support (Paul Ramsey, Raúl Marín)
#4077, Serialization failure for particular empty geometry cases (Paul Ramsey)
#3997, fix bug in lwgeom_median and avoid division by zero (Raúl Marín)
#4093, Inconsistent results from qsort callback (yu gr)
#4081, Geography DW ithin() issues for certain cases (Paul Ramsey)
#4105, Parallel build of tarball (Bas Couwenberg)
#4163, MVT: Fix resource leak when the first geometry is NULL (Raúl Marín)

A.26 Release 2.4.4

Release date: 2018/04/08
This is a bug fix and performance improvement release.

A.26.1 Bug Fixes

#3055, [raster] ST_Clip() on a raster without band crashes the server (Regina Obe)
#3942, geojson: Do not include private header for json-c >= 0.13 (Björn Esser)
#3952, ST_Transform fails in parallel mode (Paul Ramsey)
#3978, Fix KNN when upgrading from 2.1 or older (Sandro Santilli)
#4003, lwpoly_construct_circle: Avoid division by zero (Raúl Marín Rodríguez)
#4004, Avoid memory exhaustion when building a btree index (Edmund Horner)
#4016, proj 5.0.0 support (Raúl Marín Rodríguez)
#4017, lwgeom lexer memory corruption (Peter E)
#4020, Casting from box3d to geometry now returns correctly connected PolyhedralSurface (Matthias Bay)
#4025, #4032 Incorrect answers for temporally "almost overlapping" ranges (Paul Ramsey, Darafei Praliaskouski)
#4052, schema qualify several functions in geography (Regina Obe)
#4055, ST_ClusterIntersecting drops SRID (Daniel Baston)

A.26.2 Enhancements

#3946, Compile support for PgSQL 11 (Paul Ramsey)
#3992, Use PKG_PROG_PKG_CONFIG macro from pkg.m4 to detect pkg-config (Bas Couwenberg)
#4044, Upgrade support for PgSQL 11 (Regina Obe)
A.27 Release 2.4.3

Release date: 2018/01/17
This is a bug fix and performance improvement release.

A.27.1 Bug Fixes and Enhancements

#3713, Support encodings that happen to output a `\` character
#3827, Set configure default to not do interrupt testing, was causing false negatives for many people. (Regina Obe) revised to be standards compliant in #3988 (Greg Troxel)
#3930, Minimum bounding circle issues on 32-bit platforms
#3965, ST_ClusterKMeans used to lose some clusters on initialization (Darafei Praliaskouski)
#3956, Brin opclass object does not upgrade properly (Sandro Santilli)
#3982, ST_AsEncodedPolyline supports LINESTRING EMPTY and MULTIPOLYGON EMPTY (Darafei Praliaskouski)
#3975, ST_Transform runs query on spatial_ref_sys without schema qualification. Was causing restore issues. (Paul Ramsey)

A.28 Release 2.4.2

Release date: 2017/11/15
This is a bug fix and performance improvement release.

A.28.1 Bug Fixes and Enhancements

#3917, Fix zcta5 load
#3667, Fix for bug in geography ST_Segmentize
#3926, Add missing 2.2.6 and 2.3.4 upgrade paths (Muhammad Usama)

A.29 Release 2.4.1

Release date: 2017/10/18
This is a bug fix and performance improvement release.

A.29.1 Bug Fixes and Enhancements

#3864, Fix memory leaks in BTREE operators
#3869, Fix build with "gold" linker
#3845, Gracefully handle short-measure issue
#3871, Performance tweak for geometry cmp function
#3879, Division by zero in some arc cases
#3878, Single defn of signum in header
#3880, Undefined behaviour in TYPMOD_GET_SRID
#3875, Fix undefined behaviour in shift operation
#3864, Performance improvements for b-tree geometry sorts
#3874, lw_dist2d_pt_arc division by zero
#3882, undefined behaviour in zigzag with negative inputs
#3891, undefined behaviour in pointarray_to_encoded_polyline
#3895, throw error on malformed WKB input
#3886, fix rare missing boxes in geometry subdivision
#3907, Allocate enough space for all possible GBOX string outputs (Raúl Marín Rodríguez)

A.30 Release 2.4.0

Release date: 2017/09/30

A.30.1 New Features

#3822, Have postgis_full_version() also show and check version of PostgreSQL the scripts were built against (Sandro Santilli)
#2411, curves support in ST_Reverse (Sandro Santilli)
#2951, ST_Centroid for geography (Danny Götte)
#3788, Allow postgres_restore.pl to work on directory-style (-Fd) dumps (Roger Crew)
#3772, Direction agnostic ST_CurveToLine output (Sandro Santilli / KKGeo)
#2464, ST_CurveToLine with MaxError tolerance (Sandro Santilli / KKGeo)
#3599, Geobuf output support via ST_AsGeobuf (Björn Harrtell)
#3661, Mapbox vector tile output support via ST_AsMVT (Björn Harrtell / CartoDB)
#3689, Add orientation checking and forcing functions (Dan Baston)
#3753, Gist penalty speed improvements for 2D and ND points (Darafei Praliaskouski, Andrey Borodin)
#3677, ST_FrechetDistance (Shinichi Sugiyama)

Most aggregates (raster and geometry), and all stable / immutable (raster and geometry) marked as parallel safe

#2249, ST_MakeEmptyCoverage for raster (David Zwarg, ainomieli)
#3709, Allow signed distance for ST_Project (Darafei Praliaskouski)
#524, Covers support for polygon on polygon, line on line, point on line for geography (Danny Götte)

A.30.2 Enhancements and Fixes

Many corrections to docs and several translations almost complete. Andreas Schild who provided many corrections to core docs. PostGIS Japanese translation team first to reach completion of translation.

Support for PostgreSQL 10

Preliminary support for PostgreSQL 11

#3645, Avoid loading logically deleted records from shapefiles
#3747, Add zip4 and address_alphanumeric as attributes to norm_addy tiger_geocoder type.
#3748, address_standardizer lookup tables update so page_normalize_address better standardizes abbreviations
#3647, better handling of noding in ST_Node using GEOSNode (Wouter Geraedts)
#3684, Update to EPSG register v9 (Even Rouault)
#3830, Fix initialization of incompatible type (>=9.6) address_standardizer
#3662, Make shp2pgsql work in debug mode by sending debug to stderr
#3405, Fixed memory leak in lwgeom_to_points
#3832, Support wide integer fields as int8 in shp2pgsql
#3841, Deterministic sorting support for empty geometries in btree geography
#3844, Make = operator a strict equality test, and < > to rough "spatial sorting"
#3855, ST_AsTWKB memory and speed improvements

A.30.3 Breaking Changes

Dropped support for PostgreSQL 9.2.

#3810, GEOS 3.4.0 or above minimum required to compile
Most aggregates now marked as parallel safe, which means most aggs have to be dropped / recreated. If you have views that utilize PostGIS aggs, you’ll need to drop before upgrade and recreate after upgrade
#3578, ST_NumInteriorRings(POLYGON EMPTY) now returns 0 instead of NULL
_ST_DumpPoints removed, was no longer needed after PostGIS 2.1.0 when ST_DumpPoints got reimplemented in C
B-Tree index operators < = > changed to provide better spatial locality on sorting and have expected behavior on GROUP BY. If you have btree index for geometry or geography, you need to REINDEX it, or review if it was created by accident and needs to be replaced with GiST index. If your code relies on old left-to-right box compare ordering, update it to use << >> operators.

A.31 Release 2.3.3

Release date: 2017/07/01
This is a bug fix and performance improvement release.

A.31.1 Bug Fixes and Enhancements

#3777, GROUP BY anomaly with empty geometries
#3711, Azimuth error upon adding 2.5D edges to topology
#3726, PDF manual from dblatex renders fancy quotes for programlisting (Mike Toews)
#3738, raster: Using -s without -Y in raster2pgsql transforms raster data instead of setting srid
#3744, ST_Subdivide loses subparts of inverted geometries (Darafei Praliaskouski Komzpa)
#3750, @ and ~ operator not always schema qualified in geometry and raster functions. Causes restore issues. (Shane StClair of Axiom Data Science)
#3682, Strange fieldlength for boolean in result of pgsql2shp
#3701, Escape double quotes issue in pgsql2shp
#3704, ST_AsX3D crashes on empty geometry
#3730, Change ST_Clip from Error to Notice when ST_Clip can’t compute a band

A.32 Release 2.3.2

Release date: 2017/01/31
This is a bug fix and performance improvement release.
A.32.1 Bug Fixes and Enhancements

#3418, KNN recheck in 9.5+ fails with index returned tuples in wrong order
#3675, Relationship functions not using an index in some cases
#3680, PostGIS upgrade scripts missing GRANT for views
#3683, Unable to update postgis after postgres pg_upgrade going from < 9.5 to pg > 9.4
#3688, ST_AsLatLonText: round minutes

A.33 Release 2.3.1

Release date: 2016/11/28
This is a bug fix and performance improvement release.

A.33.1 Bug Fixes and Enhancements

#1973, st_concavehull() returns sometimes empty geometry collection Fix from gde
#3501, add raster constraint max extent exceeds array size limit for large tables
#3643, PostGIS not building on latest OSX XCode
#3644, Deadlock on interrupt
#3650, Mark ST_Extent, ST_3DExtent and ST_Mem* agg functions as parallel safe so they can be parallelized
#3652, Crash on Collection(MultiCurve())
#3656, Fix upgrade of aggregates from 2.2 or lower version
#3659, Crash caused by raster GUC define after CREATE EXTENSION using wrong memory context. (manaeem)
#3665, Index corruption and memory leak in BRIN indexes patch from Julien Rouhaud (Dalibo)
#3667, geography ST_Segmentize bug patch from Hugo Mercier (Oslandia)

A.34 Release 2.3.0

Release date: 2016/09/26
This is a new feature release, with new functions, improved performance, all relevant bug fixes from PostGIS 2.2.3,and other goodies.

A.34.1 Important / Breaking Changes

#3466, Casting from box3d to geometry now returns a 3D geometry (Julien Rouhaud of Dalibo)
#3396, ST_EstimatedExtent, throw WARNING instead of ERROR (Regina Obe)
A.34.2 New Features

Add support for custom TOC in postgis_restore.pl (Christoph Moench-Tegeder)
Add support for negative indexing in ST_PointN and ST_SetPoint (Rémi Cura)
Add parameters for geography ST_Buffer (Thomas Bonfort)
TopoGeom_addElement, TopoGeom_remElement (Sandro Santilli)
populate_topology_layer (Sandro Santilli)
#454, ST_WrapX and lwgeom_wrapx (Sandro Santilli)
#1758, ST_Normalize (Sandro Santilli)
#2236, shp2pgsql -d now emits "DROP TABLE IF EXISTS"
#2259, ST_Voronoipolygons and ST_Voronoilines (Dan Baston)
#2841 and #2996, ST_MinimumBoundingRadius and new ST_MinimumBoundingCircle implementation using Welzl's algorithm (Dan Baston)
#2991, Enable ST_Transform to use PROJ.4 text (Mike Toews)
#3059, Allow passing per-dimension parameters in ST_Expand (Dan Baston)
#3339, ST_GeneratePoints (Paul Ramsey)
#3362, ST_ClusterDBSCAN (Dan Baston)
#3364, ST_GeometricMedian (Dan Baston)
#3391, Add table inheritance support in ST_EstimatedExtent (Alessandro Pasotti)
#3424, ST_MinimumClearance (Dan Baston)
#3428, ST_Points (Dan Baston)
#3465, ST_ClusterKMeans (Paul Ramsey)
#3469, ST_MakeLine with MULTIPOLYNts (Paul Norman)
#3549, Support PgSQL 9.6 parallel query mode, as far as possible (Paul Ramsey, Regina Obe)
#3557, Geometry function costs based on query stats (Paul Norman)
#3591, Add support for BRIN indexes. PostgreSQL 9.4+ required. (Giuseppe Broccolo of 2nd Quadrant, Julien Rouhaud and Ronan Dunklau of Dalibo)
#3496, Make postgis non-relocateable for extension install, schema qualify calls in functions (Regina Obe) Should resolve once and for all for extensions #3494, #3486, #3076
#3547, Update tiger geocoder to support TIGER 2016 and to support both http and ftp.
#3613, Segmentize geography using equal length segments (Hugo Mercier of Oslandia)

A.34.3 Bug Fixes

All relevant bug fixes from PostGIS 2.2.3
#2841, ST_MinimumBoundingCircle not covering original
#3604, pgcommon/Makefile.in orders CFLAGS incorrectly leading to wrong liblwgeom.h (Greg Troxel)

A.34.4 Performance Enhancements

#75, Enhancement to PIP short circuit (Dan Baston)
#3383, Avoid deserializing small geometries during index operations (Dan Baston)
#3400, Minor optimization of PIP routines (Dan Baston)
Make adding a line to topology interruptible (Sandro Santilli)
Documentation updates from Mike Toews
A.35 Release 2.2.2

Release date: 2016/03/22
This is a bug fix and performance improvement release.

A.35.1 New Features

#3463, Fix crash on face-collapsing edge change
#3422, Improve ST_Split robustness on standard precision double systems (arm64, ppc64el, s390c, powerpc, ...)
#3427, Update spatial_ref_sys to EPSG version 8.8
#3433, ST_ClusterIntersecting incorrect for MultiPoints
#3435, ST_AsX3D fix rendering of concave geometries
#3436, memory handling mistake in ptarray_clone_deep
#3437, ST_Intersects incorrect for MultiPoints
#3461, ST_GeomFromKML crashes Postgres when there are innerBoundaryIs and no outerBoundaryIs
#3429, upgrading to 2.3 or from 2.1 can cause loop/hang on some platforms
#3460, ST_ClusterWithin 'Tolerance not defined' error after upgrade
#3490, Raster data restore issues, materialized views. Scripts postgis_proc_set_search_path.sql, rtpostgis_proc_set_search_path.sql refer to http://postgis.net/docs/manual-2.2/RT_FAQ.html#faq_raster_data_not_restore
#3426, failing POINT EMPTY tests on fun architectures

A.36 Release 2.2.1

Release date: 2016/01/06
This is a bug fix and performance improvement release.

A.36.1 New Features

#2232, avoid accumulated error in SVG rounding
#3321, Fix performance regression in topology loading
#3329, Fix robustness regression in TopoGeo_addPoint
#3349, Fix installation path of postgis_topology scripts
#3351, set endnodes isolation on ST_RemoveIsoEdge (and lwt_RemIsoEdge)
#3355, geography ST_Segmentize has geometry bbox
#3359, Fix toTopoGeom loss of low-id primitives from TopoGeometry definition
#3360, _raster_constraint_info_scale invalid input syntax
#3375, crash in repeated point removal for collection(point)
#3378, Fix handling of hierarchical TopoGeometries in presence of multiple topologies
#3380, #3402, Decimate lines on topology load
#3388, #3410, Fix missing end-points in ST_Removepoints
#3389, Buffer overflow in lwgeom_to_geojson
#3390, Compilation under Alpine Linux 3.2 gives an error when compiling the postgis and postgis_topology extension
#3393, ST_Area NaN for some polygons
#3401, Improve ST_Split robustness on 32bit systems
#3404, ST_ClusterWithin crashes backend
#3407, Fix crash on splitting a face or an edge defining multiple TopoGeometry objects
#3411, Clustering functions not using spatial index
#3412, Improve robustness of snapping step in TopoGeo_addLinestring
#3415, Fix OSX 10.9 build under pkgsrc
Fix memory leak in lwt_ChangeEdgeGeom [liblwgeom]

A.37 Release 2.2.0

Release date: 2015/10/07
This is a new feature release, with new functions, improved performance, and other goodies.

A.37.1 New Features

Topology API in liblwgeom (Sandro Santilli / Regione Toscana - SITA)
New lwgeom_unaryunion method in liblwgeom
New lwgeom_linemerge method in liblwgeom
New lwgeom_is_simple method in liblwgeom

#3169, Add SFCGAL 1.1 support: add ST_3DDifference, ST_3DUnion, ST_Volume, ST_MakeSolid, ST_IsSolid (Vincent Mora / Oslandia)

#3169, ST_ApproximateMedialAxis (Sandro Santilli)

ST_CPAWithin (Sandro Santilli / Boundless)
Add l<= operator with CPA semantic and KNN support with PgSQL 9.5+ (Sandro Santilli / Boundless)

#3131, KNN support for the geography type (Paul Ramsey / CartoDB)

#3023, ST_ClusterIntersecting / ST_ClusterWithin (Dan Baston)

#2703, Exact KNN results for all geometry types, aka "KNN re-check" (Paul Ramsey / CartoDB)

#1137, Allow a tolerance value in ST_RemoveRepeatedPoints (Paul Ramsey / CartoDB)

#3062, Allow passing M factor to ST_Scale (Sandro Santilli / Boundless)

#3139, ST_BoundingDiagonal (Sandro Santilli / Boundless)

#3129, ST_IsValidTrajectory (Sandro Santilli / Boundless)

#3128, ST_ClosestPointOfApproach (Sandro Santilli / Boundless)

#3152, ST_DistanceCPA (Sandro Santilli / Boundless)

Canonical output for index key types
ST_SwapOrdinates (Sandro Santilli / Boundless)

#2918, Use GeographicLib functions for geodetics (Mike Toews)

#3074, ST_Subdivide to break up large geometry (Paul Ramsey / CartoDB)

#3040, KNN GiST index based centroid (<<>>>) n-D distance operators (Sandro Santilli / Boundless)
Interruptibility API for liblwgeom (Sandro Santilli / CartoDB)

#2939, ST_ClipByBox2D (Sandro Santilli / CartoDB)

#2247, ST_Retile and ST_CreateOverview: in-db raster overviews creation (Sandro Santilli / Vizzuality)

#899, -m shp2pgsql attribute names mapping -m switch (Regina Obe / Sandro Santilli)

#1678, Added GUC postgis.gdal_datapath to specify GDAL config variable GDAL_DATA

#2843, Support reprojection on raster import (Sandro Santilli / Vizzuality)

#2349, Support for encoded_polyline input/output (Kashif Rasul)

#2159, report libjson version from postgis_full_version()

#2770, ST_MemSize(raster)

Add postgis_noop(raster)

Added missing variants of ST_TPI(), ST_TRI() and ST_Roughness()

Added GUC postgis.gdal_enabled_drivers to specify GDAL config variable GDAL_SKIP

Added GUC postgis.enable_outdb_rasters to enable access to rasters with out-db bands

#2387, address_standardizer extension as part of PostGIS (Stephen Woodbridge / imaptools.com, Walter Sinclair, Regina Obe)

#2816, address_standardizer_data_us extension provides reference lex,gaz,rules for address_standardizer (Stephen Woodbridge / imaptools.com, Walter Sinclair, Regina Obe)

#2341, New mask parameter for ST_MapAlgebra

#2397, read encoding info automatically in shapefile loader

#2430, ST_ForceCurve

#2565, ST_SummaryStatsAgg()

#2567, ST_CountAgg()

#2632, ST_AsGML() support for curved features

#2652, Add --upgrade-path switch to run_test.pl

#2754, sfcgal wrapped as an extension

#2227, Simplification with Visvalingam-Whyatt algorithm ST_SimplifyVW, ST_SetEffectiveArea (Nicklas Avén)

Functions to encode and decode TWKB ST_AsTWKB, ST_GeomFromTWKB (Paul Ramsey / Nicklas Avén / CartoDB)

A.37.2 Enhancements

#3223, Add memcmp short-circuit to ST_Equals (Daniel Baston)

#3227, Tiger geocoder upgraded to support Tiger 2015 census

#2278, Make liblwgeom compatible between minor releases

#897, ST_AsX3D support for GeoCoordinates and systems "GD" "WE" ability to flip x/y axis (use option = 2, 3)

ST_Split: allow splitting lines by multilines, multipoints and (multi)polygon boundaries

#3070, Simplify geometry type constraint

#2839, Implement selectivity estimator for functional indexes, speeding up spatial queries on raster tables. (Sandro Santilli / Vizzuality)

#2361, Added spatial_index column to raster_columns view

#2390, Testsuite for pgsql2shp

#2527, Added -k flag to raster2pgsql to skip checking that band is NODATA
#2616, Reduce text casts during topology building and export
#2717, support startpoint, endpoint, pointn, numpoints for compoundcurve
#2747, Add support for GDAL 2.0
#2754, SFCGAL can now be installed with CREATE EXTENSION (Vincent Mora @ Oslandia)
#2828, Convert ST_Envelope(raster) from SQL to C
#2829, Shortcut ST_Clip(raster) if geometry fully contains the raster and no NODATA specified
#2906, Update tiger geocoder to handle tiger 2014 data
#3048, Speed up geometry simplification (J.Santana @ CartoDB)
#3092, Slow performance of geometry_columns with many tables

A.38 Release 2.1.8

Release date: 2015-07-07
This is a critical bug fix release.

A.38.1 Bug Fixes

#3159, do not force a bbox cache on ST_Affine
#3018, GROUP BY geography sometimes returns duplicate rows
#3084, shp2pgsql - illegal number format when specific system locale set
#3094, Malformed GeoJSON inputs crash backend
#3104, st_asgml introduces random characters in ID field
#3155, Remove liblwgeom.h on make uninstall
#3177, gserialized_is_empty cannot handle nested empty cases
Fix crash in ST_LineLocatePoint

A.39 Release 2.1.7

Release date: 2015-03-30
This is a critical bug fix release.

A.39.1 Bug Fixes

#3086, ST_DumpValues() crashes backend on cleanup with invalid band indexes
#3088, Do not (re)define strcasestr in a liblwgeom.h
#3094, Malformed GeoJSON inputs crash backend

A.40 Release 2.1.6

Release date: 2015-03-30
This is a bug fix and performance improvement release.
A.40.1 Enhancements

#3000, Ensure edge splitting and healing algorithms use indexes
#3048, Speed up geometry simplification (J.Santana @ CartoDB)
#3050, Speed up geometry type reading (J.Santana @ CartoDB)

A.40.2 Bug Fixes

#2941, allow geography columns with SRID other than 4326
#3069, small objects getting inappropriately fluffed up w/ boxes
#3068, Have postgis_typmod_dims return NULL for unconstrained dims
#3061, Allow duplicate points in JSON, GML, GML ST_GeomFrom* functions
#3058, Fix ND-GiST picksplit method to split on the best plane
#3052, Make operators <-> and <#> available for PostgreSQL < 9.1
#3045, Fix dimensionality confusion in &&& operator
#3016, Allow unregistering layers of corrupted topologies
#3015, Avoid exceptions from TopologySummary
#3020, ST_AddBand out-db bug where height using width value
#3031, Allow restore of Geometry(Point) tables dumped with empties in them

A.41 Release 2.1.5

Release date: 2014-12-18
This is a bug fix and performance improvement release.

A.41.1 Enhancements

#2933, Speedup construction of large multi-geometry objects

A.41.2 Bug Fixes

#2947, Fix memory leak in lwgeom_make_valid for single-component collection input
#2949, Fix memory leak in lwgeom_mindistance2d for curve input
#2931, BOX representation is case sensitive
#2942, PostgreSQL 9.5 support
#2953, 2D stats not generated when Z/M values are extreme
#3009, Geography cast may effect underlying tuple

A.42 Release 2.1.4

Release date: 2014-09-10
This is a bug fix and performance improvement release.
A.42.1 Enhancements

#2745, Speedup ST_Simplify calls against points
#2747, Support for GDAL 2.0
#2749, Make rtpostgis_upgrade_20_21.sql ACID
#2811, Do not specify index names when loading shapefiles/rasters
#2829, Shortcut ST_Clip(raster) if geometry fully contains the raster and no NODATA specified
#2895, Raise cost of ST_ConvexHull(raster) to 300 for better query plans

A.42.2 Bug Fixes

#2605, armel: _ST_Covers() returns true for point in hole
#2911, Fix output scale on ST_Rescale/ST_Resample/ST_Resize of rasters with scale 1/-1 and offset 0/0.
Fix crash in ST_Union(raster)
#2704, ST_GeomFromGML() does not work properly with array of gml:pos (Even Roualt)
#2708, updategeometrysrid doesn’t update srid check when schema not specified. Patch from Marc Jansen
#2720, lwpoly_add_ring should update maxrings after realloc
#2759, Fix postgres_restore.pl handling of multiline object comments embedding sql comments
#2774, fix undefined behavior in ptarray_calculate_gbox_geodetic
Fix potential memory fault in ST_MakeValid
#2784, Fix handling of bogus argument to --with-sfcgal
#2772, Premature memory free in RASTER_getBandPath (ST_BandPath)
#2755, Fix regressions tests against all versions of SFCGAL
#2775, lwline_from_lwmpoint leaks memory
#2802, ST_MapAlgebra checks for valid callback function return value
#2803, ST_MapAlgebra handles no userarg and STRICT callback function
#2834, ST_Estimated_Extent and mixedCase table names (regression bug)
#2845, Bad geometry created from ST_AddPoint
#2870, Binary insert into geography column results geometry being inserted
#2872, make install builds documentation (Greg Troxell)
#2819, find isfinite or replacement on Centos5 / Solaris
#2899, geocode limit 1 not returning best answer (tiger geocoder)
#2903, Unable to compile on FreeBSD
#2927 reverse_geocode not filling in direction prefix (tiger geocoder) get rid of deprecated ST_Line_Locate_Point called

A.43 Release 2.1.3

Release date: 2014/05/13
This is a bug fix and security release.
A.43.1 Important changes

Starting with this version offline raster access and use of GDAL drivers are disabled by default. An environment variable is introduced to allow for enabling specific GDAL drivers: POSTGIS_GDAL_ENABLED_DRIVERS. By default, all GDAL drivers are disabled.

An environment variable is introduced to allow for enabling out-db raster bands: POSTGIS_ENABLE_OUTDB_RASTERS. By default, out-db raster bands are disabled.

The environment variables must be set for the PostgreSQL process, and determines the behavior of the whole cluster.

A.43.2 Bug Fixes

#2697, invalid GeoJSON Polygon input crashes server process
#2700, Fix dumping of higher-dimension datasets with null rows
#2706, ST_DumpPoints of EMPTY geometries crashes server

A.44 Release 2.1.2

Release date: 2014/03/31

This is a bug fix release, addressing issues that have been filed since the 2.1.1 release.

A.44.1 Bug Fixes

#2666, Error out at configure time if no SQL preprocessor can be found
#2534, st_distance returning incorrect results for large geographies
#2539, Check for json-c/json.h presence/usability before json/json.h
#2543, invalid join selectivity error from simple query
#2546, GeoJSON with string coordinates parses incorrectly
#2547, Fix ST_Simplify(TopoGeometry) for hierarchical topogeoms
#2552, Fix NULL raster handling in ST_AsPNG, ST_AsTIFF and ST_AsJPEG
#2555, Fix parsing issue of range arguments of ST_Reclass
#2556, geography ST_Intersects results depending on insert order
#2580, Do not allow installing postgis twice in the same database
#2589, Remove use of unnecessary void pointers
#2607, Cannot open more than 1024 out-db files in one process
#2610, Ensure face splitting algorithm uses the edge index
#2615, EstimatedExtent (and hence, underlying stats) gathering wrong bbox
#2619, Empty rings array in GeoJSON polygon causes crash
#2634, regression in sphere distance code
#2638, Geography distance on M geometries sometimes wrong
#2648, #2653, Fix topology functions when "topology" is not in search_path
#2654, Drop deprecated calls from topology
#2655, Let users without topology privileges call postgis_full_version()
#2674, Fix missing operator = and hash_raster_ops opclass on raster
#2675, #2534, #2636, #2634, #2638, Geography distance issues with tree optimization
A.44.2 Enhancements

#2494, avoid memcopy in GiST index (hayamiz)
#2560, soft upgrade: avoid drop/recreate of aggregates that hadn’t changed

A.45 Release 2.1.1

Release date: 2013/11/06

This is a bug fix release, addressing issues that have been filed since the 2.1.0 release.

A.45.1 Important Changes

#2514, Change raster license from GPL v3+ to v2+, allowing distribution of PostGIS Extension as GPLv2.

A.45.2 Bug Fixes

#2396, Make regression tests more endian-agnostic
#2434, Fix ST_Intersection(geog,geog) regression in rare cases
#2454, Fix behavior of ST_PixelAsXXX functions regarding exclude_nodata_value parameter
#2489, Fix upgrades from 2.0 leaving stale function signatures
#2525, Fix handling of SRID in nested collections
#2449, Fix potential infinite loop in index building
#2493, Fix behavior of ST_DumpValues when passed an empty raster
#2502, Fix postgis_topology_scripts_installed() install schema
#2504, Fix segfault on bogus pgsql2shp call
#2512, Support for foreign tables and materialized views in raster_columns and raster_overviews

A.45.3 Enhancements

#2478, support for tiger 2013
#2463, support for exact length calculations on arc geometries

A.46 Release 2.1.0

Release date: 2013/08/17

This is a minor release addressing both bug fixes and performance and functionality enhancements addressing issues since 2.0.3 release. If you are upgrading from 2.0+, only a soft upgrade is required. If you are upgrading from 1.5 or earlier, a hard upgrade is required.
A.46.1 Important / Breaking Changes

#1653, Removed srid parameter from ST_Resample(raster) and variants with reference raster no longer apply reference raster's SRID.

#1962 ST_Segmentize - As a result of the introduction of geography support, The construct: SELECT ST_Segmentize('LINESTRING(1 2, 3 4)', 0.5); will result in ambiguous function error

#2026, ST_Union(raster) now unions all bands of all rasters

#2089, liblwgeom: lwgeom_set_handlers replaces lwgeom_init Allocators.

#2150, regular_blocking is no longer a constraint. column of same name in raster_columns now checks for existence of spatially_unique and coverage_tile constraints

ST_Intersects(raster, geometry) behaves in the same manner as ST_Intersects(geometry, raster).

point variant of ST_SetValue(raster) previously did not check SRID of input geometry and raster.

ST_Hillshade parameters azimuth and altitude are now in degrees instead of radians.

ST_Slope and ST_Aspect return pixel values in degrees instead of radians.

#2104, ST_World2RasterCoord, ST_World2RasterCoordX and ST_World2RasterCoordY renamed to ST_WorldToRasterCoord, ST_WorldToRasterCoordX and ST_WorldToRasterCoordY. ST_Raster2WorldCoord, ST_Raster2WorldCoordX and ST_Raster2WorldCoordY renamed to ST_RasterToWorldCoord, ST_RasterToWorldCoordX and ST_RasterToWorldCoordY

ST_EstimatedExtent renamed to ST_EstimatedExtent

ST_Line_Interpolate_Point renamed to ST_LineInterpolatePoint

ST_Line_Substring renamed to ST_LineSubstring

ST_Line_Locate_Point renamed to ST_LineLocatePoint

ST_Force_XXX renamed to ST_ForceXXX

ST_MapAlgebraFctNgb and 1 and 2 raster variants of ST_MapAlgebraFct. Use ST_MapAlgebra instead

1 and 2 raster variants of ST_MapAlgebraExpr. Use expression variants of ST_MapAlgebra instead

A.46.2 New Features

- Refer to http://postgis.net/docs/manual-2.1/PostGIS_Special_Functions_Index.html#NewFunctions_2_1 for complete list of new functions

#310, ST_DumpPoints converted to a C function (Nathan Wagner) and much faster

#739, UpdateRasterSRID()

#945, improved join selectivity, N-D selectivity calculations, user accessible selectivity and stats reader functions for testing (Paul Ramsey / OpenGeo)

toTopoGeom with TopoGeometry sink (Sandro Santilli / Vizzuality)

clearTopoGeom (Sandro Santilli / Vizzuality)

ST_Segmentize(geography) (Paul Ramsey / OpenGeo)

ST_DelaunayTriangles (Sandro Santilli / Vizzuality)

ST_NearestValue, ST_Neighborhood (Bborie Park / UC Davis)

ST_PixelAsPoint, ST_PixelAsPoints (Bborie Park / UC Davis)

ST_PixelAsCentroid, ST_PixelAsCentroids (Bborie Park / UC Davis)

ST_Raster2WorldCoord, ST_World2RasterCoord (Bborie Park / UC Davis)

Additional raster/raster spatial relationship functions (ST_Contains, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Disjoint, ST_Overlaps, ST_Touches, ST_Within, ST_DWithin, ST_DFullyWithin) (Bborie Park / UC Davis)
Added array variants of ST_SetValues() to set many pixel values of a band in one call (Bborie Park / UC Davis)

- #1293, ST_Resize(raster) to resize rasters based upon width/height
- #1627, package tiger_geocoder as a PostgreSQL extension
- #1643, #2076, Upgrade tiger geocoder to support loading tiger 2011 and 2012 (Regina Obe / Paragon Corporation) Funded by Hunter Systems Group

GEOMETRYCOLLECTION support for ST_MakeValid (Sandro Santilli / Vizzuality)

- #1709, ST_NotSameAlignmentReason(raster, raster)
- #1818, ST_GeomFromGeoHash and friends (Jason Smith (darkpanda))
- #1856, reverse geocoder rating setting for prefer numbered highway name

ST_PixelOfValue (Bborie Park / UC Davis)

Casts to/from PostgreSQL geotypes (point/path/polygon).

Added geomval array variant of ST_SetValues() to set many pixel values of a band using a set of geometries and corresponding values in one call (Bborie Park / UC Davis)

ST_Tile(raster) to break up a raster into tiles (Bborie Park / UC Davis)

- #1895, new r-tree node splitting algorithm (Alex Korotkov)
- #2011, ST_DumpValues to output raster as array (Bborie Park / UC Davis)
- #2018, ST_Distance support for CircularString, CurvePolygon, MultiCurve, MultiSurface, CompoundCurve
- #2030, n-raster (and n-band) ST_MapAlgebra (Bborie Park / UC Davis)
- #2193, Utilize PAGC parser as drop in replacement for tiger normalizer (Steve Woodbridge, Regina Obe)
- #2210, ST_MinConvexHull(raster)

lwgeom_from_geojson in liblwgeom (Sandro Santilli / Vizzuality)

- #1687, ST_Simplify for TopoGeometry (Sandro Santilli / Vizzuality)
- #2228, TopoJSON output for TopoGeometry (Sandro Santilli / Vizzuality)
- #223, ST_FromGDALRaster

- #613, ST_SetGeoReference with numerical parameters instead of text
- #2276, ST_AddBand(raster) variant for out-db bands
- #2280, ST_Summary(raster)

- #2163, ST_TPI for raster (Nathaniel Clay)
- #2164, ST_TRI for raster (Nathaniel Clay)

- #2302, ST_Roughness for raster (Nathaniel Clay)

- #2290, ST_ColorMap(raster) to generate RGBA bands

- #2254, Add SFCGAL backend support. (Backend selection throught postgis.backend var) Functions available both throught GEOS or SFCGAL: ST_Intersects, ST_3DIntersects, ST_Intersection, ST_Area, ST_Distance, ST_3DDistance New functions available only with SFCGAL backend: ST_3DIntersection, ST_Tessellate, ST_3DArea, ST_Extude, ST_ForceLHR ST_Orientation, ST_Minkowski, ST_StraightSkeleton postgis_sfcgal_version New function available in PostGIS: ST_ForceSFS (Olivier Courtin and Hugo Mercier / Oslandia)
A.46.3 Enhancements

For detail of new functions and function improvements, please refer to Section 9.12.8.

Much faster raster ST_Union, ST_Clip and many more function additions operations
For geometry/geography better planner selectivity and a lot more functions.

#823, tiger geocoder: Make loader_generate_script download portion less greedy
#826, raster2pgsql no longer defaults to padding tiles. Flag -P can be used to pad tiles
#1363, ST_AddBand(raster, ...) array version rewritten in C
#1364, ST_Union(raster, ...) aggregate function rewritten in C
#1655, Additional default values for parameters of ST_Slope
#1661, Add aggregate variant of ST_SameAlignment
#1719, Add support for Point and GeometryCollection ST_MakeValid inputs
#1780, support ST_GeoHash for geography
#1796, Big performance boost for distance calculations in geography
#1802, improved function interruptibility.
#1823, add parameter in ST_AsGML to use id column for GML 3 output (become mandatory since GML 3.2.1)
#1856, tiger geocoder: reverse geocoder rating setting for prefer numbered highway name
#1938, Refactor basic ST_AddBand to add multiple new bands in one call
#1978, wrong answer when calculating length of a closed circular arc (circle)
#1989, Preprocess input geometry to just intersection with raster to be clipped
#2021, Added multi-band support to ST_Union(raster, ...) aggregate function
#2006, better support of ST_Area(geography) over poles and dateline
#2065, ST_Clip(raster, ...) now a C function
#2069, Added parameters to ST_Tile(raster) to control padding of tiles
#2078, New variants of ST_Slope, ST_Aspect and ST_HillShade to provide solution to handling tiles in a coverage
#2097, Added RANGE uniontype option for ST_Union(raster)
#2105, Added ST_Transform(raster) variant for aligning output to reference raster
#2119, Rasters passed to ST_Resample(), ST_Rescale(), ST_Reskew(), and ST_SnapToGrid() no longer require an SRID
#2141, More verbose output when constraints fail to be added to a raster column
#2143, Changed blocksize constraint of raster to allow multiple values
#2148, Addition of coverage_tile constraint for raster
#2149, Addition of spatially_unique constraint for raster

TopologySummary output now includes unregistered layers and a count of missing TopoGeometry objects from their natural layer.

ST_HillShade(), ST_Aspect() and ST_Slope() have one new optional parameter to interpolate NODATA pixels before running the operation.

Point variant of ST_SetValue(raster) is now a wrapper around geomval variant of ST_SetValues(rast).

Proper support for raster band’s isnodata flag in core API and loader.

Additional default values for parameters of ST_Aspect and ST_HillShade

#2178, ST_Summary now advertises presence of known srid with an [S] flag
#2202, Make libjson-c optional (--without-json configure switch)
#2213, Add support libjson-c 0.10+
#2231, raster2pgsql supports user naming of filename column with -n
#2200, ST_Union(raster, uniontype) unions all bands of all rasters
#2264, postgis_restore.pl support for restoring into databases with postgis in a custom schema
#2244, emit warning when changing raster’s georeference if raster has out-db bands
#2222, add parameter OutAsIn to flag whether ST_AsBinary should return out-db bands as in-db bands

A.46.4 Fixes

#1839, handling of subdatasets in GeoTIFF in raster2pgsql.
#1840, fix logic of when to compute # of tiles in raster2pgsql.
#1870, align the docs and actual behavior of raster’s ST_Intersects
#1872, fix ST_ApproxSummaryStats to prevent division by zero
#1875, ST_SummaryStats returns NULL for all parameters except count when count is zero
#1932, fix raster2pgsql of syntax for index tablespaces
#1936, ST_GeomFromGML on CurvePolygon causes server crash
#1939, remove custom data types: summarystats, histogram, quantile, valuecount
#1951, remove crash on zero-length linestrings
#1957, ST_Distance to a one-point LineString returns NULL
#1976, Geography point-in-ring code overhauled for more reliability
#1981, cleanup of unused variables causing warnings with gcc 4.6+
#1996, support POINT EMPTY in GeoJSON output
#2062, improve performance of distance calculations
#2057, Fixed linking issue for raster2pgsql to libpq
#2077, Fixed incorrect values returning from ST_Hillshade()
#2019, ST_FlipCoordinates does not update bbox
#2100, ST_AsRaster may not return raster with specified pixel type
#2126, Better handling of empty rasters from ST_ConvexHull()
#2165, ST_NumPoints regression failure with CircularString
#2168, ST_Distance is not always commutative
#2182, Fix issue with outdb rasters with no SRID and ST_Resize
#2188, Fix function parameter value overflow that caused problems when copying data from a GDAL dataset
#2198, Fix incorrect dimensions used when generating bands of out-db rasters in ST_Tile()
#2201, ST_GeoHash wrong on boundaries
#2203, Changed how rasters with unknown SRID and default geotransform are handled when passing to GDAL Warp API
#2215, Fixed raster exclusion constraint for conflicting name of implicit index
#2251, Fix bad dimensions when rescaling rasters with default geotransform matrix
#2133, Fix performance regression in expression variant of ST_MapAlgebra
#2257, GBOX variables not initialized when testing with empty geometries
#2271, Prevent parallel make of raster
#2282, Fix call to undefined function nd_stats_to_grid() in debug mode
#2307, ST_MakeValid outputs invalid geometries
#2309, Remove confusing INFO message when trying to get SRS info
#2336, FIPS 20 (KS) causes wildcard expansion to wget all files
#2348, Provide raster upgrade path for 2.0 to 2.1
#2351, st_distance between geographies wrong
#2359, Fix handling of schema name when adding overview constraints
#2371, Support GEOS versions with more than 1 digit in micro
#2383, Remove unsafe use of ‘ from raster warning message
#2384, Incorrect variable datatypes for ST_Neighborhood

A.46.5 Known Issues

#2111, Raster bands can only reference the first 256 bands of out-db rasters

A.47 Release 2.0.5

Release date: 2014/03/31

This is a bug fix release, addressing issues that have been filed since the 2.0.4 release. If you are using PostGIS 2.0+ a soft upgrade is required. For users of PostGIS 1.5 or below, a hard upgrade is required.

A.47.1 Bug Fixes

#2494, avoid memcpy in GIST index
#2502, Fix postgis_topology_scripts_installed() install schema
#2504, Fix segfault on bogus pgsql2shp call
#2528, Fix memory leak in ST_Split / lwline_split_by_line
#2532, Add missing raster/geometry commutator operators
#2533, Remove duplicated signatures
#2552, Fix NULL raster handling in ST_AsPNG, ST_AsTIFF and ST_AsJPEG
#2555, Fix parsing issue of range arguments of ST_Reclass
#2589, Remove use of unnecessary void pointers
#2607, Cannot open more than 1024 out-db files in process
#2610, Ensure face splitting algorithm uses the edge index
#2619, Empty ring array in GeoJSON polygon causes crash
#2638, Geography distance on M geometries sometimes wrong

A.47.2 Important Changes

##2514, Change raster license from GPL v3+ to v2+, allowing distribution of PostGIS Extension as GPLv2.
A.48 Release 2.0.4

Release date: 2013/09/06

This is a bug fix release, addressing issues that have been filed since the 2.0.3 release. If you are using PostGIS 2.0+ a soft upgrade is required. For users of PostGIS 1.5 or below, a hard upgrade is required.

A.48.1 Bug Fixes

#2110, Equality operator between EMPTY and point on origin
Allow adding points at precision distance with TopoGeo_addPoint
#1968, Fix missing edge from toTopoGeom return
#2165, ST_NumPoints regression failure with CircularString
#2168, ST_Distance is not always commutative
#2186, gui progress bar updates too frequent
#2201, ST_GeoHash wrong on boundaries
#2257, GBOX variables not initialized when testing with empty geometries
#2271, Prevent parallel make of raster
#2267, Server crash from analyze table
#2277, potential segfault removed
#2307, ST_MakeValid outputs invalid geometries
#2351, st_distance between geographies wrong
#2359, Incorrect handling of schema for overview constraints
#2371, Support GEOS versions with more than 1 digit in micro
#2372, Cannot parse space-padded KML coordinates
Fix build with systemwide liblwgeom installed
#2383, Fix unsafe use of \ in warning message
#2410, Fix segmentize of collinear curve
#2412, ST_LineToCurve support for lines with less than 4 vertices
#2415, ST_Multi support for COMPOUNDCURVE and CURVEPOLYGON
#2420, ST_LineToCurve: require at least 8 edges to define a full circle
#2423, ST_LineToCurve: require all arc edges to form the same angle
#2424, ST_CurveToLine: add support for COMPOUNDCURVE in MULTICURVE
#2427, Make sure to retain first point of curves on ST_CurveToLine

A.48.2 Enhancements

#2269, Avoid uselessly detoasting full geometries on ANALYZE

A.48.3 Known Issues

#2111, Raster bands can only reference the first 256 bands of out-db rasters
A.49 Release 2.0.3

Release date: 2013/03/01
This is a bug fix release, addressing issues that have been filed since the 2.0.2 release. If you are using PostGIS 2.0+ a soft upgrade is required. For users of PostGIS 1.5 or below, a hard upgrade is required.

A.49.1 Bug Fixes

#2126, Better handling of empty rasters from ST_ConvexHull()
#2134, Make sure to process SRS before passing it off to GDAL functions
Fix various memory leaks in liblwgeom
#2173, Fix robustness issue in splitting a line with own vertex also affecting topology building (#2172)
#2174, Fix usage of wrong function lwpoly_free()
#2176, Fix robustness issue with ST_ChangeEdgeGeom
#2184, Properly copy topologies with Z value
postgis_restore.pl support for mixed case geometry column name in dumps
#2188, Fix function parameter value overflow that caused problems when copying data from a GDAL dataset
#2216, More memory errors in MultiPolygon GeoJSON parsing (with holes)
Fix Memory leak in GeoJSON parser

A.49.2 Enhancements

#2141, More verbose output when constraints fail to be added to a raster column
Speedup ST_ChangeEdgeGeom

A.50 Release 2.0.2

Release date: 2012/12/03
This is a bug fix release, addressing issues that have been filed since the 2.0.1 release.

A.50.1 Bug Fixes

#1287, Drop of "gist_geometry_ops" broke a few clients package of legacy_gist.sql for these cases
#1391, Errors during upgrade from 1.5
#1828, Poor selectivity estimate on ST_DWithin
#1838, error importing tiger/line data
#1869, ST_AsBinary is not unique added to legacy_minor/legacy.sql scripts
#1885, Missing field from tabblock table in tiger2010 census_loader.sql
#1891, Use LDFLAGS environment when building liblwgeom
#1900, Fix pgsq12shp for big-endian systems
#1932, Fix raster2pgsql for invalid syntax for setting index tablespace
#1936, ST_GeomFromGML on CurvePolygon causes server crash
#1955, ST_ModEdgeHeal and ST_NewEdgeHeal for doubly connected edges
#1957, ST_Distance to a one-point LineString returns NULL
#1976, Geography point-in-ring code overhauled for more reliability
#1978, wrong answer calculating length of closed circular arc (circle)
#1981, Remove unused but set variables as found with gcc 4.6+
#1987, Restore 1.5.x behaviour of ST_Simplify
#1989, Preprocess input geometry to just intersection with raster to be clipped
#1991, geocode really slow on PostgreSQL 9.2
#1996, support POINT EMPTY in GeoJSON output
#1998, Fix ST_{Mod,New}EdgeHeal joining edges sharing both endpoints
#2001, ST_CurveToLine has no effect if the geometry doesn’t actually contain an arc
#2015, ST_IsEmpty('POLYGON(EMPTY)') returns False
#2019, ST_FlipCoordinates does not update bbox
#2025, Fix side location conflict at TopoGeo_AddLineString
#2026, improve performance of distance calculations
#2033, Fix adding a splitting point into a 2.5d topology
#2051, Fix excess of precision in ST_AsGeoJSON output
#2052, Fix buffer overflow in lwgeom_to_geojson
#2056, Fixed lack of SRID check of raster and geometry in ST_SetValue()
#2057, Fixed linking issue for raster2psql to libpq
#2060, Fix "dimension" check violation by GetTopoGeomElementArray
#2072, Removed outdated checks preventing ST_Intersects(raster) from working on out-db bands
#2077, Fixed incorrect answers from ST_Hillshade(raster)
#2092, Namespace issue with ST_GeomFromKML,ST_GeomFromGML for libxml 2.8+
#2099, Fix double free on exception in ST_OffsetCurve
#2100, ST_AsRaster() may not return raster with specified pixel type
#2108, Ensure ST_Line_Interpolate_Point always returns POINT
#2109, Ensure ST_Centroid always returns POINT
#2117, Ensure ST_PointOnSurface always returns POINT
#2129, Fix SRID in ST_Homogenize output with collection input
#2130, Fix memory error in MultiPolygon GeoJson parsing

Update URL of Maven jar

A.50.2 Enhancements

#1581, ST_Clip(raster, ...) no longer imposes NODATA on a band if the corresponding band from the source raster did not have NODATA
#1928, Accept array properties in GML input multi-geom input (Kashif Rasul and Shoaib Burq / SpacialDB)
#2082, Add indices on start_node and end_node of topology edge tables
#2087, Speedup topology.GetRingEdges using a recursive CTE
A.51 Release 2.0.1

Release date: 2012/06/22
This is a bug fix release, addressing issues that have been filed since the 2.0.0 release.

A.51.1 Bug Fixes

#1264, fix st_dwithin(geog, geog, 0).
#1468 shp2pgsql-gui table column schema get shifted
#1694, fix building with clang. (vince)
#1708, improve restore of pre-PostGIS 2.0 backups.
#1714, more robust handling of high topology tolerance.
#1755, ST_GeographyFromText support for higher dimensions.
#1759, loading transformed shapefiles in raster enabled db.
#1761, handling of subdatasets in NetCDF, HDF4 and HDF5 in raster2pgsql.
#1763, topology.toTopoGeom use with custom search_path.
#1766, don’t let ST_RemEdge* destroy peripheral TopoGeometry objects.
#1774, Clearer error on setting an edge geometry to an invalid one.
#1775, ST_ChangeEdgeGeom collision detection with 2-vertex target.
#1776, fix ST_SymDifference(empty, geom) to return geom.
#1779, install SQL comment files.
#1782, fix spatial reference string handling in raster.
#1789, fix false edge-node crossing report in ValidateTopology.
#1790, fix toTopoGeom handling of duplicated primitives.
#1791, fix ST_Azimuth with very close but distinct points.
#1797, fix (ValidateTopology(***)).* syntax calls.
#1805, put back the 900913 SRID entry.
#1813, Only show readable relations in metadata tables.
#1819, fix floating point issues with ST_World2RasterCoord and ST_Raster2WorldCoord variants.
#1820 compilation on 9.2beta1.
#1822, topology load on PostgreSQL 9.2beta1.
#1825, fix prepared geometry cache lookup
#1829, fix uninitialized read in GeoJSON parser
#1834, revise postgis extension to only backup user specified spatial_ref_sys
#1839, handling of subdatasets in GeoTIFF in raster2pgsql.
#1840, fix logic of when to compute # of tiles in raster2pgsql.
#1851, fix spatial_ref_system parameters for EPSG:3844
#1857, fix failure to detect endpoint mismatch in ST_AddEdge*Face*
#1865, data loss in postgis_restore.pl when data rows have leading dashes.
#1867, catch invalid topology name passed to topoge_add*
#1872, fix ST_ApproxSummaryStats to prevent division by zero
#1873, fix ptarray_locate_point to return interpolated Z/M values for on-the-line case
#1875, ST_SummaryStats returns NULL for all parameters except count when count is zero
#1881, shp2pgsql-gui -- editing a field sometimes triggers removing row
#1883, Geocoder install fails trying to run create_census_base_tables() (Brian Panulla)

A.51.2 Enhancements

More detailed exception message from topology editing functions.

#1786, improved build dependencies
#1806, speedup of ST_BuildArea, ST_MakeValid and ST_GetFaceGeometry.
#1812, Add lwgeom_normalize in LIBLWGEOM for more stable testing.

A.52 Release 2.0.0

Release date: 2012/04/03

This is a major release. A hard upgrade is required. Yes this means a full dump reload and some special preparations if you are using obsolete functions. Refer to Section 3.4.2 for details on upgrading. Refer to Section 9.12.10 for more details and changed/new functions.

A.52.1 Testers - Our unsung heroes

We are most indebted to the numerous members in the PostGIS community who were brave enough to test out the new features in this release. No major release can be successful without these folk.

Below are those who have been most valiant, provided very detailed and thorough bug reports, and detailed analysis.

Andrea Peri - Lots of testing on topology, checking for correctness
Andreas Forø Tollefsen - raster testing
Chris English - topology stress testing loader functions
Salvatore Larosa - topology robustness testing
Brian Hamlin - Benchmarking (also experimental experimental branches before they are folded into core), general testing of various pieces including Tiger and Topology. Testing on various server VMs
Mike Pease - Tiger geocoder testing - very detailed reports of issues
Tom van Tilburg - raster testing

A.52.2 Important / Breaking Changes

#722, #302, Most deprecated functions removed (over 250 functions) (Regina Obe, Paul Ramsey)

Unknown SRID changed from -1 to 0. (Paul Ramsey)
-- (most deprecated in 1.2) removed non-ST variants buffer, length, intersects (and internal functions renamed) etc.
-- If you have been using deprecated functions CHANGE your apps or suffer the consequences. If you don’t see a function documented -- it ain’t supported or it is an internal function. Some constraints in older tables were built with deprecated functions. If you restore you may need to rebuild table constraints with populate_geometry_columns(). If you have applications or tools that rely on deprecated functions, please refer to [?qandaentry] for more details.

#944 geometry_columns is now a view instead of a table (Paul Ramsey, Regina Obe) for tables created the old way reads (srid, type, dims) constraints for geometry columns created with type modifiers reads rom column definition

#1081, #1082, #1084, #1088 - Mangement functions support typmod geometry column creation functions now default to typmod creation (Regina Obe)
#1083 probe geometry_columns(), rename geometry_table_constraints(), fix geometry_columns(); removed - now obsolete with geometry_column view (Regina Obe)

#817 Renaming old 3D functions to the convention ST_3D (Nicklas Avén)

#548 (sorta), ST_NumGeometries, ST_GeometryN now returns 1 (or the geometry) instead of null for single geometries (Sandro Santilli, Maxime van Noppen)

A.52.3 New Features

KNN Gist index based centroid (↔) and box (↔) distance operators (Paul Ramsey / funded by Vizzuality)

Support for TIN and PolyHedralSurface and enhancement of many functions to support 3D (Olivier Courtin / Oslandia)

Raster support integrated and documented (Pierre Racine, Jorge Arévalo, Mateusz Loskot, Sandro Santilli, David Zwarg, Regina Obe, Bborie Park) (Company developer and funding: University Laval, Deimos Space, CadCorp, Michigan Tech Research Institute, Azavea, Paragon Corporation, UC Davis Center for Vectorborne Diseases)

Making spatial indexes 3D aware - in progress (Paul Ramsey, Mark Cave-Ayland)

Topology support improved (more functions), documented, testing (Sandro Santilli / Faunalia for RT-SIGTA), Andrea Peri, Regina Obe, Jose Carlos Martinez Llari

3D relationship and measurement support functions (Nicklas Avén)

ST_3DDistance, ST_3DClosestPoint, ST_3DIntersects, ST_3DShortestLine and more...

N-Dimensional spatial indexes (Paul Ramsey / OpenGeo)

ST_Split (Sandro Santilli / Faunalia for RT-SIGTA)

ST_IsValidDetail (Sandro Santilli / Faunalia for RT-SIGTA)

ST_MakeValid (Sandro Santilli / Faunalia for RT-SIGTA)

ST_RemoveRepeatedPoints (Sandro Santilli / Faunalia for RT-SIGTA)

ST_GeometryN and ST_NumGeometries support for non-collections (Sandro Santilli)

ST_IsCollection (Sandro Santilli, Maxime van Noppen)

ST_SharedPaths (Sandro Santilli / Faunalia for RT-SIGTA)

ST_Snap (Sandro Santilli)

ST_RelateMatch (Sandro Santilli / Faunalia for RT-SIGTA)

ST_ConcaveHull (Regina Obe and Leo Hsu / Paragon Corporation)

ST_UnaryUnion (Sandro Santilli / Faunalia for RT-SIGTA)

ST_AsX3D (Regina Obe / Arrival 3D funding)

ST_OffsetCurve (Sandro Santilli, Rafal Magda)

ST_GeomFromGeoJSON (Kashif Rasul, Paul Ramsey / Vizzuality funding)

A.52.4 Enhancements

Made shape file loader tolerant of truncated multibyte values found in some free worldwide shapefiles (Sandro Santilli)

Lots of bug fixes and enhancements to shp2pgsql Beefing up regression tests for loaders Reproject support for both geometry and geography during import (Jeff Adams / Azavea, Mark Cave-Ayland)

pgsql2shp conversion from predefined list (Loic Dachary / Mark Cave-Ayland)

Shp-pgsql GUI loader - support loading multiple files at a time. (Mark Leslie)

Extras - upgraded tiger_geocoder from using old TIGER format to use new TIGER shp and file structure format (Stephen Frost)
Extras - revised tiger_geocoder to work with TIGER census 2010 data, addition of reverse geocoder function, various bug fixes, accuracy enhancements, limit max result return, speed improvements, loading routines. (Regina Obe, Leo Hsu / Paragon Corporation / funding provided by Hunter Systems Group)

Overall Documentation proofreading and corrections. (Kasif Rasul)

Cleanup PostGIS JDBC classes, revise to use Maven build. (Maria Arias de Reyna, Sandro Santilli)

A.52.5 Bug Fixes

#1335 ST_AddPoint returns incorrect result on Linux (Even Rouault)

A.52.6 Release specific credits

We thank U.S Department of State Human Information Unit (HIU) and Vizzuality for general monetary support to get PostGIS 2.0 out the door.

A.53 Release 1.5.4

Release date: 2012/05/07

This is a bug fix release, addressing issues that have been filed since the 1.5.3 release.

A.53.1 Bug Fixes

#547, ST_Contains memory problems (Sandro Santilli)
#621, Problem finding intersections with geography (Paul Ramsey)
#627, PostGIS/PostgreSQL process die on invalid geometry (Paul Ramsey)
#810, Increase accuracy of area calculation (Paul Ramsey)
#852, improve spatial predicates robustness (Sandro Santilli, Nicklas Avén)
#877, ST_Estimated_Extent returns NULL on empty tables (Sandro Santilli)
#1028, ST_AsSVG kills whole postgres server when fails (Paul Ramsey)
#1056, Fix boxes of arcs and circle stroking code (Paul Ramsey)
#1121, populate_geometry_columns using deprecated functions (Regin Obe, Paul Ramsey)
#1135, improve testsuite predictability (Andreas ‘ads’ Scherbaum)
#1146, images generator crashes (bronaugh)
#1170, North Pole intersection fails (Paul Ramsey)
#1179, ST_AsText crash with bad value (kjurka)
#1184, honour DESTDIR in documentation Makefile (Bryce L Nordgren)
#1227, server crash on invalid GML
#1252, SRID appearing in WKT (Paul Ramsey)
#1264, st_dwithin(g, g, 0) doesn’t work (Paul Ramsey)
#1344, allow exporting tables with invalid geometries (Sandro Santilli)
#1389, wrong proj4text for SRID 31300 and 31370 (Paul Ramsey)
#1406, shp2pgsql crashes when loading into geography (Sandro Santilli)
#1595, fixed SRID redundancy in ST_Line_SubString (Sandro Santilli)
#1596, check SRID in UpdateGeometrySRID (Mike Toews, Sandro Santilli)
#1602, fix ST_Polygonize to retain Z (Sandro Santilli)
#1697, fix crash with EMPTY entries in GiST index (Paul Ramsey)
#1772, fix ST_Line_Locate_Point with collapsed input (Sandro Santilli)
#1799, Protect ST_Segmentize from max_length=0 (Sandro Santilli)
Alter parameter order in 900913 (Paul Ramsey)
Support builds with "gmake" (Greg Troxel)

A.54 Release 1.5.3

Release date: 2011/06/25

This is a bug fix release, addressing issues that have been filed since the 1.5.2 release. If you are running PostGIS 1.3+, a soft upgrade is sufficient otherwise a hard upgrade is recommended.

A.54.1 Bug Fixes

#1056, produce correct bboxes for arc geometries, fixes index errors (Paul Ramsey)
#1007, ST_IsValid crash fix requires GEOS 3.3.0+ or 3.2.3+ (Sandro Santilli, reported by Birgit Laggner)
#940, support for PostgreSQL 9.1 beta 1 (Regina Obe, Paul Ramsey, patch submitted by stl)
#845, ST_Intersects precision error (Sandro Santilli, Nicklas Avén) Reported by cdestigter
#884, Unstable results with ST_Within, ST_Intersects (Chris Hodgson)
#779, shp2pgsql -S option seems to fail on points (Jeff Adams)
#666, ST_DumpPoints is not null safe (Regina Obe)
#631, Update NZ projections for grid transformation support (jpalmer)
#630, Peculiar Null treatment in arrays in ST_Collect (Chris Hodgson) Reported by David Bitner
#624, Memory leak in ST_GeogFromText (ryang, Paul Ramsey)
#609, Bad source code in manual section 5.2 Java Clients (simoc, Regina Obe)
#604, shp2pgsql usage touchups (Mike Toews, Paul Ramsey)
#573 ST_Union fails on a group of linestrings Not a PostGIS bug, fixed in GEOS 3.3.0
#457 ST_CollectionExtract returns non-requested type (Nicklas Avén, Paul Ramsey)
#441 ST_AsGeoJson Bbox on GeometryCollection error (Olivier Courtin)
#411 Ability to backup invalid geometries (Sandro Santilli) Reported by Regione Toscana
#409 ST_AsSVG - degraded (Olivier Courtin) Reported by Sdikiy
#373 Documentation syntax error in hard upgrade (Paul Ramsey) Reported by psvensso

A.55 Release 1.5.2

Release date: 2010/09/27

This is a bug fix release, addressing issues that have been filed since the 1.5.1 release. If you are running PostGIS 1.3+, a soft upgrade is sufficient otherwise a hard upgrade is recommended.
A.55.1 Bug Fixes

Loader: fix handling of empty (0-vertexed) geometries in shapefiles. (Sandro Santilli)

#536, Geography ST_Intersection, ST_Covers, ST_CoveredBy and Geometry ST_Equals not using spatial index (Regina Obe, Nicklas Aven)

#573, Improvement to ST_Contains geography (Paul Ramsey)

Loader: Add support for command-q shutdown in Mac GTK build (Paul Ramsey)

#393, Loader: Add temporary patch for large DBF files (Maxime Guillaud, Paul Ramsey)

#507, Fix wrong OGC URN in GeoJSON and GML output (Olivier Courtin)

spatial_ref_sys.sql Add datum conversion for projection SRID 3021 (Paul Ramsey)

Geography - remove crash for case when all geographies are out of the estimate (Paul Ramsey)

#469, Fix for array_aggregation error (Greg Stark, Paul Ramsey)

#532, Temporary geography tables showing up in other user sessions (Paul Ramsey)

#562, ST_DWithin errors for large geographies (Paul Ramsey)

#513, shape loading GUI tries to make spatial index when loading DBF only mode (Paul Ramsey)

#527, shape loading GUI should always append log messages (Mark Cave-Ayland)

#504, shp2pgsql should rename xmin/xmax fields (Sandro Santilli)

#458, postgis_comments being installed in contrib instead of version folder (Mark Cave-Ayland)

#474, Analyzing a table with geography column crashes server (Paul Ramsey)

#581, LWGEOM-expand produces inconsistent results (Mark Cave-Ayland)

#513, Add dbf filter to shp2pgsql-gui and allow uploading dbf only (Paul Ramsey)

Fix further build issues against PostgreSQL 9.0 (Mark Cave-Ayland)

#572, Password whitespace for Shape File (Mark Cave-Ayland)

#603, shp2pgsql: "-w" produces invalid WKT for MULTI* objects. (Mark Cave-Ayland)

A.56 Release 1.5.1

Release date: 2010/03/11

This is a bug fix release, addressing issues that have been filed since the 1.4.1 release. If you are running PostGIS 1.3+, a soft upgrade is sufficient otherwise a hard upgrade is recommended.

A.56.1 Bug Fixes

#410, update embedded bbox when applying ST_SetPoint, ST_AddPoint ST_RemovePoint to a linestring (Paul Ramsey)

#411, allow dumping tables with invalid geometries (Sandro Santilli, for Regione Toscana-SIGTA)

#414, include geography_columns view when running upgrade scripts (Paul Ramsey)

#419, allow support for multilinestring in ST_Line_Substring (Paul Ramsey, for Lidwala Consulting Engineers)

#421, fix computed string length in ST_AsGML() (Olivier Courtin)

#441, fix GML generation with heterogeneous collections (Olivier Courtin)

#443, incorrect coordinate reversal in GML 3 generation (Olivier Courtin)

#450, #451, wrong area calculation for geography features that cross the date line (Paul Ramsey)

Ensure support for upcoming 9.0 PostgreSQL release (Paul Ramsey)
A.57 Release 1.5.0

Release date: 2010/02/04
This release provides support for geographic coordinates (lat/lon) via a new GEOGRAPHY type. Also performance enhancements, new input format support (GML,KML) and general upkeep.

A.57.1 API Stability

The public API of PostGIS will not change during minor (0.0.X) releases.
The definition of the =~ operator has changed from an exact geometric equality check to a bounding box equality check.

A.57.2 Compatibility

GEOS, Proj4, and LibXML2 are now mandatory dependencies
The library versions below are the minimum requirements for PostGIS 1.5
PostgreSQL 8.3 and higher on all platforms
GEOS 3.1 and higher only (GEOS 3.2+ to take advantage of all features)
LibXML2 2.5+ related to new ST_GeomFromGML/KML functionality
Proj4 4.5 and higher only

A.57.3 New Features

Section 9.12.12
Added Hausdorff distance calculations (#209) (Vincent Picavet)
Added parameters argument to ST_Buffer operation to support one-sided buffering and other buffering styles (Sandro Santilli)
Addition of other Distance related visualization and analysis functions (Nicklas Aven)

• ST_ClosestPoint
• ST_DFullyWithin
• ST_LongestLine
• ST_MaxDistance
• ST_ShortestLine

ST_DumpPoints (Maxime van Noppen)
KML, GML input via ST_GeomFromGML and ST_GeomFromKML (Olivier Courtin)
Extract homogeneous collection with ST_CollectionExtract (Paul Ramsey)
Add measure values to an existing linestring with ST_AddMeasure (Paul Ramsey)
History table implementation in utils (George Silva)

Geography type and supporting functions

• Spherical algorithms (Dave Skea)
• Object/index implementation (Paul Ramsey)
• Selectivity implementation (Mark Cave-Aylard)
• Serializations to KML, GML and JSON (Olivier Courtin)

• ST_Area, ST_Distance, ST_DWithin, ST_GeogFromText, ST_GeogFromWKB, ST_Intersects, ST_Covers, ST_Buffer (Paul Ramsey)
A.57.4 Enhancements

Performance improvements to ST_Distance (Nicklas Aven)
Documentation updates and improvements (Regina Obe, Kevin Neufeld)
Testing and quality control (Regina Obe)
PostGIS 1.5 support PostgreSQL 8.5 trunk (Guillaume Lelarge)
Win32 support and improvement of core shp2pgsql-gui (Mark Cave-Ayland)
In place ‘make check’ support (Paul Ramsey)

A.57.5 Bug fixes

http://trac.osgeo.org/postgis/query?status=closed&milestone=PostGIS+1.5.0&order=priority

A.58 Release 1.4.0

Release date: 2009/07/24
This release provides performance enhancements, improved internal structures and testing, new features, and upgraded documenta-
tion. If you are running PostGIS 1.1+, a soft upgrade is sufficient otherwise a hard upgrade is recommended.

A.58.1 API Stability

As of the 1.4 release series, the public API of PostGIS will not change during minor releases.

A.58.2 Compatibility

The versions below are the *minimum* requirements for PostGIS 1.4
PostgreSQL 8.2 and higher on all platforms
GEOS 3.0 and higher only
PROJ4 4.5 and higher only

A.58.3 New Features

ST_Union() uses high-speed cascaded union when compiled against GEOS 3.1+ (Paul Ramsey)
ST_ContainsProperly() requires GEOS 3.1+
ST_Intersects(), ST_Contains(), ST_Within() use high-speed cached prepared geometry against GEOS 3.1+ (Paul Ramsey /
funded by Zonar Systems)
Vastly improved documentation and reference manual (Regina Obe & Kevin Neufeld)
Figures and diagram examples in the reference manual (Kevin Neufeld)
ST_IsValidReason() returns readable explanations for validity failures (Paul Ramsey)
ST_GeoHash() returns a geohash.org signature for geometries (Paul Ramsey)
GTK+ multi-platform GUI for shape file loading (Paul Ramsey)
ST_LineCrossingDirection() returns crossing directions (Paul Ramsey)
ST_LocateBetweenElevations() returns sub-string based on Z-ordinate. (Paul Ramsey)
Geometry parser returns explicit error message about location of syntax errors (Mark Cave-Ayland)

ST_AsGeoJSON() return JSON formatted geometry (Olivier Courtin)

Populate_Geometry_Columns() -- automatically add records to geometry_columns for TABLES and VIEWS (Kevin Neufeld)

ST_MinimumBoundingCircle() -- returns the smallest circle polygon that can encompass a geometry (Bruce Rindahl)

A.58.4 Enhancements

Core geometry system moved into independent library, liblwgeom. (Mark Cave-Ayland)

New build system uses PostgreSQL "pgxs" build bootstrapper. (Mark Cave-Ayland)

Debugging framework formalized and simplified. (Mark Cave-Ayland)

All build-time #defines generated at configure time and placed in headers for easier cross-platform support (Mark Cave-Ayland)

Logging framework formalized and simplified (Mark Cave-Ayland)

Expanded and more stable support for CIRCULARSTRING, COMPOUNDCURVE and CURVEPOLYGON, better parsing, wider support in functions (Mark Leslie & Mark Cave-Ayland)

Improved support for OpenSolaris builds (Paul Ramsey)

Improved support for MSVC builds (Mateusz Loskot)

Updated KML support (Olivier Courtin)

Unit testing framework for liblwgeom (Paul Ramsey)

New testing framework to comprehensively exercise every PostGIS function (Regine Obe)

Performance improvements to all geometry aggregate functions (Paul Ramsey)

Support for the upcoming PostgreSQL 8.4 (Mark Cave-Ayland, Talha Bin Rizwan)

Shp2pgsql and pgsql2shp re-worked to depend on the common parsing/unparsing code in liblwgeom (Mark Cave-Ayland)

Use of PDF DbLatex to build PDF docs and preliminary instructions for build (Jean David Techer)

Automated User documentation build (PDF and HTML) and Developer Doxygen Documentation (Kevin Neufeld)

Automated build of document images using ImageMagick from WKT geometry text files (Kevin Neufeld)

More attractive CSS for HTML documentation (Dane Springmeyer)

A.58.5 Bug fixes

http://trac.osgeo.org/postgis/query?status=closed&milestone=PostGIS+1.4.0&order=priority

A.59 Release 1.3.6

Release date: 2009/05/04

If you are running PostGIS 1.1+, a soft upgrade is sufficient otherwise a hard upgrade is recommended. This release adds support for PostgreSQL 8.4, exporting prj files from the database with shape data, some crash fixes for shp2pgsql, and several small bug fixes in the handling of "curve" types, logical error importing dbf only files, improved error handling of AddGeometryColumns.

A.60 Release 1.3.5

Release date: 2008/12/15

If you are running PostGIS 1.1+, a soft upgrade is sufficient otherwise a hard upgrade is recommended. This release is a bug fix release to address a failure in ST_Force_Collection and related functions that critically affects using MapServer with LINE layers.
A.61 Release 1.3.4

Release date: 2008/11/24

This release adds support for GeoJSON output, building with PostgreSQL 8.4, improves documentation quality and output aesthetics, adds function-level SQL documentation, and improves performance for some spatial predicates (point-in-polygon tests).

Bug fixes include removal of crashers in handling circular strings for many functions, some memory leaks removed, a linear referencing failure for measures on vertices, and more. See the NEWS file for details.

A.62 Release 1.3.3

Release date: 2008/04/12

This release fixes bugs shp2pgsql, adds enhancements to SVG and KML support, adds a ST_SimplifyPreserveTopology function, makes the build more sensitive to GEOS versions, and fixes a handful of severe but rare failure cases.

A.63 Release 1.3.2

Release date: 2007/12/01

This release fixes bugs in ST_EndPoint() and ST_Envelope, improves support for JDBC building and OS/X, and adds better support for GML output with ST_AsGML(), including GML3 output.

A.64 Release 1.3.1

Release date: 2007/08/13

This release fixes some oversights in the previous release around version numbering, documentation, and tagging.

A.65 Release 1.3.0

Release date: 2007/08/09

This release provides performance enhancements to the relational functions, adds new relational functions and begins the migration of our function names to the SQL-MM convention, using the spatial type (SP) prefix.

A.65.1 Added Functionality

JDBC: Added Hibernate Dialect (thanks to Norman Barker)

Added ST_Covers and ST_CoveredBy relational functions. Description and justification of these functions can be found at http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html

Added ST_DWithin relational function.

A.65.2 Performance Enhancements

Added cached and indexed point-in-polygon short-circuits for the functions ST_Contains, ST_Intersects, ST_Within and ST_Disjoint

Added inline index support for relational functions (except ST_Disjoint)
A.65.3 Other Changes

Extended curved geometry support into the geometry accessor and some processing functions
Began migration of functions to the SQL-MM naming convention; using a spatial type (ST) prefix.
Added initial support for PostgreSQL 8.3

A.66 Release 1.2.1

Release date: 2007/01/11
This release provides bug fixes in PostgreSQL 8.2 support and some small performance enhancements.

A.66.1 Changes

Fixed point-in-polygon shortcut bug in Within().
Fixed PostgreSQL 8.2 NULL handling for indexes.
Updated RPM spec files.
Added short-circuit for Transform() in no-op case.
JDBC: Fixed JTS handling for multi-dimensional geometries (thanks to Thomas Marti for hint and partial patch). Additionally, now JavaDoc is compiled and packaged. Fixed classpath problems with GCJ. Fixed pgjdbc 8.2 compatibility, losing support for jdk 1.3 and older.

A.67 Release 1.2.0

Release date: 2006/12/08
This release provides type definitions along with serialization/deserialization capabilities for SQL-MM defined curved geometries, as well as performance enhancements.

A.67.1 Changes

Added curved geometry type support for serialization/deserialization
Added point-in-polygon shortcircuit to the Contains and Within functions to improve performance for these cases.

A.68 Release 1.1.6

Release date: 2006/11/02
This is a bugfix release, in particular fixing a critical error with GEOS interface in 64bit systems. Includes an updated of the SRS parameters and an improvement in reprojections (take Z in consideration). Upgrade is encouraged.

A.68.1 Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.
If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade section of the 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.
A.68.2 Bug fixes

fixed CAPI change that broke 64-bit platforms
loader/dumper: fixed regression tests and usage output
Fixed setSRID() bug in JDBC, thanks to Thomas Marti

A.68.3 Other changes

use Z ordinate in reprojections
spatial_ref_sys.sql updated to EPSG 6.11.1
Simplified Version.config infrastructure to use a single pack of version variables for everything.
Include the Version.config in loader/dumper USAGE messages
Replace hand-made, fragile JDBC version parser with Properties

A.69 Release 1.1.5

Release date: 2006/10/13
This is an bugfix release, including a critical segfault on win32. Upgrade is encouraged.

A.69.1 Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.
If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade section of the 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.69.2 Bug fixes

Fixed MingW link error that was causing pgsql2shp to segfault on Win32 when compiled for PostgreSQL 8.2
fixed nullpointer Exception in Geometry.equals() method in Java
Added EJB3Spatial.odt to fulfill the GPL requirement of distributing the "preferred form of modification"
Removed obsolete synchronization from JDBC Jts code.
Updated heavily outdated README files for shp2pgsql/pgsql2shp by merging them with the manpages.
Fixed version tag in jdbc code that still said "1.1.3" in the "1.1.4" release.

A.69.3 New Features

Added -S option for non-multi geometries to shp2pgsql

A.70 Release 1.1.4

Release date: 2006/09/27
This is an bugfix release including some improvements in the Java interface. Upgrade is encouraged.
A.70.1 Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.
If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade section of the 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.70.2 Bug fixes

Fixed support for PostgreSQL 8.2
Fixed bug in collect() function discarding SRID of input
Added SRID match check in MakeBox2d and MakeBox3d
Fixed regres tests to pass with GEOS-3.0.0
Improved pgsql2shp run concurrency.

A.70.3 Java changes

reworked JTS support to reflect new upstream JTS developers’ attitude to SRID handling. Simplifies code and drops build depend on GNU trove.
Added EJB2 support generously donated by the “Geodetix s.r.l. Company”
Added EJB3 tutorial / examples donated by Norman Barker <nbarker@ittvis.com>
Reorganized java directory layout a little.

A.71 Release 1.1.3

Release date: 2006/06/30
This is an bugfix release including also some new functionalities (most notably long transaction support) and portability enhancements. Upgrade is encouraged.

A.71.1 Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.
If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade section of the 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.71.2 Bug fixes / correctness

BUGFIX in distance(poly,poly) giving wrong results.
BUGFIX in pgsql2shp successful return code.
BUGFIX in shp2pgsql handling of MultiLine WKT.
BUGFIX in affine() failing to update bounding box.
WKT parser: forbidden construction of multigeometries with EMPTY elements (still supported for GEOMETRYCOLLECTION).
A.71.3 New functionalities

NEW Long Transactions support.
NEW DumpRings() function.
NEW AsHEXEWKB(geom, XDR|NDR) function.

A.71.4 JDBC changes

Improved regression tests: MultiPoint and scientific ordinates
Fixed some minor bugs in jdbc code
Added proper accessor functions for all fields in preparation of making those fields private later

A.71.5 Other changes

NEW regress test support for loader/dumper.
Added --with-proj-libdir and --with-geos-libdir configure switches.
Support for build Tru64 build.
Use Jade for generating documentation.
Don’t link pgsq12shp to more libs then required.
Initial support for PostgreSQL 8.2.

A.72 Release 1.1.2

Release date: 2006/03/30
This is an bugfix release including some new functions and portability enhancements. Upgrade is encouraged.

A.72.1 Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.
If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade section of the 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.72.2 Bug fixes

BUGFIX in SnapToGrid() computation of output bounding box
BUGFIX in EnforceRHR()
jdbc2 SRID handling fixes in JTS code
Fixed support for 64bit archs
A.72.3 New functionalities

Regress tests can now be run *before* postgis installation

New affine() matrix transformation functions

New rotate{,X,Y,Z}() function

Old translating and scaling functions now use affine() internally

Embedded access control in estimated.extent() for builds against pgsql >= 8.0.0

A.72.4 Other changes

More portable ./configure script

Changed ./run_test script to have more sane default behaviour

A.73 Release 1.1.1

Release date: 2006/01/23

This is an important Bugfix release, upgrade is *highly recommended*. Previous version contained a bug in postgis_restore.pl preventing hard upgrade procedure to complete and a bug in GEOS-2.2+ connector preventing GeometryCollection objects to be used in topological operations.

A.73.1 Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.73.2 Bug fixes

Fixed a premature exit in postgis_restore.pl

BUGFIX in geometrycollection handling of GEOS-CAPI connector

Solaris 2.7 and MingW support improvements

BUGFIX in line_locate_point()

Fixed handling of postgresql paths

BUGFIX in line_substring()

Added support for localized cluster in regress tester

A.73.3 New functionalities

New Z and M interpolation in line_substring()

New Z and M interpolation in line_interpolate_point()

added NumInteriorRing() alias due to OpenGIS ambiguity
A.74 Release 1.1.0

Release date: 2005/12/21

This is a Minor release, containing many improvements and new things. Most notably: build procedure greatly simplified; transform() performance drastically improved; more stable GEOS connectivity (CAPI support); lots of new functions; draft topology support.

It is highly recommended that you upgrade to GEOS-2.2.x before installing PostGIS, this will ensure future GEOS upgrades won’t require a rebuild of the PostGIS library.

A.74.1 Credits

This release includes code from Mark Cave Ayland for caching of proj4 objects. Markus Schaber added many improvements in his JDBC2 code. Alex Bodnaru helped with PostgreSQL source dependency relief and provided Debian specfiles. Michael Fuhr tested new things on Solaris arch. David Techer and Gerald Fenoy helped testing GEOS C-API connector. Hartmut Tschauner provided code for the azimuth() function. Devrim GUNDUZ provided RPM specfiles. Carl Anderson helped with the new area building functions. See the credits section for more names.

A.74.2 Upgrading

If you are upgrading from release 1.0.3 or later you DO NOT need a dump/reload. Simply sourcing the new lwpostgis_upgrade.sql script in all your existing databases will work. See the soft upgrade chapter for more information.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.74.3 New functions

scale() and transscale() companion methods to translate()

line_substring()

line_locate_point()

M(point)

LineMerge(geometry)

shift_longitude(geometry)

azimuth(geometry)

locate_along_measure(geometry, float8)

locate_between_measures(geometry, float8, float8)

SnapToGrid by point offset (up to 4d support)

BuildArea(any_geometry)

OGC BdPolyFromText(linestring_wkt, srid)

OGC BdMPolyFromText(linestring_wkt, srid)

RemovePoint(linestring, offset)

ReplacePoint(linestring, offset, point)
A.74.4 Bug fixes

Fixed memory leak in polygonize()
Fixed bug in lwgeom_as_anytype cast functions
Fixed USE_GEOS, USE_PROJ and USE_STATS elements of postgis_version() output to always reflect library state.

A.74.5 Function semantic changes

SnapToGrid doesn’t discard higher dimensions
Changed Z() function to return NULL if requested dimension is not available

A.74.6 Performance improvements

Much faster transform() function, caching proj4 objects
Removed automatic call to fix_geometry_columns() in AddGeometryColumns() and update_geometry_stats()

A.74.7 JDBC2 works

Makefile improvements
JTS support improvements
Improved regression test system
Basic consistency check method for geometry collections
Support for (Hex)(E)wkb
Autoprobing DriverWrapper for HexWKB / EWKT switching
fix compile problems in ValueSetter for ancient jdk releases.
fix EWKT constructors to accept SRID=4711; representation
added preliminary read-only support for java2d geometries

A.74.8 Other new things

Full autoconf-based configuration, with PostgreSQL source dependency relief
GEOS C-API support (2.2.0 and higher)
Initial support for topology modelling
Debian and RPM specfiles
New lwpostgis_upgrade.sql script

A.74.9 Other changes

JTS support improvements
Stricter mapping between DBF and SQL integer and string attributes
Wider and cleaner regression test suite
old jdbc code removed from release
obsoleted direct use of postgis_proc_upgrade.pl
scripts version unified with release version
A.75 Release 1.0.6

Release date: 2005/12/06
Contains a few bug fixes and improvements.

A.75.1 Upgrading

If you are upgrading from release 1.0.3 or later you **DO NOT** need a dump/reload.
If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade section of the 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an **hard upgrade**.

A.75.2 Bug fixes

Fixed palloc(0) call in collection deserializer (only gives problem with --enable-cassert)
Fixed bbox cache handling bugs
Fixed geom_accum(NULL, NULL) segfault
Fixed segfault in addPoint()
Fixed short- allocation in lwcollection_clone()
Fixed bug in segmentize()
Fixed bbox computation of SnapToGrid output

A.75.3 Improvements

Initial support for postgresql 8.2
Added missing SRID mismatch checks in GEOS ops

A.76 Release 1.0.5

Release date: 2005/11/25
Contains memory-alignment fixes in the library, a segfault fix in loader’s handling of UTF8 attributes and a few improvements and cleanups.

Note

Return code of shp2pgsql changed from previous releases to conform to unix standards (return 0 on success).

A.76.1 Upgrading

If you are upgrading from release 1.0.3 or later you **DO NOT** need a dump/reload.
If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade section of the 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an **hard upgrade**.
A.76.2 Library changes

Fixed memory alignment problems
Fixed computation of null values fraction in analyzer
Fixed a small bug in the getPoint4d_p() low-level function
Speedup of serializer functions
Fixed a bug in force_3dm(), force_3dz() and force_4d()

A.76.3 Loader changes

Fixed return code of shp2pgsql
Fixed back-compatibility issue in loader (load of null shapefiles)
Fixed handling of trailing dots in dbf numerical attributes
Segfault fix in shp2pgsql (utf8 encoding)

A.76.4 Other changes

Schema aware postgis_proc_upgrade.pl, support for pgsql 7.2+
New "Reporting Bugs" chapter in manual

A.77 Release 1.0.4

Release date: 2005/09/09
Contains important bug fixes and a few improvements. In particular, it fixes a memory leak preventing successful build of GiST indexes for large spatial tables.

A.77.1 Upgrading

If you are upgrading from release 1.0.3 you DO NOT need a dump/reload.
If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade section of the 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.77.2 Bug fixes

Memory leak plugged in GiST indexing
Segfault fix in transform() handling of proj4 errors
Fixed some proj4 texts in spatial_ref_sys (missing +proj)
Loader: fixed string functions usage, reworked NULL objects check, fixed segfault on MULTILINESTRING input.
Fixed bug in MakeLine dimension handling
Fixed bug in translate() corrupting output bounding box
A.77.3 Improvements

Documentation improvements
More robust selectivity estimator
Minor speedup in distance()
Minor cleanups
GiST indexing cleanup
Looser syntax acceptance in box3d parser

A.78 Release 1.0.3

Release date: 2005/08/08
Contains some bug fixes - including a severe one affecting correctness of stored geometries - and a few improvements.

A.78.1 Upgrading

Due to a bug in a bounding box computation routine, the upgrade procedure requires special attention, as bounding boxes cached in the database could be incorrect.

An hard upgrade procedure (dump/reload) will force recomputation of all bounding boxes (not included in dumps). This is required if upgrading from releases prior to 1.0.0RC6.

If you are upgrading from versions 1.0.0RC6 or up, this release includes a perl script (utils/rebuild_bbox_caches.pl) to force recomputation of geometries’ bounding boxes and invoke all operations required to propagate eventual changes in them (geometry statistics update, reindexing). Invoke the script after a make install (run with no args for syntax help). Optionally run utils/postgis_proc_upgrade.pl to refresh postgis procedures and functions signatures (see Soft upgrade).

A.78.2 Bug fixes

Severe bugfix in lwgeom’s 2d bounding box computation
Bugfix in WKT (-w) POINT handling in loader
Bugfix in dumper on 64bit machines
Bugfix in dumper handling of user-defined queries
Bugfix in create_undef.pl script

A.78.3 Improvements

Small performance improvement in canonical input function
Minor cleanups in loader
Support for multibyte field names in loader
Improvement in the postgis_restore.pl script
New rebuild_bbox_caches.pl util script

A.79 Release 1.0.2

Release date: 2005/07/04
Contains a few bug fixes and improvements.
A.79.1 Upgrading

If you are upgrading from release 1.0.0RC6 or up you DO NOT need a dump/reload.
Upgrading from older releases requires a dump/reload. See the upgrading chapter for more informations.

A.79.2 Bug fixes

Fault tolerant btrees ops
Memory leak plugged in pg_error
Rtree index fix
Cleaner build scripts (avoided mix of CFLAGS and CXXFLAGS)

A.79.3 Improvements

New index creation capabilities in loader (-I switch)
Initial support for postgresql 8.1dev

A.80 Release 1.0.1

Release date: 2005/05/24
Contains a few bug fixes and some improvements.

A.80.1 Upgrading

If you are upgrading from release 1.0.0RC6 or up you DO NOT need a dump/reload.
Upgrading from older releases requires a dump/reload. See the upgrading chapter for more informations.

A.80.2 Library changes

BUGFIX in 3d computation of length_spheroid()
BUGFIX in join selectivity estimator

A.80.3 Other changes/additions

BUGFIX in shp2pgsql escape functions
better support for concurrent postgis in multiple schemas
documentation fixes
jdbcTemplate: compile with "-target 1.2 -source 1.2" by default
NEW -k switch for pgsql2shp
NEW support for custom createdb options in postgis_restore.pl
BUGFIX in pgsql2shp attribute names unicity enforcement
BUGFIX in Paris projections definitions
postgis_restore.pl cleanups
A.81 Release 1.0.0

Release date: 2005/04/19

Final 1.0.0 release. Contains a few bug fixes, some improvements in the loader (most notably support for older postgis versions), and more docs.

A.81.1 Upgrading

If you are upgrading from release 1.0.0RC6 you DO NOT need a dump/reload.

Upgrading from any other precedent release requires a dump/reload. See the upgrading chapter for more informations.

A.81.2 Library changes

BUGFIX in transform() releasing random memory address
BUGFIX in force_3dm() allocating less memory then required
BUGFIX in join selectivity estimator (defaults, leaks, tuplecount, sd)

A.81.3 Other changes/additions

BUGFIX in shp2pgsql escape of values starting with tab or single-quote
NEW manual pages for loader/dumper
NEW shp2pgsql support for old (HWGEOM) postgis versions
NEW -p (prepare) flag for shp2pgsql
NEW manual chapter about OGC compliancy enforcement
NEW autoconf support for JTS lib
BUGFIX in estimator testers (support for LWGEOM and schema parsing)

A.82 Release 1.0.0RC6

Release date: 2005/03/30

Sixth release candidate for 1.0.0. Contains a few bug fixes and cleanups.

A.82.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for more informations.

A.82.2 Library changes

BUGFIX in multi()
early return [when noop] from multi()

A.82.3 Scripts changes

dropped `{x,y}` `{min,max}` `{box2d}` functions
A.82.4 Other changes

BUGFIX in postgis_restore.pl scrip
BUGFIX in dumper’s 64bit support

A.83 Release 1.0.0RC5

Release date: 2005/03/25
Fifth release candidate for 1.0.0. Contains a few bug fixes and a improvements.

A.83.1 Upgrading

If you are upgrading from release 1.0.0RC4 you DO NOT need a dump/reload.
Upgrading from any other precedent release requires a dump/reload. See the upgrading chapter for more informations.

A.83.2 Library changes

BUGFIX (segfaulting) in box3d computation (yes, another!).
BUGFIX (segfaulting) in estimated_extent().

A.83.3 Other changes

Small build scripts and utilities refinements.
Additional performance tips documented.

A.84 Release 1.0.0RC4

Release date: 2005/03/18
Fourth release candidate for 1.0.0. Contains bug fixes and a few improvements.

A.84.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for more informations.

A.84.2 Library changes

BUGFIX (segfaulting) in geom_accum().
BUGFIX in 64bit architectures support.
BUGFIX in box3d computation function with collections.
NEW subselects support in selectivity estimator.
Early return from force_collection.
Consistency check fix in SnapToGrid().
Box2d output changed back to 15 significant digits.
A.84.3 Scripts changes

NEW distance_sphere() function.
Changed get_proj4_from_srid implementation to use PL/PGSQL instead of SQL.

A.84.4 Other changes

BUGFIX in loader and dumper handling of MultiLine shapes
BUGFIX in loader, skipping all but first hole of polygons.
jdbc2: code cleanups, Makefile improvements
FLEX and YACC variables set *after* pgsql Makefile.global is included and only if the pgsql *stripped* version evaluates to the empty string
Added already generated parser in release
Build scripts refinements
improved version handling, central Version.config
improvements in postgis_restore.pl

A.85 Release 1.0.0RC3

Release date: 2005/02/24
Third release candidate for 1.0.0. Contains many bug fixes and improvements.

A.85.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for more informations.

A.85.2 Library changes

BUGFIX in transform(): missing SRID, better error handling.
BUGFIX in memory alignment handling
BUGFIX in force_collection() causing mapserver connector failures on simple (single) geometry types.
BUGFIX in GeometryFromText() missing to add a bbox cache.
reduced precision of box2d output.
prefixed DEBUG macros with PGIS_ to avoid clash with pgsql one
plugged a leak in GEOS2POSTGIS converter
Reduced memory usage by early releasing query-context pallocated one.

A.85.3 Scripts changes

BUGFIX in 72 index bindings.
BUGFIX in probe_geometry_columns() to work with PG72 and support multiple geometry columns in a single table
NEW bool::text cast
Some functions made IMMUTABLE from STABLE, for performance improvement.
A.85.4 JDBC changes

jdbc2: small patches, box2d/3d tests, revised docs and license.
jdbc2: bug fix and testcase in for pgjdbc 8.0 type autoregistration
jdbc2: Removed use of jdk1.4 only features to enable build with older jdk releases.
jdbc2: Added support for building against pg72jdbc2.jar
jdbc2: updated and cleaned makefile
jdbc2: added BETA support for its geometry classes
jdbc2: Skip known-to-fail tests against older PostGIS servers.
jdbc2: Fixed handling of measured geometries in EWKT.

A.85.5 Other changes

new performance tips chapter in manual
documentation updates: psql72 requirement, lwpostgis.sql
few changes in autoconf
BUILDDATE extraction made more portable
fixed spatial_ref_sys.sql to avoid vacuuming the whole database.
spatial_ref_sys: changed Paris entries to match the ones distributed with 0.x.

A.86 Release 1.0.0RC2

Release date: 2005/01/26
Second release candidate for 1.0.0 containing bug fixes and a few improvements.

A.86.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for more informations.

A.86.2 Library changes

BUGFIX in pointarray box3d computation
BUGFIX in distance_spheroid definition
BUGFIX in transform() missing to update bbox cache
NEW jdbc driver (jdbc2)
GEOMETRYCOLLECTION(EMPTY) syntax support for backward compatibility
Faster binary outputs
Stricter OGC WKB/WKT constructors

A.86.3 Scripts changes

More correct STABLE, IMMUTABLE, STRICT uses in lwpostgis.sql
stricter OGC WKB/WKT constructors
A.86.4 Other changes

Faster and more robust loader (both i18n and not)
Initial autoconf script

A.87 Release 1.0.0RC1

Release date: 2005/01/13
This is the first candidate of a major postgis release, with internal storage of postgis types redesigned to be smaller and faster on indexed queries.

A.87.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for more informations.

A.87.2 Changes

Faster canonical input parsing.
Lossless canonical output.
EWKB Canonical binary IO with PG>73.
Support for up to 4d coordinates, providing lossless shapefile->postgis->shapefile conversion.
New function: UpdateGeometrySRID(), AsGML(), SnapToGrid(), ForceRHR(), estimated_extent(), accum().
Vertical positioning indexed operators.
JOIN selectivity function.
More geometry constructors / editors.
PostGIS extension API.
UTF8 support in loader.