
Name
ST_Scale — Scales a geometry by given factors.

Synopsis
	geometry ST_Scale(geomA, 	
	 	XFactor, 	
	 	YFactor, 	
	 	ZFactor);	

geometry geomA;
float XFactor;
float YFactor;
float ZFactor;

	geometry ST_Scale(geomA, 	
	 	XFactor, 	
	 	YFactor);	

geometry geomA;
float XFactor;
float YFactor;

	geometry ST_Scale(geom, 	
	 	factor);	

geometry geom;
geometry factor;

	geometry ST_Scale(geom, 	
	 	factor, 	
	 	origin);	

geometry geom;
geometry factor;
geometry origin;

Description
Scales the geometry to a new size by multiplying the
			ordinates with the corresponding factor parameters.
		

The version taking a geometry as the factor parameter
allows passing a 2d, 3dm, 3dz or 4d point to set scaling factor for all
supported dimensions. Missing dimensions in the factor
point are equivalent to no scaling the corresponding dimension.

 The three-geometry variant allows a "false origin" for the scaling to be passed in. This allows "scaling in place", for example using the centroid of the geometry as the false origin. Without a false origin, scaling takes place relative to the actual origin, so all coordinates are just multipled by the scale factor.

Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Availability: 1.1.0.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.2.0 support for scaling all dimension (factor parameter) was introduced.
Enhanced: 2.5.0 support for scaling relative to a local origin (origin parameter) was introduced.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports M coordinates.

Examples
--Version 1: scale X, Y, Z
SELECT ST_AsEWKT(ST_Scale(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), 0.5, 0.75, 0.8));
			 st_asewkt

 LINESTRING(0.5 1.5 2.4,0.5 0.75 0.8)

--Version 2: Scale X Y
 SELECT ST_AsEWKT(ST_Scale(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), 0.5, 0.75));
			st_asewkt

 LINESTRING(0.5 1.5 3,0.5 0.75 1)

--Version 3: Scale X Y Z M
 SELECT ST_AsEWKT(ST_Scale(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)'),
 ST_MakePoint(0.5, 0.75, 2, -1)));
			 st_asewkt
--
 LINESTRING(0.5 1.5 6 -4,0.5 0.75 2 -1)

--Version 4: Scale X Y using false origin
SELECT ST_AsText(ST_Scale('LINESTRING(1 1, 2 2)', 'POINT(2 2)', 'POINT(1 1)'::geometry));
 st_astext

 LINESTRING(1 1,3 3)

See Also
ST_Affine, ST_TransScale

Release 2.1.7

Release date: 2015-03-30
This is a critical bug fix release.
Bug Fixes

#3086, ST_DumpValues() crashes backend on cleanup with invalid band indexes
#3088, Do not (re)define strcasestr in a liblwgeom.h
#3094, Malformed GeoJSON inputs crash backend

Name
&&&(gidx,gidx) — Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.

Synopsis
	boolean &&&(A, 	
	 	B);	

				 gidx

				 A
				;

				 gidx

				 B
				;

Description
The &&& operator returns TRUE if two n-D bounding boxes A and B intersect each other, using float precision. This means that if A (or B) is a (double precision) box3d, it will be internally converted to a float precision 3D bounding box (GIDX)
Note
This operator is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_3DMakeBox(ST_MakePoint(0,0,0), ST_MakePoint(2,2,2)) &&& ST_3DMakeBox(ST_MakePoint(1,1,1), ST_MakePoint(3,3,3)) AS overlaps;

 overlaps

 t
(1 row)

See Also

 &&&(geometry,gidx),
 &&&(gidx,geometry)

Release 1.0.0RC4

Release date: 2005/03/18
Fourth release candidate for 1.0.0. Contains bug fixes and a few
 improvements.
Upgrading

You need a dump/reload to upgrade from precedent releases. See
 the upgrading chapter for more
 informations.

Library changes

BUGFIX (segfaulting) in geom_accum().
BUGFIX in 64bit architectures support.
BUGFIX in box3d computation function with collections.
NEW subselects support in selectivity estimator.
Early return from force_collection.
Consistency check fix in SnapToGrid().
Box2d output changed back to 15 significant digits.

Scripts changes

NEW distance_sphere() function.
Changed get_proj4_from_srid implementation to use PL/PGSQL
 instead of SQL.

Other changes

BUGFIX in loader and dumper handling of MultiLine shapes
BUGFIX in loader, skipping all but first hole of
 polygons.
jdbc2: code cleanups, Makefile improvements
FLEX and YACC variables set *after* pgsql Makefile.global is
 included and only if the pgsql *stripped* version evaluates to the
 empty string
Added already generated parser in release
Build scripts refinements
improved version handling, central Version.config
improvements in postgis_restore.pl

Name
ST_Reverse — Return the geometry with vertex order reversed.

Synopsis
	geometry ST_Reverse(g1);	

geometry g1;

Description
Can be used on any geometry and reverses the order of the vertexes.
Enhanced: 2.4.0 support for curves was introduced.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.

Examples

SELECT ST_AsText(geom) as line, ST_AsText(ST_Reverse(geom)) As reverseline
FROM
(SELECT ST_MakeLine(ST_Point(1,2),
		ST_Point(1,10)) As geom) as foo;
--result
		line | reverseline
---------------------+----------------------
LINESTRING(1 2,1 10) | LINESTRING(1 10,1 2)

Topology and TopoGeometry Management

Abstract
This section lists the Topology functions for building new Topology schemas, validating topologies, and managing TopoGeometry Columns

Name
ST_Width — Returns the width of the raster in pixels.

Synopsis
	integer ST_Width(rast);	

raster rast;

Description
Returns the width of the raster in pixels.

Examples
SELECT ST_Width(rast) As rastwidth
FROM dummy_rast WHERE rid=1;

rastwidth

10

See Also
ST_Height

Name
ST_Count — Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the nodata value.

Synopsis
	bigint ST_Count(rast, 	
	 	nband=1, 	
	 	exclude_nodata_value=true);	

raster rast;
integer nband=1;
boolean exclude_nodata_value=true;

	bigint ST_Count(rast, 	
	 	exclude_nodata_value);	

raster rast;
boolean exclude_nodata_value;

Description
Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified nband defaults to 1.
Note
If exclude_nodata_value is set to true, will only count pixels with value not equal to the nodata value of the raster. Set exclude_nodata_value to false to get count all pixels

Changed: 3.1.0 - The ST_Count(rastertable, rastercolumn, ...) variants removed. Use ST_CountAgg instead.
Availability: 2.0.0

Examples

--example will count all pixels not 249 and one will count all pixels. --
SELECT rid, ST_Count(ST_SetBandNoDataValue(rast,249)) As exclude_nodata,
 ST_Count(ST_SetBandNoDataValue(rast,249),false) As include_nodata
 FROM dummy_rast WHERE rid=2;

rid | exclude_nodata | include_nodata
-----+----------------+----------------
 2 | 23 | 25

See Also

 ST_CountAgg,
 ST_SummaryStats,
 ST_SetBandNoDataValue

Name
ST_SetRotation — Set the rotation of the raster in radian.

Synopsis
	raster ST_SetRotation(rast, 	
	 	rotation);	

raster rast;
float8 rotation;

Description
Uniformly rotate the raster. Rotation is in radian. Refer to World File for more details.

Examples
SELECT
 ST_ScaleX(rast1), ST_ScaleY(rast1), ST_SkewX(rast1), ST_SkewY(rast1),
 ST_ScaleX(rast2), ST_ScaleY(rast2), ST_SkewX(rast2), ST_SkewY(rast2)
FROM (
 SELECT ST_SetRotation(rast, 15) AS rast1, rast as rast2 FROM dummy_rast
) AS foo;
 st_scalex | st_scaley | st_skewx | st_skewy | st_scalex | st_scaley | st_skewx | st_skewy
---------------------+---------------------+--------------------+--------------------+-----------+-----------+----------+----------
 -1.51937582571764 | -2.27906373857646 | 1.95086352047135 | 1.30057568031423 | 2 | 3 | 0 | 0
 -0.0379843956429411 | -0.0379843956429411 | 0.0325143920078558 | 0.0325143920078558 | 0.05 | -0.05 | 0 | 0

See Also
ST_Rotation, ST_ScaleX, ST_ScaleY, ST_SkewX, ST_SkewY

Name
PostGIS_Wagyu_Version — Returns the version number of the internal Wagyu library.

Synopsis
	text PostGIS_Wagyu_Version();	

;

Description
Returns the version number of the internal Wagyu library, or
		NULL if Wagyu support is not enabled.

Examples
SELECT PostGIS_Wagyu_Version();
 postgis_wagyu_version

 0.4.3 (Internal)
(1 row)

See Also
PostGIS_Full_Version, PostGIS_GEOS_Version, PostGIS_PROJ_Version, PostGIS_Lib_Version, PostGIS_LibXML_Version, PostGIS_Version

Name
ST_HausdorffDistance — Returns the Hausdorff distance between two geometries.

Synopsis
	float ST_HausdorffDistance(g1, 	
	 	g2);	

geometry
			g1;
geometry
			g2;

	float ST_HausdorffDistance(g1, 	
	 	g2, 	
	 	densifyFrac);	

geometry
			g1;
geometry
			g2;
float
			densifyFrac;

Description
Returns the Hausdorff distance between two geometries, a measure of how similar or dissimilar 2 geometries are.
		
Implements algorithm for computing a distance metric which can be thought of as the "Discrete Hausdorff Distance".
This is the Hausdorff distance restricted to discrete points for one of the geometries. Wikipedia article on Hausdorff distance
	Martin Davis note on how Hausdorff Distance calculation was used to prove correctness of the CascadePolygonUnion approach.

When densifyFrac is specified, this function performs a segment densification before computing the discrete hausdorff distance. The densifyFrac parameter sets the fraction by which to densify each segment. Each segment will be split into a number of equal-length subsegments, whose fraction of the total length is closest to the given fraction.
		
Units are in the units of the spatial reference system of the geometries.
		
Note

The current implementation supports only vertices as the discrete locations. This could be extended to allow an arbitrary density of points to be used.
			

Note

				This algorithm is NOT equivalent to the standard Hausdorff distance. However, it computes an approximation that is correct for a large subset of useful cases.
			One important part of this subset is Linestrings that are roughly parallel to each other, and roughly equal in length. This is a useful metric for line matching.
			

Availability: 1.5.0

Examples
For each building, find the parcel that best represents it. First we require the parcel intersect with the geometry.
	DISTINCT ON guarantees we get each building listed only once, the ORDER BY .. ST_HausdorffDistance gives us a preference of parcel that is most similar to the building.
SELECT DISTINCT ON(buildings.gid) buildings.gid, parcels.parcel_id
 FROM buildings INNER JOIN parcels ON ST_Intersects(buildings.geom,parcels.geom)
 ORDER BY buildings.gid, ST_HausdorffDistance(buildings.geom, parcels.geom);
postgis=# SELECT ST_HausdorffDistance(
				'LINESTRING (0 0, 2 0)'::geometry,
				'MULTIPOINT (0 1, 1 0, 2 1)'::geometry);
 st_hausdorffdistance

					 1
(1 row)
			
postgis=# SELECT st_hausdorffdistance('LINESTRING (130 0, 0 0, 0 150)'::geometry, 'LINESTRING (10 10, 10 150, 130 10)'::geometry, 0.5);
 st_hausdorffdistance

					70
(1 row)
			

See Also
ST_FrechetDistance

Name
ST_DumpSegments — Returns a set of geometry_dump rows for the segments in a geometry.

Synopsis
	geometry_dump[] ST_DumpSegments(geom);	

geometry geom;

Description
A set-returning function (SRF) that extracts the segments of a geometry.
 It returns a set of
			 geometry_dump rows,
 each containing a geometry (geom field)
 and an array of integers (path field).

	the geom field
 LINESTRINGs represent the segments of the supplied geometry.

	the path field (an integer[])
 is an index enumerating the segment start point positions in the elements of the supplied geometry.
 The indices are 1-based.
 For example, for a LINESTRING the paths are {i}
 where i is the nth
 segment start point in the LINESTRING.
 For a POLYGON the paths are {i,j} where
 i is the ring number (1 is outer; inner rings follow)
 and j is the segment start point position in the ring.

Availability: 3.2.0
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports 3d and will not drop the z-index.

Standard Geometry Examples
SELECT path, ST_AsText(geom)
FROM (
 SELECT (ST_DumpSegments(g.geom)).*
 FROM (SELECT 'GEOMETRYCOLLECTION(
 LINESTRING(1 1, 3 3, 4 4),
 POLYGON((5 5, 6 6, 7 7, 5 5))
)'::geometry AS geom
) AS g
) j;

 path │ st_astext

 {1,1} │ LINESTRING(1 1,3 3)
 {1,2} │ LINESTRING(3 3,4 4)
 {2,1,1} │ LINESTRING(5 5,6 6)
 {2,1,2} │ LINESTRING(6 6,7 7)
 {2,1,3} │ LINESTRING(7 7,5 5)
(5 rows)

TIN and Triangle Examples
-- Triangle --
SELECT path, ST_AsText(geom)
FROM (
 SELECT (ST_DumpSegments(g.geom)).*
 FROM (SELECT 'TRIANGLE((
 0 0,
 0 9,
 9 0,
 0 0
))'::geometry AS geom
) AS g
) j;

 path │ st_astext

 {1,1} │ LINESTRING(0 0,0 9)
 {1,2} │ LINESTRING(0 9,9 0)
 {1,3} │ LINESTRING(9 0,0 0)
(3 rows)

-- TIN --
SELECT path, ST_AsEWKT(geom)
FROM (
 SELECT (ST_DumpSegments(g.geom)).*
 FROM (SELECT 'TIN(((
 0 0 0,
 0 0 1,
 0 1 0,
 0 0 0
)), ((
 0 0 0,
 0 1 0,
 1 1 0,
 0 0 0
))
)'::geometry AS geom
) AS g
) j;

 path │ st_asewkt

 {1,1,1} │ LINESTRING(0 0 0,0 0 1)
 {1,1,2} │ LINESTRING(0 0 1,0 1 0)
 {1,1,3} │ LINESTRING(0 1 0,0 0 0)
 {2,1,1} │ LINESTRING(0 0 0,0 1 0)
 {2,1,2} │ LINESTRING(0 1 0,1 1 0)
 {2,1,3} │ LINESTRING(1 1 0,0 0 0)
(6 rows)

See Also
geometry_dump, the section called “PostGIS Geometry / Geography / Raster Dump Functions”,
 ST_Dump, ST_DumpRings

Name
ST_SimplifyPreserveTopology — Returns a simplified and valid version of a geometry, using
 the Douglas-Peucker algorithm.

Synopsis
	geometry ST_SimplifyPreserveTopology(geomA, 	
	 	tolerance);	

geometry geomA;
float tolerance;

Description
Returns a "simplified" version of the given geometry using
 the Douglas-Peucker algorithm. Will avoid creating derived
 geometries (polygons in particular) that are invalid. Will actually do something only with
 (multi)lines and (multi)polygons but you can safely call it with
 any kind of geometry. Since simplification occurs on a
 object-by-object basis you can also feed a GeometryCollection to
 this function.
Performed by the GEOS module.
Availability: 1.3.3

Examples
Same example as Simplify, but we see Preserve Topology prevents oversimplification. The circle can at most become a square.

SELECT ST_Npoints(geom) As np_before, ST_NPoints(ST_SimplifyPreserveTopology(geom,0.1)) As np01_notbadcircle, ST_NPoints(ST_SimplifyPreserveTopology(geom,0.5)) As np05_notquitecircle,
ST_NPoints(ST_SimplifyPreserveTopology(geom,1)) As np1_octagon, ST_NPoints(ST_SimplifyPreserveTopology(geom,10)) As np10_square,
ST_NPoints(ST_SimplifyPreserveTopology(geom,100)) As np100_stillsquare
FROM (SELECT ST_Buffer('POINT(1 3)', 10,12) As geom) As foo;

--result--
 np_before | np01_notbadcircle | np05_notquitecircle | np1_octagon | np10_square | np100_stillsquare
-----------+-------------------+---------------------+-------------+---------------+-------------------
 49 | 33 | 17 | 9 | 5 | 5

See Also
ST_Simplify

Clustering Functions

Abstract
These functions implement clustering algorithms for sets of geometries.

Name
parse_address — Takes a 1 line address and breaks into parts

Synopsis
	record parse_address(address);	

text address;

Description
Returns takes an address as input, and returns a record output consisting of fields num, street, street2,
			address1, city, state, zip, zipplus, country.
Availability: 2.2.0
[image: Description] This method needs address_standardizer extension.

Examples
Single Addresss
SELECT num, street, city, zip, zipplus
	FROM parse_address('1 Devonshire Place, Boston, MA 02109-1234') AS a;

 num | street | city | zip | zipplus
-----+------------------+--------+-------+---------
 1 | Devonshire Place | Boston | 02109 | 1234		
Table of addresses
-- basic table
CREATE TABLE places(addid serial PRIMARY KEY, address text);

INSERT INTO places(address)
VALUES ('529 Main Street, Boston MA, 02129'),
 ('77 Massachusetts Avenue, Cambridge, MA 02139'),
 ('25 Wizard of Oz, Walaford, KS 99912323'),
 ('26 Capen Street, Medford, MA'),
 ('124 Mount Auburn St, Cambridge, Massachusetts 02138'),
 ('950 Main Street, Worcester, MA 01610');

 -- parse the addresses
 -- if you want all fields you can use (a).*
SELECT addid, (a).num, (a).street, (a).city, (a).state, (a).zip, (a).zipplus
FROM (SELECT addid, parse_address(address) As a
 FROM places) AS p;
 addid | num | street | city | state | zip | zipplus
-------+-----+----------------------+-----------+-------+-------+---------
 1 | 529 | Main Street | Boston | MA | 02129 |
 2 | 77 | Massachusetts Avenue | Cambridge | MA | 02139 |
 3 | 25 | Wizard of Oz | Walaford | KS | 99912 | 323
 4 | 26 | Capen Street | Medford | MA | |
 5 | 124 | Mount Auburn St | Cambridge | MA | 02138 |
 6 | 950 | Main Street | Worcester | MA | 01610 |
(6 rows)

See Also

Raster Catalogs

There are two raster catalog views that come packaged with PostGIS. Both views utilize information embedded in the constraints of the raster tables. As a result
		the catalog views are always consistent with the raster data in the tables since the constraints are enforced.
	raster_columns this view catalogs all the raster table columns in your database.

	raster_overviews this view catalogs all the raster table columns in your database that serve as overviews for a finer grained table. Tables of this type are generated when you use the -l switch during load.

Raster Columns Catalog

The raster_columns is a catalog of all raster table columns in your database that are of type raster. It is a view utilizing the constraints on the tables
	so the information is always consistent even if you restore one raster table from a backup of another database. The following columns exist in the raster_columns catalog.
If you created your tables not with the loader or forgot to specify the -C flag during load, you can enforce the constraints after the
	fact using AddRasterConstraints so that the raster_columns catalog registers the common information about your raster tiles.
	r_table_catalog The database the table is in. This will always read the current database.

	r_table_schema The database schema the raster table belongs to.

	r_table_name raster table

	r_raster_column the column in the r_table_name table that is of type raster. There is nothing in PostGIS preventing you from having multiple raster columns per table so its possible to have a raster table listed multiple times with a different raster column for each.

	srid The spatial reference identifier of the raster. Should be an entry in the the section called “Spatial Reference Systems”.

	scale_x The scaling between geometric spatial coordinates and pixel. This is only available if all tiles in the raster column have the same scale_x and this constraint is applied. Refer to ST_ScaleX for more details.

	scale_y The scaling between geometric spatial coordinates and pixel. This is only available if all tiles in the raster column have the same scale_y and the scale_y constraint is applied. Refer to ST_ScaleY for more details.

	blocksize_x The width (number of pixels across) of each raster tile . Refer to ST_Width for more details.

	blocksize_y The width (number of pixels down) of each raster tile . Refer to ST_Height for more details.

	same_alignment A boolean that is true if all the raster tiles have the same alignment . Refer to ST_SameAlignment for more details.

	regular_blocking If the raster column has the spatially unique and coverage tile constraints, the value with be TRUE. Otherwise, it will be FALSE.

	num_bands The number of bands in each tile of your raster set. This is the same information as what is provided by ST_NumBands

	pixel_types An array defining the pixel type for each band. You will have the same number of elements in this array as you have number of bands. The pixel_types are one of the following defined in ST_BandPixelType.

	nodata_values An array of double precision numbers denoting the nodata_value for each band. You will have the same number of elements in this array as you have number of bands. These numbers define the pixel value for each band that should be ignored for most operations. This is similar information provided by ST_BandNoDataValue.

	out_db An array of boolean flags indicating if the raster bands data is maintained outside the database. You will have the same number of elements in this array as you have number of bands.

	extent This is the extent of all the raster rows in your raster set. If you plan to load more data that will change the extent of the set, you'll want to run the DropRasterConstraints function before load and then reapply constraints with AddRasterConstraints after load.

	spatial_index A boolean that is true if raster column has a spatial index.

Raster Overviews

raster_overviews catalogs information about raster table columns used for overviews and additional information about them that is useful to know when utilizing overviews. Overview tables are cataloged in both raster_columns and raster_overviews because they are rasters in their own right but also serve an additional special purpose of being a lower resolution caricature of a higher resolution table. These are generated along-side the main raster table when you use the -l switch in raster loading or can be generated manually using AddOverviewConstraints.
Overview tables contain the same constraints as other raster tables as well as additional informational only constraints specific to overviews.
Note
The information in raster_overviews does not duplicate the information in raster_columns. If you need the information about an overview table present in raster_columns you can join the raster_overviews and raster_columns together to get the full set of information you need.

Two main reasons for overviews are:
	Low resolution representation of the core tables commonly used for fast mapping zoom-out.

	Computations are generally faster to do on them than their higher resolution parents because there are fewer records and each pixel covers more territory. Though the computations are not as accurate as the high-res tables they support, they can be sufficient in many rule-of-thumb computations.

The raster_overviews catalog contains the following columns of information.
	o_table_catalog The database the overview table is in. This will always read the current database.

	o_table_schema The database schema the overview raster table belongs to.

	o_table_name raster overview table name

	o_raster_column the raster column in the overview table.

	r_table_catalog The database the raster table that this overview services is in. This will always read the current database.

	r_table_schema The database schema the raster table that this overview services belongs to.

	r_table_name raster table that this overview services.

	r_raster_column the raster column that this overview column services.

	overview_factor - this is the pyramid level of the overview table. The higher the number the lower the resolution of the table.
					raster2pgsql if given a folder of images, will compute overview of each image file and load separately. Level 1 is assumed and always the original file. Level 2 is
					will have each tile represent 4 of the original. So for example if you have a folder of 5000x5000 pixel image files that you chose to chunk 125x125, for each image file your base table will
						have (5000*5000)/(125*125) records = 1600, your (l=2) o_2 table will have ceiling(1600/Power(2,2)) = 400 rows, your (l=3) o_3 will have ceiling(1600/Power(2,3)) = 200 rows.
						If your pixels aren't divisible by the size of your tiles, you'll get some scrap tiles (tiles not completely filled). Note that each overview tile generated by raster2pgsql has the same number of
						pixels as its parent, but is of a lower resolution where each pixel of it represents (Power(2,overview_factor) pixels of the original).

Name
ST_LineMerge — Return the lines formed by sewing together
			a MultiLineString.

Synopsis
	geometry ST_LineMerge(amultilinestring);	

geometry amultilinestring;

Description
Returns a LineString or MultiLineString formed by joining together
			the constituent line work of a MultiLineString.
 Lines are joined at their endpoints at 2-way intersections.
 Lines are not joined across intersections of 3-way or greater degree.

Note
Only use with MultiLineString/LineStrings. If you pass a Polygon or GeometryCollection into this function, it
			returns an empty GeometryCollection

Performed by the GEOS module.
Availability: 1.1.0
Warning
This function will strip the M dimension.

Examples
SELECT ST_AsText(ST_LineMerge(
'MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33),(-45 -33,-46 -32))'
));
st_astext
--
LINESTRING(-29 -27,-30 -29.7,-36 -31,-45 -33,-46 -32)

If merging is not possible due to non-touching lines,
the original MultiLineString is returned.

SELECT ST_AsText(ST_LineMerge(
'MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33),(-45.2 -33.2,-46 -32))'
));
st_astext

MULTILINESTRING((-45.2 -33.2,-46 -32),(-29 -27,-30 -29.7,-36 -31,-45 -33))

Example showing Z-dimension handling.

SELECT ST_AsText(ST_LineMerge(
 'MULTILINESTRING((-29 -27 11,-30 -29.7 10,-36 -31 5,-45 -33 6), (-29 -27 12,-30 -29.7 5), (-45 -33 1,-46 -32 11))'
));
st_astext
--
LINESTRING Z (-30 -29.7 5,-29 -27 11,-30 -29.7 10,-36 -31 5,-45 -33 1,-46 -32 11)

See Also
ST_Segmentize, ST_LineSubstring

Name
DropGeometryColumn — Removes a geometry column from a spatial
		table.

Synopsis
	text DropGeometryColumn(table_name, 	
	 	column_name);	

varchar
			table_name;
varchar
			column_name;

	text DropGeometryColumn(schema_name, 	
	 	table_name, 	
	 	column_name);	

varchar
			schema_name;
varchar
			table_name;
varchar
			column_name;

	text DropGeometryColumn(catalog_name, 	
	 	schema_name, 	
	 	table_name, 	
	 	column_name);	

varchar
			catalog_name;
varchar
			schema_name;
varchar
			table_name;
varchar
			column_name;

Description
Removes a geometry column from a spatial table. Note that
		schema_name will need to match the f_table_schema field of the table's
		row in the geometry_columns table.
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
Note
Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs,
			 you can drop a geometry column like any other table column using ALTER TABLE

Examples

			SELECT DropGeometryColumn ('my_schema','my_spatial_table','geom');
			----RESULT output ---
			 dropgeometrycolumn
--
 my_schema.my_spatial_table.geom effectively removed.

-- In PostGIS 2.0+ the above is also equivalent to the standard
-- the standard alter table. Both will deregister from geometry_columns
ALTER TABLE my_schema.my_spatial_table DROP column geom;
		

See Also
AddGeometryColumn, DropGeometryTable, the section called “GEOMETRY_COLUMNS View”

Name
ST_Azimuth — Returns the north-based azimuth of a line between two points.

Synopsis
	float ST_Azimuth(pointA, 	
	 	pointB);	

geometry pointA;
geometry pointB;

	float ST_Azimuth(pointA, 	
	 	pointB);	

geography pointA;
geography pointB;

Description
Returns the azimuth in radians of the line segment defined by the given
			point geometries, or NULL if the two points are coincident. The azimuth angle is referenced from north (the positive Y axis), and is positive clockwise: North = 0; Northeast = π/4; East = π/2; Southeast = 3π/4;
 South = π; Southwest 5π/4; West = 3π/2; Northwest = 7π/4.
For the geography type, the azimuth solution is known as the
 inverse geodesic problem.
The azimuth is a mathematical concept defined as the angle between a reference plane and a point, with angular units in radians.
			The result value in radians can be converted to degrees using the PostgreSQL function degrees().
Azimuth can be used in conjunction with ST_Translate to shift an object along its perpendicular axis. See
				 the upgis_lineshift() function in the PostGIS wiki for an implementation of this.
Availability: 1.1.0
Enhanced: 2.0.0 support for geography was introduced.
Enhanced: 2.2.0 measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature.

Examples
Geometry Azimuth in degrees

SELECT degrees(ST_Azimuth(ST_Point(25, 45), ST_Point(75, 100))) AS degA_B,
	 degrees(ST_Azimuth(ST_Point(75, 100), ST_Point(25, 45))) AS degB_A;

 dega_b | degb_a
------------------+------------------
 42.2736890060937 | 222.273689006094

	[image: Examples]Green: the start Point(25,45) with its vertical. Yellow: degA_B as the path to travel (azimuth).

				
	[image: Examples]Green: the start Point(75,100) with its vertical. Yellow: degB_A as the path to travel (azimuth).

				

See Also
ST_Angle, ST_Point, ST_Translate, ST_Project, PostgreSQL Math Functions

Name
TopoGeo_AddLineString — Adds a linestring to an existing topology using a tolerance and possibly splitting existing edges/faces. Returns edge identifiers.

Synopsis
	SETOF integer TopoGeo_AddLineString(atopology, 	
	 	aline, 	
	 	tolerance);	

varchar atopology;
geometry aline;
float8 tolerance;

Description

Adds a linestring to an existing topology and returns a set of edge identifiers forming it up.
The given line will snap to existing nodes or edges within given tolerance.
Existing edges and faces may be split by the line.

Note

Updating statistics about topologies being loaded via this function is
up to caller, see maintaining statistics during topology editing and population.

Availability: 2.0.0

See Also

TopoGeo_AddPoint,
TopoGeo_AddPolygon,
AddEdge,
CreateTopology
				

Release 1.5.2

Release date: 2010/09/27
This is a bug fix release, addressing issues that have been filed since the 1.5.1 release. If you are running PostGIS 1.3+, a soft upgrade is sufficient
	otherwise a hard upgrade is recommended.
Bug Fixes

Loader: fix handling of empty (0-verticed) geometries in shapefiles. (Sandro Santilli)
#536, Geography ST_Intersects, ST_Covers, ST_CoveredBy and Geometry ST_Equals not using spatial index (Regina Obe, Nicklas Aven)
#573, Improvement to ST_Contains geography (Paul Ramsey)
Loader: Add support for command-q shutdown in Mac GTK build (Paul Ramsey)
#393, Loader: Add temporary patch for large DBF files (Maxime Guillaud, Paul Ramsey)
#507, Fix wrong OGC URN in GeoJSON and GML output (Olivier Courtin)
spatial_ref_sys.sql Add datum conversion for projection SRID 3021 (Paul Ramsey)
Geography - remove crash for case when all geographies are out of the estimate (Paul Ramsey)
#469, Fix for array_aggregation error (Greg Stark, Paul Ramsey)
#532, Temporary geography tables showing up in other user sessions (Paul Ramsey)
#562, ST_Dwithin errors for large geographies (Paul Ramsey)
#513, shape loading GUI tries to make spatial index when loading DBF only mode (Paul Ramsey)
#527, shape loading GUI should always append log messages (Mark Cave-Ayland)
#504, shp2pgsql should rename xmin/xmax fields (Sandro Santilli)
#458, postgis_comments being installed in contrib instead of version folder (Mark Cave-Ayland)
#474, Analyzing a table with geography column crashes server (Paul Ramsey)
#581, LWGEOM-expand produces inconsistent results (Mark Cave-Ayland)
#513, Add dbf filter to shp2pgsql-gui and allow uploading dbf only (Paul Ramsey)
Fix further build issues against PostgreSQL 9.0 (Mark Cave-Ayland)
#572, Password whitespace for Shape File (Mark Cave-Ayland)
#603, shp2pgsql: "-w" produces invalid WKT for MULTI* objects. (Mark Cave-Ayland)

Name
ST_AsSVG — Returns SVG path data for a geometry.

Synopsis
	text ST_AsSVG(geom, 	
	 	rel=0, 	
	 	maxdecimaldigits=15);	

geometry geom;
integer rel=0;
integer maxdecimaldigits=15;

	text ST_AsSVG(geog, 	
	 	rel=0, 	
	 	maxdecimaldigits=15);	

geography geog;
integer rel=0;
integer maxdecimaldigits=15;

Description
Return the geometry as Scalar Vector Graphics (SVG) path data. Use 1 as second
			argument to have the path data implemented in terms of relative
			moves, the default (or 0) uses absolute moves. Third argument may
			be used to reduce the maximum number of decimal digits used in
			output (defaults to 15). Point geometries will be rendered as
			cx/cy when 'rel' arg is 0, x/y when 'rel' is 1. Multipoint
			geometries are delimited by commas (","), GeometryCollection
			geometries are delimited by semicolons (";").
Note
Availability: 1.2.2. Availability: 1.4.0 Changed in PostGIS 1.4.0 to include L command in absolute path to conform to http://www.w3.org/TR/SVG/paths.html#PathDataBNF

Changed: 2.0.0 to use default args and support named args

Examples
SELECT ST_AsSVG('POLYGON((0 0,0 1,1 1,1 0,0 0))');

		st_assvg

		M 0 0 L 0 -1 1 -1 1 0 Z

Chapter 6. Performance Tips

Small tables of large geometries

Problem description

Current PostgreSQL versions (including 9.6) suffer from a query
 optimizer weakness regarding TOAST tables. TOAST tables are a kind of
 "extension room" used to store large (in the sense of data size) values
 that do not fit into normal data pages (like long texts, images or
 complex geometries with lots of vertices), see
 the PostgreSQL Documentation for TOAST for more
 information).
The problem appears if you happen to have a table with rather
 large geometries, but not too many rows of them (like a table containing
 the boundaries of all European countries in high resolution). Then the
 table itself is small, but it uses lots of TOAST space. In our example
 case, the table itself had about 80 rows and used only 3 data pages, but
 the TOAST table used 8225 pages.
Now issue a query where you use the geometry operator &&
 to search for a bounding box that matches only very few of those rows.
 Now the query optimizer sees that the table has only 3 pages and 80
 rows. It estimates that a sequential scan on such a small table is much
 faster than using an index. And so it decides to ignore the GIST index.
 Usually, this estimation is correct. But in our case, the &&
 operator has to fetch every geometry from disk to compare the bounding
 boxes, thus reading all TOAST pages, too.
To see whether your suffer from this issue, use the "EXPLAIN
 ANALYZE" postgresql command. For more information and the technical
 details, you can read the thread on the PostgreSQL performance mailing
 list:
 http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php
and newer thread on PostGIS https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html

Workarounds

The PostgreSQL people are trying to solve this issue by making the
 query estimation TOAST-aware. For now, here are two workarounds:
The first workaround is to force the query planner to use the
 index. Send "SET enable_seqscan TO off;" to the server before issuing
 the query. This basically forces the query planner to avoid sequential
 scans whenever possible. So it uses the GIST index as usual. But this
 flag has to be set on every connection, and it causes the query planner
 to make misestimations in other cases, so you should "SET enable_seqscan
 TO on;" after the query.
The second workaround is to make the sequential scan as fast as
 the query planner thinks. This can be achieved by creating an additional
 column that "caches" the bbox, and matching against this. In our
 example, the commands are like:
SELECT AddGeometryColumn('myschema','mytable','bbox','4326','GEOMETRY','2');
UPDATE mytable SET bbox = ST_Envelope(ST_Force2D(geom));
Now change your query to use the && operator against bbox
 instead of geom_column, like:
SELECT geom_column
FROM mytable
WHERE bbox && ST_SetSRID('BOX3D(0 0,1 1)'::box3d,4326);
Of course, if you change or add rows to mytable, you have to keep
 the bbox "in sync". The most transparent way to do this would be
 triggers, but you also can modify your application to keep the bbox
 column current or run the UPDATE query above after every
 modification.

PostGIS 3.2.0beta3

2021/12/04
This version requires PostgreSQL 9.6 or higher, GEOS 3.6 or higher, and Proj 4.9+
Additional features are enabled if you are running GEOS 3.9+
(and ST_MakeValid enhancements with 3.10+),
Proj 6.1+, and PostgreSQL 14+.
Due to some query performance degradation
 with the new PG14 fast index build ,
 we have decided to disable the feature by default
 until we get more user testing
 as to the true impact of real-world queries.
 If you are running PG14+, you can reenable it by doing:
ALTER OPERATOR FAMILY gist_geometry_ops_2d USING gist
 ADD FUNCTION 11 (geometry)
 geometry_gist_sortsupport_2d (internal);

To revert the change:
ALTER OPERATOR FAMILY gist_geometry_ops_2d using gist
 DROP FUNCTION 11 (geometry);
and then reindex your gist indexes
Changes since PostGIS 3.2.0beta2 release:
Breaking changes / fixes

5028, ST_AsFlatGeobuf crashes on mixed geometry input
 (Björn Harrtell)
5029, ST_AsFlatGeobuf indexed output corruption
 (Björn Harrtell)
5014, Crash on ST_TableFromFlatGeobuf (Björn Harrtell)
Rename ST_TableFromFlatGeobuf to ST_FromFlatGeobufToTable
 (Björn Harrtell)
PG14 fast index building disabled by default. (Paul Ramsey)

Name
ST_AsGDALRaster — Return the raster tile in the designated GDAL Raster format. Raster formats are one of those supported by your compiled library. Use ST_GDALDrivers() to get a list of formats supported by your library.

Synopsis
	bytea ST_AsGDALRaster(rast, 	
	 	format, 	
	 	options=NULL, 	
	 	srid=sameassource);	

raster rast;
text format;
text[] options=NULL;
integer srid=sameassource;

Description
Returns the raster tile in the designated format. Arguments are itemized below:
	
 format format to output. This is dependent on the drivers compiled in your libgdal library. Generally available are 'JPEG', 'GTIff', 'PNG'. Use ST_GDALDrivers to get a list of formats supported by your library.

	
 options text array of GDAL options. Valid options are dependent on the format. Refer to GDAL Raster format options for more details.

	
 srs The proj4text or srtext (from spatial_ref_sys) to embed in the image

Availability: 2.0.0 - requires GDAL >= 1.6.0.

JPEG Output Example, multiple tiles as single raster
SELECT ST_AsGDALRaster(ST_Union(rast), 'JPEG', ARRAY['QUALITY=50']) As rastjpg
FROM dummy_rast
WHERE rast && ST_MakeEnvelope(10, 10, 11, 11);

Using PostgreSQL Large Object Support to export raster
One way to export raster into another format is using PostgreSQL large object export functions.
 We'lll repeat the prior example but also exporting. Note for this you'll need to have super user access to db since it uses server side lo functions.
 It will also export to path on server network. If you need export locally,
 use the psql equivalent lo_ functions which export to the local file system instead of the server file system.
DROP TABLE IF EXISTS tmp_out ;

CREATE TABLE tmp_out AS
SELECT lo_from_bytea(0,
 ST_AsGDALRaster(ST_Union(rast), 'JPEG', ARRAY['QUALITY=50'])
) AS loid
 FROM dummy_rast
WHERE rast && ST_MakeEnvelope(10, 10, 11, 11);

SELECT lo_export(loid, '/tmp/dummy.jpg')
 FROM tmp_out;

SELECT lo_unlink(loid)
 FROM tmp_out;

GTIFF Output Examples
SELECT ST_AsGDALRaster(rast, 'GTiff') As rastjpg
FROM dummy_rast WHERE rid=2;

-- Out GeoTiff with jpeg compression, 90% quality
SELECT ST_AsGDALRaster(rast, 'GTiff',
 ARRAY['COMPRESS=JPEG', 'JPEG_QUALITY=90'],
 4269) As rasttiff
FROM dummy_rast WHERE rid=2;

See Also
the section called “Building Custom Applications with PostGIS Raster”, ST_GDALDrivers, ST_SRID

Name
ST_CreateOverview —
Create an reduced resolution version of a given raster coverage.

Synopsis
	regclass ST_CreateOverview(tab, 	
	 	col, 	
	 	factor, 	
	 	algo='NearestNeighbor');	

regclass tab;
name col;
int factor;
text algo='NearestNeighbor';

Description

Create an overview table with resampled tiles from the source table.
Output tiles will have the same size of input tiles and cover the same
spatial extent with a lower resolution (pixel size will be
1/factor of the original in both directions).

The overview table will be made available in the
raster_overviews catalog and will have raster
constraints enforced.

Algorithm options are: 'NearestNeighbor', 'Bilinear', 'Cubic', 'CubicSpline', and 'Lanczos'. Refer to: GDAL Warp resampling methods for more details.
Availability: 2.2.0

Example
Output to generally better quality but slower to product format
SELECT ST_CreateOverview('mydata.mytable'::regclass, 'rast', 2, 'Lanczos');
Output to faster to process default nearest neighbor
SELECT ST_CreateOverview('mydata.mytable'::regclass, 'rast', 2);

See Also

 ST_Retile,
 AddOverviewConstraints,
 AddRasterConstraints,
 the section called “Raster Overviews”

PostGIS Window Functions

The functions given below are spatial window functions provided with PostGIS that can be used just like any other sql window function such as row_numer(), lead(), lag(). All these require an SQL OVER() clause.
	ST_ClusterDBSCAN - Window function that returns a cluster id for each input geometry using the DBSCAN algorithm.
	ST_ClusterKMeans - Window function that returns a cluster id for each input geometry using the K-means algorithm.

Name
ST_StartPoint — Returns the first point of a LineString.

Synopsis
	geometry ST_StartPoint(geomA);	

geometry geomA;

Description
Returns the first point of a LINESTRING
 or CIRCULARLINESTRING geometry
	 as a POINT.
 Returns NULL if the input
	 is not a LINESTRING or CIRCULARLINESTRING.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.1.3
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
Note
Enhanced: 3.2.0 returns a point for all geometries. Prior behavior returns NULLs if input was not a LineString.
Changed: 2.0.0 no longer works with single geometry MultiLineStrings. In older
	 versions of PostGIS a single-line MultiLineString would work happily with this
	 function and return the start point. In 2.0.0 it just returns NULL like any other MultiLineString.
	 The old behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING
	 may experience these returning NULL in 2.0.0.

Examples
Start point of a LineString
SELECT ST_AsText(ST_StartPoint('LINESTRING(0 1, 0 2)'::geometry));
 st_astext

 POINT(0 1)

Start point of a non-LineString is NULL

SELECT ST_StartPoint('POINT(0 1)'::geometry) IS NULL AS is_null;
 is_null

 t

Start point of a 3D LineString

SELECT ST_AsEWKT(ST_StartPoint('LINESTRING(0 1 1, 0 2 2)'::geometry));
 st_asewkt

 POINT(0 1 1)

Start point of a CircularString

SELECT ST_AsText(ST_StartPoint('CIRCULARSTRING(5 2,-3 1.999999, -2 1, -4 2, 6 3)'::geometry));
 st_astext

 POINT(5 2)

See Also
ST_EndPoint, ST_PointN

Name
ST_Crosses — Returns true if two geometries have some, but not all,
 interior points in common.

Synopsis
	boolean ST_Crosses(g1, 	
	 	g2);	

geometry g1;
geometry g2;

Description
ST_Crosses takes two geometry objects and
 returns true if their intersection "spatially cross", that is, the
 geometries have some, but not all interior points in common. The
 intersection of the interiors of the geometries must not be the empty
 set and must have a dimensionality less than the maximum dimension
 of the two input geometries. Additionally, the intersection of the two
 geometries must not equal either of the source geometries. Otherwise, it
 returns false.
In mathematical terms, this is expressed as:
[image: Description]

The DE-9IM Intersection Matrix for the two geometries is:
	T*T****** (for Point/Line, Point/Area, and
 Line/Area situations)

	T*****T** (for Line/Point, Area/Point, and
 Area/Line situations)

	0******** (for Line/Line situations)

For any other combination of dimensions this predicate returns
 false.
The OpenGIS Simple Features Specification defines this predicate
 only for Point/Line, Point/Area, Line/Line, and Line/Area situations.
 JTS / GEOS extends the definition to apply to Line/Point, Area/Point and
 Area/Line situations as well. This makes the relation
 symmetric.
Note
This function automatically includes a bounding box comparison
that makes use of any spatial indexes that are available on the geometries.

Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.13.3
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.29

Examples
The following illustrations all return TRUE.
	[image: Examples]MULTIPOINT / LINESTRING

	[image: Examples]MULTIPOINT / POLYGON

	[image: Examples]LINESTRING / POLYGON

	[image: Examples]LINESTRING / LINESTRING

Consider a situation where a user has two tables: a table of roads
 and a table of highways.
	
CREATE TABLE roads (
 id serial NOT NULL,
 geom geometry,
 CONSTRAINT roads_pkey PRIMARY KEY (road_id)
);

	
CREATE TABLE highways (
 id serial NOT NULL,
 the_gem geometry,
 CONSTRAINT roads_pkey PRIMARY KEY (road_id)
);

To determine a list of roads that cross a highway, use a query
 similiar to:
SELECT roads.id
FROM roads, highways
WHERE ST_Crosses(roads.geom, highways.geom);

Name
ST_ChaikinSmoothing — Returns a smoothed version of a geometry, using the Chaikin algorithm

Synopsis
	geometry ST_ChaikinSmoothing(geom, 	
	 	nIterations = 1, 	
	 	preserveEndPoints = false);	

geometry geom;
integer nIterations = 1;
boolean preserveEndPoints = false;

Description
 Returns a "smoothed" version of the given geometry using the Chaikin algorithm.
 See Chaikins-Algorithm for an explanation of the process.
 For each iteration the number of vertex points will double.
 The function puts new vertex points at 1/4 of the line before and after each point and removes the original point.
 To reduce the number of points use one of the simplification functions on the result.
 The new points gets interpolated values for all included dimensions, also z and m.
Second argument, number of iterations is limited to max 5 iterations
Note third argument is only valid for polygons, and will be ignored for linestrings
This function handles 3D and the third dimension will affect the result.
Note
Note that returned geometry will get more points than the original.
 To reduce the number of points again use one of the simplification functions on the result.
 (see ST_Simplify and ST_SimplifyVW)

Availability: 2.5.0

Examples
A triangle is smoothed

select ST_AsText(ST_ChaikinSmoothing(geom)) smoothed
FROM (SELECT 'POLYGON((0 0, 8 8, 0 16, 0 0))'::geometry geom) As foo;
┌───┐
│ smoothed │
├───┤
│ POLYGON((2 2,6 6,6 10,2 14,0 12,0 4,2 2)) │
└───┘

See Also
ST_Simplify, ST_SimplifyVW

Name
postgis_sfcgal_version — Returns the version of SFCGAL in use

Synopsis
	text postgis_sfcgal_version();	

Description
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Name
ST_MinPossibleValue — Returns the minimum value this pixeltype can store.

Synopsis
	integer ST_MinPossibleValue(pixeltype);	

text pixeltype;

Description
Returns the minimum value this pixeltype can store.

Examples
SELECT ST_MinPossibleValue('16BSI');

 st_minpossiblevalue

 -32768

SELECT ST_MinPossibleValue('8BUI');

 st_minpossiblevalue

 0

See Also
ST_BandPixelType

Name
Pagc_Normalize_Address — Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This function
 will work with just the lookup data packaged with the tiger_geocoder (no need for tiger census data). Requires address_standardizer extension.

Synopsis
	norm_addy pagc_normalize_address(in_address);	

varchar in_address;

Description
Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This is the first step in the geocoding process to
 get all addresses into normalized postal form. No other data is required aside from what is packaged with the geocoder.
This function just uses the various pagc_* lookup tables preloaded with the tiger_geocoder and located in the tiger schema, so it doesn't need you to download tiger census data or any other additional data to make use of it.
 You may find the need to add more abbreviations or alternative namings to the various lookup tables in the tiger schema.
It uses various control lookup tables located in tiger schema to normalize the input address.
Fields in the norm_addy type object returned by this function in this order where () indicates a field required by the geocoder, [] indicates an optional field:
There are slight variations in casing and formatting over the Normalize_Address.
Availability: 2.1.0
[image: Description] This method needs address_standardizer extension.
(address) [predirAbbrev] (streetName) [streetTypeAbbrev] [postdirAbbrev] [internal] [location] [stateAbbrev] [zip]
The native standardaddr of address_standardizer extension is at this time a bit richer than norm_addy since its designed to support international addresses (including country). standardaddr equivalent fields are:
house_num,predir, name, suftype, sufdir, unit, city, state, postcode
Enhanced: 2.4.0 norm_addy object includes additional fields zip4 and address_alphanumeric.
	address is an integer: The street number

	predirAbbrev is varchar: Directional prefix of road such as N, S, E, W etc. These are controlled using the direction_lookup table.

	streetName varchar

	streetTypeAbbrev varchar abbreviated version of street type: e.g. St, Ave, Cir. These are controlled using the street_type_lookup table.

	postdirAbbrev varchar abbreviated directional suffice of road N, S, E, W etc. These are controlled using the direction_lookup table.

	internal varchar internal address such as an apartment or suite number.

	location varchar usually a city or governing province.

	stateAbbrev varchar two character US State. e.g MA, NY, MI. These are controlled by the state_lookup table.

	zip varchar 5-digit zipcode. e.g. 02109.

	parsed boolean - denotes if addess was formed from normalize process. The normalize_address function sets this to true before returning the address.

	zip4 last 4 digits of a 9 digit zip code. Availability: PostGIS 2.4.0.

	address_alphanumeric Full street number even if it has alpha characters like 17R. Parsing of this is better using Pagc_Normalize_Address function. Availability: PostGIS 2.4.0.

Examples
Single call example

SELECT addy.*
FROM pagc_normalize_address('9000 E ROO ST STE 999, Springfield, CO') AS addy;

 address | predirabbrev | streetname | streettypeabbrev | postdirabbrev | internal | location | stateabbrev | zip | parsed
---------+--------------+------------+------------------+---------------+-----------+-------------+-------------+-----+--------
 9000 | E | ROO | ST | | SUITE 999 | SPRINGFIELD | CO | | t
Batch call. There are currently speed issues with the way postgis_tiger_geocoder wraps the address_standardizer. These will hopefully
be resolved in later editions. To work around them, if you need speed for batch geocoding to call generate a normaddy in batch mode, you are encouraged
to directly call the address_standardizer standardize_address function as shown below which is similar exercise to what we did in Normalize_Address that uses data created in Geocode.
WITH g AS (SELECT address, ROW((sa).house_num, (sa).predir, (sa).name
 , (sa).suftype, (sa).sufdir, (sa).unit , (sa).city, (sa).state, (sa).postcode, true)::norm_addy As na
 FROM (SELECT address, standardize_address('tiger.pagc_lex'
 , 'tiger.pagc_gaz'
 , 'tiger.pagc_rules', address) As sa
 FROM addresses_to_geocode) As g)
SELECT address As orig, (g.na).streetname, (g.na).streettypeabbrev
 FROM g;

 orig | streetname | streettypeabbrev
---+---------------+------------------
 529 Main Street, Boston MA, 02129 | MAIN | ST
 77 Massachusetts Avenue, Cambridge, MA 02139 | MASSACHUSETTS | AVE
 25 Wizard of Oz, Walaford, KS 99912323 | WIZARD OF |
 26 Capen Street, Medford, MA | CAPEN | ST
 124 Mount Auburn St, Cambridge, Massachusetts 02138 | MOUNT AUBURN | ST
 950 Main Street, Worcester, MA 01610 | MAIN | ST

See Also
Normalize_Address, Geocode

Name
ST_MinDist4ma — Raster processing function that returns the minimum distance (in number of pixels) between the pixel of interest and a neighboring pixel with value.

Synopsis
	double precision ST_MinDist4ma(value, 	
	 	pos, 	
	 	VARIADIC userargs);	

double precision[][][] value;
integer[][] pos;
text[] VARIADIC userargs;

Description
Return the shortest distance (in number of pixels) between the pixel of interest and the closest pixel with value in the neighborhood.
Note

 The intent of this function is to provide an informative data point that helps infer the usefulness of the pixel of interest's interpolated value from ST_InvDistWeight4ma. This function is particularly useful when the neighborhood is sparsely populated.

Note
This function is a specialized callback function for use as a callback parameter to ST_MapAlgebra (callback function version).

Availability: 2.1.0

Examples

-- NEEDS EXAMPLE

See Also

 ST_MapAlgebra (callback function version),
 ST_InvDistWeight4ma

Name
geomval — A spatial datatype with two fields - geom (holding a geometry object)
 and val (holding a double precision pixel value from a raster band).

Description
geomval is a compound data type consisting of a geometry object referenced by the .geom field
 and val, a double precision value that represents the pixel value at a particular geometric location in a raster band.
 It is used by the ST_DumpAsPolygon and Raster intersection family of functions as an output type to explode a raster band into
 geometry polygons.

See Also
the section called “PostGIS Geometry / Geography / Raster Dump Functions”

Name
ST_UpperLeftX — Returns the upper left X coordinate of raster in projected spatial ref.

Synopsis
	float8 ST_UpperLeftX(rast);	

raster rast;

Description
Returns the upper left X coordinate of raster in projected spatial ref.

Examples

SELECt rid, ST_UpperLeftX(rast) As ulx
FROM dummy_rast;

 rid | ulx
-----+------------
 1 | 0.5
 2 | 3427927.75

See Also
ST_UpperLeftY, ST_GeoReference, Box3D

Name
ST_GeomFromGeoJSON — Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object

Synopsis
	geometry ST_GeomFromGeoJSON(geomjson);	

text geomjson;

	geometry ST_GeomFromGeoJSON(geomjson);	

json geomjson;

	geometry ST_GeomFromGeoJSON(geomjson);	

jsonb geomjson;

Description
Constructs a PostGIS geometry object from the GeoJSON representation.
ST_GeomFromGeoJSON works only for JSON Geometry fragments. It throws an error if you try to use it on a whole JSON document.
Enhanced: 3.0.0 parsed geometry defaults to SRID=4326 if not specified otherwise.
Enhanced: 2.5.0 can now accept json and jsonb as inputs.
Availability: 2.0.0 requires - JSON-C >= 0.9
Note
If you do not have JSON-C enabled, support you will get an error notice instead of seeing an output.
			To enable JSON-C, run configure --with-jsondir=/path/to/json-c. See the section called “Build configuration” for details.

[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_AsText(ST_GeomFromGeoJSON('{"type":"Point","coordinates":[-48.23456,20.12345]}')) As wkt;
wkt

POINT(-48.23456 20.12345)

-- a 3D linestring
SELECT ST_AsText(ST_GeomFromGeoJSON('{"type":"LineString","coordinates":[[1,2,3],[4,5,6],[7,8,9]]}')) As wkt;

wkt

LINESTRING(1 2,4 5,7 8)

See Also
ST_AsText, ST_AsGeoJSON, the section called “Build configuration”

Name
ST_YMin — Returns the Y minima of a 2D or 3D bounding box or a geometry.

Synopsis
	float ST_YMin(aGeomorBox2DorBox3D);	

box3d aGeomorBox2DorBox3D;

Description
Returns the Y minima of a 2D or 3D bounding box or a geometry.
Note
Although this function is only defined for box3d, it also works for box2d and geometry values due to automatic casting.
			However it will not accept a geometry or box2d text representation, since those do not auto-cast.

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_YMin('BOX3D(1 2 3, 4 5 6)');
st_ymin

2

SELECT ST_YMin(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'));
st_ymin

3

SELECT ST_YMin(CAST('BOX(-3 2, 3 4)' As box2d));
st_ymin

2
--Observe THIS DOES NOT WORK because it will try to auto-cast the string representation to a BOX3D
SELECT ST_YMin('LINESTRING(1 3, 5 6)');

--ERROR: BOX3D parser - doesn't start with BOX3D(

SELECT ST_YMin(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
st_ymin

150406
		

See Also
ST_GeomFromEWKT, ST_XMin, ST_XMax, ST_YMax, ST_ZMax, ST_ZMin

Release 1.2.1

Release date: 2007/01/11
This release provides bug fixes in PostgreSQL 8.2 support and some
 small performance enhancements.
Changes

Fixed point-in-polygon shortcut bug in Within().
Fixed PostgreSQL 8.2 NULL handling for indexes.
Updated RPM spec files.
Added short-circuit for Transform() in no-op case.
JDBC: Fixed JTS handling for multi-dimensional geometries
 (thanks to Thomas Marti for hint and partial patch). Additionally, now
 JavaDoc is compiled and packaged. Fixed classpath problems with GCJ.
 Fixed pgjdbc 8.2 compatibility, losing support for jdk 1.3 and
 older.

Name
ST_ScaleY — Returns the Y component of the pixel height in units of coordinate reference system.

Synopsis
	float8 ST_ScaleY(rast);	

raster rast;

Description
Returns the Y component of the pixel height in units of coordinate reference system. May be negative. Refer to World File
 for more details.
Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeY.

Examples
SELECT rid, ST_ScaleY(rast) As rastpixheight
FROM dummy_rast;

 rid | rastpixheight
-----+---------------
 1 | 3
 2 | -0.05

See Also
ST_Height

Name
clearTopoGeom — Clears the content of a topo geometry.

Synopsis
	topogeometry clearTopoGeom(topogeom);	

topogeometry topogeom;

Description

Clears the content a TopoGeometry
turning it into an empty one. Mostly useful in conjunction with toTopoGeom to replace the shape of existing
objects and any dependent object in higher hierarchical levels.

Availability: 2.1

Examples

-- Shrink all TopoGeometry polygons by 10 meters
UPDATE nei_topo SET topo = ST_Buffer(clearTopoGeom(topo), -10);
				

See Also

toTopoGeom

Name
ST_Overlaps —
 Return true if raster rastA and rastB intersect but one does not completely contain the other.

Synopsis
	boolean ST_Overlaps(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB);	

 raster
 rastA
 ;

 integer
 nbandA
 ;

 raster
 rastB
 ;

 integer
 nbandB
 ;

	boolean ST_Overlaps(rastA, 	
	 	rastB);	

 raster
 rastA
 ;

 raster
 rastB
 ;

Description

 Return true if raster rastA spatially overlaps raster rastB. This means that rastA and rastB intersect but one does not completely contain the other. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Note

 This function will make use of any indexes that may be available on the rasters.

Note

 To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Overlaps(ST_Polygon(raster), geometry).

Availability: 2.1.0

Examples

-- comparing different bands of same raster
SELECT ST_Overlaps(rast, 1, rast, 2) FROM dummy_rast WHERE rid = 2;

 st_overlaps

 f

See Also

 ST_Intersects

Release 1.5.0

Release date: 2010/02/04
This release provides support for geographic coordinates (lat/lon) via a new GEOGRAPHY type. Also performance enhancements, new input format support (GML,KML) and general upkeep.
API Stability

The public API of PostGIS will not change during minor (0.0.X) releases.
The definition of the =~ operator has changed from an exact geometric equality check to a bounding box equality check.

Compatibility

GEOS, Proj4, and LibXML2 are now mandatory dependencies
The library versions below are the minimum requirements for PostGIS 1.5
PostgreSQL 8.3 and higher on all platforms
GEOS 3.1 and higher only (GEOS 3.2+ to take advantage of all features)
LibXML2 2.5+ related to new ST_GeomFromGML/KML functionality
Proj4 4.5 and higher only

New Features

the section called “PostGIS Functions new, behavior changed, or enhanced in 1.5”
Added Hausdorff distance calculations (#209) (Vincent Picavet)
Added parameters argument to ST_Buffer operation to support one-sided buffering and other buffering styles (Sandro Santilli)
Addition of other Distance related visualization and analysis functions (Nicklas Aven)
	ST_ClosestPoint

	ST_DFullyWithin

	ST_LongestLine

	ST_MaxDistance

	ST_ShortestLine

ST_DumpPoints (Maxime van Noppen)
KML, GML input via ST_GeomFromGML and ST_GeomFromKML (Olivier Courtin)
Extract homogeneous collection with ST_CollectionExtract (Paul Ramsey)
Add measure values to an existing linestring with ST_AddMeasure (Paul Ramsey)
History table implementation in utils (George Silva)
Geography type and supporting functions
	Spherical algorithms (Dave Skea)

	Object/index implementation (Paul Ramsey)

	Selectivity implementation (Mark Cave-Ayland)

	Serializations to KML, GML and JSON (Olivier Courtin)

	ST_Area, ST_Distance, ST_DWithin, ST_GeogFromText, ST_GeogFromWKB, ST_Intersects, ST_Covers, ST_Buffer (Paul Ramsey)

Enhancements

Performance improvements to ST_Distance (Nicklas Aven)
Documentation updates and improvements (Regina Obe, Kevin Neufeld)
Testing and quality control (Regina Obe)
PostGIS 1.5 support PostgreSQL 8.5 trunk (Guillaume Lelarge)
Win32 support and improvement of core shp2pgsql-gui (Mark Cave-Ayland)
In place 'make check' support (Paul Ramsey)

Bug fixes

http://trac.osgeo.org/postgis/query?status=closed&milestone=PostGIS+1.5.0&order=priority

Name
ST_ModEdgeSplit — Split an edge by creating a new node along an existing edge, modifying the original edge and adding a new edge.

Synopsis
	integer ST_ModEdgeSplit(atopology, 	
	 	anedge, 	
	 	apoint);	

varchar atopology;
integer anedge;
geometry apoint;

Description

Split an edge by creating a new node along an existing edge,
modifying the original edge and adding a new edge.
Updates all existing joined edges and relationships accordingly.
Returns the identifier of the newly added node.
		
Availability: 1.?
Changed: 2.0 - In prior versions, this was misnamed ST_ModEdgesSplit
[image: Description] This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

Examples

-- Add an edge --
 SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227592 893910, 227600 893910)', 26986)) As edgeid;

-- edgeid-
3

-- Split the edge --
SELECT topology.ST_ModEdgeSplit('ma_topo', 3, ST_SetSRID(ST_Point(227594,893910),26986)) As node_id;
 node_id

7

See Also

				ST_NewEdgesSplit,
				ST_ModEdgeHeal,
				ST_NewEdgeHeal,
				AddEdge
				

Name
ST_MakeValid — Attempts to make an invalid geometry valid without losing vertices.

Synopsis
	geometry ST_MakeValid(input);	

geometry input;

	geometry ST_MakeValid(input, 	
	 	params);	

geometry input;
text params;

Description

 The function attempts to create a valid representation of a given invalid
 geometry without losing any of the input vertices.
 Valid geometries are returned unchanged.

 Supported inputs are: POINTS, MULTIPOINTS, LINESTRINGS,
 MULTILINESTRINGS, POLYGONS, MULTIPOLYGONS and GEOMETRYCOLLECTIONS
 containing any mix of them.

 In case of full or partial dimensional collapses, the output geometry
 may be a collection of lower-to-equal dimension geometries,
 or a geometry of lower dimension.

 Single polygons may become multi-geometries in case of self-intersections.

 The params argument can be used to supply an options
 string to select the method to use for building valid geometry.
 The options string is in the format "method=linework|structure keepcollapsed=true|false".

The "method" key has two values.
	"linework" is the original algorithm, and builds valid geometries
 by first extracting all lines, noding that linework together, then building
 a value output from the linework.

	"structure" is an algorithm that distinguishes between
 interior and exterior rings, building new geometry by unioning
 exterior rings, and then differencing all interior rings.

The "keepcollapsed" key is only valid for the "structure" algorithm,
 and takes a value of "true" or "false". When set to "false",
 geometry components that collapse to a lower dimensionality,
 for example a one-point linestring would be dropped.

Performed by the GEOS module.
Availability: 2.0.0
Enhanced: 2.0.1, speed improvements
Enhanced: 2.1.0, added support for GEOMETRYCOLLECTION and MULTIPOINT.
Enhanced: 3.1.0, added removal of Coordinates with NaN values.
Enhanced: 3.2.0, added algorithm options, 'linework' and 'structure'.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
	[image: Examples]before_geom: MULTIPOLYGON of 2 overlapping polygons

[image: Examples]after_geom: MULTIPOLYGON of 4 non-overlapping polygons

[image: Examples]after_geom_structure: MULTIPOLYGON of 1 non-overlapping polygon

SELECT f.geom AS before_geom, ST_MakeValid(f.geom) AS after_geom, ST_MakeValid(f.geom, 'method=structure') AS after_geom_structure
FROM (SELECT 'MULTIPOLYGON(((186 194,187 194,188 195,189 195,190 195,
191 195,192 195,193 194,194 194,194 193,195 192,195 191,
195 190,195 189,195 188,194 187,194 186,14 6,13 6,12 5,11 5,
10 5,9 5,8 5,7 6,6 6,6 7,5 8,5 9,5 10,5 11,5 12,6 13,6 14,186 194)),
((150 90,149 80,146 71,142 62,135 55,128 48,119 44,110 41,100 40,
90 41,81 44,72 48,65 55,58 62,54 71,51 80,50 90,51 100,
54 109,58 118,65 125,72 132,81 136,90 139,100 140,110 139,
119 136,128 132,135 125,142 118,146 109,149 100,150 90)))'::geometry AS geom) AS f;

	

[image: Examples]before_geom: MULTIPOLYGON of 6 overlapping polygons

[image: Examples]after_geom: MULTIPOLYGON of 14 Non-overlapping polygons

[image: Examples]after_geom_structure: MULTIPOLYGON of 1 Non-overlapping polygon

SELECT c.geom AS before_geom,
 ST_MakeValid(c.geom) AS after_geom,
 ST_MakeValid(c.geom, 'method=structure') AS after_geom_structure
	FROM (SELECT 'MULTIPOLYGON(((91 50,79 22,51 10,23 22,11 50,23 78,51 90,79 78,91 50)),
		 ((91 100,79 72,51 60,23 72,11 100,23 128,51 140,79 128,91 100)),
		 ((91 150,79 122,51 110,23 122,11 150,23 178,51 190,79 178,91 150)),
		 ((141 50,129 22,101 10,73 22,61 50,73 78,101 90,129 78,141 50)),
		 ((141 100,129 72,101 60,73 72,61 100,73 128,101 140,129 128,141 100)),
		 ((141 150,129 122,101 110,73 122,61 150,73 178,101 190,129 178,141 150)))'::geometry AS geom) AS c;

Examples
SELECT ST_AsText(ST_MakeValid(
 'LINESTRING(0 0, 0 0)',
 'method=structure keepcollapsed=true'
));

 st_astext

 POINT(0 0)

SELECT ST_AsText(ST_MakeValid(
 'LINESTRING(0 0, 0 0)',
 'method=structure keepcollapsed=false'
));

 st_astext

 LINESTRING EMPTY

See Also

 ST_IsValid,
 ST_Collect,
 ST_CollectionExtract

Name
ST_3DIntersection — Perform 3D intersection

Synopsis
	geometry ST_3DIntersection(geom1, 	
	 	geom2);	

geometry geom1;
geometry geom2;

Description
Return a geometry that is the shared portion between geom1 and geom2.
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
3D images were generated using PostGIS ST_AsX3D and rendering in HTML using X3Dom HTML Javascript rendering library.
	

SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2;

[image: Examples]Original 3D geometries overlaid. geom2 is shown semi-transparent

 	

SELECT ST_3DIntersection(geom1,geom2)
FROM (SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2) As t;

[image: Examples]Intersection of geom1 and geom2

3D linestrings and polygons
	SELECT ST_AsText(ST_3DIntersection(linestring, polygon)) As wkt
FROM ST_GeomFromText('LINESTRING Z (2 2 6,1.5 1.5 7,1 1 8,0.5 0.5 8,0 0 10)') AS linestring
 CROSS JOIN ST_GeomFromText('POLYGON((0 0 8, 0 1 8, 1 1 8, 1 0 8, 0 0 8))') AS polygon;

 wkt

 LINESTRING Z (1 1 8,0.5 0.5 8)
		
Cube (closed Polyhedral Surface) and Polygon Z
SELECT ST_AsText(ST_3DIntersection(
		ST_GeomFromText('POLYHEDRALSURFACE Z(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
	((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
	((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
	((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'),
	'POLYGON Z ((0 0 0, 0 0 0.5, 0 0.5 0.5, 0 0.5 0, 0 0 0))'::geometry))
TIN Z (((0 0 0,0 0 0.5,0 0.5 0.5,0 0 0)),((0 0.5 0,0 0 0,0 0.5 0.5,0 0.5 0)))
Intersection of 2 solids that result in volumetric intersection is also a solid (ST_Dimension returns 3)
SELECT ST_AsText(ST_3DIntersection(ST_Extrude(ST_Buffer('POINT(10 20)'::geometry,10,1),0,0,30),
 ST_Extrude(ST_Buffer('POINT(10 20)'::geometry,10,1),2,0,10)));
POLYHEDRALSURFACE Z (((13.3333333333333 13.3333333333333 10,20 20 0,20 20 10,13.3333333333333 13.3333333333333 10)),
	((20 20 10,16.6666666666667 23.3333333333333 10,13.3333333333333 13.3333333333333 10,20 20 10)),
	((20 20 0,16.6666666666667 23.3333333333333 10,20 20 10,20 20 0)),
	((13.3333333333333 13.3333333333333 10,10 10 0,20 20 0,13.3333333333333 13.3333333333333 10)),
	((16.6666666666667 23.3333333333333 10,12 28 10,13.3333333333333 13.3333333333333 10,16.6666666666667 23.3333333333333 10)),
	((20 20 0,9.99999999999995 30 0,16.6666666666667 23.3333333333333 10,20 20 0)),
	((10 10 0,9.99999999999995 30 0,20 20 0,10 10 0)),((13.3333333333333 13.3333333333333 10,12 12 10,10 10 0,13.3333333333333 13.3333333333333 10)),
	((12 28 10,12 12 10,13.3333333333333 13.3333333333333 10,12 28 10)),
	((16.6666666666667 23.3333333333333 10,9.99999999999995 30 0,12 28 10,16.6666666666667 23.3333333333333 10)),
	((10 10 0,0 20 0,9.99999999999995 30 0,10 10 0)),
	((12 12 10,11 11 10,10 10 0,12 12 10)),((12 28 10,11 11 10,12 12 10,12 28 10)),
	((9.99999999999995 30 0,11 29 10,12 28 10,9.99999999999995 30 0)),((0 20 0,2 20 10,9.99999999999995 30 0,0 20 0)),
	((10 10 0,2 20 10,0 20 0,10 10 0)),((11 11 10,2 20 10,10 10 0,11 11 10)),((12 28 10,11 29 10,11 11 10,12 28 10)),
	((9.99999999999995 30 0,2 20 10,11 29 10,9.99999999999995 30 0)),((11 11 10,11 29 10,2 20 10,11 11 10)))

Name
ST_Difference — Computes a geometry representing the part of geometry A
 that does not intersect geometry B.

Synopsis
	geometry ST_Difference(geomA, 	
	 	geomB, 	
	 	gridSize = -1);	

geometry geomA;
geometry geomB;
float8 gridSize = -1;

Description
Returns a geometry representing the part of geometry A
 that does not intersect geometry B.
 This is equivalent to A - ST_Intersection(A,B).
 If A is completely contained in B
 then an empty atomic geometry of appropriate type is returned.
Note
This is the only overlay function where input order matters.
 ST_Difference(A, B) always returns a portion of A.

If the optional gridSize argument is provided, the inputs are
snapped to a grid of the given size, and the result vertices are computed
on that same grid. (Requires GEOS-3.9.0 or higher)

Performed by the GEOS module
Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.3
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.20
[image: Description]
 This function supports 3d and will not drop the z-index. However, the result is computed using XY only.
 The result Z values are copied, averaged or interpolated.

Examples
	

[image: Examples]The input linestrings

 	
 [image: Examples]The difference of the two linestrings

The difference of 2D linestrings.
SELECT ST_AsText(
 ST_Difference(
 'LINESTRING(50 100, 50 200)'::geometry,
 'LINESTRING(50 50, 50 150)'::geometry
)
);

st_astext

LINESTRING(50 150,50 200)

The difference of 3D points.
SELECT ST_AsEWKT(ST_Difference(
 'MULTIPOINT(-118.58 38.38 5,-118.60 38.329 6,-118.614 38.281 7)' :: geometry,
 'POINT(-118.614 38.281 5)' :: geometry
));

st_asewkt

MULTIPOINT(-118.6 38.329 6,-118.58 38.38 5)

See Also
ST_SymDifference, ST_Intersection, ST_Union

Name
ST_NDims — Returns the coordinate dimension of a geometry.

Synopsis
	integer ST_NDims(g1);	

geometry g1;

Description
Returns the coordinate dimension of the geometry. PostGIS supports 2 - (x,y) ,
			3 - (x,y,z) or 2D with measure - x,y,m, and 4 - 3D with measure space x,y,z,m
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_NDims(ST_GeomFromText('POINT(1 1)')) As d2point,
	ST_NDims(ST_GeomFromEWKT('POINT(1 1 2)')) As d3point,
	ST_NDims(ST_GeomFromEWKT('POINTM(1 1 0.5)')) As d2pointm;

	 d2point | d3point | d2pointm
---------+---------+----------
	 2 | 3 | 3
			

See Also
ST_CoordDim, ST_Dimension, ST_GeomFromEWKT

Name
stdaddr — A composite type that consists of the elements of an address. This is the return type for standardize_address function.

Description
A composite type that consists of elements of an address. This is the return type for standardize_address function. Some descriptions for elements are borrowed from PAGC Postal Attributes.
The token numbers denote the output reference number in the rules table.
[image: Description] This method needs address_standardizer extension.
	building
	 is text (token number 0): Refers to building number or name. Unparsed building identifiers and types. Generally blank for most addresses.

	house_num
	is a text (token number 1): This is the street number on a street. Example 75 in 75 State Street.

	predir
	 is text (token number 2): STREET NAME PRE-DIRECTIONAL such as North, South, East, West etc.

	qual
	is text (token number 3): STREET NAME PRE-MODIFIER Example OLD in 3715 OLD HIGHWAY 99.

	pretype
	 is text (token number 4): STREET PREFIX TYPE

	name
	is text (token number 5): STREET NAME

	suftype
	is text (token number 6): STREET POST TYPE e.g. St, Ave, Cir. A street type following the root street name. Example STREET in 75 State Street.

	sufdir
	is text (token number 7): STREET POST-DIRECTIONAL A directional modifier that follows the street name.. Example WEST in 3715 TENTH AVENUE WEST.

	ruralroute
	is text (token number 8): RURAL ROUTE . Example 7 in RR 7.

	extra
	is text: Extra information like Floor number.

	city
	is text (token number 10): Example Boston.

	state
	is text (token number 11): Example MASSACHUSETTS

	country
	is text (token number 12): Example USA

	postcode
	is text POSTAL CODE (ZIP CODE) (token number 13): Example 02109

	box
	is text POSTAL BOX NUMBER (token number 14 and 15): Example 02109

	unit
	is text Apartment number or Suite Number (token number 17): Example 3B in APT 3B.

Name
ST_Distance — Returns the distance between two geometry or geography values.

Synopsis
	float ST_Distance(g1, 	
	 	g2);	

geometry
			g1;
geometry
			g2;

	float ST_Distance(geog1, 	
	 	geog2, 	
	 	use_spheroid=true);	

geography
			geog1;
geography
			geog2;
boolean
			use_spheroid=true;

Description
For geometry types returns the minimum 2D Cartesian (planar) distance between two geometries, in
		projected units (spatial ref units).
		
For geography types defaults to return the minimum geodesic distance between two geographies in meters,
		compute on the spheroid determined by the SRID.
		If use_spheroid is
		false, a faster spherical calculation is used.
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.23
[image: Description]
 This method supports Circular Strings and Curves
Availability: 1.5.0 geography support was introduced in 1.5. Speed improvements for planar to better handle large or many vertex geometries
Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.
Enhanced: 2.1.0 - support for curved geometries was introduced.
Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature.
Changed: 3.0.0 - does not depend on SFCGAL anymore.

Basic Geometry Examples
Geometry example - units in planar degrees 4326 is WGS 84 long lat, units are degrees.
SELECT ST_Distance(
		'SRID=4326;POINT(-72.1235 42.3521)'::geometry,
		'SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry
);
st_distance

0.00150567726382282
Geometry example - units in meters (SRID: 3857, proportional to pixels on popular web maps).
Although the value is off, nearby ones can be compared correctly,
which makes it a good choice for algorithms like KNN or KMeans.
SELECT ST_Distance(
			ST_Transform('SRID=4326;POINT(-72.1235 42.3521)'::geometry, 3857),
			ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry, 3857)
);
st_distance

167.441410065196
Geometry example - units in meters (SRID: 3857 as above, but corrected by cos(lat) to account for distortion)
SELECT ST_Distance(
			ST_Transform('SRID=4326;POINT(-72.1235 42.3521)'::geometry, 3857),
			ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry, 3857)
) * cosd(42.3521);
st_distance

123.742351254151
Geometry example - units in meters (SRID: 26986 Massachusetts state plane meters) (most accurate for Massachusetts)
SELECT ST_Distance(
			ST_Transform('SRID=4326;POINT(-72.1235 42.3521)'::geometry, 26986),
			ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry, 26986)
);
st_distance

123.797937878454
Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (least accurate)
SELECT ST_Distance(
			ST_Transform('SRID=4326;POINT(-72.1235 42.3521)'::geometry, 2163),
			ST_Transform('SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geometry, 2163)
);

st_distance

126.664256056812

Geography Examples
Same as geometry example but note units in meters - use sphere for slightly faster and less accurate computation.
SELECT ST_Distance(gg1, gg2) As spheroid_dist, ST_Distance(gg1, gg2, false) As sphere_dist
FROM (SELECT
	'SRID=4326;POINT(-72.1235 42.3521)'::geography as gg1,
	'SRID=4326;LINESTRING(-72.1260 42.45, -72.123 42.1546)'::geography as gg2
) As foo ;

 spheroid_dist | sphere_dist
------------------+------------------
 123.802076746848 | 123.475736916397

See Also
ST_3DDistance, ST_DWithin, ST_DistanceSphere, ST_DistanceSpheroid,
		ST_MaxDistance, ST_HausdorffDistance, ST_FrechetDistance, ST_Transform

Name
CopyTopology — Makes a copy of a topology structure (nodes, edges, faces, layers and TopoGeometries).

Synopsis
	integer CopyTopology(existing_topology_name, 	
	 	new_name);	

varchar existing_topology_name;
varchar new_name;

Description

Creates a new topology with name new_topology_name and SRID and precision taken from existing_topology_name, copies all nodes, edges and faces in there, copies layers and their TopoGeometries too.
		
Note

The new rows in topology.layer will contain synthesized values for schema_name, table_name and feature_column. This is because the TopoGeometry will only exist as a definition but won't be available in any user-level table yet.
		

Availability: 2.0.0

Examples

This example makes a backup of a topology called ma_topo
				
SELECT topology.CopyTopology('ma_topo', 'ma_topo_bakup');

See Also
the section called “Spatial Reference Systems”, CreateTopology

Name

				ST_IsPolygonCCW
			 — Tests if Polygons have exterior rings oriented counter-clockwise and interior rings oriented clockwise.
			

Synopsis
	
						boolean
						ST_IsPolygonCCW
					(geom);	

						geometry
						geom
					;

Description

				Returns true if all polygonal components of the input geometry use a counter-clockwise
				orientation for their exterior ring, and a clockwise direction
				for all interior rings.
			

				Returns true if the geometry has no polygonal components.
			
Note

					Closed linestrings are not considered polygonal components,
					so you would still get a true return by passing
 a single closed linestring no matter its orientation.
				

Note

					If a polygonal geometry does not use reversed orientation
					for interior rings (i.e., if one or more interior rings
					are oriented in the same direction as an exterior ring)
					then both ST_IsPolygonCW and ST_IsPolygonCCW will return false.
				

Availability: 2.4.0
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports M coordinates.

See Also

				
				ST_ForcePolygonCW
			,
				
				ST_ForcePolygonCCW
			,
				
				ST_IsPolygonCW
			
			

Grand Unified Custom Variables (GUCs)

Abstract
This section lists custom PostGIS Grand Unified Custom Variables (GUC).
These can be set globally, by database, by session or by transaction. Best set at global or database level.

Name
geometry — The type representing spatial features with planar coordinate systems.

Description
geometry is a fundamental PostGIS spatial data type used to represent a feature in planar (Euclidean) coordinate systems.
All spatial operations on geometry use the units of the Spatial Reference System the geometry is in.

Casting Behavior
This table lists the automatic and explicit casts allowed for this data type:
	Cast To	Behavior
	box	automatic
	box2d	automatic
	box3d	automatic
	bytea	automatic
	geography	automatic
	text	automatic

See Also
the section called “Spatial Data Model”, the section called “PostGIS SQL-MM Compliant Functions”

Name
PostGIS_Extensions_Upgrade —
Packages and upgrades PostGIS extensions (e.g. postgis_raster,
postgis_topology, postgis_sfcgal) to latest available version.

Synopsis
	text PostGIS_Extensions_Upgrade();	

;

Description
Packages and upgrades PostGIS extensions
		to latest version. Only extensions you have installed in the
 database will be packaged and upgraded if needed.
		Reports full PostGIS version and build configuration infos after.
 This is short-hand for doing multiple CREATE EXTENSION .. FROM
 unpackaged and ALTER EXTENSION .. UPDATE for each PostGIS extension.
		Currently only tries to upgrade extensions postgis,
 postgis_raster, postgis_sfcgal, postgis_topology, and postgis_tiger_geocoder.
Availability: 2.5.0
Note
Changed: 3.0.0 to repackage loose extensions and support postgis_raster.

Examples
SELECT PostGIS_Extensions_Upgrade();

NOTICE: Packaging extension postgis
NOTICE: Packaging extension postgis_raster
NOTICE: Packaging extension postgis_sfcgal
NOTICE: Extension postgis_topology is not available or not packagable for some reason
NOTICE: Extension postgis_tiger_geocoder is not available or not packagable for some reason

 postgis_extensions_upgrade

 Upgrade completed, run SELECT postgis_full_version(); for details
(1 row)

See Also

		the section called “Upgrading spatial databases”,
		PostGIS_GEOS_Version,
		PostGIS_Lib_Version,
		PostGIS_LibXML_Version,
		PostGIS_PROJ_Version,
		PostGIS_Version
		

Name
ST_MPointFromText — Makes a Geometry from WKT with the given SRID. If SRID is
			not given, it defaults to 0.

Synopsis
	geometry ST_MPointFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

	geometry ST_MPointFromText(WKT);	

text WKT;

Description
Makes a Geometry from WKT with the given SRID. If SRID is
			not given, it defaults to 0.
OGC SPEC 3.2.6.2 - option SRID is from the conformance
			suite
Returns null if the WKT is not a MULTIPOINT
Note
If you are absolutely sure all your WKT geometries are points, don't use this function.
				It is slower than ST_GeomFromText since it adds an additional validation step.
			

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. 3.2.6.2
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 9.2.4

Examples
SELECT ST_MPointFromText('MULTIPOINT(1 2, 3 4)');
SELECT ST_MPointFromText('MULTIPOINT(-70.9590 42.1180, -70.9611 42.1223)', 4326);

See Also
ST_GeomFromText

Release 3.1.0beta1

Release date: 2020/12/09
Only changes since 3.1.0alpha2 are listed.
 This version requires PostgreSQL 9.6-13 and GEOS >= 3.6+
 Additional features and enhancements enabled if you are
 running Proj6+, PostgreSQL 12+, and GEOS 3.9.0dev
Breaking changes

4214, Deprecated ST_Count(tablename,...),
 ST_ApproxCount(tablename, ...)
 ST_SummaryStats(tablename, ..),
 ST_Histogram(tablename, ...), ST_ApproxHistogram(tablename, ...),
 ST_Quantile(tablename, ...),
 ST_ApproxQuantile(tablename, ...) removed.
 (Darafei Praliaskouski)

Enhancements

4801, ST_ClusterKMeans supports weights in POINT[Z]M
 geometries (Darafei Praliaskouski)
4804, ST_ReducePrecision (GEOS 3.9+) allows
 valid precision reduction (Paul Ramsey)
4805, _ST_SortableHash exposed to work around
 parallel soring performance issue in Postgres.
 If your table is huge, use ORDER BY _ST_SortableHash(geom)
 instead of ORDER BY geom to make parallel sort faster
 (Darafei Praliaskouski)
4625, Correlation statistics now calculated.
 Run ANALYZE for BRIN indexes to start kicking in.
 (Darafei Praliaskouski)
Fix axis order issue with urn:ogc:def:crs:EPSG
 in ST_GeomFromGML() (Even Roualt)

Chapter 2. PostGIS Installation

	This chapter details the steps required to install PostGIS.

Short Version

To compile assuming you have all the dependencies in your search path:
tar -xvfz postgis-3.2.0rc1.tar.gz
cd postgis-3.2.0rc1
./configure
make
make install

Once PostGIS is installed, it needs to be
enabled (the section called “Creating spatial databases”)
or upgraded (the section called “Upgrading spatial databases”)
in each individual database you want to use it in.

Name
ST_AsKML — Return the geometry as a KML element. Several variants. Default version=2, default maxdecimaldigits=15

Synopsis
	text ST_AsKML(geom, 	
	 	maxdecimaldigits=15, 	
	 	nprefix=NULL);	

geometry geom;
integer maxdecimaldigits=15;
text nprefix=NULL;

	text ST_AsKML(geog, 	
	 	maxdecimaldigits=15, 	
	 	nprefix=NULL);	

geography geog;
integer maxdecimaldigits=15;
text nprefix=NULL;

Description
Return the geometry as a Keyhole Markup Language (KML) element. There are several variants of this function.
			maximum number of decimal places used in
			output (defaults to 15), version default to 2 and default namespace is no prefix.
Warning
Using the maxdecimaldigits parameter
 can cause output geometry to become invalid.
 To avoid this use ST_ReducePrecision
 with a suitable gridsize first.

Version 1: ST_AsKML(geom_or_geog, maxdecimaldigits) / version=2 / maxdecimaldigits=15
Version 2: ST_AsKML(version, geom_or_geog, maxdecimaldigits, nprefix) maxdecimaldigits=15 / nprefix=NULL
Note
Requires PostGIS be compiled with Proj support. Use PostGIS_Full_Version to confirm you have proj support compiled in.

Note
Availability: 1.2.2 - later variants that include version param came in 1.3.2

Note
Enhanced: 2.0.0 - Add prefix namespace. Default is no prefix

Note
Changed: 2.0.0 - uses default args and supports named args

Note
AsKML output will not work with geometries that do not have an SRID

[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_AsKML(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

		st_askml

		<Polygon><outerBoundaryIs><LinearRing><coordinates>0,0 0,1 1,1 1,0 0,0</coordinates></LinearRing></outerBoundaryIs></Polygon>

		--3d linestring
		SELECT ST_AsKML('SRID=4326;LINESTRING(1 2 3, 4 5 6)');
		<LineString><coordinates>1,2,3 4,5,6</coordinates></LineString>
		
		

See Also
ST_AsSVG, ST_AsGML

PostGIS Geometry / Geography / Raster Dump Functions

The functions given below are PostGIS functions that take as input or return as output a set of or single geometry_dump or geomval data type object.
	ST_DumpAsPolygons - Returns a set of geomval (geom,val) rows, from a given raster band. If no band number is specified, band num defaults to 1.
	ST_Intersection - Returns a raster or a set of geometry-pixelvalue pairs representing the shared portion of two rasters or the geometrical intersection of a vectorization of the raster and a geometry.
	ST_Dump - Returns a set of geometry_dump rows for the components of a geometry.
	ST_DumpPoints - Returns a set of geometry_dump rows for the coordinates in a geometry.
	ST_DumpRings - Returns a set of geometry_dump rows for the exterior and interior rings of a Polygon.
	ST_DumpSegments - Returns a set of geometry_dump rows for the segments in a geometry.

Name
ST_RastFromWKB — Return a raster value from a Well-Known Binary (WKB) raster.

Synopsis
	raster ST_RastFromWKB(wkb);	

bytea wkb;

Description

 Given a Well-Known Binary (WKB) raster, return a raster.

Availability: 2.5.0

Examples

SELECT (ST_Metadata(
 ST_RastFromWKB(
 '\001\000\000\000\000\000\000\000\000\000\000\000@\000\000\000\000\000\000\010@\000\000\000\000\000\000\340?\000\000\000\000\000\000\340?\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\012\000\000\000\012\000\024\000'::bytea
)
)).* AS metadata;

 upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
------------+------------+-------+--------+--------+--------+-------+-------+------+----------
 0.5 | 0.5 | 10 | 20 | 2 | 3 | 0 | 0 | 10 | 0

See Also

 ST_MetaData,
 ST_RastFromHexWKB,
 ST_AsBinary/ST_AsWKB,
 ST_AsHexWKB

Name
ST_MakeEmptyCoverage — Cover georeferenced area with a grid of empty raster tiles.

Synopsis
	raster ST_MakeEmptyCoverage(tilewidth, 	
	 	tileheight, 	
	 	width, 	
	 	height, 	
	 	upperleftx, 	
	 	upperlefty, 	
	 	scalex, 	
	 	scaley, 	
	 	skewx, 	
	 	skewy, 	
	 	srid=unknown);	

integer tilewidth;
integer tileheight;
integer width;
integer height;
double precision upperleftx;
double precision upperlefty;
double precision scalex;
double precision scaley;
double precision skewx;
double precision skewy;
integer srid=unknown;

Description
Create a set of raster tiles with ST_MakeEmptyRaster. Grid dimension is width & height. Tile dimension is tilewidth & tileheight. The covered georeferenced area is from upper left corner (upperleftx, upperlefty) to lower right corner (upperleftx + width * scalex, upperlefty + height * scaley).
Note
Note that scaley is generally negative for rasters and scalex is generally positive. So lower right corner will have a lower y value and higher x value than the upper left corner.

Availability: 2.4.0

Examples Basic
Create 16 tiles in a 4x4 grid to cover the WGS84 area from upper left corner (22, 77) to lower right corner (55, 33).
SELECT (ST_MetaData(tile)).* FROM ST_MakeEmptyCoverage(1, 1, 4, 4, 22, 33, (55 - 22)/(4)::float, (33 - 77)/(4)::float, 0., 0., 4326) tile;

 upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands

 22 | 33 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 30.25 | 33 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 38.5 | 33 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 46.75 | 33 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 22 | 22 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 30.25 | 22 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 38.5 | 22 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 46.75 | 22 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 22 | 11 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 30.25 | 11 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 38.5 | 11 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 46.75 | 11 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 22 | 0 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 30.25 | 0 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 38.5 | 0 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0
 46.75 | 0 | 1 | 1 | 8.25 | -11 | 0 | 0 | 4326 | 0

See Also

 ST_MakeEmptyRaster

Name
&&(box2df,box2df) — Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.

Synopsis
	boolean &&(A, 	
	 	B);	

				 box2df

				 A
				;

				 box2df

				 B
				;

Description
The && operator returns TRUE if two 2D bounding boxes A and B intersect each other, using float precision. This means that if A (or B) is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)
Note
This operator is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_MakeBox2D(ST_Point(0,0), ST_Point(2,2)) && ST_MakeBox2D(ST_Point(1,1), ST_Point(3,3)) AS overlaps;

 overlaps

 t
(1 row)

See Also

				&&(geometry,box2df),
				&&(box2df,geometry),
				~(geometry,box2df),
				~(box2df,geometry),
				~(box2df,box2df),
				@(geometry,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

Name
ST_Normalize — Return the geometry in its canonical form.

Synopsis
	geometry ST_Normalize(geom);	

geometry geom;

Description

 Returns the geometry in its normalized/canonical form.
 May reorder vertices in polygon rings, rings in a polygon,
 elements in a multi-geometry complex.

 Mostly only useful for testing purposes (comparing expected
 and obtained results).

Availability: 2.3.0

Examples

SELECT ST_AsText(ST_Normalize(ST_GeomFromText(
 'GEOMETRYCOLLECTION(
 POINT(2 3),
 MULTILINESTRING((0 0, 1 1),(2 2, 3 3)),
 POLYGON(
 (0 10,0 0,10 0,10 10,0 10),
 (4 2,2 2,2 4,4 4,4 2),
 (6 8,8 8,8 6,6 6,6 8)
)
)'
)));
 st_astext
--
 GEOMETRYCOLLECTION(POLYGON((0 0,0 10,10 10,10 0,0 0),(6 6,8 6,8 8,6 8,6 6),(2 2,4 2,4 4,2 4,2 2)),MULTILINESTRING((2 2,3 3),(0 0,1 1)),POINT(2 3))
(1 row)
			

See Also

 ST_Equals,

Name
ST_ClusterIntersecting — Aggregate function that clusters the input geometries into connected sets.

Synopsis
	geometry[] ST_ClusterIntersecting(g);	

geometry set g;

Description
ST_ClusterIntersecting is an aggregate function that returns an array of GeometryCollections, where each GeometryCollection represents an interconnected set of geometries.
Availability: 2.2.0

Examples

WITH testdata AS
 (SELECT unnest(ARRAY['LINESTRING (0 0, 1 1)'::geometry,
		 'LINESTRING (5 5, 4 4)'::geometry,
		 'LINESTRING (6 6, 7 7)'::geometry,
		 'LINESTRING (0 0, -1 -1)'::geometry,
		 'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))'::geometry]) AS geom)

SELECT ST_AsText(unnest(ST_ClusterIntersecting(geom))) FROM testdata;

--result

st_astext

GEOMETRYCOLLECTION(LINESTRING(0 0,1 1),LINESTRING(5 5,4 4),LINESTRING(0 0,-1 -1),POLYGON((0 0,4 0,4 4,0 4,0 0)))
GEOMETRYCOLLECTION(LINESTRING(6 6,7 7))

See Also

 ST_ClusterDBSCAN,
 ST_ClusterKMeans,
 ST_ClusterWithin

Release 2.1.3

Release date: 2014/05/13
This is a bug fix and security release.
Important changes

			Starting with this version offline raster access and use of GDAL drivers
			are disabled by default.
			

			An environment variable is introduced to allow for enabling
			specific GDAL drivers: POSTGIS_GDAL_ENABLED_DRIVERS.
			By default, all GDAL drivers are disabled
			

			An environment variable is introduced to allow for enabling
			out-db raster bands: POSTGIS_ENABLE_OUTDB_RASTERS.
			By default, out-db raster bands are disabled
			

			The environment variables must be set for the PostgreSQL process,
			and determines the behavior of the whole cluster.
			

Bug Fixes

#2697, invalid GeoJSON Polygon input crashes server process
#2700, Fix dumping of higher-dimension datasets with null rows
#2706, ST_DumpPoints of EMPTY geometries crashes server

Name
ST_LinestringFromWKB — Makes a geometry from WKB with the given SRID.

Synopsis
	geometry ST_LinestringFromWKB(WKB);	

bytea WKB;

	geometry ST_LinestringFromWKB(WKB, 	
	 	srid);	

bytea WKB;
integer srid;

Description
The ST_LinestringFromWKB function, takes a well-known binary
		representation of geometry and a Spatial Reference System ID (SRID)
		and creates an instance of the appropriate geometry type - in this case, a
		LINESTRING geometry. This function plays the role of the Geometry
		Factory in SQL.
If an SRID is not specified, it defaults to 0. NULL is
		returned if the input bytea does not represent a
		LINESTRING geometry. This an alias for ST_LineFromWKB.
Note
OGC SPEC 3.2.6.2 - optional SRID is from the conformance suite.

Note
If you know all your geometries are LINESTRINGs, it's more
		 efficient to just use ST_GeomFromWKB. This function just calls
		 ST_GeomFromWKB and adds additional validation that it returns a
		 LINESTRING.

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.2.9

Examples
SELECT
 ST_LineStringFromWKB(
	ST_AsBinary(ST_GeomFromText('LINESTRING(1 2, 3 4)'))
) AS aline,
 ST_LinestringFromWKB(
	ST_AsBinary(ST_GeomFromText('POINT(1 2)'))
) IS NULL AS null_return;
 aline | null_return
--
010200000002000000000000000000F ... | t

See Also
ST_GeomFromWKB, ST_LineFromWKB

Name
ST_BandMetaData — Returns basic meta data for a specific raster band. band num 1 is assumed if none-specified.

Synopsis
	(1) record ST_BandMetaData(rast, 	
	 	band=1);	

raster rast;
integer band=1;

	(2) record ST_BandMetaData(rast, 	
	 	band);	

raster rast;
integer[] band;

Description
Returns basic meta data about a raster band. Columns returned: pixeltype, nodatavalue, isoutdb, path, outdbbandnum, filesize, filetimestamp.

Note

 If raster contains no bands then an error is thrown.

Note

 If band has no NODATA value, nodatavalue are NULL.

Note

 If isoutdb is False, path, outdbbandnum, filesize and filetimestamp are NULL. If outdb access is disabled, filesize and filetimestamp will also be NULL.

Enhanced: 2.5.0 to include outdbbandnum, filesize and filetimestamp for outdb rasters.

Examples: Variant 1

SELECT
 rid,
 (foo.md).*
FROM (
 SELECT
 rid,
 ST_BandMetaData(rast, 1) AS md
 FROM dummy_rast
 WHERE rid=2
) As foo;

 rid | pixeltype | nodatavalue | isoutdb | path | outdbbandnum
-----+-----------+---- --------+---------+------+--------------
 2 | 8BUI | 0 | f | |

Examples: Variant 2

WITH foo AS (
 SELECT
 ST_AddBand(NULL::raster, '/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif', NULL::int[]) AS rast
)
SELECT
 *
FROM ST_BandMetadata(
 (SELECT rast FROM foo),
 ARRAY[1,3,2]::int[]
);

 bandnum | pixeltype | nodatavalue | isoutdb | path | outdbbandnum | filesize | filetimestamp |
---------+-----------+-------------+---------+--+---------------+----------+---------------+-
 1 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 1 | 12345 | 1521807257 |
 3 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 3 | 12345 | 1521807257 |
 2 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 2 | 12345 | 1521807257 |

See Also
ST_MetaData, ST_BandPixelType

Name
ST_SetBandNoDataValue — Sets the value for the given band that represents no data. Band 1 is assumed if no band is specified. To mark a band as having no nodata value, set the nodata value = NULL.

Synopsis
	raster ST_SetBandNoDataValue(rast, 	
	 	nodatavalue);	

raster rast;
double precision nodatavalue;

	raster ST_SetBandNoDataValue(rast, 	
	 	band, 	
	 	nodatavalue, 	
	 	forcechecking=false);	

raster rast;
integer band;
double precision nodatavalue;
boolean forcechecking=false;

Description
Sets the value that represents no data for the band. Band 1 is assumed if not specified. This will affect results from ST_Polygon, ST_DumpAsPolygons, and the ST_PixelAs...() functions.

Examples
-- change just first band no data value
UPDATE dummy_rast
 SET rast = ST_SetBandNoDataValue(rast,1, 254)
WHERE rid = 2;

-- change no data band value of bands 1,2,3
UPDATE dummy_rast
 SET rast =
 ST_SetBandNoDataValue(
 ST_SetBandNoDataValue(
 ST_SetBandNoDataValue(
 rast,1, 254)
 ,2,99),
 3,108)
 WHERE rid = 2;

-- wipe out the nodata value this will ensure all pixels are considered for all processing functions
UPDATE dummy_rast
 SET rast = ST_SetBandNoDataValue(rast,1, NULL)
WHERE rid = 2;

See Also
ST_BandNoDataValue, ST_NumBands

Topology Accessors

Name
ST_InterpolatePoint — Returns the interpolated measure of a geometry closest to a point.

Synopsis
	float8 ST_InterpolatePoint(line, 	
	 	point);	

geometry line;
geometry point;

Description
Returns the value of the measure dimension of a geometry at the point closed to the provided point.
Availability: 2.0.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_InterpolatePoint('LINESTRING M (0 0 0, 10 0 20)', 'POINT(5 5)');
 st_interpolatepoint

 10
	

See Also
ST_AddMeasure, ST_LocateAlong, ST_LocateBetween

Name
ST_CoordDim — Return the coordinate dimension of a geometry.

Synopsis
	integer ST_CoordDim(geomA);	

geometry geomA;

Description
Return the coordinate dimension of the ST_Geometry value.
This is the MM compliant alias name for ST_NDims
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.3
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_CoordDim('CIRCULARSTRING(1 2 3, 1 3 4, 5 6 7, 8 9 10, 11 12 13)');
			---result--
				3

				SELECT ST_CoordDim(ST_Point(1,2));
			--result--
				2

		

See Also
ST_NDims

Measurement Functions

Abstract
These functions compute measurements of distance, area and angles.
		There are also functions to compute geometry values determined by measurements.

Name
ST_Force3DZ — Force the geometries into XYZ mode.

Synopsis
	geometry ST_Force3DZ(geomA, 	
	 	Zvalue = 0.0);	

geometry geomA;
float Zvalue = 0.0;

Description
Forces the geometries into XYZ mode. If a geometry has no Z component, then a Zvalue Z coordinate is tacked on.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DZ.
Changed: 3.1.0. Added support for supplying a non-zero Z value.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples

--Nothing happens to an already 3D geometry
SELECT ST_AsEWKT(ST_Force3DZ(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
				 st_asewkt

 CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST_AsEWKT(ST_Force3DZ('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))'));

						 st_asewkt
--
 POLYGON((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))
		

See Also
ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3D

Name
PostGIS_LibXML_Version — Returns the version number of the libxml2
		library.

Synopsis
	text PostGIS_LibXML_Version();	

;

Description
Returns the version number of the LibXML2 library.
Availability: 1.5

Examples
SELECT PostGIS_LibXML_Version();
 postgis_libxml_version

 2.7.6
(1 row)

See Also
PostGIS_Full_Version, PostGIS_Lib_Version, PostGIS_PROJ_Version, PostGIS_GEOS_Version, PostGIS_Version

Name
ST_LengthSpheroid — Returns the 2D or 3D length/perimeter of a lon/lat geometry on a spheroid.

Synopsis
	float ST_LengthSpheroid(a_geometry, 	
	 	a_spheroid);	

geometry a_geometry;
spheroid a_spheroid;

Description
Calculates the length or perimeter of a geometry on an ellipsoid. This
			is useful if the coordinates of the geometry are in
			longitude/latitude and a length is desired without reprojection.
			The spheroid is specified by a text value	as follows:
SPHEROID[<NAME>,<SEMI-MAJOR AXIS>,<INVERSE FLATTENING>]

For example:
SPHEROID["GRS_1980",6378137,298.257222101]

Availability: 1.2.2
Changed: 2.2.0 In prior versions this was called ST_Length_Spheroid and had the alias ST_3DLength_Spheroid
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_LengthSpheroid(geometry_column,
			 'SPHEROID["GRS_1980",6378137,298.257222101]')
			 FROM geometry_table;

SELECT ST_LengthSpheroid(geom, sph_m) As tot_len,
ST_LengthSpheroid(ST_GeometryN(geom,1), sph_m) As len_line1,
ST_LengthSpheroid(ST_GeometryN(geom,2), sph_m) As len_line2
			 FROM (SELECT ST_GeomFromText('MULTILINESTRING((-118.584 38.374,-118.583 38.5),
	(-71.05957 42.3589 , -71.061 43))') As geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m) as foo;
	tot_len | len_line1 | len_line2
------------------+------------------+------------------
 85204.5207562955 | 13986.8725229309 | 71217.6482333646

 --3D
SELECT ST_LengthSpheroid(geom, sph_m) As tot_len,
ST_LengthSpheroid(ST_GeometryN(geom,1), sph_m) As len_line1,
ST_LengthSpheroid(ST_GeometryN(geom,2), sph_m) As len_line2
			 FROM (SELECT ST_GeomFromEWKT('MULTILINESTRING((-118.584 38.374 20,-118.583 38.5 30),
	(-71.05957 42.3589 75, -71.061 43 90))') As geom,
CAST('SPHEROID["GRS_1980",6378137,298.257222101]' As spheroid) As sph_m) as foo;

	 tot_len | len_line1 | len_line2
------------------+-----------------+------------------
 85204.5259107402 | 13986.876097711 | 71217.6498130292

See Also
ST_GeometryN, ST_Length

Name
toTopoGeom — Adds a geometry shape to an existing topo geometry.

Description

Refer to toTopoGeom.

Name
ST_Covers —
 Return true if no points of raster rastB lie outside raster rastA.

Synopsis
	boolean ST_Covers(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB);	

 raster
 rastA
 ;

 integer
 nbandA
 ;

 raster
 rastB
 ;

 integer
 nbandB
 ;

	boolean ST_Covers(rastA, 	
	 	rastB);	

 raster
 rastA
 ;

 raster
 rastB
 ;

Description

 Raster rastA covers rastB if and only if no points of rastB lie in the exterior of rastA. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Note

 This function will make use of any indexes that may be available on the rasters.

Note

 To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Covers(ST_Polygon(raster), geometry) or ST_Covers(geometry, ST_Polygon(raster)).

Availability: 2.1.0

Examples

SELECT r1.rid, r2.rid, ST_Covers(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_covers
-----+-----+-----------
 2 | 1 | f
 2 | 2 | t

See Also

 ST_Intersects,
 ST_CoveredBy

Name
ST_MapAlgebraFctNgb — 1-band version: Map Algebra Nearest Neighbor using user-defined PostgreSQL function. Return a raster which values are the result of a PLPGSQL user function involving a neighborhood of values from the input raster band.

Synopsis
	raster ST_MapAlgebraFctNgb(rast, 	
	 	band, 	
	 	pixeltype, 	
	 	ngbwidth, 	
	 	ngbheight, 	
	 	onerastngbuserfunc, 	
	 	nodatamode, 	
	 	VARIADIC args);	

raster rast;
integer band;
text pixeltype;
integer ngbwidth;
integer ngbheight;
regprocedure onerastngbuserfunc;
text nodatamode;
text[] VARIADIC args;

Description
Warning

 ST_MapAlgebraFctNgb is deprecated as of 2.1.0. Use ST_MapAlgebra (callback function version) instead.

(one raster version) Return a raster which values are the result of a PLPGSQL user function involving a neighborhood of values from the input raster band. The user function takes the neighborhood of pixel values as an array of numbers, for each pixel, returns the result from the user function, replacing pixel value of currently inspected pixel with the function result.
	rast
	Raster on which the user function is evaluated.

	band
	Band number of the raster to be evaluated. Default to 1.

	pixeltype
	The resulting pixel type of the output raster. Must be one listed in ST_BandPixelType or left out or set to NULL. If not passed in or set to NULL, will default to the pixeltype of the rast. Results are truncated if they are larger than what is allowed for the pixeltype.

	ngbwidth
	The width of the neighborhood, in cells.

	ngbheight
	The height of the neighborhood, in cells.

	onerastngbuserfunc
	PLPGSQL/psql user function to apply to neighborhood pixels of a single band of a raster. The first element is a 2-dimensional array of numbers representing the rectangular pixel neighborhood

	nodatamode
	Defines what value to pass to the function for a neighborhood pixel that is nodata or NULL
'ignore': any NODATA values encountered in the neighborhood are ignored by the computation -- this flag must be sent to the user callback function, and the user function decides how to ignore it.
'NULL': any NODATA values encountered in the neighborhood will cause the resulting pixel to be NULL -- the user callback function is skipped in this case.
'value': any NODATA values encountered in the neighborhood are replaced by the reference pixel (the one in the center of the neighborhood). Note that if this value is NODATA, the behavior is the same as 'NULL' (for the affected neighborhood)

	args
	Arguments to pass into the user function.

Availability: 2.0.0

Examples
Examples utilize the katrina raster loaded as a single tile described in http://trac.osgeo.org/gdal/wiki/frmts_wtkraster.html and then prepared in the ST_Rescale examples

--
-- A simple 'callback' user function that averages up all the values in a neighborhood.
--
CREATE OR REPLACE FUNCTION rast_avg(matrix float[][], nodatamode text, variadic args text[])
 RETURNS float AS
 $$
 DECLARE
 _matrix float[][];
 x1 integer;
 x2 integer;
 y1 integer;
 y2 integer;
 sum float;
 BEGIN
 _matrix := matrix;
 sum := 0;
 FOR x in array_lower(matrix, 1)..array_upper(matrix, 1) LOOP
 FOR y in array_lower(matrix, 2)..array_upper(matrix, 2) LOOP
 sum := sum + _matrix[x][y];
 END LOOP;
 END LOOP;
 RETURN (sum*1.0/(array_upper(matrix,1)*array_upper(matrix,2)))::integer ;
 END;
 $$
LANGUAGE 'plpgsql' IMMUTABLE COST 1000;

-- now we apply to our raster averaging pixels within 2 pixels of each other in X and Y direction --
SELECT ST_MapAlgebraFctNgb(rast, 1, '8BUI', 4,4,
 'rast_avg(float[][], text, text[])'::regprocedure, 'NULL', NULL) As nn_with_border
 FROM katrinas_rescaled
 limit 1;

	

[image: Examples]First band of our raster

 	

[image: Examples]new raster after averaging pixels withing 4x4 pixels of each other

See Also

 ST_MapAlgebraFct,
 ST_MapAlgebraExpr,
 ST_Rescale

Name
ST_SwapOrdinates — Returns a version of the given geometry with
				given ordinate values swapped.

Synopsis
	geometry ST_SwapOrdinates(geom, 	
	 	ords);	

geometry geom;
cstring ords;

Description

Returns a version of the given geometry with given ordinates swapped.

The ords parameter is a 2-characters string naming
the ordinates to swap. Valid names are: x,y,z and m.

Availability: 2.2.0
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports M coordinates.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Example

-- Scale M value by 2
SELECT ST_AsText(
 ST_SwapOrdinates(
 ST_Scale(
 ST_SwapOrdinates(g,'xm'),
 2, 1
),
 'xm')
) FROM (SELECT 'POINT ZM (0 0 0 2)'::geometry g) foo;
 st_astext

 POINT ZM (0 0 0 4)
		

See Also
 ST_FlipCoordinates

Release 1.3.4

Release date: 2008/11/24
This release adds support for GeoJSON output, building
 with PostgreSQL 8.4, improves documentation quality and
 output aesthetics, adds function-level SQL documentation,
 and improves performance for some spatial predicates
 (point-in-polygon tests).
Bug fixes include removal of crashers in handling
 circular strings for many functions, some memory leaks
 removed, a linear referencing failure for measures on vertices,
 and more. See the NEWS file for details.

Name
ST_AddEdgeModFace — Add a new edge and, if in doing so it splits a face, modify the original face and add a new face.

Synopsis
	integer ST_AddEdgeModFace(atopology, 	
	 	anode, 	
	 	anothernode, 	
	 	acurve);	

varchar atopology;
integer anode;
integer anothernode;
geometry acurve;

Description

Add a new edge and, if doing so splits a face, modify the original
face and add a new one.

Note

If possible, the new face will be created on left side of the new edge.
This will not be possible if the face on the left side will need to
be the Universe face (unbounded).

Returns the id of the newly added edge.
		

Updates all existing joined edges and relationships accordingly.
		
If any arguments are null, the given nodes are unknown (must already exist in the node table of the topology schema) ,
 the acurve is not a LINESTRING, the anode and anothernode are not the start
 and endpoints of acurve then an error is thrown.
If the spatial reference system (srid) of the acurve geometry is not the same as the topology an exception is thrown.
Availability: 2.0
[image: Description] This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.13

Examples

See Also
ST_RemEdgeModFace
ST_AddEdgeNewFaces

Name
ST_IsRing — Tests if a LineString is closed and simple.

Synopsis
	boolean ST_IsRing(g);	

geometry g;

Description
Returns TRUE if this
	 LINESTRING is both ST_IsClosed
	 (ST_StartPoint(g)
	 ~=
	 ST_Endpoint(g)) and ST_IsSimple (does not self intersect).
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. 2.1.5.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.1.6
Note
SQL-MM defines the result of
		ST_IsRing(NULL) to be 0, while
		PostGIS returns NULL.

Examples
SELECT ST_IsRing(geom), ST_IsClosed(geom), ST_IsSimple(geom)
FROM (SELECT 'LINESTRING(0 0, 0 1, 1 1, 1 0, 0 0)'::geometry AS geom) AS foo;
 st_isring | st_isclosed | st_issimple
-----------+-------------+-------------
 t | t | t
(1 row)

SELECT ST_IsRing(geom), ST_IsClosed(geom), ST_IsSimple(geom)
FROM (SELECT 'LINESTRING(0 0, 0 1, 1 0, 1 1, 0 0)'::geometry AS geom) AS foo;
 st_isring | st_isclosed | st_issimple
-----------+-------------+-------------
 f | t | f
(1 row)

See Also
ST_IsClosed, ST_IsSimple, ST_StartPoint,
	 ST_EndPoint

Name
ST_Orientation — Determine surface orientation

Synopsis
	integer ST_Orientation(geom);	

geometry geom;

Description
The function only applies to polygons. It returns -1 if the polygon is counterclockwise oriented and 1 if the polygon is clockwise oriented.
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.

Name
ST_Split — Returns a collection of geometries created by splitting a geometry by another geometry.

Synopsis
	geometry ST_Split(input, 	
	 	blade);	

geometry input;
geometry blade;

Description

 The function supports splitting a LineString by a (Multi)Point, (Multi)LineString or (Multi)Polygon boundary,
 or a (Multi)Polygon by a LineString.
 The result geometry is always a collection.

 This function is in a sense the opposite of ST_Union.
 Applying ST_Union to the returned collection should theoretically yield the original geometry
 (although due to numerical rounding this may not be exactly the case).

Availability: 2.0.0 requires GEOS
Enhanced: 2.2.0 support for splitting a line by a multiline, a multipoint or (multi)polygon boundary was introduced.
Enhanced: 2.5.0 support for splitting a polygon by a multiline was introduced.
Note
To improve the robustness of ST_Split it may be convenient to ST_Snap the input to the blade in advance using a very low tolerance. Otherwise the internally used coordinate grid may cause tolerance problems, where coordinates of input and blade do not fall onto each other and the input is not being split correctly (see #2192).

Note

When a (Multi)Polygon is passed as as the blade, its linear components
(the boundary) are used for cutting the input.

Examples
Polygon Cut by Line
	

[image: Examples]Before Split

 	

[image: Examples]After split

-- this creates a geometry collection consisting of the 2 halves of the polygon
-- this is similar to the example we demonstrated in ST_BuildArea
SELECT ST_Split(circle, line)
FROM (SELECT
 ST_MakeLine(ST_Point(10, 10),ST_Point(190, 190)) As line,
 ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50) As circle) As foo;

-- result --
 GEOMETRYCOLLECTION(POLYGON((150 90,149.039264020162 80.2454838991936,146.193976625564 70.8658283817455,..), POLYGON(..)))

-- To convert to individual polygons, you can use ST_Dump or ST_GeometryN
SELECT ST_AsText((ST_Dump(ST_Split(circle, line))).geom) As wkt
FROM (SELECT
 ST_MakeLine(ST_Point(10, 10),ST_Point(190, 190)) As line,
 ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50) As circle) As foo;

-- result --
wkt

POLYGON((150 90,149.039264020162 80.2454838991936,..))
POLYGON((60.1371179574584 60.1371179574584,58.4265193848728 62.2214883490198,53.8060233744357 ..))

Multilinestring Cut by point
	

[image: Examples]Before Split

 	

[image: Examples]After split

SELECT ST_AsText(ST_Split(mline, pt)) As wktcut
 FROM (SELECT
 ST_GeomFromText('MULTILINESTRING((10 10, 190 190), (15 15, 30 30, 100 90))') As mline,
 ST_Point(30,30) As pt) As foo;

wktcut

GEOMETRYCOLLECTION(
 LINESTRING(10 10,30 30),
 LINESTRING(30 30,190 190),
 LINESTRING(15 15,30 30),
 LINESTRING(30 30,100 90)
)

See Also

ST_AsText,
ST_BuildArea,
ST_CollectionExtract,
ST_Dump,
ST_GeometryN,
ST_Subdivide,
ST_Union

Name
ST_Affine — Apply a 3D affine transformation to a geometry.

Synopsis
	geometry ST_Affine(geomA, 	
	 	a, 	
	 	b, 	
	 	c, 	
	 	d, 	
	 	e, 	
	 	f, 	
	 	g, 	
	 	h, 	
	 	i, 	
	 	xoff, 	
	 	yoff, 	
	 	zoff);	

geometry geomA;
float a;
float b;
float c;
float d;
float e;
float f;
float g;
float h;
float i;
float xoff;
float yoff;
float zoff;

	geometry ST_Affine(geomA, 	
	 	a, 	
	 	b, 	
	 	d, 	
	 	e, 	
	 	xoff, 	
	 	yoff);	

geometry geomA;
float a;
float b;
float d;
float e;
float xoff;
float yoff;

Description
Applies a 3D affine transformation to the geometry to do things like translate, rotate, scale in one step.

		Version 1: The
			call
ST_Affine(geom, a, b, c, d, e, f, g, h, i, xoff, yoff, zoff)

			represents the transformation matrix
/ a b c xoff \
| d e f yoff |
| g h i zoff |
\ 0 0 0 1 /
 and the vertices are transformed as
			follows:
x' = a*x + b*y + c*z + xoff
y' = d*x + e*y + f*z + yoff
z' = g*x + h*y + i*z + zoff
 All of the translate / scale
			functions below are expressed via such an affine
			transformation.
Version 2: Applies a 2d affine transformation to the geometry. The
			call
ST_Affine(geom, a, b, d, e, xoff, yoff)

			represents the transformation matrix
/ a b 0 xoff \ / a b xoff \
| d e 0 yoff | rsp. | d e yoff |
| 0 0 1 0 | \ 0 0 1 /
\ 0 0 0 1 /
 and the vertices are transformed as
			follows:
x' = a*x + b*y + xoff
y' = d*x + e*y + yoff
z' = z
 This method is a subcase of the 3D method
			above.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.1.2. Name changed from Affine to ST_Affine in 1.2.2
Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples

--Rotate a 3d line 180 degrees about the z axis. Note this is long-hand for doing ST_Rotate();
 SELECT ST_AsEWKT(ST_Affine(geom, cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), 0, 0, 0, 1, 0, 0, 0)) As using_affine,
	 ST_AsEWKT(ST_Rotate(geom, pi())) As using_rotate
	FROM (SELECT ST_GeomFromEWKT('LINESTRING(1 2 3, 1 4 3)') As geom) As foo;
 using_affine | using_rotate
-----------------------------+-----------------------------
 LINESTRING(-1 -2 3,-1 -4 3) | LINESTRING(-1 -2 3,-1 -4 3)
(1 row)

--Rotate a 3d line 180 degrees in both the x and z axis
SELECT ST_AsEWKT(ST_Affine(geom, cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), 0, 0, 0))
	FROM (SELECT ST_GeomFromEWKT('LINESTRING(1 2 3, 1 4 3)') As geom) As foo;
 st_asewkt

 LINESTRING(-1 -2 -3,-1 -4 -3)
(1 row)
		

See Also
ST_Rotate, ST_Scale, ST_Translate, ST_TransScale

Name
ST_IsValidTrajectory — Tests if the geometry is a valid trajectory.

Synopsis
	boolean ST_IsValidTrajectory(line);	

geometry line;

Description

Tests if a geometry encodes a valid trajectory.
A valid trajectory is represented as a LINESTRING
with measures (M values).
The measure values must increase from each vertex to the next.
			

Valid trajectories are expected as input to spatio-temporal functions
like ST_ClosestPointOfApproach
			
Availability: 2.2.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

-- A valid trajectory
SELECT ST_IsValidTrajectory(ST_MakeLine(
 ST_MakePointM(0,0,1),
 ST_MakePointM(0,1,2))
);
 t

-- An invalid trajectory
SELECT ST_IsValidTrajectory(ST_MakeLine(ST_MakePointM(0,0,1), ST_MakePointM(0,1,0)));
NOTICE: Measure of vertex 1 (0) not bigger than measure of vertex 0 (1)
 st_isvalidtrajectory

 f

See Also

ST_ClosestPointOfApproach
			

Name
ST_NumPoints — Returns the number of points in a LineString or CircularString.

Synopsis
	integer ST_NumPoints(g1);	

geometry g1;

Description
Return the number of points in an ST_LineString or
		 ST_CircularString value. Prior to 1.4 only works with linestrings as the specs state. From 1.4 forward this is an alias for ST_NPoints which returns number of vertexes for
		 not just linestrings.
		 Consider using ST_NPoints instead which is multi-purpose
		 and works with many geometry types.
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.2.4

Examples
SELECT ST_NumPoints(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
		--result
		4
		

See Also
ST_NPoints

Name
ST_Contains — Returns true if no points of B lie in the exterior of A, and A and B have at least one interior point in common.

Synopsis
	boolean ST_Contains(geomA, 	
	 	geomB);	

geometry
 geomA;
geometry
 geomB;

Description
Returns TRUE if geometry B is completely inside geometry A.
 A contains B if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies in the interior of A.

A subtlety of the definition is that a geometry does not contain its boundary.
 This implies that polygons and lines do not contain lines and points lying in their boundary.
 For further details see Subtleties of OGC Covers, Contains, Within.
 (The ST_Covers predicate provides a more inclusive relationship.)
 However, a geometry does contain itself.
 (In contrast, in the ST_ContainsProperly
 predicate a geometry does not properly contain itself.)
ST_Contains is the inverse of ST_Within.
 So, ST_Contains(A,B) = ST_Within(B,A).
Note
This function automatically includes a bounding box comparison
that makes use of any spatial indexes that are available on the geometries.
 To avoid index use, use the function _ST_Contains.

Performed by the GEOS module
Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.
Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important
Do not use this function with invalid geometries. You will get unexpected results.

NOTE: this is the "allowable" version that returns a
 boolean, not an integer.
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3
 - same as within(geometry B, geometry A)
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.31

Examples
The ST_Contains predicate returns TRUE in all the following illustrations.
	[image: Examples]LINESTRING / MULTIPOINT

	[image: Examples]POLYGON / POINT

	[image: Examples]POLYGON / LINESTRING

	[image: Examples]POLYGON / POLYGON

The ST_Contains predicate returns FALSE in all the following illustrations.
	[image: Examples]POLYGON / MULTIPOINT

	[image: Examples]POLYGON / LINESTRING

-- A circle within a circle
SELECT ST_Contains(smallc, bigc) As smallcontainsbig,
 ST_Contains(bigc,smallc) As bigcontainssmall,
 ST_Contains(bigc, ST_Union(smallc, bigc)) as bigcontainsunion,
 ST_Equals(bigc, ST_Union(smallc, bigc)) as bigisunion,
 ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
 ST_Contains(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
 ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;

-- Result
 smallcontainsbig | bigcontainssmall | bigcontainsunion | bigisunion | bigcoversexterior | bigcontainsexterior
------------------+------------------+------------------+------------+-------------------+---------------------
 f | t | t | t | t | f

-- Example demonstrating difference between contains and contains properly
SELECT ST_GeometryType(geomA) As geomtype, ST_Contains(geomA,geomA) AS acontainsa, ST_ContainsProperly(geomA, geomA) AS acontainspropa,
 ST_Contains(geomA, ST_Boundary(geomA)) As acontainsba, ST_ContainsProperly(geomA, ST_Boundary(geomA)) As acontainspropba
FROM (VALUES (ST_Buffer(ST_Point(1,1), 5,1)),
 (ST_MakeLine(ST_Point(1,1), ST_Point(-1,-1))),
 (ST_Point(1,1))
) As foo(geomA);

 geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
--------------+------------+----------------+-------------+-----------------
ST_Polygon | t | f | f | f
ST_LineString | t | f | f | f
ST_Point | t | t | f | f

See Also
ST_Boundary, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Equals, ST_Within

Name
Set_Geocode_Setting — Sets a setting that affects behavior of geocoder functions.

Synopsis
	text Set_Geocode_Setting(setting_name, 	
	 	 setting_value);	

text setting_name;
text setting_value;

Description
Sets value of specific setting stored in tiger.geocode_settings table. Settings allow you to toggle debugging of functions. Later plans will be to control rating with settings. Current list of settings are listed in Get_Geocode_Setting.
Availability: 2.1.0

Example return debugging setting
If you run Geocode when this function is true, the NOTICE log will output timing and queries.
SELECT set_geocode_setting('debug_geocode_address', 'true') As result;
result

true

See Also
Get_Geocode_Setting

Name
ST_PixelAsPoint —
 Returns a point geometry of the pixel's upper-left corner.

Synopsis
	geometry ST_PixelAsPoint(rast, 	
	 	columnx, 	
	 	rowy);	

raster rast;
integer columnx;
integer rowy;

Description
Returns a point geometry of the pixel's upper-left corner.
Availability: 2.1.0

Examples

SELECT ST_AsText(ST_PixelAsPoint(rast, 1, 1)) FROM dummy_rast WHERE rid = 1;

 st_astext

 POINT(0.5 0.5)

See Also

 ST_DumpAsPolygons,
 ST_PixelAsPolygon,
 ST_PixelAsPolygons,
 ST_PixelAsPoints,
 ST_PixelAsCentroid,
 ST_PixelAsCentroids

Raster Band Accessors

Name
ST_Resize — Resize a raster to a new width/height

Synopsis
	raster ST_Resize(rast, 	
	 	width, 	
	 	height, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
integer width;
integer height;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

	raster ST_Resize(rast, 	
	 	percentwidth, 	
	 	percentheight, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
double precision percentwidth;
double precision percentheight;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

	raster ST_Resize(rast, 	
	 	width, 	
	 	height, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
text width;
text height;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

Description

 Resize a raster to a new width/height. The new width/height can be specified in exact number of pixels or a percentage of the raster's width/height. The extent of the the new raster will be the same as the extent of the provided raster.

 New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. The default is NearestNeighbor which is the fastest but results in the worst interpolation.

 Variant 1 expects the actual width/height of the output raster.

 Variant 2 expects decimal values between zero (0) and one (1) indicating the percentage of the input raster's width/height.

 Variant 3 takes either the actual width/height of the output raster or a textual percentage ("20%") indicating the percentage of the input raster's width/height.

Availability: 2.1.0 Requires GDAL 1.6.1+

Examples

WITH foo AS(
SELECT
 1 AS rid,
 ST_Resize(
 ST_AddBand(
 ST_MakeEmptyRaster(1000, 1000, 0, 0, 1, -1, 0, 0, 0)
 , 1, '8BUI', 255, 0
)
 , '50%', '500') AS rast
UNION ALL
SELECT
 2 AS rid,
 ST_Resize(
 ST_AddBand(
 ST_MakeEmptyRaster(1000, 1000, 0, 0, 1, -1, 0, 0, 0)
 , 1, '8BUI', 255, 0
)
 , 500, 100) AS rast
UNION ALL
SELECT
 3 AS rid,
 ST_Resize(
 ST_AddBand(
 ST_MakeEmptyRaster(1000, 1000, 0, 0, 1, -1, 0, 0, 0)
 , 1, '8BUI', 255, 0
)
 , 0.25, 0.9) AS rast
), bar AS (
 SELECT rid, ST_Metadata(rast) AS meta, rast FROM foo
)
SELECT rid, (meta).* FROM bar

 rid | upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
-----+------------+------------+-------+--------+--------+--------+-------+-------+------+----------
 1 | 0 | 0 | 500 | 500 | 1 | -1 | 0 | 0 | 0 | 1
 2 | 0 | 0 | 500 | 100 | 1 | -1 | 0 | 0 | 0 | 1
 3 | 0 | 0 | 250 | 900 | 1 | -1 | 0 | 0 | 0 | 1
(3 rows)

See Also

 ST_Resample,
 ST_Rescale,
 ST_Reskew,
 ST_SnapToGrid

Name
ST_InvDistWeight4ma — Raster processing function that interpolates a pixel's value from the pixel's neighborhood.

Synopsis
	double precision ST_InvDistWeight4ma(value, 	
	 	pos, 	
	 	VARIADIC userargs);	

double precision[][][] value;
integer[][] pos;
text[] VARIADIC userargs;

Description
Calculate an interpolated value for a pixel using the Inverse Distance Weighted method.

 There are two optional parameters that can be passed through userargs. The first parameter is the power factor (variable k in the equation below) between 0 and 1 used in the Inverse Distance Weighted equation. If not specified, default value is 1. The second parameter is the weight percentage applied only when the value of the pixel of interest is included with the interpolated value from the neighborhood. If not specified and the pixel of interest has a value, that value is returned.

 The basic inverse distance weight equation is:

[image: Description]
 k = power factor, a real number between 0 and 1

Note
This function is a specialized callback function for use as a callback parameter to ST_MapAlgebra (callback function version).

Availability: 2.1.0

Examples

-- NEEDS EXAMPLE

See Also

 ST_MapAlgebra (callback function version),
 ST_MinDist4ma

Name
reclassarg — A composite type used as input into the ST_Reclass function defining the behavior of reclassification.

Description
A composite type used as input into the ST_Reclass function defining the behavior of reclassification.
	nband integer
	The band number of band to reclassify.

	reclassexpr text
	range expression consisting of comma delimited range:map_range mappings. : to define mapping that defines how to map old band values to new band values. (means >,) means less than,] < or equal, [means > or equal
1. [a-b] = a <= x <= b

2. (a-b] = a < x <= b

3. [a-b) = a <= x < b

4. (a-b) = a < x < b
(notation is optional so a-b means the same as (a-b)

	pixeltype text
	One of defined pixel types as described in ST_BandPixelType

	nodataval double precision
	Value to treat as no data. For image outputs that support transparency, these will be blank.

Example: Reclassify band 2 as an 8BUI where 255 is nodata value
SELECT ROW(2, '0-100:1-10, 101-500:11-150,501 - 10000: 151-254', '8BUI', 255)::reclassarg;

Example: Reclassify band 1 as an 1BB and no nodata value defined
SELECT ROW(1, '0-100]:0, (100-255:1', '1BB', NULL)::reclassarg;

See Also
ST_Reclass

Name
ST_LineToCurve — Converts a linear geometry to a curved geometry.

Synopsis
	geometry ST_LineToCurve(geomANoncircular);	

geometry geomANoncircular;

Description
Converts plain LINESTRING/POLYGON to CIRCULAR STRINGs and Curved Polygons. Note much fewer points are needed to describe the curved equivalent.
Note
If the input LINESTRING/POLYGON is not curved enough to clearly represent a curve, the function will return the same input geometry.

Availability: 1.3.0
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
 -- 2D Example
SELECT ST_AsText(ST_LineToCurve(foo.geom)) As curvedastext,ST_AsText(foo.geom) As non_curvedastext
 FROM (SELECT ST_Buffer('POINT(1 3)'::geometry, 3) As geom) As foo;

curvedatext non_curvedastext
--|---
CURVEPOLYGON(CIRCULARSTRING(4 3,3.12132034355964 0.878679656440359, | POLYGON((4 3,3.94235584120969 2.41472903395162,3.77163859753386 1.85194970290473,
1 0,-1.12132034355965 5.12132034355963,4 3)) | 3.49440883690764 1.33328930094119,3.12132034355964 0.878679656440359,
 | 2.66671069905881 0.505591163092366,2.14805029709527 0.228361402466141,
 | 1.58527096604839 0.0576441587903094,1 0,
 | 0.414729033951621 0.0576441587903077,-0.148050297095264 0.228361402466137,
 | -0.666710699058802 0.505591163092361,-1.12132034355964 0.878679656440353,
 | -1.49440883690763 1.33328930094119,-1.77163859753386 1.85194970290472
 | --ETC-- ,3.94235584120969 3.58527096604839,4 3))

--3D example
SELECT ST_AsText(ST_LineToCurve(geom)) As curved, ST_AsText(geom) AS not_curved
FROM (SELECT ST_Translate(ST_Force3D(ST_Boundary(ST_Buffer(ST_Point(1,3), 2,2))),0,0,3) AS geom) AS foo;

 curved | not_curved
--+---
 CIRCULARSTRING Z (3 3 3,-1 2.99999999999999 3,3 3 3) | LINESTRING Z (3 3 3,2.4142135623731 1.58578643762691 3,1 1 3,
 | -0.414213562373092 1.5857864376269 3,-1 2.99999999999999 3,
 | -0.414213562373101 4.41421356237309 3,
 | 0.999999999999991 5 3,2.41421356237309 4.4142135623731 3,3 3 3)
(1 row)

See Also
ST_CurveToLine

Release 1.1.4

Release date: 2006/09/27
This is an bugfix release including some improvements in the Java
 interface. Upgrade is encouraged.
Upgrading

If you are upgrading from release 1.0.3 or later follow the
 soft upgrade procedure.
If you are upgrading from a release between 1.0.0RC6
 and 1.0.2 (inclusive) and really want a live upgrade read
 the upgrade section of the
 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

Bug fixes

Fixed support for PostgreSQL 8.2
Fixed bug in collect() function discarding SRID of input
Added SRID match check in MakeBox2d and MakeBox3d
Fixed regress tests to pass with GEOS-3.0.0
Improved pgsql2shp run concurrency.

Java changes

reworked JTS support to reflect new upstream JTS developers'
 attitude to SRID handling. Simplifies code and drops build depend on
 GNU trove.
Added EJB2 support generously donated by the "Geodetix s.r.l. Company"
Added EJB3 tutorial / examples donated by Norman Barker
 <nbarker@ittvis.com>
Reorganized java directory layout a little.

Name
ST_WKBToSQL — Return a specified ST_Geometry value from Well-Known Binary representation (WKB). This is an alias name for ST_GeomFromWKB that takes no srid

Synopsis
	geometry ST_WKBToSQL(WKB);	

bytea WKB;

Description
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.36

See Also
ST_GeomFromWKB

Name
ST_Value — Returns the value of a given band in a given columnx, rowy pixel or at a particular geometric point. Band numbers start at 1 and assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include nodata pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.

Synopsis
	double precision ST_Value(rast, 	
	 	pt, 	
	 	exclude_nodata_value=true);	

raster rast;
geometry pt;
boolean exclude_nodata_value=true;

	double precision ST_Value(rast, 	
	 	band, 	
	 	pt, 	
	 	exclude_nodata_value=true, 	
	 	resample='nearest');	

raster rast;
integer band;
geometry pt;
boolean exclude_nodata_value=true;
text resample='nearest';

	double precision ST_Value(rast, 	
	 	x, 	
	 	y, 	
	 	exclude_nodata_value=true);	

raster rast;
integer x;
integer y;
boolean exclude_nodata_value=true;

	double precision ST_Value(rast, 	
	 	band, 	
	 	x, 	
	 	y, 	
	 	exclude_nodata_value=true);	

raster rast;
integer band;
integer x;
integer y;
boolean exclude_nodata_value=true;

Description
Returns the value of a given band in a given columnx, rowy pixel or at a given geometry point. Band numbers start at 1 and band is assumed to be 1 if not specified.
If exclude_nodata_value is set to true, then only non nodata pixels are considered. If exclude_nodata_value is set to false, then all pixels are considered.
The allowed values of the resample parameter are "nearest" which performs the default nearest-neighbor resampling, and "bilinear" which performs a bilinear interpolation to estimate the value between pixel centers.
Enhanced: 3.2.0 resample optional argument was added.
Enhanced: 2.0.0 exclude_nodata_value optional argument was added.

Examples

-- get raster values at particular postgis geometry points
-- the srid of your geometry should be same as for your raster
SELECT rid, ST_Value(rast, foo.pt_geom) As b1pval, ST_Value(rast, 2, foo.pt_geom) As b2pval
FROM dummy_rast CROSS JOIN (SELECT ST_SetSRID(ST_Point(3427927.77, 5793243.76), 0) As pt_geom) As foo
WHERE rid=2;

 rid | b1pval | b2pval
-----+--------+--------
 2 | 252 | 79

-- general fictitious example using a real table
SELECT rid, ST_Value(rast, 3, sometable.geom) As b3pval
FROM sometable
WHERE ST_Intersects(rast,sometable.geom);

SELECT rid, ST_Value(rast, 1, 1, 1) As b1pval,
 ST_Value(rast, 2, 1, 1) As b2pval, ST_Value(rast, 3, 1, 1) As b3pval
FROM dummy_rast
WHERE rid=2;

 rid | b1pval | b2pval | b3pval
-----+--------+--------+--------
 2 | 253 | 78 | 70

--- Get all values in bands 1,2,3 of each pixel --
SELECT x, y, ST_Value(rast, 1, x, y) As b1val,
 ST_Value(rast, 2, x, y) As b2val, ST_Value(rast, 3, x, y) As b3val
FROM dummy_rast CROSS JOIN
generate_series(1, 1000) As x CROSS JOIN generate_series(1, 1000) As y
WHERE rid = 2 AND x <= ST_Width(rast) AND y <= ST_Height(rast);

 x | y | b1val | b2val | b3val
---+---+-------+-------+-------
 1 | 1 | 253 | 78 | 70
 1 | 2 | 253 | 96 | 80
 1 | 3 | 250 | 99 | 90
 1 | 4 | 251 | 89 | 77
 1 | 5 | 252 | 79 | 62
 2 | 1 | 254 | 98 | 86
 2 | 2 | 254 | 118 | 108
 :
 :

--- Get all values in bands 1,2,3 of each pixel same as above but returning the upper left point point of each pixel --
SELECT ST_AsText(ST_SetSRID(
 ST_Point(ST_UpperLeftX(rast) + ST_ScaleX(rast)*x,
 ST_UpperLeftY(rast) + ST_ScaleY(rast)*y),
 ST_SRID(rast))) As uplpt
 , ST_Value(rast, 1, x, y) As b1val,
 ST_Value(rast, 2, x, y) As b2val, ST_Value(rast, 3, x, y) As b3val
FROM dummy_rast CROSS JOIN
generate_series(1,1000) As x CROSS JOIN generate_series(1,1000) As y
WHERE rid = 2 AND x <= ST_Width(rast) AND y <= ST_Height(rast);

 uplpt | b1val | b2val | b3val
-----------------------------+-------+-------+-------
 POINT(3427929.25 5793245.5) | 253 | 78 | 70
 POINT(3427929.25 5793247) | 253 | 96 | 80
 POINT(3427929.25 5793248.5) | 250 | 99 | 90
:

--- Get a polygon formed by union of all pixels
 that fall in a particular value range and intersect particular polygon --
SELECT ST_AsText(ST_Union(pixpolyg)) As shadow
FROM (SELECT ST_Translate(ST_MakeEnvelope(
 ST_UpperLeftX(rast), ST_UpperLeftY(rast),
 ST_UpperLeftX(rast) + ST_ScaleX(rast),
 ST_UpperLeftY(rast) + ST_ScaleY(rast), 0
), ST_ScaleX(rast)*x, ST_ScaleY(rast)*y
) As pixpolyg, ST_Value(rast, 2, x, y) As b2val
 FROM dummy_rast CROSS JOIN
generate_series(1,1000) As x CROSS JOIN generate_series(1,1000) As y
WHERE rid = 2
 AND x <= ST_Width(rast) AND y <= ST_Height(rast)) As foo
WHERE
 ST_Intersects(
 pixpolyg,
 ST_GeomFromText('POLYGON((3427928 5793244,3427927.75 5793243.75,3427928 5793243.75,3427928 5793244))',0)
) AND b2val != 254;

 shadow
--
 MULTIPOLYGON(((3427928 5793243.9,3427928 5793243.85,3427927.95 5793243.85,3427927.95 5793243.9,
 3427927.95 5793243.95,3427928 5793243.95,3427928.05 5793243.95,3427928.05 5793243.9,3427928 5793243.9)),((3427927.95 5793243.9,3427927.95 579324
3.85,3427927.9 5793243.85,3427927.85 5793243.85,3427927.85 5793243.9,3427927.9 5793243.9,3427927.9 5793243.95,
3427927.95 5793243.95,3427927.95 5793243.9)),((3427927.85 5793243.75,3427927.85 5793243.7,3427927.8 5793243.7,3427927.8 5793243.75
,3427927.8 5793243.8,3427927.8 5793243.85,3427927.85 5793243.85,3427927.85 5793243.8,3427927.85 5793243.75)),
((3427928.05 5793243.75,3427928.05 5793243.7,3427928 5793243.7,3427927.95 5793243.7,3427927.95 5793243.75,3427927.95 5793243.8,3427
927.95 5793243.85,3427928 5793243.85,3427928 5793243.8,3427928.05 5793243.8,
3427928.05 5793243.75)),((3427927.95 5793243.75,3427927.95 5793243.7,3427927.9 5793243.7,3427927.85 5793243.7,
3427927.85 5793243.75,3427927.85 5793243.8,3427927.85 5793243.85,3427927.9 5793243.85,
3427927.95 5793243.85,3427927.95 5793243.8,3427927.95 5793243.75)))

--- Checking all the pixels of a large raster tile can take a long time.
--- You can dramatically improve speed at some lose of precision by orders of magnitude
-- by sampling pixels using the step optional parameter of generate_series.
-- This next example does the same as previous but by checking 1 for every 4 (2x2) pixels and putting in the last checked
-- putting in the checked pixel as the value for subsequent 4

SELECT ST_AsText(ST_Union(pixpolyg)) As shadow
FROM (SELECT ST_Translate(ST_MakeEnvelope(
 ST_UpperLeftX(rast), ST_UpperLeftY(rast),
 ST_UpperLeftX(rast) + ST_ScaleX(rast)*2,
 ST_UpperLeftY(rast) + ST_ScaleY(rast)*2, 0
), ST_ScaleX(rast)*x, ST_ScaleY(rast)*y
) As pixpolyg, ST_Value(rast, 2, x, y) As b2val
 FROM dummy_rast CROSS JOIN
generate_series(1,1000,2) As x CROSS JOIN generate_series(1,1000,2) As y
WHERE rid = 2
 AND x <= ST_Width(rast) AND y <= ST_Height(rast)) As foo
WHERE
 ST_Intersects(
 pixpolyg,
 ST_GeomFromText('POLYGON((3427928 5793244,3427927.75 5793243.75,3427928 5793243.75,3427928 5793244))',0)
) AND b2val != 254;

 shadow
--
 MULTIPOLYGON(((3427927.9 5793243.85,3427927.8 5793243.85,3427927.8 5793243.95,
 3427927.9 5793243.95,3427928 5793243.95,3427928.1 5793243.95,3427928.1 5793243.85,3427928 5793243.85,3427927.9 5793243.85)),
 ((3427927.9 5793243.65,3427927.8 5793243.65,3427927.8 5793243.75,3427927.8 5793243.85,3427927.9 5793243.85,
 3427928 5793243.85,3427928 5793243.75,3427928.1 5793243.75,3427928.1 5793243.65,3427928 5793243.65,3427927.9 5793243.65)))

See Also

 ST_SetValue,
 ST_DumpAsPolygons,
 ST_NumBands,
 ST_PixelAsPolygon,
 ST_ScaleX,
 ST_ScaleY,
 ST_UpperLeftX,
 ST_UpperLeftY,
 ST_SRID,
 ST_AsText,
 ST_Point,
 ST_MakeEnvelope,
 ST_Intersects,
 ST_Intersection

Geometry Validation

Abstract
These functions test whether geometries are valid according to
			the OGC SFS standard.
 They also provide information about the nature and location of invalidity.
 There is also a function to create a valid geometry out of an invalid one.
			

Name
ST_Hexagon — Returns a single hexagon, using the provided edge size and
			cell coordinate within the hexagon grid space.

Synopsis
	geometry ST_Hexagon(size, 	
	 	cell_i, 	
	 	cell_j, 	
	 	origin);	

float8 size;
integer cell_i;
integer cell_j;
geometry origin;

Description
Uses the same hexagon tiling concept as ST_HexagonGrid, but generates just one hexagon at the desired cell coordinate. Optionally,
			can adjust origin coordinate of the tiling, the default origin is at 0,0.
			
Hexagons are generated with no SRID set, so use ST_SetSRID to set the SRID to the one you expect.
Availability: 3.1.0

Example: Creating a hexagon at the origin
SELECT ST_AsText(ST_SetSRID(ST_Hexagon(1.0, 0, 0), 3857));

POLYGON((-1 0,-0.5
 -0.866025403784439,0.5
 -0.866025403784439,1
 0,0.5
 0.866025403784439,-0.5
 0.866025403784439,-1 0))

See Also
ST_TileEnvelope, ST_HexagonGrid, ST_Square

Name
ST_RotateZ — Rotates a geometry about the Z axis.

Synopsis
	geometry ST_RotateZ(geomA, 	
	 	rotRadians);	

geometry geomA;
float rotRadians;

Description
Rotates a geometry geomA - rotRadians about the Z axis.
Note
This is a synonym for ST_Rotate

Note
ST_RotateZ(geomA, rotRadians)
			is short-hand for SELECT ST_Affine(geomA, cos(rotRadians), -sin(rotRadians), 0, sin(rotRadians), cos(rotRadians), 0, 0, 0, 1, 0, 0, 0).

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.1.2. Name changed from RotateZ to ST_RotateZ in 1.2.2
Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

--Rotate a line 90 degrees along z-axis
SELECT ST_AsEWKT(ST_RotateZ(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), pi()/2));
		 st_asewkt

 LINESTRING(-2 1 3,-1 1 1)

 --Rotate a curved circle around z-axis
SELECT ST_AsEWKT(ST_RotateZ(geom, pi()/2))
FROM (SELECT ST_LineToCurve(ST_Buffer(ST_GeomFromText('POINT(234 567)'), 3)) As geom) As foo;

													 st_asewkt
--
 CURVEPOLYGON(CIRCULARSTRING(-567 237,-564.87867965644 236.12132034356,-564 234,-569.12132034356 231.87867965644,-567 237))

See Also
ST_Affine, ST_RotateX, ST_RotateY

Name
PostGIS_AddBBox — Add bounding box to the geometry.

Synopsis
	geometry PostGIS_AddBBox(geomA);	

geometry geomA;

Description
Add bounding box to the geometry. This would make bounding
			box based queries faster, but will increase the size of the
			geometry.
Note
Bounding boxes are automatically added to geometries so in general this is not needed
				unless the generated bounding box somehow becomes corrupted or you have an old install that is lacking bounding boxes. Then you need to drop the old and readd.

[image: Description]
 This method supports Circular Strings and Curves

Examples
UPDATE sometable
 SET geom = PostGIS_AddBBox(geom)
 WHERE PostGIS_HasBBox(geom) = false;

See Also
PostGIS_DropBBox, PostGIS_HasBBox

Name
ST_MinimumClearanceLine — Returns the two-point LineString spanning a geometry's minimum clearance.

Synopsis
	Geometry ST_MinimumClearanceLine(g);	

geometry
			g;

Description

			Returns the two-point LineString spanning a geometry's minimum clearance. If the geometry does not have a minimum
			clearance, LINESTRING EMPTY will be returned.
		
Performed by the GEOS module.
Availability: 2.3.0 - requires GEOS >= 3.6.0

Examples

SELECT ST_AsText(ST_MinimumClearanceLine('POLYGON ((0 0, 1 0, 1 1, 0.5 3.2e-4, 0 0))'));
st_astext

LINESTRING(0.5 0.00032,0.5 0)
		

See Also

			ST_MinimumClearance
		

Release 1.0.0RC1

Release date: 2005/01/13
This is the first candidate of a major postgis release, with
 internal storage of postgis types redesigned to be smaller and faster on
 indexed queries.
Upgrading

You need a dump/reload to upgrade from precedent releases. See
 the upgrading chapter for more
 informations.

Changes

Faster canonical input parsing.
Lossless canonical output.
EWKB Canonical binary IO with PG>73.
Support for up to 4d coordinates, providing lossless
 shapefile->postgis->shapefile conversion.
New function: UpdateGeometrySRID(), AsGML(), SnapToGrid(),
 ForceRHR(), estimated_extent(), accum().
Vertical positioning indexed operators.
JOIN selectivity function.
More geometry constructors / editors.
PostGIS extension API.
UTF8 support in loader.

Name

				ST_ForcePolygonCW
			 —
				Orients all exterior rings clockwise and all interior rings counter-clockwise.
			

Synopsis
	
						geometry
						ST_ForcePolygonCW
					(geom);	

						geometry
						geom
					;

Description

				Forces (Multi)Polygons to use a clockwise orientation for
				their exterior ring, and a counter-clockwise orientation for their interior
				rings. Non-polygonal geometries are returned unchanged.
			
Availability: 2.4.0
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports M coordinates.

See Also

				
				ST_ForcePolygonCCW
			,
				
				ST_IsPolygonCCW
			,
				
				ST_IsPolygonCW
			
			

Release 1.1.0

Release date: 2005/12/21
This is a Minor release, containing many improvements and new
 things. Most notably: build procedure greatly simplified; transform()
 performance drastically improved; more stable GEOS connectivity (CAPI
 support); lots of new functions; draft topology support.
It is highly recommended that you upgrade to
 GEOS-2.2.x before installing PostGIS, this will ensure future GEOS
 upgrades won't require a rebuild of the PostGIS library.
Credits

This release includes code from Mark Cave Ayland for caching of
 proj4 objects. Markus Schaber added many improvements in his JDBC2
 code. Alex Bodnaru helped with PostgreSQL source dependency relief and
 provided Debian specfiles. Michael Fuhr tested new things on Solaris
 arch. David Techer and Gerald Fenoy helped testing GEOS C-API
 connector. Hartmut Tschauner provided code for the azimuth() function.
 Devrim GUNDUZ provided RPM specfiles. Carl Anderson helped with the
 new area building functions. See the credits section for more names.

Upgrading

If you are upgrading from release 1.0.3 or later you
 DO NOT need a dump/reload. Simply sourcing the
 new lwpostgis_upgrade.sql script in all your existing databases will
 work. See the soft upgrade chapter
 for more information.
If you are upgrading from a release between 1.0.0RC6
 and 1.0.2 (inclusive) and really want a live upgrade read
 the upgrade section of the
 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

New functions

scale() and transscale() companion methods to translate()
line_substring()
line_locate_point()
M(point)
LineMerge(geometry)
shift_longitude(geometry)
azimuth(geometry)
locate_along_measure(geometry, float8)
locate_between_measures(geometry, float8, float8)
SnapToGrid by point offset (up to 4d support)
BuildArea(any_geometry)
OGC BdPolyFromText(linestring_wkt, srid)
OGC BdMPolyFromText(linestring_wkt, srid)
RemovePoint(linestring, offset)
ReplacePoint(linestring, offset, point)

Bug fixes

Fixed memory leak in polygonize()
Fixed bug in lwgeom_as_anytype cast functions
Fixed USE_GEOS, USE_PROJ and USE_STATS elements of
 postgis_version() output to always reflect library state.

Function semantic changes

SnapToGrid doesn't discard higher dimensions
Changed Z() function to return NULL if requested dimension is
 not available

Performance improvements

Much faster transform() function, caching proj4 objects
Removed automatic call to fix_geometry_columns() in
 AddGeometryColumns() and update_geometry_stats()

JDBC2 works

Makefile improvements
JTS support improvements
Improved regression test system
Basic consistency check method for geometry collections
Support for (Hex)(E)wkb
Autoprobing DriverWrapper for HexWKB / EWKT switching
fix compile problems in ValueSetter for ancient jdk
 releases.
fix EWKT constructors to accept SRID=4711; representation
added preliminary read-only support for java2d geometries

Other new things

Full autoconf-based configuration, with PostgreSQL source
 dependency relief
GEOS C-API support (2.2.0 and higher)
Initial support for topology modelling
Debian and RPM specfiles
New lwpostgis_upgrade.sql script

Other changes

JTS support improvements
Stricter mapping between DBF and SQL integer and string
 attributes
Wider and cleaner regression test suite
old jdbc code removed from release
obsoleted direct use of postgis_proc_upgrade.pl
scripts version unified with release version

Name
@(box2df,geometry) — Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry's 2D bounding box.

Synopsis
	boolean @(A, 	
	 	B);	

				 box2df

				 A
				;

				 geometry

				 B
				;

Description
The @ operator returns TRUE if the 2D bounding box A is contained into the B geometry's 2D bounding box, using float precision. This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)
Note
This operand is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_MakeBox2D(ST_Point(2,2), ST_Point(3,3)) @ ST_Buffer(ST_GeomFromText('POINT(1 1)'), 10) AS is_contained;

 is_contained

 t
(1 row)

See Also

				&&(geometry,box2df),
				&&(box2df,geometry),
				&&(box2df,box2df),
				~(geometry,box2df),
				~(box2df,geometry),
				~(box2df,box2df),
				@(geometry,box2df),
				@(box2df,box2df)

Release 2.4.1

Release date: 2017/10/18
This is a bug fix and performance improvement release.
Bug Fixes and Enhancements

#3864, Fix memory leaks in BTREE operators
#3869, Fix build with "gold" linker
#3845, Gracefully handle short-measure issue
#3871, Performance tweak for geometry cmp function
#3879, Division by zero in some arc cases
#3878, Single defn of signum in header
#3880, Undefined behaviour in TYPMOD_GET_SRID
#3875, Fix undefined behaviour in shift operation
#3864, Performance improvements for b-tree geometry sorts
#3874, lw_dist2d_pt_arc division by zero
#3882, undefined behaviour in zigzag with negative inputs
#3891, undefined behaviour in pointarray_to_encoded_polyline
#3895, throw error on malformed WKB input
#3886, fix rare missing boxes in geometry subdivision
#3907, Allocate enough space for all possible GBOX string outputs (Raúl Marín Rodríguez)

Name
ST_Expand — Returns a bounding box expanded from another bounding box or a geometry.

Synopsis
	geometry ST_Expand(geom, 	
	 	units_to_expand);	

geometry geom;
float units_to_expand;

	geometry ST_Expand(geom, 	
	 	dx, 	
	 	dy, 	
	 	dz=0, 	
	 	dm=0);	

geometry geom;
float dx;
float dy;
float dz=0;
float dm=0;

	box2d ST_Expand(box, 	
	 	units_to_expand);	

box2d box;
float units_to_expand;

	box2d ST_Expand(box, 	
	 	dx, 	
	 	dy);	

box2d box;
float dx;
float dy;

	box3d ST_Expand(box, 	
	 	units_to_expand);	

box3d box;
float units_to_expand;

	box3d ST_Expand(box, 	
	 	dx, 	
	 	dy, 	
	 	dz=0);	

box3d box;
float dx;
float dy;
float dz=0;

Description
Returns a bounding box expanded from the bounding box of the input,
			either by specifying a single distance with which the box should be expanded on both
			axes, or by specifying an expansion distance for each axis.

			Uses double-precision. Can be used for distance queries, or to add a bounding box
			filter to a query to take advantage of a spatial index.
In addition to the version of ST_Expand accepting and returning a geometry, variants
			are provided that accept and return
 box2d and box3d data types.
		
Distances are in the units of the spatial reference system of the input.
ST_Expand is similar to ST_Buffer,
			except while buffering expands a geometry in all directions,
			ST_Expand expands the bounding box along each axis.
Note
Pre version 1.3, ST_Expand was used in conjunction with ST_Distance to do indexable distance queries. For example,
			geom && ST_Expand('POINT(10 20)', 10) AND ST_Distance(geom, 'POINT(10 20)') < 10.
			This has been replaced by the simpler and more efficient ST_DWithin function.

Availability: 1.5.0 behavior changed to output double precision instead of float4 coordinates.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.3.0 support was added to expand a box by different amounts in different dimensions.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
Note
Examples below use US National Atlas Equal Area (SRID=2163) which is a meter projection

		
--10 meter expanded box around bbox of a linestring
SELECT CAST(ST_Expand(ST_GeomFromText('LINESTRING(2312980 110676,2312923 110701,2312892 110714)', 2163),10) As box2d);
					 st_expand

 BOX(2312882 110666,2312990 110724)

--10 meter expanded 3D box of a 3D box
SELECT ST_Expand(CAST('BOX3D(778783 2951741 1,794875 2970042.61545891 10)' As box3d),10)
							 st_expand

 BOX3D(778773 2951731 -9,794885 2970052.61545891 20)

 --10 meter geometry astext rep of a expand box around a point geometry
 SELECT ST_AsEWKT(ST_Expand(ST_GeomFromEWKT('SRID=2163;POINT(2312980 110676)'),10));
											st_asewkt

 SRID=2163;POLYGON((2312970 110666,2312970 110686,2312990 110686,2312990 110666,2312970 110666))

		

See Also
ST_Buffer, ST_DWithin, ST_SRID

Name
ST_RasterToWorldCoord — Returns the raster's upper left corner as geometric X and Y (longitude and latitude) given a column and row. Column and row starts at 1.

Synopsis
	record ST_RasterToWorldCoord(rast, 	
	 	xcolumn, 	
	 	yrow);	

raster rast;
integer xcolumn;
integer yrow;

Description

 Returns the upper left corner as geometric X and Y (longitude and latitude) given a column and row. Returned X and Y are in geometric units of the georeferenced raster.
 Numbering of column and row starts at 1 but if either parameter is passed a zero, a negative number or a number greater than the respective dimension of the raster, it will return coordinates outside of the raster assuming the raster's grid is applicable outside the raster's bounds.

Availability: 2.1.0

Examples

-- non-skewed raster
SELECT
 rid,
 (ST_RasterToWorldCoord(rast,1, 1)).*,
 (ST_RasterToWorldCoord(rast,2, 2)).*
FROM dummy_rast

 rid | longitude | latitude | longitude | latitude
-----+------------+----------+-----------+------------
 1 | 0.5 | 0.5 | 2.5 | 3.5
 2 | 3427927.75 | 5793244 | 3427927.8 | 5793243.95

-- skewed raster
SELECT
 rid,
 (ST_RasterToWorldCoord(rast, 1, 1)).*,
 (ST_RasterToWorldCoord(rast, 2, 3)).*
FROM (
 SELECT
 rid,
 ST_SetSkew(rast, 100.5, 0) As rast
 FROM dummy_rast
) As foo

 rid | longitude | latitude | longitude | latitude
-----+------------+----------+-----------+-----------
 1 | 0.5 | 0.5 | 203.5 | 6.5
 2 | 3427927.75 | 5793244 | 3428128.8 | 5793243.9

See Also

 ST_RasterToWorldCoordX,
 ST_RasterToWorldCoordY,
 ST_SetSkew

Raster Band Statistics and Analytics

Name
ST_Resample —
 Resample a raster using a specified resampling algorithm, new dimensions, an arbitrary grid corner and a set of raster georeferencing attributes defined or borrowed from another raster.

Synopsis
	raster ST_Resample(rast, 	
	 	width, 	
	 	height, 	
	 	gridx=NULL, 	
	 	gridy=NULL, 	
	 	skewx=0, 	
	 	skewy=0, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
integer width;
integer height;
double precision gridx=NULL;
double precision gridy=NULL;
double precision skewx=0;
double precision skewy=0;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

	raster ST_Resample(rast, 	
	 	scalex=0, 	
	 	scaley=0, 	
	 	gridx=NULL, 	
	 	gridy=NULL, 	
	 	skewx=0, 	
	 	skewy=0, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
double precision scalex=0;
double precision scaley=0;
double precision gridx=NULL;
double precision gridy=NULL;
double precision skewx=0;
double precision skewy=0;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

	raster ST_Resample(rast, 	
	 	ref, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125, 	
	 	usescale=true);	

raster rast;
raster ref;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;
boolean usescale=true;

	raster ST_Resample(rast, 	
	 	ref, 	
	 	usescale, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
raster ref;
boolean usescale;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

Description

 Resample a raster using a specified resampling algorithm, new dimensions (width & height), a grid corner (gridx & gridy) and a set of raster georeferencing attributes (scalex, scaley, skewx & skewy) defined or borrowed from another raster. If using a reference raster, the two rasters must have the same SRID.

 New pixel values are computed using the NearestNeighbor (English or American spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor which is the fastest but produce the worst interpolation.

 A maxerror percent of 0.125 is used if no maxerr is specified.

Note

 Refer to: GDAL Warp resampling methods for more details.

Availability: 2.0.0 Requires GDAL 1.6.1+
Changed: 2.1.0 Parameter srid removed. Variants with a reference raster no longer applies the reference raster's SRID. Use ST_Transform() to reproject raster. Works on rasters with no SRID.

Examples

SELECT
 ST_Width(orig) AS orig_width,
 ST_Width(reduce_100) AS new_width
FROM (
 SELECT
 rast AS orig,
 ST_Resample(rast,100,100) AS reduce_100
 FROM aerials.boston
 WHERE ST_Intersects(rast,
 ST_Transform(
 ST_MakeEnvelope(-71.128, 42.2392,-71.1277, 42.2397, 4326),26986)
)
 LIMIT 1
) AS foo;

 orig_width | new_width
------------+-------------
 200 | 100

See Also

 ST_Rescale,
 ST_Resize,
 ST_Transform

Topology Spatial Relationships

Abstract
This section lists the Topology functions used to check relationships between topogeometries and topology primitives

Release 3.0.0rc1

Release date: 2019/10/08
If compiling with PostgreSQL+JIT, LLVM >= 6 is required
Supported PostgreSQL versions for this release are:
 PostgreSQL 9.5 - PostgreSQL 12
 GEOS >= 3.6. Additional features enabled if you running Proj6+ and/or PostgreSQL 12.
 Performance enhancements if running GEOS 3.8+
Major highlights

4519, Fix getSRIDbySRS crash (Raúl Marín)
4520, Use a clean environment when detecting C++ libraries (Raúl Marín)
Restore ST_Union() aggregate signature so drop agg not required and re-work
 performance/size enhancement to continue to avoid
 using Array type during ST_Union(), hopefully
 avoiding Array size limitations. (Paul Ramsey)

Geometry Validation

PostGIS is compliant with the Open Geospatial Consortium’s (OGC)
	 OpenGIS Specifications. As such, many PostGIS methods require, or more
	 accurately, assume that geometries that are operated on are both simple
	 and valid. For example, it does not make sense to calculate the area of
	 a polygon that has a hole defined outside of the polygon, or to construct
	 a polygon from a non-simple boundary line.
According to the OGC Specifications, a simple
	 geometry is one that has no anomalous geometric points, such as self
	 intersection or self tangency and primarily refers to 0 or 1-dimensional
	 geometries (i.e. [MULTI]POINT, [MULTI]LINESTRING).
	 Geometry validity, on the other hand, primarily refers to 2-dimensional
	 geometries (i.e. [MULTI]POLYGON) and defines the set
	 of assertions that characterizes a valid polygon. The description of each
	 geometric class includes specific conditions that further detail geometric
	 simplicity and validity.
A POINT is inherently simple
	 as a 0-dimensional geometry object.
MULTIPOINTs are simple if
	 no two coordinates (POINTs) are equal (have identical
	 coordinate values).
A LINESTRING is simple if
	 it does not pass through the same POINT twice (except
	 for the endpoints, in which case it is referred to as a linear ring and
	 additionally considered closed).
	[image: Geometry Validation](a)

	[image: Geometry Validation](b)

	[image: Geometry Validation](c)

	[image: Geometry Validation](d)

	(a) and
				(c) are simple
				LINESTRINGs, (b)
				and (d) are not.

A MULTILINESTRING is simple
	 only if all of its elements are simple and the only intersection between
	 any two elements occurs at POINTs that are on the
	 boundaries of both elements.
	[image: Geometry Validation](e)

	[image: Geometry Validation](f)

	[image: Geometry Validation](g)

	(e) and
				(f) are simple
				MULTILINESTRINGs, (g)
				is not.

By definition, a POLYGON is always
	 simple. It is valid if no two
	 rings in the boundary (made up of an exterior ring and interior rings)
	 cross. The boundary of a POLYGON may intersect at a
	 POINT but only as a tangent (i.e. not on a line).
	 A POLYGON may not have cut lines or spikes and the
	 interior rings must be contained entirely within the exterior ring.
	[image: Geometry Validation](h)

	[image: Geometry Validation](i)

	[image: Geometry Validation](j)

	[image: Geometry Validation](k)

	[image: Geometry Validation](l)

	[image: Geometry Validation](m)

	(h) and
				(i) are valid
				POLYGONs, (j-m)
				cannot be represented as single POLYGONs, but
				(j) and (m)
				could be represented as a valid MULTIPOLYGON.
				

A MULTIPOLYGON is valid
	 if and only if all of its elements are valid and the interiors of no two
	 elements intersect. The boundaries of any two elements may touch, but
	 only at a finite number of POINTs.
	[image: Geometry Validation](n)

	[image: Geometry Validation](o)

	[image: Geometry Validation](p)

	(n) and
				(o) are not valid
				MULTIPOLYGONs.
				(p), however, is valid.

Most of the functions implemented by the GEOS library rely on the
	 assumption that your geometries are valid as specified by the OpenGIS
	 Simple Feature Specification. To check simplicity or validity of
	 geometries you can use the ST_IsSimple() and
	 ST_IsValid()
-- Typically, it doesn't make sense to check
-- for validity on linear features since it will always return TRUE.
-- But in this example, PostGIS extends the definition of the OGC IsValid
-- by returning false if a LineString has less than 2 *distinct* vertices.
gisdb=# SELECT
 ST_IsValid('LINESTRING(0 0, 1 1)'),
 ST_IsValid('LINESTRING(0 0, 0 0, 0 0)');

 st_isvalid | st_isvalid
------------+-----------
 t | f
By default, PostGIS does not apply this validity check on geometry
	 input, because testing for validity needs lots of CPU time for complex
	 geometries, especially polygons. If you do not trust your data sources,
	 you can manually enforce such a check to your tables by adding a check
	 constraint:
ALTER TABLE mytable
 ADD CONSTRAINT geometry_valid_check
	CHECK (ST_IsValid(geom));
If you encounter any strange error messages such as "GEOS
	 Intersection() threw an error!" when calling PostGIS functions with valid
		input geometries, you likely found an error in either PostGIS or one of
		the libraries it uses, and you should contact the PostGIS developers.
		The same is true if a PostGIS function returns an invalid geometry for
		valid input.
Note
The ST_IsValid()
 function does not check the Z and M dimensions.

Chapter 16. Reporting Problems

Reporting Software Bugs

Reporting bugs effectively is a fundamental way to help PostGIS
 development. The most effective bug report is that enabling PostGIS
 developers to reproduce it, so it would ideally contain a script
 triggering it and every information regarding the environment in which it
 was detected. Good enough info can be extracted running SELECT
 postgis_full_version() [for PostGIS] and SELECT
 version() [for postgresql].
If you aren't using the latest release, it's worth taking a look at
 its release
 changelog first, to find out if your bug has already been
 fixed.
Using the PostGIS bug
 tracker will ensure your reports are not discarded, and will keep
 you informed on its handling process. Before reporting a new bug please
 query the database to see if it is a known one, and if it is please add
 any new information you have about it.
You might want to read Simon Tatham's paper about How to Report
 Bugs Effectively before filing a new report.

Name
ST_AsHEXEWKB — Returns a Geometry in HEXEWKB format (as text) using either
			little-endian (NDR) or big-endian (XDR) encoding.

Synopsis
	text ST_AsHEXEWKB(g1, 	
	 	NDRorXDR);	

geometry g1;
text NDRorXDR;

	text ST_AsHEXEWKB(g1);	

geometry g1;

Description
Returns a Geometry in HEXEWKB format (as text) using either
			little-endian (NDR) or big-endian (XDR) encoding. If no encoding is specified, then NDR is used.
Note
Availability: 1.2.2

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_AsHEXEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));
		which gives same answer as

		SELECT ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326)::text;

		st_ashexewkb

		0103000020E6100000010000000500
		00000000000000000000000000000000
		00000000000000000000000000000000F03F
		000000000000F03F000000000000F03F000000000000F03
		F00

Release 1.3.0

Release date: 2007/08/09
This release provides performance enhancements to the relational
 functions, adds new relational functions and begins the migration of our
 function names to the SQL-MM convention, using the spatial type (SP)
 prefix.
Added Functionality

JDBC: Added Hibernate Dialect (thanks to Norman Barker)
Added ST_Covers and ST_CoveredBy relational functions.
 Description and justification of these functions can be found at
 http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html
Added ST_DWithin relational function.

Performance Enhancements

Added cached and indexed point-in-polygon short-circuits for the
 functions ST_Contains, ST_Intersects, ST_Within and ST_Disjoint
Added inline index support for relational functions (except
 ST_Disjoint)

Other Changes

Extended curved geometry support into the geometry accessor and
 some processing functions
Began migration of functions to the SQL-MM naming convention;
 using a spatial type (ST) prefix.
Added initial support for PostgreSQL 8.3

New, Enhanced or changed PostGIS Functions

PostGIS Functions new or enhanced in 3.2

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 3.2
	FindTopology - Availability: 3.2.0 Returns a topology record by different means.
	GetFaceContainingPoint - Availability: 3.2.0 Finds the face containing a point.
	ST_AsFlatGeobuf - Availability: 3.2.0 Return a FlatGeobuf representation of a set of rows.
	ST_Contour - Availability: 3.2.0 Generates a set of vector contours from the provided raster band, using the GDAL contouring algorithm.
	ST_DumpSegments - Availability: 3.2.0 Returns a set of geometry_dump rows for the segments in a geometry.
	ST_FromFlatGeobuf - Availability: 3.2.0 Reads FlatGeobuf data.
	ST_FromFlatGeobufToTable - Availability: 3.2.0 Creates a table based on the structure of FlatGeobuf data.
	ST_InterpolateRaster - Availability: 3.2.0 Interpolates a gridded surface based on an input set of 3-d points, using the X- and Y-values to position the points on the grid and the Z-value of the points as the surface elevation.
	ST_Scroll - Availability: 3.2.0 Change start point of a closed LineString.
	ST_SetM - Availability: 3.2.0 Returns a geometry with the same X/Y coordinates as the input geometry, and values from the raster copied into the Z dimension using the requested resample algorithm.
	ST_SetZ - Availability: 3.2.0 Returns a geometry with the same X/Y coordinates as the input geometry, and values from the raster copied into the Z dimension using the requested resample algorithm.
	TopoGeom_addTopoGeom - Availability: 3.2 Adds element of a TopoGeometry to the definition of another TopoGeometry.
	ValidateTopologyRelation - Availability: 3.2.0 Returns info about invalid topology relation records
	postgis.gdal_config_options - Availability: 3.2.0 A string configuration to set options used when working with an out-db raster.

Functions enhanced in PostGIS 3.2
	GetFaceByPoint - Enhanced: 3.2.0 more efficient implementation and clearer contract, stops working with invalid topologies. Finds face intersecting a given point.
	ST_ClusterKMeans - Enhanced: 3.2.0 Support for max_radius Window function that returns a cluster id for each input geometry using the K-means algorithm.
	ST_MakeValid - Enhanced: 3.2.0, added algorithm options, 'linework' and 'structure'. Attempts to make an invalid geometry valid without losing vertices.
	ST_MoveIsoNode -
	Enhanced: 3.2.0 ensures the nod cannot be moved in a different face
 Moves an isolated node in a topology from one point to another. If new apoint geometry exists as a node an error is thrown. Returns description of move.
	ST_PixelAsCentroid - Enhanced: 3.2.0 Faster now implemented in C. Returns the centroid (point geometry) of the area represented by a pixel.
	ST_PixelAsCentroids - Enhanced: 3.2.0 Faster now implemented in C. Returns the centroid (point geometry) for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The point geometry is the centroid of the area represented by a pixel.
	ST_RemovePoint - Enhanced: 3.2.0 Remove a point from a linestring.
	ST_RemoveRepeatedPoints - Enhanced: 3.2.0 Returns a version of the given geometry with duplicated points removed.
	ST_StartPoint - Enhanced: 3.2.0 returns a point for all geometries. Prior behavior returns NULLs if input was not a LineString. Returns the first point of a LineString.
	ST_Value - Enhanced: 3.2.0 resample optional argument was added. Returns the value of a given band in a given columnx, rowy pixel or at a particular geometric point. Band numbers start at 1 and assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include nodata pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.

Functions changed in PostGIS 3.2
	ST_Boundary - Changed: 3.2.0 support for TIN, does not use geos, does not linearize curves Returns the boundary of a geometry.
	ValidateTopology - Changed: 3.2.0 added optional bbox parameter, perform face labeling and edge linking checks. Returns a set of validatetopology_returntype objects detailing issues with topology.

PostGIS Functions new or enhanced in 3.1

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 3.1
	ST_Hexagon - Availability: 3.1.0 Returns a single hexagon, using the provided edge size and cell coordinate within the hexagon grid space.
	ST_HexagonGrid - Availability: 3.1.0 Returns a set of hexagons and cell indices that completely cover the bounds of the geometry argument.
	ST_MaximumInscribedCircle - Availability: 3.1.0 - requires GEOS >= 3.9.0. Computes the largest circle that is fully contained within a geometry.
	ST_ReducePrecision - Availability: 3.1.0 - requires GEOS >= 3.9.0. Returns a valid geometry with points rounded to a grid tolerance.
	ST_Square - Availability: 3.1.0 Returns a single square, using the provided edge size and cell coordinate within the square grid space.
	ST_SquareGrid - Availability: 3.1.0 Returns a set of grid squares and cell indices that completely cover the bounds of the geometry argument.

Functions enhanced in PostGIS 3.1
	ST_AsEWKT - Enhanced: 3.1.0 support for optional precision parameter. Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
	ST_ClusterKMeans - Enhanced: 3.1.0 Support for 3D geometries and weights Window function that returns a cluster id for each input geometry using the K-means algorithm.
	ST_Difference - Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0 Computes a geometry representing the part of geometry A that does not intersect geometry B.
	ST_Intersection - Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0 Computes a geometry representing the shared portion of geometries A and B.
	ST_MakeValid - Enhanced: 3.1.0, added removal of Coordinates with NaN values. Attempts to make an invalid geometry valid without losing vertices.
	ST_Subdivide - Enhanced: 3.1.0 accept a gridSize parameter, requires GEOS >= 3.9.0 to use this new feature. Computes a rectilinear subdivision of a geometry.
	ST_SymDifference - Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0 Computes a geometry representing the portions of geometries A and B that do not intersect.
	ST_TileEnvelope - Enhanced: 3.1.0 Added margin parameter. Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.
	ST_UnaryUnion - Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0 Computes the union of the components of a single geometry.
	ST_Union - Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0 Computes a geometry representing the point-set union of the input geometries.

Functions changed in PostGIS 3.1
	ST_Count - Changed: 3.1.0 - The ST_Count(rastertable, rastercolumn, ...) variants removed. Use instead. Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the nodata value.
	ST_Force3D - Changed: 3.1.0. Added support for supplying a non-zero Z value. Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.
	ST_Force3DM - Changed: 3.1.0. Added support for supplying a non-zero M value. Force the geometries into XYM mode.
	ST_Force3DZ - Changed: 3.1.0. Added support for supplying a non-zero Z value. Force the geometries into XYZ mode.
	ST_Force4D - Changed: 3.1.0. Added support for supplying non-zero Z and M values. Force the geometries into XYZM mode.
	ST_Histogram - Changed: 3.1.0 Removed ST_Histogram(table_name, column_name) variant. Returns a set of record summarizing a raster or raster coverage data distribution separate bin ranges. Number of bins are autocomputed if not specified.
	ST_Quantile - Changed: 3.1.0 Removed ST_Quantile(table_name, column_name) variant. Compute quantiles for a raster or raster table coverage in the context of the sample or population. Thus, a value could be examined to be at the raster's 25%, 50%, 75% percentile.
	ST_SummaryStats - Changed: 3.1.0 ST_SummaryStats(rastertable, rastercolumn, ...) variants are removed. Use instead. Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. Band 1 is assumed is no band is specified.

PostGIS Functions new or enhanced in 3.0

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 3.0
	ST_3DLineInterpolatePoint - Availability: 3.0.0 Returns a point interpolated along a 3D line at a fractional location.
	ST_ConstrainedDelaunayTriangles - Availability: 3.0.0 Return a constrained Delaunay triangulation around the given input geometry.
	ST_TileEnvelope - Availability: 3.0.0 Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.

Functions enhanced in PostGIS 3.0
	ST_AsMVT - Enhanced: 3.0 - added support for Feature ID. Aggregate function returning a Mapbox Vector Tile representation of a set of rows.
	ST_Contains - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if no points of B lie in the exterior of A, and A and B have at least one interior point in common.
	ST_ContainsProperly - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if B intersects the interior of A but not the boundary or exterior.
	ST_CoveredBy - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if no point in A is outside B
	ST_Covers - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if no point in B is outside A
	ST_Crosses - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if two geometries have some, but not all, interior points in common.
	ST_CurveToLine - Enhanced: 3.0.0 implemented a minimum number of segments per linearized arc to prevent topological collapse. Converts a geometry containing curves to a linear geometry.
	ST_Disjoint - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if two geometries do not intersect (they have no point in common).
	ST_Equals - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if two geometries include the same set of points.
	ST_GeneratePoints - Enhanced: 3.0.0, added seed parameter Generates random points contained in a Polygon or MultiPolygon.
	ST_GeomFromGeoJSON - Enhanced: 3.0.0 parsed geometry defaults to SRID=4326 if not specified otherwise. Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object
	ST_LocateBetween - Enhanced: 3.0.0 - added support for POLYGON, TIN, TRIANGLE. Returns the portions of a geometry that match a measure range.
	ST_LocateBetweenElevations - Enhanced: 3.0.0 - added support for POLYGON, TIN, TRIANGLE. Returns the portions of a geometry that lie in an elevation (Z) range.
	ST_Overlaps - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if two geometries intersect and have the same dimension, but are not completely contained by each other.
	ST_Relate - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Tests if two geometries have a topological relationship matching an Intersection Matrix pattern, or computes their Intersection Matrix
	ST_Segmentize - Enhanced: 3.0.0 Segmentize geometry now uses equal length segments Return a modified geometry/geography having no segment longer than the given distance.
	ST_Touches - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if two geometries have at least one point in common, but their interiors do not intersect.
	ST_Within - Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION Returns true if no points of A lie in the exterior of B, and A and B have at least one interior point in common.

Functions changed in PostGIS 3.0
	PostGIS_Extensions_Upgrade - Changed: 3.0.0 to repackage loose extensions and support postgis_raster. Packages and upgrades PostGIS extensions (e.g. postgis_raster,postgis_topology, postgis_sfcgal) to latest available version.
	ST_3DDistance - Changed: 3.0.0 - SFCGAL version removed Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.
	ST_3DIntersects - Changed: 3.0.0 SFCGAL backend removed, GEOS backend supports TINs. Returns true if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area).
	ST_Area - Changed: 3.0.0 - does not depend on SFCGAL anymore. Returns the area of a polygonal geometry.
	ST_AsGeoJSON - Changed: 3.0.0 support records as input Return a geometry as a GeoJSON element.
	ST_AsGeoJSON - Changed: 3.0.0 output SRID if not EPSG:4326. Return a geometry as a GeoJSON element.
	ST_Distance - Changed: 3.0.0 - does not depend on SFCGAL anymore. Returns the distance between two geometry or geography values.
	ST_Intersection - Changed: 3.0.0 does not depend on SFCGAL. Computes a geometry representing the shared portion of geometries A and B.
	ST_Intersects - Changed: 3.0.0 SFCGAL version removed and native support for 2D TINS added. Returns true if two geometries intersect (they have at least one point in common).
	ST_Union - Changed: 3.0.0 does not depend on SFCGAL. Computes a geometry representing the point-set union of the input geometries.

PostGIS Functions new or enhanced in 2.5

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 2.5
	
				ST_QuantizeCoordinates
			 - Availability: 2.5.0 Sets least significant bits of coordinates to zero
	PostGIS_Extensions_Upgrade - Availability: 2.5.0 Packages and upgrades PostGIS extensions (e.g. postgis_raster,postgis_topology, postgis_sfcgal) to latest available version.
	ST_Angle - Availability: 2.5.0 Returns the angle between two vectors defined by 3 or 4 points, or 2 lines.
	ST_AsHexWKB - Availability: 2.5.0 Return the Well-Known Binary (WKB) in Hex representation of the raster.
	ST_BandFileSize - Availability: 2.5.0 Returns the file size of a band stored in file system. If no bandnum specified, 1 is assumed.
	ST_BandFileTimestamp - Availability: 2.5.0 Returns the file timestamp of a band stored in file system. If no bandnum specified, 1 is assumed.
	ST_ChaikinSmoothing - Availability: 2.5.0 Returns a smoothed version of a geometry, using the Chaikin algorithm
	ST_FilterByM - Availability: 2.5.0 Removes vertices based on their M value
	ST_Grayscale - Availability: 2.5.0 Creates a new one-8BUI band raster from the source raster and specified bands representing Red, Green and Blue
	ST_LineInterpolatePoints - Availability: 2.5.0 Returns points interpolated along a line at a fractional interval.
	ST_OrientedEnvelope -
 Availability: 2.5.0
 Returns a minimum-area rectangle containing a geometry.
	ST_RastFromHexWKB - Availability: 2.5.0 Return a raster value from a Hex representation of Well-Known Binary (WKB) raster.
	ST_RastFromWKB - Availability: 2.5.0 Return a raster value from a Well-Known Binary (WKB) raster.
	ST_SetBandIndex - Availability: 2.5.0 Update the external band number of an out-db band
	ST_SetBandPath - Availability: 2.5.0 Update the external path and band number of an out-db band

Functions enhanced in PostGIS 2.5
	
 ST_GeometricMedian
 - Enhanced: 2.5.0 Added support for M as weight of points. Returns the geometric median of a MultiPoint.
	ST_AsBinary/ST_AsWKB - Enhanced: 2.5.0 Addition of ST_AsWKB Return the Well-Known Binary (WKB) representation of the raster.
	ST_AsMVT - Enhanced: 2.5.0 - added support parallel query. Aggregate function returning a Mapbox Vector Tile representation of a set of rows.
	ST_AsText - Enhanced: 2.5 - optional parameter precision introduced. Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
	ST_BandMetaData - Enhanced: 2.5.0 to include outdbbandnum, filesize and filetimestamp for outdb rasters. Returns basic meta data for a specific raster band. band num 1 is assumed if none-specified.
	ST_Buffer - Enhanced: 2.5.0 - ST_Buffer geometry support was enhanced to allow for side buffering specification side=both|left|right. Computes a geometry covering all points within a given distance from a geometry.
	ST_GeomFromGeoJSON - Enhanced: 2.5.0 can now accept json and jsonb as inputs. Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object
	ST_Intersects - Enhanced: 2.5.0 Supports GEOMETRYCOLLECTION. Returns true if two geometries intersect (they have at least one point in common).
	ST_OffsetCurve - Enhanced: 2.5 - added support for GEOMETRYCOLLECTION and MULTILINESTRING Returns an offset line at a given distance and side from an input line.
	ST_Scale - Enhanced: 2.5.0 support for scaling relative to a local origin (origin parameter) was introduced. Scales a geometry by given factors.
	ST_Split - Enhanced: 2.5.0 support for splitting a polygon by a multiline was introduced. Returns a collection of geometries created by splitting a geometry by another geometry.
	ST_Subdivide - Enhanced: 2.5.0 reuses existing points on polygon split, vertex count is lowered from 8 to 5. Computes a rectilinear subdivision of a geometry.

Functions changed in PostGIS 2.5
	ST_GDALDrivers - Changed: 2.5.0 - add can_read and can_write columns. Returns a list of raster formats supported by PostGIS through GDAL. Only those formats with can_write=True can be used by ST_AsGDALRaster

PostGIS Functions new or enhanced in 2.4

The functions given below are PostGIS functions that were added or enhanced.
Functions new in PostGIS 2.4
	
				ST_ForcePolygonCCW
			 - Availability: 2.4.0 Orients all exterior rings counter-clockwise and all interior rings clockwise.
	
				ST_ForcePolygonCW
			 - Availability: 2.4.0 Orients all exterior rings clockwise and all interior rings counter-clockwise.
	
				ST_IsPolygonCCW
			 - Availability: 2.4.0 Tests if Polygons have exterior rings oriented counter-clockwise and interior rings oriented clockwise.
	
				ST_IsPolygonCW
			 - Availability: 2.4.0 Tests if Polygons have exterior rings oriented clockwise and interior rings oriented counter-clockwise.
	ST_AsGeobuf - Availability: 2.4.0 Return a Geobuf representation of a set of rows.
	ST_AsMVT - Availability: 2.4.0 Aggregate function returning a Mapbox Vector Tile representation of a set of rows.
	ST_AsMVTGeom - Availability: 2.4.0 Transform a geometry into the coordinate space of a Mapbox Vector Tile.
	ST_Centroid - Availability: 2.4.0 support for geography was introduced. Returns the geometric center of a geometry.
	ST_FrechetDistance - Availability: 2.4.0 - requires GEOS >= 3.7.0 Returns the Fréchet distance between two geometries.
	ST_MakeEmptyCoverage - Availability: 2.4.0 Cover georeferenced area with a grid of empty raster tiles.

Functions enhanced in PostGIS 2.4
All aggregates now marked as parallel safe which should allow them to be used in plans that can employ parallelism.
PostGIS 2.4.1 postgis_tiger_geocoder set to load Tiger 2017 data. Can optionally load zip code 5-digit tabulation (zcta) as part of the Loader_Generate_Nation_Script.
	Loader_Generate_Nation_Script - Enhanced: 2.4.1 zip code 5 tabulation area (zcta5) load step was fixed and when enabled, zcta5 data is loaded as a single table called zcta5_all as part of the nation script load. Generates a shell script for the specified platform that loads in the county and state lookup tables.
	Normalize_Address - Enhanced: 2.4.0 norm_addy object includes additional fields zip4 and address_alphanumeric. Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This function will work with just the lookup data packaged with the tiger_geocoder (no need for tiger census data).
	Pagc_Normalize_Address - Enhanced: 2.4.0 norm_addy object includes additional fields zip4 and address_alphanumeric. Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This function will work with just the lookup data packaged with the tiger_geocoder (no need for tiger census data). Requires address_standardizer extension.
	Reverse_Geocode - Enhanced: 2.4.1 if optional zcta5 dataset is loaded, the reverse_geocode function can resolve to state and zip even if the specific state data is not loaded. Refer to for details on loading zcta5 data. Takes a geometry point in a known spatial ref sys and returns a record containing an array of theoretically possible addresses and an array of cross streets. If include_strnum_range = true, includes the street range in the cross streets.
	ST_AsTWKB - Enhanced: 2.4.0 memory and speed improvements. Returns the geometry as TWKB, aka "Tiny Well-Known Binary"
	ST_Covers - Enhanced: 2.4.0 Support for polygon in polygon and line in polygon added for geography type Returns true if no point in B is outside A
	ST_CurveToLine - Enhanced: 2.4.0 added support for max-deviation and max-angle tolerance, and for symmetric output. Converts a geometry containing curves to a linear geometry.
	ST_Project - Enhanced: 2.4.0 Allow negative distance and non-normalized azimuth. Returns a point projected from a start point by a distance and bearing (azimuth).
	ST_Reverse - Enhanced: 2.4.0 support for curves was introduced. Return the geometry with vertex order reversed.

Functions changed in PostGIS 2.4
All PostGIS aggregates now marked as parallel safe.
				This will force a drop and recreate of aggregates during upgrade which may fail if any user views or sql functions rely on PostGIS aggregates.
	= - Changed: 2.4.0, in prior versions this was bounding box equality not a geometric equality. If you need bounding box equality, use instead. Returns TRUE if the coordinates and coordinate order geometry/geography A are the same as the coordinates and coordinate order of geometry/geography B.
	ST_Node -
Changed: 2.4.0 this function uses GEOSNode internally instead of GEOSUnaryUnion.
This may cause the resulting linestrings to have a different order and direction compared to PostGIS < 2.4.
 Nodes a collection of lines.

PostGIS Functions new or enhanced in 2.3

The functions given below are PostGIS functions that were added or enhanced.
Note
PostGIS 2.3.0: PostgreSQL 9.6+ support for parallel queries.

Note
PostGIS 2.3.0: PostGIS extension, all functions schema qualified to reduce issues in database restore.

Note
PostGIS 2.3.0: PostgreSQL 9.4+ support for BRIN indexes. Refer to the section called “BRIN Indexes”.

Note
PostGIS 2.3.0: Tiger Geocoder upgraded to work with TIGER 2016 data.

Functions new in PostGIS 2.3
	
 ST_GeometricMedian
 - Availability: 2.3.0 Returns the geometric median of a MultiPoint.
	&&&(geometry,gidx) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry's (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).
	&&&(gidx,geometry) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry's (cached) n-D bounding box.
	&&&(gidx,gidx) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.
	&&(box2df,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.
	&&(box2df,geometry) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry's (cached) 2D bounding box.
	&&(geometry,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry's (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).
	@(box2df,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision bounding box.
	@(box2df,geometry) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry's 2D bounding box.
	@(geometry,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry's 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).
	Populate_Topology_Layer - Availability: 2.3.0 Adds missing entries to topology.layer table by reading metadata from topo tables.
	ST_ClusterDBSCAN - Availability: 2.3.0 Window function that returns a cluster id for each input geometry using the DBSCAN algorithm.
	ST_ClusterKMeans - Availability: 2.3.0 Window function that returns a cluster id for each input geometry using the K-means algorithm.
	ST_GeneratePoints - Availability: 2.3.0 Generates random points contained in a Polygon or MultiPolygon.
	ST_MakeLine - Availability: 2.3.0 - Support for MultiPoint input elements was introduced Creates a LineString from Point, MultiPoint, or LineString geometries.
	ST_MinimumClearance - Availability: 2.3.0 Returns the minimum clearance of a geometry, a measure of a geometry's robustness.
	ST_MinimumClearanceLine - Availability: 2.3.0 - requires GEOS >= 3.6.0 Returns the two-point LineString spanning a geometry's minimum clearance.
	ST_Normalize - Availability: 2.3.0 Return the geometry in its canonical form.
	ST_Points - Availability: 2.3.0 Returns a MultiPoint containing the coordinates of a geometry.
	ST_VoronoiLines - Availability: 2.3.0 Returns the boundaries of the Voronoi diagram of the vertices of a geometry.
	ST_VoronoiPolygons - Availability: 2.3.0 Returns the cells of the Voronoi diagram of the vertices of a geometry.
	ST_WrapX - Availability: 2.3.0 requires GEOS Wrap a geometry around an X value.
	TopoGeom_addElement - Availability: 2.3 Adds an element to the definition of a TopoGeometry.
	TopoGeom_remElement - Availability: 2.3 Removes an element from the definition of a TopoGeometry.
	~(box2df,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).
	~(box2df,geometry) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry's 2D bonding box.
	~(geometry,box2df) - Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+. Returns TRUE if a geometry's 2D bonding box contains a 2D float precision bounding box (GIDX).

The functions given below are PostGIS functions that are enhanced in PostGIS 2.3.
	ST_Contains - Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.
	ST_Covers - Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon.
	ST_Expand - Enhanced: 2.3.0 support was added to expand a box by different amounts in different dimensions.
	ST_Intersects - Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.
	ST_Segmentize - Enhanced: 2.3.0 Segmentize geography now uses equal length segments
	ST_Transform - Enhanced: 2.3.0 support for direct PROJ.4 text was introduced.
	ST_Within - Enhanced: 2.3.0 Enhancement to PIP short-circuit for geometry extended to support MultiPoints with few points. Prior versions only supported point in polygon.

PostGIS Functions new or enhanced in 2.2

The functions given below are PostGIS functions that were added or enhanced.
Note
postgis_sfcgal now can be installed as an extension using CREATE EXTENSION postgis_sfcgal;

Note
PostGIS 2.2.0: Tiger Geocoder upgraded to work with TIGER 2015 data.

Note
address_standardizer, address_standardizer_data_us extensions for standardizing address data refer to the section called “Address Standardizer” for details.

Note
Many functions in topology rewritten as C functions for increased performance.

Functions new in PostGIS 2.2
	<<#>> - Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+ Returns the n-D distance between A and B bounding boxes.
	<<->> - Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+ Returns the n-D distance between the centroids of A and B boundingboxes.
	ST_3DDifference - Availability: 2.2.0 Perform 3D difference
	ST_3DUnion - Availability: 2.2.0 Perform 3D union
	ST_ApproximateMedialAxis - Availability: 2.2.0 Compute the approximate medial axis of an areal geometry.
	ST_AsEncodedPolyline - Availability: 2.2.0 Returns an Encoded Polyline from a LineString geometry.
	ST_AsTWKB - Availability: 2.2.0 Returns the geometry as TWKB, aka "Tiny Well-Known Binary"
	ST_BoundingDiagonal - Availability: 2.2.0 Returns the diagonal of a geometry's bounding box.
	ST_CPAWithin - Availability: 2.2.0 Tests if the closest point of approach of two trajectoriesis within the specified distance.
	ST_ClipByBox2D - Availability: 2.2.0 Computes the portion of a geometry falling within a rectangle.
	ST_ClosestPointOfApproach - Availability: 2.2.0 Returns a measure at the closest point of approach of two trajectories.
	ST_ClusterIntersecting - Availability: 2.2.0 Aggregate function that clusters the input geometries into connected sets.
	ST_ClusterWithin - Availability: 2.2.0 Aggregate function that clusters the input geometries by separation distance.
	ST_CountAgg - Availability: 2.2.0 Aggregate. Returns the number of pixels in a given band of a set of rasters. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the NODATA value.
	ST_CreateOverview - Availability: 2.2.0 Create an reduced resolution version of a given raster coverage.
	ST_DistanceCPA - Availability: 2.2.0 Returns the distance between the closest point of approach of two trajectories.
	ST_ForceCurve - Availability: 2.2.0 Upcast a geometry into its curved type, if applicable.
	ST_IsPlanar - Availability: 2.2.0: This was documented in 2.1.0 but got accidentally left out in 2.1 release. Check if a surface is or not planar
	ST_IsSolid - Availability: 2.2.0 Test if the geometry is a solid. No validity check is performed.
	ST_IsValidTrajectory - Availability: 2.2.0 Tests if the geometry is a valid trajectory.
	ST_LineFromEncodedPolyline - Availability: 2.2.0 Creates a LineString from an Encoded Polyline.
	ST_MakeSolid - Availability: 2.2.0 Cast the geometry into a solid. No check is performed. To obtain a valid solid, the input geometry must be a closed Polyhedral Surface or a closed TIN.
	ST_MapAlgebra (callback function version) - Availability: 2.2.0: Ability to add a mask Callback function version - Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.
	ST_MemSize - Availability: 2.2.0 Returns the amount of space (in bytes) the raster takes.
	ST_RemoveRepeatedPoints - Availability: 2.2.0 Returns a version of the given geometry with duplicated points removed.
	ST_Retile - Availability: 2.2.0 Return a set of configured tiles from an arbitrarily tiled raster coverage.
	ST_SetEffectiveArea - Availability: 2.2.0 Sets the effective area for each vertex, using the Visvalingam-Whyatt algorithm.
	ST_SimplifyVW - Availability: 2.2.0 Returns a simplified version of a geometry, using the Visvalingam-Whyatt algorithm
	ST_Subdivide - Availability: 2.2.0 Computes a rectilinear subdivision of a geometry.
	ST_SummaryStatsAgg - Availability: 2.2.0 Aggregate. Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a set of raster. Band 1 is assumed is no band is specified.
	ST_SwapOrdinates - Availability: 2.2.0 Returns a version of the given geometry with given ordinate values swapped.
	ST_Volume - Availability: 2.2.0 Computes the volume of a 3D solid. If applied to surface (even closed) geometries will return 0.
	parse_address - Availability: 2.2.0 Takes a 1 line address and breaks into parts
	postgis.enable_outdb_rasters - Availability: 2.2.0 A boolean configuration option to enable access to out-db raster bands.
	postgis.gdal_datapath - Availability: 2.2.0 A configuration option to assign the value of GDAL's GDAL_DATA option. If not set, the environmentally set GDAL_DATA variable is used.
	postgis.gdal_enabled_drivers - Availability: 2.2.0 A configuration option to set the enabled GDAL drivers in the PostGIS environment. Affects the GDAL configuration variable GDAL_SKIP.
	standardize_address - Availability: 2.2.0 Returns an stdaddr form of an input address utilizing lex, gaz, and rule tables.
	|=| - Availability: 2.2.0. Index-supported only available for PostgreSQL 9.5+ Returns the distance between A and B trajectories at their closest point of approach.

The functions given below are PostGIS functions that are enhanced in PostGIS 2.2.
	AsTopoJSON - Enhanced: 2.2.1 added support for puntal inputs
	ST_Area - Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature.
	ST_AsX3D - Enhanced: 2.2.0: Support for GeoCoordinates and axis (x/y, long/lat) flipping. Look at options for details.
	ST_Azimuth - Enhanced: 2.2.0 measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature.
	ST_Distance - Enhanced: 2.2.0 - measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature.
	ST_Scale - Enhanced: 2.2.0 support for scaling all dimension (factor parameter) was introduced.
	ST_Split - Enhanced: 2.2.0 support for splitting a line by a multiline, a multipoint or (multi)polygon boundary was introduced.
	ST_Summary - Enhanced: 2.2.0 Added support for TIN and Curves
	<-> - Enhanced: 2.2.0 -- True KNN ("K nearest neighbor") behavior for geometry and geography for PostgreSQL 9.5+. Note for geography KNN is based on sphere rather than spheroid. For PostgreSQL 9.4 and below, geography support is new but only supports centroid box.

PostGIS functions breaking changes in 2.2

The functions given below are PostGIS functions that have possibly breaking changes in PostGIS 2.2. If you use any of these, you may need to check your existing code.
	Get_Geocode_Setting - Changed: 2.2.0 : default settings are now kept in a table called geocode_settings_default. Use customized settingsa are in geocode_settings and only contain those that have been set by user.
	ST_3DClosestPoint - Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.
	ST_3DDistance - Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.
	ST_3DLongestLine - Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.
	ST_3DMaxDistance - Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.
	ST_3DShortestLine - Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.
	ST_DistanceSphere - Changed: 2.2.0 In prior versions this used to be called ST_Distance_Sphere
	ST_DistanceSpheroid - Changed: 2.2.0 In prior versions this was called ST_Distance_Spheroid
	ST_Equals - Changed: 2.2.0 Returns true even for invalid geometries if they are binary equal
	ST_LengthSpheroid - Changed: 2.2.0 In prior versions this was called ST_Length_Spheroid and had the alias ST_3DLength_Spheroid
	ST_MemSize - Changed: 2.2.0 name changed to ST_MemSize to follow naming convention.
	ST_PointInsideCircle - Changed: 2.2.0 In prior versions this was called ST_Point_Inside_Circle
	ValidateTopology - Changed: 2.2.0 values for id1 and id2 were swapped for 'edge crosses node' to be consistent with error description.
	<-> - Changed: 2.2.0 -- For PostgreSQL 9.5 users, old Hybrid syntax may be slower, so you'll want to get rid of that hack if you are running your code only on PostGIS 2.2+ 9.5+. See examples below.

PostGIS Functions new or enhanced in 2.1

The functions given below are PostGIS functions that were added or enhanced.
Note
More Topology performance Improvements. Please refer to Chapter 10, Topology for more details.

Note
Bug fixes (particularly with handling of out-of-band rasters), many new functions (often shortening code you have to write to accomplish a common task) and massive speed improvements to raster functionality. Refer to Chapter 12, Raster Reference for more details.

Note
PostGIS 2.1.0: Tiger Geocoder upgraded to work with TIGER 2012 census data. geocode_settings added for debugging and tweaking rating preferences, loader made less greedy, now only downloads tables to be loaded. PostGIS 2.1.1: Tiger Geocoder upgraded to work with TIGER 2013 data.
					Please refer to the section called “Tiger Geocoder” for more details.

Functions new in PostGIS 2.1
	AsTopoJSON - Availability: 2.1.0 Returns the TopoJSON representation of a topogeometry.
	Drop_Nation_Tables_Generate_Script - Availability: 2.1.0 Generates a script that drops all tables in the specified schema that start with county_all, state_all or state code followed by county or state.
	Get_Geocode_Setting - Availability: 2.1.0 Returns value of specific setting stored in tiger.geocode_settings table.
	Loader_Generate_Nation_Script - Availability: 2.1.0 Generates a shell script for the specified platform that loads in the county and state lookup tables.
	Pagc_Normalize_Address - Availability: 2.1.0 Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This function will work with just the lookup data packaged with the tiger_geocoder (no need for tiger census data). Requires address_standardizer extension.
	ST_3DArea - Availability: 2.1.0 Computes area of 3D surface geometries. Will return 0 for solids.
	ST_3DIntersection - Availability: 2.1.0 Perform 3D intersection
	ST_Box2dFromGeoHash - Availability: 2.1.0 Return a BOX2D from a GeoHash string.
	ST_ColorMap - Availability: 2.1.0 Creates a new raster of up to four 8BUI bands (grayscale, RGB, RGBA) from the source raster and a specified band. Band 1 is assumed if not specified.
	ST_Contains - Availability: 2.1.0 Return true if no points of raster rastB lie in the exterior of raster rastA and at least one point of the interior of rastB lies in the interior of rastA.
	ST_ContainsProperly - Availability: 2.1.0 Return true if rastB intersects the interior of rastA but not the boundary or exterior of rastA.
	ST_CoveredBy - Availability: 2.1.0 Return true if no points of raster rastA lie outside raster rastB.
	ST_Covers - Availability: 2.1.0 Return true if no points of raster rastB lie outside raster rastA.
	ST_DFullyWithin - Availability: 2.1.0 Return true if rasters rastA and rastB are fully within the specified distance of each other.
	ST_DWithin - Availability: 2.1.0 Return true if rasters rastA and rastB are within the specified distance of each other.
	ST_DelaunayTriangles - Availability: 2.1.0 Returns the Delaunay triangulation of the vertices of a geometry.
	ST_Disjoint - Availability: 2.1.0 Return true if raster rastA does not spatially intersect rastB.
	ST_DumpValues - Availability: 2.1.0 Get the values of the specified band as a 2-dimension array.
	ST_Extrude - Availability: 2.1.0 Extrude a surface to a related volume
	ST_ForceLHR - Availability: 2.1.0 Force LHR orientation
	ST_FromGDALRaster - Availability: 2.1.0 Returns a raster from a supported GDAL raster file.
	ST_GeomFromGeoHash - Availability: 2.1.0 Return a geometry from a GeoHash string.
	ST_InvDistWeight4ma - Availability: 2.1.0 Raster processing function that interpolates a pixel's value from the pixel's neighborhood.
	ST_MapAlgebra (callback function version) - Availability: 2.1.0 Callback function version - Returns a one-band raster given one or more input rasters, band indexes and one user-specified callback function.
	ST_MapAlgebra (expression version) - Availability: 2.1.0 Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.
	ST_MinConvexHull - Availability: 2.1.0 Return the convex hull geometry of the raster excluding NODATA pixels.
	ST_MinDist4ma - Availability: 2.1.0 Raster processing function that returns the minimum distance (in number of pixels) between the pixel of interest and a neighboring pixel with value.
	ST_MinkowskiSum - Availability: 2.1.0 Performs Minkowski sum
	ST_NearestValue - Availability: 2.1.0 Returns the nearest non-NODATA value of a given band's pixel specified by a columnx and rowy or a geometric point expressed in the same spatial reference coordinate system as the raster.
	ST_Neighborhood - Availability: 2.1.0 Returns a 2-D double precision array of the non-NODATA values around a given band's pixel specified by either a columnX and rowY or a geometric point expressed in the same spatial reference coordinate system as the raster.
	ST_NotSameAlignmentReason - Availability: 2.1.0 Returns text stating if rasters are aligned and if not aligned, a reason why.
	ST_Orientation - Availability: 2.1.0 Determine surface orientation
	ST_Overlaps - Availability: 2.1.0 Return true if raster rastA and rastB intersect but one does not completely contain the other.
	ST_PixelAsCentroid - Availability: 2.1.0 Returns the centroid (point geometry) of the area represented by a pixel.
	ST_PixelAsCentroids - Availability: 2.1.0 Returns the centroid (point geometry) for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The point geometry is the centroid of the area represented by a pixel.
	ST_PixelAsPoint - Availability: 2.1.0 Returns a point geometry of the pixel's upper-left corner.
	ST_PixelAsPoints - Availability: 2.1.0 Returns a point geometry for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The coordinates of the point geometry are of the pixel's upper-left corner.
	ST_PixelOfValue - Availability: 2.1.0 Get the columnx, rowy coordinates of the pixel whose value equals the search value.
	ST_PointFromGeoHash - Availability: 2.1.0 Return a point from a GeoHash string.
	ST_RasterToWorldCoord - Availability: 2.1.0 Returns the raster's upper left corner as geometric X and Y (longitude and latitude) given a column and row. Column and row starts at 1.
	ST_Resize - Availability: 2.1.0 Requires GDAL 1.6.1+ Resize a raster to a new width/height
	ST_Roughness - Availability: 2.1.0 Returns a raster with the calculated "roughness" of a DEM.
	ST_SetValues - Availability: 2.1.0 Returns modified raster resulting from setting the values of a given band.
	ST_Simplify - Availability: 2.1.0 Returns a "simplified" geometry version of the given TopoGeometry using the Douglas-Peucker algorithm.
	ST_StraightSkeleton - Availability: 2.1.0 Compute a straight skeleton from a geometry
	ST_Summary - Availability: 2.1.0 Returns a text summary of the contents of the raster.
	ST_TPI - Availability: 2.1.0 Returns a raster with the calculated Topographic Position Index.
	ST_TRI - Availability: 2.1.0 Returns a raster with the calculated Terrain Ruggedness Index.
	ST_Tesselate - Availability: 2.1.0 Perform surface Tesselation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS
	ST_Tile - Availability: 2.1.0 Returns a set of rasters resulting from the split of the input raster based upon the desired dimensions of the output rasters.
	ST_Touches - Availability: 2.1.0 Return true if raster rastA and rastB have at least one point in common but their interiors do not intersect.
	ST_Union - Availability: 2.1.0 ST_Union(rast, unionarg) variant was introduced. Returns the union of a set of raster tiles into a single raster composed of 1 or more bands.
	ST_Within - Availability: 2.1.0 Return true if no points of raster rastA lie in the exterior of raster rastB and at least one point of the interior of rastA lies in the interior of rastB.
	ST_WorldToRasterCoord - Availability: 2.1.0 Returns the upper left corner as column and row given geometric X and Y (longitude and latitude) or a point geometry expressed in the spatial reference coordinate system of the raster.
	Set_Geocode_Setting - Availability: 2.1.0 Sets a setting that affects behavior of geocoder functions.
	UpdateRasterSRID - Availability: 2.1.0 Change the SRID of all rasters in the user-specified column and table.
	clearTopoGeom - Availability: 2.1 Clears the content of a topo geometry.
	postgis.backend - Availability: 2.1.0 The backend to service a function where GEOS and SFCGAL overlap. Options: geos or sfcgal. Defaults to geos.
	postgis_sfcgal_version - Availability: 2.1.0 Returns the version of SFCGAL in use

The functions given below are PostGIS functions that are enhanced in PostGIS 2.1.
	ST_AddBand - Enhanced: 2.1.0 support for addbandarg added.
	ST_AddBand - Enhanced: 2.1.0 support for new out-db bands added.
	ST_AsBinary/ST_AsWKB - Enhanced: 2.1.0 Addition of outasin
	ST_Aspect - Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional interpolate_nodata function parameter
	ST_Clip - Enhanced: 2.1.0 Rewritten in C
	ST_Distinct4ma - Enhanced: 2.1.0 Addition of Variant 2
	ST_HillShade - Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional interpolate_nodata function parameter
	ST_Max4ma - Enhanced: 2.1.0 Addition of Variant 2
	ST_Mean4ma - Enhanced: 2.1.0 Addition of Variant 2
	ST_Min4ma - Enhanced: 2.1.0 Addition of Variant 2
	ST_PixelAsPolygons - Enhanced: 2.1.0 exclude_nodata_value optional argument was added.
	ST_Polygon - Enhanced: 2.1.0 Improved Speed (fully C-Based) and the returning multipolygon is ensured to be valid.
	ST_Range4ma - Enhanced: 2.1.0 Addition of Variant 2
	ST_SameAlignment - Enhanced: 2.1.0 addition of Aggegrate variant
	ST_SetGeoReference - Enhanced: 2.1.0 Addition of ST_SetGeoReference(raster, double precision, ...) variant
	ST_SetValue - Enhanced: 2.1.0 Geometry variant of ST_SetValue() now supports any geometry type, not just point. The geometry variant is a wrapper around the geomval[] variant of ST_SetValues()
	ST_Slope - Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional units, scale, interpolate_nodata function parameters
	ST_StdDev4ma - Enhanced: 2.1.0 Addition of Variant 2
	ST_Sum4ma - Enhanced: 2.1.0 Addition of Variant 2
	ST_Transform - Enhanced: 2.1.0 Addition of ST_Transform(rast, alignto) variant
	ST_Union - Enhanced: 2.1.0 Improved Speed (fully C-Based).
	ST_Union - Enhanced: 2.1.0 ST_Union(rast) (variant 1) unions all bands of all input rasters. Prior versions of PostGIS assumed the first band.
	ST_Union - Enhanced: 2.1.0 ST_Union(rast, uniontype) (variant 4) unions all bands of all input rasters.
	ST_AsGML - Enhanced: 2.1.0 id support was introduced, for GML 3.
	ST_Boundary - Enhanced: 2.1.0 support for Triangle was introduced
	ST_DWithin - Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.
	ST_DWithin - Enhanced: 2.1.0 support for curved geometries was introduced.
	ST_Distance - Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.
	ST_Distance - Enhanced: 2.1.0 - support for curved geometries was introduced.
	ST_DumpPoints - Enhanced: 2.1.0 Faster speed. Reimplemented as native-C.
	ST_MakeValid - Enhanced: 2.1.0, added support for GEOMETRYCOLLECTION and MULTIPOINT.
	ST_Segmentize - Enhanced: 2.1.0 support for geography was introduced.
	ST_Summary - Enhanced: 2.1.0 S flag to denote if has a known spatial reference system
	toTopoGeom - Enhanced: 2.1.0 adds the version taking an existing TopoGeometry.

PostGIS functions breaking changes in 2.1

The functions given below are PostGIS functions that have possibly breaking changes in PostGIS 2.1. If you use any of these, you may need to check your existing code.
	ST_Aspect - Changed: 2.1.0 In prior versions, return values were in radians. Now, return values default to degrees
	ST_HillShade - Changed: 2.1.0 In prior versions, azimuth and altitude were expressed in radians. Now, azimuth and altitude are expressed in degrees
	ST_Intersects -
 Changed: 2.1.0 The behavior of the ST_Intersects(raster, geometry) variants changed to match that of ST_Intersects(geometry, raster).

	ST_PixelAsCentroids - Changed: 2.1.1 Changed behavior of exclude_nodata_value.
	ST_PixelAsPoints - Changed: 2.1.1 Changed behavior of exclude_nodata_value.
	ST_PixelAsPolygons - Changed: 2.1.1 Changed behavior of exclude_nodata_value.
	ST_Polygon - Changed: 2.1.0 In prior versions would sometimes return a polygon, changed to always return multipolygon.
	ST_RasterToWorldCoordX - Changed: 2.1.0 In prior versions, this was called ST_Raster2WorldCoordX
	ST_RasterToWorldCoordY - Changed: 2.1.0 In prior versions, this was called ST_Raster2WorldCoordY
	ST_Resample - Changed: 2.1.0 Parameter srid removed. Variants with a reference raster no longer applies the reference raster's SRID. Use ST_Transform() to reproject raster. Works on rasters with no SRID.
	ST_Rescale - Changed: 2.1.0 Works on rasters with no SRID
	ST_Reskew - Changed: 2.1.0 Works on rasters with no SRID
	ST_Slope - Changed: 2.1.0 In prior versions, return values were in radians. Now, return values default to degrees
	ST_SnapToGrid - Changed: 2.1.0 Works on rasters with no SRID
	ST_WorldToRasterCoordX - Changed: 2.1.0 In prior versions, this was called ST_World2RasterCoordX
	ST_WorldToRasterCoordY - Changed: 2.1.0 In prior versions, this was called ST_World2RasterCoordY
	ST_EstimatedExtent - Changed: 2.1.0. Up to 2.0.x this was called ST_Estimated_Extent.
	ST_Force2D - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_2D.
	ST_Force3D - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3D.
	ST_Force3DM - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DM.
	ST_Force3DZ - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DZ.
	ST_Force4D - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_4D.
	ST_ForceCollection - Changed: 2.1.0. Up to 2.0.x this was called ST_Force_Collection.
	ST_LineInterpolatePoint - Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Interpolate_Point.
	ST_LineLocatePoint - Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Locate_Point.
	ST_LineSubstring - Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Substring.
	ST_Segmentize - Changed: 2.1.0 As a result of the introduction of geography support: The construct SELECT ST_Segmentize('LINESTRING(1 2, 3 4)',0.5); will result in ambiguous function error. You need to have properly typed object e.g. a geometry/geography column, use ST_GeomFromText, ST_GeogFromText or
				SELECT ST_Segmentize('LINESTRING(1 2, 3 4)'::geometry,0.5);

PostGIS Functions new, behavior changed, or enhanced in 2.0

The functions given below are PostGIS functions that were added, enhanced, or have the section called “PostGIS Functions changed behavior in 2.0” breaking changes in 2.0 releases.
New geometry types: TIN and Polyhedral surfaces was introduced in 2.0
Note
Greatly improved support for Topology. Please refer to Chapter 10, Topology for more details.

Note
In PostGIS 2.0, raster type and raster functionality has been integrated. There are way too many new raster functions to list here and all are new so
					please refer to Chapter 12, Raster Reference for more details of the raster functions available. Earlier pre-2.0 versions had raster_columns/raster_overviews as real tables. These were changed to views before release. Functions such as ST_AddRasterColumn were removed and replaced with AddRasterConstraints, DropRasterConstraints as a result some apps that created raster tables may need changing.

Note
Tiger Geocoder upgraded to work with TIGER 2010 census data and now included in the core PostGIS documentation. A reverse geocoder function was also added.
					Please refer to the section called “Tiger Geocoder” for more details.

	&& - Availability: 2.0.0 Returns TRUE if A's bounding box intersects B's bounding box.
	&&& - Availability: 2.0.0 Returns TRUE if A's n-D bounding box intersects B's n-D bounding box.
	<#> - Availability: 2.0.0 -- KNN only available for PostgreSQL 9.1+ Returns the 2D distance between A and B bounding boxes.
	<-> - Availability: 2.0.0 -- Weak KNN provides nearest neighbors based on geometry centroid distances instead of true distances. Exact results for points, inexact for all other types. Available for PostgreSQL 9.1+ Returns the 2D distance between A and B.
	AddEdge - Availability: 2.0.0 Adds a linestring edge to the edge table and associated start and end points to the point nodes table of the specified topology schema using the specified linestring geometry and returns the edgeid of the new (or existing) edge.
	AddFace - Availability: 2.0.0 Registers a face primitive to a topology and gets its identifier.
	AddNode - Availability: 2.0.0 Adds a point node to the node table in the specified topology schema and returns the nodeid of new node. If point already exists as node, the existing nodeid is returned.
	AddOverviewConstraints - Availability: 2.0.0 Tag a raster column as being an overview of another.
	AddRasterConstraints - Availability: 2.0.0 Adds raster constraints to a loaded raster table for a specific column that constrains spatial ref, scaling, blocksize, alignment, bands, band type and a flag to denote if raster column is regularly blocked. The table must be loaded with data for the constraints to be inferred. Returns true if the constraint setting was accomplished and issues a notice otherwise.
	AsGML - Availability: 2.0.0 Returns the GML representation of a topogeometry.
	CopyTopology - Availability: 2.0.0 Makes a copy of a topology structure (nodes, edges, faces, layers and TopoGeometries).
	DropOverviewConstraints - Availability: 2.0.0 Untag a raster column from being an overview of another.
	DropRasterConstraints - Availability: 2.0.0 Drops PostGIS raster constraints that refer to a raster table column. Useful if you need to reload data or update your raster column data.
	Drop_Indexes_Generate_Script - Availability: 2.0.0 Generates a script that drops all non-primary key and non-unique indexes on tiger schema and user specified schema. Defaults schema to tiger_data if no schema is specified.
	Drop_State_Tables_Generate_Script - Availability: 2.0.0 Generates a script that drops all tables in the specified schema that are prefixed with the state abbreviation. Defaults schema to tiger_data if no schema is specified.
	Geocode_Intersection - Availability: 2.0.0 Takes in 2 streets that intersect and a state, city, zip, and outputs a set of possible locations on the first cross street that is at the intersection, also includes a geomout as the point location in NAD 83 long lat, a normalized_address (addy) for each location, and the rating. The lower the rating the more likely the match. Results are sorted by lowest rating first. Can optionally pass in maximum results, defaults to 10. Uses Tiger data (edges, faces, addr), PostgreSQL fuzzy string matching (soundex, levenshtein).
	GetEdgeByPoint - Availability: 2.0.0 Finds the edge-id of an edge that intersects a given point.
	GetFaceByPoint - Availability: 2.0.0 Finds face intersecting a given point.
	GetNodeByPoint - Availability: 2.0.0 Finds the node-id of a node at a point location.
	GetNodeEdges - Availability: 2.0 Returns an ordered set of edges incident to the given node.
	GetRingEdges - Availability: 2.0.0 Returns the ordered set of signed edge identifiers met by walking on ana given edge side.
	GetTopoGeomElements - Availability: 2.0.0 Returns a set of topoelement objects containing the topological element_id,element_type of the given TopoGeometry (primitive elements).
	GetTopologySRID - Availability: 2.0.0 Returns the SRID of a topology in the topology.topology table given the name of the topology.
	Get_Tract - Availability: 2.0.0 Returns census tract or field from tract table of where the geometry is located. Default to returning short name of tract.
	Install_Missing_Indexes - Availability: 2.0.0 Finds all tables with key columns used in geocoder joins and filter conditions that are missing used indexes on those columns and will add them.
	Loader_Generate_Census_Script - Availability: 2.0.0 Generates a shell script for the specified platform for the specified states that will download Tiger census state tract, bg, and tabblocks data tables, stage and load into tiger_data schema. Each state script is returned as a separate record.
	Loader_Generate_Script - Availability: 2.0.0 to support Tiger 2010 structured data and load census tract (tract), block groups (bg), and blocks (tabblocks) tables . Generates a shell script for the specified platform for the specified states that will download Tiger data, stage and load into tiger_data schema. Each state script is returned as a separate record. Latest version supports Tiger 2010 structural changes and also loads census tract, block groups, and blocks tables.
	Missing_Indexes_Generate_Script - Availability: 2.0.0 Finds all tables with key columns used in geocoder joins that are missing indexes on those columns and will output the SQL DDL to define the index for those tables.
	Polygonize - Availability: 2.0.0 Finds and registers all faces defined by topology edges.
	Reverse_Geocode - Availability: 2.0.0 Takes a geometry point in a known spatial ref sys and returns a record containing an array of theoretically possible addresses and an array of cross streets. If include_strnum_range = true, includes the street range in the cross streets.
	ST_3DClosestPoint - Availability: 2.0.0 Returns the 3D point on g1 that is closest to g2. This is the first point of the 3D shortest line.
	ST_3DDFullyWithin - Availability: 2.0.0 Returns true if two 3D geometries are entirely within a given 3D distance
	ST_3DDWithin - Availability: 2.0.0 Returns true if two 3D geometries are within a given 3D distance
	ST_3DDistance - Availability: 2.0.0 Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.
	ST_3DIntersects - Availability: 2.0.0 Returns true if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area).
	ST_3DLongestLine - Availability: 2.0.0 Returns the 3D longest line between two geometries
	ST_3DMaxDistance - Availability: 2.0.0 Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in projected units.
	ST_3DShortestLine - Availability: 2.0.0 Returns the 3D shortest line between two geometries
	ST_AddEdgeModFace - Availability: 2.0 Add a new edge and, if in doing so it splits a face, modify the original face and add a new face.
	ST_AddEdgeNewFaces - Availability: 2.0 Add a new edge and, if in doing so it splits a face, delete the original face and replace it with two new faces.
	ST_AsGDALRaster - Availability: 2.0.0 - requires GDAL >= 1.6.0. Return the raster tile in the designated GDAL Raster format. Raster formats are one of those supported by your compiled library. Use ST_GDALDrivers() to get a list of formats supported by your library.
	ST_AsJPEG - Availability: 2.0.0 - requires GDAL >= 1.6.0. Return the raster tile selected bands as a single Joint Photographic Exports Group (JPEG) image (byte array). If no band is specified and 1 or more than 3 bands, then only the first band is used. If only 3 bands then all 3 bands are used and mapped to RGB.
	ST_AsLatLonText - Availability: 2.0 Return the Degrees, Minutes, Seconds representation of the given point.
	ST_AsPNG - Availability: 2.0.0 - requires GDAL >= 1.6.0. Return the raster tile selected bands as a single portable network graphics (PNG) image (byte array). If 1, 3, or 4 bands in raster and no bands are specified, then all bands are used. If more 2 or more than 4 bands and no bands specified, then only band 1 is used. Bands are mapped to RGB or RGBA space.
	ST_AsRaster - Availability: 2.0.0 - requires GDAL >= 1.6.0. Converts a PostGIS geometry to a PostGIS raster.
	ST_AsTIFF - Availability: 2.0.0 - requires GDAL >= 1.6.0. Return the raster selected bands as a single TIFF image (byte array). If no band is specified or any of specified bands does not exist in the raster, then will try to use all bands.
	ST_AsX3D - Availability: 2.0.0: ISO-IEC-19776-1.2-X3DEncodings-XML Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML
	ST_Aspect - Availability: 2.0.0 Returns the aspect (in degrees by default) of an elevation raster band. Useful for analyzing terrain.
	ST_Band - Availability: 2.0.0 Returns one or more bands of an existing raster as a new raster. Useful for building new rasters from existing rasters.
	ST_BandIsNoData - Availability: 2.0.0 Returns true if the band is filled with only nodata values.
	ST_Clip - Availability: 2.0.0 Returns the raster clipped by the input geometry. If band number not is specified, all bands are processed. If crop is not specified or TRUE, the output raster is cropped.
	ST_CollectionHomogenize - Availability: 2.0.0 Returns the simplest representation of a geometry collection.
	ST_ConcaveHull - Availability: 2.0.0 Computes a possibly concave geometry that encloses all input geometry vertices
	ST_Count - Availability: 2.0.0 Returns the number of pixels in a given band of a raster or raster coverage. If no band is specified defaults to band 1. If exclude_nodata_value is set to true, will only count pixels that are not equal to the nodata value.
	ST_CreateTopoGeo - Availability: 2.0 Adds a collection of geometries to a given empty topology and returns a message detailing success.
	ST_Distinct4ma - Availability: 2.0.0 Raster processing function that calculates the number of unique pixel values in a neighborhood.
	ST_FlipCoordinates - Availability: 2.0.0 Returns a version of a geometry with X and Y axis flipped.
	ST_GDALDrivers - Availability: 2.0.0 - requires GDAL >= 1.6.0. Returns a list of raster formats supported by PostGIS through GDAL. Only those formats with can_write=True can be used by ST_AsGDALRaster
	ST_GeomFromGeoJSON - Availability: 2.0.0 requires - JSON-C >= 0.9 Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object
	ST_GetFaceEdges - Availability: 2.0 Returns a set of ordered edges that bound aface.
	ST_HasNoBand - Availability: 2.0.0 Returns true if there is no band with given band number. If no band number is specified, then band number 1 is assumed.
	ST_HillShade - Availability: 2.0.0 Returns the hypothetical illumination of an elevation raster band using provided azimuth, altitude, brightness and scale inputs.
	ST_Histogram - Availability: 2.0.0 Returns a set of record summarizing a raster or raster coverage data distribution separate bin ranges. Number of bins are autocomputed if not specified.
	ST_InterpolatePoint - Availability: 2.0.0 Returns the interpolated measure of a geometry closest to a point.
	ST_IsEmpty - Availability: 2.0.0 Returns true if the raster is empty (width = 0 and height = 0). Otherwise, returns false.
	ST_IsValidDetail - Availability: 2.0.0 Returns a valid_detail row stating if a geometry is valid or if not a reason and a location.
	ST_IsValidReason - Availability: 2.0 version taking flags. Returns text stating if a geometry is valid, or a reason for invalidity.
	ST_MakeLine - Availability: 2.0.0 - Support for LineString input elements was introduced Creates a LineString from Point, MultiPoint, or LineString geometries.
	ST_MakeValid - Availability: 2.0.0 Attempts to make an invalid geometry valid without losing vertices.
	ST_MapAlgebraExpr - Availability: 2.0.0 1 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the input raster band and of pixeltype provided. Band 1 is assumed if no band is specified.
	ST_MapAlgebraExpr - Availability: 2.0.0 2 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the two input raster bands and of pixeltype provided. band 1 of each raster is assumed if no band numbers are specified. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster and have its extent defined by the "extenttype" parameter. Values for "extenttype" can be: INTERSECTION, UNION, FIRST, SECOND.
	ST_MapAlgebraFct - Availability: 2.0.0 1 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the input raster band and of pixeltype prodived. Band 1 is assumed if no band is specified.
	ST_MapAlgebraFct - Availability: 2.0.0 2 band version - Creates a new one band raster formed by applying a valid PostgreSQL function on the 2 input raster bands and of pixeltype prodived. Band 1 is assumed if no band is specified. Extent type defaults to INTERSECTION if not specified.
	ST_MapAlgebraFctNgb - Availability: 2.0.0 1-band version: Map Algebra Nearest Neighbor using user-defined PostgreSQL function. Return a raster which values are the result of a PLPGSQL user function involving a neighborhood of values from the input raster band.
	ST_Max4ma - Availability: 2.0.0 Raster processing function that calculates the maximum pixel value in a neighborhood.
	ST_Mean4ma - Availability: 2.0.0 Raster processing function that calculates the mean pixel value in a neighborhood.
	ST_Min4ma - Availability: 2.0.0 Raster processing function that calculates the minimum pixel value in a neighborhood.
	ST_ModEdgeHeal - Availability: 2.0 Heals two edges by deleting the node connecting them, modifying the first edgeand deleting the second edge. Returns the id of the deleted node.
	ST_MoveIsoNode - Availability: 2.0.0 Moves an isolated node in a topology from one point to another. If new apoint geometry exists as a node an error is thrown. Returns description of move.
	ST_NewEdgeHeal - Availability: 2.0 Heals two edges by deleting the node connecting them, deleting both edges,and replacing them with an edge whose direction is the same as the firstedge provided.
	ST_Node - Availability: 2.0.0 Nodes a collection of lines.
	ST_NumPatches - Availability: 2.0.0 Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.
	ST_OffsetCurve - Availability: 2.0 Returns an offset line at a given distance and side from an input line.
	ST_PatchN - Availability: 2.0.0 Returns the Nth geometry (face) of a PolyhedralSurface.
	ST_PixelAsPolygon - Availability: 2.0.0 Returns the polygon geometry that bounds the pixel for a particular row and column.
	ST_PixelAsPolygons - Availability: 2.0.0 Returns the polygon geometry that bounds every pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel.
	ST_Project - Availability: 2.0.0 Returns a point projected from a start point by a distance and bearing (azimuth).
	ST_Quantile - Availability: 2.0.0 Compute quantiles for a raster or raster table coverage in the context of the sample or population. Thus, a value could be examined to be at the raster's 25%, 50%, 75% percentile.
	ST_Range4ma - Availability: 2.0.0 Raster processing function that calculates the range of pixel values in a neighborhood.
	ST_Reclass - Availability: 2.0.0 Creates a new raster composed of band types reclassified from original. The nband is the band to be changed. If nband is not specified assumed to be 1. All other bands are returned unchanged. Use case: convert a 16BUI band to a 8BUI and so forth for simpler rendering as viewable formats.
	ST_RelateMatch - Availability: 2.0.0 Tests if a DE-9IM Intersection Matrix matches an Intersection Matrix pattern
	ST_RemEdgeModFace - Availability: 2.0 Removes an edge and, if the removed edge separated two faces,delete one of the them and modify the other to take the space of both.
	ST_RemEdgeNewFace - Availability: 2.0 Removes an edge and, if the removed edge separated two faces,delete the original faces and replace them with a new face.
	ST_Resample - Availability: 2.0.0 Requires GDAL 1.6.1+ Resample a raster using a specified resampling algorithm, new dimensions, an arbitrary grid corner and a set of raster georeferencing attributes defined or borrowed from another raster.
	ST_Rescale - Availability: 2.0.0 Requires GDAL 1.6.1+ Resample a raster by adjusting only its scale (or pixel size). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.
	ST_Reskew - Availability: 2.0.0 Requires GDAL 1.6.1+ Resample a raster by adjusting only its skew (or rotation parameters). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.
	ST_SameAlignment - Availability: 2.0.0 Returns true if rasters have same skew, scale, spatial ref, and offset (pixels can be put on same grid without cutting into pixels) and false if they don't with notice detailing issue.
	ST_SetBandIsNoData - Availability: 2.0.0 Sets the isnodata flag of the band to TRUE.
	ST_SharedPaths - Availability: 2.0.0 Returns a collection containing paths shared by the two input linestrings/multilinestrings.
	ST_Slope - Availability: 2.0.0 Returns the slope (in degrees by default) of an elevation raster band. Useful for analyzing terrain.
	ST_Snap - Availability: 2.0.0 Snap segments and vertices of input geometry to vertices of a reference geometry.
	ST_SnapToGrid - Availability: 2.0.0 Requires GDAL 1.6.1+ Resample a raster by snapping it to a grid. New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.
	ST_Split - Availability: 2.0.0 requires GEOS Returns a collection of geometries created by splitting a geometry by another geometry.
	ST_StdDev4ma - Availability: 2.0.0 Raster processing function that calculates the standard deviation of pixel values in a neighborhood.
	ST_Sum4ma - Availability: 2.0.0 Raster processing function that calculates the sum of all pixel values in a neighborhood.
	ST_SummaryStats - Availability: 2.0.0 Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. Band 1 is assumed is no band is specified.
	ST_Transform - Availability: 2.0.0 Requires GDAL 1.6.1+ Reprojects a raster in a known spatial reference system to another known spatial reference system using specified resampling algorithm. Options are NearestNeighbor, Bilinear, Cubic, CubicSpline, Lanczos defaulting to NearestNeighbor.
	ST_UnaryUnion - Availability: 2.0.0 Computes the union of the components of a single geometry.
	ST_Union - Availability: 2.0.0 Returns the union of a set of raster tiles into a single raster composed of 1 or more bands.
	ST_ValueCount - Availability: 2.0.0 Returns a set of records containing a pixel band value and count of the number of pixels in a given band of a raster (or a raster coverage) that have a given set of values. If no band is specified defaults to band 1. By default nodata value pixels are not counted. and all other values in the pixel are output and pixel band values are rounded to the nearest integer.
	TopoElementArray_Agg - Availability: 2.0.0 Returns a topoelementarray for a set of element_id, type arrays (topoelements).
	TopoGeo_AddLineString - Availability: 2.0.0 Adds a linestring to an existing topology using a tolerance and possibly splitting existing edges/faces. Returns edge identifiers.
	TopoGeo_AddPoint - Availability: 2.0.0 Adds a point to an existing topology using a tolerance and possibly splitting an existing edge.
	TopoGeo_AddPolygon - Availability: 2.0.0 Adds a polygon to an existing topology using a tolerance and possibly splitting existing edges/faces. Returns face identifiers.
	TopologySummary - Availability: 2.0.0 Takes a topology name and provides summary totals of types of objects in topology.
	Topology_Load_Tiger - Availability: 2.0.0 Loads a defined region of tiger data into a PostGIS Topology and transforming the tiger data to spatial reference of the topology and snapping to the precision tolerance of the topology.
	toTopoGeom - Availability: 2.0 Converts a simple Geometry into a topo geometry.
	~= - Availability: 2.0.0 Returns TRUE if A's bounding box is the same as B's.

The functions given below are PostGIS functions that are enhanced in PostGIS 2.0.
	AddGeometryColumn - Enhanced: 2.0.0 use_typmod argument introduced. Defaults to creating typmod geometry column instead of constraint-based.
	Box2D - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	Box3D - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	Geocode - Enhanced: 2.0.0 to support Tiger 2010 structured data and revised some logic to improve speed, accuracy of geocoding, and to offset point from centerline to side of street address is located on. The new parameter max_results useful for specifying number of best results or just returning the best result.
	GeometryType - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	Populate_Geometry_Columns - Enhanced: 2.0.0 use_typmod optional argument was introduced that allows controlling if columns are created with typmodifiers or with check constraints.
	ST_Intersection -
 Enhanced: 2.0.0 - Intersection in the raster space was introduced. In earlier pre-2.0.0 versions, only intersection performed in vector space were supported.

	ST_Intersects -
 Enhanced: 2.0.0 support raster/raster intersects was introduced.

	ST_Value - Enhanced: 2.0.0 exclude_nodata_value optional argument was added.
	ST_3DExtent - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Affine - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Area - Enhanced: 2.0.0 - support for 2D polyhedral surfaces was introduced.
	ST_AsBinary - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_AsBinary - Enhanced: 2.0.0 support for higher coordinate dimensions was introduced.
	ST_AsBinary - Enhanced: 2.0.0 support for specifying endian with geography was introduced.
	ST_AsEWKB - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_AsEWKT - Enhanced: 2.0.0 support for Geography, Polyhedral surfaces, Triangles and TIN was introduced.
	ST_AsGML - Enhanced: 2.0.0 prefix support was introduced. Option 4 for GML3 was introduced to allow using LineString instead of Curve tag for lines. GML3 Support for Polyhedral surfaces and TINS was introduced. Option 32 was introduced to output the box.
	ST_AsKML - Enhanced: 2.0.0 - Add prefix namespace. Default is no prefix
	ST_Azimuth - Enhanced: 2.0.0 support for geography was introduced.
	ST_ChangeEdgeGeom -
	Enhanced: 2.0.0 adds topological consistency enforcement
		
	ST_Dimension - Enhanced: 2.0.0 support for Polyhedral surfaces and TINs was introduced. No longer throws an exception if given empty geometry.
	ST_Dump - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_DumpPoints - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Expand - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Extent - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Force2D - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_ForceRHR - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_Force3D - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_Force3DZ - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_ForceCollection - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_GMLToSQL - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
	ST_GMLToSQL - Enhanced: 2.0.0 default srid optional parameter added.
	ST_GeomFromEWKB - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
	ST_GeomFromEWKT - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
	ST_GeomFromGML - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
	ST_GeomFromGML - Enhanced: 2.0.0 default srid optional parameter added.
	ST_GeometryN - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_GeometryType - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_IsClosed - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_MakeEnvelope - Enhanced: 2.0: Ability to specify an envelope without specifying an SRID was introduced.
	ST_MakeValid - Enhanced: 2.0.1, speed improvements
	ST_NPoints - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ST_NumGeometries - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Relate - Enhanced: 2.0.0 - added support for specifying boundary node rule.
	ST_Rotate - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Rotate - Enhanced: 2.0.0 additional parameters for specifying the origin of rotation were added.
	ST_RotateX - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_RotateY - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_RotateZ - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_Scale - Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
	ST_ShiftLongitude - Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
	ST_Summary - Enhanced: 2.0.0 added support for geography
	ST_Transform - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
	ValidateTopology - Enhanced: 2.0.0 more efficient edge crossing detection and fixes for false positives that were existent in prior versions.
	&& - Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

PostGIS Functions changed behavior in 2.0

The functions given below are PostGIS functions that have changed behavior in PostGIS 2.0 and may require application changes.
Note
Most deprecated functions have been removed. These are functions that haven't been documented since 1.2
 or some internal functions that were never documented. If you are using a function that you don't see documented,
 it's probably deprecated, about to be deprecated, or internal and should be avoided. If you have applications or tools
 that rely on deprecated functions, please refer to Q: 9.2 for more details.

Note
Bounding boxes of geometries have been changed from float4 to double precision (float8). This has an impact
 	on answers you get using bounding box operators and casting of bounding boxes to geometries. E.g ST_SetSRID(abbox) will
 	often return a different more accurate answer in PostGIS 2.0+ than it did in prior versions which may very well slightly
 	change answers to view port queries.

Note
The arguments hasnodata was replaced with exclude_nodata_value which has the same meaning as the older hasnodata but clearer in purpose.

	AddGeometryColumn - Changed: 2.0.0 This function no longer updates geometry_columns since geometry_columns is a view that reads from system catalogs. It by default
			also does not create constraints, but instead uses the built in type modifier behavior of PostgreSQL. So for example building a wgs84 POINT column with this function is now
			equivalent to: ALTER TABLE some_table ADD COLUMN geom geometry(Point,4326);
	AddGeometryColumn - Changed: 2.0.0 If you require the old behavior of constraints use the default use_typmod, but set it to false.
	AddGeometryColumn - Changed: 2.0.0 Views can no longer be manually registered in geometry_columns, however views built against geometry typmod tables geometries and used without wrapper functions will register themselves correctly
		 because they inherit the typmod behavior of their parent table column.
		 Views that use geometry functions that output other geometries will need to be cast to typmod geometries for these view geometry columns to be registered correctly
		 in geometry_columns. Refer to .
			
	DropGeometryColumn - Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs,
			 you can drop a geometry column like any other table column using ALTER TABLE
	DropGeometryTable - Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs,
			 you can drop a table with geometry columns like any other table using DROP TABLE
	Populate_Geometry_Columns - Changed: 2.0.0 By default, now uses type modifiers instead of check constraints to constrain geometry types. You can still use check
		 constraint behavior instead by using the new use_typmod and setting it to false.
	Box3D - Changed: 2.0.0 In pre-2.0 versions, there used to be a box2d instead of box3d. Since box2d is a deprecated type, this was changed to box3d.
	ST_GDALDrivers - Changed: 2.0.6, 2.1.3 - by default no drivers are enabled, unless GUC or Environment variable gdal_enabled_drivers is set.
	ST_ScaleX - Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeX.
	ST_ScaleY - Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeY.
	ST_SetScale - Changed: 2.0.0 In WKTRaster versions this was called ST_SetPixelSize. This was changed in 2.0.0.
	ST_3DExtent - Changed: 2.0.0 In prior versions this used to be called ST_Extent3D
	ST_3DLength - Changed: 2.0.0 In prior versions this used to be called ST_Length3D
	ST_3DMakeBox - Changed: 2.0.0 In prior versions this used to be called ST_MakeBox3D
	ST_3DPerimeter - Changed: 2.0.0 In prior versions this used to be called ST_Perimeter3D
	ST_AsBinary - Changed: 2.0.0 Inputs to this function can not be unknown -- must be geometry. Constructs such as ST_AsBinary('POINT(1 2)') are no longer valid and you will get an n st_asbinary(unknown) is not unique error. Code like that
			needs to be changed to ST_AsBinary('POINT(1 2)'::geometry);. If that is not possible, then install legacy.sql.
	ST_AsGML - Changed: 2.0.0 use default named args
	ST_AsGeoJSON - Changed: 2.0.0 support default args and named args.
	ST_AsKML - Changed: 2.0.0 - uses default args and supports named args
	ST_AsSVG - Changed: 2.0.0 to use default args and support named args
	ST_EndPoint - Changed: 2.0.0 no longer works with single geometry MultiLineStrings. In older
	 versions of PostGIS a single-line MultiLineString would work with this
	 function and return the end point. In 2.0.0 it returns NULL like any other MultiLineString.
	 The old behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING
	 may experience these returning NULL in 2.0.0.
	ST_GeomFromText - Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards. This should now be
			 written as ST_GeomFromText('GEOMETRYCOLLECTION EMPTY')
	ST_GeometryN - Changed: 2.0.0 Prior versions would return NULL for singular geometries. This was changed to return the geometry for ST_GeometryN(..,1) case.
	ST_IsEmpty - Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards
	ST_Length - Changed: 2.0.0 Breaking change -- in prior versions applying this to a MULTI/POLYGON of type geography would give you the perimeter of the POLYGON/MULTIPOLYGON. In 2.0.0
			this was changed to return 0 to be in line with geometry behavior. Please use ST_Perimeter if you want the perimeter of a polygon
	ST_LocateAlong - Changed: 2.0.0 in prior versions this used to be called ST_Locate_Along_Measure.
	ST_LocateBetween - Changed: 2.0.0 - in prior versions this used to be called ST_Locate_Between_Measures.
	ST_ModEdgeSplit - Changed: 2.0 - In prior versions, this was misnamed ST_ModEdgesSplit
	ST_NumGeometries - Changed: 2.0.0 In prior versions this would return NULL if the geometry was not a collection/MULTI type.
				2.0.0+ now returns 1 for single geometries e.g POLYGON, LINESTRING, POINT.
	ST_NumInteriorRings - Changed: 2.0.0 - in prior versions it would allow passing a MULTIPOLYGON, returning the number of interior rings of first POLYGON.
	ST_PointN - Changed: 2.0.0 no longer works with single geometry multilinestrings. In older
	 versions of PostGIS -- a single line multilinestring would work happily with this
	 function and return the start point. In 2.0.0 it just returns NULL like any other multilinestring.
	ST_StartPoint - Changed: 2.0.0 no longer works with single geometry MultiLineStrings. In older
	 versions of PostGIS a single-line MultiLineString would work happily with this
	 function and return the start point. In 2.0.0 it just returns NULL like any other MultiLineString.
	 The old behavior was an undocumented feature, but people who assumed they had their data stored as LINESTRING
	 may experience these returning NULL in 2.0.0.

PostGIS Functions new, behavior changed, or enhanced in 1.5

The functions given below are PostGIS functions that were introduced or enhanced in this minor release.
	PostGIS_LibXML_Version - Availability: 1.5 Returns the version number of the libxml2 library.
	ST_AddMeasure - Availability: 1.5.0 Interpolates measures along a linear geometry.
	ST_AsBinary - Availability: 1.5.0 geography support was introduced. Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsGML - Availability: 1.5.0 geography support was introduced. Return the geometry as a GML version 2 or 3 element.
	ST_AsGeoJSON - Availability: 1.5.0 geography support was introduced. Return a geometry as a GeoJSON element.
	ST_AsText - Availability: 1.5 - support for geography was introduced. Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
	ST_Buffer - Availability: 1.5 - ST_Buffer was enhanced to support different endcaps and join types. These are useful for example to convert road linestrings
 into polygon roads with flat or square edges instead of rounded edges. Thin wrapper for geography was added.
 Computes a geometry covering all points within a given distance from a geometry.
	ST_ClosestPoint - Availability: 1.5.0 Returns the 2D point on g1 that is closest to g2. This is the first point of the shortest line.
	ST_CollectionExtract - Availability: 1.5.0 Given a geometry collection, returns a multi-geometry containing only elements of a specified type.
	ST_Covers - Availability: 1.5 - support for geography was introduced. Returns true if no point in B is outside A
	ST_DFullyWithin - Availability: 1.5.0 Returns true if two geometries are entirely within a given distance
	ST_DWithin - Availability: 1.5.0 support for geography was introduced Returns true if two geometries are within a given distance
	ST_Distance - Availability: 1.5.0 geography support was introduced in 1.5. Speed improvements for planar to better handle large or many vertex geometries Returns the distance between two geometry or geography values.
	ST_DistanceSphere - Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points. Returns minimum distance in meters between two lon/lat geometries using a spherical earth model.
	ST_DistanceSpheroid - Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points. Returns the minimum distance between two lon/lat geometries using a spheroidal earth model.
	ST_DumpPoints - Availability: 1.5.0 Returns a set of geometry_dump rows for the coordinates in a geometry.
	ST_Envelope - Availability: 1.5.0 behavior changed to output double precision instead of float4 Returns a geometry representing the bounding box of a geometry.
	ST_Expand - Availability: 1.5.0 behavior changed to output double precision instead of float4 coordinates. Returns a bounding box expanded from another bounding box or a geometry.
	ST_GMLToSQL - Availability: 1.5, requires libxml2 1.6+ Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML
	ST_GeomFromGML - Availability: 1.5, requires libxml2 1.6+ Takes as input GML representation of geometry and outputs a PostGIS geometry object
	ST_GeomFromKML - Availability: 1.5, requires libxml2 2.6+ Takes as input KML representation of geometry and outputs a PostGIS geometry object
	~= - Availability: 1.5.0 changed behavior Returns TRUE if A's bounding box is the same as B's.
	ST_HausdorffDistance - Availability: 1.5.0 Returns the Hausdorff distance between two geometries.
	ST_Intersection - Availability: 1.5 support for geography data type was introduced. Computes a geometry representing the shared portion of geometries A and B.
	ST_Intersects - Availability: 1.5 support for geography was introduced. Returns true if two geometries intersect (they have at least one point in common).
	ST_Length - Availability: 1.5.0 geography support was introduced in 1.5. Returns the 2D length of a linear geometry.
	ST_LongestLine - Availability: 1.5.0 Returns the 2D longest line between two geometries.
	ST_MakeEnvelope - Availability: 1.5 Creates a rectangular Polygon from minimum and maximum coordinates.
	ST_MaxDistance - Availability: 1.5.0 Returns the 2D largest distance between two geometries in projected units.
	ST_ShortestLine - Availability: 1.5.0 Returns the 2D shortest line between two geometries
	&& - Availability: 1.5.0 support for geography was introduced. Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.

PostGIS Functions new, behavior changed, or enhanced in 1.4

The functions given below are PostGIS functions that were introduced or enhanced in the 1.4 release.
	Populate_Geometry_Columns - Ensures geometry columns are defined with type modifiers or have appropriate spatial constraints. Availability: 1.4.0
	ST_AsSVG - Returns SVG path data for a geometry.
		 Availability: 1.2.2. Availability: 1.4.0 Changed in PostGIS 1.4.0 to include L command in absolute path to conform to http://www.w3.org/TR/SVG/paths.html#PathDataBNF
		
	ST_Collect - Creates a GeometryCollection or Multi* geometry from a set of geometries. Availability: 1.4.0 - ST_Collect(geomarray) was introduced. ST_Collect was enhanced to handle more geometries faster.
	ST_ContainsProperly - Returns true if B intersects the interior of A but not the boundary or exterior. Availability: 1.4.0
	ST_GeoHash - Return a GeoHash representation of the geometry. Availability: 1.4.0
	ST_IsValidReason - Returns text stating if a geometry is valid, or a reason for invalidity. Availability: 1.4
	ST_LineCrossingDirection - Returns a number indicating the crossing behavior of two LineStrings. Availability: 1.4
	ST_LocateBetweenElevations - Returns the portions of a geometry that lie in an elevation (Z) range. Availability: 1.4.0
	ST_MakeLine - Creates a LineString from Point, MultiPoint, or LineString geometries. Availability: 1.4.0 - ST_MakeLine(geomarray) was introduced. ST_MakeLine aggregate functions was enhanced to handle more points faster.
	ST_MinimumBoundingCircle - Returns the smallest circle polygon that contains a geometry. Availability: 1.4.0
	ST_Union - Computes a geometry representing the point-set union of the input geometries. Availability: 1.4.0 - ST_Union was enhanced. ST_Union(geomarray) was introduced and also faster aggregate collection in PostgreSQL.

PostGIS Functions new in 1.3

The functions given below are PostGIS functions that were introduced in the 1.3 release.
	ST_AsGML - Return the geometry as a GML version 2 or 3 element. Availability: 1.3.2
	ST_AsGeoJSON - Return a geometry as a GeoJSON element. Availability: 1.3.4
	ST_CurveToLine - Converts a geometry containing curves to a linear geometry. Availability: 1.3.0
	ST_LineToCurve - Converts a linear geometry to a curved geometry. Availability: 1.3.0
	ST_SimplifyPreserveTopology - Returns a simplified and valid version of a geometry, using the Douglas-Peucker algorithm. Availability: 1.3.3

Name
ST_MapAlgebraExpr — 1 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the input raster band and of pixeltype provided. Band 1 is assumed if no band is specified.

Synopsis
	raster ST_MapAlgebraExpr(rast, 	
	 	band, 	
	 	pixeltype, 	
	 	expression, 	
	 	nodataval=NULL);	

raster rast;
integer band;
text pixeltype;
text expression;
double precision nodataval=NULL;

	raster ST_MapAlgebraExpr(rast, 	
	 	pixeltype, 	
	 	expression, 	
	 	nodataval=NULL);	

raster rast;
text pixeltype;
text expression;
double precision nodataval=NULL;

Description
Warning

 ST_MapAlgebraExpr is deprecated as of 2.1.0. Use ST_MapAlgebra (expression version) instead.

 Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation defined by the expression on the input raster (rast). If no band is specified band 1 is assumed. The new raster will have the same georeference, width, and height as the original raster but will only have one band.

 If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL, then the new raster band will have the same pixeltype as the input rast band.

 In the expression you can use the term [rast] to refer to the pixel value of the original band, [rast.x] to refer to the 1-based pixel column index, [rast.y] to refer to the 1-based pixel row index.

Availability: 2.0.0

Examples
Create a new 1 band raster from our original that is a function of modulo 2 of the original raster band.

ALTER TABLE dummy_rast ADD COLUMN map_rast raster;
UPDATE dummy_rast SET map_rast = ST_MapAlgebraExpr(rast,NULL,'mod([rast]::numeric,2)') WHERE rid = 2;

SELECT
 ST_Value(rast,1,i,j) As origval,
 ST_Value(map_rast, 1, i, j) As mapval
FROM dummy_rast
CROSS JOIN generate_series(1, 3) AS i
CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;

 origval | mapval
---------+--------
 253 | 1
 254 | 0
 253 | 1
 253 | 1
 254 | 0
 254 | 0
 250 | 0
 254 | 0
 254 | 0

Create a new 1 band raster of pixel-type 2BUI from our original that is reclassified and set the nodata value to be 0.
ALTER TABLE dummy_rast ADD COLUMN map_rast2 raster;
UPDATE dummy_rast SET
 map_rast2 = ST_MapAlgebraExpr(rast,'2BUI'::text,'CASE WHEN [rast] BETWEEN 100 and 250 THEN 1 WHEN [rast] = 252 THEN 2 WHEN [rast] BETWEEN 253 and 254 THEN 3 ELSE 0 END'::text, '0')
WHERE rid = 2;

SELECT DISTINCT
 ST_Value(rast,1,i,j) As origval,
 ST_Value(map_rast2, 1, i, j) As mapval
FROM dummy_rast
CROSS JOIN generate_series(1, 5) AS i
CROSS JOIN generate_series(1,5) AS j
WHERE rid = 2;

 origval | mapval
---------+--------
 249 | 1
 250 | 1
 251 |
 252 | 2
 253 | 3
 254 | 3

SELECT
 ST_BandPixelType(map_rast2) As b1pixtyp
FROM dummy_rast
WHERE rid = 2;

 b1pixtyp

 2BUI

	

[image: Examples]original (column rast_view)

 	

[image: Examples]rast_view_ma

Create a new 3 band raster same pixel type from our original 3 band raster with first band altered by map algebra and remaining 2 bands unaltered.

SELECT
 ST_AddBand(
 ST_AddBand(
 ST_AddBand(
 ST_MakeEmptyRaster(rast_view),
 ST_MapAlgebraExpr(rast_view,1,NULL,'tan([rast])*[rast]')
),
 ST_Band(rast_view,2)
),
 ST_Band(rast_view, 3)
) As rast_view_ma
FROM wind
WHERE rid=167;

See Also

 ST_MapAlgebraExpr,
 ST_MapAlgebraFct,
 ST_BandPixelType,
 ST_GeoReference,
 ST_Value

Name
ST_Height — Returns the height of the raster in pixels.

Synopsis
	integer ST_Height(rast);	

raster rast;

Description
Returns the height of the raster.

Examples
SELECT rid, ST_Height(rast) As rastheight
FROM dummy_rast;

 rid | rastheight
-----+------------
 1 | 20
 2 | 5

See Also
ST_Width

Name
Loader_Generate_Census_Script — Generates a shell script for the specified platform for the specified states that will download Tiger census state tract, bg, and tabblocks data tables, stage and load into tiger_data schema. Each state script is returned as a separate record.

Synopsis
	setof text loader_generate_census_script(param_states, 	
	 	os);	

text[] param_states;
text os;

Description
Generates a shell script for the specified platform for the specified states that will download Tiger data census state tract, block groups bg, and tabblocks data tables, stage and load into tiger_data schema. Each state script is returned as a separate record.
It uses unzip on Linux (7-zip on Windows by default) and wget to do the downloading. It uses the section called “Using the Shapefile Loader” to load in the data. Note the smallest unit it does is a whole state. It will only
 process the files in the staging and temp folders.
It uses the following control tables to control the process and different OS shell syntax variations.
	loader_variables keeps track of various variables such as census site, year, data and staging schemas

	loader_platform profiles of various platforms and where the various executables are located. Comes with windows and linux. More can be added.

	loader_lookuptables each record defines a kind of table (state, county), whether to process records in it and how to load them in. Defines the steps to import data, stage data, add, removes columns, indexes, and constraints for each. Each table is prefixed with the state and inherits from a table in the tiger schema. e.g. creates tiger_data.ma_faces which inherits from tiger.faces

Availability: 2.0.0
Note
Loader_Generate_Script includes this logic, but if you installed tiger geocoder prior to PostGIS 2.0.0 alpha5, you'll need to run this on the states you have already done
 to get these additional tables.

Examples
Generate script to load up data for select states in Windows shell script format.
SELECT loader_generate_census_script(ARRAY['MA'], 'windows');
-- result --
set STATEDIR="\gisdata\www2.census.gov\geo\pvs\tiger2010st\25_Massachusetts"
set TMPDIR=\gisdata\temp\
set UNZIPTOOL="C:\Program Files\7-Zip\7z.exe"
set WGETTOOL="C:\wget\wget.exe"
set PGBIN=C:\projects\pg\pg91win\bin\
set PGPORT=5432
set PGHOST=localhost
set PGUSER=postgres
set PGPASSWORD=yourpasswordhere
set PGDATABASE=tiger_postgis20
set PSQL="%PGBIN%psql"
set SHP2PGSQL="%PGBIN%shp2pgsql"
cd \gisdata

%WGETTOOL% http://www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts/25/ --no-parent --relative --accept=*bg10.zip,*tract10.zip,*tabblock10.zip --mirror --reject=html
del %TMPDIR%*.* /Q
%PSQL% -c "DROP SCHEMA tiger_staging CASCADE;"
%PSQL% -c "CREATE SCHEMA tiger_staging;"
cd %STATEDIR%
for /r %%z in (*.zip) do %UNZIPTOOL% e %%z -o%TMPDIR%
cd %TMPDIR%
%PSQL% -c "CREATE TABLE tiger_data.MA_tract(CONSTRAINT pk_MA_tract PRIMARY KEY (tract_id)) INHERITS(tiger.tract); "
%SHP2PGSQL% -c -s 4269 -g the_geom -W "latin1" tl_2010_25_tract10.dbf tiger_staging.ma_tract10 | %PSQL%
%PSQL% -c "ALTER TABLE tiger_staging.MA_tract10 RENAME geoid10 TO tract_id; SELECT loader_load_staged_data(lower('MA_tract10'), lower('MA_tract')); "
%PSQL% -c "CREATE INDEX tiger_data_MA_tract_the_geom_gist ON tiger_data.MA_tract USING gist(the_geom);"
%PSQL% -c "VACUUM ANALYZE tiger_data.MA_tract;"
%PSQL% -c "ALTER TABLE tiger_data.MA_tract ADD CONSTRAINT chk_statefp CHECK (statefp = '25');"
:
Generate sh script
STATEDIR="/gisdata/www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts"
TMPDIR="/gisdata/temp/"
UNZIPTOOL=unzip
WGETTOOL="/usr/bin/wget"
export PGBIN=/usr/pgsql-9.0/bin
export PGPORT=5432
export PGHOST=localhost
export PGUSER=postgres
export PGPASSWORD=yourpasswordhere
export PGDATABASE=geocoder
PSQL=${PGBIN}/psql
SHP2PGSQL=${PGBIN}/shp2pgsql
cd /gisdata

wget http://www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts/25/ --no-parent --relative --accept=*bg10.zip,*tract10.zip,*tabblock10.zip --mirror --reject=html
rm -f ${TMPDIR}/*.*
${PSQL} -c "DROP SCHEMA tiger_staging CASCADE;"
${PSQL} -c "CREATE SCHEMA tiger_staging;"
cd $STATEDIR
for z in *.zip; do $UNZIPTOOL -o -d $TMPDIR $z; done
:
:

See Also
Loader_Generate_Script

Name
ST_Relate — Tests if two geometries have a topological relationship
 matching an Intersection Matrix pattern,
 or computes their Intersection Matrix

Synopsis
	boolean ST_Relate(geomA, 	
	 	geomB, 	
	 	intersectionMatrixPattern);	

geometry geomA;
geometry geomB;
text intersectionMatrixPattern;

	text ST_Relate(geomA, 	
	 	geomB);	

geometry geomA;
geometry geomB;

	text ST_Relate(geomA, 	
	 	geomB, 	
	 	boundaryNodeRule);	

geometry geomA;
geometry geomB;
integer boundaryNodeRule;

Description

 These functions allow testing and evaluating the spatial (topological) relationship between two geometries,
 as defined by the Dimensionally Extended 9-Intersection Model (DE-9IM).

 The DE-9IM is specified as a 9-element matrix indicating the dimension of the intersections between the
 Interior, Boundary and Exterior of two geometries.
 It is represented by a 9-character text string using the symbols 'F', '0', '1', '2'
 (e.g. 'FF1FF0102').

 A specific kind of spatial relationships is evaluated by comparing the intersection
 matrix to an intersection matrix pattern.
 A pattern can include the additional symbols 'T' and '*'.
 Common spatial relationships are provided by the named functions
 ST_Contains, ST_ContainsProperly,
 ST_Covers, ST_CoveredBy,
 ST_Crosses, ST_Disjoint, ST_Equals,
 ST_Intersects, ST_Overlaps, ST_Touches,
 and ST_Within.
 Using an explicit pattern allows testing multiple conditions of intersects, crosses, etc in one step.
 It also allows testing spatial relationships which do not have a named spatial relationship function.
 For example, the relationship "Interior-Intersects" has the DE-9IM pattern T********,
 which is not evaluated by any named predicate.

 For more information refer to the section called “Determining Spatial Relationships”.

Variant 1: Tests if two geometries are spatially related
 according to the given intersectionMatrixPattern.

Note
Unlike most of the named spatial relationship predicates,
 this does NOT automatically include an index call.
 The reason is that some relationships are true for geometries
 which do NOT intersect (e.g. Disjoint). If you are
 using a relationship pattern that requires intersection, then include the &&
 index call.

Note
It is better to use a named relationship function if available,
 since they automatically use a spatial index where one exists.
 Also, they may implement performance optimizations which are not available
 with full relate evalation.

Variant 2: Returns the DE-9IM matrix string for the
 spatial relationship between the two input geometries.
 The matrix string can be tested for matching a DE-9IM pattern using ST_RelateMatch.

Variant 3: Like variant 2,
 but allows specifying a Boundary Node Rule.
 A boundary node rule allows finer control over whether geometry boundary points are
 considered to lie in the DE-9IM Interior or Boundary.
 The boundaryNodeRule code is:
 1: OGC/MOD2, 2: Endpoint, 3: MultivalentEndpoint, 4: MonovalentEndpoint.
This function is not in the OGC spec, but is implied. see s2.1.13.2
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.25
Performed by the GEOS module
Enhanced: 2.0.0 - added support for specifying boundary node rule.
Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Examples
Using the boolean-valued function to test spatial relationships.

SELECT ST_Relate('POINT(1 2)', ST_Buffer('POINT(1 2)', 2), '0FFFFF212');
st_relate

t

SELECT ST_Relate(POINT(1 2)', ST_Buffer('POINT(1 2)', 2), '*FF*FF212');
st_relate

t

Testing a custom spatial relationship pattern as a query condition,
 with && to enable using a spatial index.

-- Find compounds that properly intersect (not just touch) a poly (Interior Intersects)

SELECT c.* , p.name As poly_name
 FROM polys AS p
 INNER JOIN compounds As c
 ON c.geom && p.geom
 AND ST_Relate(p.geom, c.geom,'T********');

Computing the intersection matrix for spatial relationships.

SELECT ST_Relate('POINT(1 2)',
 ST_Buffer('POINT(1 2)', 2));
st_relate

0FFFFF212

SELECT ST_Relate('LINESTRING(1 2, 3 4)',
 'LINESTRING(5 6, 7 8)');
st_relate

FF1FF0102

See Also

 the section called “Determining Spatial Relationships”, ST_RelateMatch,
 ST_Contains, ST_ContainsProperly,
 ST_Covers, ST_CoveredBy,
 ST_Crosses, ST_Disjoint, ST_Equals,
 ST_Intersects, ST_Overlaps,
 ST_Touches, ST_Within

Name
Populate_Topology_Layer — Adds missing entries to topology.layer table by reading metadata from topo tables.

Synopsis
	setof record Populate_Topology_Layer();	

;

Description
Adds missing entries to the topology.layer table by inspecting topology constraints on tables.
 This function is useful for fixing up entries in topology catalog after restores of schemas with topo data.
It returns the list of entries created. Returned columns are schema_name, table_name, feature_column.
Availability: 2.3.0

Examples
SELECT CreateTopology('strk_topo');
CREATE SCHEMA strk;
CREATE TABLE strk.parcels(gid serial, parcel_id varchar(20) PRIMARY KEY, address text);
SELECT topology.AddTopoGeometryColumn('strk_topo', 'strk', 'parcels', 'topo', 'POLYGON');
-- this will return no records because this feature is already registered
SELECT *
 FROM topology.Populate_Topology_Layer();

-- let's rebuild
TRUNCATE TABLE topology.layer;

SELECT *
 FROM topology.Populate_Topology_Layer();

SELECT topology_id,layer_id, schema_name As sn, table_name As tn, feature_column As fc
FROM topology.layer;

				
 schema_name | table_name | feature_column
-------------+------------+----------------
 strk | parcels | topo
(1 row)

 topology_id | layer_id | sn | tn | fc
-------------+----------+------+---------+------
 2 | 2 | strk | parcels | topo
(1 row)

See Also
AddTopoGeometryColumn

Name
ST_Union — Computes a geometry representing the point-set union of
 the input geometries.

Synopsis
	geometry ST_Union(g1, 	
	 	g2);	

geometry g1;
geometry g2;

	geometry ST_Union(g1, 	
	 	g2, 	
	 	gridSize);	

geometry g1;
geometry g2;
float8 gridSize;

	geometry ST_Union(g1_array);	

geometry[] g1_array;

	geometry ST_Union(g1field);	

geometry set g1field;

	geometry ST_Union(g1field, 	
	 	gridSize);	

geometry set g1field;
float8 gridSize;

Description
Unions the input geometries, merging geometry to produce a result geometry
 with no overlaps.
 The output may be an atomic geometry, a MultiGeometry, or a Geometry Collection.
 Comes in several variants:
Two-input variant:
 returns a geometry that is the union of two input geometries.
 If either input is NULL, then NULL is returned.

Array variant:
 returns a geometry that is the union of an array of geometries.

Aggregate variant:
 returns a geometry that is the union of a rowset of geometries.
 The ST_Union() function is an "aggregate"
 function in the terminology of PostgreSQL. That means that it
 operates on rows of data, in the same way the SUM() and AVG()
 functions do and like most aggregates, it also ignores NULL geometries.
See ST_UnaryUnion for a non-aggregate, single-input variant.
The ST_Union array and set variants use the fast Cascaded Union algorithm described in http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html

A gridSize can be specified to work in fixed-precision space.
 The inputs are snapped to a grid of the given size, and the result vertices are computed
 on that same grid.
 (Requires GEOS-3.9.0 or higher)

Note
ST_Collect may sometimes be used in place of ST_Union,
 if the result is not required to be non-overlapping.
 ST_Collect is usually faster than ST_Union because it performs no processing
 on the collected geometries.

Performed by the GEOS module.
ST_Union creates MultiLineString and does not sew LineStrings into a single LineString.
 Use ST_LineMerge to sew LineStrings.
NOTE: this function was formerly called GeomUnion(), which
 was renamed from "Union" because UNION is an SQL reserved
 word.
Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0
Changed: 3.0.0 does not depend on SFCGAL.
Availability: 1.4.0 - ST_Union was enhanced. ST_Union(geomarray) was introduced and also faster aggregate collection in PostgreSQL.
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.3
Note
Aggregate version is not explicitly defined in OGC SPEC.

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.19
 the z-index (elevation) when polygons are involved.
[image: Description]
 This function supports 3d and will not drop the z-index. However, the result is computed using XY only.
 The result Z values are copied, averaged or interpolated.

Examples
Aggregate example

SELECT id,
 ST_Union(geom) as singlegeom
FROM sometable f
GROUP BY id;

Non-Aggregate example

select ST_AsText(ST_Union('POINT(1 2)' :: geometry, 'POINT(-2 3)' :: geometry))

st_astext

MULTIPOINT(-2 3,1 2)

select ST_AsText(ST_Union('POINT(1 2)' :: geometry, 'POINT(1 2)' :: geometry))

st_astext

POINT(1 2)
3D example - sort of supports 3D (and with mixed dimensions!)
select ST_AsEWKT(ST_Union(geom))
from (
 select 'POLYGON((-7 4.2,-7.1 4.2,-7.1 4.3, -7 4.2))'::geometry geom
 union all
 select 'POINT(5 5 5)'::geometry geom
 union all
 select 'POINT(-2 3 1)'::geometry geom
 union all
 select 'LINESTRING(5 5 5, 10 10 10)'::geometry geom
) as foo;

st_asewkt

GEOMETRYCOLLECTION(POINT(-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 5,-7.1 4.2 5,-7.1 4.3 5,-7 4.2 5)));

3d example not mixing dimensions
select ST_AsEWKT(ST_Union(geom))
from (
 select 'POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2, -7 4.2 2))'::geometry geom
 union all
 select 'POINT(5 5 5)'::geometry geom
 union all
 select 'POINT(-2 3 1)'::geometry geom
 union all
 select 'LINESTRING(5 5 5, 10 10 10)'::geometry geom
) as foo;

st_asewkt

GEOMETRYCOLLECTION(POINT(-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2,-7 4.2 2)))

--Examples using new Array construct
SELECT ST_Union(ARRAY(SELECT geom FROM sometable));

SELECT ST_AsText(ST_Union(ARRAY[ST_GeomFromText('LINESTRING(1 2, 3 4)'),
 ST_GeomFromText('LINESTRING(3 4, 4 5)')])) As wktunion;

--wktunion---
MULTILINESTRING((3 4,4 5),(1 2,3 4))

See Also

 ST_Collect,
 ST_UnaryUnion,
 ST_MemUnion,
 ST_Intersection,
 ST_Difference,
 ST_SymDifference

Name
ST_MakePointM — Creates a Point from X, Y and M values.

Synopsis
	geometry ST_MakePointM(x, 	
	 	y, 	
	 	m);	

float x;
float y;
float m;

Description
Creates a point with X, Y and M (measure) coordinates.
Use ST_MakePoint to make points with XY, XYZ, or XYZM coordinates.
Note
For geodetic coordinates, X is longitude and Y is latitude

Examples
Note
ST_AsEWKT is used for text output
			because ST_AsText does not support M values.

Create point with unknown SRID.

SELECT ST_AsEWKT(ST_MakePointM(-71.1043443253471, 42.3150676015829, 10));

				 st_asewkt

 POINTM(-71.1043443253471 42.3150676015829 10)

Create point with a measure in the WGS 84 geodetic coordinate system.

SELECT ST_AsEWKT(ST_SetSRID(ST_MakePointM(-71.104, 42.315, 10), 4326));

						st_asewkt

SRID=4326;POINTM(-71.104 42.315 10)

Get measure of created point.

SELECT ST_M(ST_MakePointM(-71.104, 42.315, 10));

result

10

See Also
ST_AsEWKT, ST_MakePoint, ST_SetSRID

Raster Outputs

Name
ST_BandFileSize — Returns the file size of a band stored in file system. If no bandnum specified, 1 is assumed.

Synopsis
	bigint ST_BandFileSize(rast, 	
	 	bandnum=1);	

raster rast;
integer bandnum=1;

Description
Returns the file size of a band stored in file system. Throws an error if called with an in db band, or if outdb access is not enabled.
This function is typically used in conjunction with ST_BandPath() and ST_BandFileTimestamp() so a client can determine if the filename of a outdb raster as seen by it is the same as the one seen by the server.
Availability: 2.5.0

Examples
SELECT ST_BandFileSize(rast,1) FROM dummy_rast WHERE rid = 1;

 st_bandfilesize

 240574

Name
Box3D — Returns the box 3d representation of the enclosing box of the raster.

Synopsis
	box3d Box3D(rast);	

raster rast;

Description
Returns the box representing the extent of the raster.

 The polygon is defined by the corner points of the bounding box ((MINX, MINY), (MAXX, MAXY))

Changed: 2.0.0 In pre-2.0 versions, there used to be a box2d instead of box3d. Since box2d is a deprecated type, this was changed to box3d.

Examples

SELECT
 rid,
 Box3D(rast) AS rastbox
FROM dummy_rast;

rid | rastbox
----+---
1 | BOX3D(0.5 0.5 0,20.5 60.5 0)
2 | BOX3D(3427927.75 5793243.5 0,3427928 5793244 0)

See Also

 ST_Envelope

Name
DropOverviewConstraints — Untag a raster column from being an overview of another.

Synopsis
	boolean DropOverviewConstraints(ovschema, 	
	 	ovtable, 	
	 	ovcolumn);	

name
 ovschema;
name
 ovtable;
name
 ovcolumn;

	boolean DropOverviewConstraints(ovtable, 	
	 	ovcolumn);	

name
 ovtable;
name
 ovcolumn;

Description

Remove from a raster column the constraints used to show it as
being an overview of another in the raster_overviews
raster catalog.

When the ovschema parameter is omitted,
the first table found scanning the search_path
will be used.

Availability: 2.0.0

See Also

 the section called “Raster Overviews”,
 AddOverviewConstraints,
 DropRasterConstraints

Release 1.0.5

Release date: 2005/11/25
Contains memory-alignment fixes in the library, a segfault fix in
 loader's handling of UTF8 attributes and a few improvements and
 cleanups.
Note
Return code of shp2pgsql changed from previous releases to
 conform to unix standards (return 0 on success).

Upgrading

If you are upgrading from release 1.0.3 or later you
 DO NOT need a dump/reload.
If you are upgrading from a release between 1.0.0RC6
 and 1.0.2 (inclusive) and really want a live upgrade read
 the upgrade section of the
 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

Library changes

Fixed memory alignment problems
Fixed computation of null values fraction in analyzer
Fixed a small bug in the getPoint4d_p() low-level
 function
Speedup of serializer functions
Fixed a bug in force_3dm(), force_3dz() and force_4d()

Loader changes

Fixed return code of shp2pgsql
Fixed back-compatibility issue in loader (load of null
 shapefiles)
Fixed handling of trailing dots in dbf numerical
 attributes
Segfault fix in shp2pgsql (utf8 encoding)

Other changes

Schema aware postgis_proc_upgrade.pl, support for pgsql
 7.2+
New "Reporting Bugs" chapter in manual

Name
Box3D — Returns a BOX3D representing the 3D extent of a geometry.

Synopsis
	box3d Box3D(geom);	

geometry geom;

Description
Returns a box3d representing the 3D extent of the geometry.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT Box3D(ST_GeomFromEWKT('LINESTRING(1 2 3, 3 4 5, 5 6 5)'));

Box3d

BOX3D(1 2 3,5 6 5)

SELECT Box3D(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 1,220227 150406 1)'));

Box3d

BOX3D(220227 150406 1,220268 150415 1)

See Also
Box2D, ST_GeomFromEWKT

Name
ST_GeogFromWKB — Creates a geography instance from a Well-Known Binary geometry
		representation (WKB) or extended Well Known Binary (EWKB).

Synopsis
	geography ST_GeogFromWKB(wkb);	

bytea wkb;

Description
The ST_GeogFromWKB function, takes a well-known
		binary representation (WKB) of a geometry or PostGIS Extended WKB and creates an instance of the appropriate
		geography type. This function plays the role of the Geometry Factory in
		SQL.
If SRID is not specified, it defaults to 4326 (WGS 84 long lat).
[image: Description]
 This method supports Circular Strings and Curves

Examples
--Although bytea rep contains single \, these need to be escaped when inserting into a table
SELECT ST_AsText(
ST_GeogFromWKB(E'\\001\\002\\000\\000\\000\\002\\000\\000\\000\\037\\205\\353Q\\270~\\\\\\300\\323Mb\\020X\\231C@\\020X9\\264\\310~\\\\\\300)\\\\\\217\\302\\365\\230C@')
);
					 st_astext
--
 LINESTRING(-113.98 39.198,-113.981 39.195)
(1 row)

See Also
ST_GeogFromText, ST_AsBinary

Name
ST_MinimumBoundingRadius — Returns the center point and radius of the smallest circle that contains a geometry.

Synopsis
	(geometry, double precision) ST_MinimumBoundingRadius(geom);	

geometry geom;

Description
Returns a record containing the center point and radius of the smallest circle that contains a geometry.
Use in conjunction with ST_Collect to get the minimum bounding circle of a set of geometries.
Availability - 2.3.0

See Also
ST_Collect, ST_MinimumBoundingCircle

Examples
SELECT ST_AsText(center), radius FROM ST_MinimumBoundingRadius('POLYGON((26426 65078,26531 65242,26075 65136,26096 65427,26426 65078))');

 st_astext | radius
--+------------------
 POINT(26284.8418027133 65267.1145090825) | 247.436045591407

Name
ST_LineSubstring — Returns the part of a line between two fractional locations.

Synopsis
	geometry ST_LineSubstring(a_linestring, 	
	 	startfraction, 	
	 	endfraction);	

geometry a_linestring;
float8 startfraction;
float8 endfraction;

Description
Computes the line which is the section of the input line
			starting and ending at the given fractional locations.
 The first argument must be a LINESTRING.
			The second and third arguments are values in the range [0, 1]
 representing the start and end locations
 as fractions of line length.
 The Z and M values are interpolated for added endpoints if present.

If startfraction and endfraction
 have the same value this is equivalent
			to ST_LineInterpolatePoint.
Note
This only works with LINESTRINGs.
			 To use on contiguous MULTILINESTRINGs
 first join them with ST_LineMerge.

Note
Since release 1.1.1 this function interpolates M and
			 Z values. Prior releases set Z and M to
			 unspecified values.

Availability: 1.1.0, Z and M supported added in 1.1.1
Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Substring.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
[image: Examples]A LineString seen with 1/3 midrange overlaid (0.333, 0.666)

SELECT ST_AsText(ST_LineSubstring('LINESTRING(25 50, 100 125, 150 190)', 0.333, 0.666));

										 st_astext
--
LINESTRING(69.2846934853974 94.2846934853974,100 125,111.700356260683 140.210463138888)

If start and end locations are the same, the result is a POINT.

SELECT ST_AsText(ST_LineSubstring('LINESTRING(25 50, 100 125, 150 190)', 0.333, 0.333));

 st_astext
--
 POINT(69.2846934853974 94.2846934853974)

A query to cut a LineString into sections of length 100 or shorter.
It uses generate_series() with a CROSS JOIN LATERAL
to produce the equivalent of a FOR loop.

WITH data(id, geom) AS (VALUES
 ('A', 'LINESTRING(0 0, 200 0)'::geometry),
 ('B', 'LINESTRING(0 100, 350 100)'::geometry),
 ('C', 'LINESTRING(0 200, 50 200)'::geometry)
)
SELECT id, i,
 ST_AsText(ST_LineSubstring(geom, startfrac, LEAST(endfrac, 1))) AS geom
FROM (
 SELECT id, geom, ST_Length(geom) len, 100 sublen FROM data
) AS d
CROSS JOIN LATERAL (
 SELECT i, (sublen * i) / len AS startfrac,
 (sublen * (i+1)) / len AS endfrac
 FROM generate_series(0, floor(len / sublen)::integer) AS t(i)
 -- skip last i if line length is exact multiple of sublen
 WHERE (sublen * i) / len <> 1.0
) AS d2;

 id | i | geom
----+---+-----------------------------
 A | 0 | LINESTRING(0 0,100 0)
 A | 1 | LINESTRING(100 0,200 0)
 B | 0 | LINESTRING(0 100,100 100)
 B | 1 | LINESTRING(100 100,200 100)
 B | 2 | LINESTRING(200 100,300 100)
 B | 3 | LINESTRING(300 100,350 100)
 C | 0 | LINESTRING(0 200,50 200)

See Also
ST_Length, ST_LineInterpolatePoint, ST_LineMerge

Name
<-> —
Returns the 2D distance between A and B.
			

Synopsis
	double precision <->(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

	double precision <->(A, 	
	 	B);	

				 geography

				 A
				;

				 geography

				 B
				;

Description

The <-> operator returns the 2D distance between
two geometries. Used in the "ORDER BY" clause provides index-assisted
nearest-neighbor result sets. For PostgreSQL below 9.5 only gives
centroid distance of bounding boxes and for PostgreSQL 9.5+, does true
KNN distance search giving true distance between geometries, and distance
sphere for geographies.

Note
This operand will make use of 2D GiST indexes that may be available on the geometries. It is different from other operators that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

Note
Index only kicks in if one of the geometries is a constant (not in a subquery/cte). e.g. 'SRID=3005;POINT(1011102 450541)'::geometry instead of a.geom

Refer to PostGIS workshop: Nearest-Neighbor Searching for a detailed example.
Enhanced: 2.2.0 -- True KNN ("K nearest neighbor") behavior for geometry and geography for PostgreSQL 9.5+. Note for geography KNN is based on sphere rather than spheroid. For PostgreSQL 9.4 and below, geography support is new but only supports centroid box.
Changed: 2.2.0 -- For PostgreSQL 9.5 users, old Hybrid syntax may be slower, so you'll want to get rid of that hack if you are running your code only on PostGIS 2.2+ 9.5+. See examples below.
Availability: 2.0.0 -- Weak KNN provides nearest neighbors based on geometry centroid distances instead of true distances. Exact results for points, inexact for all other types. Available for PostgreSQL 9.1+

Examples
SELECT ST_Distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
FROM va2005
ORDER BY d limit 10;

 d | edabbr | vaabbr
------------------+--------+--------
 0 | ALQ | 128
 5541.57712511724 | ALQ | 129A
 5579.67450712005 | ALQ | 001
 6083.4207708641 | ALQ | 131
 7691.2205404848 | ALQ | 003
 7900.75451037313 | ALQ | 122
 8694.20710669982 | ALQ | 129B
 9564.24289057111 | ALQ | 130
 12089.665931705 | ALQ | 127
 18472.5531479404 | ALQ | 002
(10 rows)

Then the KNN raw answer:

SELECT st_distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
FROM va2005
ORDER BY geom <-> 'SRID=3005;POINT(1011102 450541)'::geometry limit 10;

 d | edabbr | vaabbr
------------------+--------+--------
 0 | ALQ | 128
 5541.57712511724 | ALQ | 129A
 5579.67450712005 | ALQ | 001
 6083.4207708641 | ALQ | 131
 7691.2205404848 | ALQ | 003
 7900.75451037313 | ALQ | 122
 8694.20710669982 | ALQ | 129B
 9564.24289057111 | ALQ | 130
 12089.665931705 | ALQ | 127
 18472.5531479404 | ALQ | 002
(10 rows)

If you run "EXPLAIN ANALYZE" on the two queries you would see a performance improvement for the second.

For users running with PostgreSQL < 9.5, use a hybrid query to find the true nearest neighbors. First a CTE query using the index-assisted KNN, then an exact query to get correct ordering:

WITH index_query AS (
 SELECT ST_Distance(geom, 'SRID=3005;POINT(1011102 450541)'::geometry) as d,edabbr, vaabbr
	FROM va2005
 ORDER BY geom <-> 'SRID=3005;POINT(1011102 450541)'::geometry LIMIT 100)
 SELECT *
	FROM index_query
 ORDER BY d limit 10;

 d | edabbr | vaabbr
------------------+--------+--------
 0 | ALQ | 128
 5541.57712511724 | ALQ | 129A
 5579.67450712005 | ALQ | 001
 6083.4207708641 | ALQ | 131
 7691.2205404848 | ALQ | 003
 7900.75451037313 | ALQ | 122
 8694.20710669982 | ALQ | 129B
 9564.24289057111 | ALQ | 130
 12089.665931705 | ALQ | 127
 18472.5531479404 | ALQ | 002
(10 rows)

			

See Also
ST_DWithin, ST_Distance, <#>

Name
ST_Scroll — Change start point of a closed LineString.

Synopsis
	geometry ST_Scroll(linestring, 	
	 	point);	

geometry linestring;
geometry point;

Description

Changes the start/end point of a closed LineString to
the given vertex point.

Availability: 3.2.0
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports M coordinates.

Examples
Make e closed line start at its 3rd vertex

SELECT ST_AsEWKT(ST_Scroll('SRID=4326;LINESTRING(0 0 0 1, 10 0 2 0, 5 5 4 2,0 0 0 1)', 'POINT(5 5 4 2)'));

st_asewkt

SRID=4326;LINESTRING(5 5 4 2,0 0 0 1,10 0 2 0,5 5 4 2)

See Also
ST_Normalize

Name
ST_SetZ — Returns a geometry with the same X/Y coordinates as the input geometry, and values from the raster copied into the Z dimension using the requested resample algorithm.

Synopsis
	geometry ST_SetZ(rast, 	
	 	geom, 	
	 	resample=nearest, 	
	 	band=1);	

raster rast;
geometry geom;
text resample=nearest;
integer band=1;

Description
Returns a geometry with the same X/Y coordinates as the input geometry, and values from the raster copied into the Z dimensions using the requested resample algorithm.
The resample parameter can be set to "nearest" to copy the values from the cell each vertex falls within, or "bilinear" to use bilinear interpolation to calculate a value that takes neighboring cells into account also.
Availability: 3.2.0

Examples
--
-- 2x2 test raster with values
--
-- 10 50
-- 40 20
--
WITH test_raster AS (
SELECT
ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(width => 2, height => 2,
 upperleftx => 0, upperlefty => 2,
 scalex => 1.0, scaley => -1.0,
 skewx => 0, skewy => 0, srid => 4326),
 index => 1, pixeltype => '16BSI',
 initialvalue => 0,
 nodataval => -999),
 1,1,1,
 newvalueset =>ARRAY[ARRAY[10.0::float8, 50.0::float8], ARRAY[40.0::float8, 20.0::float8]]) AS rast
)
SELECT
ST_AsText(
 ST_SetZ(
 rast,
 band => 1,
 geom => 'SRID=4326;LINESTRING(1.0 1.9, 1.0 0.2)'::geometry,
 resample => 'bilinear'
))
FROM test_raster

 st_astext

 LINESTRING Z (1 1.9 38,1 0.2 27)

See Also

 ST_Value,
 ST_SetM

Installing, Upgrading Tiger Geocoder and loading data

Extras like Tiger geocoder may not be packaged in your PostGIS distribution. If you are missing the tiger geocoder extension or want a newer version than what your install comes with, then use
	the share/extension/postgis_tiger_geocoder.* files from the packages in Windows Unreleased Versions section for your version of PostgreSQL.
	Although these packages are for windows, the postgis_tiger_geocoder extension files will work on any OS since the extension is an SQL/plpgsql only extension.
Tiger Geocoder Enabling your PostGIS database: Using Extension

If you are using PostgreSQL 9.1+ and PostGIS 2.1+, you can take advantage of the new extension model for installing tiger geocoder. To do so:
	First get binaries for PostGIS 2.1+ or compile and install as usual. This should install the necessary extension files as well for tiger geocoder.

	Connect to your database via psql or pgAdmin or some other tool and run the following SQL commands. Note that if you are installing in a database that already has postgis, you don't need to do the first step. If you have fuzzystrmatch extension already installed, you don't need to do the second step either.
CREATE EXTENSION postgis;
CREATE EXTENSION fuzzystrmatch;
CREATE EXTENSION postgis_tiger_geocoder;
--this one is optional if you want to use the rules based standardizer (pagc_normalize_address)
CREATE EXTENSION address_standardizer;
If you already have postgis_tiger_geocoder extension installed, and just want to update to the latest run:
ALTER EXTENSION postgis UPDATE;
ALTER EXTENSION postgis_tiger_geocoder UPDATE;
If you made custom entries or changes to tiger.loader_platform and tiger.loader_variables you may need to update these.

	To confirm your install is working correctly, run this sql in your database:
SELECT na.address, na.streetname,na.streettypeabbrev, na.zip
	FROM normalize_address('1 Devonshire Place, Boston, MA 02109') AS na;
Which should output
 address | streetname | streettypeabbrev | zip
---------+------------+------------------+-------
	 1 | Devonshire | Pl | 02109

	Create a new record in tiger.loader_platform table with the paths of your executables and server.
So for example to create a profile called debbie that follows sh convention. You would do:
INSERT INTO tiger.loader_platform(os, declare_sect, pgbin, wget, unzip_command, psql, path_sep,
		 loader, environ_set_command, county_process_command)
SELECT 'debbie', declare_sect, pgbin, wget, unzip_command, psql, path_sep,
	 loader, environ_set_command, county_process_command
 FROM tiger.loader_platform
 WHERE os = 'sh';
And then edit the paths in the declare_sect column to those that fit Debbie's pg, unzip,shp2pgsql, psql, etc path locations.
If you don't edit this loader_platform table, it will just contain common case locations of items and you'll have to edit the generated script after the script is generated.

	As of PostGIS 2.4.1 the Zip code-5 digit tabulation area zcta5 load step was revised to load current zcta5 data and is part of the Loader_Generate_Nation_Script when enabled.
It is turned off by default because it takes quite a bit of time to load (20 to 60 minutes), takes up quite a bit of disk space, and is not used that often.
To enable it, do the following:
UPDATE tiger.loader_lookuptables SET load = true WHERE table_name = 'zcta510';

If present the Geocode function can use it if a boundary filter is added to limit to just zips in that boundary.
The Reverse_Geocode function uses it if the returned address is missing a zip, which often happens with highway reverse geocoding.

	Create a folder called gisdata on root of server or your local pc if you have a fast network connection to the server. This folder is
where the tiger files will be downloaded to and processed. If you are not happy with having the folder on the root of the server, or simply want to change to a different folder for staging, then edit the field staging_fold in the tiger.loader_variables table.

	Create a folder called temp in the gisdata folder or wherever you designated the staging_fold to be. This will be
the folder where the loader extracts the downloaded tiger data.

	Then run the Loader_Generate_Nation_Script SQL function make sure to use the name of your custom profile and copy the script to a .sh or .bat file. So for example to build the nation load:
psql -c "SELECT Loader_Generate_Nation_Script('debbie')" -d geocoder -tA > /gisdata/nation_script_load.sh

	Run the generated nation load commandline scripts.
cd /gisdata
sh nation_script_load.sh

	After you are done running the nation script, you should have three tables in your tiger_data schema and they should be filled with data. Confirm you do by doing the following queries from psql or pgAdmin
SELECT count(*) FROM tiger_data.county_all;
 count

 3233
(1 row)
SELECT count(*) FROM tiger_data.state_all;

 count

 56
(1 row)

	By default the tables corresponding to bg, tract, tabblock are not loaded. These tables are not used by the geocoder but are used by folks for population statistics.
			 If you wish to load them as part of your state loads, run the following statement to enable them.
UPDATE tiger.loader_lookuptables SET load = true WHERE load = false AND lookup_name IN('tract', 'bg', 'tabblock');
Alternatively you can load just these tables after loading state data using the Loader_Generate_Census_Script

	For each state you want to load data for, generate a state script Loader_Generate_Script.
Warning
DO NOT Generate the state script until you have already loaded the nation data, because the state script utilizes county list loaded by nation script.

	psql -c "SELECT Loader_Generate_Script(ARRAY['MA'], 'debbie')" -d geocoder -tA > /gisdata/ma_load.sh

	Run the generated commandline scripts.
cd /gisdata
sh ma_load.sh

	After you are done loading all data or at a stopping point, it's a good idea to analyze all the tiger tables to update the stats (include inherited stats)
SELECT install_missing_indexes();
vacuum (analyze, verbose) tiger.addr;
vacuum (analyze, verbose) tiger.edges;
vacuum (analyze, verbose) tiger.faces;
vacuum (analyze, verbose) tiger.featnames;
vacuum (analyze, verbose) tiger.place;
vacuum (analyze, verbose) tiger.cousub;
vacuum (analyze, verbose) tiger.county;
vacuum (analyze, verbose) tiger.state;
vacuum (analyze, verbose) tiger.zip_lookup_base;
vacuum (analyze, verbose) tiger.zip_state;
vacuum (analyze, verbose) tiger.zip_state_loc;

Converting a Tiger Geocoder Regular Install to Extension Model

If you installed the tiger geocoder without using the extension model, you can convert to the extension model as follows:
	Follow instructions in the section called “Upgrading your Tiger Geocoder Install” for the non-extension model upgrade.

	Connect to your database with psql or pgAdmin and run the following command:
CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

Tiger Geocoder Enabling your PostGIS database: Not Using Extensions

		 First install PostGIS using the prior instructions.
		

		 If you don't have an extras folder, download http://download.osgeo.org/postgis/source/postgis-3.2.0rc1.tar.gz
		

		 tar xvfz postgis-3.2.0rc1.tar.gz
		

		 cd postgis-3.2.0rc1/extras/tiger_geocoder
		
Edit the tiger_loader_2015.sql (or latest loader file you find, unless you want to load different year) to the paths of your executables server etc or alternatively you can update the loader_platform table once installed. If you don't edit this file or the loader_platform table, it will just contain common case locations of items and you'll have to edit the generated script after the fact when you run the Loader_Generate_Nation_Script and Loader_Generate_Script SQL functions.
		
If you are installing Tiger geocoder for the first time edit either the create_geocode.bat script If you are on windows
			or the create_geocode.sh if you are on Linux/Unix/Mac OSX with your PostgreSQL specific settings and run the corresponding script from the commandline.
Verify that you now have a tiger schema in your database and that it is part of your database search_path. If it is not, add it with a command something along the line of:
ALTER DATABASE geocoder SET search_path=public, tiger;
The normalizing address functionality works more or less without any data except for tricky addresses. Run this test and verify things look like this:
			
SELECT pprint_addy(normalize_address('202 East Fremont Street, Las Vegas, Nevada 89101')) As pretty_address;
pretty_address

202 E Fremont St, Las Vegas, NV 89101
			

		

Using Address Standardizer Extension with Tiger geocoder

One of the many complaints of folks is the address normalizer function Normalize_Address function that normalizes an address for prepping before geocoding. The normalizer is far from perfect and trying to patch its imperfectness takes a vast amount of resources. As such we have integrated with another
			project that has a much better address standardizer engine. To use this new address_standardizer, you compile the extension as described in the section called “Installing and Using the address standardizer” and install as an extension in your database.
Once you install this extension in the same database as you have installed postgis_tiger_geocoder, then the Pagc_Normalize_Address can be used instead of Normalize_Address. This extension is tiger agnostic, so can be used with other data sources such as international addresses. The tiger geocoder extension does come packaged with its own custom versions of rules table (tiger.pagc_rules) , gaz table (tiger.pagc_gaz), and lex table (tiger.pagc_lex). These you can add and update to improve your standardizing experience for your own needs.

Loading Tiger Data

The instructions for loading data are available in a more detailed form in the extras/tiger_geocoder/tiger_2011/README. This just includes the general steps.
The load process downloads data from the census website for the respective nation files, states requested, extracts the files, and then loads each state into its own separate
		set of state tables. Each state table inherits from the tables defined in tiger schema so that its sufficient to just query those tables to access all the data and drop a set of state tables at any time using the Drop_State_Tables_Generate_Script if you need to reload a state or just don't need a state anymore.
In order to be able to load data you'll need the following tools:
	A tool to unzip the zip files from census website.
For Unix like systems: unzip executable which is usually already installed on most Unix like platforms.
For Windows, 7-zip which is a free compress/uncompress tool you can download from http://www.7-zip.org/

	shp2pgsql commandline which is installed by default when you install PostGIS.

	wget which is a web grabber tool usually installed on most Unix/Linux systems.
If you are on windows, you can get pre-compiled binaries from http://gnuwin32.sourceforge.net/packages/wget.htm

If you are upgrading from tiger_2010, you'll need to first generate and run Drop_Nation_Tables_Generate_Script. Before you load any state data, you need to load the nation wide data which you do with Loader_Generate_Nation_Script. Which will
		generate a loader script for you. Loader_Generate_Nation_Script is a one-time step that should be done for upgrading (from 2010) and for new installs.
To load state data refer to Loader_Generate_Script to generate a data load script for your platform for the states you desire.
			Note that you can install these piecemeal. You don't have to load all the states you want all at once. You can load them as you need them.
After the states you desire have been loaded, make sure to run the:
		
SELECT install_missing_indexes();
 as described in Install_Missing_Indexes.
To test that things are working as they should, try to run a geocode on an address in your state using Geocode

Upgrading your Tiger Geocoder Install

		 If you have Tiger Geocoder packaged with 2.0+ already installed, you can upgrade the functions at any time even from an interim tar ball if there are fixes you badly need. This will only work for Tiger geocoder not installed with extensions.
		

		 If you don't have an extras folder, download http://download.osgeo.org/postgis/source/postgis-3.2.0rc1.tar.gz
		

		 tar xvfz postgis-3.2.0rc1.tar.gz
		

		 cd postgis-3.2.0rc1/extras/tiger_geocoder/tiger_2011
		
Locate the upgrade_geocoder.bat script If you are on windows
			or the upgrade_geocoder.sh if you are on Linux/Unix/Mac OSX. Edit the file to have your postgis database credentials.
If you are upgrading from 2010 or 2011, make sure to unremark out the loader script line so you get the latest script for loading 2012 data.

			Then run th corresponding script from the commandline.
		
Next drop all nation tables and load up the new ones. Generate a drop script with this SQL statement as detailed in Drop_Nation_Tables_Generate_Script
SELECT drop_nation_tables_generate_script();
Run the generated drop SQL statements.
Generate a nation load script with this SELECT statement as detailed in Loader_Generate_Nation_Script
For windows
SELECT loader_generate_nation_script('windows');
For unix/linux
SELECT loader_generate_nation_script('sh');
Refer to the section called “Loading Tiger Data” for instructions on how to run the generate script. This only needs to be done once.
Note
You can have a mix of 2010/2011 state tables and can upgrade each state separately. Before you upgrade a state to 2011, you first need to drop the 2010 tables for that state using Drop_State_Tables_Generate_Script.

Name
ST_InteriorRingN — Returns the Nth interior ring (hole) of a Polygon.

Synopsis
	geometry ST_InteriorRingN(a_polygon, 	
	 	n);	

geometry a_polygon;
integer n;

Description
Returns the Nth interior ring (hole) of a POLYGON geometry as a LINESTRING.
			The index starts at 1.
 Returns NULL if the geometry is not a polygon or the index is out
			of range.
Note
This function does not support MULTIPOLYGONs.
 For MULTIPOLYGONs use in conjunction with ST_GeometryN or ST_Dump

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText(ST_InteriorRingN(geom, 1)) As geom
FROM (SELECT ST_BuildArea(
		ST_Collect(ST_Buffer(ST_Point(1,2), 20,3),
			ST_Buffer(ST_Point(1, 2), 10,3))) As geom
) as foo;
		

See Also

 ST_ExteriorRing,
 ST_BuildArea,
 ST_Collect,
 ST_Dump,
 ST_NumInteriorRing,
 ST_NumInteriorRings
		

Name
DisableLongTransactions — Disables long transaction support.

Synopsis
	text DisableLongTransactions();	

;

Description
Disables long transaction support. This function removes the
			long transaction support metadata tables, and drops all triggers
			attached to lock-checked tables.
Drops meta table called authorization_table and a view called authorized_tables
				and all triggers called checkauthtrigger
Availability: 1.1.3

Examples
SELECT DisableLongTransactions();
--result--
Long transactions support disabled
		

See Also
EnableLongTransactions

Name
ST_BuildArea — Creates a polygonal geometry formed by the linework of a geometry.

Synopsis
	geometry ST_BuildArea(geom);	

geometry geom;

Description
Creates an areal geometry formed by the constituent linework
 of the input geometry.
 The input can be LINESTRINGS, MULTILINESTRINGS, POLYGONS, MULTIPOLYGONS, and GeometryCollections.
 The result is a Polygon or MultiPolygon, depending on input.
 If the input linework does not form polygons, NULL is returned.

This function assumes all inner geometries represent holes
Note
Input linework must be correctly noded for this function to work properly

Availability: 1.1.0

Examples
	[image: Examples]These will create a donut

--using polygons
SELECT ST_BuildArea(ST_Collect(smallc,bigc))
FROM (SELECT
 ST_Buffer(
 ST_GeomFromText('POINT(100 90)'), 25) As smallc,
 ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50) As bigc) As foo;

--using linestrings
SELECT ST_BuildArea(ST_Collect(smallc,bigc))
FROM (SELECT
 ST_ExteriorRing(ST_Buffer(
 ST_GeomFromText('POINT(100 90)'), 25)) As smallc,
 ST_ExteriorRing(ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50)) As bigc) As foo;

See Also

 ST_Node,
 ST_MakePolygon,
 ST_MakeValid,
 ST_BdPolyFromText,
 ST_BdMPolyFromText (wrappers to
 this function with standard OGC interface)

Name
GetRingEdges —
Returns the ordered set of signed edge identifiers met by walking on an
a given edge side.
				

Synopsis
	getfaceedges_returntype GetRingEdges(atopology, 	
	 	aring, 	
	 	max_edges=null);	

varchar atopology;
integer aring;
integer max_edges=null;

Description

Returns the ordered set of signed edge identifiers met by walking on an
a given edge side.
Each output consists of a sequence and a signed edge id.
Sequence numbers start with value 1.

If you pass a positive edge id, the walk starts on the left side
of the corresponding edge and follows the edge direction.
If you pass a negative edge id, the walk starts on the right side
of it and goes backward.

If max_edges is not null no more than those records
are returned by that function. This is meant to be a safety parameter
when dealing with possibly invalid topologies.
		
Note

This function uses edge ring linking metadata.

Availability: 2.0.0

See Also

ST_GetFaceEdges,
GetNodeEdges
				

Name
= — Returns TRUE if A's bounding box is the same as B's. Uses double precision bounding box.

Synopsis
	boolean =(A, 	
	 	B);	

 raster

 A
 ;

 raster

 B
 ;

Description
The = operator returns TRUE if the bounding box of raster A
 is the same as the bounding box of raster B. PostgreSQL uses the =, <, and > operators defined for rasters to
 perform internal orderings and comparison of rasters (ie. in a GROUP BY or ORDER BY clause).
Caution
This operand will NOT make use of any indexes that may be available on the
 rasters. Use ~= instead. This operator exists mostly so one can group by the raster column.

Availability: 2.1.0

See Also
~=

Name
ST_FromGDALRaster — Returns a raster from a supported GDAL raster file.

Synopsis
	raster ST_FromGDALRaster(gdaldata, 	
	 	srid=NULL);	

bytea gdaldata;
integer srid=NULL;

Description

 Returns a raster from a supported GDAL raster file. gdaldata is of type bytea and should be the contents of the GDAL raster file.

 If srid is NULL, the function will try to automatically assign the SRID from the GDAL raster. If srid is provided, the value provided will override any automatically assigned SRID.

Availability: 2.1.0

Examples

WITH foo AS (
 SELECT ST_AsPNG(ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 0.1, -0.1, 0, 0, 4326), 1, '8BUI', 1, 0), 2, '8BUI', 2, 0), 3, '8BUI', 3, 0)) AS png
),
bar AS (
 SELECT 1 AS rid, ST_FromGDALRaster(png) AS rast FROM foo
 UNION ALL
 SELECT 2 AS rid, ST_FromGDALRaster(png, 3310) AS rast FROM foo
)
SELECT
 rid,
 ST_Metadata(rast) AS metadata,
 ST_SummaryStats(rast, 1) AS stats1,
 ST_SummaryStats(rast, 2) AS stats2,
 ST_SummaryStats(rast, 3) AS stats3
FROM bar
ORDER BY rid;

 rid | metadata | stats1 | stats2 | stats3
-----+---------------------------+---------------+---------------+----------------
 1 | (0,0,2,2,1,-1,0,0,0,3) | (4,4,1,0,1,1) | (4,8,2,0,2,2) | (4,12,3,0,3,3)
 2 | (0,0,2,2,1,-1,0,0,3310,3) | (4,4,1,0,1,1) | (4,8,2,0,2,2) | (4,12,3,0,3,3)
(2 rows)

See Also

 ST_AsGDALRaster

Name
ST_GeometryFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText

Synopsis
	geometry ST_GeometryFromText(WKT);	

text WKT;

	geometry ST_GeometryFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

Description
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.40

See Also
ST_GeomFromText

Name
GetNodeByPoint — Finds the node-id of a node at a point location.

Synopsis
	integer GetNodeByPoint(atopology, 	
	 	apoint, 	
	 	tol1);	

varchar atopology;
geometry apoint;
float8 tol1;

Description
Retrieves the id of a node at a point location.
The function returns an integer (id-node) given a topology, a POINT and a tolerance. If tolerance = 0 means exact intersection, otherwise retrieves the node from an interval.
If apoint doesn't intersect a node, returns 0 (zero).
If use tolerance > 0 and there is more than one node near the point then an exception is thrown.
Note
If tolerance = 0, the function uses ST_Intersects otherwise uses ST_DWithin.

Performed by the GEOS module.
Availability: 2.0.0

Examples
These examples use edges we created in AddEdge
SELECT topology.GetNodeByPoint('ma_topo',geom, 1) As nearnode
 FROM ST_GeomFromEWKT('SRID=26986;POINT(227591.9 893900.4)') As geom;
 nearnode

 2

SELECT topology.GetNodeByPoint('ma_topo',geom, 1000) As too_much_tolerance
 FROM ST_GeomFromEWKT('SRID=26986;POINT(227591.9 893900.4)') As geom;

 ----get error--
 ERROR: Two or more nodes found

See Also

AddEdge,
GetEdgeByPoint,
GetFaceByPoint

Release 2.0.5

Release date: 2014/03/31
This is a bug fix release, addressing issues that have been filed since the 2.0.4 release. If you are using PostGIS 2.0+ a soft upgrade is required. For users of PostGIS 1.5 or below, a hard upgrade is required.
Bug Fixes

#2494, avoid memcpy in GIST index
#2502, Fix postgis_topology_scripts_installed() install schema
#2504, Fix segfault on bogus pgsql2shp call
#2528, Fix memory leak in ST_Split / lwline_split_by_line
#2532, Add missing raster/geometry commutator operators
#2533, Remove duplicated signatures
#2552, Fix NULL raster handling in ST_AsPNG, ST_AsTIFF and ST_AsJPEG
#2555, Fix parsing issue of range arguments of ST_Reclass
#2589, Remove use of unnecessary void pointers
#2607, Cannot open more than 1024 out-db files in process
#2610, Ensure face splitting algorithm uses the edge index
#2619, Empty ring array in GeoJSON polygon causes crash
#2638, Geography distance on M geometries sometimes wrong

Important Changes

##2514, Change raster license from GPL v3+ to v2+, allowing distribution of PostGIS Extension as GPLv2.

Name
ST_AsEWKT — Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.

Synopsis
	text ST_AsEWKT(g1);	

geometry g1;

	text ST_AsEWKT(g1, 	
	 	maxdecimaldigits=15);	

geometry g1;
integer maxdecimaldigits=15;

	text ST_AsEWKT(g1);	

geography g1;

	text ST_AsEWKT(g1, 	
	 	maxdecimaldigits=15);	

geography g1;
integer maxdecimaldigits=15;

Description
Returns the Well-Known Text representation of the geometry prefixed with the SRID.
 The optional maxdecimaldigits argument may be used to reduce the maximum number
			of decimal digits after floating point used in output (defaults to 15).
To perform the inverse conversion of EWKT representation to PostGIS geometry
 use ST_GeomFromEWKT.
Warning
Using the maxdecimaldigits parameter
 can cause output geometry to become invalid.
 To avoid this use ST_ReducePrecision
 with a suitable gridsize first.

Note
The WKT spec does not include the SRID. To get the OGC WKT format use ST_AsText.

Warning
WKT format does not maintain precision so to prevent floating truncation,
 use ST_AsBinary or ST_AsEWKB format for transport.

Enhanced: 3.1.0 support for optional precision parameter.
Enhanced: 2.0.0 support for Geography, Polyhedral surfaces, Triangles and TIN was introduced.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_AsEWKT('0103000020E61000000100000005000000000000
			00
			F03F000000000000F03F000000000000F03F000000000000F03
			F00'::geometry);

		 st_asewkt

SRID=4326;POLYGON((0 0,0 1,1 1,1 0,0 0))
(1 row)

SELECT ST_AsEWKT('0108000080030000000000000060E30A4100000000785C0241000000000000F03F0000000018
E20A4100000000485F024100000000000000400000000018
E20A4100000000305C02410000000000000840')

--st_asewkt---
CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)

See Also

ST_AsBinary,
ST_AsEWKB,
ST_AsText,
ST_GeomFromEWKT

Geometry Data Type

PostGIS implements the OGC Simple Features model
 by defining a PostgreSQL data type called geometry.
 It represents all of the geometry subtypes by using an internal type code
 (see GeometryType and ST_GeometryType).
 This allows modelling spatial features as rows of tables defined
 with a column of type geometry.

The geometry data type is opaque,
 which means that all access is done via invoking functions on geometry values.
 Functions allow creating geometry objects,
 accessing or updating all internal fields,
 and compute new geometry values.
 PostGIS supports all the functions specified in the OGC
	Simple feature access - Part 2: SQL option
 (SFS) specification, as well many others.
 See Chapter 8, PostGIS Reference for the full list of functions.
Note
PostGIS follows the SFA standard by prefixing spatial functions with "ST_".
 This was intended to stand for "Spatial and Temporal",
 but the temporal part of the standard was never developed.
 Instead it can be interpreted as "Spatial Type".

The SFA standard specifies that spatial objects include a Spatial Reference System
 identifier (SRID). The SRID is required when creating spatial objects
 for insertion into the database (it may be defaulted to 0).
 See ST_SRID and the section called “Spatial Reference Systems”
To make querying geometry efficient PostGIS defines
 various kinds of spatial indexes, and spatial operators to use them.
 See the section called “Spatial Indexes” and the section called “Using Spatial Indexes” for details.

PostGIS EWKB and EWKT

OGC SFA specifications initially supported only 2D geometries,
		and the geometry SRID is not included in the input/output representations.
 The OGC SFA specification 1.2.1 (which aligns with the ISO 19125 standard)
 adds support for 3D (ZYZ) and measured (XYM and XYZM) coordinates,
		but still does not include the SRID value.
Because of these limitations PostGIS defined extended EWKB and EWKT formats.
 They provide 3D (XYZ and XYM) and 4D (XYZM) coordinate support and include SRID information.
 Including all geometry information allows PostGIS to use EWKB as the format of record
 (e.g. in DUMP files).

EWKB and EWKT are used for the "canonical forms" of PostGIS data objects.
 For input, the canonical form for binary data is EWKB,
 and for text data either EWKB or EWKT is accepted.
 This allows geometry values to be created by casting
 a text value in either HEXEWKB or EWKT to a geometry value using ::geometry.
 For output, the canonical form for binary is EWKB, and for text
 it is HEXEWKB (hex-encoded EWKB).

For example this statement creates a geometry by casting from an EWKT text value,
 and outputs it using the canonical form of HEXEWKB:
SELECT 'SRID=4;POINT(0 0)'::geometry;
 geometry
 --
 01010000200400000000000000000000000000000000000000

PostGIS EWKT output has a few differences to OGC WKT:
	For 3DZ geometries the Z qualifier is omitted:
OGC: POINT Z (1 2 3)
EWKT: POINT (1 2 3)

	For 3DM geometries the M qualifier is included:
OGC: POINT M (1 2 3)
EWKT: POINTM (1 2 3)

	For 4D geometries the ZM qualifier is omitted:
OGC: POINT ZM (1 2 3 4)
EWKT: POINT (1 2 3 4)

EWKT avoids over-specifying dimensionality
 and the inconsistencies that can occur with the OGC/ISO format, such as:

	POINT ZM (1 1)

	POINT ZM (1 1 1)

	POINT (1 1 1 1)

Caution
PostGIS extended formats are currently a superset of the OGC ones,
 so that every valid OGC WKB/WKT is also valid EWKB/EWKT.
			However, this might vary in the future,
 if the OGC extends a format in a way that conflicts with the PosGIS definition.
 Thus you SHOULD NOT rely on this compatibility!

Examples of the EWKT text representation of spatial objects are:
	POINT(0 0 0) -- XYZ

	SRID=32632;POINT(0 0) -- XY with SRID

	POINTM(0 0 0) -- XYM

	POINT(0 0 0 0) -- XYZM

	SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID

	MULTILINESTRING((0 0 0,1 1 0,1 2 1),(2 3 1,3 2 1,5 4
		 1))

	POLYGON((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2 0,1 2
		 0,1 1 0))

	MULTIPOLYGON(((0 0 0,4 0 0,4 4 0,0 4 0,0 0 0),(1 1 0,2 1 0,2 2
		 0,1 2 0,1 1 0)),((-1 -1 0,-1 -2 0,-2 -2 0,-2 -1 0,-1 -1 0)))

	GEOMETRYCOLLECTIONM(POINTM(2 3 9), LINESTRINGM(2 3 4, 3 4 5))

	MULTICURVE((0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4))

	POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)), ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))

	TRIANGLE ((0 0, 0 9, 9 0, 0 0))

	TIN(((0 0 0, 0 0 1, 0 1 0, 0 0 0)),
		 ((0 0 0, 0 1 0, 1 1 0, 0 0 0)))

Input and output using these formats is available using the following functions:
bytea EWKB = ST_AsEWKB(geometry);
text EWKT = ST_AsEWKT(geometry);
geometry = ST_GeomFromEWKB(bytea EWKB);
geometry = ST_GeomFromEWKT(text EWKT);
For example, a statement to create and insert a PostGIS spatial object using EWKT is:
INSERT INTO geotable (geom, name)
 VALUES (ST_GeomFromEWKT('SRID=312;POINTM(-126.4 45.32 15)'), 'A Place')

Chapter 12. Raster Reference

The functions given below are the ones which a user of PostGIS Raster is
 likely to need and which are currently available in PostGIS Raster. There are other functions which are required support
 functions to the raster objects which are not of use to a general
 user.
raster is a new PostGIS type for storing and analyzing raster data.
For loading rasters from raster files please refer to the section called “Loading and Creating Rasters”
For the examples in this reference we will be using a raster table of dummy rasters - Formed with the following code
CREATE TABLE dummy_rast(rid integer, rast raster);
INSERT INTO dummy_rast(rid, rast)
VALUES (1,
('01' -- little endian (uint8 ndr)
||
'0000' -- version (uint16 0)
||
'0000' -- nBands (uint16 0)
||
'0000000000000040' -- scaleX (float64 2)
||
'0000000000000840' -- scaleY (float64 3)
||
'000000000000E03F' -- ipX (float64 0.5)
||
'000000000000E03F' -- ipY (float64 0.5)
||
'0000000000000000' -- skewX (float64 0)
||
'0000000000000000' -- skewY (float64 0)
||
'00000000' -- SRID (int32 0)
||
'0A00' -- width (uint16 10)
||
'1400' -- height (uint16 20)
)::raster
),
-- Raster: 5 x 5 pixels, 3 bands, PT_8BUI pixel type, NODATA = 0
(2, ('01000003009A9999999999A93F9A9999999999A9BF000000E02B274A' ||
'41000000007719564100000000000000000000000000000000FFFFFFFF050005000400FDFEFDFEFEFDFEFEFDF9FAFEF' ||
'EFCF9FBFDFEFEFDFCFAFEFEFE04004E627AADD16076B4F9FE6370A9F5FE59637AB0E54F58617087040046566487A1506CA2E3FA5A6CAFFBFE4D566DA4CB3E454C5665')::raster);
Raster Support Data types

Abstract
This section lists the PostgreSQL data types specifically created to support raster functionality.

Release 3.0.0alpha2

Release date: 2019/06/02
If compiling with PostgreSQL+JIT, LLVM >= 6 is required
Supported PostgreSQL versions for this release are:
 PostgreSQL 9.5 - PostgreSQL 12
 GEOS >= 3.6
Major highlights

#4404, Fix selectivity issue with support functions (Paul Ramsey)
#4311, Make wagyu the default option to validate polygons.
 This option requires a C++11 compiler and will use CXXFLAGS (not CFLAGS).
 It is only enabled if built with MVT support (protobuf)
 Add `--without-wagyu` to disable this option and keep the behaviour
 from 2.5 (Raúl Marín)
#4198, Add ST_ConstrainedDelaunayTriangles SFCGAL function (Darafei
 Praliaskouski)

Name
ST_BdPolyFromText — Construct a Polygon given an arbitrary collection of closed
			linestrings as a MultiLineString Well-Known text representation.

Synopsis
	geometry ST_BdPolyFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

Description
Construct a Polygon given an arbitrary collection of closed
			linestrings as a MultiLineString Well-Known text representation.
Note
Throws an error if WKT is not a MULTILINESTRING. Throws an
			error if output is a MULTIPOLYGON; use ST_BdMPolyFromText in that case, or
			see ST_BuildArea() for a
			postgis-specific approach.

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2
Performed by the GEOS module.
Availability: 1.1.0

See Also
ST_BuildArea, ST_BdMPolyFromText

Name
ST_Grayscale — Creates a new one-8BUI band raster from the source raster and specified bands representing Red, Green and Blue

Synopsis
	(1) raster ST_Grayscale(rast, 	
	 	redband=1, 	
	 	greenband=2, 	
	 	blueband=3, 	
	 	extenttype=INTERSECTION);	

raster rast;
integer redband=1;
integer greenband=2;
integer blueband=3;
text extenttype=INTERSECTION;

	(2) raster ST_Grayscale(rastbandargset, 	
	 	extenttype=INTERSECTION);	

rastbandarg[] rastbandargset;
text extenttype=INTERSECTION;

Description

 Create a raster with one 8BUI band given three input bands (from one or more rasters). Any input band whose pixel type is not 8BUI will be reclassified using ST_Reclass.

Note

 This function is not like ST_ColorMap with the grayscale keyword as ST_ColorMap operates on only one band while this function expects three bands for RGB. This function applies the following equation for converting RGB to Grayscale: 0.2989 * RED + 0.5870 * GREEN + 0.1140 * BLUE

Availability: 2.5.0

Examples: Variant 1

SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
SET postgis.enable_outdb_rasters = True;

WITH apple AS (
 SELECT ST_AddBand(
 ST_MakeEmptyRaster(350, 246, 0, 0, 1, -1, 0, 0, 0),
 '/tmp/apple.png'::text,
 NULL::int[]
) AS rast
)
SELECT
 ST_AsPNG(rast) AS original_png,
 ST_AsPNG(ST_Grayscale(rast)) AS grayscale_png
FROM apple;

	

[image: Examples: Variant 1]original_png

 	

[image: Examples: Variant 1]grayscale_png

Examples: Variant 2

SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
SET postgis.enable_outdb_rasters = True;

WITH apple AS (
 SELECT ST_AddBand(
 ST_MakeEmptyRaster(350, 246, 0, 0, 1, -1, 0, 0, 0),
 '/tmp/apple.png'::text,
 NULL::int[]
) AS rast
)
SELECT
 ST_AsPNG(rast) AS original_png,
 ST_AsPNG(ST_Grayscale(
 ARRAY[
 ROW(rast, 1)::rastbandarg, -- red
 ROW(rast, 2)::rastbandarg, -- green
 ROW(rast, 3)::rastbandarg, -- blue
]::rastbandarg[]
)) AS grayscale_png
FROM apple;

See Also

 ST_AsPNG,
 ST_Reclass,
 ST_ColorMap

Name
ST_NumBands — Returns the number of bands in the raster object.

Synopsis
	integer ST_NumBands(rast);	

raster rast;

Description
Returns the number of bands in the raster object.

Examples
SELECT rid, ST_NumBands(rast) As numbands
FROM dummy_rast;

rid | numbands
----+----------
 1 | 0
 2 | 3

See Also
ST_Value

Name
Geocode_Intersection — Takes in 2 streets that intersect and a state, city, zip, and outputs a set of possible locations on the first cross street that is at the intersection, also includes a geomout as the point location in NAD 83 long lat, a normalized_address (addy) for each location, and the rating. The lower the rating the more likely the match. Results are sorted by lowest rating first. Can optionally pass in maximum results, defaults to 10. Uses Tiger data (edges, faces, addr), PostgreSQL fuzzy string matching (soundex, levenshtein).

Synopsis
	setof record geocode_intersection(roadway1, 	
	 	 roadway2, 	
	 	 in_state, 	
	 	 in_city, 	
	 	 in_zip, 	
	 	max_results=10, 	
	 	OUT addy, 	
	 	OUT geomout, 	
	 	OUT rating);	

text roadway1;
text roadway2;
text in_state;
text in_city;
text in_zip;
integer max_results=10;
norm_addy OUT addy;
geometry OUT geomout;
integer OUT rating;

Description
Takes in 2 streets that intersect and a state, city, zip, and outputs a set of possible locations on the first cross street that is at the intersection, also includes a point geometry in NAD 83 long lat, a normalized address for each location, and the rating. The lower the rating the more likely the match.
 Results are sorted by lowest rating first. Can optionally pass in maximum results, defaults to 10.
 Returns normalized_address (addy) for each, geomout as the point location in nad 83 long lat, and the rating. The lower the rating the more likely the match.
 Results are sorted by lowest rating first. Uses Tiger data (edges,faces,addr), PostgreSQL fuzzy string matching (soundex,levenshtein)
Availability: 2.0.0

Examples: Basic
The below examples timings are on a 3.0 GHZ single processor Windows 7 machine with 2GB ram running PostgreSQL 9.0/PostGIS 1.5 loaded with all of MA state Tiger data loaded. Currently a bit slow (3000 ms)
Testing on Windows 2003 64-bit 8GB on PostGIS 2.0 PostgreSQL 64-bit Tiger 2011 data loaded -- (41ms)
SELECT pprint_addy(addy), st_astext(geomout),rating
 FROM geocode_intersection('Haverford St','Germania St', 'MA', 'Boston', '02130',1);
 pprint_addy | st_astext | rating
----------------------------------+----------------------------+--------
98 Haverford St, Boston, MA 02130 | POINT(-71.101375 42.31376) | 0

Even if zip is not passed in the geocoder can guess (took about 3500 ms on the windows 7 box), on the windows 2003 64-bit 741 ms
SELECT pprint_addy(addy), st_astext(geomout),rating
 FROM geocode_intersection('Weld', 'School', 'MA', 'Boston');
 pprint_addy | st_astext | rating
-------------------------------+--------------------------+--------
 98 Weld Ave, Boston, MA 02119 | POINT(-71.099 42.314234) | 3
 99 Weld Ave, Boston, MA 02119 | POINT(-71.099 42.314234) | 3

See Also
Geocode, Pprint_Addy, ST_AsText

Name
ST_Tesselate — Perform surface Tesselation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS

Synopsis
	geometry ST_Tesselate(geom);	

geometry geom;

Description
Takes as input a surface such a MULTI(POLYGON) or POLYHEDRALSURFACE and returns a TIN representation via the process of tessellation using triangles.
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
	
						
SELECT ST_GeomFromText('POLYHEDRALSURFACE Z(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
		((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
		((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
		((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))');

						
[image: Examples]Original Cube

					 	
					
SELECT ST_Tesselate(ST_GeomFromText('POLYHEDRALSURFACE Z(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
	((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
	((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
	((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'));

		ST_AsText output:

		TIN Z (((0 0 0,0 0 1,0 1 1,0 0 0)),((0 1 0,0 0 0,0 1 1,0 1 0)),
	((0 0 0,0 1 0,1 1 0,0 0 0)),
	((1 0 0,0 0 0,1 1 0,1 0 0)),((0 0 1,1 0 0,1 0 1,0 0 1)),
	((0 0 1,0 0 0,1 0 0,0 0 1)),
	((1 1 0,1 1 1,1 0 1,1 1 0)),((1 0 0,1 1 0,1 0 1,1 0 0)),
	((0 1 0,0 1 1,1 1 1,0 1 0)),((1 1 0,0 1 0,1 1 1,1 1 0)),
	((0 1 1,1 0 1,1 1 1,0 1 1)),((0 1 1,0 0 1,1 0 1,0 1 1)))

		
[image: Examples]Tesselated Cube with triangles colored

					
	
						
SELECT 'POLYGON ((10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190))'::geometry;

						
[image: Examples]Original polygon

					 	
					
SELECT
	ST_Tesselate('POLYGON ((10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190))'::geometry);

	

	ST_AsText output

	TIN(((80 130,50 160,80 70,80 130)),((50 160,10 190,10 70,50 160)),
	 ((80 70,50 160,10 70,80 70)),((120 160,120 190,50 160,120 160)),
 ((120 190,10 190,50 160,120 190)))

					 [image: Examples]Tesselated Polygon

					

See Also
ST_ConstrainedDelaunayTriangles, ST_DelaunayTriangles

Name
ST_LineFromMultiPoint — Creates a LineString from a MultiPoint geometry.

Synopsis
	geometry ST_LineFromMultiPoint(aMultiPoint);	

geometry aMultiPoint;

Description
Creates a LineString from a MultiPoint geometry.
Use ST_MakeLine to create lines from Point or LineString inputs.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
Create a 3D line string from a 3D MultiPoint

SELECT ST_AsEWKT(ST_LineFromMultiPoint('MULTIPOINT(1 2 3, 4 5 6, 7 8 9)')));

--result--
LINESTRING(1 2 3,4 5 6,7 8 9)

See Also
ST_AsEWKT, ST_MakeLine

Name
ST_3DDWithin — Returns true if two 3D geometries are within a given 3D distance

Synopsis
	boolean ST_3DDWithin(g1, 	
	 	g2, 	
	 	distance_of_srid);	

geometry
 g1;
geometry
 g2;
double precision
 distance_of_srid;

Description
Returns true if the 3D distance between two geometry values is no larger than
 distance distance_of_srid.
 The distance is specified in units defined by the spatial reference system of the geometries.
 For this function to make sense
 the source geometries must be in the same coordinate system (have the same SRID).

Note
This function automatically includes a bounding box comparison
that makes use of any spatial indexes that are available on the geometries.

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description] This method implements the SQL/MM specification. SQL-MM ?
Availability: 2.0.0

Examples

-- Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point and line compared 2D point and line)
-- Note: currently no vertical datum support so Z is not transformed and assumed to be same units as final.
SELECT ST_3DDWithin(
 ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 4)'),2163),
 ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163),
 126.8
) As within_dist_3d,
ST_DWithin(
 ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 4)'),2163),
 ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163),
 126.8
) As within_dist_2d;

 within_dist_3d | within_dist_2d
----------------+----------------
 f | t

See Also

 ST_3DDFullyWithin,
 ST_DWithin, ST_DFullyWithin,
 ST_3DDistance, ST_Distance,
 ST_3DMaxDistance, ST_Transform

Name
ST_NumInteriorRings — Returns the number of interior rings (holes) of a Polygon.

Synopsis
	integer ST_NumInteriorRings(a_polygon);	

geometry a_polygon;

Description

 Return the number of interior rings of a polygon geometry.
			Return NULL if the geometry is not a polygon.

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.2.5
Changed: 2.0.0 - in prior versions it would allow passing a MULTIPOLYGON, returning the number of interior rings of first POLYGON.

Examples

--If you have a regular polygon
SELECT gid, field1, field2, ST_NumInteriorRings(geom) AS numholes
FROM sometable;

--If you have multipolygons
--And you want to know the total number of interior rings in the MULTIPOLYGON
SELECT gid, field1, field2, SUM(ST_NumInteriorRings(geom)) AS numholes
FROM (SELECT gid, field1, field2, (ST_Dump(geom)).geom As geom
	FROM sometable) As foo
GROUP BY gid, field1,field2;
			

See Also
ST_NumInteriorRing, ST_InteriorRingN

Name
TopoElementArray — An array of TopoElement objects.

Description
An array of 1 or more TopoElement objects, generally used to pass around components of TopoGeometry objects.

Examples
SELECT '{{1,2},{4,3}}'::topology.topoelementarray As tea;
 tea

{{1,2},{4,3}}

-- more verbose equivalent --
SELECT ARRAY[ARRAY[1,2], ARRAY[4,3]]::topology.topoelementarray As tea;

 tea

{{1,2},{4,3}}

--using the array agg function packaged with topology --
SELECT topology.TopoElementArray_Agg(ARRAY[e,t]) As tea
 FROM generate_series(1,4) As e CROSS JOIN generate_series(1,3) As t;
 tea
--
{{1,1},{1,2},{1,3},{2,1},{2,2},{2,3},{3,1},{3,2},{3,3},{4,1},{4,2},{4,3}}

SELECT '{{1,2,4},{3,4,5}}'::topology.topoelementarray As tea;
ERROR: value for domain topology.topoelementarray violates check constraint "dimensions"

See Also

TopoElement,
GetTopoGeomElementArray,
TopoElementArray_Agg

Name
postgis.gdal_datapath —
 A configuration option to assign the value of GDAL's GDAL_DATA option. If not set, the environmentally set GDAL_DATA variable is used.

Description

 A PostgreSQL GUC variable for setting the value of GDAL's GDAL_DATA option. The postgis.gdal_datapath value should be the complete physical path to GDAL's data files.

 This configuration option is of most use for Windows platforms where GDAL's data files path is not hard-coded. This option should also be set when GDAL's data files are not located in GDAL's expected path.

Note

 This option can be set in PostgreSQL's configuration file postgresql.conf. It can also be set by connection or transaction.

Availability: 2.2.0
Note

 Additional information about GDAL_DATA is available at GDAL's Configuration Options.

Examples
Set and reset postgis.gdal_datapath

SET postgis.gdal_datapath TO '/usr/local/share/gdal.hidden';
SET postgis.gdal_datapath TO default;

Setting on windows for a particular database
ALTER DATABASE gisdb
SET postgis.gdal_datapath = 'C:/Program Files/PostgreSQL/9.3/gdal-data';

See Also

 PostGIS_GDAL_Version, ST_Transform

Name
ST_Z — Returns the Z coordinate of a Point.

Synopsis
	float ST_Z(a_point);	

geometry a_point;

Description
Return the Z coordinate of the point, or NULL if not
			available. Input must be a point.
Note
To get the minimum and maximum Z value of geometry coordinates use the functions
		ST_ZMin and ST_ZMax.

[image: Description] This method implements the SQL/MM specification.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_Z(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_z

	3
(1 row)

		

See Also
ST_GeomFromEWKT, ST_M, ST_X, ST_Y, ST_ZMax, ST_ZMin

Name
ST_Project — Returns a point projected from a start point by a distance and bearing (azimuth).

Synopsis
	geography ST_Project(g1, 	
	 	distance, 	
	 	azimuth);	

geography
				g1;
float
				distance;
float
				azimuth;

Description
Returns a point projected from a start point along a geodesic using
			a given distance and azimuth (bearing).
			This is known as the direct geodesic problem.
The distance is given in meters. Negative values are supported.
The azimuth (also known as heading or bearing) is given in radians.
			It is measured clockwise from true north (azimuth zero).
			East is azimuth π/2 (90 degrees);
			south is azimuth π (180 degrees);
			west is azimuth 3π/2 (270 degrees).
			Negative azimuth values and values greater than 2π (360 degrees) are supported.
			
Availability: 2.0.0
Enhanced: 2.4.0 Allow negative distance and non-normalized azimuth.

Example: Projected point at 100,000 meters and bearing 45 degrees
SELECT ST_AsText(ST_Project('POINT(0 0)'::geography, 100000, radians(45.0)));

 st_astext
--
 POINT(0.635231029125537 0.639472334729198)
(1 row)

See Also
ST_Azimuth, ST_Distance, PostgreSQL function radians()

Examples of Spatial SQL

The examples in this section will make use of two tables, a table
	 of linear roads, and a table of polygonal municipality boundaries. The
	 table definitions for the bc_roads table is:
Column | Type | Description
------------+-------------------+-------------------
gid | integer | Unique ID
name | character varying | Road Name
the_geom | geometry | Location Geometry (Linestring)
The table definition for the bc_municipality
	 table is:
Column | Type | Description
-----------+-------------------+-------------------
gid | integer | Unique ID
code | integer | Unique ID
name | character varying | City / Town Name
the_geom | geometry | Location Geometry (Polygon)
	1.
	What is the total length of all roads, expressed in
			kilometers?

		You can answer this question with a very simple piece of
			SQL:
SELECT sum(ST_Length(the_geom))/1000 AS km_roads FROM bc_roads;

km_roads

70842.1243039643
(1 row)

	2.
	How large is the city of Prince George, in hectares?

		This query combines an attribute condition (on the
			municipality name) with a spatial calculation (of the
			area):
SELECT
 ST_Area(the_geom)/10000 AS hectares
FROM bc_municipality
WHERE name = 'PRINCE GEORGE';

hectares

32657.9103824927
(1 row)

	3.
	What is the largest municipality in the province, by
			area?

		This query brings a spatial measurement into the query
			condition. There are several ways of approaching this problem, but
			the most efficient is below:
SELECT
 name,
 ST_Area(the_geom)/10000 AS hectares
FROM
 bc_municipality
ORDER BY hectares DESC
LIMIT 1;

name | hectares
---------------+-----------------
TUMBLER RIDGE | 155020.02556131
(1 row)
Note that in order to answer this query we have to calculate
			the area of every polygon. If we were doing this a lot it would
			make sense to add an area column to the table that we could
			separately index for performance. By ordering the results in a
			descending direction, and them using the PostgreSQL "LIMIT"
			command we can easily pick off the largest value without using an
			aggregate function like max().

	4.
	What is the length of roads fully contained within each
			municipality?

		This is an example of a "spatial join", because we are
			bringing together data from two tables (doing a join) but using a
			spatial interaction condition ("contained") as the join condition
			rather than the usual relational approach of joining on a common
			key:
SELECT
 m.name,
 sum(ST_Length(r.the_geom))/1000 as roads_km
FROM
 bc_roads AS r,
 bc_municipality AS m
WHERE
 ST_Contains(m.the_geom, r.the_geom)
GROUP BY m.name
ORDER BY roads_km;

name | roads_km
----------------------------+------------------
SURREY | 1539.47553551242
VANCOUVER | 1450.33093486576
LANGLEY DISTRICT | 833.793392535662
BURNABY | 773.769091404338
PRINCE GEORGE | 694.37554369147
...
This query takes a while, because every road in the table is
			summarized into the final result (about 250K roads for our
			particular example table). For smaller overlays (several thousand
			records on several hundred) the response can be very fast.

	5.
	Create a new table with all the roads within the city of
			Prince George.

		This is an example of an "overlay", which takes in two
			tables and outputs a new table that consists of spatially clipped
			or cut resultants. Unlike the "spatial join" demonstrated above,
			this query actually creates new geometries. An overlay is like a
			turbo-charged spatial join, and is useful for more exact analysis
			work:
CREATE TABLE pg_roads as
SELECT
 ST_Intersection(r.the_geom, m.the_geom) AS intersection_geom,
 ST_Length(r.the_geom) AS rd_orig_length,
 r.*
FROM
 bc_roads AS r,
 bc_municipality AS m
WHERE
 m.name = 'PRINCE GEORGE'
	AND ST_Intersects(r.the_geom, m.the_geom);

	6.
	What is the length in kilometers of "Douglas St" in
			Victoria?

		SELECT
 sum(ST_Length(r.the_geom))/1000 AS kilometers
FROM
 bc_roads r,
 bc_municipality m
WHERE
	r.name = 'Douglas St'
	AND m.name = 'VICTORIA'
	AND ST_Intersects(m.the_geom, r.the_geom);

kilometers

4.89151904172838
(1 row)

	7.
	What is the largest municipality polygon that has a
			hole?

		SELECT gid, name, ST_Area(the_geom) AS area
FROM bc_municipality
WHERE ST_NRings(the_geom) > 1
ORDER BY area DESC LIMIT 1;

gid | name | area
-----+--------------+------------------
12 | SPALLUMCHEEN | 257374619.430216
(1 row)

Table Management Functions

Abstract
These functions assist in defining tables containing geometry columns.

Name
ST_PointZM — Creates a Point with the given coordinate and SRID values.

Synopsis
	geometry ST_PointZM(x, 	
	 	y, 	
	 	z, 	
	 	m, 	
	 	srid=unknown);	

float x;
float y;
float z;
float m;
integer srid=unknown;

Description
Returns an Point with the given X, Y, Z and M coordinate values, and optionally an SRID number.

Examples
SELECT ST_PointZM(-71.104, 42.315, 3.4, 4.5, 4326)
SELECT ST_PointZM(-71.104, 42.315, 3.4, 4.5, srid => 4326)
SELECT ST_PointZM(-71.104, 42.315, 3.4, 4.5)

See Also
ST_MakePoint, ST_Point, ST_PointM, ST_PointZ

Name
ST_IsPlanar — Check if a surface is or not planar

Synopsis
	boolean ST_IsPlanar(geom);	

geometry geom;

Description
Availability: 2.2.0: This was documented in 2.1.0 but got accidentally left out in 2.1 release.
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Name
ST_LineFromEncodedPolyline — Creates a LineString from an Encoded Polyline.

Synopsis
	geometry ST_LineFromEncodedPolyline(polyline, 	
	 	precision=5);	

text polyline;
integer precision=5;

Description
Creates a LineString from an Encoded Polyline string.
Optional precision specifies how many decimal places will be preserved in Encoded Polyline. Value should be the same on encoding and decoding, or coordinates will be incorrect.
See http://developers.google.com/maps/documentation/utilities/polylinealgorithm
Availability: 2.2.0

Examples

-- Create a line string from a polyline
SELECT ST_AsEWKT(ST_LineFromEncodedPolyline('_p~iF~ps|U_ulLnnqC_mqNvxq`@'));
-- result --
SRID=4326;LINESTRING(-120.2 38.5,-120.95 40.7,-126.453 43.252)

-- Select different precision that was used for polyline encoding
SELECT ST_AsEWKT(ST_LineFromEncodedPolyline('_p~iF~ps|U_ulLnnqC_mqNvxq`@',6));
-- result --
SRID=4326;LINESTRING(-12.02 3.85,-12.095 4.07,-12.6453 4.3252)

See Also
ST_AsEncodedPolyline

Release 2.3.1

Release date: 2016/11/28
This is a bug fix and performance improvement release.
Bug Fixes and Enhancements

#1973, st_concavehull() returns sometimes empty geometry collection
 Fix from gde
#3501, add raster constraint max extent exceeds array size limit
 for large tables
#3643, PostGIS not building on latest OSX XCode
#3644, Deadlock on interrupt
#3650, Mark ST_Extent, ST_3DExtent and ST_Mem*
 agg functions as parallel safe so they can be parallelized
#3652, Crash on Collection(MultiCurve())
#3656, Fix upgrade of aggregates from 2.2 or lower version
#3659, Crash caused by raster GUC define after CREATE EXTENSION
 using wrong memory context. (manaeem)
#3665, Index corruption and memory leak in BRIN indexes
 patch from Julien Rouhaud (Dalibo)
#3667, geography ST_Segmentize bug
 patch from Hugo Mercier (Oslandia)

Name
ST_3DMakeBox — Creates a BOX3D defined by two 3D point	geometries.

Synopsis
	box3d ST_3DMakeBox(point3DLowLeftBottom, 	
	 	point3DUpRightTop);	

geometry point3DLowLeftBottom;
geometry point3DUpRightTop;

Description
Creates a box3d defined by two 3D Point
			geometries.
[image: Description] This function supports 3D and will not drop the z-index.
Changed: 2.0.0 In prior versions this used to be called ST_MakeBox3D

Examples

SELECT ST_3DMakeBox(ST_MakePoint(-989502.1875, 528439.5625, 10),
	ST_MakePoint(-987121.375 ,529933.1875, 10)) As abb3d

--bb3d--

BOX3D(-989502.1875 528439.5625 10,-987121.375 529933.1875 10)
	

See Also
ST_MakePoint, ST_SetSRID, ST_SRID

Name
ST_Force3DM — Force the geometries into XYM mode.

Synopsis
	geometry ST_Force3DM(geomA, 	
	 	Mvalue = 0.0);	

geometry geomA;
float Mvalue = 0.0;

Description
Forces the geometries into XYM mode. If a geometry has no M component, then a Mvalue M coordinate is tacked on. If it has a Z component, then Z is removed
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DM.
Changed: 3.1.0. Added support for supplying a non-zero M value.
[image: Description]
 This method supports Circular Strings and Curves

Examples

--Nothing happens to an already 3D geometry
SELECT ST_AsEWKT(ST_Force3DM(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
				 st_asewkt
--
 CIRCULARSTRINGM(1 1 0,2 3 0,4 5 0,6 7 0,5 6 0)

SELECT ST_AsEWKT(ST_Force3DM('POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1))'));

						 st_asewkt

 POLYGONM((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))

		

See Also
ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3D, ST_GeomFromEWKT

Name
= — Returns TRUE if the coordinates and coordinate order geometry/geography A
			are the same as the coordinates and coordinate order of geometry/geography B.

Synopsis
	boolean =(A, 	
	 	B);	

				 geometry

				 A
				;

				 geometry

				 B
				;

	boolean =(A, 	
	 	B);	

					 geography

					 A
					;

					 geography

					 B
					;

Description
The = operator returns TRUE if the coordinates and coordinate order geometry/geography A
			are the same as the coordinates and coordinate order of geometry/geography B. PostgreSQL uses the =, <, and > operators defined for geometries to
			perform internal orderings and comparison of geometries (ie. in a GROUP BY or ORDER BY clause).
Note
Only geometry/geography that are exactly equal in all respects,
 with the same coordinates, in the same order, are considered
 equal by this operator. For "spatial equality", that ignores
 things like coordinate order, and can detect features that
 cover the same spatial area with different representations,
 use ST_OrderingEquals
 or ST_Equals

Caution
This operand will NOT make use of any indexes that may be available on the
				geometries. For an index assisted exact equality test, combine = with &&.

Changed: 2.4.0, in prior versions this was bounding box equality not a geometric equality. If you need bounding box equality, use ~= instead.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT 'LINESTRING(0 0, 0 1, 1 0)'::geometry = 'LINESTRING(1 1, 0 0)'::geometry;
 ?column?

 f
(1 row)

SELECT ST_AsText(column1)
FROM (VALUES
	('LINESTRING(0 0, 1 1)'::geometry),
	('LINESTRING(1 1, 0 0)'::geometry)) AS foo;
	 st_astext

 LINESTRING(0 0,1 1)
 LINESTRING(1 1,0 0)
(2 rows)

-- Note: the GROUP BY uses the "=" to compare for geometry equivalency.
SELECT ST_AsText(column1)
FROM (VALUES
	('LINESTRING(0 0, 1 1)'::geometry),
	('LINESTRING(1 1, 0 0)'::geometry)) AS foo
GROUP BY column1;
 st_astext

 LINESTRING(0 0,1 1)
 LINESTRING(1 1,0 0)
(2 rows)

-- In versions prior to 2.0, this used to return true --
 SELECT ST_GeomFromText('POINT(1707296.37 4820536.77)') =
	ST_GeomFromText('POINT(1707296.27 4820536.87)') As pt_intersect;

--pt_intersect --
f

See Also
ST_Equals, ST_OrderingEquals, ~=
			

Core Contributors Past

	Mark Cave-Ayland
	Prior PSC Member. Coordinated bug fixing and maintenance effort, spatial index selectivity and binding, loader/dumper, and Shapefile GUI Loader, integration of new
					and new function enhancements.

	Chris Hodgson
	Prior PSC Member. General development, site and buildbot maintenance, OSGeo incubation management

	Kevin Neufeld
	Prior PSC Member. Documentation and documentation support tools, buildbot maintenance, advanced user support
		 on PostGIS newsgroup, and PostGIS maintenance function enhancements.

	Dave Blasby
	The original developer/Co-founder of PostGIS. Dave wrote the server side
		 objects, index bindings, and many of the server side analytical
		 functions.

	Jeff Lounsbury
	Original development of the Shapefile loader/dumper.

	Mark Leslie
	Ongoing maintenance and development of core functions. Enhanced curve support. Shapefile GUI loader.

	David Zwarg
	Raster development (mostly map algebra analytic functions)

Name
ST_SkewX — Returns the georeference X skew (or rotation parameter).

Synopsis
	float8 ST_SkewX(rast);	

raster rast;

Description
Returns the georeference X skew (or rotation parameter). Refer to World File
 for more details.

Examples
SELECT rid, ST_SkewX(rast) As skewx, ST_SkewY(rast) As skewy,
 ST_GeoReference(rast) as georef
FROM dummy_rast;

 rid | skewx | skewy | georef
-----+-------+-------+--------------------
 1 | 0 | 0 | 2.0000000000
 : 0.0000000000
 : 0.0000000000
 : 3.0000000000
 : 0.5000000000
 : 0.5000000000
 :
 2 | 0 | 0 | 0.0500000000
 : 0.0000000000
 : 0.0000000000
 : -0.0500000000
 : 3427927.7500000000
 : 5793244.0000000000

See Also
ST_GeoReference, ST_SkewY, ST_SetSkew

Name
ST_SetScale — Sets the X and Y size of pixels in units of coordinate reference system. Number units/pixel width/height.

Synopsis
	raster ST_SetScale(rast, 	
	 	xy);	

raster rast;
float8 xy;

	raster ST_SetScale(rast, 	
	 	x, 	
	 	y);	

raster rast;
float8 x;
float8 y;

Description
Sets the X and Y size of pixels in units of coordinate reference system. Number units/pixel width/height. If
 only one unit passed in, assumed X and Y are the same number.
Note
ST_SetScale is different from ST_Rescale in that ST_SetScale do not resample the raster to match the raster extent. It only changes the metadata (or georeference) of the raster to correct an originally mis-specified scaling. ST_Rescale results in a raster having different width and height computed to fit the geographic extent of the input raster. ST_SetScale do not modify the width, nor the height of the raster.

Changed: 2.0.0 In WKTRaster versions this was called ST_SetPixelSize. This was changed in 2.0.0.

Examples
UPDATE dummy_rast
 SET rast = ST_SetScale(rast, 1.5)
WHERE rid = 2;

SELECT ST_ScaleX(rast) As pixx, ST_ScaleY(rast) As pixy, Box3D(rast) As newbox
FROM dummy_rast
WHERE rid = 2;

 pixx | pixy | newbox
------+------+--
 1.5 | 1.5 | BOX(3427927.75 5793244 0, 3427935.25 5793251.5 0)

UPDATE dummy_rast
 SET rast = ST_SetScale(rast, 1.5, 0.55)
WHERE rid = 2;

SELECT ST_ScaleX(rast) As pixx, ST_ScaleY(rast) As pixy, Box3D(rast) As newbox
FROM dummy_rast
WHERE rid = 2;

 pixx | pixy | newbox
------+------+--
 1.5 | 0.55 | BOX(3427927.75 5793244 0,3427935.25 5793247 0)

See Also
ST_ScaleX, ST_ScaleY, Box3D

Name
ST_MakeSolid — Cast the geometry into a solid. No check is performed. To obtain a valid solid, the input geometry must be a closed Polyhedral Surface or a closed TIN.

Synopsis
	geometryST_MakeSolid(geom1);	

geometry geom1;

Description
Availability: 2.2.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Name
ST_DelaunayTriangles —
Returns the Delaunay triangulation of the vertices of a geometry.

Synopsis
	geometry ST_DelaunayTriangles(g1, 	
	 	tolerance, 	
	 	flags);	

geometry g1;
float tolerance;
int4 flags;

Description

Return the Delaunay
triangulation of the vertices of the input geometry.
Output is a COLLECTION of polygons (for flags=0) or a MULTILINESTRING
(for flags=1) or TIN (for flags=2). The tolerance, if any, is used to snap input vertices
together.

Performed by the GEOS module.
Availability: 2.1.0
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

2D Examples
	[image: 2D Examples]Original polygons

-- our original geometry --
 ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
 50 60, 125 100, 175 150))'),
 ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
)

	[image: 2D Examples]ST_DelaunayTriangles of 2 polygons: delaunay triangle polygons each triangle themed in different color

-- geometries overlaid multilinestring triangles
SELECT
 ST_DelaunayTriangles(
 ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
 50 60, 125 100, 175 150))'),
 ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
))
 As dtriag;

	[image: 2D Examples]-- delaunay triangles as multilinestring

SELECT
 ST_DelaunayTriangles(
 ST_Union(ST_GeomFromText('POLYGON((175 150, 20 40,
 50 60, 125 100, 175 150))'),
 ST_Buffer(ST_GeomFromText('POINT(110 170)'), 20)
),0.001,1)
 As dtriag;

	[image: 2D Examples]-- delaunay triangles of 45 points as 55 triangle polygons

-- this produces a table of 42 points that form an L shape
SELECT (ST_DumpPoints(ST_GeomFromText(
'MULTIPOINT(14 14,34 14,54 14,74 14,94 14,114 14,134 14,
150 14,154 14,154 6,134 6,114 6,94 6,74 6,54 6,34 6,
14 6,10 6,8 6,7 7,6 8,6 10,6 30,6 50,6 70,6 90,6 110,6 130,
6 150,6 170,6 190,6 194,14 194,14 174,14 154,14 134,14 114,
14 94,14 74,14 54,14 34,14 14)'))).geom
 INTO TABLE l_shape;
-- output as individual polygon triangles
SELECT ST_AsText((ST_Dump(geom)).geom) As wkt
FROM (SELECT ST_DelaunayTriangles(ST_Collect(geom)) As geom
FROM l_shape) As foo;

---wkt ---
POLYGON((6 194,6 190,14 194,6 194))
POLYGON((14 194,6 190,14 174,14 194))
POLYGON((14 194,14 174,154 14,14 194))
POLYGON((154 14,14 174,14 154,154 14))
POLYGON((154 14,14 154,150 14,154 14))
POLYGON((154 14,150 14,154 6,154 14))
:
:

3D Examples
-- 3D multipoint --
SELECT ST_AsText(ST_DelaunayTriangles(ST_GeomFromText(
'MULTIPOINT Z(14 14 10,
150 14 100,34 6 25, 20 10 150)'))) As wkt;

-----wkt----
GEOMETRYCOLLECTION Z (POLYGON Z ((14 14 10,20 10 150,34 6 25,14 14 10))
 ,POLYGON Z ((14 14 10,34 6 25,150 14 100,14 14 10)))

See Also
ST_ConstrainedDelaunayTriangles, ST_ConcaveHull, ST_Dump, ST_Tesselate

Name
ST_ExteriorRing — Returns a LineString representing the exterior ring of a Polygon.

Synopsis
	geometry ST_ExteriorRing(a_polygon);	

geometry a_polygon;

Description
Returns a LINESTRING representing the exterior ring (shell) of a POLYGON.
 Returns	NULL if the geometry is not a polygon.
Note
This function does not support MULTIPOLYGONs.
 For MULTIPOLYGONs use in conjunction with ST_GeometryN or ST_Dump

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. 2.1.5.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.2.3, 8.3.3
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

--If you have a table of polygons
SELECT gid, ST_ExteriorRing(geom) AS ering
FROM sometable;

--If you have a table of MULTIPOLYGONs
--and want to return a MULTILINESTRING composed of the exterior rings of each polygon
SELECT gid, ST_Collect(ST_ExteriorRing(geom)) AS erings
	FROM (SELECT gid, (ST_Dump(geom)).geom As geom
			FROM sometable) As foo
GROUP BY gid;

--3d Example
SELECT ST_AsEWKT(
	ST_ExteriorRing(
	ST_GeomFromEWKT('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))')
)
);

st_asewkt

LINESTRING(0 0 1,1 1 1,1 2 1,1 1 1,0 0 1)

See Also

ST_InteriorRingN,
ST_Boundary,
ST_NumInteriorRings
		

Name
ST_Clip — Returns the raster clipped by the input geometry. If band number not is specified, all bands are processed. If crop is not specified or TRUE, the output raster is cropped.

Synopsis
	raster ST_Clip(rast, 	
	 	nband, 	
	 	geom, 	
	 	nodataval=NULL, 	
	 	crop=TRUE);	

raster rast;
integer[] nband;
geometry geom;
double precision[] nodataval=NULL;
boolean crop=TRUE;

	raster ST_Clip(rast, 	
	 	nband, 	
	 	geom, 	
	 	nodataval, 	
	 	crop=TRUE);	

raster rast;
integer nband;
geometry geom;
double precision nodataval;
boolean crop=TRUE;

	raster ST_Clip(rast, 	
	 	nband, 	
	 	geom, 	
	 	crop);	

raster rast;
integer nband;
geometry geom;
boolean crop;

	raster ST_Clip(rast, 	
	 	geom, 	
	 	nodataval=NULL, 	
	 	crop=TRUE);	

raster rast;
geometry geom;
double precision[] nodataval=NULL;
boolean crop=TRUE;

	raster ST_Clip(rast, 	
	 	geom, 	
	 	nodataval, 	
	 	crop=TRUE);	

raster rast;
geometry geom;
double precision nodataval;
boolean crop=TRUE;

	raster ST_Clip(rast, 	
	 	geom, 	
	 	crop);	

raster rast;
geometry geom;
boolean crop;

Description

 Returns a raster that is clipped by the input geometry geom. If band index is not specified, all bands are processed.

 Rasters resulting from ST_Clip must have a nodata value assigned for areas clipped, one for each band. If none are provided and the input raster do not have a nodata value defined, nodata values of the resulting raster are set to ST_MinPossibleValue(ST_BandPixelType(rast, band)). When the number of nodata value in the array is smaller than the number of band, the last one in the array is used for the remaining bands. If the number of nodata value is greater than the number of band, the extra nodata values are ignored. All variants accepting an array of nodata values also accept a single value which will be assigned to each band.

 If crop is not specified, true is assumed meaning the output raster is cropped to the intersection of the geomand rast extents. If crop is set to false, the new raster gets the same extent as rast.

Availability: 2.0.0
Enhanced: 2.1.0 Rewritten in C

 Examples here use Massachusetts aerial data available on MassGIS site MassGIS Aerial Orthos. Coordinates are in Massachusetts State Plane Meters.

Examples: 1 band clipping

-- Clip the first band of an aerial tile by a 20 meter buffer.
SELECT ST_Clip(rast, 1,
 ST_Buffer(ST_Centroid(ST_Envelope(rast)),20)
) from aerials.boston
WHERE rid = 4;

-- Demonstrate effect of crop on final dimensions of raster
-- Note how final extent is clipped to that of the geometry
-- if crop = true
SELECT ST_XMax(ST_Envelope(ST_Clip(rast, 1, clipper, true))) As xmax_w_trim,
 ST_XMax(clipper) As xmax_clipper,
 ST_XMax(ST_Envelope(ST_Clip(rast, 1, clipper, false))) As xmax_wo_trim,
 ST_XMax(ST_Envelope(rast)) As xmax_rast_orig
FROM (SELECT rast, ST_Buffer(ST_Centroid(ST_Envelope(rast)),6) As clipper
 FROM aerials.boston
WHERE rid = 6) As foo;

 xmax_w_trim | xmax_clipper | xmax_wo_trim | xmax_rast_orig
------------------+------------------+------------------+------------------
 230657.436173996 | 230657.436173996 | 230666.436173996 | 230666.436173996

	

[image: Examples: 1 band clipping]Full raster tile before clipping

 	

[image: Examples: 1 band clipping]After Clipping

Examples: 1 band clipping with no crop and add back other bands unchanged

-- Same example as before, but we need to set crop to false to be able to use ST_AddBand
-- because ST_AddBand requires all bands be the same Width and height
SELECT ST_AddBand(ST_Clip(rast, 1,
 ST_Buffer(ST_Centroid(ST_Envelope(rast)),20),false
), ARRAY[ST_Band(rast,2),ST_Band(rast,3)]) from aerials.boston
WHERE rid = 6;

	

[image: Examples: 1 band clipping with no crop and add back other bands unchanged]Full raster tile before clipping

 	

[image: Examples: 1 band clipping with no crop and add back other bands unchanged]After Clipping - surreal

Examples: Clip all bands

-- Clip all bands of an aerial tile by a 20 meter buffer.
-- Only difference is we don't specify a specific band to clip
-- so all bands are clipped
SELECT ST_Clip(rast,
 ST_Buffer(ST_Centroid(ST_Envelope(rast)), 20),
 false
) from aerials.boston
WHERE rid = 4;

	

[image: Examples: Clip all bands]Full raster tile before clipping

 	

[image: Examples: Clip all bands]After Clipping

See Also

 ST_AddBand,
 ST_MapAlgebra (callback function version),
 ST_Intersection

Name
AddEdge — Adds a linestring edge to the edge table and associated start and end points to the point nodes table of the specified topology schema using the specified linestring geometry and returns the edgeid of the new (or existing) edge.

Synopsis
	integer AddEdge(toponame, 	
	 	aline);	

varchar toponame;
geometry aline;

Description
Adds an edge to the edge table and associated nodes to the nodes table of the specified toponame schema using the specified linestring geometry and returns the edgeid of the new or existing record.
 The newly added edge has "universe" face on both sides and links to itself.
Note
If the aline geometry crosses, overlaps, contains or is contained by an existing linestring edge, then an error is thrown and the edge is not added.

Note
The geometry of aline must have the same srid as defined for the topology otherwise an invalid spatial reference sys error will be thrown.

Performed by the GEOS module.
Availability: 2.0.0

Examples
SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227575.8 893917.2,227591.9 893900.4)', 26986)) As edgeid;
-- result-
edgeid

 1

SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227591.9 893900.4,227622.6 893844.2,227641.6 893816.5,
 227704.5 893778.5)', 26986)) As edgeid;
-- result --
edgeid

 2

 SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227591.2 893900, 227591.9 893900.4,
 227704.5 893778.5)', 26986)) As edgeid;
 -- gives error --
 ERROR: Edge intersects (not on endpoints) with existing edge 1

See Also

TopoGeo_AddLineString,
CreateTopology,
the section called “Spatial Reference Systems”

Name
ST_Polygon — Returns a multipolygon geometry formed by the union of pixels that have a pixel value that is not no data value. If no band number is specified, band num defaults to 1.

Synopsis
	geometry ST_Polygon(rast, 	
	 	band_num=1);	

raster rast;
integer band_num=1;

Description
Availability: 0.1.6 Requires GDAL 1.7 or higher.
Enhanced: 2.1.0 Improved Speed (fully C-Based) and the returning multipolygon is ensured to be valid.
Changed: 2.1.0 In prior versions would sometimes return a polygon, changed to always return multipolygon.

Examples

-- by default no data band value is 0 or not set, so polygon will return a square polygon
SELECT ST_AsText(ST_Polygon(rast)) As geomwkt
FROM dummy_rast
WHERE rid = 2;

geomwkt
--
MULTIPOLYGON(((3427927.75 5793244,3427928 5793244,3427928 5793243.75,3427927.75 5793243.75,3427927.75 5793244)))

-- now we change the no data value of first band
UPDATE dummy_rast SET rast = ST_SetBandNoDataValue(rast,1,254)
WHERE rid = 2;
SELECt rid, ST_BandNoDataValue(rast)
from dummy_rast where rid = 2;

-- ST_Polygon excludes the pixel value 254 and returns a multipolygon
SELECT ST_AsText(ST_Polygon(rast)) As geomwkt
FROM dummy_rast
WHERE rid = 2;

geomwkt

MULTIPOLYGON(((3427927.9 5793243.95,3427927.85 5793243.95,3427927.85 5793244,3427927.9 5793244,3427927.9 5793243.95)),((3427928 5793243.85,3427928 5793243.8,3427927.95 5793243.8,3427927.95 5793243.85,3427927.9 5793243.85,3427927.9 5793243.9,3427927.9 5793243.95,3427927.95 5793243.95,3427928 5793243.95,3427928 5793243.85)),((3427927.8 5793243.75,3427927.75 5793243.75,3427927.75 5793243.8,3427927.75 5793243.85,3427927.75 5793243.9,3427927.75 5793244,3427927.8 5793244,3427927.8 5793243.9,3427927.8 5793243.85,3427927.85 5793243.85,3427927.85 5793243.8,3427927.85 5793243.75,3427927.8 5793243.75)))

-- Or if you want the no data value different for just one time

SELECT ST_AsText(
 ST_Polygon(
 ST_SetBandNoDataValue(rast,1,252)
)
) As geomwkt
FROM dummy_rast
WHERE rid =2;

geomwkt

MULTIPOLYGON(((3427928 5793243.85,3427928 5793243.8,3427928 5793243.75,3427927.85 5793243.75,3427927.8 5793243.75,3427927.8 5793243.8,3427927.75 5793243.8,3427927.75 5793243.85,3427927.75 5793243.9,3427927.75 5793244,3427927.8 5793244,3427927.85 5793244,3427927.9 5793244,3427928 5793244,3427928 5793243.95,3427928 5793243.85),(3427927.9 5793243.9,3427927.9 5793243.85,3427927.95 5793243.85,3427927.95 5793243.9,3427927.9 5793243.9)))

See Also

 ST_Value,
 ST_DumpAsPolygons

Name
ST_RemoveIsoEdge — Removes an isolated edge and returns description of action. If the edge is not isolated, then an exception is thrown.

Synopsis
	text ST_RemoveIsoEdge(atopology, 	
	 	anedge);	

varchar atopology;
integer anedge;

Description
Removes an isolated edge and returns description of action. If the edge is not isolated, then an exception is thrown.
Availability: 1.?
[image: Description] This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3

Examples

-- Remove an isolated node with no face --
SELECT topology.ST_RemoveIsoNode('ma_topo', 7) As result;
 result

 Isolated node 7 removed

See Also
ST_AddIsoNode

Release 2.0.1

Release date: 2012/06/22
This is a bug fix release, addressing issues that have been filed since the 2.0.0 release.
Bug Fixes

#1264, fix st_dwithin(geog, geog, 0).
#1468 shp2pgsql-gui table column schema get shifted
#1694, fix building with clang. (vince)
#1708, improve restore of pre-PostGIS 2.0 backups.
#1714, more robust handling of high topology tolerance.
#1755, ST_GeographyFromText support for higher dimensions.
#1759, loading transformed shapefiles in raster enabled db.
#1761, handling of subdatasets in NetCDF, HDF4 and HDF5 in raster2pgsql.
#1763, topology.toTopoGeom use with custom search_path.
#1766, don't let ST_RemEdge* destroy peripheral TopoGeometry objects.
#1774, Clearer error on setting an edge geometry to an invalid one.
#1775, ST_ChangeEdgeGeom collision detection with 2-vertex target.
#1776, fix ST_SymDifference(empty, geom) to return geom.
#1779, install SQL comment files.
#1782, fix spatial reference string handling in raster.
#1789, fix false edge-node crossing report in ValidateTopology.
#1790, fix toTopoGeom handling of duplicated primitives.
#1791, fix ST_Azimuth with very close but distinct points.
#1797, fix (ValidateTopology(xxx)).* syntax calls.
#1805, put back the 900913 SRID entry.
#1813, Only show readable relations in metadata tables.
#1819, fix floating point issues with ST_World2RasterCoord and
					 ST_Raster2WorldCoord variants.
#1820 compilation on 9.2beta1.
#1822, topology load on PostgreSQL 9.2beta1.
#1825, fix prepared geometry cache lookup
#1829, fix uninitialized read in GeoJSON parser
#1834, revise postgis extension to only backup
					 user specified spatial_ref_sys
#1839, handling of subdatasets in GeoTIFF in raster2pgsql.
#1840, fix logic of when to compute # of tiles in raster2pgsql.
#1851, fix spatial_ref_system parameters for EPSG:3844
#1857, fix failure to detect endpoint mismatch in ST_AddEdge*Face*
#1865, data loss in postgis_restore.pl when data rows have leading
					 dashes.
#1867, catch invalid topology name passed to topogeo_add*
#1872, fix ST_ApproxSummarystats to prevent division by zero
#1873, fix ptarray_locate_point to return interpolated Z/M values for
			 on-the-line case
#1875, ST_SummaryStats returns NULL for all parameters except count
			 when count is zero
#1881, shp2pgsql-gui -- editing a field sometimes triggers
						 removing row
#1883, Geocoder install fails trying to run
 create_census_base_tables() (Brian Panulla)

Enhancements

More detailed exception message from topology editing functions.
#1786, improved build dependencies
#1806, speedup of ST_BuildArea, ST_MakeValid and ST_GetFaceGeometry.
#1812, Add lwgeom_normalize in LIBLWGEOM for more stable testing.

Name
ST_GeogFromText — Return a specified geography value from Well-Known Text representation or extended (WKT).

Synopsis
	geography ST_GeogFromText(EWKT);	

text EWKT;

Description
Returns a geography object from the well-known text or extended well-known representation. SRID 4326 is assumed if unspecified.
				This is an alias for ST_GeographyFromText. Points are always expressed in long lat form.

Examples

--- converting lon lat coords to geography
ALTER TABLE sometable ADD COLUMN geog geography(POINT,4326);
UPDATE sometable SET geog = ST_GeogFromText('SRID=4326;POINT(' || lon || ' ' || lat || ')');

--- specify a geography point using EPSG:4267, NAD27
SELECT ST_AsEWKT(ST_GeogFromText('SRID=4267;POINT(-77.0092 38.889588)'));
			

See Also
ST_AsText, ST_GeographyFromText

Name
ST_Roughness — Returns a raster with the calculated "roughness" of a DEM.

Synopsis
	raster ST_Roughness(rast, 	
	 	nband, 	
	 	customextent, 	
	 	pixeltype="32BF", 	
	 	 interpolate_nodata=FALSE);	

raster rast;
integer nband;
raster customextent;
text pixeltype="32BF" ;
boolean interpolate_nodata=FALSE ;

Description
Calculates the "roughness" of a DEM, by subtracting the maximum from the minimum for a given area.
Availability: 2.1.0

Examples

-- needs examples

See Also

 ST_MapAlgebra (callback function version),
 ST_TRI,
 ST_TPI,
 ST_Slope,
 ST_HillShade,
 ST_Aspect

Name
ST_GDALDrivers — Returns a list of raster formats supported by PostGIS through GDAL. Only those formats with can_write=True can be used by ST_AsGDALRaster

Synopsis
	setof record ST_GDALDrivers(OUT idx, 	
	 	OUT short_name, 	
	 	OUT long_name, 	
	 	OUT can_read, 	
	 	OUT can_write, 	
	 	OUT create_options);	

integer OUT idx;
text OUT short_name;
text OUT long_name;
text OUT can_read;
text OUT can_write;
text OUT create_options;

Description

 Returns a list of raster formats short_name,long_name and creator options of each format supported by GDAL. Use the short_name as input in the format parameter of ST_AsGDALRaster.
 Options vary depending on what drivers your libgdal was compiled with. create_options returns an xml formatted set of CreationOptionList/Option consisting of name and optional type, description and set of VALUE for each creator option for the specific driver.

Changed: 2.5.0 - add can_read and can_write columns.
Changed: 2.0.6, 2.1.3 - by default no drivers are enabled, unless GUC or Environment variable gdal_enabled_drivers is set.
Availability: 2.0.0 - requires GDAL >= 1.6.0.

Examples: List of Drivers
SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
SELECT short_name, long_name, can_write
FROM st_gdaldrivers()
ORDER BY short_name;

 short_name | long_name | can_write
-----------------+---+-----------
 AAIGrid | Arc/Info ASCII Grid | t
 ACE2 | ACE2 | f
 ADRG | ARC Digitized Raster Graphics | f
 AIG | Arc/Info Binary Grid | f
 AirSAR | AirSAR Polarimetric Image | f
 ARG | Azavea Raster Grid format | t
 BAG | Bathymetry Attributed Grid | f
 BIGGIF | Graphics Interchange Format (.gif) | f
 BLX | Magellan topo (.blx) | t
 BMP | MS Windows Device Independent Bitmap | f
 BSB | Maptech BSB Nautical Charts | f
 PAux | PCI .aux Labelled | f
 PCIDSK | PCIDSK Database File | f
 PCRaster | PCRaster Raster File | f
 PDF | Geospatial PDF | f
 PDS | NASA Planetary Data System | f
 PDS4 | NASA Planetary Data System 4 | t
 PLMOSAIC | Planet Labs Mosaics API | f
 PLSCENES | Planet Labs Scenes API | f
 PNG | Portable Network Graphics | t
 PNM | Portable Pixmap Format (netpbm) | f
 PRF | Racurs PHOTOMOD PRF | f
 R | R Object Data Store | t
 Rasterlite | Rasterlite | t
 RDA | DigitalGlobe Raster Data Access driver | f
 RIK | Swedish Grid RIK (.rik) | f
 RMF | Raster Matrix Format | f
 ROI_PAC | ROI_PAC raster | f
 RPFTOC | Raster Product Format TOC format | f
 RRASTER | R Raster | f
 RS2 | RadarSat 2 XML Product | f
 RST | Idrisi Raster A.1 | t
 SAFE | Sentinel-1 SAR SAFE Product | f
 SAGA | SAGA GIS Binary Grid (.sdat, .sg-grd-z) | t
 SAR_CEOS | CEOS SAR Image | f
 SDTS | SDTS Raster | f
 SENTINEL2 | Sentinel 2 | f
 SGI | SGI Image File Format 1.0 | f
 SNODAS | Snow Data Assimilation System | f
 SRP | Standard Raster Product (ASRP/USRP) | f
 SRTMHGT | SRTMHGT File Format | t
 Terragen | Terragen heightfield | f
 TIL | EarthWatch .TIL | f
 TSX | TerraSAR-X Product | f
 USGSDEM | USGS Optional ASCII DEM (and CDED) | t
 VICAR | MIPL VICAR file | f
 VRT | Virtual Raster | t
 WCS | OGC Web Coverage Service | f
 WMS | OGC Web Map Service | t
 WMTS | OGC Web Map Tile Service | t
 XPM | X11 PixMap Format | t
 XYZ | ASCII Gridded XYZ | t
 ZMap | ZMap Plus Grid | t

Example: List of options for each driver
-- Output the create options XML column of JPEG as a table --
-- Note you can use these creator options in ST_AsGDALRaster options argument
SELECT (xpath('@name', g.opt))[1]::text As oname,
 (xpath('@type', g.opt))[1]::text As otype,
 (xpath('@description', g.opt))[1]::text As descrip
FROM (SELECT unnest(xpath('/CreationOptionList/Option', create_options::xml)) As opt
FROM st_gdaldrivers()
WHERE short_name = 'JPEG') As g;

 oname | otype | descrip
--------------------+---------+---
 PROGRESSIVE | boolean | whether to generate a progressive JPEG
 QUALITY | int | good=100, bad=0, default=75
 WORLDFILE | boolean | whether to geneate a worldfile
 INTERNAL_MASK | boolean | whether to generate a validity mask
 COMMENT | string | Comment
 SOURCE_ICC_PROFILE | string | ICC profile encoded in Base64
 EXIF_THUMBNAIL | boolean | whether to generate an EXIF thumbnail(overview).
 By default its max dimension will be 128
 THUMBNAIL_WIDTH | int | Forced thumbnail width
 THUMBNAIL_HEIGHT | int | Forced thumbnail height
(9 rows)

-- raw xml output for creator options for GeoTiff --
SELECT create_options
FROM st_gdaldrivers()
WHERE short_name = 'GTiff';

<CreationOptionList>
 <Option name="COMPRESS" type="string-select">
 <Value>NONE</Value>
 <Value>LZW</Value>
 <Value>PACKBITS</Value>
 <Value>JPEG</Value>
 <Value>CCITTRLE</Value>
 <Value>CCITTFAX3</Value>
 <Value>CCITTFAX4</Value>
 <Value>DEFLATE</Value>
 </Option>
 <Option name="PREDICTOR" type="int" description="Predictor Type"/>
 <Option name="JPEG_QUALITY" type="int" description="JPEG quality 1-100" default="75"/>
 <Option name="ZLEVEL" type="int" description="DEFLATE compression level 1-9" default="6"/>
 <Option name="NBITS" type="int" description="BITS for sub-byte files (1-7), sub-uint16 (9-15), sub-uint32 (17-31)"/>
 <Option name="INTERLEAVE" type="string-select" default="PIXEL">
 <Value>BAND</Value>
 <Value>PIXEL</Value>
 </Option>
 <Option name="TILED" type="boolean" description="Switch to tiled format"/>
 <Option name="TFW" type="boolean" description="Write out world file"/>
 <Option name="RPB" type="boolean" description="Write out .RPB (RPC) file"/>
 <Option name="BLOCKXSIZE" type="int" description="Tile Width"/>
 <Option name="BLOCKYSIZE" type="int" description="Tile/Strip Height"/>
 <Option name="PHOTOMETRIC" type="string-select">
 <Value>MINISBLACK</Value>
 <Value>MINISWHITE</Value>
 <Value>PALETTE</Value>
 <Value>RGB</Value>
 <Value>CMYK</Value>
 <Value>YCBCR</Value>
 <Value>CIELAB</Value>
 <Value>ICCLAB</Value>
 <Value>ITULAB</Value>
 </Option>
 <Option name="SPARSE_OK" type="boolean" description="Can newly created files have missing blocks?" default="FALSE"/>
 <Option name="ALPHA" type="boolean" description="Mark first extrasample as being alpha"/>
 <Option name="PROFILE" type="string-select" default="GDALGeoTIFF">
 <Value>GDALGeoTIFF</Value>
 <Value>GeoTIFF</Value>
 <Value>BASELINE</Value>
 </Option>
 <Option name="PIXELTYPE" type="string-select">
 <Value>DEFAULT</Value>
 <Value>SIGNEDBYTE</Value>
 </Option>
 <Option name="BIGTIFF" type="string-select" description="Force creation of BigTIFF file">
 <Value>YES</Value>
 <Value>NO</Value>
 <Value>IF_NEEDED</Value>
 <Value>IF_SAFER</Value>
 </Option>
 <Option name="ENDIANNESS" type="string-select" default="NATIVE" description="Force endianness of created file. For DEBUG purpose mostly">
 <Value>NATIVE</Value>
 <Value>INVERTED</Value>
 <Value>LITTLE</Value>
 <Value>BIG</Value>
 </Option>
 <Option name="COPY_SRC_OVERVIEWS" type="boolean" default="NO" description="Force copy of overviews of source dataset (CreateCopy())"/>
</CreationOptionList>

-- Output the create options XML column for GTiff as a table --
SELECT (xpath('@name', g.opt))[1]::text As oname,
 (xpath('@type', g.opt))[1]::text As otype,
 (xpath('@description', g.opt))[1]::text As descrip,
 array_to_string(xpath('Value/text()', g.opt),', ') As vals
FROM (SELECT unnest(xpath('/CreationOptionList/Option', create_options::xml)) As opt
FROM st_gdaldrivers()
WHERE short_name = 'GTiff') As g;

 oname | otype | descrip | vals
--------------------+---------------+--+---
 COMPRESS | string-select | | NONE, LZW, PACKBITS, JPEG, CCITTRLE, CCITTFAX3, CCITTFAX4, DEFLATE
 PREDICTOR | int | Predictor Type |
 JPEG_QUALITY | int | JPEG quality 1-100 |
 ZLEVEL | int | DEFLATE compression level 1-9 |
 NBITS | int | BITS for sub-byte files (1-7), sub-uint16 (9-15), sub-uint32 (17-31) |
 INTERLEAVE | string-select | | BAND, PIXEL
 TILED | boolean | Switch to tiled format |
 TFW | boolean | Write out world file |
 RPB | boolean | Write out .RPB (RPC) file |
 BLOCKXSIZE | int | Tile Width |
 BLOCKYSIZE | int | Tile/Strip Height |
 PHOTOMETRIC | string-select | | MINISBLACK, MINISWHITE, PALETTE, RGB, CMYK, YCBCR, CIELAB, ICCLAB, ITULAB
 SPARSE_OK | boolean | Can newly created files have missing blocks? |
 ALPHA | boolean | Mark first extrasample as being alpha |
 PROFILE | string-select | | GDALGeoTIFF, GeoTIFF, BASELINE
 PIXELTYPE | string-select | | DEFAULT, SIGNEDBYTE
 BIGTIFF | string-select | Force creation of BigTIFF file | YES, NO, IF_NEEDED, IF_SAFER
 ENDIANNESS | string-select | Force endianness of created file. For DEBUG purpose mostly | NATIVE, INVERTED, LITTLE, BIG
 COPY_SRC_OVERVIEWS | boolean | Force copy of overviews of source dataset (CreateCopy()) |
(19 rows)

See Also
ST_AsGDALRaster, ST_SRID, postgis.gdal_enabled_drivers

Name
ST_SummaryStats — Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. Band 1 is assumed is no band is specified.

Synopsis
	summarystats ST_SummaryStats(rast, 	
	 	exclude_nodata_value);	

raster rast;
boolean exclude_nodata_value;

	summarystats ST_SummaryStats(rast, 	
	 	nband, 	
	 	exclude_nodata_value);	

raster rast;
integer nband;
boolean exclude_nodata_value;

Description
Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. If no band is specified nband defaults to 1.
Note
By default only considers pixel values not equal to the nodata value. Set exclude_nodata_value to false to get count of all pixels.

Note
By default will sample all pixels. To get faster response, set sample_percent to lower than 1

Changed: 3.1.0 ST_SummaryStats(rastertable, rastercolumn, ...) variants are removed. Use ST_SummaryStatsAgg instead.
Availability: 2.0.0

Example: Single raster tile

SELECT rid, band, (stats).*
FROM (SELECT rid, band, ST_SummaryStats(rast, band) As stats
 FROM dummy_rast CROSS JOIN generate_series(1,3) As band
 WHERE rid=2) As foo;

 rid | band | count | sum | mean | stddev | min | max
-----+------+-------+------+------------+-----------+-----+-----
 2 | 1 | 23 | 5821 | 253.086957 | 1.248061 | 250 | 254
 2 | 2 | 25 | 3682 | 147.28 | 59.862188 | 78 | 254
 2 | 3 | 25 | 3290 | 131.6 | 61.647384 | 62 | 254

Example: Summarize pixels that intersect buildings of interest
This example took 574ms on PostGIS windows 64-bit with all of Boston Buildings
and aerial Tiles (tiles each 150x150 pixels ~ 134,000 tiles), ~102,000 building records
WITH
-- our features of interest
 feat AS (SELECT gid As building_id, geom_26986 As geom FROM buildings AS b
 WHERE gid IN(100, 103,150)
),
-- clip band 2 of raster tiles to boundaries of builds
-- then get stats for these clipped regions
 b_stats AS
 (SELECT building_id, (stats).*
FROM (SELECT building_id, ST_SummaryStats(ST_Clip(rast,2,geom)) As stats
 FROM aerials.boston
 INNER JOIN feat
 ON ST_Intersects(feat.geom,rast)
) As foo
)
-- finally summarize stats
SELECT building_id, SUM(count) As num_pixels
 , MIN(min) As min_pval
 , MAX(max) As max_pval
 , SUM(mean*count)/SUM(count) As avg_pval
 FROM b_stats
 WHERE count > 0
 GROUP BY building_id
 ORDER BY building_id;
 building_id | num_pixels | min_pval | max_pval | avg_pval
-------------+------------+----------+----------+------------------
 100 | 1090 | 1 | 255 | 61.0697247706422
 103 | 655 | 7 | 182 | 70.5038167938931
 150 | 895 | 2 | 252 | 185.642458100559

Example: Raster coverage

-- stats for each band --
SELECT band, (stats).*
FROM (SELECT band, ST_SummaryStats('o_4_boston','rast', band) As stats
 FROM generate_series(1,3) As band) As foo;

 band | count | sum | mean | stddev | min | max
------+---------+--------+------------------+------------------+-----+-----
 1 | 8450000 | 725799 | 82.7064349112426 | 45.6800222638537 | 0 | 255
 2 | 8450000 | 700487 | 81.4197705325444 | 44.2161184161765 | 0 | 255
 3 | 8450000 | 575943 | 74.682739408284 | 44.2143885481407 | 0 | 255

-- For a table -- will get better speed if set sampling to less than 100%
-- Here we set to 25% and get a much faster answer
SELECT band, (stats).*
FROM (SELECT band, ST_SummaryStats('o_4_boston','rast', band,true,0.25) As stats
 FROM generate_series(1,3) As band) As foo;

 band | count | sum | mean | stddev | min | max
------+---------+--------+------------------+------------------+-----+-----
 1 | 2112500 | 180686 | 82.6890480473373 | 45.6961043857248 | 0 | 255
 2 | 2112500 | 174571 | 81.448503668639 | 44.2252623171821 | 0 | 255
 3 | 2112500 | 144364 | 74.6765884023669 | 44.2014869384578 | 0 | 255

See Also

 summarystats,
 ST_SummaryStatsAgg,
 ST_Count,
 ST_Clip

Raster Processing: Raster to Geometry

Name
ST_MPolyFromText — Makes a MultiPolygon Geometry from WKT with the given SRID. If SRID is
			not given, it defaults to 0.

Synopsis
	geometry ST_MPolyFromText(WKT, 	
	 	srid);	

text WKT;
integer srid;

	geometry ST_MPolyFromText(WKT);	

text WKT;

Description
Makes a MultiPolygon from WKT with the given SRID. If SRID is
			not given, it defaults to 0.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Throws an error if the WKT is not a MULTIPOLYGON
Note
If you are absolutely sure all your WKT geometries are multipolygons, don't use this function.
				It is slower than ST_GeomFromText since it adds an additional validation step.
			

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 9.6.4

Examples
SELECT ST_MPolyFromText('MULTIPOLYGON(((0 0 1,20 0 1,20 20 1,0 20 1,0 0 1),(5 5 3,5 7 3,7 7 3,7 5 3,5 5 3)))');
SELECt ST_MPolyFromText('MULTIPOLYGON(((-70.916 42.1002,-70.9468 42.0946,-70.9765 42.0872,-70.9754 42.0875,-70.9749 42.0879,-70.9752 42.0881,-70.9754 42.0891,-70.9758 42.0894,-70.9759 42.0897,-70.9759 42.0899,-70.9754 42.0902,-70.9756 42.0906,-70.9753 42.0907,-70.9753 42.0917,-70.9757 42.0924,-70.9755 42.0928,-70.9755 42.0942,-70.9751 42.0948,-70.9755 42.0953,-70.9751 42.0958,-70.9751 42.0962,-70.9759 42.0983,-70.9767 42.0987,-70.9768 42.0991,-70.9771 42.0997,-70.9771 42.1003,-70.9768 42.1005,-70.977 42.1011,-70.9766 42.1019,-70.9768 42.1026,-70.9769 42.1033,-70.9775 42.1042,-70.9773 42.1043,-70.9776 42.1043,-70.9778 42.1048,-70.9773 42.1058,-70.9774 42.1061,-70.9779 42.1065,-70.9782 42.1078,-70.9788 42.1085,-70.9798 42.1087,-70.9806 42.109,-70.9807 42.1093,-70.9806 42.1099,-70.9809 42.1109,-70.9808 42.1112,-70.9798 42.1116,-70.9792 42.1127,-70.979 42.1129,-70.9787 42.1134,-70.979 42.1139,-70.9791 42.1141,-70.9987 42.1116,-71.0022 42.1273,
	-70.9408 42.1513,-70.9315 42.1165,-70.916 42.1002)))',4326);

See Also
ST_GeomFromText, ST_SRID

Release 1.0.1

Release date: 2005/05/24
Contains a few bug fixes and some improvements.
Upgrading

If you are upgrading from release 1.0.0RC6 or up you
 DO NOT need a dump/reload.
Upgrading from older releases requires a dump/reload. See the
 upgrading chapter for more
 informations.

Library changes

BUGFIX in 3d computation of length_spheroid()
BUGFIX in join selectivity estimator

Other changes/additions

BUGFIX in shp2pgsql escape functions
better support for concurrent postgis in multiple schemas
documentation fixes
jdbc2: compile with "-target 1.2 -source 1.2" by default
NEW -k switch for pgsql2shp
NEW support for custom createdb options in
 postgis_restore.pl
BUGFIX in pgsql2shp attribute names unicity enforcement
BUGFIX in Paris projections definitions
postgis_restore.pl cleanups

Name
ST_WrapX — Wrap a geometry around an X value.

Synopsis
	geometry ST_WrapX(geom, 	
	 	wrap, 	
	 	move);	

geometry geom;
float8 wrap;
float8 move;

Description

This function splits the input geometries and then moves every resulting
component falling on the right (for negative 'move') or on the left (for
positive 'move') of given 'wrap' line in the direction specified by the
'move' parameter, finally re-unioning the pieces together.

Note

This is useful to "recenter" long-lat input to have features
of interest not spawned from one side to the other.

Availability: 2.3.0 requires GEOS
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

-- Move all components of the given geometries whose bounding box
-- falls completely on the left of x=0 to +360
select ST_WrapX(geom, 0, 360);

-- Move all components of the given geometries whose bounding box
-- falls completely on the left of x=-30 to +360
select ST_WrapX(geom, -30, 360);

See Also
ST_ShiftLongitude

Name
~(geometry,box2df) — Returns TRUE if a geometry's 2D bonding box contains a 2D float precision bounding box (GIDX).

Synopsis
	boolean ~(A, 	
	 	B);	

				 geometry

				 A
				;

				 box2df

				 B
				;

Description
The ~ operator returns TRUE if the 2D bounding box of a geometry A contains the 2D bounding box B, using float precision. This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)
Note
This operand is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_Buffer(ST_GeomFromText('POINT(1 1)'), 10) ~ ST_MakeBox2D(ST_Point(0,0), ST_Point(2,2)) AS contains;

 contains

 t
(1 row)

See Also

				&&(geometry,box2df),
				&&(box2df,geometry),
				&&(box2df,box2df),
				~(box2df,geometry),
				~(box2df,box2df),
				@(geometry,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

Name
ST_AddPoint — Add a point to a LineString.

Synopsis
	geometry ST_AddPoint(linestring, 	
	 	point);	

geometry linestring;
geometry point;

	geometry ST_AddPoint(linestring, 	
	 	point, 	
	 	position = -1);	

geometry linestring;
geometry point;
integer position = -1;

Description
Adds a point to a LineString before the index position
				(using a 0-based index).
 If the position parameter is omitted or is -1
				the point is appended to the end of the LineString.
Availability: 1.1.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
Add a point to the end of a 3D line

SELECT ST_AsEWKT(ST_AddPoint('LINESTRING(0 0 1, 1 1 1)', ST_MakePoint(1, 2, 3)));

 st_asewkt

 LINESTRING(0 0 1,1 1 1,1 2 3)

Guarantee all lines in a table are closed
by adding the start point of each line to the end of the line
only for those that are not closed.

UPDATE sometable
SET geom = ST_AddPoint(geom, ST_StartPoint(geom))
FROM sometable
WHERE ST_IsClosed(geom) = false;

See Also
ST_RemovePoint, ST_SetPoint

Name
ST_Polygonize — Computes a collection of polygons formed from the linework of a set of geometries.

Synopsis
	geometry ST_Polygonize(geomfield);	

geometry set geomfield;

	geometry ST_Polygonize(geom_array);	

geometry[] geom_array;

Description
Creates a GeometryCollection containing the
 polygons formed by the constituent linework of a set of geometries.
 Input linework must be correctly noded for this function to work properly.
Note

 To ensure input is fully noded use ST_Node on the input geometry
 before polygonizing.

Note
GeometryCollections are often difficult to deal with with third party tools.
 Use ST_Dump to convert the polygonize result
 into separate polygons.

Performed by the GEOS module.
Availability: 1.0.0RC1

Examples: Polygonizing single linestrings

SELECT ST_AsEWKT(ST_Polygonize(geom_4269)) As geomtextrep
FROM (SELECT geom_4269 FROM ma.suffolk_edges ORDER BY tlid LIMIT 45) As foo;

geomtextrep

 SRID=4269;GEOMETRYCOLLECTION(POLYGON((-71.040878 42.285678,-71.040943 42.2856,-71.04096 42.285752,-71.040878 42.285678)),
 POLYGON((-71.17166 42.353675,-71.172026 42.354044,-71.17239 42.354358,-71.171794 42.354971,-71.170511 42.354855,
 -71.17112 42.354238,-71.17166 42.353675)))
(1 row)

--Use ST_Dump to dump out the polygonize geoms into individual polygons
SELECT ST_AsEWKT((ST_Dump(foofoo.polycoll)).geom) As geomtextrep
FROM (SELECT ST_Polygonize(geom_4269) As polycoll
 FROM (SELECT geom_4269 FROM ma.suffolk_edges
 ORDER BY tlid LIMIT 45) As foo) As foofoo;

geomtextrep

 SRID=4269;POLYGON((-71.040878 42.285678,-71.040943 42.2856,-71.04096 42.285752,
-71.040878 42.285678))
 SRID=4269;POLYGON((-71.17166 42.353675,-71.172026 42.354044,-71.17239 42.354358
,-71.171794 42.354971,-71.170511 42.354855,-71.17112 42.354238,-71.17166 42.353675))
(2 rows)

See Also

 ST_Node,
 ST_Dump

Name
ST_LineInterpolatePoint — Returns a point interpolated along a line at a fractional location.

Synopsis
	geometry ST_LineInterpolatePoint(a_linestring, 	
	 	a_fraction);	

geometry a_linestring;
float8 a_fraction;

Description
Returns a point interpolated along a line at a fractional location.
 First argument must be a LINESTRING.
 Second argument is a float between 0 and 1
			representing the fraction of line length
 where the point is to be located.
 The Z and M values are interpolated if present.

See ST_LineLocatePoint for
			computing the line location nearest to a Point.
Note
This function computes points in 2D and then interpolates
 values for Z and M,
 while ST_3DLineInterpolatePoint computes points in 3D
 and only interpolates the M value.

Note
Since release 1.1.1 this function also interpolates M and
			 Z values (when present), while prior releases set them to
			 0.0.

Availability: 0.8.2, Z and M supported added in 1.1.1
Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Interpolate_Point.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
[image: Examples]A LineString with the interpolated point at 20% position (0.20)

-- The point 20% along a line

SELECT ST_AsEWKT(
 ST_LineInterpolatePoint(
 'LINESTRING(25 50, 100 125, 150 190)',
 0.2));

 st_asewkt

 POINT(51.5974135047432 76.5974135047432)

The mid-point of a 3D line:

SELECT ST_AsEWKT(
 ST_LineInterpolatePoint('
 LINESTRING(1 2 3, 4 5 6, 6 7 8)',
 0.5));

	st_asewkt

 POINT(3.5 4.5 5.5)

The closest point on a line to a point:

SELECT ST_AsText(
 ST_LineInterpolatePoint(line.geom,
 ST_LineLocatePoint(line.geom, 'POINT(4 3)')))
FROM (SELECT ST_GeomFromText('LINESTRING(1 2, 4 5, 6 7)') As geom) AS line;

 st_astext

 POINT(3 4)

See Also

				ST_LineInterpolatePoints,
				ST_3DLineInterpolatePoint,
				ST_LineLocatePoint
			

Name
ST_SetValues — Returns modified raster resulting from setting the values of a given band.

Synopsis
	raster ST_SetValues(rast, 	
	 	nband, 	
	 	columnx, 	
	 	rowy, 	
	 	newvalueset, 	
	 	noset=NULL, 	
	 	keepnodata=FALSE);	

raster rast;
integer nband;
integer columnx;
integer rowy;
double precision[][] newvalueset;
boolean[][] noset=NULL;
boolean keepnodata=FALSE;

	raster ST_SetValues(rast, 	
	 	nband, 	
	 	columnx, 	
	 	rowy, 	
	 	newvalueset, 	
	 	nosetvalue, 	
	 	keepnodata=FALSE);	

raster rast;
integer nband;
integer columnx;
integer rowy;
double precision[][] newvalueset;
double precision nosetvalue;
boolean keepnodata=FALSE;

	raster ST_SetValues(rast, 	
	 	nband, 	
	 	columnx, 	
	 	rowy, 	
	 	width, 	
	 	height, 	
	 	newvalue, 	
	 	keepnodata=FALSE);	

raster rast;
integer nband;
integer columnx;
integer rowy;
integer width;
integer height;
double precision newvalue;
boolean keepnodata=FALSE;

	raster ST_SetValues(rast, 	
	 	columnx, 	
	 	rowy, 	
	 	width, 	
	 	height, 	
	 	newvalue, 	
	 	keepnodata=FALSE);	

raster rast;
integer columnx;
integer rowy;
integer width;
integer height;
double precision newvalue;
boolean keepnodata=FALSE;

	raster ST_SetValues(rast, 	
	 	nband, 	
	 	geomvalset, 	
	 	keepnodata=FALSE);	

raster rast;
integer nband;
geomval[] geomvalset;
boolean keepnodata=FALSE;

Description

 Returns modified raster resulting from setting specified pixels to new value(s) for the designated band. columnx and rowy are 1-indexed.

 If keepnodata is TRUE, those pixels whose values are NODATA will not be set with the corresponding value in newvalueset.

 For Variant 1, the specific pixels to be set are determined by the columnx, rowy pixel coordinates and the dimensions of the newvalueset array. noset can be used to prevent pixels with values present in newvalueset from being set (due to PostgreSQL not permitting ragged/jagged arrays). See example Variant 1.

 Variant 2 is like Variant 1 but with a simple double precision nosetvalue instead of a boolean noset array. Elements in newvalueset with the nosetvalue value with be skipped. See example Variant 2.

 For Variant 3, the specific pixels to be set are determined by the columnx, rowy pixel coordinates, width and height. See example Variant 3.

 Variant 4 is the same as Variant 3 with the exception that it assumes that the first band's pixels of rast will be set.

 For Variant 5, an array of geomval is used to determine the specific pixels to be set. If all the geometries in the array are of type POINT or MULTIPOINT, the function uses a shortcut where the longitude and latitude of each point is used to set a pixel directly. Otherwise, the geometries are converted to rasters and then iterated through in one pass. See example Variant 5.

Availability: 2.1.0

Examples: Variant 1

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 2, 2, ARRAY[[9, 9], [9, 9]]::double precision[][]
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 | 9
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 9 | | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 1, 1, ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][]
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 9
 1 | 2 | 9
 1 | 3 | 9
 2 | 1 | 9
 2 | 2 |
 2 | 3 | 9
 3 | 1 | 9
 3 | 2 | 9
 3 | 3 | 9

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 1, 1,
 ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][],
 ARRAY[[false], [true]]::boolean[][]
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 9
 1 | 2 | 1
 1 | 3 | 9
 2 | 1 | 9
 2 | 2 |
 2 | 3 | 9
 3 | 1 | 9
 3 | 2 | 9
 3 | 3 | 9

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| | 1 | 1 | | | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 9 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_SetValue(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 1, 1, NULL
),
 1, 1, 1,
 ARRAY[[9, 9, 9], [9, NULL, 9], [9, 9, 9]]::double precision[][],
 ARRAY[[false], [true]]::boolean[][],
 TRUE
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 |
 1 | 2 | 1
 1 | 3 | 9
 2 | 1 | 9
 2 | 2 |
 2 | 3 | 9
 3 | 1 | 9
 3 | 2 | 9
 3 | 3 | 9

Examples: Variant 2

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 1, 1, ARRAY[[-1, -1, -1], [-1, 9, 9], [-1, 9, 9]]::double precision[][], -1
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 | 9
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9

/*
This example is like the previous one. Instead of nosetvalue = -1, nosetvalue = NULL

The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 1, 1, ARRAY[[NULL, NULL, NULL], [NULL, 9, 9], [NULL, 9, 9]]::double precision[][], NULL::double precision
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 | 9
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9

Examples: Variant 3

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | => | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 2, 2, 2, 2, 9
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 | 9
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9

/*
The ST_SetValues() does the following...

+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 1 | 1 |
+ - + - + - + + - + - + - +
| 1 | | 1 | => | 1 | | 9 |
+ - + - + - + + - + - + - +
| 1 | 1 | 1 | | 1 | 9 | 9 |
+ - + - + - + + - + - + - +
*/
SELECT
 (poly).x,
 (poly).y,
 (poly).val
FROM (
SELECT
 ST_PixelAsPolygons(
 ST_SetValues(
 ST_SetValue(
 ST_AddBand(
 ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0),
 1, '8BUI', 1, 0
),
 1, 2, 2, NULL
),
 1, 2, 2, 2, 2, 9, TRUE
)
) AS poly
) foo
ORDER BY 1, 2;

 x | y | val
---+---+-----
 1 | 1 | 1
 1 | 2 | 1
 1 | 3 | 1
 2 | 1 | 1
 2 | 2 |
 2 | 3 | 9
 3 | 1 | 1
 3 | 2 | 9
 3 | 3 | 9

Examples: Variant 5

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0) AS rast
), bar AS (
 SELECT 1 AS gid, 'SRID=0;POINT(2.5 -2.5)'::geometry geom UNION ALL
 SELECT 2 AS gid, 'SRID=0;POLYGON((1 -1, 4 -1, 4 -4, 1 -4, 1 -1))'::geometry geom UNION ALL
 SELECT 3 AS gid, 'SRID=0;POLYGON((0 0, 5 0, 5 -1, 1 -1, 1 -4, 0 -4, 0 0))'::geometry geom UNION ALL
 SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0 0, 4 4, 4 -4)'::geometry
)
SELECT
 rid, gid, ST_DumpValues(ST_SetValue(rast, 1, geom, gid))
FROM foo t1
CROSS JOIN bar t2
ORDER BY rid, gid;

 rid | gid | st_dumpvalues
-----+-----+---
 1 | 1 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,1,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL}}")
 1 | 2 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,NULL,NULL,NULL,NULL}}")
 1 | 3 | (1,"{{3,3,3,3,3},{3,NULL,NULL,NULL,NULL},{3,NULL,NULL,NULL,NULL},{3,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL}}")
 1 | 4 | (1,"{{4,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,NULL},{NULL,NULL,NULL,NULL,4}}")
(4 rows)

The following shows that geomvals later in the array can overwrite prior geomvals

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0) AS rast
), bar AS (
 SELECT 1 AS gid, 'SRID=0;POINT(2.5 -2.5)'::geometry geom UNION ALL
 SELECT 2 AS gid, 'SRID=0;POLYGON((1 -1, 4 -1, 4 -4, 1 -4, 1 -1))'::geometry geom UNION ALL
 SELECT 3 AS gid, 'SRID=0;POLYGON((0 0, 5 0, 5 -1, 1 -1, 1 -4, 0 -4, 0 0))'::geometry geom UNION ALL
 SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0 0, 4 4, 4 -4)'::geometry
)
SELECT
 t1.rid, t2.gid, t3.gid, ST_DumpValues(ST_SetValues(rast, 1, ARRAY[ROW(t2.geom, t2.gid), ROW(t3.geom, t3.gid)]::geomval[]))
FROM foo t1
CROSS JOIN bar t2
CROSS JOIN bar t3
WHERE t2.gid = 1
 AND t3.gid = 2
ORDER BY t1.rid, t2.gid, t3.gid;

 rid | gid | gid | st_dumpvalues
-----+-----+-----+---
 1 | 1 | 2 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,2,2,2,NULL},{NULL,NULL,NULL,NULL,NULL}}")
(1 row)

This example is the opposite of the prior example

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0) AS rast
), bar AS (
 SELECT 1 AS gid, 'SRID=0;POINT(2.5 -2.5)'::geometry geom UNION ALL
 SELECT 2 AS gid, 'SRID=0;POLYGON((1 -1, 4 -1, 4 -4, 1 -4, 1 -1))'::geometry geom UNION ALL
 SELECT 3 AS gid, 'SRID=0;POLYGON((0 0, 5 0, 5 -1, 1 -1, 1 -4, 0 -4, 0 0))'::geometry geom UNION ALL
 SELECT 4 AS gid, 'SRID=0;MULTIPOINT(0 0, 4 4, 4 -4)'::geometry
)
SELECT
 t1.rid, t2.gid, t3.gid, ST_DumpValues(ST_SetValues(rast, 1, ARRAY[ROW(t2.geom, t2.gid), ROW(t3.geom, t3.gid)]::geomval[]))
FROM foo t1
CROSS JOIN bar t2
CROSS JOIN bar t3
WHERE t2.gid = 2
 AND t3.gid = 1
ORDER BY t1.rid, t2.gid, t3.gid;

 rid | gid | gid | st_dumpvalues
-----+-----+-----+---
 1 | 2 | 1 | (1,"{{NULL,NULL,NULL,NULL,NULL},{NULL,2,2,2,NULL},{NULL,2,1,2,NULL},{NULL,2,2,2,NULL},{NULL,NULL,NULL,NULL,NULL}}")
(1 row)

See Also

 ST_Value,
 ST_SetValue,
 ST_PixelAsPolygons

Name
PostGIS_DropBBox — Drop the bounding box cache from the geometry.

Synopsis
	geometry PostGIS_DropBBox(geomA);	

geometry geomA;

Description
Drop the bounding box cache from the geometry. This reduces
			geometry size, but makes bounding-box based queries slower. It is also used to drop a corrupt bounding box. A tale-tell sign of a corrupt cached bounding box
				is when your ST_Intersects and other relation queries leave out geometries that rightfully should return true.
Note
Bounding boxes are automatically added to geometries and improve speed of queries so in general this is not needed
				unless the generated bounding box somehow becomes corrupted or you have an old install that is lacking bounding boxes.
				Then you need to drop the old and readd. This kind of corruption has been observed in 8.3-8.3.6 series whereby cached bboxes were not always recalculated when a geometry changed and upgrading to a newer version without a dump reload will not
				correct already corrupted boxes. So one can manually correct using below and readd the bbox or do a dump reload.

[image: Description]
 This method supports Circular Strings and Curves

Examples
--This example drops bounding boxes where the cached box is not correct
			--The force to ST_AsBinary before applying Box2D forces a recalculation of the box, and Box2D applied to the table geometry always
			-- returns the cached bounding box.
			UPDATE sometable
 SET geom = PostGIS_DropBBox(geom)
 WHERE Not (Box2D(ST_AsBinary(geom)) = Box2D(geom));

	UPDATE sometable
 SET geom = PostGIS_AddBBox(geom)
 WHERE Not PostGIS_HasBBOX(geom);

See Also
PostGIS_AddBBox, PostGIS_HasBBox, Box2D

Name
ST_Perimeter — Returns the length of the boundary of a polygonal geometry or geography.

Synopsis
	float ST_Perimeter(g1);	

geometry g1;

	float ST_Perimeter(geog, 	
	 	use_spheroid=true);	

geography geog;
boolean use_spheroid=true;

Description
Returns the 2D perimeter of the geometry/geography if it is a ST_Surface, ST_MultiSurface (Polygon, MultiPolygon). 0 is returned for
				non-areal geometries. For linear geometries use ST_Length. For geometry types, units for perimeter measures are specified by the
				spatial reference system of the geometry.
For geography types, the calculations are performed using the inverse geodesic problem, where perimeter units are in meters.
				If PostGIS is compiled with PROJ version 4.8.0 or later, the spheroid is specified by the SRID, otherwise it is exclusive to WGS84.
				If use_spheroid=false, then calculations will approximate a sphere instead of a spheroid.
Currently this is an alias for ST_Perimeter2D, but this may change to support higher dimensions.
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.5.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.1.3, 9.5.4
Availability 2.0.0: Support for geography was introduced

Examples: Geometry
Return perimeter in feet for Polygon and MultiPolygon. Note this is in feet because EPSG:2249 is
				Massachusetts State Plane Feet

SELECT ST_Perimeter(ST_GeomFromText('POLYGON((743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416))', 2249));
st_perimeter

 122.630744000095
(1 row)

SELECT ST_Perimeter(ST_GeomFromText('MULTIPOLYGON(((763104.471273676 2949418.44119003,
763104.477769673 2949418.42538203,
763104.189609677 2949418.22343004,763104.471273676 2949418.44119003)),
((763104.471273676 2949418.44119003,763095.804579742 2949436.33850239,
763086.132105649 2949451.46730207,763078.452329651 2949462.11549407,
763075.354136904 2949466.17407812,763064.362142565 2949477.64291974,
763059.953961626 2949481.28983009,762994.637609571 2949532.04103014,
762990.568508415 2949535.06640477,762986.710889563 2949539.61421415,
763117.237897679 2949709.50493431,763235.236617789 2949617.95619822,
763287.718121842 2949562.20592617,763111.553321674 2949423.91664605,
763104.471273676 2949418.44119003)))', 2249));
st_perimeter

 845.227713366825
(1 row)
			

Examples: Geography
Return perimeter in meters and feet for Polygon and MultiPolygon. Note this is geography (WGS 84 long lat)

SELECT ST_Perimeter(geog) As per_meters, ST_Perimeter(geog)/0.3048 As per_ft
FROM ST_GeogFromText('POLYGON((-71.1776848522251 42.3902896512902,-71.1776843766326 42.3903829478009,
-71.1775844305465 42.3903826677917,-71.1775825927231 42.3902893647987,-71.1776848522251 42.3902896512902))') As geog;

 per_meters | per_ft
-----------------+------------------
37.3790462565251 | 122.634666195949

-- MultiPolygon example --
SELECT ST_Perimeter(geog) As per_meters, ST_Perimeter(geog,false) As per_sphere_meters, ST_Perimeter(geog)/0.3048 As per_ft
FROM ST_GeogFromText('MULTIPOLYGON(((-71.1044543107478 42.340674480411,-71.1044542869917 42.3406744369506,
-71.1044553562977 42.340673886454,-71.1044543107478 42.340674480411)),
((-71.1044543107478 42.340674480411,-71.1044860600303 42.3407237015564,-71.1045215770124 42.3407653385914,
-71.1045498002983 42.3407946553165,-71.1045611902745 42.3408058316308,-71.1046016507427 42.340837442371,
-71.104617893173 42.3408475056957,-71.1048586153981 42.3409875993595,-71.1048736143677 42.3409959528211,
-71.1048878050242 42.3410084812078,-71.1044020965803 42.3414730072048,
-71.1039672113619 42.3412202916693,-71.1037740497748 42.3410666421308,
-71.1044280218456 42.3406894151355,-71.1044543107478 42.340674480411)))') As geog;

 per_meters | per_sphere_meters | per_ft
------------------+-------------------+------------------
 257.634283683311 | 257.412311446337 | 845.256836231335
			

See Also
ST_GeogFromText, ST_GeomFromText, ST_Length

Release 1.0.0RC2

Release date: 2005/01/26
Second release candidate for 1.0.0 containing bug fixes and a few
 improvements.
Upgrading

You need a dump/reload to upgrade from precedent releases. See
 the upgrading chapter for more
 informations.

Library changes

BUGFIX in pointarray box3d computation
BUGFIX in distance_spheroid definition
BUGFIX in transform() missing to update bbox cache
NEW jdbc driver (jdbc2)
GEOMETRYCOLLECTION(EMPTY) syntax support for backward
 compatibility
Faster binary outputs
Stricter OGC WKB/WKT constructors

Scripts changes

More correct STABLE, IMMUTABLE, STRICT uses in
 lwpostgis.sql
stricter OGC WKB/WKT constructors

Other changes

Faster and more robust loader (both i18n and not)
Initial autoconf script

Spatial Reference System Functions

Abstract
These functions work with the Spatial Reference System of geometries
 as defined in the spatial_ref_sys table.

Name
ST_SquareGrid — Returns a set of grid squares and cell indices that completely cover the bounds of the geometry argument.

Synopsis
	setof record ST_SquareGrid(size, 	
	 	bounds);	

float8 size;
geometry bounds;

Description
Starts with the concept of a square tiling of the plane.
 For a given planar SRS, and a given edge size, starting at the origin of the SRS,
 there is one unique square tiling of the plane, Tiling(SRS, Size).
 This function answers the question: what grids in a given Tiling(SRS, Size)
 overlap with a given bounds.
The SRS for the output squares is the SRS provided by the bounds geometry.
Doubling or edge size of the square generates a new parent tiling that
 perfectly fits with the original tiling. Standard web map tilings in mercator
 are just powers-of-two square grids in the mercator plane.
Availability: 3.1.0

Example: Generating a 1 degree grid for a country
The grid will fill the whole bounds of the country, so if you want just squares
 that touch the country you will have to filter afterwards with ST_Intersects.
WITH grid AS (
SELECT (ST_SquareGrid(1, ST_Transform(geom,4326))).*
FROM admin0 WHERE name = 'Canada'
)
 SELEcT ST_AsText(geom)
 FROM grid

Example: Counting points in squares (using single chopped grid)
To do a point summary against a square tiling, generate a square grid using the
 extent of the points as the bounds, then spatially join to that grid. Note the estimated extent might be off from actual extent, so be cautious and at very least make sure you've analyzed your table.
SELECT COUNT(*), squares.geom
 FROM
 pointtable AS pts
 INNER JOIN
 ST_SquareGrid(
 1000,
 ST_SetSRID(ST_EstimatedExtent('pointtable', 'geom'), 3857)
) AS squares
 ON ST_Intersects(pts.geom, squares.geom)
 GROUP BY squares.geom

Example: Counting points in squares using set of grid per point
This yields the same result as the first example but will be slower for a large number of points
SELECT COUNT(*), squares.geom
 FROM
 pointtable AS pts
 INNER JOIN
 ST_SquareGrid(
 1000,
 pts.geom
) AS squares
 ON ST_Intersects(pts.geom, squares.geom)
 GROUP BY squares.geom

See Also
ST_TileEnvelope, ST_HexagonGrid
 , ST_EstimatedExtent
 , ST_SetSRID

Name
ST_RotateY — Rotates a geometry about the Y axis.

Synopsis
	geometry ST_RotateY(geomA, 	
	 	rotRadians);	

geometry geomA;
float rotRadians;

Description
Rotates a geometry geomA - rotRadians about the y axis.
Note
ST_RotateY(geomA, rotRadians)
			is short-hand for ST_Affine(geomA, cos(rotRadians), 0, sin(rotRadians), 0, 1, 0, -sin(rotRadians), 0, cos(rotRadians), 0, 0, 0).

Availability: 1.1.2. Name changed from RotateY to ST_RotateY in 1.2.2
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

--Rotate a line 90 degrees along y-axis
 SELECT ST_AsEWKT(ST_RotateY(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), pi()/2));
		 st_asewkt

 LINESTRING(3 2 -1,1 1 -1)

See Also
ST_Affine, ST_RotateX, ST_RotateZ

Name
ST_PixelAsCentroids —
 Returns the centroid (point geometry) for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The point geometry is the centroid of the area represented by a pixel.

Synopsis
	setof record ST_PixelAsCentroids(rast, 	
	 	band=1, 	
	 	exclude_nodata_value=TRUE);	

raster rast;
integer band=1;
boolean exclude_nodata_value=TRUE;

Description

 Returns the centroid (point geometry) for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The point geometry is the centroid of the area represented by a pixel.

 Return record format: geom geometry, val double precision, x integer, y integers.

Note

 When exclude_nodata_value = TRUE, only those pixels whose values are not NODATA are returned as points.

Enhanced: 3.2.0 Faster now implemented in C.
Changed: 2.1.1 Changed behavior of exclude_nodata_value.
Availability: 2.1.0

Examples
 --LATERAL syntax requires PostgreSQL 9.3+
SELECT x, y, val, ST_AsText(geom)
 FROM (SELECT dp.* FROM dummy_rast, LATERAL ST_PixelAsCentroids(rast, 1) AS dp WHERE rid = 2) foo;
 x | y | val | st_astext
---+---+-----+--------------------------------
 1 | 1 | 253 | POINT(3427927.775 5793243.975)
 2 | 1 | 254 | POINT(3427927.825 5793243.975)
 3 | 1 | 253 | POINT(3427927.875 5793243.975)
 4 | 1 | 254 | POINT(3427927.925 5793243.975)
 5 | 1 | 254 | POINT(3427927.975 5793243.975)
 1 | 2 | 253 | POINT(3427927.775 5793243.925)
 2 | 2 | 254 | POINT(3427927.825 5793243.925)
 3 | 2 | 254 | POINT(3427927.875 5793243.925)
 4 | 2 | 253 | POINT(3427927.925 5793243.925)
 5 | 2 | 249 | POINT(3427927.975 5793243.925)
 1 | 3 | 250 | POINT(3427927.775 5793243.875)
 2 | 3 | 254 | POINT(3427927.825 5793243.875)
 3 | 3 | 254 | POINT(3427927.875 5793243.875)
 4 | 3 | 252 | POINT(3427927.925 5793243.875)
 5 | 3 | 249 | POINT(3427927.975 5793243.875)
 1 | 4 | 251 | POINT(3427927.775 5793243.825)
 2 | 4 | 253 | POINT(3427927.825 5793243.825)
 3 | 4 | 254 | POINT(3427927.875 5793243.825)
 4 | 4 | 254 | POINT(3427927.925 5793243.825)
 5 | 4 | 253 | POINT(3427927.975 5793243.825)
 1 | 5 | 252 | POINT(3427927.775 5793243.775)
 2 | 5 | 250 | POINT(3427927.825 5793243.775)
 3 | 5 | 254 | POINT(3427927.875 5793243.775)
 4 | 5 | 254 | POINT(3427927.925 5793243.775)
 5 | 5 | 254 | POINT(3427927.975 5793243.775)

See Also

 ST_DumpAsPolygons,
 ST_PixelAsPolygon,
 ST_PixelAsPolygons,
 ST_PixelAsPoint,
 ST_PixelAsPoints,
 ST_PixelAsCentroid

TopoGeometry Outputs

Name
ST_RasterToWorldCoordX — Returns the geometric X coordinate upper left of a raster, column and row. Numbering of columns
 and rows starts at 1.

Synopsis
	float8 ST_RasterToWorldCoordX(rast, 	
	 	xcolumn);	

raster rast;
integer xcolumn;

	float8 ST_RasterToWorldCoordX(rast, 	
	 	xcolumn, 	
	 	yrow);	

raster rast;
integer xcolumn;
integer yrow;

Description
Returns the upper left X coordinate of a raster column row in geometric units of the georeferenced raster.
 Numbering of columns and rows starts at 1 but if you pass in a negative number or number higher than number of
 columns in raster, it will give you
 coordinates outside of the raster file to left or right with the assumption that the
 skew and pixel sizes are same as selected raster.
Note
For non-skewed rasters, providing the X column is sufficient. For skewed rasters,
 the georeferenced coordinate is a function of the ST_ScaleX and ST_SkewX and row and column.
 An error will be raised if you give just the X column for a skewed raster.

Changed: 2.1.0 In prior versions, this was called ST_Raster2WorldCoordX

Examples

-- non-skewed raster providing column is sufficient
SELECT rid, ST_RasterToWorldCoordX(rast,1) As x1coord,
 ST_RasterToWorldCoordX(rast,2) As x2coord,
 ST_ScaleX(rast) As pixelx
FROM dummy_rast;

 rid | x1coord | x2coord | pixelx
-----+------------+-----------+--------
 1 | 0.5 | 2.5 | 2
 2 | 3427927.75 | 3427927.8 | 0.05

-- for fun lets skew it
SELECT rid, ST_RasterToWorldCoordX(rast, 1, 1) As x1coord,
 ST_RasterToWorldCoordX(rast, 2, 3) As x2coord,
 ST_ScaleX(rast) As pixelx
FROM (SELECT rid, ST_SetSkew(rast, 100.5, 0) As rast FROM dummy_rast) As foo;

 rid | x1coord | x2coord | pixelx
-----+------------+-----------+--------
 1 | 0.5 | 203.5 | 2
 2 | 3427927.75 | 3428128.8 | 0.05

See Also
ST_ScaleX, ST_RasterToWorldCoordY, ST_SetSkew, ST_SkewX

Raster Band Editors

Name
ST_Rescale — Resample a raster by adjusting only its scale (or pixel size). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.

Synopsis
	raster ST_Rescale(rast, 	
	 	scalexy, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
double precision scalexy;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

	raster ST_Rescale(rast, 	
	 	scalex, 	
	 	scaley, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
double precision scalex;
double precision scaley;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

Description
Resample a raster by adjusting only its scale (or pixel size). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. The default is NearestNeighbor which is the fastest but results in the worst interpolation.
scalex and scaley define the new pixel size. scaley must often be negative to get well oriented raster.
When the new scalex or scaley is not a divisor of the raster width or height, the extent of the resulting raster is expanded to encompass the extent of the provided raster. If you want to be sure to retain exact input extent see ST_Resize
maxerr is the threshold for transformation approximation by the resampling algorithm (in pixel units). A default of 0.125 is used if no maxerr is specified, which is the same value used in GDAL gdalwarp utility. If set to zero, no approximation takes place.
Note
Refer to: GDAL Warp resampling methods for more details.

Note
ST_Rescale is different from ST_SetScale in that ST_SetScale do not resample the raster to match the raster extent. ST_SetScale only changes the metadata (or georeference) of the raster to correct an originally mis-specified scaling. ST_Rescale results in a raster having different width and height computed to fit the geographic extent of the input raster. ST_SetScale do not modify the width, nor the height of the raster.

Availability: 2.0.0 Requires GDAL 1.6.1+
Changed: 2.1.0 Works on rasters with no SRID

Examples
A simple example rescaling a raster from a pixel size of 0.001 degree to a pixel size of 0.0015 degree.
-- the original raster pixel size
SELECT ST_PixelWidth(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0)) width

 width

0.001

-- the rescaled raster raster pixel size
SELECT ST_PixelWidth(ST_Rescale(ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0), 0.0015)) width

 width

0.0015

See Also

 ST_Resize,
 ST_Resample,
 ST_SetScale,
 ST_ScaleX,
 ST_ScaleY,
 ST_Transform

Release 2.4.2

Release date: 2017/11/15
This is a bug fix and performance improvement release.
Bug Fixes and Enhancements

#3917, Fix zcta5 load
#3667, Fix for bug in geography ST_Segmentize
#3926, Add missing 2.2.6 and 2.3.4 upgrade paths (Muhammad Usama)

Name
ST_Extent — Aggregate function that returns the bounding box of geometries.

Synopsis
	box2d ST_Extent(geomfield);	

geometry set geomfield;

Description
An aggregate function that returns a box2d bounding box
 that bounds a set of geometries.

The bounding box coordinates are in the spatial reference system of the input geometries.
ST_Extent is similar in concept to Oracle Spatial/Locator's SDO_AGGR_MBR.
Note
ST_Extent returns boxes with only X and Y ordinates even with 3D geometries.
 To return XYZ ordinates use ST_3DExtent.

Note
The returned box3d value does not include a SRID.
 Use ST_SetSRID to convert it into a geometry with SRID metadata.
 The SRID is the same as the input geometries.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
Note
Examples below use Massachusetts State Plane ft (SRID=2249)

SELECT ST_Extent(geom) as bextent FROM sometable;
					 st_bextent

BOX(739651.875 2908247.25,794875.8125 2970042.75)

--Return extent of each category of geometries
SELECT ST_Extent(geom) as bextent
FROM sometable
GROUP BY category ORDER BY category;

					 bextent | name
--+----------------
 BOX(778783.5625 2951741.25,794875.8125 2970042.75) | A
 BOX(751315.8125 2919164.75,765202.6875 2935417.25) | B
 BOX(739651.875 2917394.75,756688.375 2935866) | C

 --Force back into a geometry
 -- and render the extended text representation of that geometry
SELECT ST_SetSRID(ST_Extent(geom),2249) as bextent FROM sometable;

				bextent
--
 SRID=2249;POLYGON((739651.875 2908247.25,739651.875 2970042.75,794875.8125 2970042.75,
 794875.8125 2908247.25,739651.875 2908247.25))
		

See Also
ST_3DExtent, ST_SetSRID

Name
ST_ForceSFS — Force the geometries to use SFS 1.1 geometry types only.

Synopsis
	geometry ST_ForceSFS(geomA);	

geometry geomA;

	geometry ST_ForceSFS(geomA, 	
	 	version);	

geometry geomA;
text version;

Description
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports 3d and will not drop the z-index.

Name
@(geometry,box2df) — Returns TRUE if a geometry's 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).

Synopsis
	boolean @(A, 	
	 	B);	

				 geometry

				 A
				;

				 box2df

				 B
				;

Description
The @ operator returns TRUE if the A geometry's 2D bounding box is contained the 2D bounding box B, using float precision. This means that if B is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)
Note
This operand is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_Buffer(ST_GeomFromText('POINT(2 2)'), 1) @ ST_MakeBox2D(ST_Point(0,0), ST_Point(5,5)) AS is_contained;

 is_contained

 t
(1 row)

See Also

				&&(geometry,box2df),
				&&(box2df,geometry),
				&&(box2df,box2df),
				~(geometry,box2df),
				~(box2df,geometry),
				~(box2df,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

Release 1.0.6

Release date: 2005/12/06
Contains a few bug fixes and improvements.
Upgrading

If you are upgrading from release 1.0.3 or later you
 DO NOT need a dump/reload.
If you are upgrading from a release between 1.0.0RC6
 and 1.0.2 (inclusive) and really want a live upgrade read
 the upgrade section of the
 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

Bug fixes

Fixed palloc(0) call in collection deserializer (only gives
 problem with --enable-cassert)
Fixed bbox cache handling bugs
Fixed geom_accum(NULL, NULL) segfault
Fixed segfault in addPoint()
Fixed short-allocation in lwcollection_clone()
Fixed bug in segmentize()
Fixed bbox computation of SnapToGrid output

Improvements

Initial support for postgresql 8.2
Added missing SRID mismatch checks in GEOS ops

Name
ST_MapAlgebra (expression version) —
 Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.

Synopsis
	raster ST_MapAlgebra(rast, 	
	 	nband, 	
	 	pixeltype, 	
	 	expression, 	
	 	nodataval=NULL);	

raster rast;
integer nband;
text pixeltype;
text expression;
double precision nodataval=NULL;

	raster ST_MapAlgebra(rast, 	
	 	pixeltype, 	
	 	expression, 	
	 	nodataval=NULL);	

raster rast;
text pixeltype;
text expression;
double precision nodataval=NULL;

	raster ST_MapAlgebra(rast1, 	
	 	nband1, 	
	 	rast2, 	
	 	nband2, 	
	 	expression, 	
	 	pixeltype=NULL, 	
	 	extenttype=INTERSECTION, 	
	 	nodata1expr=NULL, 	
	 	nodata2expr=NULL, 	
	 	nodatanodataval=NULL);	

raster rast1;
integer nband1;
raster rast2;
integer nband2;
text expression;
text pixeltype=NULL;
text extenttype=INTERSECTION;
text nodata1expr=NULL;
text nodata2expr=NULL;
double precision nodatanodataval=NULL;

	raster ST_MapAlgebra(rast1, 	
	 	rast2, 	
	 	expression, 	
	 	pixeltype=NULL, 	
	 	extenttype=INTERSECTION, 	
	 	nodata1expr=NULL, 	
	 	nodata2expr=NULL, 	
	 	nodatanodataval=NULL);	

raster rast1;
raster rast2;
text expression;
text pixeltype=NULL;
text extenttype=INTERSECTION;
text nodata1expr=NULL;
text nodata2expr=NULL;
double precision nodatanodataval=NULL;

Description

 Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.

Availability: 2.1.0

Description: Variants 1 and 2 (one raster)

 Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation defined by the expression on the input raster (rast). If nband is not provided, band 1 is assumed. The new raster will have the same georeference, width, and height as the original raster but will only have one band.

 If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL, then the new raster band will have the same pixeltype as the input rast band.

	Keywords permitted for expression
	[rast] - Pixel value of the pixel of interest

	[rast.val] - Pixel value of the pixel of interest

	[rast.x] - 1-based pixel column of the pixel of interest

	[rast.y] - 1-based pixel row of the pixel of interest

Description: Variants 3 and 4 (two raster)

 Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation to the two bands defined by the expression on the two input raster bands rast1, (rast2). If no band1, band2 is specified band 1 is assumed. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster. The resulting raster will have the extent defined by the extenttype parameter.

	expression
	
 A PostgreSQL algebraic expression involving the two rasters and PostgreSQL defined functions/operators that will define the pixel value when pixels intersect. e.g. (([rast1] + [rast2])/2.0)::integer

	pixeltype
	
 The resulting pixel type of the output raster. Must be one listed in ST_BandPixelType, left out or set to NULL. If not passed in or set to NULL, will default to the pixeltype of the first raster.

	extenttype
	
 Controls the extent of resulting raster

	
 INTERSECTION - The extent of the new raster is the intersection of the two rasters. This is the default.

	
 UNION - The extent of the new raster is the union of the two rasters.

	
 FIRST - The extent of the new raster is the same as the one of the first raster.

	
 SECOND - The extent of the new raster is the same as the one of the second raster.

	nodata1expr
	
 An algebraic expression involving only rast2 or a constant that defines what to return when pixels of rast1 are nodata values and spatially corresponding rast2 pixels have values.

	nodata2expr
	
 An algebraic expression involving only rast1 or a constant that defines what to return when pixels of rast2 are nodata values and spatially corresponding rast1 pixels have values.

	nodatanodataval
	
 A numeric constant to return when spatially corresponding rast1 and rast2 pixels are both nodata values.

	Keywords permitted in expression, nodata1expr and nodata2expr
	[rast1] - Pixel value of the pixel of interest from rast1

	[rast1.val] - Pixel value of the pixel of interest from rast1

	[rast1.x] - 1-based pixel column of the pixel of interest from rast1

	[rast1.y] - 1-based pixel row of the pixel of interest from rast1

	[rast2] - Pixel value of the pixel of interest from rast2

	[rast2.val] - Pixel value of the pixel of interest from rast2

	[rast2.x] - 1-based pixel column of the pixel of interest from rast2

	[rast2.y] - 1-based pixel row of the pixel of interest from rast2

Examples: Variants 1 and 2

WITH foo AS (
 SELECT ST_AddBand(ST_MakeEmptyRaster(10, 10, 0, 0, 1, 1, 0, 0, 0), '32BF'::text, 1, -1) AS rast
)
SELECT
 ST_MapAlgebra(rast, 1, NULL, 'ceil([rast]*[rast.x]/[rast.y]+[rast.val])')
FROM foo;

Examples: Variant 3 and 4

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI'::text, 100, 0) AS rast UNION ALL
 SELECT 2 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0), 2, '8BUI', 20, 0), 3, '32BUI'::text, 300, 0) AS rast
)
SELECT
 ST_MapAlgebra(
 t1.rast, 2,
 t2.rast, 1,
 '([rast2] + [rast1.val]) / 2'
) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 1
 AND t2.rid = 2;

See Also

 rastbandarg,
 ST_Union,
 ST_MapAlgebra (callback function version)

Name
ST_GeoReference — Returns the georeference meta data in GDAL or ESRI format as commonly seen in a world file. Default is GDAL.

Synopsis
	text ST_GeoReference(rast, 	
	 	format=GDAL);	

raster rast;
text format=GDAL;

Description
Returns the georeference meta data including carriage return in GDAL or ESRI format as commonly seen in a world file. Default is GDAL if no type specified. type is string 'GDAL' or 'ESRI'.

Difference between format representations is as follows:
GDAL:

scalex
skewy
skewx
scaley
upperleftx
upperlefty
ESRI:

scalex
skewy
skewx
scaley
upperleftx + scalex*0.5
upperlefty + scaley*0.5

Examples
SELECT ST_GeoReference(rast, 'ESRI') As esri_ref, ST_GeoReference(rast, 'GDAL') As gdal_ref
 FROM dummy_rast WHERE rid=1;

 esri_ref | gdal_ref
--------------+--------------
 2.0000000000 | 2.0000000000
 0.0000000000 : 0.0000000000
 0.0000000000 : 0.0000000000
 3.0000000000 : 3.0000000000
 1.5000000000 : 0.5000000000
 2.0000000000 : 0.5000000000

See Also
ST_SetGeoReference, ST_ScaleX, ST_ScaleY

Loading Spatial Data

Once you have created a spatial table, you are ready to upload spatial
	data to the database. There are two built-in ways to get spatial data into a
	PostGIS/PostgreSQL database: using formatted SQL statements or using the
	Shapefile loader.
Using SQL to Load Data

If spatial data can be converted to a text representation (as either WKT or WKB), then using
	 SQL might be the easiest way to get data into PostGIS.
 Data can be bulk-loaded into PostGIS/PostgreSQL by loading a
	 text file of SQL INSERT statements using the psql SQL utility.
A SQL load file (roads.sql for example)
	 might look like this:
BEGIN;
INSERT INTO roads (road_id, roads_geom, road_name)
 VALUES (1,'LINESTRING(191232 243118,191108 243242)','Jeff Rd');
INSERT INTO roads (road_id, roads_geom, road_name)
 VALUES (2,'LINESTRING(189141 244158,189265 244817)','Geordie Rd');
INSERT INTO roads (road_id, roads_geom, road_name)
 VALUES (3,'LINESTRING(192783 228138,192612 229814)','Paul St');
INSERT INTO roads (road_id, roads_geom, road_name)
 VALUES (4,'LINESTRING(189412 252431,189631 259122)','Graeme Ave');
INSERT INTO roads (road_id, roads_geom, road_name)
 VALUES (5,'LINESTRING(190131 224148,190871 228134)','Phil Tce');
INSERT INTO roads (road_id, roads_geom, road_name)
 VALUES (6,'LINESTRING(198231 263418,198213 268322)','Dave Cres');
COMMIT;
The SQL file can be loaded into PostgreSQL using psql:
psql -d [database] -f roads.sql

Using the Shapefile Loader

 The shp2pgsql data loader converts Shapefiles into SQL suitable for
 insertion into a PostGIS/PostgreSQL database either in geometry or geography format.
 The loader has several operating modes selected by command line flags.

There is also a shp2pgsql-gui graphical interface with most
	of the options as the command-line loader.
 This may be easier to use for one-off non-scripted loading or if you are new to PostGIS.
	It can also be configured as a plugin to PgAdminIII.
	
	(c|a|d|p) These are mutually exclusive options:
	

	-c
	
 Creates a new table and populates it from the Shapefile. This is the
 default mode.

	-a
	
 Appends data from the Shapefile into the database table. Note that to use this
 option to load multiple files, the files must have the same attributes and same
 data types.

	-d
	
 Drops the database table before creating a new table with the data in the Shapefile.

	-p
	
 Only produces the table creation SQL code, without adding any actual data. This
 can be used if you need to completely separate the table creation and data loading
 steps.

	-?
	
 Display help screen.

	-D
	
 Use the PostgreSQL "dump" format for the output data. This can be combined with -a, -c and
 -d. It is much faster to load than the default "insert" SQL format. Use this for very
 large data sets.

	-s [<FROM_SRID>:]<SRID>
	
 Creates and populates the geometry tables with the specified SRID.
 Optionally specifies that the input shapefile uses the given
 FROM_SRID, in which case the geometries will be reprojected to the
 target SRID.

	-k
	
 Keep identifiers' case (column, schema and attributes). Note that attributes in Shapefile
 are all UPPERCASE.

	-i
	
 Coerce all integers to standard 32-bit integers, do not create 64-bit bigints, even if the
 DBF header signature appears to warrant it.

	-I
	
 Create a GiST index on the geometry column.

	-m
	
 -m a_file_name Specify a file containing a set of mappings of (long) column
 names to 10 character DBF column names. The content of the file is one or
 more lines of two names separated by white space and no trailing or
 leading space. For example:

COLUMNNAME DBFFIELD1
AVERYLONGCOLUMNNAME DBFFIELD2

	-S
	
 Generate simple geometries instead of MULTI geometries. Will only succeed if
 all the geometries are actually single (I.E. a MULTIPOLYGON with a single shell, or
 or a MULTIPOINT with a single vertex).

	-t <dimensionality>
	
 Force the output geometry to have the specified dimensionality. Use the following
 strings to indicate the dimensionality: 2D, 3DZ, 3DM, 4D.

	 If the input has fewer dimensions that specified, the output will have those dimensions filled
	 in with zeroes. If the input has more dimensions that specified, the unwanted dimensions will
	 be stripped.

	-w
	
 Output WKT format, instead of WKB. Note that this can
 introduce coordinate drifts due to loss of precision.

	-e
	
 Execute each statement on its own, without using a transaction.
 This allows loading of the majority of good data when there are some bad
 geometries that generate errors. Note that this cannot be used with the
 -D flag as the "dump" format always uses a transaction.

	-W <encoding>
	
 Specify encoding of the input data (dbf file). When used, all attributes of the dbf are
 converted from the specified encoding to UTF8. The resulting SQL output will contain a
 SET CLIENT_ENCODING to UTF8 command, so that the backend will be able to
 reconvert from UTF8 to whatever encoding the database is configured to use internally.

	-N <policy>
	
 NULL geometries handling policy (insert*,skip,abort)

	-n
	
 -n Only import DBF file. If your data has no corresponding shapefile, it will automatically switch to this mode
	and load just the dbf. So setting this flag is only needed if you have a full shapefile set, and you only want the attribute data and no geometry.

	-G
	
			Use geography type instead of geometry (requires lon/lat data) in WGS84 long lat (SRID=4326)
		

	-T <tablespace>
	
 Specify the tablespace for the new table. Indexes will still use the
 default tablespace unless the -X parameter is also used. The PostgreSQL
 documentation has a good description on when to use custom tablespaces.

	-X <tablespace>
	
 Specify the tablespace for the new table's indexes. This applies to
 the primary key index, and the GIST spatial index if -I is also used.

	-Z
	
 When used, this flag will prevent the generation of ANALYZE statements.
 Without the -Z flag (default behavior), the ANALYZE statements will
 be generated.

 An example session using the loader to create an input file and loading it might look like
 this:

shp2pgsql -c -D -s 4269 -i -I shaperoads.shp myschema.roadstable > roads.sql
psql -d roadsdb -f roads.sql

 A conversion and load can be done in one step using UNIX pipes:

shp2pgsql shaperoads.shp myschema.roadstable | psql -d roadsdb

Release 1.3.1

Release date: 2007/08/13
This release fixes some oversights in the previous release around
 version numbering, documentation, and tagging.

Name
ST_AsEncodedPolyline — Returns an Encoded Polyline from a LineString geometry.

Synopsis
	text ST_AsEncodedPolyline(geom, 	
	 	precision=5);	

geometry geom;
integer precision=5;

Description
Returns the geometry as an Encoded Polyline. This format is used by Google Maps with precision=5 and by Open Source Routing Machine with precision=5 and 6.
Optional precision specifies how many decimal places will be preserved in Encoded Polyline. Value should be the same on encoding and decoding, or coordinates will be incorrect.
Availability: 2.2.0

Examples
Basic

	SELECT ST_AsEncodedPolyline(GeomFromEWKT('SRID=4326;LINESTRING(-120.2 38.5,-120.95 40.7,-126.453 43.252)'));
	--result--
	|_p~iF~ps|U_ulLnnqC_mqNvxq`@
	
Use in conjunction with geography linestring and geography segmentize, and put on google maps
-- the SQL for Boston to San Francisco, segments every 100 KM
	SELECT ST_AsEncodedPolyline(
		ST_Segmentize(
			ST_GeogFromText('LINESTRING(-71.0519 42.4935,-122.4483 37.64)'),
				100000)::geometry) As encodedFlightPath;
javascript will look something like this where $ variable you replace with query result
<script type="text/javascript" src="http://maps.googleapis.com/maps/api/js?libraries=geometry"></script>
<script type="text/javascript">
	 flightPath = new google.maps.Polyline({
			path: google.maps.geometry.encoding.decodePath("$encodedFlightPath"),
			map: map,
			strokeColor: '#0000CC',
			strokeOpacity: 1.0,
			strokeWeight: 4
		});
</script>
	

See Also
ST_LineFromEncodedPolyline, ST_Segmentize

Release 3.0.0beta1

Release date: 2019/09/28
If compiling with PostgreSQL+JIT, LLVM >= 6 is required
Supported PostgreSQL versions for this release are:
 PostgreSQL 9.5 - PostgreSQL 12
 GEOS >= 3.6. Additional features enabled if you running Proj6+ and/or PostgreSQL 12.
 Performance enhancements if running GEOS 3.8+
Major highlights

4492, Fix ST_Simplify ignoring the value of the 3rd parameter (Raúl Marín)
4494, Fix ST_Simplify output having an outdated bbox (Raúl Marín)
4493, Fix ST_RemoveRepeatedPoints output having an outdated bbox (Raúl Marín)
4495, Fix ST_SnapToGrid output having an outdated bbox (Raúl Marín)
4496, Make ST_Simplify(TRIANGLE) collapse if requested (Raúl Marín)
4501, Allow postgis_tiger_geocoder to be installable by non-super users (Regina Obe)
4503, Speed up the calculation of cartesian bbox (Raúl Marín)
4504, shp2pgsql -D not working with schema qualified tables (Regina Obe)
4505, Speed up conversion of geometries to/from GEOS (Dan Baston)
4507, Use GEOSMakeValid and GEOSBuildArea for GEOS 3.8+ (Dan Baston)
4491, Speed up ST_RemoveRepeatedPoints (Raúl Marín)
4509, Update geocoder for tiger 2019 (Regina Obe)
4338, Census block level data (tabblock table) not loading (Regina Obe)

Name
ST_Buffer —
Computes a geometry covering all points within a given distance from a geometry.

Synopsis
	geometry ST_Buffer(g1, 	
	 	radius_of_buffer, 	
	 	buffer_style_parameters = '');	

geometry g1;
float radius_of_buffer;
text buffer_style_parameters = '';

	geometry ST_Buffer(g1, 	
	 	radius_of_buffer, 	
	 	num_seg_quarter_circle);	

geometry g1;
float radius_of_buffer;
integer num_seg_quarter_circle;

	geography ST_Buffer(g1, 	
	 	radius_of_buffer, 	
	 	buffer_style_parameters);	

geography g1;
float radius_of_buffer;
text buffer_style_parameters;

	geography ST_Buffer(g1, 	
	 	radius_of_buffer, 	
	 	num_seg_quarter_circle);	

geography g1;
float radius_of_buffer;
integer num_seg_quarter_circle;

Description
Computes a a POLYGON or MULTIPOLYGON that represents all points whose distance
 from a geometry/geography is less than or equal to a given distance.
 A negative distance shrinks the geometry rather than expanding it.
 A negative distance may shrink a polygon completely, in which case POLYGON EMPTY is returned.
 For points and lines negative distances always return empty results.

For geometry, the distance is specified in the units of the
 Spatial Reference System of the geometry.
 For geography, the distance is specified in meters.
The optional third parameter controls the buffer accuracy and style.
The accuracy of circular arcs in the buffer is specified as the number of line segments
used to approximate a quarter circle (default is 8).
The buffer style can be specifed by
providing a list of blank-separated key=value pairs as follows:

	'quad_segs=#' : number of line segments used to approximate a quarter circle (default is 8).

	'endcap=round|flat|square' : endcap style (defaults to "round"). 'butt' is accepted as a synonym for 'flat'.

	'join=round|mitre|bevel' : join style (defaults to "round"). 'miter' is accepted as a synonym for 'mitre'.

	'mitre_limit=#.#' : mitre ratio limit (only affects mitered join style). 'miter_limit' is accepted as a synonym for 'mitre_limit'.

	'side=both|left|right' : 'left' or 'right' performs a single-sided buffer on the geometry, with the buffered side relative to the direction of the line.
This is only applicable to LINESTRING geometry and does not affect POINT or POLYGON geometries. By default end caps are square.

Note
For geography, this is a wrapper around the geometry implementation.
 It determines a planar spatial reference system that best fits the bounding box of the geography object
 (trying UTM, Lambert Azimuthal Equal Area (LAEA) North/South pole, and finally Mercator).
 The buffer is computed in the planar space, and then transformed back to WGS84.
 This may not produce the desired behavior if the input object is much larger than a UTM zone or crosses the dateline

Note
Buffer output is always a valid polygonal geometry.
 Buffer can handle invalid inputs,
 so buffering by distance 0 is sometimes used as a way of repairing invalid polygons.
 ST_MakeValid can also be used for this purpose.

Note
Buffering is sometimes used to perform a within-distance search.
 For this use case it is more efficient to use ST_DWithin.

Note
This function ignores the Z dimension.
It always gives a 2D result even when used on a 3D geometry.

Enhanced: 2.5.0 - ST_Buffer geometry support was enhanced to allow for side buffering specification side=both|left|right.
Availability: 1.5 - ST_Buffer was enhanced to support different endcaps and join types. These are useful for example to convert road linestrings
 into polygon roads with flat or square edges instead of rounded edges. Thin wrapper for geography was added.

Performed by the GEOS module.
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.3
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.17

Examples
	[image: Examples]quad_segs=8 (default)

SELECT ST_Buffer(
 ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=8');

	[image: Examples]quad_segs=2 (lame)

SELECT ST_Buffer(
 ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2');

	[image: Examples]endcap=round join=round (default)

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'endcap=round join=round');

	[image: Examples]endcap=square

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'endcap=square join=round');

	[image: Examples]endcap=flat

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'endcap=flat join=round');

	[image: Examples]join=bevel

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'join=bevel');

	[image: Examples]join=mitre mitre_limit=5.0 (default mitre limit)

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'join=mitre mitre_limit=5.0');

	[image: Examples]join=mitre mitre_limit=1

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'join=mitre mitre_limit=1.0');

	[image: Examples]side=left

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'side=left');

	[image: Examples]side=right

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'side=right');

	[image: Examples]side=left join=mitre

SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'
), 10, 'side=left join=mitre');

	[image: Examples]right-hand-winding, polygon boundary side=left

SELECT ST_Buffer(
ST_ForceRHR(
ST_Boundary(
 ST_GeomFromText(
'POLYGON ((50 50, 50 150, 150 150, 150 50, 50 50))'))),
), 20, 'side=left');

	[image: Examples]right-hand-winding, polygon boundary side=right

SELECT ST_Buffer(
ST_ForceRHR(
ST_Boundary(
 ST_GeomFromText(
'POLYGON ((50 50, 50 150, 150 150, 150 50, 50 50))'))
), 20,'side=right')

--A buffered point approximates a circle
-- A buffered point forcing approximation of (see diagram)
-- 2 points per quarter circle is poly with 8 sides (see diagram)
SELECT ST_NPoints(ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50)) As promisingcircle_pcount,
ST_NPoints(ST_Buffer(ST_GeomFromText('POINT(100 90)'), 50, 2)) As lamecircle_pcount;

promisingcircle_pcount | lamecircle_pcount
------------------------+-------------------
 33 | 9

--A lighter but lamer circle
-- only 2 points per quarter circle is an octagon
--Below is a 100 meter octagon
-- Note coordinates are in NAD 83 long lat which we transform
to Mass state plane meter and then buffer to get measurements in meters;
SELECT ST_AsText(ST_Buffer(
ST_Transform(
ST_SetSRID(ST_Point(-71.063526, 42.35785),4269), 26986)
,100,2)) As octagon;

POLYGON((236057.59057465 900908.759918696,236028.301252769 900838.049240578,235
957.59057465 900808.759918696,235886.879896532 900838.049240578,235857.59057465
900908.759918696,235886.879896532 900979.470596815,235957.59057465 901008.759918
696,236028.301252769 900979.470596815,236057.59057465 900908.759918696))

See Also
ST_Collect, ST_DWithin, ST_SetSRID, ST_Transform, ST_Union, ST_MakeValid

Name
ST_MakePoint — Creates a 2D, 3DZ or 4D Point.

Synopsis
	geometry ST_MakePoint(x, 	
	 	y);	

float x;
float y;

	geometry ST_MakePoint(x, 	
	 	y, 	
	 	z);	

float x;
float y;
float z;

	geometry ST_MakePoint(x, 	
	 	y, 	
	 	z, 	
	 	m);	

float x;
float y;
float z;
float m;

Description
Creates a 2D, 3D Z or 4D ZM Point geometry.
Use ST_MakePointM to make points with XYM coordinates.

			While not OGC-compliant, ST_MakePoint is
			faster and more precise than ST_GeomFromText
			and ST_PointFromText.
			It is also easier to use for numeric coordinate values.
Note
For geodetic coordinates, X is longitude and Y is latitude

[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
--Return point with unknown SRID
SELECT ST_MakePoint(-71.1043443253471, 42.3150676015829);

--Return point marked as WGS 84 long lat
SELECT ST_SetSRID(ST_MakePoint(-71.1043443253471, 42.3150676015829),4326);

--Return a 3D point (e.g. has altitude)
SELECT ST_MakePoint(1, 2,1.5);

--Get z of point
SELECT ST_Z(ST_MakePoint(1, 2,1.5));
result

1.5

See Also
ST_GeomFromText, ST_PointFromText, ST_SetSRID, ST_MakePointM

Name
ST_Overlaps — Returns true if two geometries intersect and have the same dimension, but are not completely contained by each other.

Synopsis
	boolean ST_Overlaps(A, 	
	 	B);	

geometry A;
geometry B;

Description
Returns TRUE if the Geometries "spatially
 overlap". By that we mean they intersect, but one does not completely contain another.
Note
This function automatically includes a bounding box comparison
that makes use of any spatial indexes that are available on the geometries.
 To avoid index use, use the function _ST_Overlaps.

Performed by the GEOS module
Important
Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

NOTE: this is the "allowable" version that returns a
 boolean, not an integer.
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.32

Examples
The following illustrations all return TRUE.
	[image: Examples]MULTIPOINT / MULTIPOINT

	[image: Examples]LINESTRING / LINESTRING

	[image: Examples]POLYGON / POLYGON

--a point on a line is contained by the line and is of a lower dimension, and therefore does not overlap the line
 nor crosses

SELECT ST_Overlaps(a,b) As a_overlap_b,
 ST_Crosses(a,b) As a_crosses_b,
 ST_Intersects(a, b) As a_intersects_b, ST_Contains(b,a) As b_contains_a
FROM (SELECT ST_GeomFromText('POINT(1 0.5)') As a, ST_GeomFromText('LINESTRING(1 0, 1 1, 3 5)') As b)
 As foo

a_overlap_b | a_crosses_b | a_intersects_b | b_contains_a
------------+-------------+----------------+--------------
f | f | t | t

--a line that is partly contained by circle, but not fully is defined as intersecting and crossing,
-- but since of different dimension it does not overlap
SELECT ST_Overlaps(a,b) As a_overlap_b, ST_Crosses(a,b) As a_crosses_b,
 ST_Intersects(a, b) As a_intersects_b,
 ST_Contains(a,b) As a_contains_b
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 0.5)'), 3) As a, ST_GeomFromText('LINESTRING(1 0, 1 1, 3 5)') As b)
 As foo;

 a_overlap_b | a_crosses_b | a_intersects_b | a_contains_b
-------------+-------------+----------------+--------------
 f | t | t | f

 -- a 2-dimensional bent hot dog (aka buffered line string) that intersects a circle,
 -- but is not fully contained by the circle is defined as overlapping since they are of the same dimension,
-- but it does not cross, because the intersection of the 2 is of the same dimension
-- as the maximum dimension of the 2

SELECT ST_Overlaps(a,b) As a_overlap_b, ST_Crosses(a,b) As a_crosses_b, ST_Intersects(a, b) As a_intersects_b,
ST_Contains(b,a) As b_contains_a,
ST_Dimension(a) As dim_a, ST_Dimension(b) as dim_b, ST_Dimension(ST_Intersection(a,b)) As dima_intersection_b
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 0.5)'), 3) As a,
 ST_Buffer(ST_GeomFromText('LINESTRING(1 0, 1 1, 3 5)'),0.5) As b)
 As foo;

 a_overlap_b | a_crosses_b | a_intersects_b | b_contains_a | dim_a | dim_b | dima_intersection_b
-------------+-------------+----------------+--------------+-------+-------+---------------------
 t | f | t | f | 2 | 2 | 2

See Also
ST_Contains, ST_Crosses, ST_Dimension, ST_Intersects

Name
DropTopoGeometryColumn — Drops the topogeometry column from the table named table_name in schema schema_name and unregisters the columns from topology.layer table.

Synopsis
	text DropTopoGeometryColumn(schema_name, 	
	 	table_name, 	
	 	column_name);	

varchar schema_name;
varchar table_name;
varchar column_name;

Description
Drops the topogeometry column from the table named table_name in schema schema_name and unregisters the columns from topology.layer table. Returns summary
 of drop status. NOTE: it first sets all values to NULL before dropping to bypass referential integrity checks.
Availability: 1.?

Examples
SELECT topology.DropTopoGeometryColumn('ma_topo', 'parcel_topo', 'topo');

See Also
AddTopoGeometryColumn

Name
Install_Missing_Indexes — Finds all tables with key columns used in geocoder joins and filter conditions that are missing used indexes on those columns and will add them.

Synopsis
	boolean Install_Missing_Indexes();	

;

Description
Finds all tables in tiger and tiger_data schemas with key columns used in geocoder joins and filters that are missing indexes on those columns and will output the SQL DDL to
 define the index for those tables and then execute the generated script. This is a helper function that adds new indexes needed to make queries faster that may have been missing during the load process.
 This function is a companion to Missing_Indexes_Generate_Script that in addition to generating the create index script, also executes it.
 It is called as part of the update_geocode.sql upgrade script.
Availability: 2.0.0

Examples
SELECT install_missing_indexes();
 install_missing_indexes

 t

See Also
Loader_Generate_Script, Missing_Indexes_Generate_Script

Name
ST_EstimatedExtent — Returns the estimated extent of a spatial table.

Synopsis
	box2d ST_EstimatedExtent(schema_name, 	
	 	table_name, 	
	 	geocolumn_name, 	
	 	parent_only);	

text schema_name;
text table_name;
text geocolumn_name;
boolean parent_only;

	box2d ST_EstimatedExtent(schema_name, 	
	 	table_name, 	
	 	geocolumn_name);	

text schema_name;
text table_name;
text geocolumn_name;

	box2d ST_EstimatedExtent(table_name, 	
	 	geocolumn_name);	

text table_name;
text geocolumn_name;

Description
Returns the estimated extent of a spatial table as a box2d.
 The	current schema is used if not specified.
			The estimated extent is taken from the geometry column's statistics.
 This is usually much faster than computing the exact extent of the table
 using ST_Extent or ST_3DExtent.

 The default behavior is to also use statistics collected from child tables (tables
			with INHERITS) if available. If parent_only is set to TRUE, only
			statistics for the given table are used and child tables are ignored.
		
For PostgreSQL >= 8.0.0 statistics are gathered by VACUUM
		ANALYZE and the result extent will be about 95% of the actual one.
 For PostgreSQL < 8.0.0 statistics are gathered by running
		update_geometry_stats() and the result extent is exact.

Note

 In the absence of statistics (empty table or no ANALYZE called) this function
 returns NULL. Prior to version 1.5.4 an exception was thrown instead.
		

Availability: 1.0.0
Changed: 2.1.0. Up to 2.0.x this was called ST_Estimated_Extent.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_EstimatedExtent('ny', 'edges', 'geom');
--result--
BOX(-8877653 4912316,-8010225.5 5589284)

SELECT ST_EstimatedExtent('feature_poly', 'geom');
--result--
BOX(-124.659652709961 24.6830825805664,-67.7798080444336 49.0012092590332)
		

See Also
ST_Extent, ST_3DExtent

Name
ST_GeomFromEWKB — Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).

Synopsis
	geometry ST_GeomFromEWKB(EWKB);	

bytea EWKB;

Description
Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known binary (EWKT) representation.
Note
The EWKB format is not an OGC standard, but a PostGIS specific format that includes the spatial reference system (SRID)
			identifier

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
line string binary rep 0f
		LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932) in NAD 83 long lat (4269).
Note
NOTE: Even though byte arrays are delimited with \ and may have ', we need to escape both out with \ and '' if standard_conforming_strings is off. So it does not
			look exactly like its AsEWKB representation.

SELECT ST_GeomFromEWKB(E'\\001\\002\\000\\000 \\255\\020\\000\\000\\003\\000\\000\\000\\344J=
\\013B\\312Q\\300n\\303(\\010\\036!E@''\\277E''K
\\312Q\\300\\366{b\\235*!E@\\225|\\354.P\\312Q
\\300p\\231\\323e1!E@');
Note
In PostgreSQL 9.1+ - standard_conforming_strings is set to on by default, where as in past versions it was set to off. You can change defaults as needed
		 for a single query or at the database or server level. Below is how you would do it with standard_conforming_strings = on. In this case we escape the ' with standard ansi ',
		 but slashes are not escaped

	 set standard_conforming_strings = on;
SELECT ST_GeomFromEWKB('\001\002\000\000 \255\020\000\000\003\000\000\000\344J=\012\013B
 \312Q\300n\303(\010\036!E@''\277E''K\012\312Q\300\366{b\235*!E@\225|\354.P\312Q\012\300p\231\323e1')

See Also
ST_AsBinary, ST_AsEWKB, ST_GeomFromWKB

Upgrading spatial databases

	 Upgrading existing spatial databases can be tricky as it requires
	 replacement or introduction of new PostGIS object definitions.
	

	 Unfortunately not all definitions can be easily replaced in a live
	 database, so sometimes your best bet is a dump/reload process.
	

	 PostGIS provides a SOFT UPGRADE procedure for minor or bugfix releases,
	 and a HARD UPGRADE procedure for major releases.
	

	 Before attempting to upgrade PostGIS, it is always worth to backup your
	 data. If you use the -Fc flag to pg_dump you will always be able to
	 restore the dump with a HARD UPGRADE.
	
Soft upgrade

If you installed your database using extensions, you'll need to upgrade using the extension model as well. If you installed using the old sql script way,
	 then you should upgrade using the sql script way. Please refer to the appropriate.
Soft Upgrade Pre 9.1+ or without extensions

This section applies only to those who installed PostGIS
	 not using extensions. If you have extensions and try to
	 upgrade with this approach you'll get messages like:
can't drop ... because postgis extension depends on it
NOTE: if you are moving from PostGIS 1.* to PostGIS 2.* or from
		PostGIS 2.* prior to r7409, you cannot use this procedure but
		would rather need to do a
		HARD UPGRADE.
		

			After compiling and installing (make install) you should
			find a set of	*_upgrade.sql
			files in the installation folders. You can list
			them all with:
		
ls `pg_config --sharedir`/contrib/postgis-3.2.0rc1/*_upgrade.sql

			Load them all in turn, starting from postgis_upgrade.sql.
		
psql -f postgis_upgrade.sql -d your_spatial_database

			The same procedure applies to raster,
			topology and sfcgal extensions, with upgrade files named
			rtpostgis_upgrade.sql,
			topology_upgrade.sql and
			sfcgal_upgrade.sql respectively.
			If you need them:
		
psql -f rtpostgis_upgrade.sql -d your_spatial_database
psql -f topology_upgrade.sql -d your_spatial_database
psql -f sfcgal_upgrade.sql -d your_spatial_database
Note

		 If you can't find the
		 postgis_upgrade.sql specific for
		 upgrading your version you are using a version too
		 early for a soft upgrade and need to do a
			HARD UPGRADE.
		

		The PostGIS_Full_Version function
		should inform you about the need to run this kind of
		upgrade using a "procs need upgrade" message.
	

Soft Upgrade 9.1+ using extensions

If you originally installed PostGIS with extensions, then you need to upgrade using extensions as well. Doing a minor upgrade with extensions, is fairly painless.
ALTER EXTENSION postgis UPDATE TO "3.2.0rc1";
ALTER EXTENSION postgis_topology UPDATE TO "3.2.0rc1";
If you get an error notice something like:
No migration path defined for ... to 3.2.0rc1
Then you'll need to backup your database, create a fresh one as described in the section called “Spatially enable database using EXTENSION” and then restore your backup on top of this new database.
If you get a notice message like:
Version "3.2.0rc1" of extension "postgis" is already installed

Then everything is already up to date and you can safely ignore it. UNLESS
you're attempting to upgrade from an development version to the next (which
doesn't get a new version number); in that case you can append "next" to the version
string, and next time you'll need to drop the "next" suffix again:

ALTER EXTENSION postgis UPDATE TO "3.2.0rc1next";
ALTER EXTENSION postgis_topology UPDATE TO "3.2.0rc1next";
Note
If you installed PostGIS originally without a version specified, you can often skip the reinstallation of postgis extension before restoring since the backup just has CREATE EXTENSION postgis and thus
		picks up the newest latest version during restore.

Note

 If you are upgrading PostGIS extension from a version prior to 3.0.0
 you'll end up with an unpackaged PostGIS Raster support. You can
 repackage the raster support using:

 CREATE EXTENSION postgis_raster FROM unpackaged;

 And then, if you don't need it, drop it with:

 DROP EXTENSION postgis_raster;

Hard upgrade

		By HARD UPGRADE we mean full dump/reload of postgis-enabled databases.
		You need a HARD UPGRADE when PostGIS objects' internal storage changes
		or when SOFT UPGRADE is not possible. The
		Release Notes
		appendix reports for each version whether you need a dump/reload (HARD
		UPGRADE) to upgrade.
	

		The dump/reload process is assisted by the postgis_restore.pl
		script which takes care of skipping from the dump all
		definitions which belong to PostGIS (including old ones),
		allowing you to restore your schemas and data into a
		database with PostGIS installed without getting duplicate
		symbol errors or bringing forward deprecated objects.
	
Supplementary instructions for windows users are available at Windows Hard upgrade.

		The Procedure is as follows:
	
	
		Create a "custom-format" dump of the database you want
		to upgrade (let's call it olddb)
		include binary blobs (-b) and verbose (-v) output.
		The user can be the owner of the db, need not be postgres
		super account.
	
pg_dump -h localhost -p 5432 -U postgres -Fc -b -v -f "/somepath/olddb.backup" olddb

	
		Do a fresh install of PostGIS in a new database -- we'll
		refer to this database as newdb.
		Please refer to the section called “Spatially enable database without using EXTENSION (discouraged)” and the section called “Spatially enable database using EXTENSION” for
		instructions on how to do this.
	

		The spatial_ref_sys entries found in your dump will be
		restored, but they will not override existing ones in
		spatial_ref_sys. This is to ensure that fixes in the
		official set will be properly propagated to restored
		databases. If for any reason you really want your own
		overrides of standard entries just don't load the
		spatial_ref_sys.sql file when creating the new db.
	

		If your database is really old or you know you've
		been using long deprecated functions in your
		views and functions, you might need to load
		legacy.sql for all your functions
		and views etc. to properly come back.
		Only do this if _really_ needed. Consider upgrading your
		views and functions before dumping instead, if possible.
		The deprecated functions can be later removed by loading
		uninstall_legacy.sql.
	

	
		Restore your backup into your fresh
		newdb database using
		postgis_restore.pl.
		Unexpected errors, if any, will be printed to the standard
		error stream by psql. Keep a log of those.
	
perl utils/postgis_restore.pl "/somepath/olddb.backup" | psql -h localhost -p 5432 -U postgres newdb 2> errors.txt

		Errors may arise in the following cases:
	
	
		Some of your views or functions make use of deprecated PostGIS objects.
		In order to fix this you may try loading legacy.sql
		script prior to restore or you'll have to restore to a
		version of PostGIS which still contains those objects
		and try a migration again after porting your code.
		If the legacy.sql way works for you, don't forget
		to fix your code to stop using deprecated functions and drop them
		loading uninstall_legacy.sql.
	

	
		Some custom records of spatial_ref_sys in dump file have
		an invalid SRID value. Valid SRID values are bigger than 0
		and smaller than 999000. Values in the 999000.999999 range
 are reserved for internal use while values > 999999 can't
 be used at all.
 All your custom records with invalid SRIDs will be retained,
 with those > 999999 moved into the reserved range, but the
 spatial_ref_sys table would lose a check constraint guarding
 for that invariant to hold and possibly also its primary key
 (when multiple invalid SRIDS get converted to the same reserved
 SRID value).

		In order to fix this you should copy your custom SRS to
		a SRID with a valid value (maybe in the 910000..910999
		range), convert all your tables to the new srid (see
		UpdateGeometrySRID), delete the invalid
		entry from spatial_ref_sys and re-construct the check(s) with:

		
ALTER TABLE spatial_ref_sys ADD CONSTRAINT spatial_ref_sys_srid_check check (srid > 0 AND srid < 999000);

		
ALTER TABLE spatial_ref_sys ADD PRIMARY KEY(srid));

		If you are upgrading an old database containing french
			IGN
		 cartography, you will have probably SRIDs out
		of range and you will see, when importing your database, issues like this :

		
 WARNING: SRID 310642222 converted to 999175 (in reserved zone)

		In this case, you can try following steps : first throw
		out completely the IGN from the sql which is resulting
		from postgis_restore.pl. So, after having run :

		
perl utils/postgis_restore.pl "/somepath/olddb.backup" > olddb.sql

		run this command :

		
grep -v IGNF olddb.sql > olddb-without-IGN.sql

		Create then your newdb, activate the required Postgis extensions,
		and insert properly the french system IGN with :

		
			this script
		

		After these operations, import your data :

		
psql -h localhost -p 5432 -U postgres -d newdb -f olddb-without-IGN.sql 2> errors.txt

	

Release 1.0.4

Release date: 2005/09/09
Contains important bug fixes and a few improvements. In
 particular, it fixes a memory leak preventing successful build of GiST
 indexes for large spatial tables.
Upgrading

If you are upgrading from release 1.0.3 you DO
 NOT need a dump/reload.
If you are upgrading from a release between 1.0.0RC6
 and 1.0.2 (inclusive) and really want a live upgrade read
 the upgrade section of the
 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

Bug fixes

Memory leak plugged in GiST indexing
Segfault fix in transform() handling of proj4 errors
Fixed some proj4 texts in spatial_ref_sys (missing +proj)
Loader: fixed string functions usage, reworked NULL objects
 check, fixed segfault on MULTILINESTRING input.
Fixed bug in MakeLine dimension handling
Fixed bug in translate() corrupting output bounding box

Improvements

Documentation improvements
More robust selectivity estimator
Minor speedup in distance()
Minor cleanups
GiST indexing cleanup
Looser syntax acceptance in box3d parser

Name
ST_TRI — Returns a raster with the calculated Terrain Ruggedness Index.

Synopsis
	raster ST_TRI(rast, 	
	 	nband, 	
	 	customextent, 	
	 	pixeltype="32BF", 	
	 	 interpolate_nodata=FALSE);	

raster rast;
integer nband;
raster customextent;
text pixeltype="32BF" ;
boolean interpolate_nodata=FALSE ;

Description

 Terrain Ruggedness Index is calculated by comparing a central pixel with its neighbors, taking the absolute values of the differences, and averaging the result.

Note
This function only supports a focalmean radius of one.

Availability: 2.1.0

Examples

-- needs examples

See Also

 ST_MapAlgebra (callback function version),
 ST_Roughness,
 ST_TPI,
 ST_Slope,
 ST_HillShade,
 ST_Aspect

Name
AddOverviewConstraints — Tag a raster column as being an overview of another.

Synopsis
	boolean AddOverviewConstraints(ovschema, 	
	 	ovtable, 	
	 	ovcolumn, 	
	 	refschema, 	
	 	reftable, 	
	 	refcolumn, 	
	 	ovfactor);	

name
 ovschema;
name
 ovtable;
name
 ovcolumn;
name
 refschema;
name
 reftable;
name
 refcolumn;
int
 ovfactor;

	boolean AddOverviewConstraints(ovtable, 	
	 	ovcolumn, 	
	 	reftable, 	
	 	refcolumn, 	
	 	ovfactor);	

name
 ovtable;
name
 ovcolumn;
name
 reftable;
name
 refcolumn;
int
 ovfactor;

Description

Adds constraints on a raster column that are used to display information
in the raster_overviews raster catalog.

The ovfactor parameter represents the scale multiplier
in the overview column: higher overview factors have lower resolution.

When the ovschema and refschema
parameters are omitted, the first table found scanning the
search_path will be used.

Availability: 2.0.0

Examples

CREATE TABLE res1 AS SELECT
ST_AddBand(
 ST_MakeEmptyRaster(1000, 1000, 0, 0, 2),
 1, '8BSI'::text, -129, NULL
) r1;

CREATE TABLE res2 AS SELECT
ST_AddBand(
 ST_MakeEmptyRaster(500, 500, 0, 0, 4),
 1, '8BSI'::text, -129, NULL
) r2;

SELECT AddOverviewConstraints('res2', 'r2', 'res1', 'r1', 2);

-- verify if registered correctly in the raster_overviews view --
SELECT o_table_name ot, o_raster_column oc,
 r_table_name rt, r_raster_column rc,
 overview_factor f
FROM raster_overviews WHERE o_table_name = 'res2';
 ot | oc | rt | rc | f
------+----+------+----+---
 res2 | r2 | res1 | r1 | 2
(1 row)

See Also

 the section called “Raster Overviews”,
 DropOverviewConstraints,
 ST_CreateOverview,
 AddRasterConstraints

