PostGIS 3.3.4 Manual

The PostGIS Development Group

Abstract
PostGIS is an extension to the PostgreSQL object-relational
 database system which allows GIS (Geographic Information Systems)
 objects to be stored in the database. PostGIS includes support for
 GiST-based R-Tree spatial indexes, and functions for analysis and
 processing of GIS objects.
[image: PostGIS 3.3.4 Manual]
 [image: PostGIS 3.3.4 Manual]

This is the manual for version 3.3.4
[image: PostGIS 3.3.4 Manual] This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License.
 Feel free to use this material any way you like, but we ask that you attribute credit to the PostGIS Project
 and wherever possible, a link back to http://postgis.net.

Chapter 2. PostGIS Installation

	This chapter details the steps required to install PostGIS.

Short Version

To compile assuming you have all the dependencies in your search path:
tar -xvfz postgis-3.3.4.tar.gz
cd postgis-3.3.4
./configure
make
make install

Once PostGIS is installed, it needs to be
enabled (the section called “Creating spatial databases”)
or upgraded (the section called “Upgrading spatial databases”)
in each individual database you want to use it in.

Compiling and Install from Source

Note

		Many OS systems now include pre-built packages for PostgreSQL/PostGIS.
		In many cases compilation is only necessary if you want the most
		bleeding edge versions or you are a package maintainer.
	
This section includes general compilation instructions, if you are compiling for Windows etc
		or another OS, you may find additional more detailed help at PostGIS User contributed compile guides and PostGIS Dev Wiki.
Pre-Built Packages for various OS are listed in PostGIS Pre-built Packages
If you are a windows user, you can get stable builds via Stackbuilder or PostGIS Windows download site
	 We also have very bleeding-edge windows experimental builds that are built usually once or twice a week or whenever anything exciting happens. You can
	 use these to experiment with the in progress releases of PostGIS

	 The PostGIS module is an extension to the PostgreSQL backend server. As
	 such, PostGIS 3.3.4 requires full
	 PostgreSQL server headers access in order to compile. It can be built
	 against PostgreSQL versions 11 - 15. Earlier
	 versions of PostgreSQL are not supported.
	

	 Refer to the PostgreSQL installation guides if you haven't already
	 installed PostgreSQL.
	
		http://www.postgresql.org
	
	 .
	
Note

		For GEOS functionality, when you install PostgresSQL you may need to
		explicitly link PostgreSQL against the standard C++ library:
	
LDFLAGS=-lstdc++ ./configure [YOUR OPTIONS HERE]

		This is a workaround for bogus C++ exceptions interaction with older
		development tools. If you experience weird problems (backend
		unexpectedly closed or similar things) try this trick. This will require
		recompiling your PostgreSQL from scratch, of course.
	

	 The following steps outline the configuration and compilation of the
	 PostGIS source. They are written for Linux users and will not work on
	 Windows or Mac.
	
Getting the Source

	 Retrieve the PostGIS source archive from the downloads website
	
		http://download.osgeo.org/postgis/source/postgis-3.3.4.tar.gz
	
	
wget http://download.osgeo.org/postgis/source/postgis-3.3.4.tar.gz
tar -xvzf postgis-3.3.4.tar.gz
cd postgis-3.3.4

	 This will create a directory called
	 postgis-3.3.4 in the current working
	 directory.
	

	 Alternatively, checkout the source from the
	
		git
	
	 repository
	
		https://git.osgeo.org/gitea/postgis/postgis/
	
	 .
	
git clone https://git.osgeo.org/gitea/postgis/postgis.git postgis
cd postgis
sh autogen.sh

	 Change into the newly created
	 postgis directory to continue
	 the installation.
	
./configure

Install Requirements

	 PostGIS has the following requirements for building and usage:
	

	 Required
	
	
		 PostgreSQL 11 - 15. A complete installation
		 of PostgreSQL (including server headers) is required. PostgreSQL
		 is available from
		
			http://www.postgresql.org
		
		 .
		
For a full PostgreSQL / PostGIS support matrix and PostGIS/GEOS support matrix refer to
			http://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
		

	
		 GNU C compiler (gcc). Some other ANSI C compilers
		 can be used to compile PostGIS, but we find far fewer problems when
		 compiling with gcc.
		

	
		 GNU Make (gmake or make).
		 For many systems, GNU make is the default version
		 of make. Check the version by invoking make -v.
		 Other versions of make may not process the
		 PostGIS Makefile properly.
		

	
		 Proj reprojection library. Proj 4.9 or above is required.
			The Proj library is used to provide coordinate reprojection support within
		 PostGIS. Proj is available for download from
		
			https://proj.org/
		
		 .
		

	
		 GEOS geometry library, version 3.6 or greater, but GEOS 3.11+ is required to take full advantage of all the new functions and features. GEOS is available for download from
		
			https://libgeos.org/
		 .
		

	
		 LibXML2, version 2.5.x or higher. LibXML2 is currently used in some imports
		 functions (ST_GeomFromGML and ST_GeomFromKML). LibXML2 is available for download from
		 https://gitlab.gnome.org/GNOME/libxml2/-/releases.
		

	
		 JSON-C, version 0.9 or higher. JSON-C is currently used to import GeoJSON via the
		 function ST_GeomFromGeoJson. JSON-C is available for download from
		 https://github.com/json-c/json-c/releases/.
		

	
		 GDAL, version 2+ is required 3+ is preferred. This is required for raster
 support.
		 https://gdal.org/download.html.
		

	
		 If compiling with PostgreSQL+JIT, LLVM version >=6 is required
		 https://trac.osgeo.org/postgis/ticket/4125.
		

	 Optional
	
	
		 GDAL (pseudo optional) only if you don't want raster
		 you can leave it out. Also make sure to enable
		 the drivers you want to use as described in the section called “Configuring raster support”.

	
		 GTK (requires GTK+2.0, 2.8+) to compile the shp2pgsql-gui shape file loader.
		
			http://www.gtk.org/
		
		 .
		

	
			SFCGAL, version 1.3.1 (or higher), 1.4.1 or higher is recommended. SFCGAL can be used to provide additional 2D and 3D advanced analysis functions to PostGIS cf the section called “SFCGAL Functions”. And also allow to use SFCGAL rather than GEOS for some 2D functions provided by both backends (like ST_Intersection or ST_Area, for instance). A PostgreSQL configuration variable postgis.backend allow end user to control which backend he want to use if SFCGAL is installed (GEOS by default). Nota: SFCGAL 1.2 require at least CGAL 4.3 and Boost 1.54 (cf: https://oslandia.gitlab.io/SFCGAL/dev.html)

		 https://gitlab.com/Oslandia/SFCGAL/.
		

	
				In order to build the the section called “Address Standardizer” you will also need PCRE http://www.pcre.org (which generally is already installed on nix systems). Regex::Assemble perl CPAN package is only needed if you want to rebuild the data encoded in parseaddress-stcities.h.
				the section called “Address Standardizer” will automatically be built if it detects a PCRE library, or you pass in a valid --with-pcre-dir=/path/to/pcre during configure.
			

	
			 To enable ST_AsMVT protobuf-c library 1.1.0 or higher (for usage) and the protoc-c compiler (for building) are required.
				Also, pkg-config is required to verify the correct minimum version of protobuf-c.
				See protobuf-c.
				By default, Postgis will use Wagyu to validate MVT polygons faster which requires a c++11 compiler. It will use CXXFLAGS and the same compiler as the PostgreSQL installation. To disable this and use GEOS instead use the --without-wagyu during the configure step.
			

	
		 CUnit (CUnit). This is needed for regression testing. http://cunit.sourceforge.net/
		

	
		 DocBook (xsltproc) is required for building the
		 documentation. Docbook is available from
		
			http://www.docbook.org/
		
		 .
		

	
		 DBLatex (dblatex) is required for building the
		 documentation in PDF format. DBLatex is available from
		
			http://dblatex.sourceforge.net/
		
		 .
		

	
		 ImageMagick (convert) is required to generate the
		 images used in the documentation. ImageMagick is available from
		
			http://www.imagemagick.org/
		
		 .
		

Build configuration

		As with most linux installations, the first step is to generate the
		Makefile that will be used to build the source code. This is done by
		running the shell script
	

		./configure
	

		With no additional parameters, this command will attempt to
		automatically locate the required components and libraries needed to
		build the PostGIS source code on your system. Although this is the most
		common usage of ./configure, the script accepts
		several parameters for those who have the required libraries and
		programs in non-standard locations.
	

		The following list shows only the most commonly used parameters. For a
		complete list, use the --help or
		--help=short parameters.
	
	--with-library-minor-version
	Starting with PostGIS 3.0, the library files generated by default will no longer have the minor version
			as part of the file name. This means all PostGIS 3 libs will end in postgis-3.
			This was done to make pg_upgrade easier, with downside that you can only install
			one version PostGIS 3 series in your server.
			To get the old behavior of file including the minor version: e.g. postgis-3.0
			add this switch to your configure statement.

	--prefix=PREFIX
	
			 This is the location the PostGIS loader executables and shared libs will be installed.
				By default, this location is the same as the
			 detected PostgreSQL installation.
			
Caution

				This parameter is currently broken, as the package will only
				install into the PostgreSQL installation directory. Visit
				
				 http://trac.osgeo.org/postgis/ticket/635
				
				to track this bug.
			

	--with-pgconfig=FILE
	
			 PostgreSQL provides a utility called pg_config
			 to enable extensions like PostGIS to locate the PostgreSQL
			 installation directory. Use this parameter
			 (--with-pgconfig=/path/to/pg_config) to
			 manually specify a particular PostgreSQL installation that PostGIS
			 will build against.
			

	--with-gdalconfig=FILE
	
			 GDAL, a required library, provides functionality needed for raster support
			 gdal-config to enable software installations to
			 locate the GDAL installation directory. Use this parameter
			 (--with-gdalconfig=/path/to/gdal-config) to
			 manually specify a particular GDAL installation that PostGIS will
			 build against.
			

	--with-geosconfig=FILE
	
			 GEOS, a required geometry library, provides a utility called
			 geos-config to enable software installations to
			 locate the GEOS installation directory. Use this parameter
			 (--with-geosconfig=/path/to/geos-config) to
			 manually specify a particular GEOS installation that PostGIS will
			 build against.
			

	--with-xml2config=FILE
	
			 LibXML is the library required for doing GeomFromKML/GML processes.
			 It normally is found if you have libxml installed, but if not or you want
			 a specific version used, you'll need to point PostGIS at a specific
			 xml2-config confi file to enable software installations to
			 locate the LibXML installation directory. Use this parameter
			 (>--with-xml2config=/path/to/xml2-config) to
			 manually specify a particular LibXML installation that PostGIS will
			 build against.
			

	--with-projdir=DIR
	
			 Proj is a reprojection library required by PostGIS. Use this
			 parameter (--with-projdir=/path/to/projdir) to
			 manually specify a particular Proj installation directory that
			 PostGIS will build against.
			

	--with-libiconv=DIR
	
			 Directory where iconv is installed.
			

	--with-jsondir=DIR
	
			 JSON-C is an MIT-licensed JSON library required by PostGIS ST_GeomFromJSON support. Use this
			 parameter (--with-jsondir=/path/to/jsondir) to
			 manually specify a particular JSON-C installation directory that
			 PostGIS will build against.
			

	--with-pcredir=DIR
	
			 PCRE is an BSD-licensed Perl Compatible Regular Expression library required by address_standardizer extension. Use this
			 parameter (--with-pcredir=/path/to/pcredir) to
			 manually specify a particular PCRE installation directory that
			 PostGIS will build against.
			

	--with-gui
	
			 Compile the data import GUI (requires GTK+2.0). This will create shp2pgsql-gui graphical interface
			 to shp2pgsql.
			

	--without-raster
	
			 Compile without raster support.

	--without-topology
	
			 Disable topology support. There is no corresponding library
			 as all logic needed for topology is in postgis-3.3.4 library.
			

	--with-gettext=no
	
			 By default PostGIS will try to detect gettext support and compile with it, however if you run into incompatibility issues that
			 cause breakage of loader, you can disable it entirely with this command. Refer to ticket http://trac.osgeo.org/postgis/ticket/748 for an example issue solved by configuring with this.
			 NOTE: that you aren't missing much by turning this off. This is used for international help/label support for the GUI loader which is not yet documented
			 and still experimental.
			

	--with-sfcgal=PATH
	
			 By default PostGIS will not install with sfcgal support without this switch.
			 PATH is an optional argument that allows to specify an alternate PATH to sfcgal-config.
			

	--without-phony-revision
	
			 Disable updating postgis_revision.h to match current HEAD of the git repository.
			

Note

		 If you obtained PostGIS from the
		
			code repository
		
		 , the first step is really to run the script
		

		 ./autogen.sh
		

		 This script will generate the configure script that
		 in turn is used to customize the installation of PostGIS.
		

		 If you instead obtained PostGIS as a tarball, running
		 ./autogen.sh is not necessary as
		 configure has already been generated.
		

Building

		Once the Makefile has been generated, building PostGIS is as simple as
		running
	

		make
	

		The last line of the output should be "PostGIS was built
		successfully. Ready to install."
	

		As of PostGIS v1.4.0, all the functions have comments generated from the
		documentation. If you wish to install these comments into your spatial
		databases later, run the command which requires docbook. The postgis_comments.sql and other
		package comments files raster_comments.sql, topology_comments.sql are
			also packaged in the tar.gz distribution in the doc folder so no need to make comments
			if installing from the tar ball. Comments are also included as part of the CREATE EXTENSION install.
	

		make comments
	

		Introduced in PostGIS 2.0. This generates html cheat sheets suitable for quick reference or for student handouts.
		This requires xsltproc to build and will generate 4 files in doc folder topology_cheatsheet.html, tiger_geocoder_cheatsheet.html,
			raster_cheatsheet.html, postgis_cheatsheet.html
	
You can download some pre-built ones available in html and pdf from PostGIS / PostgreSQL Study Guides

		make cheatsheets
	

Building PostGIS Extensions and Deploying them

		The PostGIS extensions are built and installed automatically if you are using PostgreSQL 9.1+.
	
If you are building from source repository, you need to build the function descriptions first. These get built if you have docbook installed. You can also manually build with the statement:

	 make comments

Building the comments is not necessary if you are building from a release tar ball since these are packaged pre-built with the tar ball already.
The extensions should automatically build as part of the make install process. You can if needed build from the extensions
	 folders or copy files if you need them on a different server.
cd extensions
cd postgis
make clean
make
export PGUSER=postgres #overwrite psql variables
make check #to test before install
make install
to test extensions
make check RUNTESTFLAGS=--extension
Note
make check uses psql to run tests and as such can use psql environment variables.
		Common ones useful to override are PGUSER,PGPORT, and PGHOST. Refer to psql environment variables

The extension files will always be the same for the same version of PostGIS and PostgreSQL regardless of OS, so it is fine to copy over the extension files from one OS to another as long as you
	 have the PostGIS binaries already installed on your servers.
If you want to install the extensions manually on a separate server different from your development,
		You need to copy the following files from the extensions folder into the PostgreSQL / share / extension folder
		of your PostgreSQL install as well as the needed binaries for regular PostGIS if you don't have them already on the server.
	
	
			These are the control files that denote information such as the version of the extension to install if not specified.
			postgis.control, postgis_topology.control.
		

	
			All the files in the /sql folder of each extension. Note that these need to be copied to the root of the PostgreSQL share/extension folder
			extensions/postgis/sql/*.sql, extensions/postgis_topology/sql/*.sql
		

Once you do that, you should see postgis, postgis_topology as available extensions in PgAdmin -> extensions.
If you are using psql, you can verify that the extensions are installed by running this query:
SELECT name, default_version,installed_version
FROM pg_available_extensions WHERE name LIKE 'postgis%' or name LIKE 'address%';

 name | default_version | installed_version
------------------------------+-----------------+-------------------
 address_standardizer | 3.3.4 | 3.3.4
 address_standardizer_data_us | 3.3.4 | 3.3.4
 postgis | 3.3.4 | 3.3.4
 postgis_raster | 3.3.4 | 3.3.4
 postgis_sfcgal | 3.3.4 |
 postgis_tiger_geocoder | 3.3.4 | 3.3.4
 postgis_topology | 3.3.4 |
(6 rows)
If you have the extension installed in the database you are querying, you'll see mention in the installed_version column.
If you get no records back, it means you don't have postgis extensions installed on the server at all. PgAdmin III 1.14+ will also provide this information
in the extensions section of the database browser tree and will even allow upgrade or uninstall by right-clicking.
If you have the extensions available, you can install postgis extension in your database of choice by either using pgAdmin extension interface or running these sql commands:
CREATE EXTENSION postgis;
CREATE EXTENSION postgis_raster;
CREATE EXTENSION postgis_sfcgal;
CREATE EXTENSION fuzzystrmatch; --needed for postgis_tiger_geocoder
--optional used by postgis_tiger_geocoder, or can be used standalone
CREATE EXTENSION address_standardizer;
CREATE EXTENSION address_standardizer_data_us;
CREATE EXTENSION postgis_tiger_geocoder;
CREATE EXTENSION postgis_topology;
In psql you can use to see what versions you have installed and also what schema they are installed.
\connect mygisdb
\x
\dx postgis*
List of installed extensions
-[RECORD 1]---
Name | postgis
Version | 3.3.4
Schema | public
Description | PostGIS geometry, geography, and raster spat..
-[RECORD 2]---
Name | postgis_raster
Version | 3.0.0dev
Schema | public
Description | PostGIS raster types and functions
-[RECORD 3]---
Name | postgis_tiger_geocoder
Version | 3.3.4
Schema | tiger
Description | PostGIS tiger geocoder and reverse geocoder
-[RECORD 4]---
Name | postgis_topology
Version | 3.3.4
Schema | topology
Description | PostGIS topology spatial types and functions
Warning
Extension tables spatial_ref_sys, layer, topology can not be explicitly backed up. They can only
be backed up when the respective postgis or postgis_topology extension is backed up, which only seems to happen when you backup the whole database.
As of PostGIS 2.0.1, only srid records not packaged with PostGIS are backed up when the database is backed up so don't go around changing srids we package and expect your changes to be there. Put in a ticket if you find an issue. The structures of extension tables are never backed up since they are created with CREATE EXTENSION
and assumed to be the same for a given version of an extension. These behaviors are built into the current PostgreSQL extension model, so nothing we can do about it.

If you installed 3.3.4, without using our
wonderful extension system, you can change it to be extension based by
running the below commands to package the functions in their respective extension.
Installing using `unpackaged` was removed in PostgreSQL 13, so you are advised to switch to an extension build before upgrading to PostgreSQL 13.

CREATE EXTENSION postgis FROM unpackaged;
CREATE EXTENSION postgis_raster FROM unpackaged;
CREATE EXTENSION postgis_topology FROM unpackaged;
CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

Testing

		If you wish to test the PostGIS build, run
	

		make check
	

		The above command will run through various checks and regression tests
		using the generated library against an actual PostgreSQL database.
	
Note

		 If you configured PostGIS using non-standard PostgreSQL, GEOS, or
		 Proj locations, you may need to add their library locations to the
		 LD_LIBRARY_PATH environment variable.
		

Caution

		 Currently, the make check relies on the
		 PATH and PGPORT environment variables when
		 performing the checks - it does not use the
		 PostgreSQL version that may have been specified using the
		 configuration parameter --with-pgconfig. So make
		 sure to modify your PATH to match the detected PostgreSQL installation
		 during configuration or be prepared to deal with the impending
		 headaches.
		

		If successful, make check will produce the output of almost 500 tests. The results will look similar to the
		following (numerous lines omitted below):
	

 CUnit - A unit testing framework for C - Version 2.1-3
 http://cunit.sourceforge.net/

	.
	.
	.

Run Summary: Type Total Ran Passed Failed Inactive
 suites 44 44 n/a 0 0
 tests 300 300 300 0 0
 asserts 4215 4215 4215 0 n/a
Elapsed time = 0.229 seconds

	.
	.
	.

Running tests

	.
	.
	.

Run tests: 134
Failed: 0

-- if you build with SFCGAL

	.
	.
	.

Running tests

	.
	.
	.

Run tests: 13
Failed: 0

-- if you built with raster support

	.
	.
	.

Run Summary: Type Total Ran Passed Failed Inactive
 suites 12 12 n/a 0 0
 tests 65 65 65 0 0
 asserts 45896 45896 45896 0 n/a

	.
	.
	.

Running tests

	.
	.
	.

Run tests: 101
Failed: 0

-- topology regress

.
.
.

Running tests

	.
	.
	.

Run tests: 51
Failed: 0

-- if you built --with-gui, you should see this too

 CUnit - A unit testing framework for C - Version 2.1-2
 http://cunit.sourceforge.net/

	.
	.
	.

Run Summary: Type Total Ran Passed Failed Inactive
 suites 2 2 n/a 0 0
 tests 4 4 4 0 0
 asserts 4 4 4 0 n/a
The postgis_tiger_geocoder and address_standardizer extensions, currently only support the standard PostgreSQL installcheck. To test these use the below. Note: the make install is not necessary if you already did make install at root of PostGIS code folder.
For address_standardizer:
	
cd extensions/address_standardizer
make install
make installcheck
	
Output should look like:
	
============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== running regression test queries ==============
test test-init-extensions ... ok
test test-parseaddress ... ok
test test-standardize_address_1 ... ok
test test-standardize_address_2 ... ok

=====================
 All 4 tests passed.
=====================
For tiger geocoder, make sure you have postgis and fuzzystrmatch extensions available in your PostgreSQL instance. The address_standardizer tests will also kick in if you built postgis with address_standardizer support:
	
cd extensions/postgis_tiger_geocoder
make install
make installcheck
	
output should look like:
	
============== dropping database "contrib_regression" ==============
DROP DATABASE
============== creating database "contrib_regression" ==============
CREATE DATABASE
ALTER DATABASE
============== installing fuzzystrmatch ==============
CREATE EXTENSION
============== installing postgis ==============
CREATE EXTENSION
============== installing postgis_tiger_geocoder ==============
CREATE EXTENSION
============== installing address_standardizer ==============
CREATE EXTENSION
============== running regression test queries ==============
test test-normalize_address ... ok
test test-pagc_normalize_address ... ok

=====================
All 2 tests passed.
=====================

Installation

		To install PostGIS, type
	

		make install
	

		This will copy the PostGIS installation files into their appropriate
		subdirectory specified by the --prefix configuration
		parameter. In particular:
	
	
			The loader and dumper binaries are installed in
			[prefix]/bin.
		

	
			The SQL files, such as postgis.sql, are
			installed in [prefix]/share/contrib.
		

	
			The PostGIS libraries are installed in
			[prefix]/lib.
		

		If you previously ran the make comments command to
		generate the postgis_comments.sql, raster_comments.sql file, install the
		sql file by running
	

		make comments-install
	
Note

		 postgis_comments.sql, raster_comments.sql, topology_comments.sql was separated from the
		 typical build and installation targets since with it comes the extra
		 dependency of xsltproc.
		

Installing and Using the address standardizer

The address_standardizer extension used to be a separate package that required separate download. From PostGIS 2.2 on, it is now bundled in.
		For more information about the address_standardize, what it does, and how to configure it for your needs, refer to the section called “Address Standardizer”.
This standardizer can be used in conjunction with the PostGIS packaged tiger geocoder extension as a replacement for the Normalize_Address discussed.
		To use as replacement refer to the section called “Using Address Standardizer Extension with Tiger geocoder”.
		You can also use it as a building block for your own geocoder or use it to standardize your addresses for easier compare of addresses.
The address standardizer relies on PCRE which is usually already installed on many Nix systems,
but you can download the latest at: http://www.pcre.org. If during the section called “Build configuration”, PCRE is found, then the address standardizer extension will automatically be built. If you have a custom pcre install you want to use instead, pass to configure --with-pcredir=/path/to/pcre where /path/to/pcre is the root folder for your pcre include and lib directories.
For Windows users, the PostGIS 2.1+ bundle is packaged with the address_standardizer already so no need to compile and can move straight to CREATE EXTENSION step.
Once you have installed, you can connect to your database and run the SQL:
CREATE EXTENSION address_standardizer;
The following test requires no rules, gaz, or lex tables
SELECT num, street, city, state, zip
 FROM parse_address('1 Devonshire Place PH301, Boston, MA 02109');
Output should be
 num | street | city | state | zip
-----+------------------------+--------+-------+-------
 1 | Devonshire Place PH301 | Boston | MA | 02109
Installing Regex::Assemble

Perl Regex:Assemble is no longer needed for compiling address_standardizer extension since the files it generates are part of the source tree. However if you need to edit the usps-st-city-orig.txt or usps-st-city-orig.txt usps-st-city-adds.tx, you need to rebuild parseaddress-stcities.h which does require Regex:Assemble.
cpan Regexp::Assemble
or if you are on Ubuntu / Debian you might need to do
sudo perl -MCPAN -e "install Regexp::Assemble"

Configuring raster support

	 If you enabled raster support you may want to read
 below how to properly configure it.
	
As of PostGIS 2.1.3, out-of-db rasters and all raster drivers are disabled by default. In order to re-enable these, you need to set the following environment variables
	POSTGIS_GDAL_ENABLED_DRIVERS and POSTGIS_ENABLE_OUTDB_RASTERS in the server environment. For PostGIS 2.2, you can use the more cross-platform approach of setting the corresponding the section called “Grand Unified Custom Variables (GUCs)”.
If you want to enable offline raster:
POSTGIS_ENABLE_OUTDB_RASTERS=1
Any other setting or no setting at all will disable out of db rasters.
In order to enable all GDAL drivers available in your GDAL install, set this environment variable as follows
POSTGIS_GDAL_ENABLED_DRIVERS=ENABLE_ALL
If you want to only enable specific drivers, set your environment variable as follows:
POSTGIS_GDAL_ENABLED_DRIVERS="GTiff PNG JPEG GIF XYZ"
Note
If you are on windows, do not quote the driver list

Setting environment variables varies depending on OS. For PostgreSQL installed on Ubuntu or Debian via apt-postgresql, the preferred way is to
	edit /etc/postgresql/10/main/environment where 10 refers to version of PostgreSQL and main refers to the cluster.
On windows, if you are running as a service, you can set via System variables which for Windows 7 you can get to by right-clicking on Computer->Properties Advanced System Settings or in explorer navigating to Control Panel\All Control Panel Items\System.
	Then clicking Advanced System Settings ->Advanced->Environment Variables and adding new system variables.
After you set the environment variables, you'll need to restart your PostgreSQL service for the changes to take effect.

Creating spatial databases

Spatially enable database using EXTENSION

	 If you are using PostgreSQL 9.1+ and have compiled and installed the extensions/postgis modules, you
	 can turn a database into a spatial one using the EXTENSION mechanism.
	

	 Core postgis extension includes geometry, geography,
 spatial_ref_sys and all the functions and comments.
	 Raster and topology are packaged as a separate extension.
	

	 Run the following SQL snippet in the database you want to enable spatially:

 CREATE EXTENSION IF NOT EXISTS plpgsql;
 CREATE EXTENSION postgis;
 CREATE EXTENSION postgis_raster; -- OPTIONAL
 CREATE EXTENSION postgis_topology; -- OPTIONAL

	

Spatially enable database without using EXTENSION (discouraged)

Note
This is generally only needed if you cannot or don't
want to get PostGIS installed in the PostgreSQL extension directory
(for example during testing, development or in a restricted
environment).

	 Adding PostGIS objects and function definitions into your
 database is done by loading the various sql files located in
	 [prefix]/share/contrib as specified during
 the build phase.
	

 The core PostGIS objects (geometry and geography types, and their
 support functions) are in the postgis.sql
 script.
 Raster objects are in the rtpostgis.sql script.
 Topology objects are in the topology.sql script.
	

	 For a complete set of EPSG coordinate system definition identifiers, you
	 can also load the spatial_ref_sys.sql definitions
	 file and populate the spatial_ref_sys table. This will
	 permit you to perform ST_Transform() operations on geometries.
	

	 If you wish to add comments to the PostGIS functions, you can find
 them in the postgis_comments.sql script.
	 Comments can be viewed by simply typing \dd
	 [function_name] from a psql terminal window.
	

	 Run the following Shell commands in your terminal:

 DB=[yourdatabase]
 SCRIPTSDIR=`pg_config --sharedir`/contrib/postgis-3.2/

 # Core objects
 psql -d ${DB} -f ${SCRIPTSDIR}/postgis.sql
 psql -d ${DB} -f ${SCRIPTSDIR}/spatial_ref_sys.sql
 psql -d ${DB} -f ${SCRIPTSDIR}/postgis_comments.sql # OPTIONAL

 # Raster support (OPTIONAL)
 psql -d ${DB} -f ${SCRIPTSDIR}/rtpostgis.sql
 psql -d ${DB} -f ${SCRIPTSDIR}/raster_comments.sql # OPTIONAL

 # Topology support (OPTIONAL)
 psql -d ${DB} -f ${SCRIPTSDIR}/topology.sql
 psql -d ${DB} -f ${SCRIPTSDIR}/topology_comments.sql # OPTIONAL

Create a spatially-enabled database from a template

	 Some packaged distributions of PostGIS (in particular the Win32 installers
	 for PostGIS >= 1.1.5) load the PostGIS functions into a template
	 database called template_postgis. If the
	 template_postgis database exists in your PostgreSQL
	 installation then it is possible for users and/or applications to create
	 spatially-enabled databases using a single command. Note that in both
	 cases, the database user must have been granted the privilege to create
	 new databases.
	

	 From the shell:
	
createdb -T template_postgis my_spatial_db

	 From SQL:
	
postgres=# CREATE DATABASE my_spatial_db TEMPLATE=template_postgis

Geometry Validation

PostGIS is compliant with the Open Geospatial Consortium’s (OGC)
	 Simple Features specification.
 That standard defines the concepts of geometry being
 simple and valid.
 These definitions allow the Simple Features geometry model
 to represent spatial objects in a consistent and unambiguous way
 that supports efficient computation.
 (Note: the OGC SF and SQL/MM have the same definitions for simple and valid.)

Simple Geometry

A simple
	 geometry is one that has no anomalous geometric points, such as self
	 intersection or self tangency.
	
A POINT is inherently simple
	 as a 0-dimensional geometry object.
MULTIPOINTs are simple if
	 no two coordinates (POINTs) are equal (have identical
	 coordinate values).
A LINESTRING is simple if
	 it does not pass through the same point twice, except for the endpoints.
 If the endpoints of a simple LineString are identical it is called closed
 and referred to as a Linear Ring.
	
 (a) and
				(c) are simple	LINESTRINGs.
 (b) and (d) are not simple.
 (c) is a closed Linear Ring.

	[image: Simple Geometry](a)

	[image: Simple Geometry](b)

	[image: Simple Geometry](c)

	[image: Simple Geometry](d)

A MULTILINESTRING is simple
	 only if all of its elements are simple and the only intersection between
	 any two elements occurs at points that are on the
	 boundaries of both elements.
	
 (e) and
				(f) are simple
				MULTILINESTRINGs.
 (g) is not simple.

	[image: Simple Geometry](e)

	[image: Simple Geometry](f)

	[image: Simple Geometry](g)

POLYGONs are formed from linear rings, so
 valid polygonal geometry is always simple.
To test if a geometry is simple
	use the ST_IsSimple function:

SELECT
 ST_IsSimple('LINESTRING(0 0, 100 100)') AS straight,
 ST_IsSimple('LINESTRING(0 0, 100 100, 100 0, 0 100)') AS crossing;

 straight | crossing
----------+----------
 t | f

Generally, PostGIS functions do not require geometric arguments to be simple.
	Simplicity is primarily used as a basis for defining geometric validity.
 It is also a requirement for some kinds of spatial data models
 (for example, linear networks often disallow lines that cross).
 Multipoint and linear geometry can be made simple using ST_UnaryUnion.

Valid Geometry

Geometry validity primarily applies to 2-dimensional
 geometries (POLYGONs and MULTIPOLYGONs) .
 Validity is defined by rules that allow polygonal geometry
 to model planar areas unambiguously.

A POLYGON is valid if:

	
 the polygon boundary rings (the exterior shell ring and interior hole rings)
 are simple (do not cross or self-touch).
 Because of this a polygon cannnot have cut lines, spikes or loops.
 This implies that polygon holes must be represented as interior rings,
 rather than by the exterior ring self-touching (a so-called "inverted hole").

	
 boundary rings do not cross

	
 boundary rings may touch at points but only as a tangent (i.e. not in a line)

	
 interior rings are contained in the exterior ring

	
 the polygon interior is simply connected
 (i.e. the rings must not touch in a way that splits the polygon into more than one part)

	
 (h) and
				(i) are valid POLYGONs.
 (j-m) are invalid.
				(j)
				can be represented as a valid MULTIPOLYGON.
				

	[image: Valid Geometry](h)

	[image: Valid Geometry](i)

	[image: Valid Geometry](j)

	[image: Valid Geometry](k)

	[image: Valid Geometry](l)

	[image: Valid Geometry](m)

A MULTIPOLYGON is valid if:
	
	
 its element POLYGONs are valid

	
 elements do not overlap (i.e. their interiors must not intersect)

	
 elements touch only at points (i.e. not along a line)

	
 (n) is a valid MULTIPOLYGON.
				(o) and (p) are invalid.

	[image: Valid Geometry](n)

	[image: Valid Geometry](o)

	[image: Valid Geometry](p)

These rules mean that valid polygonal geometry is also simple.

For linear geometry the only validity rule is that LINESTRINGs must
 have at least two points and have non-zero length
 (or equivalently, have at least two distinct points.)
 Note that non-simple (self-intersecting) lines are valid.

SELECT
 ST_IsValid('LINESTRING(0 0, 1 1)') AS len_nonzero,
 ST_IsValid('LINESTRING(0 0, 0 0, 0 0)') AS len_zero,
 ST_IsValid('LINESTRING(10 10, 150 150, 180 50, 20 130)') AS self_int;

 len_nonzero | len_zero | self_int
-------------+----------+----------
 t | f | t

POINT and MULTIPOINT geometries
 have no validity rules.

Managing Validity

PostGIS allows creating and storing both valid and invalid Geometry.
 This allows invalid geometry to be detected and flagged or fixed.
 There are also situations where the OGC validity rules are stricter than desired
 (examples of this are zero-length linestrings and polygons with inverted holes.)

Many of the functions provided by PostGIS rely on the
	 assumption that geometry arguments are valid.
 For example, it does not make sense to calculate the area of
	 a polygon that has a hole defined outside of the polygon, or to construct
	 a polygon from a non-simple boundary line.
 Assuming valid geometric inputs allows functions to operate more efficiently,
 since they do not need to check for topological correctness.
 (Notable exceptions are that zero-length lines
 and polygons with inversions are generally handled correctly.)
 Also, most PostGIS functions produce valid geometry output if the inputs are valid.
 This allows PostGIS functions to be chained together safely.

If you encounter unexpected error messages when calling PostGIS functions
 (such as "GEOS Intersection() threw an error!"),
 you should first confirm that the function arguments are valid.
 If they are not, then consider using one of the techniques below to ensure
 the data you are processing is valid.

Note

 If a function reports an error with valid inputs,
 then you may have found an error in either PostGIS or one of
		the libraries it uses, and you should report this to the PostGIS project.
		The same is true if a PostGIS function returns an invalid geometry for
		valid input.

To test if a geometry is valid use the
	 ST_IsValid function:

SELECT ST_IsValid('POLYGON ((20 180, 180 180, 180 20, 20 20, 20 180))');

 t

Information about the nature and location of an geometry invalidity are provided by
	 the ST_IsValidDetail function:

SELECT valid, reason, ST_AsText(location) AS location
 FROM ST_IsValidDetail('POLYGON ((20 20, 120 190, 50 190, 170 50, 20 20))') AS t;

 valid | reason | location
-------+-------------------+---
 f | Self-intersection | POINT(91.51162790697674 141.56976744186045)

In some situations it is desirable to correct invalid geometry automatically.
	 Use the ST_MakeValid function to do this.
 (ST_MakeValid is a case of a spatial function that does allow invalid input!)

By default, PostGIS does not check for validity when loading geometry,
	 because validity testing can take a lot of CPU time for complex
	 geometries. If you do not trust your data sources,
	 you can enforce a validity check on your tables by adding a check
	 constraint:
ALTER TABLE mytable
 ADD CONSTRAINT geometry_valid_check
	CHECK (ST_IsValid(geom));

Extracting Spatial Data

Spatial data can be extracted from the database using either SQL or the
	Shapefile dumper. The section on SQL presents some of
	the functions available to do comparisons and queries on spatial tables.

Using SQL to Extract Data

The most straightforward way of extracting spatial data out of the
 database is to use a SQL SELECT query
 to define the data set to be extracted
 and dump the resulting columns into a parsable text file:
db=# SELECT road_id, ST_AsText(road_geom) AS geom, road_name FROM roads;

road_id | geom | road_name
--------+---+-----------
	 1 | LINESTRING(191232 243118,191108 243242) | Jeff Rd
	 2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd
	 3 | LINESTRING(192783 228138,192612 229814) | Paul St
	 4 | LINESTRING(189412 252431,189631 259122) | Graeme Ave
	 5 | LINESTRING(190131 224148,190871 228134) | Phil Tce
	 6 | LINESTRING(198231 263418,198213 268322) | Dave Cres
	 7 | LINESTRING(218421 284121,224123 241231) | Chris Way
(6 rows)
There will be times when some kind of restriction is
	 necessary to cut down the number of records returned. In the case of
	 attribute-based restrictions, use the same SQL syntax as used
	 with a non-spatial table. In the case of spatial restrictions, the
	 following functions are useful:
	ST_Intersects
	This function tells whether two geometries share any space.

	=
	This tests whether two geometries are
			geometrically identical. For example, if 'POLYGON((0 0,1 1,1 0,0
			0))' is the same as 'POLYGON((0 0,1 1,1 0,0 0))' (it is).
			

Next, you can use these operators in queries. Note that when
	 specifying geometries and boxes on the SQL command line, you must
	 explicitly turn the string representations into geometries function.
		The 312 is a fictitious spatial reference system that matches our data.
	 So, for example:
SELECT road_id, road_name
 FROM roads
 WHERE roads_geom='SRID=312;LINESTRING(191232 243118,191108 243242)'::geometry;
The above query would return the single record from the
	 "ROADS_GEOM" table in which the geometry was equal to that value.
To check whether some of the roads passes in the area defined by a polygon:
SELECT road_id, road_name
FROM roads
WHERE ST_Intersects(roads_geom, 'SRID=312;POLYGON((...))');
The most common spatial query will probably be a "frame-based"
	 query, used by client software, like data browsers and web mappers, to
	 grab a "map frame" worth of data for display.
When using the "&&" operator, you can specify either a
	 BOX3D as the comparison feature or a GEOMETRY. When you specify a
	 GEOMETRY, however, its bounding box will be used for the
	 comparison.
Using a "BOX3D" object for the frame, such a query looks like this:
SELECT ST_AsText(roads_geom) AS geom
FROM roads
WHERE
 roads_geom && ST_MakeEnvelope(191232, 243117,191232, 243119,312);
Note the use of the SRID 312, to specify the projection of the envelope.

Using the Shapefile Dumper

The pgsql2shp table dumper connects
	 to the database and converts a table (possibly defined by a query) into
	 a shape file. The basic syntax is:
pgsql2shp [<options>] <database> [<schema>.]<table>
pgsql2shp [<options>] <database> <query>
The commandline options are:
	-f <filename>
	Write the output to a particular filename.

	-h <host>
	The database host to connect to.

	-p <port>
	The port to connect to on the database host.

	-P <password>
	The password to use when connecting to the database.

	-u <user>
	The username to use when connecting to the database.

	-g <geometry column>
	In the case of tables with multiple geometry columns, the
			geometry column to use when writing the shape file.

	-b
	Use a binary cursor. This will make the operation faster,
			but will not work if any NON-geometry attribute in the table lacks
			a cast to text.

	-r
	Raw mode. Do not drop the gid field, or
			escape column names.

	-m filename
	 Remap identifiers to ten character names.
			The content of the file is lines of two symbols separated by
			a single white space and no trailing or leading space:
			VERYLONGSYMBOL SHORTONE
			ANOTHERVERYLONGSYMBOL SHORTER
			etc.

Chapter 6. Performance Tips

Small tables of large geometries

Problem description

Current PostgreSQL versions (including 9.6) suffer from a query
 optimizer weakness regarding TOAST tables. TOAST tables are a kind of
 "extension room" used to store large (in the sense of data size) values
 that do not fit into normal data pages (like long texts, images or
 complex geometries with lots of vertices), see
 the PostgreSQL Documentation for TOAST for more
 information).
The problem appears if you happen to have a table with rather
 large geometries, but not too many rows of them (like a table containing
 the boundaries of all European countries in high resolution). Then the
 table itself is small, but it uses lots of TOAST space. In our example
 case, the table itself had about 80 rows and used only 3 data pages, but
 the TOAST table used 8225 pages.
Now issue a query where you use the geometry operator &&
 to search for a bounding box that matches only very few of those rows.
 Now the query optimizer sees that the table has only 3 pages and 80
 rows. It estimates that a sequential scan on such a small table is much
 faster than using an index. And so it decides to ignore the GIST index.
 Usually, this estimation is correct. But in our case, the &&
 operator has to fetch every geometry from disk to compare the bounding
 boxes, thus reading all TOAST pages, too.
To see whether your suffer from this issue, use the "EXPLAIN
 ANALYZE" postgresql command. For more information and the technical
 details, you can read the thread on the PostgreSQL performance mailing
 list:
 http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php
and newer thread on PostGIS https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html

Workarounds

The PostgreSQL people are trying to solve this issue by making the
 query estimation TOAST-aware. For now, here are two workarounds:
The first workaround is to force the query planner to use the
 index. Send "SET enable_seqscan TO off;" to the server before issuing
 the query. This basically forces the query planner to avoid sequential
 scans whenever possible. So it uses the GIST index as usual. But this
 flag has to be set on every connection, and it causes the query planner
 to make misestimations in other cases, so you should "SET enable_seqscan
 TO on;" after the query.
The second workaround is to make the sequential scan as fast as
 the query planner thinks. This can be achieved by creating an additional
 column that "caches" the bbox, and matching against this. In our
 example, the commands are like:
SELECT AddGeometryColumn('myschema','mytable','bbox','4326','GEOMETRY','2');
UPDATE mytable SET bbox = ST_Envelope(ST_Force2D(geom));
Now change your query to use the && operator against bbox
 instead of geom_column, like:
SELECT geom_column
FROM mytable
WHERE bbox && ST_SetSRID('BOX3D(0 0,1 1)'::box3d,4326);
Of course, if you change or add rows to mytable, you have to keep
 the bbox "in sync". The most transparent way to do this would be
 triggers, but you also can modify your application to keep the bbox
 column current or run the UPDATE query above after every
 modification.

CLUSTERing on geometry indices

For tables that are mostly read-only, and where a single index is
 used for the majority of queries, PostgreSQL offers the CLUSTER command.
 This command physically reorders all the data rows in the same order as
 the index criteria, yielding two performance advantages: First, for index
 range scans, the number of seeks on the data table is drastically reduced.
 Second, if your working set concentrates to some small intervals on the
 indices, you have a more efficient caching because the data rows are
 spread along fewer data pages. (Feel invited to read the CLUSTER command
 documentation from the PostgreSQL manual at this point.)
However, currently PostgreSQL does not allow clustering on PostGIS
 GIST indices because GIST indices simply ignores NULL values, you get an
 error message like:
lwgeom=# CLUSTER my_geom_index ON my_table;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column "geom" NOT NULL.
As the HINT message tells you, one can work around this deficiency
 by adding a "not null" constraint to the table:
lwgeom=# ALTER TABLE my_table ALTER COLUMN geom SET not null;
ALTER TABLE
Of course, this will not work if you in fact need NULL values in
 your geometry column. Additionally, you must use the above method to add
 the constraint, using a CHECK constraint like "ALTER TABLE blubb ADD CHECK
 (geometry is not null);" will not work.

Avoiding dimension conversion

Sometimes, you happen to have 3D or 4D data in your table, but
 always access it using OpenGIS compliant ST_AsText() or ST_AsBinary()
 functions that only output 2D geometries. They do this by internally
 calling the ST_Force2D() function, which introduces a significant
 overhead for large geometries. To avoid this overhead, it may be feasible
 to pre-drop those additional dimensions once and forever:
UPDATE mytable SET geom = ST_Force2D(geom);
VACUUM FULL ANALYZE mytable;
Note that if you added your geometry column using
 AddGeometryColumn() there'll be a constraint on geometry dimension. To
 bypass it you will need to drop the constraint. Remember to update the
 entry in the geometry_columns table and recreate the constraint
 afterwards.
In case of large tables, it may be wise to divide this UPDATE into
 smaller portions by constraining the UPDATE to a part of the table via a
 WHERE clause and your primary key or another feasible criteria, and
 running a simple "VACUUM;" between your UPDATEs. This drastically reduces
 the need for temporary disk space. Additionally, if you have mixed
 dimension geometries, restricting the UPDATE by "WHERE
 dimension(geom)>2" skips re-writing of geometries that already are
 in 2D.

Java Clients (JDBC)

Java clients can access PostGIS "geometry" objects in the PostgreSQL
 database either directly as text representations or using the JDBC
 extension objects bundled with PostGIS. In order to use the extension
 objects, the "postgis.jar" file must be in your CLASSPATH along with the
 "postgresql.jar" JDBC driver package.
import java.sql.*;
import java.util.*;
import java.lang.*;
import org.postgis.*;

public class JavaGIS {

public static void main(String[] args) {

 java.sql.Connection conn;

 try {
 /*
 * Load the JDBC driver and establish a connection.
 */
 Class.forName("org.postgresql.Driver");
 String url = "jdbc:postgresql://localhost:5432/database";
 conn = DriverManager.getConnection(url, "postgres", "");
 /*
 * Add the geometry types to the connection. Note that you
 * must cast the connection to the pgsql-specific connection
 * implementation before calling the addDataType() method.
 */
 ((org.postgresql.PGConnection)conn).addDataType("geometry",Class.forName("org.postgis.PGgeometry"));
 ((org.postgresql.PGConnection)conn).addDataType("box3d",Class.forName("org.postgis.PGbox3d"));
 /*
 * Create a statement and execute a select query.
 */
 Statement s = conn.createStatement();
 ResultSet r = s.executeQuery("select geom,id from geomtable");
 while(r.next()) {
 /*
 * Retrieve the geometry as an object then cast it to the geometry type.
 * Print things out.
 */
 PGgeometry geom = (PGgeometry)r.getObject(1);
 int id = r.getInt(2);
 System.out.println("Row " + id + ":");
 System.out.println(geom.toString());
 }
 s.close();
 conn.close();
 }
catch(Exception e) {
 e.printStackTrace();
 }
}
}
The "PGgeometry" object is a wrapper object which contains a
 specific topological geometry object (subclasses of the abstract class
 "Geometry") depending on the type: Point, LineString, Polygon, MultiPoint,
 MultiLineString, MultiPolygon.
PGgeometry geom = (PGgeometry)r.getObject(1);
if(geom.getType() == Geometry.POLYGON) {
 Polygon pl = (Polygon)geom.getGeometry();
 for(int r = 0; r < pl.numRings(); r++) {
 LinearRing rng = pl.getRing(r);
 System.out.println("Ring: " + r);
 for(int p = 0; p < rng.numPoints(); p++) {
 Point pt = rng.getPoint(p);
 System.out.println("Point: " + p);
 System.out.println(pt.toString());
 }
 }
}
The JavaDoc for the extension objects provides a reference for the
 various data accessor functions in the geometric objects.

C Clients (libpq)

...
Text Cursors

...

Binary Cursors

...

Name
DropGeometryColumn — Removes a geometry column from a spatial
		table.

Synopsis
	text DropGeometryColumn(table_name, 	
	 	column_name);	

varchar
			table_name;
varchar
			column_name;

	text DropGeometryColumn(schema_name, 	
	 	table_name, 	
	 	column_name);	

varchar
			schema_name;
varchar
			table_name;
varchar
			column_name;

	text DropGeometryColumn(catalog_name, 	
	 	schema_name, 	
	 	table_name, 	
	 	column_name);	

varchar
			catalog_name;
varchar
			schema_name;
varchar
			table_name;
varchar
			column_name;

Description
Removes a geometry column from a spatial table. Note that
		schema_name will need to match the f_table_schema field of the table's
		row in the geometry_columns table.
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
Note
Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view against the system catalogs,
			 you can drop a geometry column like any other table column using ALTER TABLE

Examples

			SELECT DropGeometryColumn ('my_schema','my_spatial_table','geom');
			----RESULT output ---
			 dropgeometrycolumn
--
 my_schema.my_spatial_table.geom effectively removed.

-- In PostGIS 2.0+ the above is also equivalent to the standard
-- the standard alter table. Both will deregister from geometry_columns
ALTER TABLE my_schema.my_spatial_table DROP column geom;
		

See Also
AddGeometryColumn, DropGeometryTable, the section called “GEOMETRY_COLUMNS View”

Name
ST_Collect — Creates a GeometryCollection or Multi* geometry from a set of geometries.

Synopsis
	geometry ST_Collect(g1, 	
	 	g2);	

geometry g1;
geometry g2;

	geometry ST_Collect(g1_array);	

geometry[] g1_array;

	geometry ST_Collect(g1field);	

geometry set g1field;

Description
 Collects geometries into a geometry collection.
			The result is either a Multi* or a
			GeometryCollection, depending on whether the input geometries have the same or different types
			(homogeneous or heterogeneous).
			The input geometries are left unchanged within the collection.
			
Variant 1: accepts two input geometries
Variant 2: accepts an array of geometries
Variant 3: aggregate function accepting a rowset of geometries.
Note

		If any of the input geometries are collections (Multi* or GeometryCollection)
		ST_Collect returns a GeometryCollection (since that is the only type
		which can contain nested collections).
		To prevent this, use ST_Dump in a subquery to expand the
		input collections to their atomic elements (see example below).
		

Note
ST_Collect and ST_Union appear similar, but in fact operate quite differently.
		ST_Collect aggregates geometries into a collection without changing them in any way.
		ST_Union geometrically merges geometries where they overlap,
		and splits linestrings at intersections.
		It may return single geometries when it dissolves boundaries.
		

Availability: 1.4.0 - ST_Collect(geomarray) was introduced. ST_Collect was enhanced to handle more geometries faster.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples - Two-input variant
Collect 2D points.

SELECT ST_AsText(ST_Collect(ST_GeomFromText('POINT(1 2)'),
	ST_GeomFromText('POINT(-2 3)')));

st_astext

MULTIPOINT((1 2),(-2 3))

Collect 3D points.

SELECT ST_AsEWKT(ST_Collect(ST_GeomFromEWKT('POINT(1 2 3)'),
		ST_GeomFromEWKT('POINT(1 2 4)')));

		st_asewkt

 MULTIPOINT(1 2 3,1 2 4)

Collect curves.

SELECT ST_AsText(ST_Collect('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)',
		'CIRCULARSTRING(220227 150406,2220227 150407,220227 150406)'));

		st_astext
--
MULTICURVE(CIRCULARSTRING(220268 150415,220227 150505,220227 150406),
 CIRCULARSTRING(220227 150406,2220227 150407,220227 150406))

Examples - Array variant
Using an array constructor for a subquery.

SELECT ST_Collect(ARRAY(SELECT geom FROM sometable));

Using an array constructor for values.

SELECT ST_AsText(ST_Collect(
		ARRAY[ST_GeomFromText('LINESTRING(1 2, 3 4)'),
			ST_GeomFromText('LINESTRING(3 4, 4 5)')])) As wktcollect;

--wkt collect --
MULTILINESTRING((1 2,3 4),(3 4,4 5))

Examples - Aggregate variant
Creating multiple collections by grouping geometries in a table.

SELECT stusps, ST_Collect(f.geom) as geom
	 FROM (SELECT stusps, (ST_Dump(geom)).geom As geom
				FROM
				somestatetable) As f
	GROUP BY stusps

See Also
ST_Dump, ST_Union

Name
ST_LineFromMultiPoint — Creates a LineString from a MultiPoint geometry.

Synopsis
	geometry ST_LineFromMultiPoint(aMultiPoint);	

geometry aMultiPoint;

Description
Creates a LineString from a MultiPoint geometry.
Use ST_MakeLine to create lines from Point or LineString inputs.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
Create a 3D line string from a 3D MultiPoint

SELECT ST_AsEWKT(ST_LineFromMultiPoint('MULTIPOINT(1 2 3, 4 5 6, 7 8 9)')));

--result--
LINESTRING(1 2 3,4 5 6,7 8 9)

See Also
ST_AsEWKT, ST_MakeLine

Name
ST_MakePoint — Creates a 2D, 3DZ or 4D Point.

Synopsis
	geometry ST_MakePoint(x, 	
	 	y);	

float x;
float y;

	geometry ST_MakePoint(x, 	
	 	y, 	
	 	z);	

float x;
float y;
float z;

	geometry ST_MakePoint(x, 	
	 	y, 	
	 	z, 	
	 	m);	

float x;
float y;
float z;
float m;

Description
Creates a 2D, 3D Z or 4D ZM Point geometry.
Use ST_MakePointM to make points with XYM coordinates.

			While not OGC-compliant, ST_MakePoint is
			faster and more precise than ST_GeomFromText
			and ST_PointFromText.
			It is also easier to use for numeric coordinate values.
Note
For geodetic coordinates, X is longitude and Y is latitude

[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
--Return point with unknown SRID
SELECT ST_MakePoint(-71.1043443253471, 42.3150676015829);

--Return point marked as WGS 84 long lat
SELECT ST_SetSRID(ST_MakePoint(-71.1043443253471, 42.3150676015829),4326);

--Return a 3D point (e.g. has altitude)
SELECT ST_MakePoint(1, 2,1.5);

--Get z of point
SELECT ST_Z(ST_MakePoint(1, 2,1.5));
result

1.5

See Also
ST_GeomFromText, ST_PointFromText, ST_SetSRID, ST_MakePointM

Name
ST_MakePointM — Creates a Point from X, Y and M values.

Synopsis
	geometry ST_MakePointM(x, 	
	 	y, 	
	 	m);	

float x;
float y;
float m;

Description
Creates a point with X, Y and M (measure) coordinates.
Use ST_MakePoint to make points with XY, XYZ, or XYZM coordinates.
Note
For geodetic coordinates, X is longitude and Y is latitude

Examples
Note
ST_AsEWKT is used for text output
			because ST_AsText does not support M values.

Create point with unknown SRID.

SELECT ST_AsEWKT(ST_MakePointM(-71.1043443253471, 42.3150676015829, 10));

				 st_asewkt

 POINTM(-71.1043443253471 42.3150676015829 10)

Create point with a measure in the WGS 84 geodetic coordinate system.

SELECT ST_AsEWKT(ST_SetSRID(ST_MakePointM(-71.104, 42.315, 10), 4326));

						st_asewkt

SRID=4326;POINTM(-71.104 42.315 10)

Get measure of created point.

SELECT ST_M(ST_MakePointM(-71.104, 42.315, 10));

result

10

See Also
ST_AsEWKT, ST_MakePoint, ST_SetSRID

Name
ST_PointZM — Creates a Point with X, Y, Z, M and SRID values.

Synopsis
	geometry ST_PointZM(x, 	
	 	y, 	
	 	z, 	
	 	m, 	
	 	srid=unknown);	

float x;
float y;
float z;
float m;
integer srid=unknown;

Description
Returns an Point with the given X, Y, Z and M coordinate values, and optionally an SRID number.
Enhanced: 3.2.0 srid as an extra optional argument was added. Older installs require combining with ST_SetSRID to mark the srid on the geometry.

Examples
SELECT ST_PointZM(-71.104, 42.315, 3.4, 4.5, 4326)
SELECT ST_PointZM(-71.104, 42.315, 3.4, 4.5, srid => 4326)
SELECT ST_PointZM(-71.104, 42.315, 3.4, 4.5)

See Also
ST_MakePoint, ST_Point, ST_PointM, ST_PointZ, ST_SetSRID

Name
ST_Polygon — Creates a Polygon from a LineString with a specified SRID.

Synopsis
	geometry ST_Polygon(lineString, 	
	 	srid);	

geometry lineString;
integer srid;

Description
Returns a polygon built from the given LineString
		and sets the spatial reference system from the srid.
ST_Polygon is similar to ST_MakePolygon Variant 1
		with the addition of setting the SRID.
To create polygons with holes
		use ST_MakePolygon Variant 2 and then ST_SetSRID.
		
Note
This function does not accept MultiLineStrings.
		Use ST_LineMerge to generate a LineString, or ST_Dump to extract LineStrings.

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.3.2
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
Create a 2D polygon.

SELECT ST_AsText(ST_Polygon('LINESTRING(75 29, 77 29, 77 29, 75 29)'::geometry, 4326));

-- result --
POLYGON((75 29, 77 29, 77 29, 75 29))

Create a 3D polygon.

SELECT ST_AsEWKT(ST_Polygon(ST_GeomFromEWKT('LINESTRING(75 29 1, 77 29 2, 77 29 3, 75 29 1)'), 4326));

-- result --
SRID=4326;POLYGON((75 29 1, 77 29 2, 77 29 3, 75 29 1))

See Also
 ST_AsEWKT, ST_AsText, ST_GeomFromEWKT, ST_GeomFromText, ST_LineMerge, ST_MakePolygon

Name
ST_Hexagon — Returns a single hexagon, using the provided edge size and
			cell coordinate within the hexagon grid space.

Synopsis
	geometry ST_Hexagon(size, 	
	 	cell_i, 	
	 	cell_j, 	
	 	origin);	

float8 size;
integer cell_i;
integer cell_j;
geometry origin;

Description
Uses the same hexagon tiling concept as ST_HexagonGrid, but generates just one hexagon at the desired cell coordinate. Optionally,
			can adjust origin coordinate of the tiling, the default origin is at 0,0.
			
Hexagons are generated with no SRID set, so use ST_SetSRID to set the SRID to the one you expect.
Availability: 3.1.0

Example: Creating a hexagon at the origin
SELECT ST_AsText(ST_SetSRID(ST_Hexagon(1.0, 0, 0), 3857));

POLYGON((-1 0,-0.5
 -0.866025403784439,0.5
 -0.866025403784439,1
 0,0.5
 0.866025403784439,-0.5
 0.866025403784439,-1 0))

See Also
ST_TileEnvelope, ST_HexagonGrid, ST_Square

Name
ST_SquareGrid — Returns a set of grid squares and cell indices that completely cover the bounds of the geometry argument.

Synopsis
	setof record ST_SquareGrid(size, 	
	 	bounds);	

float8 size;
geometry bounds;

Description
Starts with the concept of a square tiling of the plane.
 For a given planar SRS, and a given edge size, starting at the origin of the SRS,
 there is one unique square tiling of the plane, Tiling(SRS, Size).
 This function answers the question: what grids in a given Tiling(SRS, Size)
 overlap with a given bounds.
The SRS for the output squares is the SRS provided by the bounds geometry.
Doubling or edge size of the square generates a new parent tiling that
 perfectly fits with the original tiling. Standard web map tilings in mercator
 are just powers-of-two square grids in the mercator plane.
Availability: 3.1.0

Example: Generating a 1 degree grid for a country
The grid will fill the whole bounds of the country, so if you want just squares
 that touch the country you will have to filter afterwards with ST_Intersects.
WITH grid AS (
SELECT (ST_SquareGrid(1, ST_Transform(geom,4326))).*
FROM admin0 WHERE name = 'Canada'
)
 SELEcT ST_AsText(geom)
 FROM grid

Example: Counting points in squares (using single chopped grid)
To do a point summary against a square tiling, generate a square grid using the
 extent of the points as the bounds, then spatially join to that grid. Note the estimated extent might be off from actual extent, so be cautious and at very least make sure you've analyzed your table.
SELECT COUNT(*), squares.geom
 FROM
 pointtable AS pts
 INNER JOIN
 ST_SquareGrid(
 1000,
 ST_SetSRID(ST_EstimatedExtent('pointtable', 'geom'), 3857)
) AS squares
 ON ST_Intersects(pts.geom, squares.geom)
 GROUP BY squares.geom

Example: Counting points in squares using set of grid per point
This yields the same result as the first example but will be slower for a large number of points
SELECT COUNT(*), squares.geom
 FROM
 pointtable AS pts
 INNER JOIN
 ST_SquareGrid(
 1000,
 pts.geom
) AS squares
 ON ST_Intersects(pts.geom, squares.geom)
 GROUP BY squares.geom

See Also
ST_TileEnvelope, ST_HexagonGrid
 , ST_EstimatedExtent
 , ST_SetSRID

Geometry Accessors

Name
ST_BoundingDiagonal — Returns the diagonal of a geometry's bounding box.

Synopsis
	geometry ST_BoundingDiagonal(geom, 	
	 	fits=false);	

geometry geom;
boolean fits=false;

Description

Returns the diagonal of the supplied geometry's bounding box as a LineString.
The diagonal is a 2-point LineString with the minimum values of each dimension in its
start point and the maximum values in its end point.
If the input geometry is empty, the diagonal line is a LINESTRING EMPTY.
			

The optional fits parameter specifies if the best fit is needed.
If false, the diagonal of a somewhat larger bounding box can be accepted
(which is faster to compute for geometries with many vertices). In either case,
the bounding box of the returned diagonal line always covers the input
geometry.
			

The returned geometry retains the SRID and dimensionality
(Z and M presence) of the input geometry.
			
Note

In degenerate cases (i.e. a single vertex in input) the returned linestring
will be formally invalid (no interior).
The result is still topologically valid.
			

Availability: 2.2.0
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports M coordinates.

Examples

-- Get the minimum X in a buffer around a point
SELECT ST_X(ST_StartPoint(ST_BoundingDiagonal(
 ST_Buffer(ST_Point(0,0),10)
)));
 st_x

 -10
		

See Also

ST_StartPoint,
ST_EndPoint,
ST_X,
ST_Y,
ST_Z,
ST_M,
ST_Envelope
		

Name
ST_DumpPoints — Returns a set of geometry_dump rows for the coordinates in a geometry.

Synopsis
	geometry_dump[] ST_DumpPoints(geom);	

geometry geom;

Description
A set-returning function (SRF) that extracts the coordinates (vertices) of a geometry.
 It returns a set of
			 geometry_dump rows,
 each containing a geometry (geom field)
 and an array of integers (path field).

	the geom field
 POINTs represent the coordinates of the supplied geometry.

	the path field (an integer[])
 is an index enumerating the coordinate positions in the elements of the supplied geometry.
 The indices are 1-based.
 For example, for a LINESTRING the paths are {i}
 where i is the nth
 coordinate in the LINESTRING.
 For a POLYGON the paths are {i,j} where
 i is the ring number (1 is outer; inner rings follow)
 and j is the coordinate position in the ring.

 To obtain a single geometry containing the coordinates use ST_Points.

Enhanced: 2.1.0 Faster speed. Reimplemented as native-C.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.5.0
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports 3d and will not drop the z-index.

Classic Explode a Table of LineStrings into nodes
SELECT edge_id, (dp).path[1] As index, ST_AsText((dp).geom) As wktnode
FROM (SELECT 1 As edge_id
	, ST_DumpPoints(ST_GeomFromText('LINESTRING(1 2, 3 4, 10 10)')) AS dp
 UNION ALL
 SELECT 2 As edge_id
	, ST_DumpPoints(ST_GeomFromText('LINESTRING(3 5, 5 6, 9 10)')) AS dp
) As foo;
 edge_id | index | wktnode
---------+-------+--------------
 1 | 1 | POINT(1 2)
 1 | 2 | POINT(3 4)
 1 | 3 | POINT(10 10)
 2 | 1 | POINT(3 5)
 2 | 2 | POINT(5 6)
 2 | 3 | POINT(9 10)

Standard Geometry Examples
[image: Standard Geometry Examples]

SELECT path, ST_AsText(geom)
FROM (
 SELECT (ST_DumpPoints(g.geom)).*
 FROM
 (SELECT
 'GEOMETRYCOLLECTION(
 POINT (0 1),
 LINESTRING (0 3, 3 4),
 POLYGON ((2 0, 2 3, 0 2, 2 0)),
 POLYGON ((3 0, 3 3, 6 3, 6 0, 3 0),
 (5 1, 4 2, 5 2, 5 1)),
 MULTIPOLYGON (
 ((0 5, 0 8, 4 8, 4 5, 0 5),
 (1 6, 3 6, 2 7, 1 6)),
 ((5 4, 5 8, 6 7, 5 4))
)
)'::geometry AS geom
) AS g
) j;

 path | st_astext
-----------+------------
 {1,1} | POINT(0 1)
 {2,1} | POINT(0 3)
 {2,2} | POINT(3 4)
 {3,1,1} | POINT(2 0)
 {3,1,2} | POINT(2 3)
 {3,1,3} | POINT(0 2)
 {3,1,4} | POINT(2 0)
 {4,1,1} | POINT(3 0)
 {4,1,2} | POINT(3 3)
 {4,1,3} | POINT(6 3)
 {4,1,4} | POINT(6 0)
 {4,1,5} | POINT(3 0)
 {4,2,1} | POINT(5 1)
 {4,2,2} | POINT(4 2)
 {4,2,3} | POINT(5 2)
 {4,2,4} | POINT(5 1)
 {5,1,1,1} | POINT(0 5)
 {5,1,1,2} | POINT(0 8)
 {5,1,1,3} | POINT(4 8)
 {5,1,1,4} | POINT(4 5)
 {5,1,1,5} | POINT(0 5)
 {5,1,2,1} | POINT(1 6)
 {5,1,2,2} | POINT(3 6)
 {5,1,2,3} | POINT(2 7)
 {5,1,2,4} | POINT(1 6)
 {5,2,1,1} | POINT(5 4)
 {5,2,1,2} | POINT(5 8)
 {5,2,1,3} | POINT(6 7)
 {5,2,1,4} | POINT(5 4)
(29 rows)

Polyhedral Surfaces, TIN and Triangle Examples
-- Polyhedral surface cube --
SELECT (g.gdump).path, ST_AsEWKT((g.gdump).geom) as wkt
 FROM
 (SELECT
 ST_DumpPoints(ST_GeomFromEWKT('POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))')) AS gdump
) AS g;
-- result --
 path | wkt
---------+--------------
 {1,1,1} | POINT(0 0 0)
 {1,1,2} | POINT(0 0 1)
 {1,1,3} | POINT(0 1 1)
 {1,1,4} | POINT(0 1 0)
 {1,1,5} | POINT(0 0 0)
 {2,1,1} | POINT(0 0 0)
 {2,1,2} | POINT(0 1 0)
 {2,1,3} | POINT(1 1 0)
 {2,1,4} | POINT(1 0 0)
 {2,1,5} | POINT(0 0 0)
 {3,1,1} | POINT(0 0 0)
 {3,1,2} | POINT(1 0 0)
 {3,1,3} | POINT(1 0 1)
 {3,1,4} | POINT(0 0 1)
 {3,1,5} | POINT(0 0 0)
 {4,1,1} | POINT(1 1 0)
 {4,1,2} | POINT(1 1 1)
 {4,1,3} | POINT(1 0 1)
 {4,1,4} | POINT(1 0 0)
 {4,1,5} | POINT(1 1 0)
 {5,1,1} | POINT(0 1 0)
 {5,1,2} | POINT(0 1 1)
 {5,1,3} | POINT(1 1 1)
 {5,1,4} | POINT(1 1 0)
 {5,1,5} | POINT(0 1 0)
 {6,1,1} | POINT(0 0 1)
 {6,1,2} | POINT(1 0 1)
 {6,1,3} | POINT(1 1 1)
 {6,1,4} | POINT(0 1 1)
 {6,1,5} | POINT(0 0 1)
(30 rows)
-- Triangle --
SELECT (g.gdump).path, ST_AsText((g.gdump).geom) as wkt
 FROM
 (SELECT
 ST_DumpPoints(ST_GeomFromEWKT('TRIANGLE ((
 0 0,
 0 9,
 9 0,
 0 0
))')) AS gdump
) AS g;
-- result --
 path | wkt
------+------------
 {1} | POINT(0 0)
 {2} | POINT(0 9)
 {3} | POINT(9 0)
 {4} | POINT(0 0)

-- TIN --
SELECT (g.gdump).path, ST_AsEWKT((g.gdump).geom) as wkt
 FROM
 (SELECT
 ST_DumpPoints(ST_GeomFromEWKT('TIN (((
 0 0 0,
 0 0 1,
 0 1 0,
 0 0 0
)), ((
 0 0 0,
 0 1 0,
 1 1 0,
 0 0 0
))
)')) AS gdump
) AS g;
-- result --
 path | wkt
---------+--------------
 {1,1,1} | POINT(0 0 0)
 {1,1,2} | POINT(0 0 1)
 {1,1,3} | POINT(0 1 0)
 {1,1,4} | POINT(0 0 0)
 {2,1,1} | POINT(0 0 0)
 {2,1,2} | POINT(0 1 0)
 {2,1,3} | POINT(1 1 0)
 {2,1,4} | POINT(0 0 0)
(8 rows)

See Also
geometry_dump, the section called “PostGIS Geometry / Geography / Raster Dump Functions”,
 ST_Dump, ST_DumpRings, ST_Points

Name
ST_Envelope — Returns a geometry representing the bounding box of a geometry.

Synopsis
	geometry ST_Envelope(g1);	

geometry g1;

Description
Returns the double-precision (float8) minimum bounding box for the supplied geometry, as a geometry.
			The polygon is defined by the corner points of the bounding box
			((MINX, MINY),
			(MINX, MAXY),
			(MAXX, MAXY),
			(MAXX, MINY),
			(MINX, MINY)). (PostGIS will add a
			ZMIN/ZMAX coordinate as
			well).
Degenerate cases (vertical lines, points) will return a geometry of
			lower dimension than POLYGON, ie.
			POINT or LINESTRING.
Availability: 1.5.0 behavior changed to output double precision instead of float4
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.19

Examples

SELECT ST_AsText(ST_Envelope('POINT(1 3)'::geometry));
 st_astext

 POINT(1 3)
(1 row)

SELECT ST_AsText(ST_Envelope('LINESTRING(0 0, 1 3)'::geometry));
		 st_astext

 POLYGON((0 0,0 3,1 3,1 0,0 0))
(1 row)

SELECT ST_AsText(ST_Envelope('POLYGON((0 0, 0 1, 1.0000001 1, 1.0000001 0, 0 0))'::geometry));
						 st_astext
--
 POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)
SELECT ST_AsText(ST_Envelope('POLYGON((0 0, 0 1, 1.0000000001 1, 1.0000000001 0, 0 0))'::geometry));
						 st_astext
--
 POLYGON((0 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)

SELECT Box3D(geom), Box2D(geom), ST_AsText(ST_Envelope(geom)) As envelopewkt
	FROM (SELECT 'POLYGON((0 0, 0 1000012333334.34545678, 1.0000001 1, 1.0000001 0, 0 0))'::geometry As geom) As foo;

	
[image: Examples]Envelope of a point and linestring.

SELECT ST_AsText(ST_Envelope(
		ST_Collect(
			ST_GeomFromText('LINESTRING(55 75,125 150)'),
				ST_Point(20, 80))
)) As wktenv;
wktenv

POLYGON((20 75,20 150,125 150,125 75,20 75))

See Also
Box2D, Box3D, ST_OrientedEnvelope

Name
ST_ExteriorRing — Returns a LineString representing the exterior ring of a Polygon.

Synopsis
	geometry ST_ExteriorRing(a_polygon);	

geometry a_polygon;

Description
Returns a LINESTRING representing the exterior ring (shell) of a POLYGON.
 Returns	NULL if the geometry is not a polygon.
Note
This function does not support MULTIPOLYGONs.
 For MULTIPOLYGONs use in conjunction with ST_GeometryN or ST_Dump

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. 2.1.5.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.2.3, 8.3.3
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

--If you have a table of polygons
SELECT gid, ST_ExteriorRing(geom) AS ering
FROM sometable;

--If you have a table of MULTIPOLYGONs
--and want to return a MULTILINESTRING composed of the exterior rings of each polygon
SELECT gid, ST_Collect(ST_ExteriorRing(geom)) AS erings
	FROM (SELECT gid, (ST_Dump(geom)).geom As geom
			FROM sometable) As foo
GROUP BY gid;

--3d Example
SELECT ST_AsEWKT(
	ST_ExteriorRing(
	ST_GeomFromEWKT('POLYGON((0 0 1, 1 1 1, 1 2 1, 1 1 1, 0 0 1))')
)
);

st_asewkt

LINESTRING(0 0 1,1 1 1,1 2 1,1 1 1,0 0 1)

See Also

ST_InteriorRingN,
ST_Boundary,
ST_NumInteriorRings
		

Name
ST_HasArc — Tests if a geometry contains a circular arc

Synopsis
	boolean ST_HasArc(geomA);	

geometry geomA;

Description
Returns true if a geometry or geometry collection contains a circular string
Availability: 1.2.3?
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_HasArc(ST_Collect('LINESTRING(1 2, 3 4, 5 6)', 'CIRCULARSTRING(1 1, 2 3, 4 5, 6 7, 5 6)'));
		st_hasarc

		t
		

See Also
ST_CurveToLine, ST_LineToCurve

Name
ST_IsEmpty — Tests if a geometry is empty.

Synopsis
	boolean ST_IsEmpty(geomA);	

geometry geomA;

Description
Returns true if this Geometry is an empty geometry. If
				true, then this Geometry represents an empty geometry collection, polygon, point etc.
Note
SQL-MM defines the result of ST_IsEmpty(NULL) to be 0, while
			PostGIS returns NULL.

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.7
[image: Description]
 This method supports Circular Strings and Curves
Warning
Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards

Examples

SELECT ST_IsEmpty(ST_GeomFromText('GEOMETRYCOLLECTION EMPTY'));
 st_isempty

 t
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('POLYGON EMPTY'));
 st_isempty

 t
(1 row)

SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))'));

 st_isempty

 f
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((1 2, 3 4, 5 6, 1 2))')) = false;
 ?column?

 t
(1 row)

 SELECT ST_IsEmpty(ST_GeomFromText('CIRCULARSTRING EMPTY'));
 st_isempty

 t
(1 row)

		

Name

				ST_IsPolygonCW
			 — Tests if Polygons have exterior rings oriented clockwise and interior rings oriented counter-clockwise.
			

Synopsis
	
						boolean
						ST_IsPolygonCW
					(geom);	

						geometry
						geom
					;

Description

				Returns true if all polygonal components of the input geometry use a clockwise
				orientation for their exterior ring, and a counter-clockwise direction
				for all interior rings.
			

				Returns true if the geometry has no polygonal components.
			
Note

					Closed linestrings are not considered polygonal components,
					so you would still get a true return by passing
 a single closed linestring no matter its orientation.
				

Note

					If a polygonal geometry does not use reversed orientation
					for interior rings (i.e., if one or more interior rings
					are oriented in the same direction as an exterior ring)
					then both ST_IsPolygonCW and ST_IsPolygonCCW will return false.
				

Availability: 2.4.0
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports M coordinates.

See Also

				
				ST_ForcePolygonCW
			,
				
				ST_ForcePolygonCCW
			,
				
				ST_IsPolygonCW
			
			

Name
ST_MemSize — Returns the amount of memory space a geometry takes.

Synopsis
	integer ST_MemSize(geomA);	

geometry geomA;

Description
Returns the amount of memory space (in bytes) the geometry takes.
This complements the PostgreSQL built-in database object functions
		 pg_column_size, pg_size_pretty, pg_relation_size, pg_total_relation_size.
Note
pg_relation_size which gives the byte size of a table may return byte size lower than ST_MemSize. This is because
		pg_relation_size does not add toasted table contribution and large geometries are stored in TOAST tables.
pg_total_relation_size - includes, the table, the toasted tables, and the indexes.
pg_column_size returns how much space a geometry would take in a column considering compression, so may be lower than ST_MemSize

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
Changed: 2.2.0 name changed to ST_MemSize to follow naming convention.

Examples

--Return how much byte space Boston takes up in our Mass data set
SELECT pg_size_pretty(SUM(ST_MemSize(geom))) as totgeomsum,
pg_size_pretty(SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize(geom) ELSE 0 END)) As bossum,
CAST(SUM(CASE WHEN town = 'BOSTON' THEN ST_MemSize(geom) ELSE 0 END)*1.00 /
		SUM(ST_MemSize(geom))*100 As numeric(10,2)) As perbos
FROM towns;

totgeomsum	bossum	perbos
----------	------	------
1522 kB		30 kB	1.99

SELECT ST_MemSize(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)'));

73

--What percentage of our table is taken up by just the geometry
SELECT pg_total_relation_size('public.neighborhoods') As fulltable_size, sum(ST_MemSize(geom)) As geomsize,
sum(ST_MemSize(geom))*1.00/pg_total_relation_size('public.neighborhoods')*100 As pergeom
FROM neighborhoods;
fulltable_size geomsize pergeom
--
262144 96238	 36.71188354492187500000
	

Name
ST_NumGeometries — Returns the number of elements in a geometry collection.

Synopsis
	integer ST_NumGeometries(geom);	

geometry geom;

Description
Returns the number of Geometries. If geometry is a GEOMETRYCOLLECTION (or MULTI*) return the
			number of geometries, for single geometries will return 1, otherwise return NULL.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Changed: 2.0.0 In prior versions this would return NULL if the geometry was not a collection/MULTI type.
				2.0.0+ now returns 1 for single geometries e.g POLYGON, LINESTRING, POINT.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 9.1.4
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

--Prior versions would have returned NULL for this -- in 2.0.0 this returns 1
SELECT ST_NumGeometries(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)'));
--result
1

--Geometry Collection Example - multis count as one geom in a collection
SELECT ST_NumGeometries(ST_GeomFromEWKT('GEOMETRYCOLLECTION(MULTIPOINT((-2 3),(-2 2)),
LINESTRING(5 5 ,10 10),
POLYGON((-7 4.2,-7.1 5,-7.1 4.3,-7 4.2)))'));
--result
3

See Also
ST_GeometryN, ST_Multi

Name
ST_NumInteriorRings — Returns the number of interior rings (holes) of a Polygon.

Synopsis
	integer ST_NumInteriorRings(a_polygon);	

geometry a_polygon;

Description

 Return the number of interior rings of a polygon geometry.
			Return NULL if the geometry is not a polygon.

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.2.5
Changed: 2.0.0 - in prior versions it would allow passing a MULTIPOLYGON, returning the number of interior rings of first POLYGON.

Examples

--If you have a regular polygon
SELECT gid, field1, field2, ST_NumInteriorRings(geom) AS numholes
FROM sometable;

--If you have multipolygons
--And you want to know the total number of interior rings in the MULTIPOLYGON
SELECT gid, field1, field2, SUM(ST_NumInteriorRings(geom)) AS numholes
FROM (SELECT gid, field1, field2, (ST_Dump(geom)).geom As geom
	FROM sometable) As foo
GROUP BY gid, field1,field2;
			

See Also
ST_NumInteriorRing, ST_InteriorRingN

Name
ST_NumPatches — Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.

Synopsis
	integer ST_NumPatches(g1);	

geometry g1;

Description
Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries. This is
		an alias for ST_NumGeometries to support MM naming. Faster to use ST_NumGeometries if you don't care about MM convention.
Availability: 2.0.0
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM ISO/IEC 13249-3: 8.5
[image: Description]
 This function supports Polyhedral surfaces.

Examples
SELECT ST_NumPatches(ST_GeomFromEWKT('POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
		((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
		((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
		((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'));
		--result
		6
		

See Also
ST_GeomFromEWKT, ST_NumGeometries

Name
ST_Points — Returns a MultiPoint containing the coordinates of a geometry.
			

Synopsis
	geometry ST_Points(geom);	

						geometry
						geom
					;

Description

				Returns a MultiPoint containing all the coordinates of a geometry.
 Duplicate points are preserved,
				including the start and end points of ring geometries.
				(If desired, duplicate points can be removed by calling
				ST_RemoveRepeatedPoints on the result).
			

 To obtain information about the position of each coordinate in the parent geometry
 use ST_DumpPoints.

				M and Z coordinates are preserved if present.
			
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports 3d and will not drop the z-index.
Availability: 2.3.0

Examples
SELECT ST_AsText(ST_Points('POLYGON Z ((30 10 4,10 30 5,40 40 6, 30 10))'));

--result
MULTIPOINT Z ((30 10 4),(10 30 5),(40 40 6),(30 10 4))
			

See Also
ST_RemoveRepeatedPoints, ST_DumpPoints

Name
ST_X — Returns the X coordinate of a Point.

Synopsis
	float ST_X(a_point);	

geometry a_point;

Description
Return the X coordinate of the point, or NULL if not
			available. Input must be a point.
Note
To get the minimum and maximum X value of geometry coordinates use the functions
		ST_XMin and ST_XMax.

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 6.1.3
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_X(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_x

	1
(1 row)

SELECT ST_Y(ST_Centroid(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)')));
 st_y

 1.5
(1 row)

		

See Also
ST_Centroid, ST_GeomFromEWKT, ST_M, ST_XMax, ST_XMin, ST_Y, ST_Z

Name
ST_Y — Returns the Y coordinate of a Point.

Synopsis
	float ST_Y(a_point);	

geometry a_point;

Description
Return the Y coordinate of the point, or NULL if not
			available. Input must be a point.
Note
To get the minimum and maximum Y value of geometry coordinates use the functions
		ST_YMin and ST_YMax.

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 6.1.4
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_Y(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_y

	2
(1 row)

SELECT ST_Y(ST_Centroid(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)')));
 st_y

 1.5
(1 row)

		

See Also
ST_Centroid, ST_GeomFromEWKT, ST_M, ST_X, ST_YMax, ST_YMin, ST_Z

Name
ST_Z — Returns the Z coordinate of a Point.

Synopsis
	float ST_Z(a_point);	

geometry a_point;

Description
Return the Z coordinate of the point, or NULL if not
			available. Input must be a point.
Note
To get the minimum and maximum Z value of geometry coordinates use the functions
		ST_ZMin and ST_ZMax.

[image: Description] This method implements the SQL/MM specification.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_Z(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_z

	3
(1 row)

		

See Also
ST_GeomFromEWKT, ST_M, ST_X, ST_Y, ST_ZMax, ST_ZMin

Name
ST_Zmflag — Returns a code indicating the ZM coordinate dimension of a geometry.

Synopsis
	smallint ST_Zmflag(geomA);	

geometry geomA;

Description
Returns a code indicating the ZM coordinate dimension of a geometry.
Values are: 0 = 2D, 1 = 3D-M, 2 = 3D-Z, 3 = 4D.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_Zmflag(ST_GeomFromEWKT('LINESTRING(1 2, 3 4)'));
 st_zmflag

		 0

SELECT ST_Zmflag(ST_GeomFromEWKT('LINESTRINGM(1 2 3, 3 4 3)'));
 st_zmflag

		 1

SELECT ST_Zmflag(ST_GeomFromEWKT('CIRCULARSTRING(1 2 3, 3 4 3, 5 6 3)'));
 st_zmflag

		 2
SELECT ST_Zmflag(ST_GeomFromEWKT('POINT(1 2 3 4)'));
 st_zmflag

		 3

See Also
ST_CoordDim, ST_NDims, ST_Dimension

Geometry Editors

Abstract
These functions create modified geometries by changing type, structure or vertices.

Name
ST_CurveToLine — Converts a geometry containing curves to a linear geometry.

Synopsis
	geometry ST_CurveToLine(curveGeom, 	
	 	tolerance, 	
	 	tolerance_type, 	
	 	flags);	

geometry curveGeom;
float tolerance;
integer tolerance_type;
integer flags;

Description
Converts a CIRCULAR STRING to regular LINESTRING or CURVEPOLYGON to POLYGON or MULTISURFACE to MULTIPOLYGON. Useful for outputting to devices that can't support CIRCULARSTRING geometry types
Converts a given geometry to a linear geometry.
 Each curved geometry or segment is converted into a linear
approximation using the given `tolerance` and options (32 segments per
quadrant and no options by default).

The 'tolerance_type' argument determines interpretation of the
`tolerance` argument. It can take the following values:

	0 (default): Tolerance is max segments per quadrant.

	1: Tolerance is max-deviation of line from curve, in source units.

	2: Tolerance is max-angle, in radians, between generating radii.

The 'flags' argument is a bitfield. 0 by default.
Supported bits are:

	1: Symmetric (orientation idependent) output.

	2: Retain angle, avoids reducing angles (segment lengths) when producing symmetric output. Has no effect when Symmetric flag is off.

Availability: 1.3.0
Enhanced: 2.4.0 added support for max-deviation and max-angle tolerance, and for symmetric output.
Enhanced: 3.0.0 implemented a minimum number of segments per linearized arc to prevent topological collapse.
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1.
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.1.7
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_AsText(ST_CurveToLine(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)')));

--Result --
 LINESTRING(220268 150415,220269.95064912 150416.539364228,220271.823415575 150418.17258804,220273.613787707 150419.895736857,
 220275.317452352 150421.704659462,220276.930305234 150423.594998003,220278.448460847 150425.562198489,
 220279.868261823 150427.60152176,220281.186287736 150429.708054909,220282.399363347 150431.876723113,
 220283.50456625 150434.10230186,220284.499233914 150436.379429536,220285.380970099 150438.702620341,220286.147650624 150441.066277505,
 220286.797428488 150443.464706771,220287.328738321 150445.892130112,220287.740300149 150448.342699654,
 220288.031122486 150450.810511759,220288.200504713 150453.289621251,220288.248038775 150455.77405574,
 220288.173610157 150458.257830005,220287.977398166 150460.734960415,220287.659875492 150463.199479347,
 220287.221807076 150465.64544956,220286.664248262 150468.066978495,220285.988542259 150470.458232479,220285.196316903 150472.81345077,
 220284.289480732 150475.126959442,220283.270218395 150477.39318505,220282.140985384 150479.606668057,
 220280.90450212 150481.762075989,220279.5637474 150483.85421628,220278.12195122 150485.87804878,
 220276.582586992 150487.828697901,220274.949363179 150489.701464356,220273.226214362 150491.491836488,
 220271.417291757 150493.195501133,220269.526953216 150494.808354014,220267.559752731 150496.326509628,
 220265.520429459 150497.746310603,220263.41389631 150499.064336517,220261.245228106 150500.277412127,
 220259.019649359 150501.38261503,220256.742521683 150502.377282695,220254.419330878 150503.259018879,
 220252.055673714 150504.025699404,220249.657244448 150504.675477269,220247.229821107 150505.206787101,
 220244.779251566 150505.61834893,220242.311439461 150505.909171266,220239.832329968 150506.078553494,
 220237.347895479 150506.126087555,220234.864121215 150506.051658938,220232.386990804 150505.855446946,
 220229.922471872 150505.537924272,220227.47650166 150505.099855856,220225.054972724 150504.542297043,
 220222.663718741 150503.86659104,220220.308500449 150503.074365683,
 220217.994991777 150502.167529512,220215.72876617 150501.148267175,
 220213.515283163 150500.019034164,220211.35987523 150498.7825509,
 220209.267734939 150497.441796181,220207.243902439 150496,
 220205.293253319 150494.460635772,220203.420486864 150492.82741196,220201.630114732 150491.104263143,
 220199.926450087 150489.295340538,220198.313597205 150487.405001997,220196.795441592 150485.437801511,
 220195.375640616 150483.39847824,220194.057614703 150481.291945091,220192.844539092 150479.123276887,220191.739336189 150476.89769814,
 220190.744668525 150474.620570464,220189.86293234 150472.297379659,220189.096251815 150469.933722495,
 220188.446473951 150467.535293229,220187.915164118 150465.107869888,220187.50360229 150462.657300346,
 220187.212779953 150460.189488241,220187.043397726 150457.710378749,220186.995863664 150455.22594426,
 220187.070292282 150452.742169995,220187.266504273 150450.265039585,220187.584026947 150447.800520653,
 220188.022095363 150445.35455044,220188.579654177 150442.933021505,220189.25536018 150440.541767521,
 220190.047585536 150438.18654923,220190.954421707 150435.873040558,220191.973684044 150433.60681495,
 220193.102917055 150431.393331943,220194.339400319 150429.237924011,220195.680155039 150427.14578372,220197.12195122 150425.12195122,
 220198.661315447 150423.171302099,220200.29453926 150421.298535644,220202.017688077 150419.508163512,220203.826610682 150417.804498867,
 220205.716949223 150416.191645986,220207.684149708 150414.673490372,220209.72347298 150413.253689397,220211.830006129 150411.935663483,
 220213.998674333 150410.722587873,220216.22425308 150409.61738497,220218.501380756 150408.622717305,220220.824571561 150407.740981121,
 220223.188228725 150406.974300596,220225.586657991 150406.324522731,220227 150406)

--3d example
SELECT ST_AsEWKT(ST_CurveToLine(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)')));
Output

 LINESTRING(220268 150415 1,220269.95064912 150416.539364228 1.0181172856673,
 220271.823415575 150418.17258804 1.03623457133459,220273.613787707 150419.895736857 1.05435185700189,....AD INFINITUM
 220225.586657991 150406.324522731 1.32611114201132,220227 150406 3)

--use only 2 segments to approximate quarter circle
SELECT ST_AsText(ST_CurveToLine(ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)'),2));
st_astext

 LINESTRING(220268 150415,220287.740300149 150448.342699654,220278.12195122 150485.87804878,
 220244.779251566 150505.61834893,220207.243902439 150496,220187.50360229 150462.657300346,
 220197.12195122 150425.12195122,220227 150406)

-- Ensure approximated line is no further than 20 units away from
-- original curve, and make the result direction-neutral
SELECT ST_AsText(ST_CurveToLine(
 'CIRCULARSTRING(0 0,100 -100,200 0)'::geometry,
 20, -- Tolerance
 1, -- Above is max distance between curve and line
 1 -- Symmetric flag
));
st_astext

 LINESTRING(0 0,50 -86.6025403784438,150 -86.6025403784439,200 -1.1331077795296e-13,200 0)

See Also
ST_LineToCurve

Name
ST_Force3D — Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.

Synopsis
	geometry ST_Force3D(geomA, 	
	 	Zvalue = 0.0);	

geometry geomA;
float Zvalue = 0.0;

Description
Forces the geometries into XYZ mode. This is an alias for ST_Force3DZ. If a geometry has no Z component, then a Zvalue Z coordinate is tacked on.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3D.
Changed: 3.1.0. Added support for supplying a non-zero Z value.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

		--Nothing happens to an already 3D geometry
		SELECT ST_AsEWKT(ST_Force3D(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
				 st_asewkt

 CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST_AsEWKT(ST_Force3D('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))'));

						 st_asewkt
--
 POLYGON((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))
		

See Also
ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3DZ

Name
ST_Force3DZ — Force the geometries into XYZ mode.

Synopsis
	geometry ST_Force3DZ(geomA, 	
	 	Zvalue = 0.0);	

geometry geomA;
float Zvalue = 0.0;

Description
Forces the geometries into XYZ mode. If a geometry has no Z component, then a Zvalue Z coordinate is tacked on.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DZ.
Changed: 3.1.0. Added support for supplying a non-zero Z value.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples

--Nothing happens to an already 3D geometry
SELECT ST_AsEWKT(ST_Force3DZ(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
				 st_asewkt

 CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST_AsEWKT(ST_Force3DZ('POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))'));

						 st_asewkt
--
 POLYGON((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))
		

See Also
ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3D

Name
ST_Force3DM — Force the geometries into XYM mode.

Synopsis
	geometry ST_Force3DM(geomA, 	
	 	Mvalue = 0.0);	

geometry geomA;
float Mvalue = 0.0;

Description
Forces the geometries into XYM mode. If a geometry has no M component, then a Mvalue M coordinate is tacked on. If it has a Z component, then Z is removed
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DM.
Changed: 3.1.0. Added support for supplying a non-zero M value.
[image: Description]
 This method supports Circular Strings and Curves

Examples

--Nothing happens to an already 3D geometry
SELECT ST_AsEWKT(ST_Force3DM(ST_GeomFromEWKT('CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 6 2)')));
				 st_asewkt
--
 CIRCULARSTRINGM(1 1 0,2 3 0,4 5 0,6 7 0,5 6 0)

SELECT ST_AsEWKT(ST_Force3DM('POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1))'));

						 st_asewkt

 POLYGONM((0 0 0,0 5 0,5 0 0,0 0 0),(1 1 0,3 1 0,1 3 0,1 1 0))

		

See Also
ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3D, ST_GeomFromEWKT

Name
ST_ForceCollection — Convert the geometry into a GEOMETRYCOLLECTION.

Synopsis
	geometry ST_ForceCollection(geomA);	

geometry geomA;

Description
Converts the geometry into a GEOMETRYCOLLECTION. This is
			useful for simplifying the WKB representation.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
Availability: 1.2.2, prior to 1.3.4 this function will crash with Curves. This is fixed in 1.3.4+
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_Collection.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples

SELECT ST_AsEWKT(ST_ForceCollection('POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1))'));

								 st_asewkt
--
 GEOMETRYCOLLECTION(POLYGON((0 0 1,0 5 1,5 0 1,0 0 1),(1 1 1,3 1 1,1 3 1,1 1 1)))

 SELECT ST_AsText(ST_ForceCollection('CIRCULARSTRING(220227 150406,2220227 150407,220227 150406)'));
								 st_astext
--
 GEOMETRYCOLLECTION(CIRCULARSTRING(220227 150406,2220227 150407,220227 150406))
(1 row)

		

-- POLYHEDRAL example --
SELECT ST_AsEWKT(ST_ForceCollection('POLYHEDRALSURFACE(((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),
 ((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0)),
 ((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0)),
 ((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)),
 ((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0)),
 ((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1)))'))

								 st_asewkt
--
GEOMETRYCOLLECTION(
 POLYGON((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),
 POLYGON((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0)),
 POLYGON((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0)),
 POLYGON((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)),
 POLYGON((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0)),
 POLYGON((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1))
)
		

See Also
ST_AsEWKT, ST_Force2D, ST_Force3DM, ST_Force3D, ST_GeomFromEWKT

Name

				ST_ForcePolygonCW
			 —
				Orients all exterior rings clockwise and all interior rings counter-clockwise.
			

Synopsis
	
						geometry
						ST_ForcePolygonCW
					(geom);	

						geometry
						geom
					;

Description

				Forces (Multi)Polygons to use a clockwise orientation for
				their exterior ring, and a counter-clockwise orientation for their interior
				rings. Non-polygonal geometries are returned unchanged.
			
Availability: 2.4.0
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports M coordinates.

See Also

				
				ST_ForcePolygonCCW
			,
				
				ST_IsPolygonCCW
			,
				
				ST_IsPolygonCW
			
			

Name
ST_ForceCurve — Upcast a geometry into its curved type, if applicable.

Synopsis
	geometry
						ST_ForceCurve(g);	

geometry g;

Description

 Turns a geometry into its curved representation, if applicable:
 lines become compoundcurves, multilines become multicurves
 polygons become curvepolygons multipolygons become multisurfaces. If the geometry input is already a curved representation returns back same as input.

Availability: 2.2.0
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_AsText(
 ST_ForceCurve(
	'POLYGON((0 0 2, 5 0 2, 0 5 2, 0 0 2),(1 1 2, 1 3 2, 3 1 2, 1 1 2))'::geometry
)
);
 st_astext
--
 CURVEPOLYGON Z ((0 0 2,5 0 2,0 5 2,0 0 2),(1 1 2,1 3 2,3 1 2,1 1 2))
(1 row)

See Also
ST_LineToCurve

Name
ST_Multi — Return the geometry as a MULTI* geometry.

Synopsis
	geometry ST_Multi(geom);	

geometry geom;

Description
Returns the geometry as a MULTI* geometry collection. If the geometry
				is already a collection, it is returned unchanged.

Examples

SELECT ST_AsText(ST_Multi('POLYGON ((10 30, 30 30, 30 10, 10 10, 10 30))'));
 st_astext

 MULTIPOLYGON(((10 30,30 30,30 10,10 10,10 30)))

See Also
ST_AsText

Name
ST_RemoveRepeatedPoints — Returns a version of a geometry with
 duplicate points removed.

Synopsis
	geometry ST_RemoveRepeatedPoints(geom, 	
	 	tolerance);	

geometry geom;
float8 tolerance;

Description
Returns a version of the given geometry with duplicate consecutive points removed.
 The function processes only (Multi)LineStrings, (Multi)Polygons and MultiPoints
 but it can be called with any kind of geometry.
 Elements of GeometryCollections are processed individually.
 The endpoints of LineStrings are preserved.

If the tolerance parameter is provided, vertices within the tolerance distance
 of one another are considered to be duplicates.
Enhanced: 3.2.0
Availability: 2.2.0
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText(ST_RemoveRepeatedPoints('MULTIPOINT ((1 1), (2 2), (3 3), (2 2))'));

 MULTIPOINT(1 1,2 2,3 3)

SELECT ST_AsText(ST_RemoveRepeatedPoints('LINESTRING (0 0, 0 0, 1 1, 0 0, 1 1, 2 2)'));

 LINESTRING(0 0,1 1,0 0,1 1,2 2)

Example:
 Collection elements are processed individually.

SELECT ST_AsText(ST_RemoveRepeatedPoints('GEOMETRYCOLLECTION (LINESTRING (1 1, 2 2, 2 2, 3 3), POINT (4 4), POINT (4 4), POINT (5 5))'));
--
 GEOMETRYCOLLECTION(LINESTRING(1 1,2 2,3 3),POINT(4 4),POINT(4 4),POINT(5 5))

Example:
 Repeated point removal with a distance tolerance.

SELECT ST_AsText(ST_RemoveRepeatedPoints('LINESTRING (0 0, 0 0, 1 1, 5 5, 1 1, 2 2)', 2));

 LINESTRING(0 0,5 5,2 2)

See Also
ST_Simplify

Name
ST_ShiftLongitude — Shifts the longitude coordinates of a geometry between -180..180 and 0..360.

Synopsis
	geometry ST_ShiftLongitude(geom);	

geometry geom;

Description
Reads every point/vertex in a geometry, and shifts its longitude coordinate from -180..0 to 180..360 and vice versa if between these ranges.
 This function is symmetrical so the result is a 0..360 representation of a -180..180 data and a -180..180 representation of a 0..360 data.

Note
This is only useful for data with coordinates in
 longitude/latitude; e.g. SRID 4326 (WGS 84 geographic)

Warning
Pre-1.3.4 bug prevented this from working for MULTIPOINT. 1.3.4+ works with MULTIPOINT as well.

[image: Description]
 This function supports 3d and will not drop the z-index.
Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
NOTE: this function was renamed from "ST_Shift_Longitude" in 2.2.0
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
--single point forward transformation
SELECT ST_AsText(ST_ShiftLongitude('SRID=4326;POINT(270 0)'::geometry))

st_astext

POINT(-90 0)

--single point reverse transformation
SELECT ST_AsText(ST_ShiftLongitude('SRID=4326;POINT(-90 0)'::geometry))

st_astext

POINT(270 0)

--for linestrings the functions affects only to the sufficient coordinates
SELECT ST_AsText(ST_ShiftLongitude('SRID=4326;LINESTRING(174 12, 182 13)'::geometry))

st_astext

LINESTRING(174 12,-178 13)

See Also

 ST_WrapX

Name
ST_WrapX — Wrap a geometry around an X value.

Synopsis
	geometry ST_WrapX(geom, 	
	 	wrap, 	
	 	move);	

geometry geom;
float8 wrap;
float8 move;

Description

This function splits the input geometries and then moves every resulting
component falling on the right (for negative 'move') or on the left (for
positive 'move') of given 'wrap' line in the direction specified by the
'move' parameter, finally re-unioning the pieces together.

Note

This is useful to "recenter" long-lat input to have features
of interest not spawned from one side to the other.

Availability: 2.3.0 requires GEOS
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

-- Move all components of the given geometries whose bounding box
-- falls completely on the left of x=0 to +360
select ST_WrapX(geom, 0, 360);

-- Move all components of the given geometries whose bounding box
-- falls completely on the left of x=-30 to +360
select ST_WrapX(geom, -30, 360);

See Also
ST_ShiftLongitude

Name
ST_SnapToGrid —
		Snap all points of the input geometry to a regular grid.
		

Synopsis
	geometry ST_SnapToGrid(geomA, 	
	 	originX, 	
	 	originY, 	
	 	sizeX, 	
	 	sizeY);	

geometry geomA;
float originX;
float originY;
float sizeX;
float sizeY;

	geometry ST_SnapToGrid(geomA, 	
	 	sizeX, 	
	 	sizeY);	

geometry geomA;
float sizeX;
float sizeY;

	geometry ST_SnapToGrid(geomA, 	
	 	size);	

geometry geomA;
float size;

	geometry ST_SnapToGrid(geomA, 	
	 	pointOrigin, 	
	 	sizeX, 	
	 	sizeY, 	
	 	sizeZ, 	
	 	sizeM);	

geometry geomA;
geometry pointOrigin;
float sizeX;
float sizeY;
float sizeZ;
float sizeM;

Description
Variant 1,2,3: Snap all points of the input geometry to the grid defined by
			its origin and cell size. Remove consecutive points falling on the
			same cell, eventually returning NULL if output points are not
			enough to define a geometry of the given type. Collapsed
			geometries in a collection are stripped from it.
			Useful for reducing precision.
		
Variant 4: Introduced 1.1.0 - Snap all points of the input geometry to the grid defined by
			its origin (the second argument, must be a point) and cell sizes.
			Specify 0 as size for any dimension you don't want to snap to a
			grid.
Note
The returned geometry might lose its simplicity (see
		 ST_IsSimple).

Note
Before release 1.1.0 this function always returned a 2d
		 geometry. Starting at 1.1.0 the returned geometry will have same
		 dimensionality as the input one with higher dimension values
		 untouched. Use the version taking a second geometry argument to
		 define all grid dimensions.

Availability: 1.0.0RC1
Availability: 1.1.0 - Z and M support
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

--Snap your geometries to a precision grid of 10^-3
UPDATE mytable
 SET geom = ST_SnapToGrid(geom, 0.001);

SELECT ST_AsText(ST_SnapToGrid(
			ST_GeomFromText('LINESTRING(1.1115678 2.123, 4.111111 3.2374897, 4.11112 3.23748667)'),
			0.001)
);
			 st_astext

 LINESTRING(1.112 2.123,4.111 3.237)
 --Snap a 4d geometry
SELECT ST_AsEWKT(ST_SnapToGrid(
	ST_GeomFromEWKT('LINESTRING(-1.1115678 2.123 2.3456 1.11111,
		4.111111 3.2374897 3.1234 1.1111, -1.11111112 2.123 2.3456 1.1111112)'),
 ST_GeomFromEWKT('POINT(1.12 2.22 3.2 4.4444)'),
 0.1, 0.1, 0.1, 0.01));
								 st_asewkt
--
 LINESTRING(-1.08 2.12 2.3 1.1144,4.12 3.22 3.1 1.1144,-1.08 2.12 2.3 1.1144)

--With a 4d geometry - the ST_SnapToGrid(geom,size) only touches x and y coords but keeps m and z the same
SELECT ST_AsEWKT(ST_SnapToGrid(ST_GeomFromEWKT('LINESTRING(-1.1115678 2.123 3 2.3456,
		4.111111 3.2374897 3.1234 1.1111)'),
	 0.01));
						st_asewkt

 LINESTRING(-1.11 2.12 3 2.3456,4.11 3.24 3.1234 1.1111)

		

See Also

		ST_Snap,
		ST_AsEWKT,
		ST_AsText,
		ST_GeomFromText,
		ST_GeomFromEWKT,
		ST_Simplify
		

Name
ST_Snap —
	Snap segments and vertices of input geometry
	to vertices of a reference geometry.
		

Synopsis
	geometry ST_Snap(input, 	
	 	reference, 	
	 	tolerance);	

geometry input;
geometry reference;
float tolerance;

Description

 Snaps the vertices and segments of a geometry to
 another Geometry's vertices.
 A snap distance tolerance is used to control where snapping is performed.
 The result geometry is the input geometry with the vertices snapped.
	If no snapping occurs then the input geometry is returned unchanged.
		

 Snapping one geometry to another can improve
 robustness for overlay operations by eliminating
 nearly-coincident edges
 (which cause problems during noding and intersection calculation).
		

 Too much snapping can result in invalid topology
 being created, so the number and location of snapped vertices
 is decided using heuristics to determine when it
 is safe to snap.
 This can result in some potential snaps being omitted, however.
		
Note

		 The returned geometry might lose its simplicity (see
		 ST_IsSimple) and validity (see
		 ST_IsValid).
		

Performed by the GEOS module.
Availability: 2.0.0

Examples
	[image: Examples]A multipolygon shown with a linestring (before any snapping)

					
	[image: Examples]A multipolygon snapped to linestring to tolerance: 1.01 of distance.
							 The new multipolygon is shown with reference linestring

				

SELECT ST_AsText(ST_Snap(poly,line, ST_Distance(poly,line)*1.01)) AS polysnapped
FROM (SELECT
 ST_GeomFromText('MULTIPOLYGON(
 ((26 125, 26 200, 126 200, 126 125, 26 125),
 (51 150, 101 150, 76 175, 51 150)),
 ((151 100, 151 200, 176 175, 151 100)))') As poly,
 ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line
) As foo;

 polysnapped

 MULTIPOLYGON(((26 125,26 200,126 200,126 125,101 100,26 125),
 (51 150,101 150,76 175,51 150)),((151 100,151 200,176 175,151 100)))
				

						[image: Examples]A multipolygon snapped to linestring to tolerance: 1.25 of distance.
							 The new multipolygon is shown with reference linestring

				

SELECT ST_AsText(
 ST_Snap(poly,line, ST_Distance(poly,line)*1.25)
) AS polysnapped
FROM (SELECT
 ST_GeomFromText('MULTIPOLYGON(
 ((26 125, 26 200, 126 200, 126 125, 26 125),
 (51 150, 101 150, 76 175, 51 150)),
 ((151 100, 151 200, 176 175, 151 100)))') As poly,
 ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line
) As foo;

 polysnapped

MULTIPOLYGON(((5 107,26 200,126 200,126 125,101 100,54 84,5 107),
(51 150,101 150,76 175,51 150)),((151 100,151 200,176 175,151 100)))
				

						
	[image: Examples]The linestring snapped to the original multipolygon at tolerance 1.01 of distance.
							 The new linestring is shown with reference multipolygon

				

SELECT ST_AsText(
 ST_Snap(line, poly, ST_Distance(poly,line)*1.01)
) AS linesnapped
FROM (SELECT
 ST_GeomFromText('MULTIPOLYGON(
 ((26 125, 26 200, 126 200, 126 125, 26 125),
 (51 150, 101 150, 76 175, 51 150)),
 ((151 100, 151 200, 176 175, 151 100)))') As poly,
 ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line
) As foo;

 linesnapped
--
 LINESTRING(5 107,26 125,54 84,101 100)
				

						

						[image: Examples]The linestring snapped to the original multipolygon at tolerance 1.25 of distance.
							 The new linestring is shown with reference multipolygon

				

SELECT ST_AsText(
 ST_Snap(line, poly, ST_Distance(poly,line)*1.25)
) AS linesnapped
FROM (SELECT
 ST_GeomFromText('MULTIPOLYGON(
 ((26 125, 26 200, 126 200, 126 125, 26 125),
 (51 150, 101 150, 76 175, 51 150)),
 ((151 100, 151 200, 176 175, 151 100)))') As poly,
 ST_GeomFromText('LINESTRING (5 107, 54 84, 101 100)') As line
) As foo;
 linesnapped

LINESTRING(26 125,54 84,101 100)
				

					

See Also

		ST_SnapToGrid
		

Name
ST_IsValidDetail — Returns a valid_detail row stating if a geometry is valid or if not a reason and a location.

Synopsis
	valid_detail ST_IsValidDetail(geom, 	
	 	flags);	

geometry geom;
integer flags;

Description
Returns a valid_detail row,
 containing a boolean (valid) stating if a geometry is valid,
 a varchar (reason) stating a reason why it is invalid
 and a geometry (location) pointing out where it is invalid.
Useful to improve on the combination of ST_IsValid and ST_IsValidReason to generate a detailed report of invalid geometries.

The optional flags parameter is a bitfield. It can have the following values:
		
	
0: Use usual OGC SFS validity semantics.

	
1: Consider certain kinds of self-touching rings (inverted shells and exverted holes) as valid.
 This is also known as "the ESRI flag", since this is the validity model used by those tools.
 Note that this is invalid under the OGC model.

		
Performed by the GEOS module.
Availability: 2.0.0

Examples

--First 3 Rejects from a successful quintuplet experiment
SELECT gid, reason(ST_IsValidDetail(geom)), ST_AsText(location(ST_IsValidDetail(geom))) as location
FROM
(SELECT ST_MakePolygon(ST_ExteriorRing(e.buff), array_agg(f.line)) As geom, gid
FROM (SELECT ST_Buffer(ST_Point(x1*10,y1), z1) As buff, x1*10 + y1*100 + z1*1000 As gid
	FROM generate_series(-4,6) x1
	CROSS JOIN generate_series(2,5) y1
	CROSS JOIN generate_series(1,8) z1
	WHERE x1 > y1*0.5 AND z1 < x1*y1) As e
	INNER JOIN (SELECT ST_Translate(ST_ExteriorRing(ST_Buffer(ST_Point(x1*10,y1), z1)),y1*1, z1*2) As line
	FROM generate_series(-3,6) x1
	CROSS JOIN generate_series(2,5) y1
	CROSS JOIN generate_series(1,10) z1
	WHERE x1 > y1*0.75 AND z1 < x1*y1) As f
ON (ST_Area(e.buff) > 78 AND ST_Contains(e.buff, f.line))
GROUP BY gid, e.buff) As quintuplet_experiment
WHERE ST_IsValid(geom) = false
ORDER BY gid
LIMIT 3;

 gid | reason | location
------+-------------------+-------------
 5330 | Self-intersection | POINT(32 5)
 5340 | Self-intersection | POINT(42 5)
 5350 | Self-intersection | POINT(52 5)

 --simple example
SELECT * FROM ST_IsValidDetail('LINESTRING(220227 150406,2220227 150407,222020 150410)');

 valid | reason | location
-------+--------+----------
 t | |

		

See Also

ST_IsValid,
ST_IsValidReason

Name
ST_IsValidReason — Returns text stating if a geometry is valid, or a reason for invalidity.

Synopsis
	text ST_IsValidReason(geomA);	

geometry geomA;

	text ST_IsValidReason(geomA, 	
	 	flags);	

geometry geomA;
integer flags;

Description
Returns text stating if a geometry is valid, or if invalid a reason why.
Useful in combination with ST_IsValid to generate a detailed report of invalid geometries and reasons.

Allowed flags are documented in ST_IsValidDetail.
		
Performed by the GEOS module.
Availability: 1.4
Availability: 2.0 version taking flags.

Examples
-- invalid bow-tie polygon
SELECT ST_IsValidReason(
 'POLYGON ((100 200, 100 100, 200 200,
 200 100, 100 200))'::geometry) as validity_info;
validity_info

Self-intersection[150 150]

--First 3 Rejects from a successful quintuplet experiment
SELECT gid, ST_IsValidReason(geom) as validity_info
FROM
(SELECT ST_MakePolygon(ST_ExteriorRing(e.buff), array_agg(f.line)) As geom, gid
FROM (SELECT ST_Buffer(ST_Point(x1*10,y1), z1) As buff, x1*10 + y1*100 + z1*1000 As gid
	FROM generate_series(-4,6) x1
	CROSS JOIN generate_series(2,5) y1
	CROSS JOIN generate_series(1,8) z1
	WHERE x1 > y1*0.5 AND z1 < x1*y1) As e
	INNER JOIN (SELECT ST_Translate(ST_ExteriorRing(ST_Buffer(ST_Point(x1*10,y1), z1)),y1*1, z1*2) As line
	FROM generate_series(-3,6) x1
	CROSS JOIN generate_series(2,5) y1
	CROSS JOIN generate_series(1,10) z1
	WHERE x1 > y1*0.75 AND z1 < x1*y1) As f
ON (ST_Area(e.buff) > 78 AND ST_Contains(e.buff, f.line))
GROUP BY gid, e.buff) As quintuplet_experiment
WHERE ST_IsValid(geom) = false
ORDER BY gid
LIMIT 3;

 gid | validity_info
------+--------------------------
 5330 | Self-intersection [32 5]
 5340 | Self-intersection [42 5]
 5350 | Self-intersection [52 5]

 --simple example
SELECT ST_IsValidReason('LINESTRING(220227 150406,2220227 150407,222020 150410)');

 st_isvalidreason

 Valid Geometry

		

See Also
ST_IsValid, ST_Summary

Name
ST_SRID — Returns the spatial reference identifier for a geometry.

Synopsis
	integer ST_SRID(g1);	

geometry g1;

Description
Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table. the section called “Spatial Reference Systems”
Note
spatial_ref_sys
		table is a table that catalogs all spatial reference systems known to PostGIS and is used for transformations from one spatial
			reference system to another. So verifying you have the right spatial reference system identifier is important if you plan to ever transform your geometries.

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.5
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_SRID(ST_GeomFromText('POINT(-71.1043 42.315)',4326));
		--result
		4326
		

See Also
the section called “Spatial Reference Systems”, ST_SetSRID, ST_Transform, ST_SRID, ST_SRID

Geometry Input

Abstract
These functions create geometry objects from various textual or binary formats.

Well-Known Text (WKT)

Well-Known Binary (WKB)

Other Formats

Operators

Bounding Box Operators

Distance Operators

Name
ST_Azimuth — Returns the north-based azimuth of a line between two points.

Synopsis
	float ST_Azimuth(origin, 	
	 	target);	

geometry origin;
geometry target;

	float ST_Azimuth(origin, 	
	 	target);	

geography origin;
geography target;

Description
Returns the azimuth in radians of the target point from the origin point,
 or NULL if the two points are coincident.
 The azimuth angle is a positive clockwise angle
 referenced from the positive Y axis (geometry) or the North meridian (geography):
 North = 0; Northeast = π/4; East = π/2; Southeast = 3π/4;
 South = π; Southwest 5π/4; West = 3π/2; Northwest = 7π/4.
For the geography type, the azimuth solution is known as the
 inverse geodesic problem.
The azimuth is a mathematical concept defined as the angle between a reference vector and a point, with angular units in radians.
			The result value in radians can be converted to degrees using the PostgreSQL function degrees().
Azimuth can be used in conjunction with ST_Translate to shift an object along its perpendicular axis. See
				 the upgis_lineshift() function in the PostGIS wiki for an implementation of this.
Availability: 1.1.0
Enhanced: 2.0.0 support for geography was introduced.
Enhanced: 2.2.0 measurement on spheroid performed with GeographicLib for improved accuracy and robustness. Requires PROJ >= 4.9.0 to take advantage of the new feature.

Examples
Geometry Azimuth in degrees

SELECT degrees(ST_Azimuth(ST_Point(25, 45), ST_Point(75, 100))) AS degA_B,
 degrees(ST_Azimuth(ST_Point(75, 100), ST_Point(25, 45))) AS degB_A;

 dega_b | degb_a
------------------+------------------
 42.2736890060937 | 222.273689006094

	[image: Examples]Blue: origin Point(25,45); Green: target Point(75, 100); Yellow: Y axis or North;
 Red: azimuth angle.

				
	[image: Examples]Blue: origin Point(75, 100); Green: target Point(25, 45); Yellow: Y axis or North;
 Red: azimuth angle.

				

See Also
ST_Angle, ST_Point, ST_Translate, ST_Project, PostgreSQL Math Functions

Name
ST_Angle — Returns the angle between two vectors defined by 3 or 4 points, or 2 lines.

Synopsis
	float ST_Angle(point1, 	
	 	point2, 	
	 	point3, 	
	 	point4);	

geometry point1;
geometry point2;
geometry point3;
geometry point4;

	float ST_Angle(line1, 	
	 	line2);	

geometry line1;
geometry line2;

Description
 Computes the clockwise angle between two vectors.
			
Variant 1: computes the angle enclosed by the points P1-P2-P3. If a 4th point provided computes the angle points P1-P2 and P3-P4
Variant 2: computes the angle between two vectors S1-E1 and S2-E2,
 defined by the start and end points of the input lines

The result is a positive angle between 0 and 2π radians.
 The radian result can be converted to degrees using the PostgreSQL function degrees().

Note that ST_Angle(P1,P2,P3) = ST_Angle(P2,P1,P2,P3).
Availability: 2.5.0

Examples
Angle between three points

SELECT degrees(ST_Angle('POINT(0 0)', 'POINT(10 10)', 'POINT(20 0)'));

 degrees

 270

Angle between vectors defined by four points

SELECT degrees(ST_Angle('POINT (10 10)', 'POINT (0 0)', 'POINT(90 90)', 'POINT (100 80)'));

 degrees

 269.9999999999999

Angle between vectors defined by the start and end points of lines

SELECT degrees(ST_Angle('LINESTRING(0 0, 0.3 0.7, 1 1)', 'LINESTRING(0 0, 0.2 0.5, 1 0)'));

 degrees

 45

See Also
ST_Azimuth

Name
ST_DistanceSpheroid — Returns the minimum distance between two lon/lat geometries
		using a spheroidal earth model.

Synopsis
	float ST_DistanceSpheroid(geomlonlatA, 	
	 	geomlonlatB, 	
	 	measurement_spheroid=WGS84);	

geometry geomlonlatA;
geometry geomlonlatB;
spheroid measurement_spheroid=WGS84;

Description
Returns minimum distance in meters between two lon/lat
				geometries given a particular spheroid. See the explanation of spheroids given for
			ST_LengthSpheroid.
Note
This function does not look at the SRID of the geometry.
			It assumes the geometry coordinates are based on the provided spheroid.
			

Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.
Changed: 2.2.0 In prior versions this was called ST_Distance_Spheroid

Examples
SELECT round(CAST(
		ST_DistanceSpheroid(ST_Centroid(geom), ST_GeomFromText('POINT(-118 38)',4326), 'SPHEROID["WGS 84",6378137,298.257223563]')
			As numeric),2) As dist_meters_spheroid,
		round(CAST(ST_DistanceSphere(ST_Centroid(geom), ST_GeomFromText('POINT(-118 38)',4326)) As numeric),2) As dist_meters_sphere,
round(CAST(ST_Distance(ST_Transform(ST_Centroid(geom),32611),
		ST_Transform(ST_GeomFromText('POINT(-118 38)', 4326),32611)) As numeric),2) As dist_utm11_meters
FROM
	(SELECT ST_GeomFromText('LINESTRING(-118.584 38.374,-118.583 38.5)', 4326) As geom) as foo;
 dist_meters_spheroid | dist_meters_sphere | dist_utm11_meters
----------------------+--------------------+-------------------
			 70454.92 | 70424.47 | 70438.00

	

See Also
ST_Distance, ST_DistanceSphere

Name
ST_Length — Returns the 2D length of a linear geometry.

Synopsis
	float ST_Length(a_2dlinestring);	

geometry a_2dlinestring;

	float ST_Length(geog, 	
	 	use_spheroid=true);	

geography geog;
boolean use_spheroid=true;

Description
For geometry types: returns the 2D Cartesian length of the geometry if it is a LineString, MultiLineString, ST_Curve, ST_MultiCurve.
				For areal geometries 0 is returned; use ST_Perimeter instead.
				The units of length is determined by the
				spatial reference system of the geometry.
For geography types: computation is performed using the inverse geodesic calculation. Units of length are in meters.
				If PostGIS is compiled with PROJ version 4.8.0 or later, the spheroid is specified by the SRID, otherwise it is exclusive to WGS84.
				If use_spheroid=false, then the calculation is based on a sphere instead of a spheroid.
				
Currently for geometry this is an alias for ST_Length2D, but this may change to support higher dimensions.
Warning
Changed: 2.0.0 Breaking change -- in prior versions applying this to a MULTI/POLYGON of type geography would give you the perimeter of the POLYGON/MULTIPOLYGON. In 2.0.0
			this was changed to return 0 to be in line with geometry behavior. Please use ST_Perimeter if you want the perimeter of a polygon

Note
For geography the calculation defaults to using a spheroidal model. To use the faster but less accurate spherical calculation use ST_Length(gg,false);

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.5.1
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.1.2, 9.3.4
Availability: 1.5.0 geography support was introduced in 1.5.
[image: Description] This method is also provided by SFCGAL backend.

Geometry Examples
Return length in feet for line string. Note this is in feet because EPSG:2249 is
				Massachusetts State Plane Feet

SELECT ST_Length(ST_GeomFromText('LINESTRING(743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416)',2249));

st_length

 122.630744000095

--Transforming WGS 84 LineString to Massachusetts state plane meters
SELECT ST_Length(
	ST_Transform(
		ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45, -72.1240 42.45666, -72.123 42.1546)'),
		26986
)
);

st_length

34309.4563576191
			

Geography Examples
Return length of WGS 84 geography line

-- the default calculation uses a spheroid
SELECT ST_Length(the_geog) As length_spheroid, ST_Length(the_geog,false) As length_sphere
FROM (SELECT ST_GeographyFromText(
'SRID=4326;LINESTRING(-72.1260 42.45, -72.1240 42.45666, -72.123 42.1546)') As the_geog)
 As foo;

 length_spheroid | length_sphere
------------------+------------------
 34310.5703627288 | 34346.2060960742
			

See Also
ST_GeographyFromText, ST_GeomFromEWKT, ST_LengthSpheroid, ST_Perimeter, ST_Transform

Name
ST_Length2D — Returns the 2D length of a linear geometry. Alias for ST_Length

Synopsis
	float ST_Length2D(a_2dlinestring);	

geometry a_2dlinestring;

Description
Returns the 2D length of the geometry if it is a
				linestring or multi-linestring. This is an alias for ST_Length

See Also
ST_Length, ST_3DLength

Name
ST_3DMaxDistance — Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in
		projected units.

Synopsis
	float ST_3DMaxDistance(g1, 	
	 	g2);	

geometry
			g1;
geometry
			g2;

Description
Returns the 3-dimensional maximum cartesian distance between two geometries in
		projected units (spatial ref units).
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
Availability: 2.0.0
Changed: 2.2.0 - In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.

Examples

-- Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point and line compared 2D point and line)
-- Note: currently no vertical datum support so Z is not transformed and assumed to be same units as final.
SELECT ST_3DMaxDistance(
			ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 10000)'),2163),
			ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
) As dist_3d,
		ST_MaxDistance(
			ST_Transform(ST_GeomFromEWKT('SRID=4326;POINT(-72.1235 42.3521 10000)'),2163),
			ST_Transform(ST_GeomFromEWKT('SRID=4326;LINESTRING(-72.1260 42.45 15, -72.123 42.1546 20)'),2163)
) As dist_2d;

 dist_3d | dist_2d
------------------+------------------
 24383.7467488441 | 22247.8472107251

See Also
ST_Distance, ST_3DDWithin, ST_3DMaxDistance, ST_Transform

Name
ST_Perimeter2D — Returns the 2D perimeter of a polygonal geometry.
		Alias for ST_Perimeter.

Synopsis
	float ST_Perimeter2D(geomA);	

geometry geomA;

Description
Returns the 2-dimensional perimeter of a polygonal geometry.
Note
 This is currently an alias for ST_Perimeter. In future versions ST_Perimeter may return the highest dimension perimeter for a geometry. This is still under consideration

See Also
ST_Perimeter

Name
ST_ShortestLine — Returns the 2D shortest line between two geometries

Synopsis
	geometry ST_ShortestLine(geom1, 	
	 	geom2);	

geometry
			geom1;
geometry
			geom2;

Description
Returns the 2-dimensional shortest line between two geometries.
		The line returned starts in geom1 and ends in geom2.
		If geom1 and geom2 intersect
 the result is a line with start and end at an intersection point.
		The length of the line is the same as ST_Distance returns for g1 and g2.
		
Availability: 1.5.0

Examples
[image: Examples]Shortest line between Point and LineString

SELECT ST_AsText(ST_ShortestLine(
 'POINT (160 40)',
 'LINESTRING (10 30, 50 50, 30 110, 70 90, 180 140, 130 190)')
) As sline;

 LINESTRING(160 40,125.75342465753425 115.34246575342466)

		
[image: Examples]Shortest line between Polygons

SELECT ST_AsText(ST_ShortestLine(
 'POLYGON ((190 150, 20 10, 160 70, 190 150))',
 ST_Buffer('POINT(80 160)', 30)
)) AS llinewkt;

LINESTRING(131.59149149528952 101.89887534906197,101.21320343559644 138.78679656440357)

		

See Also
ST_ClosestPoint, ST_Distance, ST_LongestLine, ST_MaxDistance

Name
ST_3DShortestLine — Returns the 3D shortest line between two geometries

Synopsis
	geometry ST_3DShortestLine(g1, 	
	 	g2);	

geometry
			g1;
geometry
			g2;

Description
Returns the 3-dimensional shortest line between two geometries. The function will
		only return the first shortest line if more than one, that the function finds.
		If g1 and g2 intersects in just one point the function will return a line with both start
		and end in that intersection-point.
		If g1 and g2 are intersecting with more than one point the function will return a line with start
		and end in the same point but it can be any of the intersecting points.
		The line returned will always start in g1 and end in g2.
		The 3D length of the line this function returns will always be the same as ST_3DDistance returns for g1 and g2.
		
Availability: 2.0.0
Changed: 2.2.0 - if 2 2D geometries are input, a 2D point is returned (instead of old behavior assuming 0 for missing Z). In case of 2D and 3D, Z is no longer assumed to be 0 for missing Z.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.

Examples
	linestring and point -- both 3d and 2d shortest line
					

SELECT ST_AsEWKT(ST_3DShortestLine(line,pt)) AS shl3d_line_pt,
		ST_AsEWKT(ST_ShortestLine(line,pt)) As shl2d_line_pt
	FROM (SELECT 'POINT(100 100 30)'::geometry As pt,
			'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)'::geometry As line
) As foo;

 shl3d_line_pt						 | shl2d_line_pt
--+--
 LINESTRING(54.6993798867619 128.935022917228 11.5475869506606,100 100 30) | LINESTRING(73.0769230769231 115.384615384615,100 100)
					

							

	linestring and multipoint -- both 3d and 2d shortest line
					
SELECT ST_AsEWKT(ST_3DShortestLine(line,pt)) AS shl3d_line_pt,
		ST_AsEWKT(ST_ShortestLine(line,pt)) As shl2d_line_pt
	FROM (SELECT 'MULTIPOINT(100 100 30, 50 74 1000)'::geometry As pt,
			'LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)'::geometry As line
) As foo;

 shl3d_line_pt | shl2d_line_pt
---+------------------------
 LINESTRING(54.6993798867619 128.935022917228 11.5475869506606,100 100 30) | LINESTRING(50 75,50 74)
					

							

	MultiLineString and polygon both 3d and 2d shortest line
					
SELECT ST_AsEWKT(ST_3DShortestLine(poly, mline)) As shl3d,
 ST_AsEWKT(ST_ShortestLine(poly, mline)) As shl2d
 FROM (SELECT ST_GeomFromEWKT('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 100 5, 175 150 5))') As poly,
 ST_GeomFromEWKT('MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 100 1, 175 155 1),
 (1 10 2, 5 20 1))') As mline) As foo;
 shl3d | shl2d
---+------------------------
 LINESTRING(39.993580415989 54.1889925532825 5,40.4078575708294 53.6052383805529 5.03423778139177) | LINESTRING(20 40,20 40)

							

See Also
ST_3DClosestPoint, ST_3DDistance, ST_LongestLine, ST_ShortestLine, ST_3DMaxDistance

Name
ST_Intersection —
Computes a geometry representing the shared portion of geometries A and B.

Synopsis
	geometry ST_Intersection(geomA, 	
	 	geomB, 	
	 	gridSize = -1);	

 geometry
 geomA
 ;

 geometry
 geomB
 ;

 float8
 gridSize = -1
 ;

	geography ST_Intersection(geogA, 	
	 	geogB);	

 geography
 geogA
 ;

 geography
 geogB
 ;

Description
Returns a geometry representing the point-set
 intersection of two geometries.
 In other words, that portion of geometry A and geometry B
 that is shared between the two geometries.
If the geometries have no points in common (i.e. are disjoint)
 then an empty atomic geometry of appropriate type is returned.

If the optional gridSize argument is provided, the inputs are
snapped to a grid of the given size, and the result vertices are computed
on that same grid. (Requires GEOS-3.9.0 or higher)

ST_Intersection in conjunction with ST_Intersects is useful for clipping geometries such as in bounding box, buffer, or region
 queries where you only require the portion of a geometry that is inside a country or region of interest.
Note
Geography: For geography this is really a thin wrapper around the geometry implementation. It first determines the best SRID that
 fits the bounding box of the 2 geography objects (if geography objects are within one half zone UTM but not same UTM will pick one of those) (favoring UTM or Lambert Azimuthal Equal Area (LAEA) north/south pole, and falling back on mercator in worst case scenario) and then intersection in that best fit planar spatial ref and retransforms back to WGS84 geography.

Warning
This function will drop the M coordinate values if present.

Warning
If working with 3D geometries, you may want to use SFGCAL based ST_3DIntersection which does a proper 3D intersection for 3D geometries. Although this function works with Z-coordinate, it does an averaging of Z-Coordinate.

Performed by the GEOS module
Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0
Changed: 3.0.0 does not depend on SFCGAL.
Availability: 1.5 support for geography data type was introduced.
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.3
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.18
[image: Description]
 This function supports 3d and will not drop the z-index. However, the result is computed using XY only.
 The result Z values are copied, averaged or interpolated.

Examples
SELECT ST_AsText(ST_Intersection('POINT(0 0)'::geometry, 'LINESTRING (2 0, 0 2)'::geometry));
 st_astext

GEOMETRYCOLLECTION EMPTY

SELECT ST_AsText(ST_Intersection('POINT(0 0)'::geometry, 'LINESTRING (0 0, 0 2)'::geometry));
 st_astext

POINT(0 0)

Clip all lines (trails) by country. Here we assume country geom are POLYGON or MULTIPOLYGONS.
NOTE: we are only keeping intersections that result in a LINESTRING or MULTILINESTRING because we don't
care about trails that just share a point. The dump is needed to expand a geometry collection into individual single MULT* parts.
The below is fairly generic and will work for polys, etc. by just changing the where clause.
select clipped.gid, clipped.f_name, clipped_geom
from (
 select trails.gid, trails.f_name,
 (ST_Dump(ST_Intersection(country.geom, trails.geom))).geom clipped_geom
 from country
 inner join trails on ST_Intersects(country.geom, trails.geom)
) as clipped
where ST_Dimension(clipped.clipped_geom) = 1;
For polys e.g. polygon landmarks, you can also use the sometimes faster hack that buffering anything by 0.0 except a polygon results in an empty geometry collection.
(So a geometry collection containing polys, lines and points buffered by 0.0 would only leave the polygons and dissolve the collection shell.)
select poly.gid,
 ST_Multi(
 ST_Buffer(
 ST_Intersection(country.geom, poly.geom),
 0.0
)
) clipped_geom
from country
 inner join poly on ST_Intersects(country.geom, poly.geom)
where not ST_IsEmpty(ST_Buffer(ST_Intersection(country.geom, poly.geom), 0.0));

Examples: 2.5Dish
Note this is not a true intersection, compare to the same example using ST_3DIntersection.

select ST_AsText(ST_Intersection(linestring, polygon)) As wkt
from ST_GeomFromText('LINESTRING Z (2 2 6,1.5 1.5 7,1 1 8,0.5 0.5 8,0 0 10)') AS linestring
 CROSS JOIN ST_GeomFromText('POLYGON((0 0 8, 0 1 8, 1 1 8, 1 0 8, 0 0 8))') AS polygon;

 st_astext

 LINESTRING Z (1 1 8,0.5 0.5 8,0 0 10)

See Also
ST_3DIntersection, ST_Difference, ST_Union, ST_Dimension, ST_Dump, ST_Force2D, ST_SymDifference, ST_Intersects, ST_Multi

Name
ST_MemUnion — Aggregate function which unions geometries in a memory-efficent but slower way

Synopsis
	geometry ST_MemUnion(geomfield);	

geometry set geomfield;

Description
An aggregate function that unions the input geometries, merging them to produce a result geometry
 with no overlaps.
 The output may be a single geometry, a MultiGeometry, or a Geometry Collection.

Note
Produces the same result as ST_Union, but uses less memory
 and more processor time.
 This aggregate function works by unioning the geometries incrementally, as opposed to
 the ST_Union aggregate which first accumulates an array and then unions the contents
 using a fast algorithm.

[image: Description]
 This function supports 3d and will not drop the z-index. However, the result is computed using XY only.
 The result Z values are copied, averaged or interpolated.

Examples

SELECT id,
 ST_MemUnion(geom) as singlegeom
FROM sometable f
GROUP BY id;

See Also
ST_Union

Name
ST_SymDifference — Computes a geometry representing the portions of geometries A and B
 that do not intersect.

Synopsis
	geometry ST_SymDifference(geomA, 	
	 	geomB, 	
	 	gridSize = -1);	

geometry geomA;
geometry geomB;
float8 gridSize = -1;

Description
Returns a geometry representing the portions of geonetries A and B
 that do not intersect.
 This is equivalent to ST_Union(A,B) - ST_Intersection(A,B).
 It is called a symmetric difference because ST_SymDifference(A,B) = ST_SymDifference(B,A).

If the optional gridSize argument is provided, the inputs are
snapped to a grid of the given size, and the result vertices are computed
on that same grid. (Requires GEOS-3.9.0 or higher)

Performed by the GEOS module
Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.3
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.21
[image: Description]
 This function supports 3d and will not drop the z-index. However, the result is computed using XY only.
 The result Z values are copied, averaged or interpolated.

Examples
	

[image: Examples]The original linestrings shown together

 	
 [image: Examples]The symmetric difference of the two linestrings

--Safe for 2d - symmetric difference of 2 linestrings
SELECT ST_AsText(
 ST_SymDifference(
 ST_GeomFromText('LINESTRING(50 100, 50 200)'),
 ST_GeomFromText('LINESTRING(50 50, 50 150)')
)
);

st_astext

MULTILINESTRING((50 150,50 200),(50 50,50 100))

--When used in 3d doesn't quite do the right thing
SELECT ST_AsEWKT(ST_SymDifference(ST_GeomFromEWKT('LINESTRING(1 2 1, 1 4 2)'),
 ST_GeomFromEWKT('LINESTRING(1 1 3, 1 3 4)')))

st_astext

MULTILINESTRING((1 3 2.75,1 4 2),(1 1 3,1 2 2.25))

See Also
ST_Difference, ST_Intersection, ST_Union

Name
ST_Union — Computes a geometry representing the point-set union of
 the input geometries.

Synopsis
	geometry ST_Union(g1, 	
	 	g2);	

geometry g1;
geometry g2;

	geometry ST_Union(g1, 	
	 	g2, 	
	 	gridSize);	

geometry g1;
geometry g2;
float8 gridSize;

	geometry ST_Union(g1_array);	

geometry[] g1_array;

	geometry ST_Union(g1field);	

geometry set g1field;

	geometry ST_Union(g1field, 	
	 	gridSize);	

geometry set g1field;
float8 gridSize;

Description
Unions the input geometries, merging geometry to produce a result geometry
 with no overlaps.
 The output may be an atomic geometry, a MultiGeometry, or a Geometry Collection.
 Comes in several variants:
Two-input variant:
 returns a geometry that is the union of two input geometries.
 If either input is NULL, then NULL is returned.

Array variant:
 returns a geometry that is the union of an array of geometries.

Aggregate variant:
 returns a geometry that is the union of a rowset of geometries.
 The ST_Union() function is an "aggregate"
 function in the terminology of PostgreSQL. That means that it
 operates on rows of data, in the same way the SUM() and AVG()
 functions do and like most aggregates, it also ignores NULL geometries.
See ST_UnaryUnion for a non-aggregate, single-input variant.
The ST_Union array and set variants use the fast Cascaded Union algorithm described in http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html

A gridSize can be specified to work in fixed-precision space.
 The inputs are snapped to a grid of the given size, and the result vertices are computed
 on that same grid.
 (Requires GEOS-3.9.0 or higher)

Note
ST_Collect may sometimes be used in place of ST_Union,
 if the result is not required to be non-overlapping.
 ST_Collect is usually faster than ST_Union because it performs no processing
 on the collected geometries.

Performed by the GEOS module.
ST_Union creates MultiLineString and does not sew LineStrings into a single LineString.
 Use ST_LineMerge to sew LineStrings.
NOTE: this function was formerly called GeomUnion(), which
 was renamed from "Union" because UNION is an SQL reserved
 word.
Enhanced: 3.1.0 accept a gridSize parameter - requires GEOS >= 3.9.0
Changed: 3.0.0 does not depend on SFCGAL.
Availability: 1.4.0 - ST_Union was enhanced. ST_Union(geomarray) was introduced and also faster aggregate collection in PostgreSQL.
[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.3
Note
Aggregate version is not explicitly defined in OGC SPEC.

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.19
 the z-index (elevation) when polygons are involved.
[image: Description]
 This function supports 3d and will not drop the z-index. However, the result is computed using XY only.
 The result Z values are copied, averaged or interpolated.

Examples
Aggregate example

SELECT id,
 ST_Union(geom) as singlegeom
FROM sometable f
GROUP BY id;

Non-Aggregate example

select ST_AsText(ST_Union('POINT(1 2)' :: geometry, 'POINT(-2 3)' :: geometry))

st_astext

MULTIPOINT(-2 3,1 2)

select ST_AsText(ST_Union('POINT(1 2)' :: geometry, 'POINT(1 2)' :: geometry))

st_astext

POINT(1 2)
3D example - sort of supports 3D (and with mixed dimensions!)
select ST_AsEWKT(ST_Union(geom))
from (
 select 'POLYGON((-7 4.2,-7.1 4.2,-7.1 4.3, -7 4.2))'::geometry geom
 union all
 select 'POINT(5 5 5)'::geometry geom
 union all
 select 'POINT(-2 3 1)'::geometry geom
 union all
 select 'LINESTRING(5 5 5, 10 10 10)'::geometry geom
) as foo;

st_asewkt

GEOMETRYCOLLECTION(POINT(-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 5,-7.1 4.2 5,-7.1 4.3 5,-7 4.2 5)));

3d example not mixing dimensions
select ST_AsEWKT(ST_Union(geom))
from (
 select 'POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2, -7 4.2 2))'::geometry geom
 union all
 select 'POINT(5 5 5)'::geometry geom
 union all
 select 'POINT(-2 3 1)'::geometry geom
 union all
 select 'LINESTRING(5 5 5, 10 10 10)'::geometry geom
) as foo;

st_asewkt

GEOMETRYCOLLECTION(POINT(-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2,-7 4.2 2)))

--Examples using new Array construct
SELECT ST_Union(ARRAY(SELECT geom FROM sometable));

SELECT ST_AsText(ST_Union(ARRAY[ST_GeomFromText('LINESTRING(1 2, 3 4)'),
 ST_GeomFromText('LINESTRING(3 4, 4 5)')])) As wktunion;

--wktunion---
MULTILINESTRING((3 4,4 5),(1 2,3 4))

See Also

 ST_Collect,
 ST_UnaryUnion,
 ST_MemUnion,
 ST_Intersection,
 ST_Difference,
 ST_SymDifference

Geometry Processing

Abstract
These functions compute geometric constructions,
 or alter geometry size or shape.

Name
ST_ChaikinSmoothing — Returns a smoothed version of a geometry, using the Chaikin algorithm

Synopsis
	geometry ST_ChaikinSmoothing(geom, 	
	 	nIterations = 1, 	
	 	preserveEndPoints = false);	

geometry geom;
integer nIterations = 1;
boolean preserveEndPoints = false;

Description
 Returns a "smoothed" version of the given geometry using the Chaikin algorithm.
 See Chaikins-Algorithm for an explanation of the process.
 For each iteration the number of vertex points will double.
 The function puts new vertex points at 1/4 of the line before and after each point and removes the original point.
 To reduce the number of points use one of the simplification functions on the result.
 The new points gets interpolated values for all included dimensions, also z and m.
Second argument, number of iterations is limited to max 5 iterations
Note third argument is only valid for polygons, and will be ignored for linestrings
This function handles 3D and the third dimension will affect the result.
Note
Note that returned geometry will get more points than the original.
 To reduce the number of points again use one of the simplification functions on the result.
 (see ST_Simplify and ST_SimplifyVW)

Availability: 2.5.0

Examples
A triangle is smoothed

select ST_AsText(ST_ChaikinSmoothing(geom)) smoothed
FROM (SELECT 'POLYGON((0 0, 8 8, 0 16, 0 0))'::geometry geom) As foo;
┌───┐
│ smoothed │
├───┤
│ POLYGON((2 2,6 6,6 10,2 14,0 12,0 4,2 2)) │
└───┘

See Also
ST_Simplify, ST_SimplifyVW

Name
ST_FilterByM — Removes vertices based on their M value

Synopsis
	geometry ST_FilterByM(geom, 	
	 	min, 	
	 	max = null, 	
	 	returnM = false);	

geometry geom;
double precision min;
double precision max = null;
boolean returnM = false;

Description
Filters out vertex points based on their M-value. Returns a geometry with only
 vertex points that have a M-value larger or equal to the min value and smaller or equal to
 the max value. If max-value argument is left out only min value is considered. If fourth argument is left out the m-value
 will not be in the resulting geometry. If resulting geometry have too few vertex points left for its geometry type an empty
 geometry will be returned. In a geometry collection
 geometries without enough points will just be left out silently.
This function is mainly intended to be used in conjunction with ST_SetEffectiveArea. ST_EffectiveArea sets the effective area
 of a vertex in its m-value. With ST_FilterByM it then is possible to get a simplified version of the geometry without any calculations, just by filtering
Note
There is a difference in what ST_SimplifyVW returns when not enough points meet the criteria compared to ST_FilterByM.
 ST_SimplifyVW returns the geometry with enough points while ST_FilterByM returns an empty geometry

Note
Note that the returned geometry might be invalid

Note
This function returns all dimensions, including the Z and M values

Availability: 2.5.0

Examples
A linestring is filtered

SELECT ST_AsText(ST_FilterByM(geom,30)) simplified
FROM (SELECT ST_SetEffectiveArea('LINESTRING(5 2, 3 8, 6 20, 7 25, 10 10)'::geometry) geom) As foo;
-result
 simplified

 LINESTRING(5 2,7 25,10 10)

See Also
ST_SetEffectiveArea, ST_SimplifyVW

Name
ST_GeneratePoints — Generates random points contained in a Polygon or MultiPolygon.

Synopsis
	geometry ST_GeneratePoints(g, 	
	 	npoints);	

 g
 geometry
 ;

 npoints
 integer
 ;

	geometry ST_GeneratePoints(g, 	
	 	npoints, 	
	 	seed);	

 geometry g ;
 integer npoints ;
 integer seed ;

Description

 ST_GeneratePoints generates a given number of pseudo-random points
 which lie within the input area.
 The optional seed is used to regenerate a deterministic sequence of points,
 and must be greater than zero.

Availability: 2.3.0
Enhanced: 3.0.0, added seed parameter

Examples
[image: Examples]Generated 12 Points overlaid on top of original polygon using a random seed value 1996

SELECT ST_GeneratePoints(geom, 12, 1996)
FROM (
 SELECT ST_Buffer(
 ST_GeomFromText(
 'LINESTRING(50 50,150 150,150 50)'),
 10, 'endcap=round join=round') AS geom
) AS s;

Name
ST_MinimumBoundingCircle — Returns the smallest circle polygon that contains a geometry.

Synopsis
	geometry ST_MinimumBoundingCircle(geomA, 	
	 	num_segs_per_qt_circ=48);	

geometry geomA;
integer num_segs_per_qt_circ=48;

Description
Returns the smallest circle polygon that contains a geometry.
Note
The bounding circle is approximated by a polygon with a default of 48 segments per quarter circle.
 Because the polygon is an approximation of the minimum bounding circle, some points in the input geometry may not be contained within the polygon.
 The approximation can be improved by increasing the number of segments.
 For applications where an approximation is not suitable ST_MinimumBoundingRadius may be used.

This function is not an aggregate. It can be used
 with ST_Collect to get the minimum bounding circle of a set of geometries.
The ratio of the area of a polygon divided by the area of its Minimum Bounding Circle
 is referred to as the Reock compactness score.
Performed by the GEOS module.
Availability: 1.4.0

See Also
ST_Collect, ST_MinimumBoundingRadius

Examples
SELECT d.disease_type,
 ST_MinimumBoundingCircle(ST_Collect(d.geom)) As geom
 FROM disease_obs As d
 GROUP BY d.disease_type;

[image: Examples]Minimum bounding circle of a point and linestring. Using 8 segs to approximate a quarter circle

SELECT ST_AsText(ST_MinimumBoundingCircle(
 ST_Collect(
 ST_GeomFromText('LINESTRING(55 75,125 150)'),
 ST_Point(20, 80)), 8
)) As wktmbc;
wktmbc

POLYGON((135.59714732062 115,134.384753327498 102.690357210921,130.79416296937 90.8537670908995,124.963360620072 79.9451031602111,117.116420743937 70.3835792560632,107.554896839789 62.5366393799277,96.6462329091006 56.70583703063,84.8096427890789 53.115246672502,72.5000000000001 51.9028526793802,60.1903572109213 53.1152466725019,48.3537670908996 56.7058370306299,37.4451031602112 62.5366393799276,27.8835792560632 70.383579256063,20.0366393799278 79.9451031602109,14.20583703063 90.8537670908993,10.615246672502 102.690357210921,9.40285267938019 115,10.6152466725019 127.309642789079,14.2058370306299 139.1462329091,20.0366393799275 150.054896839789,27.883579256063 159.616420743937,
37.4451031602108 167.463360620072,48.3537670908992 173.29416296937,60.190357210921 176.884753327498,
72.4999999999998 178.09714732062,84.8096427890786 176.884753327498,96.6462329091003 173.29416296937,107.554896839789 167.463360620072,
117.116420743937 159.616420743937,124.963360620072 150.054896839789,130.79416296937 139.146232909101,134.384753327498 127.309642789079,135.59714732062 115))

See Also
ST_Collect, ST_MinimumBoundingRadius

Name
ST_PointOnSurface — Computes a point guaranteed to lie in a polygon, or on a geometry.

Synopsis
	geometry ST_PointOnSurface(g1);	

geometry
 g1;

Description
Returns a POINT which is guaranteed to lie in the interior of a surface
 (POLYGON, MULTIPOLYGON, and CURVED POLYGON).
 In PostGIS this function also works on line and point geometries.

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s3.2.14.2 // s3.2.18.2
[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 8.1.5, 9.5.6.
 The specifications define ST_PointOnSurface for surface geometries only.
 PostGIS extends the function to support all common geometry types.
 Other databases (Oracle, DB2, ArcSDE) seem to support this function only for surfaces.
 SQL Server 2008 supports all common geometry types.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
	[image: Examples]PointOnSurface of a
 MULTIPOINT

	[image: Examples]PointOnSurface of a
 LINESTRING

	[image: Examples]PointOnSurface of a
 POLYGON

	[image: Examples]PointOnSurface of a
 GEOMETRYCOLLECTION

SELECT ST_AsText(ST_PointOnSurface('POINT(0 5)'::geometry));

 POINT(0 5)

SELECT ST_AsText(ST_PointOnSurface('LINESTRING(0 5, 0 10)'::geometry));

 POINT(0 5)

SELECT ST_AsText(ST_PointOnSurface('POLYGON((0 0, 0 5, 5 5, 5 0, 0 0))'::geometry));

 POINT(2.5 2.5)

SELECT ST_AsEWKT(ST_PointOnSurface(ST_GeomFromEWKT('LINESTRING(0 5 1, 0 0 1, 0 10 2)')));

 POINT(0 0 1)

Example:
 The result of ST_PointOnSurface is guaranteed to lie within polygons,
 whereas the point computed by ST_Centroid may be outside.

[image: Examples]Red: point on surface; Green: centroid

SELECT ST_AsText(ST_PointOnSurface(geom)) AS pt_on_surf,
 ST_AsText(ST_Centroid(geom)) AS centroid
 FROM (SELECT 'POLYGON ((130 120, 120 190, 30 140, 50 20, 190 20,
 170 100, 90 60, 90 130, 130 120))'::geometry AS geom) AS t;

 pt_on_surf | centroid
-----------------+---
 POINT(62.5 110) | POINT(100.18264840182648 85.11415525114155)

See Also
ST_Centroid, ST_MaximumInscribedCircle

Name
ST_ReducePrecision — Returns a valid geometry with points rounded to a grid tolerance.

Synopsis
	geometry ST_ReducePrecision(g, 	
	 	gridsize);	

geometry
 g;
float8
 gridsize;

Description
Returns a valid geometry with all points rounded to the provided grid tolerance, and features below the tolerance removed.
Unlike ST_SnapToGrid the returned geometry will be valid, with no ring self-intersections or collapsed components.

 Precision reduction can be used to:

	
 match coordinate precision to the data accuracy

	
 reduce the number of coordinates needed to represent a geometry

	
 ensure valid geometry output to formats which use lower precision
 (e.g. text formats such as WKT, GeoJSON or KML
 when the number of output decimal places is limited).

	
 export valid geometry to systems which use lower or limited precision
 (e.g. SDE, Oracle tolerance value)

		
Availability: 3.1.0 - requires GEOS >= 3.9.0.

Examples
SELECT ST_AsText(ST_ReducePrecision('POINT(1.412 19.323)', 0.1));
 st_astext

 POINT(1.4 19.3)

SELECT ST_AsText(ST_ReducePrecision('POINT(1.412 19.323)', 1.0));
 st_astext

 POINT(1 19)

SELECT ST_AsText(ST_ReducePrecision('POINT(1.412 19.323)', 10));
 st_astext

 POINT(0 20)

Precision reduction can reduce number of vertices
SELECT ST_AsText(ST_ReducePrecision('LINESTRING (10 10, 19.6 30.1, 20 30, 20.3 30, 40 40)', 1));
 st_astext

 LINESTRING (10 10, 20 30, 40 40)

Precision reduction splits polygons if needed to ensure validity
SELECT ST_AsText(ST_ReducePrecision('POLYGON ((10 10, 60 60.1, 70 30, 40 40, 50 10, 10 10))', 10));
 st_astext

 MULTIPOLYGON (((60 60, 70 30, 40 40, 60 60)), ((40 40, 50 10, 10 10, 40 40)))

See Also
ST_SnapToGrid, ST_Simplify, ST_SimplifyVW

Name
ST_SharedPaths — Returns a collection containing paths shared by the two input linestrings/multilinestrings.

Synopsis
	geometry ST_SharedPaths(lineal1, 	
	 	lineal2);	

geometry lineal1;
geometry lineal2;

Description
Returns a collection containing paths shared by the two input geometries.
 Those going in the same direction are in the first element of the collection, those going in the opposite direction are in the second element.
 The paths themselves are given in the direction of the first geometry.

Performed by the GEOS module.
Availability: 2.0.0

Examples: Finding shared paths
	[image: Examples: Finding shared paths]A multilinestring and a linestring

	[image: Examples: Finding shared paths]The shared path of multilinestring and linestring overlaid with original geometries.

 SELECT ST_AsText(
 ST_SharedPaths(
 ST_GeomFromText('MULTILINESTRING((26 125,26 200,126 200,126 125,26 125),
 (51 150,101 150,76 175,51 150))'),
 ST_GeomFromText('LINESTRING(151 100,126 156.25,126 125,90 161, 76 175)')
)
) As wkt

 wkt

GEOMETRYCOLLECTION(MULTILINESTRING((126 156.25,126 125),
 (101 150,90 161),(90 161,76 175)),MULTILINESTRING EMPTY)

	

-- same example but linestring orientation flipped
SELECT ST_AsText(
 ST_SharedPaths(
 ST_GeomFromText('LINESTRING(76 175,90 161,126 125,126 156.25,151 100)'),
 ST_GeomFromText('MULTILINESTRING((26 125,26 200,126 200,126 125,26 125),
 (51 150,101 150,76 175,51 150))')
)
) As wkt

 wkt

GEOMETRYCOLLECTION(MULTILINESTRING EMPTY,
MULTILINESTRING((76 175,90 161),(90 161,101 150),(126 125,126 156.25)))

See Also

 ST_Dump,
 ST_GeometryN,
 ST_NumGeometries

Name
ST_SimplifyPolygonHull — Computes a simplifed topology-preserving outer or inner hull of a polygonal geometry.

Synopsis
	geometry ST_SimplifyPolygonHull(param_geom, 	
	 	vertex_fraction, 	
	 	is_outer = true);	

geometry param_geom;
float vertex_fraction;
boolean is_outer = true;

Description
Computes a simplified topology-preserving outer or inner hull of a polygonal geometry.
 An outer hull completely covers the input geometry.
 An inner hull is completely covered by the input geometry.
 The result is a polygonal geometry formed by a subset of the input vertices.
 MultiPolygons and holes are handled and produce a result with the same structure as the input.

The reduction in vertex count is controlled by the vertex_fraction parameter,
 which is a number in the range 0 to 1.
 Lower values produce simpler results, with smaller vertex count and less concaveness.
 For both outer and inner hulls a vertex fraction of 1.0 produces the orginal geometry.
 For outer hulls a value of 0.0 produces the convex hull (for a single polygon);
 for inner hulls it produces a triangle.

 The simplification process operates by progressively removing concave corners that contain the least amount of area, until the vertex count target is reached.
 It prevents edges from crossing, so the result is always a valid polygonal geometry.

To get better results with geometries that contain relatively long line segments, it might be necessary to "segmentize" the input, as shown below.
Performed by the GEOS module.
Availability: 3.3.0 - requires GEOS >= 3.11.0

Examples

[image: Examples]Outer hull of a Polygon

SELECT ST_SimplifyPolygonHull(
 'POLYGON ((131 158, 136 163, 161 165, 173 156, 179 148, 169 140, 186 144, 190 137, 185 131, 174 128, 174 124, 166 119, 158 121, 158 115, 165 107, 161 97, 166 88, 166 79, 158 57, 145 57, 112 53, 111 47, 93 43, 90 48, 88 40, 80 39, 68 32, 51 33, 40 31, 39 34, 49 38, 34 38, 25 34, 28 39, 36 40, 44 46, 24 41, 17 41, 14 46, 19 50, 33 54, 21 55, 13 52, 11 57, 22 60, 34 59, 41 68, 75 72, 62 77, 56 70, 46 72, 31 69, 46 76, 52 82, 47 84, 56 90, 66 90, 64 94, 56 91, 33 97, 36 100, 23 100, 22 107, 29 106, 31 112, 46 116, 36 118, 28 131, 53 132, 59 127, 62 131, 76 130, 80 135, 89 137, 87 143, 73 145, 80 150, 88 150, 85 157, 99 162, 116 158, 115 165, 123 165, 122 170, 134 164, 131 158))',
 0.3);

[image: Examples]Inner hull of a Polygon

SELECT ST_SimplifyPolygonHull(
 'POLYGON ((131 158, 136 163, 161 165, 173 156, 179 148, 169 140, 186 144, 190 137, 185 131, 174 128, 174 124, 166 119, 158 121, 158 115, 165 107, 161 97, 166 88, 166 79, 158 57, 145 57, 112 53, 111 47, 93 43, 90 48, 88 40, 80 39, 68 32, 51 33, 40 31, 39 34, 49 38, 34 38, 25 34, 28 39, 36 40, 44 46, 24 41, 17 41, 14 46, 19 50, 33 54, 21 55, 13 52, 11 57, 22 60, 34 59, 41 68, 75 72, 62 77, 56 70, 46 72, 31 69, 46 76, 52 82, 47 84, 56 90, 66 90, 64 94, 56 91, 33 97, 36 100, 23 100, 22 107, 29 106, 31 112, 46 116, 36 118, 28 131, 53 132, 59 127, 62 131, 76 130, 80 135, 89 137, 87 143, 73 145, 80 150, 88 150, 85 157, 99 162, 116 158, 115 165, 123 165, 122 170, 134 164, 131 158))',
 0.3, false);

[image: Examples]Outer hull simplification of a MultiPolygon, with segmentization

SELECT ST_SimplifyPolygonHull(
 ST_Segmentize(ST_Letters('xt'), 2.0),
 0.1);

See Also
ST_ConvexHull, ST_SimplifyVW, ST_ConcaveHull, ST_Segmentize

Name
ST_SimplifyVW — Returns a simplified version of a geometry, using the Visvalingam-Whyatt algorithm

Synopsis
	geometry ST_SimplifyVW(geomA, 	
	 	tolerance);	

geometry geomA;
float tolerance;

Description
 Returns a "simplified" version of the given geometry using the Visvalingam-Whyatt algorithm.
 Will actually do something only with (multi)lines and (multi)polygons but you can safely call it with any kind of geometry.
 Since simplification occurs on a object-by-object basis you can also feed a GeometryCollection to this function.
Note
Note that returned geometry might lose its
 simplicity (see ST_IsSimple)

Note
Note topology may not be preserved and may result in invalid geometries. Use (see ST_SimplifyPreserveTopology) to preserve topology.

Note
This function handles 3D and the third dimension will affect the result.

Availability: 2.2.0

Examples
A LineString is simplified with a minimum area threshold of 30.

select ST_AsText(ST_SimplifyVW(geom,30)) simplified
FROM (SELECT 'LINESTRING(5 2, 3 8, 6 20, 7 25, 10 10)'::geometry geom) As foo;
-result
 simplified

LINESTRING(5 2,7 25,10 10)

See Also
ST_SetEffectiveArea, ST_Simplify, ST_SimplifyPreserveTopology, Topology ST_Simplify

Name
ST_VoronoiLines — Returns the boundaries of the Voronoi diagram of the vertices of a geometry.

Synopsis
	geometry ST_VoronoiLines(g1, 	
	 	tolerance, 	
	 	extend_to);	

 g1
 geometry
 ;

 tolerance
 float8
 ;

 extend_to
 geometry
 ;

Description

 ST_VoronoiLines computes a two-dimensional Voronoi diagram from the vertices of
 the supplied geometry and returns the boundaries between cells in that diagram as a MultiLineString.
 Returns null if input geometry is null. Returns an empty geometry collection if the input geometry contains only one vertex. Returns an empty geometry collection if the extend_to envelope has zero area.

 Optional parameters:

	 'tolerance' : The distance within which vertices will be considered equivalent. Robustness of the algorithm can be improved by supplying a nonzero tolerance distance. (default = 0.0)

	'extend_to' : If a geometry is supplied as the "extend_to" parameter, the diagram will be extended to cover the envelope of the "extend_to" geometry, unless
 that envelope is smaller than the default envelope (default = NULL, default envelope is boundingbox of input geometry extended by about 50% in each direction).

Performed by the GEOS module.
Availability: 2.3.0

Examples
	[image: Examples]Voronoi lines with tolerance of 30 units

SELECT ST_VoronoiLines(geom, 30) As geom
FROM (SELECT 'MULTIPOINT (50 30, 60 30, 100 100,10 150, 110 120)'::geometry As geom) As g

 -- ST_AsText output
MULTILINESTRING((135.555555555556 270,36.8181818181818 92.2727272727273),(36.8181818181818 92.2727272727273,-110 43.3333333333333),(230 -45.7142857142858,36.8181818181818 92.2727272727273))

See Also

 ST_DelaunayTriangles,
 ST_VoronoiPolygons,
 ST_Collect

Name
ST_Affine — Apply a 3D affine transformation to a geometry.

Synopsis
	geometry ST_Affine(geomA, 	
	 	a, 	
	 	b, 	
	 	c, 	
	 	d, 	
	 	e, 	
	 	f, 	
	 	g, 	
	 	h, 	
	 	i, 	
	 	xoff, 	
	 	yoff, 	
	 	zoff);	

geometry geomA;
float a;
float b;
float c;
float d;
float e;
float f;
float g;
float h;
float i;
float xoff;
float yoff;
float zoff;

	geometry ST_Affine(geomA, 	
	 	a, 	
	 	b, 	
	 	d, 	
	 	e, 	
	 	xoff, 	
	 	yoff);	

geometry geomA;
float a;
float b;
float d;
float e;
float xoff;
float yoff;

Description
Applies a 3D affine transformation to the geometry to do things like translate, rotate, scale in one step.

		Version 1: The
			call
ST_Affine(geom, a, b, c, d, e, f, g, h, i, xoff, yoff, zoff)

			represents the transformation matrix
/ a b c xoff \
| d e f yoff |
| g h i zoff |
\ 0 0 0 1 /
 and the vertices are transformed as
			follows:
x' = a*x + b*y + c*z + xoff
y' = d*x + e*y + f*z + yoff
z' = g*x + h*y + i*z + zoff
 All of the translate / scale
			functions below are expressed via such an affine
			transformation.
Version 2: Applies a 2d affine transformation to the geometry. The
			call
ST_Affine(geom, a, b, d, e, xoff, yoff)

			represents the transformation matrix
/ a b 0 xoff \ / a b xoff \
| d e 0 yoff | rsp. | d e yoff |
| 0 0 1 0 | \ 0 0 1 /
\ 0 0 0 1 /
 and the vertices are transformed as
			follows:
x' = a*x + b*y + xoff
y' = d*x + e*y + yoff
z' = z
 This method is a subcase of the 3D method
			above.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.1.2. Name changed from Affine to ST_Affine in 1.2.2
Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples

--Rotate a 3d line 180 degrees about the z axis. Note this is long-hand for doing ST_Rotate();
 SELECT ST_AsEWKT(ST_Affine(geom, cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), 0, 0, 0, 1, 0, 0, 0)) As using_affine,
	 ST_AsEWKT(ST_Rotate(geom, pi())) As using_rotate
	FROM (SELECT ST_GeomFromEWKT('LINESTRING(1 2 3, 1 4 3)') As geom) As foo;
 using_affine | using_rotate
-----------------------------+-----------------------------
 LINESTRING(-1 -2 3,-1 -4 3) | LINESTRING(-1 -2 3,-1 -4 3)
(1 row)

--Rotate a 3d line 180 degrees in both the x and z axis
SELECT ST_AsEWKT(ST_Affine(geom, cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), 0, 0, 0))
	FROM (SELECT ST_GeomFromEWKT('LINESTRING(1 2 3, 1 4 3)') As geom) As foo;
 st_asewkt

 LINESTRING(-1 -2 -3,-1 -4 -3)
(1 row)
		

See Also
ST_Rotate, ST_Scale, ST_Translate, ST_TransScale

Name
ST_Rotate — Rotates a geometry about an origin point.

Synopsis
	geometry ST_Rotate(geomA, 	
	 	rotRadians);	

geometry geomA;
float rotRadians;

	geometry ST_Rotate(geomA, 	
	 	rotRadians, 	
	 	x0, 	
	 	y0);	

geometry geomA;
float rotRadians;
float x0;
float y0;

	geometry ST_Rotate(geomA, 	
	 	rotRadians, 	
	 	pointOrigin);	

geometry geomA;
float rotRadians;
geometry pointOrigin;

Description
Rotates geometry rotRadians counter-clockwise about the origin point. The rotation origin can be
			specified either as a POINT geometry, or as x and y coordinates. If the origin is not
			specified, the geometry is rotated about POINT(0 0).
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.0.0 additional parameters for specifying the origin of rotation were added.
Availability: 1.1.2. Name changed from Rotate to ST_Rotate in 1.2.2
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

--Rotate 180 degrees
SELECT ST_AsEWKT(ST_Rotate('LINESTRING (50 160, 50 50, 100 50)', pi()));
 st_asewkt

 LINESTRING(-50 -160,-50 -50,-100 -50)
(1 row)

--Rotate 30 degrees counter-clockwise at x=50, y=160
SELECT ST_AsEWKT(ST_Rotate('LINESTRING (50 160, 50 50, 100 50)', pi()/6, 50, 160));
 st_asewkt

 LINESTRING(50 160,105 64.7372055837117,148.301270189222 89.7372055837117)
(1 row)

--Rotate 60 degrees clockwise from centroid
SELECT ST_AsEWKT(ST_Rotate(geom, -pi()/3, ST_Centroid(geom)))
FROM (SELECT 'LINESTRING (50 160, 50 50, 100 50)'::geometry AS geom) AS foo;
 st_asewkt
--
 LINESTRING(116.4225 130.6721,21.1597 75.6721,46.1597 32.3708)
(1 row)
		

See Also
ST_Affine, ST_RotateX, ST_RotateY, ST_RotateZ

Name
ST_RotateZ — Rotates a geometry about the Z axis.

Synopsis
	geometry ST_RotateZ(geomA, 	
	 	rotRadians);	

geometry geomA;
float rotRadians;

Description
Rotates a geometry geomA - rotRadians about the Z axis.
Note
This is a synonym for ST_Rotate

Note
ST_RotateZ(geomA, rotRadians)
			is short-hand for SELECT ST_Affine(geomA, cos(rotRadians), -sin(rotRadians), 0, sin(rotRadians), cos(rotRadians), 0, 0, 0, 1, 0, 0, 0).

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.1.2. Name changed from RotateZ to ST_RotateZ in 1.2.2
Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

--Rotate a line 90 degrees along z-axis
SELECT ST_AsEWKT(ST_RotateZ(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), pi()/2));
		 st_asewkt

 LINESTRING(-2 1 3,-1 1 1)

 --Rotate a curved circle around z-axis
SELECT ST_AsEWKT(ST_RotateZ(geom, pi()/2))
FROM (SELECT ST_LineToCurve(ST_Buffer(ST_GeomFromText('POINT(234 567)'), 3)) As geom) As foo;

													 st_asewkt
--
 CURVEPOLYGON(CIRCULARSTRING(-567 237,-564.87867965644 236.12132034356,-564 234,-569.12132034356 231.87867965644,-567 237))

See Also
ST_Affine, ST_RotateX, ST_RotateY

Name
ST_Scale — Scales a geometry by given factors.

Synopsis
	geometry ST_Scale(geomA, 	
	 	XFactor, 	
	 	YFactor, 	
	 	ZFactor);	

geometry geomA;
float XFactor;
float YFactor;
float ZFactor;

	geometry ST_Scale(geomA, 	
	 	XFactor, 	
	 	YFactor);	

geometry geomA;
float XFactor;
float YFactor;

	geometry ST_Scale(geom, 	
	 	factor);	

geometry geom;
geometry factor;

	geometry ST_Scale(geom, 	
	 	factor, 	
	 	origin);	

geometry geom;
geometry factor;
geometry origin;

Description
Scales the geometry to a new size by multiplying the
			ordinates with the corresponding factor parameters.
		

The version taking a geometry as the factor parameter
allows passing a 2d, 3dm, 3dz or 4d point to set scaling factor for all
supported dimensions. Missing dimensions in the factor
point are equivalent to no scaling the corresponding dimension.

 The three-geometry variant allows a "false origin" for the scaling to be passed in. This allows "scaling in place", for example using the centroid of the geometry as the false origin. Without a false origin, scaling takes place relative to the actual origin, so all coordinates are just multipled by the scale factor.

Note
Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Availability: 1.1.0.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.2.0 support for scaling all dimension (factor parameter) was introduced.
Enhanced: 2.5.0 support for scaling relative to a local origin (origin parameter) was introduced.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
[image: Description]
 This function supports M coordinates.

Examples
--Version 1: scale X, Y, Z
SELECT ST_AsEWKT(ST_Scale(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), 0.5, 0.75, 0.8));
			 st_asewkt

 LINESTRING(0.5 1.5 2.4,0.5 0.75 0.8)

--Version 2: Scale X Y
 SELECT ST_AsEWKT(ST_Scale(ST_GeomFromEWKT('LINESTRING(1 2 3, 1 1 1)'), 0.5, 0.75));
			st_asewkt

 LINESTRING(0.5 1.5 3,0.5 0.75 1)

--Version 3: Scale X Y Z M
 SELECT ST_AsEWKT(ST_Scale(ST_GeomFromEWKT('LINESTRING(1 2 3 4, 1 1 1 1)'),
 ST_MakePoint(0.5, 0.75, 2, -1)));
			 st_asewkt
--
 LINESTRING(0.5 1.5 6 -4,0.5 0.75 2 -1)

--Version 4: Scale X Y using false origin
SELECT ST_AsText(ST_Scale('LINESTRING(1 1, 2 2)', 'POINT(2 2)', 'POINT(1 1)'::geometry));
 st_astext

 LINESTRING(1 1,3 3)

See Also
ST_Affine, ST_TransScale

Name
ST_ClusterIntersecting — Aggregate function that clusters the input geometries into connected sets.

Synopsis
	geometry[] ST_ClusterIntersecting(g);	

geometry set g;

Description
ST_ClusterIntersecting is an aggregate function that returns an array of GeometryCollections, where each GeometryCollection represents an interconnected set of geometries.
Availability: 2.2.0

Examples

WITH testdata AS
 (SELECT unnest(ARRAY['LINESTRING (0 0, 1 1)'::geometry,
		 'LINESTRING (5 5, 4 4)'::geometry,
		 'LINESTRING (6 6, 7 7)'::geometry,
		 'LINESTRING (0 0, -1 -1)'::geometry,
		 'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))'::geometry]) AS geom)

SELECT ST_AsText(unnest(ST_ClusterIntersecting(geom))) FROM testdata;

--result

st_astext

GEOMETRYCOLLECTION(LINESTRING(0 0,1 1),LINESTRING(5 5,4 4),LINESTRING(0 0,-1 -1),POLYGON((0 0,4 0,4 4,0 4,0 0)))
GEOMETRYCOLLECTION(LINESTRING(6 6,7 7))

See Also

 ST_ClusterDBSCAN,
 ST_ClusterKMeans,
 ST_ClusterWithin

Name
ST_ClusterWithin — Aggregate function that clusters the input geometries by separation distance.

Synopsis
	geometry[] ST_ClusterWithin(g, 	
	 	distance);	

geometry set g;
float8 distance;

Description
ST_ClusterWithin is an aggregate function that returns an array of GeometryCollections, where each GeometryCollection represents a set of geometries separated by no more than the specified distance. (Distances are Cartesian distances in the units of the SRID.)
Availability: 2.2.0

Examples

WITH testdata AS
 (SELECT unnest(ARRAY['LINESTRING (0 0, 1 1)'::geometry,
		 'LINESTRING (5 5, 4 4)'::geometry,
		 'LINESTRING (6 6, 7 7)'::geometry,
		 'LINESTRING (0 0, -1 -1)'::geometry,
		 'POLYGON ((0 0, 4 0, 4 4, 0 4, 0 0))'::geometry]) AS geom)

SELECT ST_AsText(unnest(ST_ClusterWithin(geom, 1.4))) FROM testdata;

--result

st_astext

GEOMETRYCOLLECTION(LINESTRING(0 0,1 1),LINESTRING(5 5,4 4),LINESTRING(0 0,-1 -1),POLYGON((0 0,4 0,4 4,0 4,0 0)))
GEOMETRYCOLLECTION(LINESTRING(6 6,7 7))

See Also

 ST_ClusterDBSCAN,
 ST_ClusterKMeans,
 ST_ClusterIntersecting

Name
ST_Expand — Returns a bounding box expanded from another bounding box or a geometry.

Synopsis
	geometry ST_Expand(geom, 	
	 	units_to_expand);	

geometry geom;
float units_to_expand;

	geometry ST_Expand(geom, 	
	 	dx, 	
	 	dy, 	
	 	dz=0, 	
	 	dm=0);	

geometry geom;
float dx;
float dy;
float dz=0;
float dm=0;

	box2d ST_Expand(box, 	
	 	units_to_expand);	

box2d box;
float units_to_expand;

	box2d ST_Expand(box, 	
	 	dx, 	
	 	dy);	

box2d box;
float dx;
float dy;

	box3d ST_Expand(box, 	
	 	units_to_expand);	

box3d box;
float units_to_expand;

	box3d ST_Expand(box, 	
	 	dx, 	
	 	dy, 	
	 	dz=0);	

box3d box;
float dx;
float dy;
float dz=0;

Description
Returns a bounding box expanded from the bounding box of the input,
			either by specifying a single distance with which the box should be expanded on both
			axes, or by specifying an expansion distance for each axis.

			Uses double-precision. Can be used for distance queries, or to add a bounding box
			filter to a query to take advantage of a spatial index.
In addition to the version of ST_Expand accepting and returning a geometry, variants
			are provided that accept and return
 box2d and box3d data types.
		
Distances are in the units of the spatial reference system of the input.
ST_Expand is similar to ST_Buffer,
			except while buffering expands a geometry in all directions,
			ST_Expand expands the bounding box along each axis.
Note
Pre version 1.3, ST_Expand was used in conjunction with ST_Distance to do indexable distance queries. For example,
			geom && ST_Expand('POINT(10 20)', 10) AND ST_Distance(geom, 'POINT(10 20)') < 10.
			This has been replaced by the simpler and more efficient ST_DWithin function.

Availability: 1.5.0 behavior changed to output double precision instead of float4 coordinates.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.3.0 support was added to expand a box by different amounts in different dimensions.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
Note
Examples below use US National Atlas Equal Area (SRID=2163) which is a meter projection

		
--10 meter expanded box around bbox of a linestring
SELECT CAST(ST_Expand(ST_GeomFromText('LINESTRING(2312980 110676,2312923 110701,2312892 110714)', 2163),10) As box2d);
					 st_expand

 BOX(2312882 110666,2312990 110724)

--10 meter expanded 3D box of a 3D box
SELECT ST_Expand(CAST('BOX3D(778783 2951741 1,794875 2970042.61545891 10)' As box3d),10)
							 st_expand

 BOX3D(778773 2951731 -9,794885 2970052.61545891 20)

 --10 meter geometry astext rep of a expand box around a point geometry
 SELECT ST_AsEWKT(ST_Expand(ST_GeomFromEWKT('SRID=2163;POINT(2312980 110676)'),10));
											st_asewkt

 SRID=2163;POLYGON((2312970 110666,2312970 110686,2312990 110686,2312990 110666,2312970 110666))

		

See Also
ST_Buffer, ST_DWithin, ST_SRID

Name
ST_MakeBox2D — Creates a BOX2D defined by two 2D point geometries.

Synopsis
	box2d ST_MakeBox2D(pointLowLeft, 	
	 	pointUpRight);	

geometry pointLowLeft;
geometry pointUpRight;

Description
Creates a box2d defined by two Point
			geometries. This is useful for doing range queries.

Examples

--Return all features that fall reside or partly reside in a US national atlas coordinate bounding box
--It is assumed here that the geometries are stored with SRID = 2163 (US National atlas equal area)
SELECT feature_id, feature_name, geom
FROM features
WHERE geom && ST_SetSRID(ST_MakeBox2D(ST_Point(-989502.1875, 528439.5625),
	ST_Point(-987121.375 ,529933.1875)),2163)

See Also
ST_Point, ST_SetSRID, ST_SRID

Name
ST_3DMakeBox — Creates a BOX3D defined by two 3D point	geometries.

Synopsis
	box3d ST_3DMakeBox(point3DLowLeftBottom, 	
	 	point3DUpRightTop);	

geometry point3DLowLeftBottom;
geometry point3DUpRightTop;

Description
Creates a box3d defined by two 3D Point
			geometries.
[image: Description] This function supports 3D and will not drop the z-index.
Changed: 2.0.0 In prior versions this used to be called ST_MakeBox3D

Examples

SELECT ST_3DMakeBox(ST_MakePoint(-989502.1875, 528439.5625, 10),
	ST_MakePoint(-987121.375 ,529933.1875, 10)) As abb3d

--bb3d--

BOX3D(-989502.1875 528439.5625 10,-987121.375 529933.1875 10)
	

See Also
ST_MakePoint, ST_SetSRID, ST_SRID

Name
ST_XMax — Returns the X maxima of a 2D or 3D bounding box or a geometry.

Synopsis
	float ST_XMax(aGeomorBox2DorBox3D);	

box3d aGeomorBox2DorBox3D;

Description
Returns the X maxima of a 2D or 3D bounding box or a geometry.
Note
Although this function is only defined for box3d, it also works for box2d and geometry values due to automatic casting.
			However, it will not accept a geometry or box2d text representation, since those do not auto-cast.

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_XMax('BOX3D(1 2 3, 4 5 6)');
st_xmax

4

SELECT ST_XMax(ST_GeomFromText('LINESTRING(1 3 4, 5 6 7)'));
st_xmax

5

SELECT ST_XMax(CAST('BOX(-3 2, 3 4)' As box2d));
st_xmax

3
--Observe THIS DOES NOT WORK because it will try to auto-cast the string representation to a BOX3D
SELECT ST_XMax('LINESTRING(1 3, 5 6)');

--ERROR: BOX3D parser - doesn't start with BOX3D(

SELECT ST_XMax(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
st_xmax

220288.248780547
		

See Also
ST_XMin, ST_YMax, ST_YMin, ST_ZMax, ST_ZMin

Name
ST_ZMax — Returns the Z maxima of a 2D or 3D bounding box or a geometry.

Synopsis
	float ST_ZMax(aGeomorBox2DorBox3D);	

box3d aGeomorBox2DorBox3D;

Description
Returns the Z maxima of a 2D or 3D bounding box or a geometry.
Note
Although this function is only defined for box3d, it also works for box2d and geometry values due to automatic casting.
			However it will not accept a geometry or box2d text representation, since those do not auto-cast.

[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This method supports Circular Strings and Curves

Examples
SELECT ST_ZMax('BOX3D(1 2 3, 4 5 6)');
st_zmax

6

SELECT ST_ZMax(ST_GeomFromEWKT('LINESTRING(1 3 4, 5 6 7)'));
st_zmax

7

SELECT ST_ZMax('BOX3D(-3 2 1, 3 4 1)');
st_zmax

1
--Observe THIS DOES NOT WORK because it will try to auto-cast the string representation to a BOX3D
SELECT ST_ZMax('LINESTRING(1 3 4, 5 6 7)');

--ERROR: BOX3D parser - doesn't start with BOX3D(

SELECT ST_ZMax(ST_GeomFromEWKT('CIRCULARSTRING(220268 150415 1,220227 150505 2,220227 150406 3)'));
st_zmax

3
		

See Also
ST_GeomFromEWKT, ST_XMin, ST_XMax, ST_YMax, ST_YMin, ST_ZMax

Linear Referencing

Name
ST_LineInterpolatePoints —
				Returns points interpolated along a line at a fractional interval.
			

Synopsis
	geometry ST_LineInterpolatePoints(a_linestring, 	
	 	a_fraction, 	
	 	repeat);	

geometry a_linestring;
float8 a_fraction;
boolean repeat;

Description
Returns one or more points interpolated along a line at a fractional interval.
 The first argument
			must be a LINESTRING. The second argument is a float8 between 0 and 1
			representing the spacing between the points as a fraction of
			line length. If the third argument is false, at most one point
			will be constructed (which is equivalent to ST_LineInterpolatePoint.)
		

			If the result has zero or one points, it is returned as a POINT.
			If it has two or more points, it is returned as a MULTIPOINT.
		
Availability: 2.5.0
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports M coordinates.

Examples
[image: Examples]A LineString with points interpolated every 20%

--Return points each 20% along a 2D line
SELECT ST_AsText(ST_LineInterpolatePoints('LINESTRING(25 50, 100 125, 150 190)', 0.20))

 MULTIPOINT((51.5974135047432 76.5974135047432),(78.1948270094864 103.194827009486),(104.132163186446 130.37181214238),(127.066081593223 160.18590607119),(150 190))

See Also

				ST_LineInterpolatePoint,
				ST_LineLocatePoint
			

Name
ST_LineLocatePoint — Returns the fractional location of
			the closest point on a line to a point.

Synopsis
	float8 ST_LineLocatePoint(a_linestring, 	
	 	a_point);	

geometry a_linestring;
geometry a_point;

Description
Returns a float between 0 and 1 representing the location of
			the closest point on a LineString to the given Point, as a fraction
			of 2d line length.
You can use the returned location to extract a Point (ST_LineInterpolatePoint) or
			a substring (ST_LineSubstring).
This is useful for approximating numbers of addresses
Availability: 1.1.0
Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Locate_Point.

Examples

--Rough approximation of finding the street number of a point along the street
--Note the whole foo thing is just to generate dummy data that looks
--like house centroids and street
--We use ST_DWithin to exclude
--houses too far away from the street to be considered on the street
SELECT ST_AsText(house_loc) As as_text_house_loc,
	startstreet_num +
		CAST((endstreet_num - startstreet_num)
			* ST_LineLocatePoint(street_line, house_loc) As integer) As street_num
FROM
(SELECT ST_GeomFromText('LINESTRING(1 2, 3 4)') As street_line,
	ST_Point(x*1.01,y*1.03) As house_loc, 10 As startstreet_num,
		20 As endstreet_num
FROM generate_series(1,3) x CROSS JOIN generate_series(2,4) As y)
As foo
WHERE ST_DWithin(street_line, house_loc, 0.2);

 as_text_house_loc | street_num
-------------------+------------
 POINT(1.01 2.06) | 10
 POINT(2.02 3.09) | 15
 POINT(3.03 4.12) | 20

 --find closest point on a line to a point or other geometry
 SELECT ST_AsText(ST_LineInterpolatePoint(foo.the_line, ST_LineLocatePoint(foo.the_line, ST_GeomFromText('POINT(4 3)'))))
FROM (SELECT ST_GeomFromText('LINESTRING(1 2, 4 5, 6 7)') As the_line) As foo;
 st_astext

 POINT(3 4)

See Also
ST_DWithin, ST_Length2D, ST_LineInterpolatePoint, ST_LineSubstring

Name
ST_LineSubstring — Returns the part of a line between two fractional locations.

Synopsis
	geometry ST_LineSubstring(a_linestring, 	
	 	startfraction, 	
	 	endfraction);	

geometry a_linestring;
float8 startfraction;
float8 endfraction;

Description
Computes the line which is the section of the input line
			starting and ending at the given fractional locations.
 The first argument must be a LINESTRING.
			The second and third arguments are values in the range [0, 1]
 representing the start and end locations
 as fractions of line length.
 The Z and M values are interpolated for added endpoints if present.

If startfraction and endfraction
 have the same value this is equivalent
			to ST_LineInterpolatePoint.
Note
This only works with LINESTRINGs.
			 To use on contiguous MULTILINESTRINGs
 first join them with ST_LineMerge.

Note
Since release 1.1.1 this function interpolates M and
			 Z values. Prior releases set Z and M to
			 unspecified values.

Availability: 1.1.0, Z and M supported added in 1.1.1
Changed: 2.1.0. Up to 2.0.x this was called ST_Line_Substring.
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
[image: Examples]A LineString seen with 1/3 midrange overlaid (0.333, 0.666)

SELECT ST_AsText(ST_LineSubstring('LINESTRING (20 180, 50 20, 90 80, 120 40, 180 150)', 0.333, 0.666));
--
LINESTRING (45.17311810399485 45.74337011202746, 50 20, 90 80, 112.97593050157862 49.36542599789519)

If start and end locations are the same, the result is a POINT.

SELECT ST_AsText(ST_LineSubstring('LINESTRING(25 50, 100 125, 150 190)', 0.333, 0.333));
--
 POINT(69.2846934853974 94.2846934853974)

A query to cut a LineString into sections of length 100 or shorter.
It uses generate_series() with a CROSS JOIN LATERAL
to produce the equivalent of a FOR loop.

WITH data(id, geom) AS (VALUES
 ('A', 'LINESTRING(0 0, 200 0)'::geometry),
 ('B', 'LINESTRING(0 100, 350 100)'::geometry),
 ('C', 'LINESTRING(0 200, 50 200)'::geometry)
)
SELECT id, i,
 ST_AsText(ST_LineSubstring(geom, startfrac, LEAST(endfrac, 1))) AS geom
FROM (
 SELECT id, geom, ST_Length(geom) len, 100 sublen FROM data
) AS d
CROSS JOIN LATERAL (
 SELECT i, (sublen * i) / len AS startfrac,
 (sublen * (i+1)) / len AS endfrac
 FROM generate_series(0, floor(len / sublen)::integer) AS t(i)
 -- skip last i if line length is exact multiple of sublen
 WHERE (sublen * i) / len <> 1.0
) AS d2;

 id | i | geom
----+---+-----------------------------
 A | 0 | LINESTRING(0 0,100 0)
 A | 1 | LINESTRING(100 0,200 0)
 B | 0 | LINESTRING(0 100,100 100)
 B | 1 | LINESTRING(100 100,200 100)
 B | 2 | LINESTRING(200 100,300 100)
 B | 3 | LINESTRING(300 100,350 100)
 C | 0 | LINESTRING(0 200,50 200)

See Also
ST_Length, ST_LineInterpolatePoint, ST_LineMerge

Name
ST_LocateAlong — Returns the point(s) on a geometry that match a measure value.

Synopsis
	geometry ST_LocateAlong(geom_with_measure, 	
	 	measure, 	
	 	offset = 0);	

geometry geom_with_measure;
float8 measure;
float8 offset = 0;

Description
Returns the location(s) along a measured geometry
		that have the given measure values.
 The result is a Point or MultiPoint.
 Polygonal inputs are not supported.
If offset is provided, the result
 is offset to the left or right of the input line by the specified distance.
 A positive offset will be to the left, and a negative one to the right.
Note
Use this function only for linear geometries with an M component

The semantic is specified by the ISO/IEC 13249-3 SQL/MM Spatial standard.
Availability: 1.1.0 by old name ST_Locate_Along_Measure.
Changed: 2.0.0 in prior versions this used to be called ST_Locate_Along_Measure.
[image: Description]
 This function supports M coordinates.
[image: Description] This method implements the SQL/MM specification. SQL-MM IEC 13249-3: 5.1.13

Examples

SELECT ST_AsText(
 ST_LocateAlong(
 'MULTILINESTRINGM((1 2 3, 3 4 2, 9 4 3),(1 2 3, 5 4 5))'::geometry,
 3));

 MULTIPOINT M ((1 2 3),(9 4 3),(1 2 3))

See Also
ST_LocateBetween, ST_LocateBetweenElevations, ST_InterpolatePoint

Name
ST_InterpolatePoint — Returns the interpolated measure of a geometry closest to a point.

Synopsis
	float8 ST_InterpolatePoint(linear_geom_with_measure, 	
	 	point);	

geometry linear_geom_with_measure;
geometry point;

Description
Returns an interpolated measure value of a linear measured geometry
 at the location closest to the given point.
Note
Use this function only for linear geometries with an M component

Availability: 2.0.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_InterpolatePoint('LINESTRING M (0 0 0, 10 0 20)', 'POINT(5 5)');

 10
	

See Also
ST_AddMeasure, ST_LocateAlong, ST_LocateBetween

Name
ST_AddMeasure — Interpolates measures along a linear geometry.

Synopsis
	geometry ST_AddMeasure(geom_mline, 	
	 	measure_start, 	
	 	measure_end);	

geometry geom_mline;
float8 measure_start;
float8 measure_end;

Description
Return a derived geometry with measure values linearly interpolated between the start and end points. If the geometry has no measure dimension, one is added. If the geometry has a measure dimension, it is over-written with new values. Only LINESTRINGS and MULTILINESTRINGS are supported.
Availability: 1.5.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('LINESTRING(1 0, 2 0, 4 0)'),1,4)) As ewelev;
 ewelev

 LINESTRINGM(1 0 1,2 0 2,4 0 4)

SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('LINESTRING(1 0 4, 2 0 4, 4 0 4)'),10,40)) As ewelev;
 ewelev
--
 LINESTRING(1 0 4 10,2 0 4 20,4 0 4 40)

SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('LINESTRINGM(1 0 4, 2 0 4, 4 0 4)'),10,40)) As ewelev;
 ewelev
--
 LINESTRINGM(1 0 10,2 0 20,4 0 40)

SELECT ST_AsText(ST_AddMeasure(
ST_GeomFromEWKT('MULTILINESTRINGM((1 0 4, 2 0 4, 4 0 4),(1 0 4, 2 0 4, 4 0 4))'),10,70)) As ewelev;
 ewelev

 MULTILINESTRINGM((1 0 10,2 0 20,4 0 40),(1 0 40,2 0 50,4 0 70))

Trajectory Functions

Abstract
These functions support working with trajectories.
			A trajectory is a linear geometry with increasing measures (M value) on each coordinate.
			Spatio-temporal data can be modeled by using relative times (such as the epoch)
			as the measure values.
			

Name
ST_DistanceCPA —
Returns the distance between the closest point of approach of two trajectories.

Synopsis
	float8 ST_DistanceCPA(track1, 	
	 	track2);	

geometry track1;
geometry track2;

Description

Returns the minimum distance two moving objects have ever been each other.

Inputs must be valid trajectories as checked by
ST_IsValidTrajectory.
Null is returned if the trajectories do not overlap in their M ranges.
			
Availability: 2.2.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

-- Return the minimum distance of two objects moving between 10:00 and 11:00
WITH inp AS (SELECT
 ST_AddMeasure('LINESTRING Z (0 0 0, 10 0 5)'::geometry,
 extract(epoch from '2015-05-26 10:00'::timestamptz),
 extract(epoch from '2015-05-26 11:00'::timestamptz)
) a,
 ST_AddMeasure('LINESTRING Z (0 2 10, 12 1 2)'::geometry,
 extract(epoch from '2015-05-26 10:00'::timestamptz),
 extract(epoch from '2015-05-26 11:00'::timestamptz)
) b
)
SELECT ST_DistanceCPA(a,b) distance FROM inp;

 distance

 1.96036833151395

See Also

ST_IsValidTrajectory,
ST_ClosestPointOfApproach,
ST_AddMeasure,
|=|
			

Name
postgis_sfcgal_version — Returns the version of SFCGAL in use

Synopsis
	text postgis_sfcgal_version();	

Description
Returns the version of SFCGAL in use
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

See Also
postgis_sfcgal_full_version

Name
postgis_sfcgal_full_version — Returns the full version of SFCGAL in use including CGAL and Boost versions

Synopsis
	text postgis_sfcgal_full_version();	

Description
Returns the full version of SFCGAL in use including CGAL and Boost versions
Availability: 3.3.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

See Also
postgis_sfcgal_version

Name
ST_3DIntersection — Perform 3D intersection

Synopsis
	geometry ST_3DIntersection(geom1, 	
	 	geom2);	

geometry geom1;
geometry geom2;

Description
Return a geometry that is the shared portion between geom1 and geom2.
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.
[image: Description] This method implements the SQL/MM specification. SQL-MM IEC 13249-3: 5.1
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
3D images were generated using PostGIS ST_AsX3D and rendering in HTML using X3Dom HTML Javascript rendering library.
	

SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2;

[image: Examples]Original 3D geometries overlaid. geom2 is shown semi-transparent

 	

SELECT ST_3DIntersection(geom1,geom2)
FROM (SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2) As t;

[image: Examples]Intersection of geom1 and geom2

3D linestrings and polygons
	SELECT ST_AsText(ST_3DIntersection(linestring, polygon)) As wkt
FROM ST_GeomFromText('LINESTRING Z (2 2 6,1.5 1.5 7,1 1 8,0.5 0.5 8,0 0 10)') AS linestring
 CROSS JOIN ST_GeomFromText('POLYGON((0 0 8, 0 1 8, 1 1 8, 1 0 8, 0 0 8))') AS polygon;

 wkt

 LINESTRING Z (1 1 8,0.5 0.5 8)
		
Cube (closed Polyhedral Surface) and Polygon Z
SELECT ST_AsText(ST_3DIntersection(
		ST_GeomFromText('POLYHEDRALSURFACE Z(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
	((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
	((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
	((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'),
	'POLYGON Z ((0 0 0, 0 0 0.5, 0 0.5 0.5, 0 0.5 0, 0 0 0))'::geometry))
TIN Z (((0 0 0,0 0 0.5,0 0.5 0.5,0 0 0)),((0 0.5 0,0 0 0,0 0.5 0.5,0 0.5 0)))
Intersection of 2 solids that result in volumetric intersection is also a solid (ST_Dimension returns 3)
SELECT ST_AsText(ST_3DIntersection(ST_Extrude(ST_Buffer('POINT(10 20)'::geometry,10,1),0,0,30),
 ST_Extrude(ST_Buffer('POINT(10 20)'::geometry,10,1),2,0,10)));
POLYHEDRALSURFACE Z (((13.3333333333333 13.3333333333333 10,20 20 0,20 20 10,13.3333333333333 13.3333333333333 10)),
	((20 20 10,16.6666666666667 23.3333333333333 10,13.3333333333333 13.3333333333333 10,20 20 10)),
	((20 20 0,16.6666666666667 23.3333333333333 10,20 20 10,20 20 0)),
	((13.3333333333333 13.3333333333333 10,10 10 0,20 20 0,13.3333333333333 13.3333333333333 10)),
	((16.6666666666667 23.3333333333333 10,12 28 10,13.3333333333333 13.3333333333333 10,16.6666666666667 23.3333333333333 10)),
	((20 20 0,9.99999999999995 30 0,16.6666666666667 23.3333333333333 10,20 20 0)),
	((10 10 0,9.99999999999995 30 0,20 20 0,10 10 0)),((13.3333333333333 13.3333333333333 10,12 12 10,10 10 0,13.3333333333333 13.3333333333333 10)),
	((12 28 10,12 12 10,13.3333333333333 13.3333333333333 10,12 28 10)),
	((16.6666666666667 23.3333333333333 10,9.99999999999995 30 0,12 28 10,16.6666666666667 23.3333333333333 10)),
	((10 10 0,0 20 0,9.99999999999995 30 0,10 10 0)),
	((12 12 10,11 11 10,10 10 0,12 12 10)),((12 28 10,11 11 10,12 12 10,12 28 10)),
	((9.99999999999995 30 0,11 29 10,12 28 10,9.99999999999995 30 0)),((0 20 0,2 20 10,9.99999999999995 30 0,0 20 0)),
	((10 10 0,2 20 10,0 20 0,10 10 0)),((11 11 10,2 20 10,10 10 0,11 11 10)),((12 28 10,11 29 10,11 11 10,12 28 10)),
	((9.99999999999995 30 0,2 20 10,11 29 10,9.99999999999995 30 0)),((11 11 10,11 29 10,2 20 10,11 11 10)))

Name
ST_3DDifference — Perform 3D difference

Synopsis
	geometry ST_3DDifference(geom1, 	
	 	geom2);	

geometry geom1;
geometry geom2;

Description
Returns that part of geom1 that is not part of geom2.
Availability: 2.2.0
[image: Description] This method needs SFCGAL backend.
[image: Description] This method implements the SQL/MM specification. SQL-MM IEC 13249-3: 5.1
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
3D images were generated using PostGIS ST_AsX3D and rendering in HTML using X3Dom HTML Javascript rendering library.
	

SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2;

[image: Examples]Original 3D geometries overlaid. geom2 is the part that will be removed.

 	

SELECT ST_3DDifference(geom1,geom2)
FROM (SELECT ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(100 90)'),
 50, 'quad_segs=2'),0,0,30) AS geom1,
 ST_Extrude(ST_Buffer(ST_GeomFromText('POINT(80 80)'),
 50, 'quad_segs=1'),0,0,30) AS geom2) As t;

[image: Examples]What's left after removing geom2

See Also

 ST_Extrude,
 ST_AsX3D, ST_3DIntersection
 ST_3DUnion

Name
ST_ConstrainedDelaunayTriangles —
Return a constrained Delaunay triangulation around the given input geometry.
			

Synopsis
	geometry ST_ConstrainedDelaunayTriangles(g1);	

geometry g1;

Description

Return a Constrained Delaunay
triangulation around the vertices of the input geometry.
Output is a TIN.
			
[image: Description] This method needs SFCGAL backend.
Availability: 3.0.0
[image: Description]
 This function supports 3d and will not drop the z-index.

Examples
	[image: Examples]ST_ConstrainedDelaunayTriangles of 2 polygons

						

select ST_ConstrainedDelaunayTriangles(
 ST_Union(
 'POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'::geometry,
 ST_Buffer('POINT(110 170)'::geometry, 20)
)
);
				

						
	[image: Examples]ST_DelaunayTriangles of 2 polygons. Triangle edges cross polygon boundaries.

						

select ST_DelaunayTriangles(
 ST_Union(
 'POLYGON((175 150, 20 40, 50 60, 125 100, 175 150))'::geometry,
 ST_Buffer('POINT(110 170)'::geometry, 20)
)
);

						

See Also
ST_DelaunayTriangles, ST_Tesselate, ST_ConcaveHull, ST_Dump
			

Name
ST_ForceLHR — Force LHR orientation

Synopsis
	geometry ST_ForceLHR(geom);	

geometry geom;

Description
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Name
ST_MinkowskiSum — Performs Minkowski sum

Synopsis
	geometry ST_MinkowskiSum(geom1, 	
	 	geom2);	

geometry geom1;
geometry geom2;

Description
This function performs a 2D minkowski sum of a point, line or polygon with a polygon.
A minkowski sum of two geometries A and B is the set of all points that are the sum of any point in A and B. Minkowski sums are often used in motion planning and computer-aided design. More details on Wikipedia Minkowski addition.
The first parameter can be any 2D geometry (point, linestring, polygon). If a 3D geometry is passed, it will be converted to 2D by forcing Z to 0, leading to possible cases of invalidity. The second parameter must be a 2D polygon.
Implementation utilizes CGAL 2D Minkowskisum.
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.

Examples
Minkowski Sum of Linestring and circle polygon where Linestring cuts thru the circle
	

[image: Examples]Before Summing

 	

[image: Examples]After summing

SELECT ST_MinkowskiSum(line, circle))
FROM (SELECT
 ST_MakeLine(ST_Point(10, 10),ST_Point(100, 100)) As line,
 ST_Buffer(ST_GeomFromText('POINT(50 50)'), 30) As circle) As foo;

-- wkt --
MULTIPOLYGON(((30 59.9999999999999,30.5764415879031 54.1472903395161,32.2836140246614 48.5194970290472,35.0559116309237 43.3328930094119,38.7867965644036 38.7867965644035,43.332893009412 35.0559116309236,48.5194970290474 32.2836140246614,54.1472903395162 30.5764415879031,60.0000000000001 30,65.8527096604839 30.5764415879031,71.4805029709527 32.2836140246614,76.6671069905881 35.0559116309237,81.2132034355964 38.7867965644036,171.213203435596 128.786796564404,174.944088369076 133.332893009412,177.716385975339 138.519497029047,179.423558412097 144.147290339516,180 150,179.423558412097 155.852709660484,177.716385975339 161.480502970953,174.944088369076 166.667106990588,171.213203435596 171.213203435596,166.667106990588 174.944088369076,
161.480502970953 177.716385975339,155.852709660484 179.423558412097,150 180,144.147290339516 179.423558412097,138.519497029047 177.716385975339,133.332893009412 174.944088369076,128.786796564403 171.213203435596,38.7867965644035 81.2132034355963,35.0559116309236 76.667106990588,32.2836140246614 71.4805029709526,30.5764415879031 65.8527096604838,30 59.9999999999999)))

Minkowski Sum of a polygon and multipoint
	

[image: Examples]Before Summing

 	

[image: Examples]After summing: polygon is duplicated and translated to position of points

SELECT ST_MinkowskiSum(mp, poly)
FROM (SELECT 'MULTIPOINT(25 50,70 25)'::geometry As mp,
 'POLYGON((130 150, 20 40, 50 60, 125 100, 130 150))'::geometry As poly
) As foo

-- wkt --
MULTIPOLYGON(
 ((70 115,100 135,175 175,225 225,70 115)),
 ((120 65,150 85,225 125,275 175,120 65))
)

Name
ST_StraightSkeleton — Compute a straight skeleton from a geometry

Synopsis
	geometry ST_StraightSkeleton(geom);	

geometry geom;

Description
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_StraightSkeleton(ST_GeomFromText('POLYGON ((190 190, 10 190, 10 10, 190 10, 190 20, 160 30, 60 30, 60 130, 190 140, 190 190))'));
	[image: Examples]Original polygon

					 	[image: Examples]Straight Skeleton of polygon

					

Name
ST_Tesselate — Perform surface Tesselation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS

Synopsis
	geometry ST_Tesselate(geom);	

geometry geom;

Description
Takes as input a surface such a MULTI(POLYGON) or POLYHEDRALSURFACE and returns a TIN representation via the process of tessellation using triangles.
Availability: 2.1.0
[image: Description] This method needs SFCGAL backend.
[image: Description]
 This function supports 3d and will not drop the z-index.
[image: Description]
 This function supports Polyhedral surfaces.
[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
	
						
SELECT ST_GeomFromText('POLYHEDRALSURFACE Z(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
		((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
		((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
		((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))');

						
[image: Examples]Original Cube

					 	
					
SELECT ST_Tesselate(ST_GeomFromText('POLYHEDRALSURFACE Z(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
	((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
	((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
	((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'));

		ST_AsText output:

		TIN Z (((0 0 0,0 0 1,0 1 1,0 0 0)),((0 1 0,0 0 0,0 1 1,0 1 0)),
	((0 0 0,0 1 0,1 1 0,0 0 0)),
	((1 0 0,0 0 0,1 1 0,1 0 0)),((0 0 1,1 0 0,1 0 1,0 0 1)),
	((0 0 1,0 0 0,1 0 0,0 0 1)),
	((1 1 0,1 1 1,1 0 1,1 1 0)),((1 0 0,1 1 0,1 0 1,1 0 0)),
	((0 1 0,0 1 1,1 1 1,0 1 0)),((1 1 0,0 1 0,1 1 1,1 1 0)),
	((0 1 1,1 0 1,1 1 1,0 1 1)),((0 1 1,0 0 1,1 0 1,0 1 1)))

		
[image: Examples]Tesselated Cube with triangles colored

					
	
						
SELECT 'POLYGON ((10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190))'::geometry;

						
[image: Examples]Original polygon

					 	
					
SELECT
	ST_Tesselate('POLYGON ((10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190))'::geometry);

	

	ST_AsText output

	TIN(((80 130,50 160,80 70,80 130)),((50 160,10 190,10 70,50 160)),
	 ((80 70,50 160,10 70,80 70)),((120 160,120 190,50 160,120 160)),
 ((120 190,10 190,50 160,120 190)))

					 [image: Examples]Tesselated Polygon

					

See Also
ST_ConstrainedDelaunayTriangles, ST_DelaunayTriangles

Long Transaction Support

Abstract
These functions implement a row locking mechanism to support long transactions.
		They are provided primarily for implementors of the
		Web Feature Service specification.

Note
For the locking mechanism to operate correctly the serializable
			
			transaction isolation level must be used.

Name
CheckAuth — Creates a trigger on a table to prevent/allow updates and deletes of rows based on authorization token.

Synopsis
	integer CheckAuth(a_schema_name, 	
	 	a_table_name, 	
	 	a_key_column_name);	

text a_schema_name;
text a_table_name;
text a_key_column_name;

	integer CheckAuth(a_table_name, 	
	 	a_key_column_name);	

text a_table_name;
text a_key_column_name;

Description
Creates trigger on a table to prevent/allow updates and deletes of rows based on an authorization token.
			Identify rows using <rowid_col> column.
If a_schema_name is not passed in, then searches for table in current schema.
Note
If an authorization trigger already exists on this table function errors.
If Transaction support is not enabled, function throws an exception.

Availability: 1.1.3

Examples

			SELECT CheckAuth('public', 'towns', 'gid');
			result

			0
			

See Also
EnableLongTransactions

Name
DisableLongTransactions — Disables long transaction support.

Synopsis
	text DisableLongTransactions();	

;

Description
Disables long transaction support. This function removes the
			long transaction support metadata tables, and drops all triggers
			attached to lock-checked tables.
Drops meta table called authorization_table and a view called authorized_tables
				and all triggers called checkauthtrigger
Availability: 1.1.3

Examples
SELECT DisableLongTransactions();
--result--
Long transactions support disabled
		

See Also
EnableLongTransactions

Name
PostGIS_Extensions_Upgrade —
Packages and upgrades PostGIS extensions (e.g. postgis_raster,
postgis_topology, postgis_sfcgal) to latest available version.

Synopsis
	text PostGIS_Extensions_Upgrade();	

;

Description
Packages and upgrades PostGIS extensions
		to latest version. Only extensions you have installed in the
 database will be packaged and upgraded if needed.
		Reports full PostGIS version and build configuration infos after.
 This is short-hand for doing multiple CREATE EXTENSION .. FROM
 unpackaged and ALTER EXTENSION .. UPDATE for each PostGIS extension.
		Currently only tries to upgrade extensions postgis,
 postgis_raster, postgis_sfcgal, postgis_topology, and postgis_tiger_geocoder.
Availability: 2.5.0
Note
Changed: 3.3.0 support for upgrades from any PostGIS version. Does not work on all systems.
Changed: 3.0.0 to repackage loose extensions and support postgis_raster.

Examples
SELECT PostGIS_Extensions_Upgrade();

NOTICE: Packaging extension postgis
NOTICE: Packaging extension postgis_raster
NOTICE: Packaging extension postgis_sfcgal
NOTICE: Extension postgis_topology is not available or not packagable for some reason
NOTICE: Extension postgis_tiger_geocoder is not available or not packagable for some reason

 postgis_extensions_upgrade

 Upgrade completed, run SELECT postgis_full_version(); for details
(1 row)

See Also

		the section called “Upgrading spatial databases”,
		PostGIS_GEOS_Version,
		PostGIS_Lib_Version,
		PostGIS_LibXML_Version,
		PostGIS_PROJ_Version,
		PostGIS_Version
		

Name
PostGIS_Lib_Version — Returns the version number of the PostGIS
		library.

Synopsis
	text PostGIS_Lib_Version();	

;

Description
Returns the version number of the PostGIS library.

Examples
SELECT PostGIS_Lib_Version();
 postgis_lib_version

 1.3.3
(1 row)

See Also
PostGIS_Full_Version, PostGIS_GEOS_Version, PostGIS_LibXML_Version, PostGIS_PROJ_Version, PostGIS_Version

Name
PostGIS_Scripts_Installed — Returns version of the PostGIS scripts installed in this
			database.

Synopsis
	text PostGIS_Scripts_Installed();	

;

Description
Returns version of the PostGIS scripts installed in this
			database.
Note
If the output of this function doesn't match the output of
			 PostGIS_Scripts_Released
			 you probably missed to properly upgrade an existing database.
			 See the Upgrading section for
			 more info.

Availability: 0.9.0

Examples
SELECT PostGIS_Scripts_Installed();
 postgis_scripts_installed

 1.5.0SVN
(1 row)

See Also
PostGIS_Full_Version, PostGIS_Scripts_Released, PostGIS_Version

Name
postgis.gdal_enabled_drivers —
 A configuration option to set the enabled GDAL drivers in the PostGIS environment. Affects the GDAL configuration variable GDAL_SKIP.

Description

 A configuration option to set the enabled GDAL drivers in the PostGIS environment. Affects the GDAL configuration variable GDAL_SKIP. This option can be set in PostgreSQL's configuration file: postgresql.conf. It can also be set by connection or transaction.

 The initial value of postgis.gdal_enabled_drivers may also be set by passing the environment variable POSTGIS_GDAL_ENABLED_DRIVERS with the list of enabled drivers to the process starting PostgreSQL.

 Enabled GDAL specified drivers can be specified by the driver's short-name or code. Driver short-names or codes can be found at GDAL Raster Formats. Multiple drivers can be specified by putting a space between each driver.

Note

 There are three special codes available for postgis.gdal_enabled_drivers. The codes are case-sensitive.

	DISABLE_ALL disables all GDAL drivers. If present, DISABLE_ALL overrides all other values in postgis.gdal_enabled_drivers.

	ENABLE_ALL enables all GDAL drivers.

	VSICURL enables GDAL's /vsicurl/ virtual file system.

 When postgis.gdal_enabled_drivers is set to DISABLE_ALL, attempts to use out-db rasters, ST_FromGDALRaster(), ST_AsGDALRaster(), ST_AsTIFF(), ST_AsJPEG() and ST_AsPNG() will result in error messages.

Note

 In the standard PostGIS installation, postgis.gdal_enabled_drivers is set to DISABLE_ALL.

Note

 Additional information about GDAL_SKIP is available at GDAL's Configuration Options.

Availability: 2.2.0

Examples
Set and reset postgis.gdal_enabled_drivers
Sets backend for all new connections to database
ALTER DATABASE mygisdb SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';
Sets default enabled drivers for all new connections to server. Requires super user access and PostgreSQL 9.4+.
 Also note that database, session, and user settings override this.
ALTER SYSTEM SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';
SELECT pg_reload_conf();

SET postgis.gdal_enabled_drivers TO 'GTiff PNG JPEG';
SET postgis.gdal_enabled_drivers = default;

Enable all GDAL Drivers

SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';

Disable all GDAL Drivers

SET postgis.gdal_enabled_drivers = 'DISABLE_ALL';

See Also

 ST_FromGDALRaster,
 ST_AsGDALRaster,
 ST_AsTIFF,
 ST_AsPNG,
 ST_AsJPEG,
 postgis.enable_outdb_rasters

Name
PostGIS_DropBBox — Drop the bounding box cache from the geometry.

Synopsis
	geometry PostGIS_DropBBox(geomA);	

geometry geomA;

Description
Drop the bounding box cache from the geometry. This reduces
			geometry size, but makes bounding-box based queries slower. It is also used to drop a corrupt bounding box. A tale-tell sign of a corrupt cached bounding box
				is when your ST_Intersects and other relation queries leave out geometries that rightfully should return true.
Note
Bounding boxes are automatically added to geometries and improve speed of queries so in general this is not needed
				unless the generated bounding box somehow becomes corrupted or you have an old install that is lacking bounding boxes.
				Then you need to drop the old and readd. This kind of corruption has been observed in 8.3-8.3.6 series whereby cached bboxes were not always recalculated when a geometry changed and upgrading to a newer version without a dump reload will not
				correct already corrupted boxes. So one can manually correct using below and readd the bbox or do a dump reload.

[image: Description]
 This method supports Circular Strings and Curves

Examples
--This example drops bounding boxes where the cached box is not correct
			--The force to ST_AsBinary before applying Box2D forces a recalculation of the box, and Box2D applied to the table geometry always
			-- returns the cached bounding box.
			UPDATE sometable
 SET geom = PostGIS_DropBBox(geom)
 WHERE Not (Box2D(ST_AsBinary(geom)) = Box2D(geom));

	UPDATE sometable
 SET geom = PostGIS_AddBBox(geom)
 WHERE Not PostGIS_HasBBOX(geom);

See Also
PostGIS_AddBBox, PostGIS_HasBBox, Box2D

Name
TopoElementArray — An array of TopoElement objects.

Description
An array of 1 or more TopoElement objects, generally used to pass around components of TopoGeometry objects.

Examples
SELECT '{{1,2},{4,3}}'::topology.topoelementarray As tea;
 tea

{{1,2},{4,3}}

-- more verbose equivalent --
SELECT ARRAY[ARRAY[1,2], ARRAY[4,3]]::topology.topoelementarray As tea;

 tea

{{1,2},{4,3}}

--using the array agg function packaged with topology --
SELECT topology.TopoElementArray_Agg(ARRAY[e,t]) As tea
 FROM generate_series(1,4) As e CROSS JOIN generate_series(1,3) As t;
 tea
--
{{1,1},{1,2},{1,3},{2,1},{2,2},{2,3},{3,1},{3,2},{3,3},{4,1},{4,2},{4,3}}

SELECT '{{1,2,4},{3,4,5}}'::topology.topoelementarray As tea;
ERROR: value for domain topology.topoelementarray violates check constraint "dimensions"

See Also

TopoElement,
GetTopoGeomElementArray,
TopoElementArray_Agg

Name
AddTopoGeometryColumn — Adds a topogeometry column to an existing table, registers this new column as a layer in topology.layer and returns the new layer_id.

Synopsis
	integer AddTopoGeometryColumn(topology_name, 	
	 	schema_name, 	
	 	table_name, 	
	 	column_name, 	
	 	feature_type);	

varchar
 topology_name;
varchar
 schema_name;
varchar
 table_name;
varchar
 column_name;
varchar
 feature_type;

	integer AddTopoGeometryColumn(topology_name, 	
	 	schema_name, 	
	 	table_name, 	
	 	column_name, 	
	 	feature_type, 	
	 	child_layer);	

varchar
 topology_name;
varchar
 schema_name;
varchar
 table_name;
varchar
 column_name;
varchar
 feature_type;
integer
 child_layer;

Description
Each TopoGeometry object belongs to a specific Layer of a specific Topology. Before creating a TopoGeometry object you need to create its TopologyLayer.
 A Topology Layer is an association of a feature-table with the topology. It also contain type and hierarchy information. We create a layer using the AddTopoGeometryColumn() function:
This function will both add the requested column to the table and add a record to the topology.layer table with all the given info.
If you don't specify [child_layer] (or set it to NULL) this layer would contain Basic TopoGeometries (composed by primitive topology elements).
 Otherwise this layer will contain hierarchical TopoGeometries (composed by TopoGeometries from the child_layer).
Once the layer is created (its id is returned by the AddTopoGeometryColumn function) you're ready to construct TopoGeometry objects in it
Valid feature_types are: POINT, LINE, POLYGON, COLLECTION
Availability: 1.1

Examples
-- Note for this example we created our new table in the ma_topo schema
-- though we could have created it in a different schema -- in which case topology_name and schema_name would be different
CREATE SCHEMA ma;
CREATE TABLE ma.parcels(gid serial, parcel_id varchar(20) PRIMARY KEY, address text);
SELECT topology.AddTopoGeometryColumn('ma_topo', 'ma', 'parcels', 'topo', 'POLYGON');

CREATE SCHEMA ri;
CREATE TABLE ri.roads(gid serial PRIMARY KEY, road_name text);
SELECT topology.AddTopoGeometryColumn('ri_topo', 'ri', 'roads', 'topo', 'LINE');

See Also

				 DropTopoGeometryColumn,
				 toTopoGeom,
				 CreateTopology,
				 CreateTopoGeom
				

Name
Populate_Topology_Layer — Adds missing entries to topology.layer table by reading metadata from topo tables.

Synopsis
	setof record Populate_Topology_Layer();	

;

Description
Adds missing entries to the topology.layer table by inspecting topology constraints on tables.
 This function is useful for fixing up entries in topology catalog after restores of schemas with topo data.
It returns the list of entries created. Returned columns are schema_name, table_name, feature_column.
Availability: 2.3.0

Examples
SELECT CreateTopology('strk_topo');
CREATE SCHEMA strk;
CREATE TABLE strk.parcels(gid serial, parcel_id varchar(20) PRIMARY KEY, address text);
SELECT topology.AddTopoGeometryColumn('strk_topo', 'strk', 'parcels', 'topo', 'POLYGON');
-- this will return no records because this feature is already registered
SELECT *
 FROM topology.Populate_Topology_Layer();

-- let's rebuild
TRUNCATE TABLE topology.layer;

SELECT *
 FROM topology.Populate_Topology_Layer();

SELECT topology_id,layer_id, schema_name As sn, table_name As tn, feature_column As fc
FROM topology.layer;

				
 schema_name | table_name | feature_column
-------------+------------+----------------
 strk | parcels | topo
(1 row)

 topology_id | layer_id | sn | tn | fc
-------------+----------+------+---------+------
 2 | 2 | strk | parcels | topo
(1 row)

See Also
AddTopoGeometryColumn

Topology Constructors

Abstract
This section covers the topology functions for creating new topologies.

Name
CreateTopology — Creates a new topology schema and registers this new schema in the topology.topology table.

Synopsis
	integer CreateTopology(topology_schema_name);	

varchar topology_schema_name;

	integer CreateTopology(topology_schema_name, 	
	 	srid);	

varchar topology_schema_name;
integer srid;

	integer CreateTopology(topology_schema_name, 	
	 	srid, 	
	 	prec);	

varchar topology_schema_name;
integer srid;
double precision prec;

	integer CreateTopology(topology_schema_name, 	
	 	srid, 	
	 	prec, 	
	 	hasz);	

varchar topology_schema_name;
integer srid;
double precision prec;
boolean hasz;

Description
Creates a new schema with name topology_name consisting of tables (edge_data,face,node, relation
 and registers this new topology in the topology.topology table. It returns the id of the topology in the topology table. The srid is the spatial reference identified as
 defined in spatial_ref_sys table for that topology. Topologies must be uniquely named. The tolerance is measured in the units of the spatial reference system. If the tolerance (prec) is not specified defaults to 0.
This is similar to the SQL/MM ST_InitTopoGeo but a bit more functional. hasz defaults to false if not specified.
Availability: 1.1
Enhanched: 2.0 added the signature accepting hasZ

Examples
This example creates a new schema called ma_topo that will store edges, faces, and relations in Massachusetts State Plane meters.
					The tolerance represents 1/2 meter since the spatial reference system is a meter based spatial reference system
SELECT topology.CreateTopology('ma_topo',26986, 0.5);
Create Rhode Island topology in State Plane ft
SELECT topology.CreateTopology('ri_topo',3438) As topoid;
topoid

2

See Also
the section called “Spatial Reference Systems”, ST_InitTopoGeo, Topology_Load_Tiger

Name
CopyTopology — Makes a copy of a topology structure (nodes, edges, faces, layers and TopoGeometries).

Synopsis
	integer CopyTopology(existing_topology_name, 	
	 	new_name);	

varchar existing_topology_name;
varchar new_name;

Description

Creates a new topology with name new_topology_name and SRID and precision taken from existing_topology_name, copies all nodes, edges and faces in there, copies layers and their TopoGeometries too.
		
Note

The new rows in topology.layer will contain synthesized values for schema_name, table_name and feature_column. This is because the TopoGeometry will only exist as a definition but won't be available in any user-level table yet.
		

Availability: 2.0.0

Examples

This example makes a backup of a topology called ma_topo
				
SELECT topology.CopyTopology('ma_topo', 'ma_topo_bakup');

See Also
the section called “Spatial Reference Systems”, CreateTopology

Name
TopoGeo_AddPoint —
Adds a point to an existing topology using a tolerance and possibly splitting an existing edge.
				

Synopsis
	integer TopoGeo_AddPoint(atopology, 	
	 	apoint, 	
	 	tolerance);	

varchar atopology;
geometry apoint;
float8 tolerance;

Description

Adds a point to an existing topology and returns its identifier.
The given point will snap to existing nodes or edges within given tolerance.
An existing edge may be split by the snapped point.

Availability: 2.0.0

See Also

TopoGeo_AddLineString,
TopoGeo_AddPolygon,
AddNode,
CreateTopology

Name
TopoGeo_AddLineString — Adds a linestring to an existing topology using a tolerance and possibly splitting existing edges/faces. Returns edge identifiers.

Synopsis
	SETOF integer TopoGeo_AddLineString(atopology, 	
	 	aline, 	
	 	tolerance);	

varchar atopology;
geometry aline;
float8 tolerance;

Description

Adds a linestring to an existing topology and returns a set of edge identifiers forming it up.
The given line will snap to existing nodes or edges within given tolerance.
Existing edges and faces may be split by the line.

Note

Updating statistics about topologies being loaded via this function is
up to caller, see maintaining statistics during topology editing and population.

Availability: 2.0.0

See Also

TopoGeo_AddPoint,
TopoGeo_AddPolygon,
AddEdge,
CreateTopology
				

Name
ST_RemEdgeNewFace —
Removes an edge and, if the removed edge separated two faces,
delete the original faces and replace them with a new face.

Synopsis
	integer ST_RemEdgeNewFace(atopology, 	
	 	anedge);	

varchar atopology;
integer anedge;

Description

Removes an edge and, if the removed edge separated two faces,
delete the original faces and replace them with a new face.
		

Returns the id of a newly created face or NULL, if no new face is created.
No new face is created when the removed edge is dangling or isolated or
confined with the universe face (possibly making the universe flood into
the face on the other side).
		

Updates all existing joined edges and relationships accordingly.
		

Refuses to remove an edge participating in the definition of an
existing TopoGeometry.
Refuses to heal two faces if any TopoGeometry is defined by only
one of them (and not the other).
		

If any arguments are null, the given edge is unknown (must already exist in
the edge table of the topology schema), the topology
name is invalid then an error is thrown.

Availability: 2.0
[image: Description] This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.14

Examples

See Also
ST_RemEdgeModFace
ST_AddEdgeNewFaces

Name
ST_ModEdgeHeal —
Heals two edges by deleting the node connecting them, modifying the first edge
and deleting the second edge. Returns the id of the deleted node.
				

Synopsis
	int ST_ModEdgeHeal(atopology, 	
	 	anedge, 	
	 	anotheredge);	

varchar atopology;
integer anedge;
integer anotheredge;

Description

Heals two edges by deleting the node connecting them, modifying the first edge
and deleting the second edge.
Returns the id of the deleted node.
Updates all existing joined edges and relationships accordingly.
		
Availability: 2.0
[image: Description] This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

See Also

				ST_ModEdgeSplit
				ST_NewEdgesSplit
				

Name
GetEdgeByPoint — Finds the edge-id of an edge that intersects a given point.

Synopsis
	integer GetEdgeByPoint(atopology, 	
	 	apoint, 	
	 	tol1);	

varchar atopology;
geometry apoint;
float8 tol1;

Description
Retrieves the id of an edge that intersects a Point.
The function returns an integer (id-edge) given a topology, a POINT and a tolerance. If tolerance = 0 then the point has to intersect the edge.
If apoint doesn't intersect an edge, returns 0 (zero).
If use tolerance > 0 and there is more than one edge near the point then an exception is thrown.
Note
If tolerance = 0, the function uses ST_Intersects otherwise uses ST_DWithin.

Performed by the GEOS module.
Availability: 2.0.0

Examples
These examples use edges we created in AddEdge
SELECT topology.GetEdgeByPoint('ma_topo',geom, 1) As with1mtol, topology.GetEdgeByPoint('ma_topo',geom,0) As withnotol
FROM ST_GeomFromEWKT('SRID=26986;POINT(227622.6 893843)') As geom;
 with1mtol | withnotol
-----------+-----------
 2 | 0

SELECT topology.GetEdgeByPoint('ma_topo',geom, 1) As nearnode
FROM ST_GeomFromEWKT('SRID=26986;POINT(227591.9 893900.4)') As geom;

-- get error --
ERROR: Two or more edges found

See Also

AddEdge,
GetNodeByPoint,
GetFaceByPoint

Name
GetTopologyID — Returns the id of a topology in the topology.topology table given the name of the topology.

Synopsis
	integer GetTopologyID(toponame);	

varchar toponame;

Description
Returns the id of a topology in the topology.topology table given the name of the topology.
Availability: 1.1

Examples
SELECT topology.GetTopologyID('ma_topo') As topo_id;
 topo_id

 1

See Also

	CreateTopology,
	DropTopology,
	GetTopologyName,
	GetTopologySRID
				

Name
GetRingEdges —
Returns the ordered set of signed edge identifiers met by walking on an
a given edge side.
				

Synopsis
	getfaceedges_returntype GetRingEdges(atopology, 	
	 	aring, 	
	 	max_edges=null);	

varchar atopology;
integer aring;
integer max_edges=null;

Description

Returns the ordered set of signed edge identifiers met by walking on an
a given edge side.
Each output consists of a sequence and a signed edge id.
Sequence numbers start with value 1.

If you pass a positive edge id, the walk starts on the left side
of the corresponding edge and follows the edge direction.
If you pass a negative edge id, the walk starts on the right side
of it and goes backward.

If max_edges is not null no more than those records
are returned by that function. This is meant to be a safety parameter
when dealing with possibly invalid topologies.
		
Note

This function uses edge ring linking metadata.

Availability: 2.0.0

See Also

ST_GetFaceEdges,
GetNodeEdges
				

Name
GetNodeEdges —
Returns an ordered set of edges incident to the given node.
				

Synopsis
	getfaceedges_returntype GetNodeEdges(atopology, 	
	 	anode);	

varchar atopology;
integer anode;

Description

Returns an ordered set of edges incident to the given node.
Each output consists of a sequence and a signed edge id.
Sequence numbers start with value 1.
A positive edge starts at the given node.
A negative edge ends into the given node.
Closed edges will appear twice (with both signs).
Order is clockwise starting from northbound.
		
Note

This function computes ordering rather than deriving from metadata
and is thus usable to build edge ring linking.
		

Availability: 2.0

See Also

getfaceedges_returntype,
GetRingEdges,
ST_Azimuth
				

Topology Processing

Abstract
This section covers the functions for processing topologies in non-standard ways.

Name
AddEdge — Adds a linestring edge to the edge table and associated start and end points to the point nodes table of the specified topology schema using the specified linestring geometry and returns the edgeid of the new (or existing) edge.

Synopsis
	integer AddEdge(toponame, 	
	 	aline);	

varchar toponame;
geometry aline;

Description
Adds an edge to the edge table and associated nodes to the nodes table of the specified toponame schema using the specified linestring geometry and returns the edgeid of the new or existing record.
 The newly added edge has "universe" face on both sides and links to itself.
Note
If the aline geometry crosses, overlaps, contains or is contained by an existing linestring edge, then an error is thrown and the edge is not added.

Note
The geometry of aline must have the same srid as defined for the topology otherwise an invalid spatial reference sys error will be thrown.

Performed by the GEOS module.
Availability: 2.0.0

Examples
SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227575.8 893917.2,227591.9 893900.4)', 26986)) As edgeid;
-- result-
edgeid

 1

SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227591.9 893900.4,227622.6 893844.2,227641.6 893816.5,
 227704.5 893778.5)', 26986)) As edgeid;
-- result --
edgeid

 2

 SELECT topology.AddEdge('ma_topo', ST_GeomFromText('LINESTRING(227591.2 893900, 227591.9 893900.4,
 227704.5 893778.5)', 26986)) As edgeid;
 -- gives error --
 ERROR: Edge intersects (not on endpoints) with existing edge 1

See Also

TopoGeo_AddLineString,
CreateTopology,
the section called “Spatial Reference Systems”

Name
AddFace — Registers a face primitive to a topology and gets its identifier.

Synopsis
	integer AddFace(toponame, 	
	 	apolygon, 	
	 	force_new=false);	

varchar toponame;
geometry apolygon;
boolean force_new=false;

Description

Registers a face primitive to a topology and gets its identifier.

For a newly added face, the edges forming its boundaries and the ones
contained in the face will be updated to have correct values in the
left_face and right_face fields.
Isolated nodes contained in the face will also be updated to have a correct
containing_face field value.

Note

This function does not use nor set the next_left_edge and next_right_edge fields of the edge table.

The target topology is assumed to be valid (containing no self-intersecting edges). An exception is raised if: The polygon boundary is not fully defined by existing edges or the polygon overlaps an existing face.

If the apolygon geometry already exists as a face, then:
if force_new is false (the default) the
face id of the existing face is returned;
if force_new is true a new id will be assigned to
the newly registered face.

Note

When a new registration of an existing face is performed (force_new=true),
no action will be taken to resolve dangling references to the existing
face in the edge, node an relation tables, nor will the MBR field of the
existing face record be updated. It is up to the caller to deal with that.

Note
The apolygon geometry must have the same srid as defined for the topology otherwise an invalid spatial reference sys error will be thrown.

Availability: 2.0.0

Examples

-- first add the edges we use generate_series as an iterator (the below
-- will only work for polygons with < 10000 points because of our max in gs)
SELECT topology.AddEdge('ma_topo', ST_MakeLine(ST_PointN(geom,i), ST_PointN(geom, i + 1))) As edgeid
 FROM (SELECT ST_NPoints(geom) AS npt, geom
 FROM
 (SELECT ST_Boundary(ST_GeomFromText('POLYGON((234896.5 899456.7,234914 899436.4,234946.6 899356.9,234872.5 899328.7,
 234891 899285.4,234992.5 899145, 234890.6 899069,234755.2 899255.4,
 234612.7 899379.4,234776.9 899563.7,234896.5 899456.7))', 26986)) As geom
) As geoms) As facen CROSS JOIN generate_series(1,10000) As i
 WHERE i < npt;
-- result --
 edgeid

 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
(10 rows)
-- then add the face -

SELECT topology.AddFace('ma_topo',
 ST_GeomFromText('POLYGON((234896.5 899456.7,234914 899436.4,234946.6 899356.9,234872.5 899328.7,
 234891 899285.4,234992.5 899145, 234890.6 899069,234755.2 899255.4,
 234612.7 899379.4,234776.9 899563.7,234896.5 899456.7))', 26986)) As faceid;
-- result --
faceid

 1

See Also
AddEdge, CreateTopology, the section called “Spatial Reference Systems”

TopoGeometry Constructors

Abstract
This section covers the topology functions for creating new topogeometries.

Name
TopoElementArray_Agg — Returns a topoelementarray for a set of element_id, type arrays (topoelements).

Synopsis
	topoelementarray TopoElementArray_Agg(tefield);	

topoelement set tefield;

Description
Used to create a TopoElementArray from a set of TopoElement.
Availability: 2.0.0

Examples
SELECT topology.TopoElementArray_Agg(ARRAY[e,t]) As tea
 FROM generate_series(1,3) As e CROSS JOIN generate_series(1,4) As t;
 tea
--
{{1,1},{1,2},{1,3},{1,4},{2,1},{2,2},{2,3},{2,4},{3,1},{3,2},{3,3},{3,4}}

See Also
TopoElement, TopoElementArray

Name
clearTopoGeom — Clears the content of a topo geometry.

Synopsis
	topogeometry clearTopoGeom(topogeom);	

topogeometry topogeom;

Description

Clears the content a TopoGeometry
turning it into an empty one. Mostly useful in conjunction with toTopoGeom to replace the shape of existing
objects and any dependent object in higher hierarchical levels.

Availability: 2.1

Examples

-- Shrink all TopoGeometry polygons by 10 meters
UPDATE nei_topo SET topo = ST_Buffer(clearTopoGeom(topo), -10);
				

See Also

toTopoGeom

Name
TopoGeom_addTopoGeom — Adds element of a TopoGeometry to the definition of another TopoGeometry.

Synopsis
	topogeometry TopoGeom_addTopoGeom(tgt, 	
	 	src);	

topogeometry tgt;
topogeometry src;

Description

Adds the elements of a TopoGeometry to the definition of
another TopoGeometry, possibly changing its cached type (type attribute)
to a collection, if needed to hold all elements in the source object.

The two TopoGeometry objects need be defined against the *same*
topology and, if hierarchically defined, need be composed by elements
of the same child layer.

Availability: 3.2

Examples

-- Set an "overall" TopoGeometry value to be composed by all
-- elements of specific TopoGeometry values
UPDATE mylayer SET tg_overall = TopoGeom_addTopogeom(
 TopoGeom_addTopoGeom(
 clearTopoGeom(tg_overall),
 tg_specific1
),
 tg_specific2
);
				

See Also

TopoGeom_addElement,
clearTopoGeom,
CreateTopoGeom

Name
toTopoGeom — Adds a geometry shape to an existing topo geometry.

Description

Refer to toTopoGeom.

TopoGeometry Accessors

Name
AsTopoJSON — Returns the TopoJSON representation of a topogeometry.

Synopsis
	text AsTopoJSON(tg, 	
	 	edgeMapTable);	

topogeometry tg;
regclass edgeMapTable;

Description
Returns the TopoJSON representation of a topogeometry. If edgeMapTable is not null, it will be used as a lookup/storage mapping of edge identifiers to arc indices. This is to be able to allow for a compact "arcs" array in the final document.

The table, if given, is expected to have an "arc_id" field of type "serial" and an "edge_id" of type integer; the code will query the table for "edge_id" so it is recommended to add an index on that field.

Note

Arc indices in the TopoJSON output are 0-based but they are 1-based
in the "edgeMapTable" table.

A full TopoJSON document will be need to contain, in
addition to the snippets returned by this function,
the actual arcs plus some headers. See the TopoJSON specification.
		
Availability: 2.1.0
Enhanced: 2.2.1 added support for puntal inputs

See Also
ST_AsGeoJSON

Examples

CREATE TEMP TABLE edgemap(arc_id serial, edge_id int unique);

-- header
SELECT '{ "type": "Topology", "transform": { "scale": [1,1], "translate": [0,0] }, "objects": {'

-- objects
UNION ALL SELECT '"' || feature_name || '": ' || AsTopoJSON(feature, 'edgemap')
FROM features.big_parcels WHERE feature_name = 'P3P4';

-- arcs
WITH edges AS (
 SELECT m.arc_id, e.geom FROM edgemap m, city_data.edge e
 WHERE e.edge_id = m.edge_id
), points AS (
 SELECT arc_id, (st_dumppoints(geom)).* FROM edges
), compare AS (
 SELECT p2.arc_id,
 CASE WHEN p1.path IS NULL THEN p2.geom
 ELSE ST_Translate(p2.geom, -ST_X(p1.geom), -ST_Y(p1.geom))
 END AS geom
 FROM points p2 LEFT OUTER JOIN points p1
 ON (p1.arc_id = p2.arc_id AND p2.path[1] = p1.path[1]+1)
 ORDER BY arc_id, p2.path
), arcsdump AS (
 SELECT arc_id, (regexp_matches(ST_AsGeoJSON(geom), '\[.*\]'))[1] as t
 FROM compare
), arcs AS (
 SELECT arc_id, '[' || array_to_string(array_agg(t), ',') || ']' as a FROM arcsdump
 GROUP BY arc_id
 ORDER BY arc_id
)
SELECT '}, "arcs": [' UNION ALL
SELECT array_to_string(array_agg(a), E',\n') from arcs

-- footer
UNION ALL SELECT ']}'::text as t;

-- Result:
{ "type": "Topology", "transform": { "scale": [1,1], "translate": [0,0] }, "objects": {
"P3P4": { "type": "MultiPolygon", "arcs": [[[-1]],[[6,5,-5,-4,-3,1]]]}
}, "arcs": [
 [[25,30],[6,0],[0,10],[-14,0],[0,-10],[8,0]],
 [[35,6],[0,8]],
 [[35,6],[12,0]],
 [[47,6],[0,8]],
 [[47,14],[0,8]],
 [[35,22],[12,0]],
 [[35,14],[0,8]]
]}

Importing and exporting Topologies

Once you have created topologies, and maybe associated topological layers,
you might want to export them into a file-based format for backup or transfer
into another database.

Using the standard dump/restore tools of PostgreSQL is
problematic because topologies are composed by a set of tables (4 for
primitives, an arbitrary number for layers) and records in metadata tables
(topology.topology and topology.layer). Additionally, topology identifiers
are not univoque across databases so that parameter of your topology
will need to be changes upon restoring it.

In order to simplify export/restore of topologies a pair of
executables are provided: pgtopo_export
and pgtopo_import. Example usage:

pgtopo_export dev_db topo1 | pgtopo_import topo1 | psql staging_db

Using the Topology exporter

The pgtopo_export script takes the name of a
database and a topology and outputs a dump file which can be used
to import the topology (and associated layers) into a new database.

By default pgtopo_export writes the
dump file to the standard output so that it can be piped to
pgtopo_import or redirected to a file
(refusing to write to terminal). You can optionally specify
an output filename with the -f commandline switch.

By default pgtopo_export includes a dump
of all layers defined against the given topology. This may be more
data than you need, or may be non-working (in case your layer tables
have complex dependencies) in which case you can request skipping the
layers with the --skip-layers switch and deal with those
separately.

Invoking pgtopo_export with the
--help (or -h for short) switch
will always print short usage string.

The dump file format is a compressed tar archive of a
pgtopo_export directory containing
at least a pgtopo_dump_version file with
format version info. As of version 1 the directory
contains tab-delimited CSV files with data of the topology
primitive tables (node, edge_data, face, relation), the
topology and layer records associated with it and
(unless --skip-layers is given) a custom-format
PostgreSQL dump of tables reported as being layers of the given
topology.

Using the Topology importer

The pgtopo_import script takes a
pgtopo_export format topology dump and a
name to give to the topology to be created and outputs
an SQL script reconstructing the topology and associated
layers.

The generated SQL file will contain statements that create
a topology with the given name, load primitive data in it,
restores and registers all topology layers by properly
linking all TopoGeometry values to their correct topology.

By default pgtopo_import reads the dump
from the standard input so that it can be used in conjuction
with pgtopo_export in a pipeline.
You can optionally specify an input filename with the
-f commandline switch.

By default pgtopo_import includes in the output
SQL file the code to restore all layers found in the dump.

This may be unwanted or non-working in case your target database already
have tables with the same name as the ones in the dump. In that case
you can request skipping the layers with the --skip-layers
switch and deal with those separately (or later).

SQL to only load and link layers to a named topology can be generated
using the --only-layers switch. This can be useful to load
layers AFTER resolving the naming conflicts or to link layers to a
different topology (say a spatially-simplified version of the starting
topology).

Chapter 12. Raster Reference

The functions given below are the ones which a user of PostGIS Raster is
 likely to need and which are currently available in PostGIS Raster. There are other functions which are required support
 functions to the raster objects which are not of use to a general
 user.
raster is a new PostGIS type for storing and analyzing raster data.
For loading rasters from raster files please refer to the section called “Loading and Creating Rasters”
For the examples in this reference we will be using a raster table of dummy rasters - Formed with the following code
CREATE TABLE dummy_rast(rid integer, rast raster);
INSERT INTO dummy_rast(rid, rast)
VALUES (1,
('01' -- little endian (uint8 ndr)
||
'0000' -- version (uint16 0)
||
'0000' -- nBands (uint16 0)
||
'0000000000000040' -- scaleX (float64 2)
||
'0000000000000840' -- scaleY (float64 3)
||
'000000000000E03F' -- ipX (float64 0.5)
||
'000000000000E03F' -- ipY (float64 0.5)
||
'0000000000000000' -- skewX (float64 0)
||
'0000000000000000' -- skewY (float64 0)
||
'00000000' -- SRID (int32 0)
||
'0A00' -- width (uint16 10)
||
'1400' -- height (uint16 20)
)::raster
),
-- Raster: 5 x 5 pixels, 3 bands, PT_8BUI pixel type, NODATA = 0
(2, ('01000003009A9999999999A93F9A9999999999A9BF000000E02B274A' ||
'41000000007719564100000000000000000000000000000000FFFFFFFF050005000400FDFEFDFEFEFDFEFEFDF9FAFEF' ||
'EFCF9FBFDFEFEFDFCFAFEFEFE04004E627AADD16076B4F9FE6370A9F5FE59637AB0E54F58617087040046566487A1506CA2E3FA5A6CAFFBFE4D566DA4CB3E454C5665')::raster);
Raster Support Data types

Abstract
This section lists the PostgreSQL data types specifically created to support raster functionality.

Name
AddOverviewConstraints — Tag a raster column as being an overview of another.

Synopsis
	boolean AddOverviewConstraints(ovschema, 	
	 	ovtable, 	
	 	ovcolumn, 	
	 	refschema, 	
	 	reftable, 	
	 	refcolumn, 	
	 	ovfactor);	

name
 ovschema;
name
 ovtable;
name
 ovcolumn;
name
 refschema;
name
 reftable;
name
 refcolumn;
int
 ovfactor;

	boolean AddOverviewConstraints(ovtable, 	
	 	ovcolumn, 	
	 	reftable, 	
	 	refcolumn, 	
	 	ovfactor);	

name
 ovtable;
name
 ovcolumn;
name
 reftable;
name
 refcolumn;
int
 ovfactor;

Description

Adds constraints on a raster column that are used to display information
in the raster_overviews raster catalog.

The ovfactor parameter represents the scale multiplier
in the overview column: higher overview factors have lower resolution.

When the ovschema and refschema
parameters are omitted, the first table found scanning the
search_path will be used.

Availability: 2.0.0

Examples

CREATE TABLE res1 AS SELECT
ST_AddBand(
 ST_MakeEmptyRaster(1000, 1000, 0, 0, 2),
 1, '8BSI'::text, -129, NULL
) r1;

CREATE TABLE res2 AS SELECT
ST_AddBand(
 ST_MakeEmptyRaster(500, 500, 0, 0, 4),
 1, '8BSI'::text, -129, NULL
) r2;

SELECT AddOverviewConstraints('res2', 'r2', 'res1', 'r1', 2);

-- verify if registered correctly in the raster_overviews view --
SELECT o_table_name ot, o_raster_column oc,
 r_table_name rt, r_raster_column rc,
 overview_factor f
FROM raster_overviews WHERE o_table_name = 'res2';
 ot | oc | rt | rc | f
------+----+------+----+---
 res2 | r2 | res1 | r1 | 2
(1 row)

See Also

 the section called “Raster Overviews”,
 DropOverviewConstraints,
 ST_CreateOverview,
 AddRasterConstraints

Name
DropOverviewConstraints — Untag a raster column from being an overview of another.

Synopsis
	boolean DropOverviewConstraints(ovschema, 	
	 	ovtable, 	
	 	ovcolumn);	

name
 ovschema;
name
 ovtable;
name
 ovcolumn;

	boolean DropOverviewConstraints(ovtable, 	
	 	ovcolumn);	

name
 ovtable;
name
 ovcolumn;

Description

Remove from a raster column the constraints used to show it as
being an overview of another in the raster_overviews
raster catalog.

When the ovschema parameter is omitted,
the first table found scanning the search_path
will be used.

Availability: 2.0.0

See Also

 the section called “Raster Overviews”,
 AddOverviewConstraints,
 DropRasterConstraints

Name
PostGIS_Raster_Lib_Version — Reports full raster version and build configuration
 infos.

Synopsis
	text PostGIS_Raster_Lib_Version();	

;

Description
Reports full raster version and build configuration
 infos.

Examples
SELECT PostGIS_Raster_Lib_Version();
postgis_raster_lib_version

 2.0.0

See Also
 PostGIS_Lib_Version

Name
ST_Contour — Generates a set of vector contours from the provided raster
 band, using the GDAL contouring algorithm.

Synopsis
	setof record ST_Contour(rast, 	
	 	bandnumber, 	
	 	level_interval, 	
	 	level_base, 	
	 	fixed_levels, 	
	 	polygonize);	

raster rast;
integer bandnumber;
double precision level_interval;
double precision level_base;
double precision[] fixed_levels;
boolean polygonize;

Description

 Generates a set of vector contours from the provided raster
 band, using the GDAL contouring algorithm.

 When the fixed_levels parameter is a non-empty
 array, the level_interval and level_base parameters are ignored.

 The polygonize parameter currently has no effect.
 Use the ST_Polygonize function
 to convert contours into polygons.

 Return values are a set of records with the following attributes:

	geom
	The geometry of the contour line.

	id
	A unique identifier given to the contour line by GDAL.

	value
	The raster value the line represents. For an elevation DEM input, this would be the elevation of the output contour.

Availability: 3.2.0

Example
WITH c AS (
SELECT (ST_Contour(rast, 1, fixed_levels => ARRAY[100.0, 200.0, 300.0])).*
FROM dem_grid WHERE rid = 1
)
SELECT st_astext(geom), id, value
FROM c;

See Also

 ST_InterpolateRaster

Raster Constructors

Name
ST_AddBand —
 Returns a raster with the new band(s) of given type added with given initial value in the given index location. If no index is specified, the band is added to the end.

Synopsis
	(1) raster ST_AddBand(rast, 	
	 	addbandargset);	

raster rast;
addbandarg[] addbandargset;

	(2) raster ST_AddBand(rast, 	
	 	index, 	
	 	pixeltype, 	
	 	initialvalue=0, 	
	 	nodataval=NULL);	

raster rast;
integer index;
text pixeltype;
double precision initialvalue=0;
double precision nodataval=NULL;

	(3) raster ST_AddBand(rast, 	
	 	pixeltype, 	
	 	initialvalue=0, 	
	 	nodataval=NULL);	

raster rast;
text pixeltype;
double precision initialvalue=0;
double precision nodataval=NULL;

	(4) raster ST_AddBand(torast, 	
	 	fromrast, 	
	 	fromband=1, 	
	 	torastindex=at_end);	

raster torast;
raster fromrast;
integer fromband=1;
integer torastindex=at_end;

	(5) raster ST_AddBand(torast, 	
	 	fromrasts, 	
	 	fromband=1, 	
	 	torastindex=at_end);	

raster torast;
raster[] fromrasts;
integer fromband=1;
integer torastindex=at_end;

	(6) raster ST_AddBand(rast, 	
	 	index, 	
	 	outdbfile, 	
	 	outdbindex, 	
	 	nodataval=NULL);	

raster rast;
integer index;
text outdbfile;
integer[] outdbindex;
double precision nodataval=NULL;

	(7) raster ST_AddBand(rast, 	
	 	outdbfile, 	
	 	outdbindex, 	
	 	index=at_end, 	
	 	nodataval=NULL);	

raster rast;
text outdbfile;
integer[] outdbindex;
integer index=at_end;
double precision nodataval=NULL;

Description

 Returns a raster with a new band added in given position (index), of given type, of given initial value, and of given nodata value. If no index is specified, the band is added to the end. If no fromband is specified, band 1 is assumed. Pixel type is a string representation of one of the pixel types specified in ST_BandPixelType. If an existing index is specified all subsequent bands >= that index are incremented by 1. If an initial value greater than the max of the pixel type is specified, then the initial value is set to the highest value allowed by the pixel type.

 For the variant that takes an array of addbandarg (Variant 1), a specific addbandarg's index value is relative to the raster at the time when the band described by that addbandarg is being added to the raster. See the Multiple New Bands example below.

 For the variant that takes an array of rasters (Variant 5), if torast is NULL then the fromband band of each raster in the array is accumulated into a new raster.

 For the variants that take outdbfile (Variants 6 and 7), the value must include the full path to the raster file. The file must also be accessible to the postgres server process.

Enhanced: 2.1.0 support for addbandarg added.
Enhanced: 2.1.0 support for new out-db bands added.

Examples: Single New Band

-- Add another band of type 8 bit unsigned integer with pixels initialized to 200
UPDATE dummy_rast
 SET rast = ST_AddBand(rast,'8BUI'::text,200)
WHERE rid = 1;

-- Create an empty raster 100x100 units, with upper left right at 0, add 2 bands (band 1 is 0/1 boolean bit switch, band2 allows values 0-15)
-- uses addbandargs
INSERT INTO dummy_rast(rid,rast)
 VALUES(10, ST_AddBand(ST_MakeEmptyRaster(100, 100, 0, 0, 1, -1, 0, 0, 0),
 ARRAY[
 ROW(1, '1BB'::text, 0, NULL),
 ROW(2, '4BUI'::text, 0, NULL)
]::addbandarg[]
)
);

-- output meta data of raster bands to verify all is right --
SELECT (bmd).*
FROM (SELECT ST_BandMetaData(rast,generate_series(1,2)) As bmd
 FROM dummy_rast WHERE rid = 10) AS foo;
 --result --
 pixeltype | nodatavalue | isoutdb | path
-----------+----------------+-------------+---------+------
 1BB | | f |
 4BUI | | f |

-- output meta data of raster -
SELECT (rmd).width, (rmd).height, (rmd).numbands
FROM (SELECT ST_MetaData(rast) As rmd
 FROM dummy_rast WHERE rid = 10) AS foo;
-- result --
 upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
------------+------------+-------+--------+------------+------------+-------+-------+------+----------
 0 | 0 | 100 | 100 | 1 | -1 | 0 | 0 | 0 | 2

Examples: Multiple New Bands

SELECT
 *
FROM ST_BandMetadata(
 ST_AddBand(
 ST_MakeEmptyRaster(10, 10, 0, 0, 1, -1, 0, 0, 0),
 ARRAY[
 ROW(NULL, '8BUI', 255, 0),
 ROW(NULL, '16BUI', 1, 2),
 ROW(2, '32BUI', 100, 12),
 ROW(2, '32BF', 3.14, -1)
]::addbandarg[]
),
 ARRAY[]::integer[]
);

 bandnum | pixeltype | nodatavalue | isoutdb | path
---------+-----------+-------------+---------+------
 1 | 8BUI | 0 | f |
 2 | 32BF | -1 | f |
 3 | 32BUI | 12 | f |
 4 | 16BUI | 2 | f |

-- Aggregate the 1st band of a table of like rasters into a single raster
-- with as many bands as there are test_types and as many rows (new rasters) as there are mice
-- NOTE: The ORDER BY test_type is only supported in PostgreSQL 9.0+
-- for 8.4 and below it usually works to order your data in a subselect (but not guaranteed)
-- The resulting raster will have a band for each test_type alphabetical by test_type
-- For mouse lovers: No mice were harmed in this exercise
SELECT
 mouse,
 ST_AddBand(NULL, array_agg(rast ORDER BY test_type), 1) As rast
FROM mice_studies
GROUP BY mouse;

Examples: New Out-db band

SELECT
 *
FROM ST_BandMetadata(
 ST_AddBand(
 ST_MakeEmptyRaster(10, 10, 0, 0, 1, -1, 0, 0, 0),
 '/home/raster/mytestraster.tif'::text, NULL::int[]
),
 ARRAY[]::integer[]
);

 bandnum | pixeltype | nodatavalue | isoutdb | path
---------+-----------+-------------+---------+------
 1 | 8BUI | | t | /home/raster/mytestraster.tif
 2 | 8BUI | | t | /home/raster/mytestraster.tif
 3 | 8BUI | | t | /home/raster/mytestraster.tif

See Also

 ST_BandMetaData,
 ST_BandPixelType,
 ST_MakeEmptyRaster,
 ST_MetaData,
 ST_NumBands,
 ST_Reclass

Name
ST_MakeEmptyRaster — Returns an empty raster (having no bands) of given dimensions (width & height), upperleft X and Y, pixel size and rotation (scalex, scaley, skewx & skewy) and reference system (srid).
 If a raster is passed in, returns a new raster with the same size, alignment and SRID. If srid is left out, the spatial ref is set to unknown (0).

Synopsis
	raster ST_MakeEmptyRaster(rast);	

raster rast;

	raster ST_MakeEmptyRaster(width, 	
	 	height, 	
	 	upperleftx, 	
	 	upperlefty, 	
	 	scalex, 	
	 	scaley, 	
	 	skewx, 	
	 	skewy, 	
	 	srid=unknown);	

integer width;
integer height;
float8 upperleftx;
float8 upperlefty;
float8 scalex;
float8 scaley;
float8 skewx;
float8 skewy;
integer srid=unknown;

	raster ST_MakeEmptyRaster(width, 	
	 	height, 	
	 	upperleftx, 	
	 	upperlefty, 	
	 	pixelsize);	

integer width;
integer height;
float8 upperleftx;
float8 upperlefty;
float8 pixelsize;

Description
Returns an empty raster (having no band) of given dimensions (width & height) and georeferenced in spatial (or world) coordinates with upper left X (upperleftx), upper left Y (upperlefty),
 pixel size and rotation (scalex, scaley, skewx & skewy) and reference system (srid).
The last version use a single parameter to specify the pixel size (pixelsize). scalex is set to this argument and scaley is set to the negative value of this argument. skewx and skewy are set to 0.
If an existing raster is passed in, it returns a new raster with the same meta data settings (without the bands).
If no srid is specified it defaults to 0. After you create an empty raster you probably want to add bands to it and maybe edit it. Refer to ST_AddBand to define bands and ST_SetValue to set initial pixel values.

Examples

INSERT INTO dummy_rast(rid,rast)
VALUES(3, ST_MakeEmptyRaster(100, 100, 0.0005, 0.0005, 1, 1, 0, 0, 4326));

--use an existing raster as template for new raster
INSERT INTO dummy_rast(rid,rast)
SELECT 4, ST_MakeEmptyRaster(rast)
FROM dummy_rast WHERE rid = 3;

-- output meta data of rasters we just added
SELECT rid, (md).*
FROM (SELECT rid, ST_MetaData(rast) As md
 FROM dummy_rast
 WHERE rid IN(3,4)) As foo;

-- output --
 rid | upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
-----+------------+------------+-------+--------+------------+------------+-------+-------+------+----------
 3 | 0.0005 | 0.0005 | 100 | 100 | 1 | 1 | 0 | 0 | 4326 | 0
 4 | 0.0005 | 0.0005 | 100 | 100 | 1 | 1 | 0 | 0 | 4326 | 0

See Also
ST_AddBand, ST_MetaData, ST_ScaleX, ST_ScaleY, ST_SetValue, ST_SkewX, , ST_SkewY

Name
ST_Tile — Returns a set of rasters resulting from the split of the input raster based upon the desired dimensions of the output rasters.

Synopsis
	setof raster ST_Tile(rast, 	
	 	nband, 	
	 	width, 	
	 	height, 	
	 	padwithnodata=FALSE, 	
	 	nodataval=NULL);	

raster rast;
int[] nband;
integer width;
integer height;
boolean padwithnodata=FALSE;
double precision nodataval=NULL;

	setof raster ST_Tile(rast, 	
	 	nband, 	
	 	width, 	
	 	height, 	
	 	padwithnodata=FALSE, 	
	 	nodataval=NULL);	

raster rast;
integer nband;
integer width;
integer height;
boolean padwithnodata=FALSE;
double precision nodataval=NULL;

	setof raster ST_Tile(rast, 	
	 	width, 	
	 	height, 	
	 	padwithnodata=FALSE, 	
	 	nodataval=NULL);	

raster rast;
integer width;
integer height;
boolean padwithnodata=FALSE;
double precision nodataval=NULL;

Description

 Returns a set of rasters resulting from the split of the input raster based upon the desired dimensions of the output rasters.

 If padwithnodata = FALSE, edge tiles on the right and bottom sides of the raster may have different dimensions than the rest of the tiles. If padwithnodata = TRUE, all tiles will have the same dimensions with the possibility that edge tiles being padded with NODATA values. If raster band(s) do not have NODATA value(s) specified, one can be specified by setting nodataval.

Note

 If a specified band of the input raster is out-of-db, the corresponding band in the output rasters will also be out-of-db.

Availability: 2.1.0

Examples

WITH foo AS (
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 2, '8BUI', 10, 0) AS rast UNION ALL
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, 0, 1, -1, 0, 0, 0), 1, '8BUI', 2, 0), 2, '8BUI', 20, 0) AS rast UNION ALL
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, 0, 1, -1, 0, 0, 0), 1, '8BUI', 3, 0), 2, '8BUI', 30, 0) AS rast UNION ALL

 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -3, 1, -1, 0, 0, 0), 1, '8BUI', 4, 0), 2, '8BUI', 40, 0) AS rast UNION ALL
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -3, 1, -1, 0, 0, 0), 1, '8BUI', 5, 0), 2, '8BUI', 50, 0) AS rast UNION ALL
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -3, 1, -1, 0, 0, 0), 1, '8BUI', 6, 0), 2, '8BUI', 60, 0) AS rast UNION ALL

 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -6, 1, -1, 0, 0, 0), 1, '8BUI', 7, 0), 2, '8BUI', 70, 0) AS rast UNION ALL
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -6, 1, -1, 0, 0, 0), 1, '8BUI', 8, 0), 2, '8BUI', 80, 0) AS rast UNION ALL
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -6, 1, -1, 0, 0, 0), 1, '8BUI', 9, 0), 2, '8BUI', 90, 0) AS rast
), bar AS (
 SELECT ST_Union(rast) AS rast FROM foo
), baz AS (
 SELECT ST_Tile(rast, 3, 3, TRUE) AS rast FROM bar
)
SELECT
 ST_DumpValues(rast)
FROM baz;

 st_dumpvalues
--
 (1,"{{1,1,1},{1,1,1},{1,1,1}}")
 (2,"{{10,10,10},{10,10,10},{10,10,10}}")
 (1,"{{2,2,2},{2,2,2},{2,2,2}}")
 (2,"{{20,20,20},{20,20,20},{20,20,20}}")
 (1,"{{3,3,3},{3,3,3},{3,3,3}}")
 (2,"{{30,30,30},{30,30,30},{30,30,30}}")
 (1,"{{4,4,4},{4,4,4},{4,4,4}}")
 (2,"{{40,40,40},{40,40,40},{40,40,40}}")
 (1,"{{5,5,5},{5,5,5},{5,5,5}}")
 (2,"{{50,50,50},{50,50,50},{50,50,50}}")
 (1,"{{6,6,6},{6,6,6},{6,6,6}}")
 (2,"{{60,60,60},{60,60,60},{60,60,60}}")
 (1,"{{7,7,7},{7,7,7},{7,7,7}}")
 (2,"{{70,70,70},{70,70,70},{70,70,70}}")
 (1,"{{8,8,8},{8,8,8},{8,8,8}}")
 (2,"{{80,80,80},{80,80,80},{80,80,80}}")
 (1,"{{9,9,9},{9,9,9},{9,9,9}}")
 (2,"{{90,90,90},{90,90,90},{90,90,90}}")
(18 rows)

WITH foo AS (
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 2, '8BUI', 10, 0) AS rast UNION ALL
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, 0, 1, -1, 0, 0, 0), 1, '8BUI', 2, 0), 2, '8BUI', 20, 0) AS rast UNION ALL
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, 0, 1, -1, 0, 0, 0), 1, '8BUI', 3, 0), 2, '8BUI', 30, 0) AS rast UNION ALL

 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -3, 1, -1, 0, 0, 0), 1, '8BUI', 4, 0), 2, '8BUI', 40, 0) AS rast UNION ALL
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -3, 1, -1, 0, 0, 0), 1, '8BUI', 5, 0), 2, '8BUI', 50, 0) AS rast UNION ALL
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -3, 1, -1, 0, 0, 0), 1, '8BUI', 6, 0), 2, '8BUI', 60, 0) AS rast UNION ALL

 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, -6, 1, -1, 0, 0, 0), 1, '8BUI', 7, 0), 2, '8BUI', 70, 0) AS rast UNION ALL
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 3, -6, 1, -1, 0, 0, 0), 1, '8BUI', 8, 0), 2, '8BUI', 80, 0) AS rast UNION ALL
 SELECT ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 6, -6, 1, -1, 0, 0, 0), 1, '8BUI', 9, 0), 2, '8BUI', 90, 0) AS rast
), bar AS (
 SELECT ST_Union(rast) AS rast FROM foo
), baz AS (
 SELECT ST_Tile(rast, 3, 3, 2) AS rast FROM bar
)
SELECT
 ST_DumpValues(rast)
FROM baz;

 st_dumpvalues
--
 (1,"{{10,10,10},{10,10,10},{10,10,10}}")
 (1,"{{20,20,20},{20,20,20},{20,20,20}}")
 (1,"{{30,30,30},{30,30,30},{30,30,30}}")
 (1,"{{40,40,40},{40,40,40},{40,40,40}}")
 (1,"{{50,50,50},{50,50,50},{50,50,50}}")
 (1,"{{60,60,60},{60,60,60},{60,60,60}}")
 (1,"{{70,70,70},{70,70,70},{70,70,70}}")
 (1,"{{80,80,80},{80,80,80},{80,80,80}}")
 (1,"{{90,90,90},{90,90,90},{90,90,90}}")
(9 rows)

See Also

 ST_Union,
 ST_Retile

Name
ST_FromGDALRaster — Returns a raster from a supported GDAL raster file.

Synopsis
	raster ST_FromGDALRaster(gdaldata, 	
	 	srid=NULL);	

bytea gdaldata;
integer srid=NULL;

Description

 Returns a raster from a supported GDAL raster file. gdaldata is of type bytea and should be the contents of the GDAL raster file.

 If srid is NULL, the function will try to automatically assign the SRID from the GDAL raster. If srid is provided, the value provided will override any automatically assigned SRID.

Availability: 2.1.0

Examples

WITH foo AS (
 SELECT ST_AsPNG(ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 0.1, -0.1, 0, 0, 4326), 1, '8BUI', 1, 0), 2, '8BUI', 2, 0), 3, '8BUI', 3, 0)) AS png
),
bar AS (
 SELECT 1 AS rid, ST_FromGDALRaster(png) AS rast FROM foo
 UNION ALL
 SELECT 2 AS rid, ST_FromGDALRaster(png, 3310) AS rast FROM foo
)
SELECT
 rid,
 ST_Metadata(rast) AS metadata,
 ST_SummaryStats(rast, 1) AS stats1,
 ST_SummaryStats(rast, 2) AS stats2,
 ST_SummaryStats(rast, 3) AS stats3
FROM bar
ORDER BY rid;

 rid | metadata | stats1 | stats2 | stats3
-----+---------------------------+---------------+---------------+----------------
 1 | (0,0,2,2,1,-1,0,0,0,3) | (4,4,1,0,1,1) | (4,8,2,0,2,2) | (4,12,3,0,3,3)
 2 | (0,0,2,2,1,-1,0,0,3310,3) | (4,4,1,0,1,1) | (4,8,2,0,2,2) | (4,12,3,0,3,3)
(2 rows)

See Also

 ST_AsGDALRaster

Name
ST_MemSize — Returns the amount of space (in bytes) the raster takes.

Synopsis
	integer ST_MemSize(rast);	

raster rast;

Description
Returns the amount of space (in bytes) the raster takes.
This is a nice compliment to PostgreSQL built in functions pg_column_size, pg_size_pretty, pg_relation_size, pg_total_relation_size.
Note
pg_relation_size which gives the byte size of a table may return byte size lower than ST_MemSize. This is because
 pg_relation_size does not add toasted table contribution and large geometries are stored in TOAST tables. pg_column_size might return lower because it returns the compressed size.
pg_total_relation_size - includes, the table, the toasted tables, and the indexes.

Availability: 2.2.0

Examples

 SELECT ST_MemSize(ST_AsRaster(ST_Buffer(ST_Point(1,5),10,1000),150, 150, '8BUI')) As rast_mem;

 rast_mem

 22568

See Also

Name
ST_PixelHeight — Returns the pixel height in geometric units of the spatial reference system.

Synopsis
	double precision ST_PixelHeight(rast);	

raster rast;

Description
Returns the height of a pixel in geometric units of the spatial reference system. In the common case where
 there is no skew, the pixel height is just the scale ratio between geometric coordinates and raster pixels.
Refer to ST_PixelWidth for a diagrammatic visualization of the relationship.

Examples: Rasters with no skew
SELECT ST_Height(rast) As rastheight, ST_PixelHeight(rast) As pixheight,
 ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
 ST_SkewY(rast) As skewy
FROM dummy_rast;

 rastheight | pixheight | scalex | scaley | skewx | skewy
------------+-----------+--------+--------+-------+----------
 20 | 3 | 2 | 3 | 0 | 0
 5 | 0.05 | 0.05 | -0.05 | 0 | 0

Examples: Rasters with skew different than 0
SELECT ST_Height(rast) As rastheight, ST_PixelHeight(rast) As pixheight,
 ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
 ST_SkewY(rast) As skewy
FROM (SELECT ST_SetSKew(rast,0.5,0.5) As rast
 FROM dummy_rast) As skewed;

rastheight | pixheight | scalex | scaley | skewx | skewy
-----------+-------------------+--------+--------+-------+----------
 20 | 3.04138126514911 | 2 | 3 | 0.5 | 0.5
 5 | 0.502493781056044 | 0.05 | -0.05 | 0.5 | 0.5

See Also

 ST_PixelWidth,
 ST_ScaleX,
 ST_ScaleY,
 ST_SkewX,
 ST_SkewY

Name
ST_PixelWidth — Returns the pixel width in geometric units of the spatial reference system.

Synopsis
	double precision ST_PixelWidth(rast);	

raster rast;

Description
Returns the width of a pixel in geometric units of the spatial reference system. In the common case where
 there is no skew, the pixel width is just the scale ratio between geometric coordinates and raster pixels.
The following diagram demonstrates the relationship:

[image: Description]Pixel Width: Pixel size in the i direction
Pixel Height: Pixel size in the j direction

Examples: Rasters with no skew
SELECT ST_Width(rast) As rastwidth, ST_PixelWidth(rast) As pixwidth,
 ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
 ST_SkewY(rast) As skewy
 FROM dummy_rast;

 rastwidth | pixwidth | scalex | scaley | skewx | skewy
 -----------+----------+--------+--------+-------+----------
 10 | 2 | 2 | 3 | 0 | 0
 5 | 0.05 | 0.05 | -0.05 | 0 | 0

Examples: Rasters with skew different than 0
SELECT ST_Width(rast) As rastwidth, ST_PixelWidth(rast) As pixwidth,
 ST_ScaleX(rast) As scalex, ST_ScaleY(rast) As scaley, ST_SkewX(rast) As skewx,
 ST_SkewY(rast) As skewy
 FROM (SELECT ST_SetSkew(rast,0.5,0.5) As rast
 FROM dummy_rast) As skewed;

 rastwidth | pixwidth | scalex | scaley | skewx | skewy
 -----------+-------------------+--------+--------+-------+----------
 10 | 2.06155281280883 | 2 | 3 | 0.5 | 0.5
 5 | 0.502493781056044 | 0.05 | -0.05 | 0.5 | 0.5

See Also
ST_PixelHeight, ST_ScaleX, ST_ScaleY, ST_SkewX, ST_SkewY

Name
ST_ScaleX — Returns the X component of the pixel width in units of coordinate reference system.

Synopsis
	float8 ST_ScaleX(rast);	

raster rast;

Description
Returns the X component of the pixel width in units of coordinate reference system. Refer to World File
 for more details.
Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeX.

Examples
SELECT rid, ST_ScaleX(rast) As rastpixwidth
FROM dummy_rast;

 rid | rastpixwidth
-----+--------------
 1 | 2
 2 | 0.05

See Also
ST_Width

Name
ST_ScaleY — Returns the Y component of the pixel height in units of coordinate reference system.

Synopsis
	float8 ST_ScaleY(rast);	

raster rast;

Description
Returns the Y component of the pixel height in units of coordinate reference system. May be negative. Refer to World File
 for more details.
Changed: 2.0.0. In WKTRaster versions this was called ST_PixelSizeY.

Examples
SELECT rid, ST_ScaleY(rast) As rastpixheight
FROM dummy_rast;

 rid | rastpixheight
-----+---------------
 1 | 3
 2 | -0.05

See Also
ST_Height

Name
ST_RasterToWorldCoordY — Returns the geometric Y coordinate upper left corner of a raster, column and row. Numbering of columns
 and rows starts at 1.

Synopsis
	float8 ST_RasterToWorldCoordY(rast, 	
	 	yrow);	

raster rast;
integer yrow;

	float8 ST_RasterToWorldCoordY(rast, 	
	 	xcolumn, 	
	 	yrow);	

raster rast;
integer xcolumn;
integer yrow;

Description
Returns the upper left Y coordinate of a raster column row in geometric units of the georeferenced raster.
 Numbering of columns and rows starts at 1 but if you pass in a negative number or number higher than number of
 columns/rows in raster, it will give you
 coordinates outside of the raster file to left or right with the assumption that the
 skew and pixel sizes are same as selected raster tile.
Note
For non-skewed rasters, providing the Y column is sufficient. For skewed rasters,
 the georeferenced coordinate is a function of the ST_ScaleY and ST_SkewY and row and column.
 An error will be raised if you give just the Y row for a skewed raster.

Changed: 2.1.0 In prior versions, this was called ST_Raster2WorldCoordY

Examples

-- non-skewed raster providing row is sufficient
SELECT rid, ST_RasterToWorldCoordY(rast,1) As y1coord,
 ST_RasterToWorldCoordY(rast,3) As y2coord,
 ST_ScaleY(rast) As pixely
FROM dummy_rast;

 rid | y1coord | y2coord | pixely
-----+---------+-----------+--------
 1 | 0.5 | 6.5 | 3
 2 | 5793244 | 5793243.9 | -0.05

-- for fun lets skew it
SELECT rid, ST_RasterToWorldCoordY(rast,1,1) As y1coord,
 ST_RasterToWorldCoordY(rast,2,3) As y2coord,
 ST_ScaleY(rast) As pixely
FROM (SELECT rid, ST_SetSkew(rast,0,100.5) As rast FROM dummy_rast) As foo;

 rid | y1coord | y2coord | pixely
-----+---------+-----------+--------
 1 | 0.5 | 107 | 3
 2 | 5793244 | 5793344.4 | -0.05

See Also
ST_ScaleY, ST_RasterToWorldCoordX, ST_SetSkew, ST_SkewY

Name
ST_Rotation — Returns the rotation of the raster in radian.

Synopsis
	float8 ST_Rotation(rast);	

raster rast;

Description
Returns the uniform rotation of the raster in radian. If a raster does not have uniform rotation, NaN is returned.
 Refer to World File for more details.

Examples
SELECT rid, ST_Rotation(ST_SetScale(ST_SetSkew(rast, sqrt(2)), sqrt(2))) as rot FROM dummy_rast;

 rid | rot
-----+-------------------
 1 | 0.785398163397448
 2 | 0.785398163397448

See Also
ST_SetRotation, ST_SetScale, ST_SetSkew

Name
ST_Summary — Returns a text summary of the contents of the raster.

Synopsis
	text ST_Summary(rast);	

raster rast;

Description
Returns a text summary of the contents of the raster.
Availability: 2.1.0

Examples

SELECT ST_Summary(
 ST_AddBand(
 ST_AddBand(
 ST_AddBand(
 ST_MakeEmptyRaster(10, 10, 0, 0, 1, -1, 0, 0, 0)
 , 1, '8BUI', 1, 0
)
 , 2, '32BF', 0, -9999
)
 , 3, '16BSI', 0, NULL
)
);

 st_summary
--
 Raster of 10x10 pixels has 3 bands and extent of BOX(0 -10,10 0)+
 band 1 of pixtype 8BUI is in-db with NODATA value of 0 +
 band 2 of pixtype 32BF is in-db with NODATA value of -9999 +
 band 3 of pixtype 16BSI is in-db with no NODATA value
(1 row)

See Also

 ST_MetaData,
 ST_BandMetaData,
 ST_Summary
 ST_Extent

Name
ST_UpperLeftX — Returns the upper left X coordinate of raster in projected spatial ref.

Synopsis
	float8 ST_UpperLeftX(rast);	

raster rast;

Description
Returns the upper left X coordinate of raster in projected spatial ref.

Examples

SELECt rid, ST_UpperLeftX(rast) As ulx
FROM dummy_rast;

 rid | ulx
-----+------------
 1 | 0.5
 2 | 3427927.75

See Also
ST_UpperLeftY, ST_GeoReference, Box3D

Name
ST_UpperLeftY — Returns the upper left Y coordinate of raster in projected spatial ref.

Synopsis
	float8 ST_UpperLeftY(rast);	

raster rast;

Description
Returns the upper left Y coordinate of raster in projected spatial ref.

Examples

SELECT rid, ST_UpperLeftY(rast) As uly
FROM dummy_rast;

 rid | uly
-----+---------
 1 | 0.5
 2 | 5793244

See Also
ST_UpperLeftX, ST_GeoReference, Box3D

Name
ST_WorldToRasterCoordX — Returns the column in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw) represented
 in world spatial reference system of raster.

Synopsis
	integer ST_WorldToRasterCoordX(rast, 	
	 	pt);	

raster rast;
geometry pt;

	integer ST_WorldToRasterCoordX(rast, 	
	 	xw);	

raster rast;
double precision xw;

	integer ST_WorldToRasterCoordX(rast, 	
	 	xw, 	
	 	yw);	

raster rast;
double precision xw;
double precision yw;

Description
Returns the column in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw). A point, or (both xw and yw world coordinates are required if a raster is skewed). If a raster
 is not skewed then xw is sufficient. World coordinates are in the spatial reference coordinate system of the raster.
Changed: 2.1.0 In prior versions, this was called ST_World2RasterCoordX

Examples
SELECT rid, ST_WorldToRasterCoordX(rast,3427927.8) As xcoord,
 ST_WorldToRasterCoordX(rast,3427927.8,20.5) As xcoord_xwyw,
 ST_WorldToRasterCoordX(rast,ST_GeomFromText('POINT(3427927.8 20.5)',ST_SRID(rast))) As ptxcoord
FROM dummy_rast;

 rid | xcoord | xcoord_xwyw | ptxcoord
-----+---------+---------+----------
 1 | 1713964 | 1713964 | 1713964
 2 | 1 | 1 | 1

See Also

 ST_RasterToWorldCoordX,
 ST_RasterToWorldCoordY,
 ST_SRID

Name
ST_WorldToRasterCoordY — Returns the row in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw) represented
 in world spatial reference system of raster.

Synopsis
	integer ST_WorldToRasterCoordY(rast, 	
	 	pt);	

raster rast;
geometry pt;

	integer ST_WorldToRasterCoordY(rast, 	
	 	xw);	

raster rast;
double precision xw;

	integer ST_WorldToRasterCoordY(rast, 	
	 	xw, 	
	 	yw);	

raster rast;
double precision xw;
double precision yw;

Description
Returns the row in the raster of the point geometry (pt) or a X and Y world coordinate (xw, yw). A point, or (both xw and yw world coordinates are required if a raster is skewed). If a raster
 is not skewed then xw is sufficient. World coordinates are in the spatial reference coordinate system of the raster.
Changed: 2.1.0 In prior versions, this was called ST_World2RasterCoordY

Examples
SELECT rid, ST_WorldToRasterCoordY(rast,20.5) As ycoord,
 ST_WorldToRasterCoordY(rast,3427927.8,20.5) As ycoord_xwyw,
 ST_WorldToRasterCoordY(rast,ST_GeomFromText('POINT(3427927.8 20.5)',ST_SRID(rast))) As ptycoord
FROM dummy_rast;

 rid | ycoord | ycoord_xwyw | ptycoord
-----+-----------+-------------+-----------
 1 | 7 | 7 | 7
 2 | 115864471 | 115864471 | 115864471

See Also
ST_RasterToWorldCoordX, ST_RasterToWorldCoordY, ST_SRID

Name
ST_BandIsNoData — Returns true if the band is filled with only nodata values.

Synopsis
	boolean ST_BandIsNoData(rast, 	
	 	band, 	
	 	forceChecking=true);	

raster rast;
integer band;
boolean forceChecking=true;

	boolean ST_BandIsNoData(rast, 	
	 	forceChecking=true);	

raster rast;
boolean forceChecking=true;

Description
Returns true if the band is filled with only nodata
 values. Band 1 is assumed if not specified. If the last argument
 is TRUE, the entire band is checked pixel by pixel. Otherwise,
 the function simply returns the value of the isnodata flag for
 the band. The default value for this parameter is FALSE, if not
 specified.
Availability: 2.0.0
Note
If the flag is dirty (this is, the result is different
 using TRUE as last parameter and not using it) you should
 update the raster to set this flag to true, by using ST_SetBandIsNodata(),
 or ST_SetBandNodataValue() with TRUE as last argument. See ST_SetBandIsNoData.

Examples

-- Create dummy table with one raster column
create table dummy_rast (rid integer, rast raster);

-- Add raster with two bands, one pixel/band. In the first band, nodatavalue = pixel value = 3.
-- In the second band, nodatavalue = 13, pixel value = 4
insert into dummy_rast values(1,
(
'01' -- little endian (uint8 ndr)
||
'0000' -- version (uint16 0)
||
'0200' -- nBands (uint16 0)
||
'17263529ED684A3F' -- scaleX (float64 0.000805965234044584)
||
'F9253529ED684ABF' -- scaleY (float64 -0.00080596523404458)
||
'1C9F33CE69E352C0' -- ipX (float64 -75.5533328537098)
||
'718F0E9A27A44840' -- ipY (float64 49.2824585505576)
||
'ED50EB853EC32B3F' -- skewX (float64 0.000211812383858707)
||
'7550EB853EC32B3F' -- skewY (float64 0.000211812383858704)
||
'E6100000' -- SRID (int32 4326)
||
'0100' -- width (uint16 1)
||
'0100' -- height (uint16 1)
||
'6' -- hasnodatavalue and isnodata value set to true.
||
'2' -- first band type (4BUI)
||
'03' -- novalue==3
||
'03' -- pixel(0,0)==3 (same that nodata)
||
'0' -- hasnodatavalue set to false
||
'5' -- second band type (16BSI)
||
'0D00' -- novalue==13
||
'0400' -- pixel(0,0)==4
)::raster
);

select st_bandisnodata(rast, 1) from dummy_rast where rid = 1; -- Expected true
select st_bandisnodata(rast, 2) from dummy_rast where rid = 1; -- Expected false

See Also
ST_BandNoDataValue, ST_NumBands, ST_SetBandNoDataValue, ST_SetBandIsNoData

Name
ST_BandFileSize — Returns the file size of a band stored in file system. If no bandnum specified, 1 is assumed.

Synopsis
	bigint ST_BandFileSize(rast, 	
	 	bandnum=1);	

raster rast;
integer bandnum=1;

Description
Returns the file size of a band stored in file system. Throws an error if called with an in db band, or if outdb access is not enabled.
This function is typically used in conjunction with ST_BandPath() and ST_BandFileTimestamp() so a client can determine if the filename of a outdb raster as seen by it is the same as the one seen by the server.
Availability: 2.5.0

Examples
SELECT ST_BandFileSize(rast,1) FROM dummy_rast WHERE rid = 1;

 st_bandfilesize

 240574

Name
ST_HasNoBand — Returns true if there is no band with given band number. If no band number is specified, then band number 1 is assumed.

Synopsis
	boolean ST_HasNoBand(rast, 	
	 	bandnum=1);	

raster rast;
integer bandnum=1;

Description
Returns true if there is no band with given band number. If no band number is specified, then band number 1 is assumed.
Availability: 2.0.0

Examples
SELECT rid, ST_HasNoBand(rast) As hb1, ST_HasNoBand(rast,2) as hb2,
ST_HasNoBand(rast,4) as hb4, ST_NumBands(rast) As numbands
FROM dummy_rast;

rid | hb1 | hb2 | hb4 | numbands
-----+-----+-----+-----+----------
1 | t | t | t | 0
2 | f | f | t | 3

See Also
ST_NumBands

Name
ST_PixelAsPoints —
 Returns a point geometry for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The coordinates of the point geometry are of the pixel's upper-left corner.

Synopsis
	setof record ST_PixelAsPoints(rast, 	
	 	band=1, 	
	 	exclude_nodata_value=TRUE);	

raster rast;
integer band=1;
boolean exclude_nodata_value=TRUE;

Description

 Returns a point geometry for each pixel of a raster band along with the value, the X and the Y raster coordinates of each pixel. The coordinates of the point geometry are of the pixel's upper-left corner.

 Return record format: geom geometry, val double precision, x integer, y integers.

Note

 When exclude_nodata_value = TRUE, only those pixels whose values are not NODATA are returned as points.

Availability: 2.1.0
Changed: 2.1.1 Changed behavior of exclude_nodata_value.

Examples

SELECT x, y, val, ST_AsText(geom) FROM (SELECT (ST_PixelAsPoints(rast, 1)).* FROM dummy_rast WHERE rid = 2) foo;

 x | y | val | st_astext
---+---+-----+------------------------------
 1 | 1 | 253 | POINT(3427927.75 5793244)
 2 | 1 | 254 | POINT(3427927.8 5793244)
 3 | 1 | 253 | POINT(3427927.85 5793244)
 4 | 1 | 254 | POINT(3427927.9 5793244)
 5 | 1 | 254 | POINT(3427927.95 5793244)
 1 | 2 | 253 | POINT(3427927.75 5793243.95)
 2 | 2 | 254 | POINT(3427927.8 5793243.95)
 3 | 2 | 254 | POINT(3427927.85 5793243.95)
 4 | 2 | 253 | POINT(3427927.9 5793243.95)
 5 | 2 | 249 | POINT(3427927.95 5793243.95)
 1 | 3 | 250 | POINT(3427927.75 5793243.9)
 2 | 3 | 254 | POINT(3427927.8 5793243.9)
 3 | 3 | 254 | POINT(3427927.85 5793243.9)
 4 | 3 | 252 | POINT(3427927.9 5793243.9)
 5 | 3 | 249 | POINT(3427927.95 5793243.9)
 1 | 4 | 251 | POINT(3427927.75 5793243.85)
 2 | 4 | 253 | POINT(3427927.8 5793243.85)
 3 | 4 | 254 | POINT(3427927.85 5793243.85)
 4 | 4 | 254 | POINT(3427927.9 5793243.85)
 5 | 4 | 253 | POINT(3427927.95 5793243.85)
 1 | 5 | 252 | POINT(3427927.75 5793243.8)
 2 | 5 | 250 | POINT(3427927.8 5793243.8)
 3 | 5 | 254 | POINT(3427927.85 5793243.8)
 4 | 5 | 254 | POINT(3427927.9 5793243.8)
 5 | 5 | 254 | POINT(3427927.95 5793243.8)

See Also

 ST_DumpAsPolygons,
 ST_PixelAsPolygon,
 ST_PixelAsPolygons,
 ST_PixelAsPoint,
 ST_PixelAsCentroid,
 ST_PixelAsCentroids

Name
ST_Value — Returns the value of a given band in a given columnx, rowy pixel or at a particular geometric point. Band numbers start at 1 and assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include nodata pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.

Synopsis
	double precision ST_Value(rast, 	
	 	pt, 	
	 	exclude_nodata_value=true);	

raster rast;
geometry pt;
boolean exclude_nodata_value=true;

	double precision ST_Value(rast, 	
	 	band, 	
	 	pt, 	
	 	exclude_nodata_value=true, 	
	 	resample='nearest');	

raster rast;
integer band;
geometry pt;
boolean exclude_nodata_value=true;
text resample='nearest';

	double precision ST_Value(rast, 	
	 	x, 	
	 	y, 	
	 	exclude_nodata_value=true);	

raster rast;
integer x;
integer y;
boolean exclude_nodata_value=true;

	double precision ST_Value(rast, 	
	 	band, 	
	 	x, 	
	 	y, 	
	 	exclude_nodata_value=true);	

raster rast;
integer band;
integer x;
integer y;
boolean exclude_nodata_value=true;

Description
Returns the value of a given band in a given columnx, rowy pixel or at a given geometry point. Band numbers start at 1 and band is assumed to be 1 if not specified.
If exclude_nodata_value is set to true, then only non nodata pixels are considered. If exclude_nodata_value is set to false, then all pixels are considered.
The allowed values of the resample parameter are "nearest" which performs the default nearest-neighbor resampling, and "bilinear" which performs a bilinear interpolation to estimate the value between pixel centers.
Enhanced: 3.2.0 resample optional argument was added.
Enhanced: 2.0.0 exclude_nodata_value optional argument was added.

Examples

-- get raster values at particular postgis geometry points
-- the srid of your geometry should be same as for your raster
SELECT rid, ST_Value(rast, foo.pt_geom) As b1pval, ST_Value(rast, 2, foo.pt_geom) As b2pval
FROM dummy_rast CROSS JOIN (SELECT ST_SetSRID(ST_Point(3427927.77, 5793243.76), 0) As pt_geom) As foo
WHERE rid=2;

 rid | b1pval | b2pval
-----+--------+--------
 2 | 252 | 79

-- general fictitious example using a real table
SELECT rid, ST_Value(rast, 3, sometable.geom) As b3pval
FROM sometable
WHERE ST_Intersects(rast,sometable.geom);

SELECT rid, ST_Value(rast, 1, 1, 1) As b1pval,
 ST_Value(rast, 2, 1, 1) As b2pval, ST_Value(rast, 3, 1, 1) As b3pval
FROM dummy_rast
WHERE rid=2;

 rid | b1pval | b2pval | b3pval
-----+--------+--------+--------
 2 | 253 | 78 | 70

--- Get all values in bands 1,2,3 of each pixel --
SELECT x, y, ST_Value(rast, 1, x, y) As b1val,
 ST_Value(rast, 2, x, y) As b2val, ST_Value(rast, 3, x, y) As b3val
FROM dummy_rast CROSS JOIN
generate_series(1, 1000) As x CROSS JOIN generate_series(1, 1000) As y
WHERE rid = 2 AND x <= ST_Width(rast) AND y <= ST_Height(rast);

 x | y | b1val | b2val | b3val
---+---+-------+-------+-------
 1 | 1 | 253 | 78 | 70
 1 | 2 | 253 | 96 | 80
 1 | 3 | 250 | 99 | 90
 1 | 4 | 251 | 89 | 77
 1 | 5 | 252 | 79 | 62
 2 | 1 | 254 | 98 | 86
 2 | 2 | 254 | 118 | 108
 :
 :

--- Get all values in bands 1,2,3 of each pixel same as above but returning the upper left point point of each pixel --
SELECT ST_AsText(ST_SetSRID(
 ST_Point(ST_UpperLeftX(rast) + ST_ScaleX(rast)*x,
 ST_UpperLeftY(rast) + ST_ScaleY(rast)*y),
 ST_SRID(rast))) As uplpt
 , ST_Value(rast, 1, x, y) As b1val,
 ST_Value(rast, 2, x, y) As b2val, ST_Value(rast, 3, x, y) As b3val
FROM dummy_rast CROSS JOIN
generate_series(1,1000) As x CROSS JOIN generate_series(1,1000) As y
WHERE rid = 2 AND x <= ST_Width(rast) AND y <= ST_Height(rast);

 uplpt | b1val | b2val | b3val
-----------------------------+-------+-------+-------
 POINT(3427929.25 5793245.5) | 253 | 78 | 70
 POINT(3427929.25 5793247) | 253 | 96 | 80
 POINT(3427929.25 5793248.5) | 250 | 99 | 90
:

--- Get a polygon formed by union of all pixels
 that fall in a particular value range and intersect particular polygon --
SELECT ST_AsText(ST_Union(pixpolyg)) As shadow
FROM (SELECT ST_Translate(ST_MakeEnvelope(
 ST_UpperLeftX(rast), ST_UpperLeftY(rast),
 ST_UpperLeftX(rast) + ST_ScaleX(rast),
 ST_UpperLeftY(rast) + ST_ScaleY(rast), 0
), ST_ScaleX(rast)*x, ST_ScaleY(rast)*y
) As pixpolyg, ST_Value(rast, 2, x, y) As b2val
 FROM dummy_rast CROSS JOIN
generate_series(1,1000) As x CROSS JOIN generate_series(1,1000) As y
WHERE rid = 2
 AND x <= ST_Width(rast) AND y <= ST_Height(rast)) As foo
WHERE
 ST_Intersects(
 pixpolyg,
 ST_GeomFromText('POLYGON((3427928 5793244,3427927.75 5793243.75,3427928 5793243.75,3427928 5793244))',0)
) AND b2val != 254;

 shadow
--
 MULTIPOLYGON(((3427928 5793243.9,3427928 5793243.85,3427927.95 5793243.85,3427927.95 5793243.9,
 3427927.95 5793243.95,3427928 5793243.95,3427928.05 5793243.95,3427928.05 5793243.9,3427928 5793243.9)),((3427927.95 5793243.9,3427927.95 579324
3.85,3427927.9 5793243.85,3427927.85 5793243.85,3427927.85 5793243.9,3427927.9 5793243.9,3427927.9 5793243.95,
3427927.95 5793243.95,3427927.95 5793243.9)),((3427927.85 5793243.75,3427927.85 5793243.7,3427927.8 5793243.7,3427927.8 5793243.75
,3427927.8 5793243.8,3427927.8 5793243.85,3427927.85 5793243.85,3427927.85 5793243.8,3427927.85 5793243.75)),
((3427928.05 5793243.75,3427928.05 5793243.7,3427928 5793243.7,3427927.95 5793243.7,3427927.95 5793243.75,3427927.95 5793243.8,3427
927.95 5793243.85,3427928 5793243.85,3427928 5793243.8,3427928.05 5793243.8,
3427928.05 5793243.75)),((3427927.95 5793243.75,3427927.95 5793243.7,3427927.9 5793243.7,3427927.85 5793243.7,
3427927.85 5793243.75,3427927.85 5793243.8,3427927.85 5793243.85,3427927.9 5793243.85,
3427927.95 5793243.85,3427927.95 5793243.8,3427927.95 5793243.75)))

--- Checking all the pixels of a large raster tile can take a long time.
--- You can dramatically improve speed at some lose of precision by orders of magnitude
-- by sampling pixels using the step optional parameter of generate_series.
-- This next example does the same as previous but by checking 1 for every 4 (2x2) pixels and putting in the last checked
-- putting in the checked pixel as the value for subsequent 4

SELECT ST_AsText(ST_Union(pixpolyg)) As shadow
FROM (SELECT ST_Translate(ST_MakeEnvelope(
 ST_UpperLeftX(rast), ST_UpperLeftY(rast),
 ST_UpperLeftX(rast) + ST_ScaleX(rast)*2,
 ST_UpperLeftY(rast) + ST_ScaleY(rast)*2, 0
), ST_ScaleX(rast)*x, ST_ScaleY(rast)*y
) As pixpolyg, ST_Value(rast, 2, x, y) As b2val
 FROM dummy_rast CROSS JOIN
generate_series(1,1000,2) As x CROSS JOIN generate_series(1,1000,2) As y
WHERE rid = 2
 AND x <= ST_Width(rast) AND y <= ST_Height(rast)) As foo
WHERE
 ST_Intersects(
 pixpolyg,
 ST_GeomFromText('POLYGON((3427928 5793244,3427927.75 5793243.75,3427928 5793243.75,3427928 5793244))',0)
) AND b2val != 254;

 shadow
--
 MULTIPOLYGON(((3427927.9 5793243.85,3427927.8 5793243.85,3427927.8 5793243.95,
 3427927.9 5793243.95,3427928 5793243.95,3427928.1 5793243.95,3427928.1 5793243.85,3427928 5793243.85,3427927.9 5793243.85)),
 ((3427927.9 5793243.65,3427927.8 5793243.65,3427927.8 5793243.75,3427927.8 5793243.85,3427927.9 5793243.85,
 3427928 5793243.85,3427928 5793243.75,3427928.1 5793243.75,3427928.1 5793243.65,3427928 5793243.65,3427927.9 5793243.65)))

See Also

 ST_SetValue,
 ST_DumpAsPolygons,
 ST_NumBands,
 ST_PixelAsPolygon,
 ST_ScaleX,
 ST_ScaleY,
 ST_UpperLeftX,
 ST_UpperLeftY,
 ST_SRID,
 ST_AsText,
 ST_Point,
 ST_MakeEnvelope,
 ST_Intersects,
 ST_Intersection

Name
ST_Neighborhood —
 Returns a 2-D double precision array of the non-NODATA values around a given band's pixel specified by either a columnX and rowY or a geometric point expressed in the same spatial reference coordinate system as the raster.

Synopsis
	double precision[][] ST_Neighborhood(rast, 	
	 	bandnum, 	
	 	columnX, 	
	 	rowY, 	
	 	distanceX, 	
	 	distanceY, 	
	 	exclude_nodata_value=true);	

raster rast;
integer bandnum;
integer columnX;
integer rowY;
integer distanceX;
integer distanceY;
boolean exclude_nodata_value=true;

	double precision[][] ST_Neighborhood(rast, 	
	 	columnX, 	
	 	rowY, 	
	 	distanceX, 	
	 	distanceY, 	
	 	exclude_nodata_value=true);	

raster rast;
integer columnX;
integer rowY;
integer distanceX;
integer distanceY;
boolean exclude_nodata_value=true;

	double precision[][] ST_Neighborhood(rast, 	
	 	bandnum, 	
	 	pt, 	
	 	distanceX, 	
	 	distanceY, 	
	 	exclude_nodata_value=true);	

raster rast;
integer bandnum;
geometry pt;
integer distanceX;
integer distanceY;
boolean exclude_nodata_value=true;

	double precision[][] ST_Neighborhood(rast, 	
	 	pt, 	
	 	distanceX, 	
	 	distanceY, 	
	 	exclude_nodata_value=true);	

raster rast;
geometry pt;
integer distanceX;
integer distanceY;
boolean exclude_nodata_value=true;

Description

 Returns a 2-D double precision array of the non-NODATA values around a given band's pixel specified by either a columnX and rowY or a geometric point expressed in the same spatial reference coordinate system as the raster. The distanceX and distanceY parameters define the number of pixels around the specified pixel in the X and Y axes, e.g. I want all values within 3 pixel distance along the X axis and 2 pixel distance along the Y axis around my pixel of interest. The center value of the 2-D array will be the value at the pixel specified by the columnX and rowY or the geometric point.

 Band numbers start at 1 and bandnum is assumed to be 1 if not specified. If exclude_nodata_value is set to false, then all pixels include nodata pixels are considered to intersect and return value. If exclude_nodata_value is not passed in then reads it from metadata of raster.

Note

 The number of elements along each axis of the returning 2-D array is 2 * (distanceX|distanceY) + 1. So for a distanceX and distanceY of 1, the returning array will be 3x3.

Note

 The 2-D array output can be passed to any of the raster processing builtin functions, e.g. ST_Min4ma, ST_Sum4ma, ST_Mean4ma.

Availability: 2.1.0

Examples

-- pixel 2x2 has value
SELECT
 ST_Neighborhood(rast, 2, 2, 1, 1)
FROM (
 SELECT
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
 '8BUI'::text, 1, 0
),
 1, 1, 1, ARRAY[
 [0, 1, 1, 1, 1],
 [1, 1, 1, 0, 1],
 [1, 0, 1, 1, 1],
 [1, 1, 1, 1, 0],
 [1, 1, 0, 1, 1]
]::double precision[],
 1
) AS rast
) AS foo

 st_neighborhood

{{NULL,1,1},{1,1,1},{1,NULL,1}}

-- pixel 2x3 is NODATA
SELECT
 ST_Neighborhood(rast, 2, 3, 1, 1)
FROM (
 SELECT
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
 '8BUI'::text, 1, 0
),
 1, 1, 1, ARRAY[
 [0, 1, 1, 1, 1],
 [1, 1, 1, 0, 1],
 [1, 0, 1, 1, 1],
 [1, 1, 1, 1, 0],
 [1, 1, 0, 1, 1]
]::double precision[],
 1
) AS rast
) AS foo

 st_neighborhood

 {{1,1,1},{1,NULL,1},{1,1,1}}

-- pixel 3x3 has value
-- exclude_nodata_value = FALSE
SELECT
 ST_Neighborhood(rast, 3, 3, 1, 1, false)
FROM ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
 '8BUI'::text, 1, 0
),
 1, 1, 1, ARRAY[
 [0, 1, 1, 1, 1],
 [1, 1, 1, 0, 1],
 [1, 0, 1, 1, 1],
 [1, 1, 1, 1, 0],
 [1, 1, 0, 1, 1]
]::double precision[],
 1
) AS rast

 st_neighborhood

{{1,1,0},{0,1,1},{1,1,1}}

See Also

 ST_NearestValue,
 ST_Min4ma,
 ST_Max4ma,
 ST_Sum4ma,
 ST_Mean4ma,
 ST_Range4ma,
 ST_Distinct4ma,
 ST_StdDev4ma

Name
ST_DumpValues —
 Get the values of the specified band as a 2-dimension array.

Synopsis
	setof record ST_DumpValues(rast, 	
	 	nband=NULL, 	
	 	exclude_nodata_value=true);	

 raster rast
 ;

 integer[] nband=NULL
 ;

 boolean exclude_nodata_value=true
 ;

	double precision[][] ST_DumpValues(rast, 	
	 	nband, 	
	 	exclude_nodata_value=true);	

 raster rast
 ;

 integer nband
 ;

 boolean exclude_nodata_value=true
 ;

Description

 Get the values of the specified band as a 2-dimension array (first index is row, second is column). If nband is NULL or not provided, all raster bands are processed.

Availability: 2.1.0

Examples

WITH foo AS (
 SELECT ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI'::text, 1, 0), 2, '32BF'::text, 3, -9999), 3, '16BSI', 0, 0) AS rast
)
SELECT
 (ST_DumpValues(rast)).*
FROM foo;

 nband | valarray
-------+--
 1 | {{1,1,1},{1,1,1},{1,1,1}}
 2 | {{3,3,3},{3,3,3},{3,3,3}}
 3 | {{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL}}
(3 rows)

WITH foo AS (
 SELECT ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI'::text, 1, 0), 2, '32BF'::text, 3, -9999), 3, '16BSI', 0, 0) AS rast
)
SELECT
 (ST_DumpValues(rast, ARRAY[3, 1])).*
FROM foo;

 nband | valarray
-------+--
 3 | {{NULL,NULL,NULL},{NULL,NULL,NULL},{NULL,NULL,NULL}}
 1 | {{1,1,1},{1,1,1},{1,1,1}}
(2 rows)

WITH foo AS (
 SELECT ST_SetValue(ST_AddBand(ST_MakeEmptyRaster(3, 3, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 1, 0), 1, 2, 5) AS rast
)
SELECT
 (ST_DumpValues(rast, 1))[2][1]
FROM foo;

 st_dumpvalues

 5
(1 row)

See Also

 ST_Value,
 ST_SetValue,
 ST_SetValues

Name
ST_PixelOfValue —
 Get the columnx, rowy coordinates of the pixel whose value equals the search value.

Synopsis
	setof record ST_PixelOfValue(rast, 	
	 	nband, 	
	 	search, 	
	 	exclude_nodata_value=true);	

 raster rast
 ;

 integer nband
 ;

 double precision[] search
 ;

 boolean exclude_nodata_value=true
 ;

	setof record ST_PixelOfValue(rast, 	
	 	search, 	
	 	exclude_nodata_value=true);	

 raster rast
 ;

 double precision[] search
 ;

 boolean exclude_nodata_value=true
 ;

	setof record ST_PixelOfValue(rast, 	
	 	nband, 	
	 	search, 	
	 	exclude_nodata_value=true);	

 raster rast
 ;

 integer nband
 ;

 double precision search
 ;

 boolean exclude_nodata_value=true
 ;

	setof record ST_PixelOfValue(rast, 	
	 	search, 	
	 	exclude_nodata_value=true);	

 raster rast
 ;

 double precision search
 ;

 boolean exclude_nodata_value=true
 ;

Description

 Get the columnx, rowy coordinates of the pixel whose value equals the search value. If no band is specified, then band 1 is assumed.

Availability: 2.1.0

Examples

SELECT
 (pixels).*
FROM (
 SELECT
 ST_PixelOfValue(
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_SetValue(
 ST_AddBand(
 ST_MakeEmptyRaster(5, 5, -2, 2, 1, -1, 0, 0, 0),
 '8BUI'::text, 1, 0
),
 1, 1, 0
),
 2, 3, 0
),
 3, 5, 0
),
 4, 2, 0
),
 5, 4, 255
)
 , 1, ARRAY[1, 255]) AS pixels
) AS foo

 val | x | y
-----+---+---
 1 | 1 | 2
 1 | 1 | 3
 1 | 1 | 4
 1 | 1 | 5
 1 | 2 | 1
 1 | 2 | 2
 1 | 2 | 4
 1 | 2 | 5
 1 | 3 | 1
 1 | 3 | 2
 1 | 3 | 3
 1 | 3 | 4
 1 | 4 | 1
 1 | 4 | 3
 1 | 4 | 4
 1 | 4 | 5
 1 | 5 | 1
 1 | 5 | 2
 1 | 5 | 3
 255 | 5 | 4
 1 | 5 | 5

Raster Editors

Name
ST_SetGeoReference — Set Georeference 6 georeference parameters in a single call. Numbers should be separated by white space. Accepts inputs in GDAL or ESRI format. Default is GDAL.

Synopsis
	raster ST_SetGeoReference(rast, 	
	 	georefcoords, 	
	 	format=GDAL);	

raster rast;
text georefcoords;
text format=GDAL;

	raster ST_SetGeoReference(rast, 	
	 	upperleftx, 	
	 	upperlefty, 	
	 	scalex, 	
	 	scaley, 	
	 	skewx, 	
	 	skewy);	

raster rast;
double precision upperleftx;
double precision upperlefty;
double precision scalex;
double precision scaley;
double precision skewx;
double precision skewy;

Description
Set Georeference 6 georeference parameters in a single call. Accepts inputs in 'GDAL' or 'ESRI' format. Default is GDAL. If 6 coordinates are not provided will return null.
Difference between format representations is as follows:
GDAL:

scalex skewy skewx scaley upperleftx upperlefty
ESRI:

scalex skewy skewx scaley upperleftx + scalex*0.5 upperlefty + scaley*0.5
Note

 If the raster has out-db bands, changing the georeference may result in incorrect access of the band's externally stored data.

Enhanced: 2.1.0 Addition of ST_SetGeoReference(raster, double precision, ...) variant

Examples

WITH foo AS (
 SELECT ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0) AS rast
)
SELECT
 0 AS rid, (ST_Metadata(rast)).*
FROM foo
UNION ALL
SELECT
 1, (ST_Metadata(ST_SetGeoReference(rast, '10 0 0 -10 0.1 0.1', 'GDAL'))).*
FROM foo
UNION ALL
SELECT
 2, (ST_Metadata(ST_SetGeoReference(rast, '10 0 0 -10 5.1 -4.9', 'ESRI'))).*
FROM foo
UNION ALL
SELECT
 3, (ST_Metadata(ST_SetGeoReference(rast, 1, 1, 10, -10, 0.001, 0.001))).*
FROM foo

 rid | upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
-----+--------------------+--------------------+-------+--------+--------+--------+-------+-------+------+----------
 0 | 0 | 0 | 5 | 5 | 1 | -1 | 0 | 0 | 0 | 0
 1 | 0.1 | 0.1 | 5 | 5 | 10 | -10 | 0 | 0 | 0 | 0
 2 | 0.0999999999999996 | 0.0999999999999996 | 5 | 5 | 10 | -10 | 0 | 0 | 0 | 0
 3 | 1 | 1 | 5 | 5 | 10 | -10 | 0.001 | 0.001 | 0 | 0

See Also
ST_GeoReference, ST_ScaleX, ST_ScaleY, ST_UpperLeftX, ST_UpperLeftY

Name
ST_SetRotation — Set the rotation of the raster in radian.

Synopsis
	raster ST_SetRotation(rast, 	
	 	rotation);	

raster rast;
float8 rotation;

Description
Uniformly rotate the raster. Rotation is in radian. Refer to World File for more details.

Examples
SELECT
 ST_ScaleX(rast1), ST_ScaleY(rast1), ST_SkewX(rast1), ST_SkewY(rast1),
 ST_ScaleX(rast2), ST_ScaleY(rast2), ST_SkewX(rast2), ST_SkewY(rast2)
FROM (
 SELECT ST_SetRotation(rast, 15) AS rast1, rast as rast2 FROM dummy_rast
) AS foo;
 st_scalex | st_scaley | st_skewx | st_skewy | st_scalex | st_scaley | st_skewx | st_skewy
---------------------+---------------------+--------------------+--------------------+-----------+-----------+----------+----------
 -1.51937582571764 | -2.27906373857646 | 1.95086352047135 | 1.30057568031423 | 2 | 3 | 0 | 0
 -0.0379843956429411 | -0.0379843956429411 | 0.0325143920078558 | 0.0325143920078558 | 0.05 | -0.05 | 0 | 0

See Also
ST_Rotation, ST_ScaleX, ST_ScaleY, ST_SkewX, ST_SkewY

Name
ST_SetSRID — Sets the SRID of a raster to a particular integer srid defined in the spatial_ref_sys table.

Synopsis
	raster ST_SetSRID(rast, 	
	 	srid);	

raster
 rast;
integer
 srid;

Description
Sets the SRID on a raster to a particular integer value.
Note
This function does not transform the raster in any way -
 it simply sets meta data defining the spatial ref of the coordinate reference system that it's currently in.
 Useful for transformations later.

See Also
the section called “Spatial Reference Systems”, ST_SRID

Name
ST_SetUpperLeft — Sets the value of the upper left corner of the pixel of the raster to projected X and Y coordinates.

Synopsis
	raster ST_SetUpperLeft(rast, 	
	 	x, 	
	 	y);	

raster rast;
double precision x;
double precision y;

Description
Set the value of the upper left corner of raster to the projected X and Y coordinates

Examples

SELECT ST_SetUpperLeft(rast,-71.01,42.37)
FROM dummy_rast
WHERE rid = 2;

See Also
ST_UpperLeftX, ST_UpperLeftY

Name
ST_SnapToGrid — Resample a raster by snapping it to a grid. New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. Default is NearestNeighbor.

Synopsis
	raster ST_SnapToGrid(rast, 	
	 	gridx, 	
	 	gridy, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125, 	
	 	scalex=DEFAULT 0, 	
	 	scaley=DEFAULT 0);	

raster rast;
double precision gridx;
double precision gridy;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;
double precision scalex=DEFAULT 0;
double precision scaley=DEFAULT 0;

	raster ST_SnapToGrid(rast, 	
	 	gridx, 	
	 	gridy, 	
	 	scalex, 	
	 	scaley, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
double precision gridx;
double precision gridy;
double precision scalex;
double precision scaley;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

	raster ST_SnapToGrid(rast, 	
	 	gridx, 	
	 	gridy, 	
	 	scalexy, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
double precision gridx;
double precision gridy;
double precision scalexy;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

Description
Resample a raster by snapping it to a grid defined by an arbitrary pixel corner (gridx & gridy) and optionally a pixel size (scalex & scaley). New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. The default is NearestNeighbor which is the fastest but results in the worst interpolation.
gridx and gridy define any arbitrary pixel corner of the new grid. This is not necessarily the upper left corner of the new raster and it does not have to be inside or on the edge of the new raster extent.
You can optionally define the pixel size of the new grid with scalex and scaley.
The extent of the new raster will encompass the extent of the provided raster.
A maxerror percent of 0.125 if no maxerr is specified.
Note
Refer to: GDAL Warp resampling methods for more details.

Note
Use ST_Resample if you need more control over the grid parameters.

Availability: 2.0.0 Requires GDAL 1.6.1+
Changed: 2.1.0 Works on rasters with no SRID

Examples
A simple example snapping a raster to a slightly different grid.
-- the original raster upper left X
SELECT ST_UpperLeftX(ST_AddBand(ST_MakeEmptyRaster(10, 10, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0));
-- result
0

-- the upper left of raster after snapping
SELECT ST_UpperLeftX(ST_SnapToGrid(ST_AddBand(ST_MakeEmptyRaster(10, 10, 0, 0, 0.001, -0.001, 0, 0, 4269), '8BUI'::text, 1, 0), 0.0002, 0.0002));

--result
-0.0008

See Also
ST_Resample, ST_Rescale, ST_UpperLeftX, ST_UpperLeftY

Name
ST_Resize — Resize a raster to a new width/height

Synopsis
	raster ST_Resize(rast, 	
	 	width, 	
	 	height, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
integer width;
integer height;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

	raster ST_Resize(rast, 	
	 	percentwidth, 	
	 	percentheight, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
double precision percentwidth;
double precision percentheight;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

	raster ST_Resize(rast, 	
	 	width, 	
	 	height, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
text width;
text height;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

Description

 Resize a raster to a new width/height. The new width/height can be specified in exact number of pixels or a percentage of the raster's width/height. The extent of the the new raster will be the same as the extent of the provided raster.

 New pixel values are computed using the NearestNeighbor (english or american spelling), Bilinear, Cubic, CubicSpline or Lanczos resampling algorithm. The default is NearestNeighbor which is the fastest but results in the worst interpolation.

 Variant 1 expects the actual width/height of the output raster.

 Variant 2 expects decimal values between zero (0) and one (1) indicating the percentage of the input raster's width/height.

 Variant 3 takes either the actual width/height of the output raster or a textual percentage ("20%") indicating the percentage of the input raster's width/height.

Availability: 2.1.0 Requires GDAL 1.6.1+

Examples

WITH foo AS(
SELECT
 1 AS rid,
 ST_Resize(
 ST_AddBand(
 ST_MakeEmptyRaster(1000, 1000, 0, 0, 1, -1, 0, 0, 0)
 , 1, '8BUI', 255, 0
)
 , '50%', '500') AS rast
UNION ALL
SELECT
 2 AS rid,
 ST_Resize(
 ST_AddBand(
 ST_MakeEmptyRaster(1000, 1000, 0, 0, 1, -1, 0, 0, 0)
 , 1, '8BUI', 255, 0
)
 , 500, 100) AS rast
UNION ALL
SELECT
 3 AS rid,
 ST_Resize(
 ST_AddBand(
 ST_MakeEmptyRaster(1000, 1000, 0, 0, 1, -1, 0, 0, 0)
 , 1, '8BUI', 255, 0
)
 , 0.25, 0.9) AS rast
), bar AS (
 SELECT rid, ST_Metadata(rast) AS meta, rast FROM foo
)
SELECT rid, (meta).* FROM bar

 rid | upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
-----+------------+------------+-------+--------+--------+--------+-------+-------+------+----------
 1 | 0 | 0 | 500 | 500 | 1 | -1 | 0 | 0 | 0 | 1
 2 | 0 | 0 | 500 | 100 | 1 | -1 | 0 | 0 | 0 | 1
 3 | 0 | 0 | 250 | 900 | 1 | -1 | 0 | 0 | 0 | 1
(3 rows)

See Also

 ST_Resample,
 ST_Rescale,
 ST_Reskew,
 ST_SnapToGrid

Name
ST_Transform — Reprojects a raster in a known spatial reference system to another known spatial reference system using specified resampling algorithm. Options are NearestNeighbor, Bilinear, Cubic, CubicSpline, Lanczos defaulting to NearestNeighbor.

Synopsis
	raster ST_Transform(rast, 	
	 	srid, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125, 	
	 	scalex, 	
	 	scaley);	

raster rast;
integer srid;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;
double precision scalex;
double precision scaley;

	raster ST_Transform(rast, 	
	 	srid, 	
	 	scalex, 	
	 	scaley, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
integer srid;
double precision scalex;
double precision scaley;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

	raster ST_Transform(rast, 	
	 	alignto, 	
	 	algorithm=NearestNeighbor, 	
	 	maxerr=0.125);	

raster rast;
raster alignto;
text algorithm=NearestNeighbor;
double precision maxerr=0.125;

Description
Reprojects a raster in a known spatial reference system to another known spatial reference system using specified pixel warping algorithm.
 Uses 'NearestNeighbor' if no algorithm is specified and maxerror percent of 0.125 if no maxerr is specified.
Algorithm options are: 'NearestNeighbor', 'Bilinear', 'Cubic', 'CubicSpline', and 'Lanczos'. Refer to: GDAL Warp resampling methods for more details.

 ST_Transform is often confused with ST_SetSRID(). ST_Transform actually changes the coordinates of a raster (and resamples the pixel values) from one spatial reference system to another, while ST_SetSRID() simply changes the SRID identifier of the raster.

 Unlike the other variants, Variant 3 requires a reference raster as alignto. The transformed raster will be transformed to the spatial reference system (SRID) of the reference raster and be aligned (ST_SameAlignment = TRUE) to the reference raster.

Note

 If you find your transformation support is not working right, you may need to set the environment variable PROJSO to the .so or .dll projection library your PostGIS is using. This just needs to have the name of the file. So for example on windows, you would in Control Panel -> System -> Environment Variables add a system variable called PROJSO and set it to libproj.dll (if you are using proj 4.6.1). You'll have to restart your PostgreSQL service/daemon after this change.

Warning

 When transforming a coverage of tiles, you almost always want to use a reference raster to insure same alignment and no gaps in your tiles as demonstrated in example: Variant 3.

Availability: 2.0.0 Requires GDAL 1.6.1+
Enhanced: 2.1.0 Addition of ST_Transform(rast, alignto) variant

Examples
SELECT ST_Width(mass_stm) As w_before, ST_Width(wgs_84) As w_after,
 ST_Height(mass_stm) As h_before, ST_Height(wgs_84) As h_after
 FROM
 (SELECT rast As mass_stm, ST_Transform(rast,4326) As wgs_84
 , ST_Transform(rast,4326, 'Bilinear') AS wgs_84_bilin
 FROM aerials.o_2_boston
 WHERE ST_Intersects(rast,
 ST_Transform(ST_MakeEnvelope(-71.128, 42.2392,-71.1277, 42.2397, 4326),26986))
 LIMIT 1) As foo;

 w_before | w_after | h_before | h_after
----------+---------+----------+---------
 200 | 228 | 200 | 170

	[image: Examples]original mass state plane meters (mass_stm)

 	[image: Examples]After transform to wgs 84 long lat (wgs_84)

 	[image: Examples]After transform to wgs 84 long lat with bilinear algorithm instead of NN default (wgs_84_bilin)

Examples: Variant 3
The following shows the difference between using ST_Transform(raster, srid) and ST_Transform(raster, alignto)

WITH foo AS (
 SELECT 0 AS rid, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 1, 0) AS rast UNION ALL
 SELECT 1, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 2, 0) AS rast UNION ALL
 SELECT 2, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 600000, 100, -100, 0, 0, 2163), 1, '16BUI', 3, 0) AS rast UNION ALL

 SELECT 3, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 10, 0) AS rast UNION ALL
 SELECT 4, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 20, 0) AS rast UNION ALL
 SELECT 5, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 599800, 100, -100, 0, 0, 2163), 1, '16BUI', 30, 0) AS rast UNION ALL

 SELECT 6, ST_AddBand(ST_MakeEmptyRaster(2, 2, -500000, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 100, 0) AS rast UNION ALL
 SELECT 7, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499800, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 200, 0) AS rast UNION ALL
 SELECT 8, ST_AddBand(ST_MakeEmptyRaster(2, 2, -499600, 599600, 100, -100, 0, 0, 2163), 1, '16BUI', 300, 0) AS rast
), bar AS (
 SELECT
 ST_Transform(rast, 4269) AS alignto
 FROM foo
 LIMIT 1
), baz AS (
 SELECT
 rid,
 rast,
 ST_Transform(rast, 4269) AS not_aligned,
 ST_Transform(rast, alignto) AS aligned
 FROM foo
 CROSS JOIN bar
)
SELECT
 ST_SameAlignment(rast) AS rast,
 ST_SameAlignment(not_aligned) AS not_aligned,
 ST_SameAlignment(aligned) AS aligned
FROM baz

 rast | not_aligned | aligned
------+-------------+---------
 t | f | t

	[image: Examples: Variant 3]not_aligned

	[image: Examples: Variant 3]aligned

See Also
ST_Transform, ST_SetSRID

Name
ST_SetBandPath — Update the external path and band number of an out-db band

Synopsis
	raster ST_SetBandPath(rast, 	
	 	band, 	
	 	outdbpath, 	
	 	outdbindex, 	
	 	force=false);	

raster rast;
integer band;
text outdbpath;
integer outdbindex;
boolean force=false;

Description
Updates an out-db band's external raster file path and external band number.
Note

 If force is set to true, no tests are done to ensure compatibility (e.g. alignment, pixel support) between the external raster file and the PostGIS raster. This mode is intended for file system changes where the external raster resides.

Note

 Internally, this method replaces the PostGIS raster's band at index band with a new band instead of updating the existing path information.

Availability: 2.5.0

Examples

WITH foo AS (
 SELECT
 ST_AddBand(NULL::raster, '/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif', NULL::int[]) AS rast
)
SELECT
 1 AS query,
 *
FROM ST_BandMetadata(
 (SELECT rast FROM foo),
 ARRAY[1,3,2]::int[]
)
UNION ALL
SELECT
 2,
 *
FROM ST_BandMetadata(
 (
 SELECT
 ST_SetBandPath(
 rast,
 2,
 '/home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected2.tif',
 1
) AS rast
 FROM foo
),
 ARRAY[1,3,2]::int[]
)
ORDER BY 1, 2;

 query | bandnum | pixeltype | nodatavalue | isoutdb | path | outdbbandnum
-------+---------+-----------+-------------+---------+---+--------------
 1 | 1 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 1
 1 | 2 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 2
 1 | 3 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 3
 2 | 1 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 1
 2 | 2 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected2.tif | 1
 2 | 3 | 8BUI | | t | /home/pele/devel/geo/postgis-git/raster/test/regress/loader/Projected.tif | 3

See Also

 ST_BandMetaData,
 ST_SetBandIndex

Name
ST_Histogram — Returns a set of record summarizing a raster or raster coverage data distribution separate bin ranges. Number of bins are autocomputed if not specified.

Synopsis
	setof record ST_Histogram(rast, 	
	 	nband=1, 	
	 	exclude_nodata_value=true, 	
	 	bins=autocomputed, 	
	 	width=NULL, 	
	 	right=false);	

raster rast;
integer nband=1;
boolean exclude_nodata_value=true;
integer bins=autocomputed;
double precision[] width=NULL;
boolean right=false;

	setof record ST_Histogram(rast, 	
	 	nband, 	
	 	bins, 	
	 	width=NULL, 	
	 	right=false);	

raster rast;
integer nband;
integer bins;
double precision[] width=NULL;
boolean right=false;

	setof record ST_Histogram(rast, 	
	 	nband, 	
	 	exclude_nodata_value, 	
	 	bins, 	
	 	right);	

raster rast;
integer nband;
boolean exclude_nodata_value;
integer bins;
boolean right;

	setof record ST_Histogram(rast, 	
	 	nband, 	
	 	bins, 	
	 	right);	

raster rast;
integer nband;
integer bins;
boolean right;

Description
Returns set of records consisting of min, max, count, percent for a given raster band for each bin. If no band is specified nband defaults to 1.
Note
By default only considers pixel values not equal to the nodata value . Set exclude_nodata_value to false to get count all pixels.

	width double precision[]
	width: an array indicating the width of each category/bin. If the number of bins is greater than the number of widths, the widths are repeated.
Example: 9 bins, widths are [a, b, c] will have the output be [a, b, c, a, b, c, a, b, c]

	bins integer
	Number of breakouts -- this is the number of records you'll get back from the function if specified. If not specified
 then the number of breakouts is autocomputed.

	right boolean
	compute the histogram from the right rather than from the left (default). This changes the criteria for evaluating a value x from [a, b) to (a, b]

Changed: 3.1.0 Removed ST_Histogram(table_name, column_name) variant.
Availability: 2.0.0

Example: Single raster tile - compute histograms for bands 1, 2, 3 and autocompute bins
SELECT band, (stats).*
FROM (SELECT rid, band, ST_Histogram(rast, band) As stats
 FROM dummy_rast CROSS JOIN generate_series(1,3) As band
 WHERE rid=2) As foo;

 band | min | max | count | percent
------+-------+-------+-------+---------
 1 | 249 | 250 | 2 | 0.08
 1 | 250 | 251 | 2 | 0.08
 1 | 251 | 252 | 1 | 0.04
 1 | 252 | 253 | 2 | 0.08
 1 | 253 | 254 | 18 | 0.72
 2 | 78 | 113.2 | 11 | 0.44
 2 | 113.2 | 148.4 | 4 | 0.16
 2 | 148.4 | 183.6 | 4 | 0.16
 2 | 183.6 | 218.8 | 1 | 0.04
 2 | 218.8 | 254 | 5 | 0.2
 3 | 62 | 100.4 | 11 | 0.44
 3 | 100.4 | 138.8 | 5 | 0.2
 3 | 138.8 | 177.2 | 4 | 0.16
 3 | 177.2 | 215.6 | 1 | 0.04
 3 | 215.6 | 254 | 4 | 0.16

Example: Just band 2 but for 6 bins
SELECT (stats).*
FROM (SELECT rid, ST_Histogram(rast, 2,6) As stats
 FROM dummy_rast
 WHERE rid=2) As foo;

 min | max | count | percent
------------+------------+-------+---------
 78 | 107.333333 | 9 | 0.36
 107.333333 | 136.666667 | 6 | 0.24
 136.666667 | 166 | 0 | 0
 166 | 195.333333 | 4 | 0.16
 195.333333 | 224.666667 | 1 | 0.04
 224.666667 | 254 | 5 | 0.2
(6 rows)

-- Same as previous but we explicitly control the pixel value range of each bin.
SELECT (stats).*
FROM (SELECT rid, ST_Histogram(rast, 2,6,ARRAY[0.5,1,4,100,5]) As stats
 FROM dummy_rast
 WHERE rid=2) As foo;

 min | max | count | percent
-------+-------+-------+----------
 78 | 78.5 | 1 | 0.08
 78.5 | 79.5 | 1 | 0.04
 79.5 | 83.5 | 0 | 0
 83.5 | 183.5 | 17 | 0.0068
 183.5 | 188.5 | 0 | 0
 188.5 | 254 | 6 | 0.003664
(6 rows)

See Also

 ST_Count,
 ST_SummaryStats,
 ST_SummaryStatsAgg

Name
ST_SummaryStats — Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. Band 1 is assumed is no band is specified.

Synopsis
	summarystats ST_SummaryStats(rast, 	
	 	exclude_nodata_value);	

raster rast;
boolean exclude_nodata_value;

	summarystats ST_SummaryStats(rast, 	
	 	nband, 	
	 	exclude_nodata_value);	

raster rast;
integer nband;
boolean exclude_nodata_value;

Description
Returns summarystats consisting of count, sum, mean, stddev, min, max for a given raster band of a raster or raster coverage. If no band is specified nband defaults to 1.
Note
By default only considers pixel values not equal to the nodata value. Set exclude_nodata_value to false to get count of all pixels.

Note
By default will sample all pixels. To get faster response, set sample_percent to lower than 1

Changed: 3.1.0 ST_SummaryStats(rastertable, rastercolumn, ...) variants are removed. Use ST_SummaryStatsAgg instead.
Availability: 2.0.0

Example: Single raster tile

SELECT rid, band, (stats).*
FROM (SELECT rid, band, ST_SummaryStats(rast, band) As stats
 FROM dummy_rast CROSS JOIN generate_series(1,3) As band
 WHERE rid=2) As foo;

 rid | band | count | sum | mean | stddev | min | max
-----+------+-------+------+------------+-----------+-----+-----
 2 | 1 | 23 | 5821 | 253.086957 | 1.248061 | 250 | 254
 2 | 2 | 25 | 3682 | 147.28 | 59.862188 | 78 | 254
 2 | 3 | 25 | 3290 | 131.6 | 61.647384 | 62 | 254

Example: Summarize pixels that intersect buildings of interest
This example took 574ms on PostGIS windows 64-bit with all of Boston Buildings
and aerial Tiles (tiles each 150x150 pixels ~ 134,000 tiles), ~102,000 building records
WITH
-- our features of interest
 feat AS (SELECT gid As building_id, geom_26986 As geom FROM buildings AS b
 WHERE gid IN(100, 103,150)
),
-- clip band 2 of raster tiles to boundaries of builds
-- then get stats for these clipped regions
 b_stats AS
 (SELECT building_id, (stats).*
FROM (SELECT building_id, ST_SummaryStats(ST_Clip(rast,2,geom)) As stats
 FROM aerials.boston
 INNER JOIN feat
 ON ST_Intersects(feat.geom,rast)
) As foo
)
-- finally summarize stats
SELECT building_id, SUM(count) As num_pixels
 , MIN(min) As min_pval
 , MAX(max) As max_pval
 , SUM(mean*count)/SUM(count) As avg_pval
 FROM b_stats
 WHERE count > 0
 GROUP BY building_id
 ORDER BY building_id;
 building_id | num_pixels | min_pval | max_pval | avg_pval
-------------+------------+----------+----------+------------------
 100 | 1090 | 1 | 255 | 61.0697247706422
 103 | 655 | 7 | 182 | 70.5038167938931
 150 | 895 | 2 | 252 | 185.642458100559

Example: Raster coverage

-- stats for each band --
SELECT band, (stats).*
FROM (SELECT band, ST_SummaryStats('o_4_boston','rast', band) As stats
 FROM generate_series(1,3) As band) As foo;

 band | count | sum | mean | stddev | min | max
------+---------+--------+------------------+------------------+-----+-----
 1 | 8450000 | 725799 | 82.7064349112426 | 45.6800222638537 | 0 | 255
 2 | 8450000 | 700487 | 81.4197705325444 | 44.2161184161765 | 0 | 255
 3 | 8450000 | 575943 | 74.682739408284 | 44.2143885481407 | 0 | 255

-- For a table -- will get better speed if set sampling to less than 100%
-- Here we set to 25% and get a much faster answer
SELECT band, (stats).*
FROM (SELECT band, ST_SummaryStats('o_4_boston','rast', band,true,0.25) As stats
 FROM generate_series(1,3) As band) As foo;

 band | count | sum | mean | stddev | min | max
------+---------+--------+------------------+------------------+-----+-----
 1 | 2112500 | 180686 | 82.6890480473373 | 45.6961043857248 | 0 | 255
 2 | 2112500 | 174571 | 81.448503668639 | 44.2252623171821 | 0 | 255
 3 | 2112500 | 144364 | 74.6765884023669 | 44.2014869384578 | 0 | 255

See Also

 summarystats,
 ST_SummaryStatsAgg,
 ST_Count,
 ST_Clip

Name
ST_RastFromHexWKB — Return a raster value from a Hex representation of Well-Known Binary (WKB) raster.

Synopsis
	raster ST_RastFromHexWKB(wkb);	

text wkb;

Description

 Given a Well-Known Binary (WKB) raster in Hex representation, return a raster.

Availability: 2.5.0

Examples

SELECT (ST_Metadata(
 ST_RastFromHexWKB(
 '010000000000000000000000400000000000000840000000000000E03F000000000000E03F000000000000000000000000000000000A0000000A001400'
)
)).* AS metadata;

 upperleftx | upperlefty | width | height | scalex | scaley | skewx | skewy | srid | numbands
------------+------------+-------+--------+--------+--------+-------+-------+------+----------
 0.5 | 0.5 | 10 | 20 | 2 | 3 | 0 | 0 | 10 | 0

See Also

 ST_MetaData,
 ST_RastFromWKB,
 ST_AsBinary/ST_AsWKB,
 ST_AsHexWKB

Name
ST_AsJPEG — Return the raster tile selected bands as a single Joint Photographic Exports Group (JPEG) image (byte array). If no band is specified and 1 or more than 3 bands, then only the first band is used. If only 3 bands then all 3 bands are used and mapped to RGB.

Synopsis
	bytea ST_AsJPEG(rast, 	
	 	options=NULL);	

raster rast;
text[] options=NULL;

	bytea ST_AsJPEG(rast, 	
	 	nband, 	
	 	quality);	

raster rast;
integer nband;
integer quality;

	bytea ST_AsJPEG(rast, 	
	 	nband, 	
	 	options=NULL);	

raster rast;
integer nband;
text[] options=NULL;

	bytea ST_AsJPEG(rast, 	
	 	nbands, 	
	 	options=NULL);	

raster rast;
integer[] nbands;
text[] options=NULL;

	bytea ST_AsJPEG(rast, 	
	 	nbands, 	
	 	quality);	

raster rast;
integer[] nbands;
integer quality;

Description
Returns the selected bands of the raster as a single Joint Photographic Exports Group Image (JPEG). Use ST_AsGDALRaster if you need to export as less common raster types. If no band is specified and 1 or more than 3 bands, then only the first band is used. If 3 bands then all 3 bands are used. There are many variants of the function with many options. These are itemized below:
	
 nband is for single band exports.

	
 nbands is an array of bands to export (note that max is 3 for JPEG) and the order of the bands is RGB. e.g ARRAY[3,2,1] means map band 3 to Red, band 2 to green and band 1 to blue

	
 quality number from 0 to 100. The higher the number the crisper the image.

	
 options text Array
 of GDAL options as defined for JPEG
 (look at create_options for JPEG ST_GDALDrivers). For JPEG
 valid ones are PROGRESSIVE
 ON or OFF and QUALITY a range
 from 0 to 100 and default to 75. Refer to GDAL
 Raster format options for more details.

Availability: 2.0.0 - requires GDAL >= 1.6.0.

Examples: Output
-- output first 3 bands 75% quality
SELECT ST_AsJPEG(rast) As rastjpg
 FROM dummy_rast WHERE rid=2;

-- output only first band as 90% quality
SELECT ST_AsJPEG(rast,1,90) As rastjpg
 FROM dummy_rast WHERE rid=2;

-- output first 3 bands (but make band 2 Red, band 1 green, and band 3 blue, progressive and 90% quality
SELECT ST_AsJPEG(rast,ARRAY[2,1,3],ARRAY['QUALITY=90','PROGRESSIVE=ON']) As rastjpg
 FROM dummy_rast WHERE rid=2;

See Also
the section called “Building Custom Applications with PostGIS Raster”, ST_GDALDrivers, ST_AsGDALRaster, ST_AsPNG, ST_AsTIFF

Name
ST_AsPNG — Return the raster tile selected bands as a single portable network graphics (PNG) image (byte array). If 1, 3, or 4 bands in raster and no bands are specified, then all bands are used. If more 2 or more than 4 bands and no bands specified, then only band 1 is used. Bands are mapped to RGB or RGBA space.

Synopsis
	bytea ST_AsPNG(rast, 	
	 	options=NULL);	

raster rast;
text[] options=NULL;

	bytea ST_AsPNG(rast, 	
	 	nband, 	
	 	compression);	

raster rast;
integer nband;
integer compression;

	bytea ST_AsPNG(rast, 	
	 	nband, 	
	 	options=NULL);	

raster rast;
integer nband;
text[] options=NULL;

	bytea ST_AsPNG(rast, 	
	 	nbands, 	
	 	compression);	

raster rast;
integer[] nbands;
integer compression;

	bytea ST_AsPNG(rast, 	
	 	nbands, 	
	 	options=NULL);	

raster rast;
integer[] nbands;
text[] options=NULL;

Description
Returns the selected bands of the raster as a single Portable Network Graphics Image (PNG). Use ST_AsGDALRaster if you need to export as less common raster types. If no band is specified, then the first 3 bands are exported. There are many variants of the function with many options. If no srid is specified then then srid of the raster is used. These are itemized below:
	
 nband is for single band exports.

	
 nbands is an array of bands to export (note that max is 4 for PNG) and the order of the bands is RGBA. e.g ARRAY[3,2,1] means map band 3 to Red, band 2 to green and band 1 to blue

	
 compression number from 1 to 9. The higher the number the greater the compression.

	
 options text Array of GDAL
 options as defined for PNG (look at create_options
 for PNG of ST_GDALDrivers). For PNG valid one is only ZLEVEL (amount
 of time to spend on compression -- default 6)
 e.g. ARRAY['ZLEVEL=9'].
 WORLDFILE is not allowed since the function
 would have to output two outputs. Refer to GDAL
 Raster format options for more details.

Availability: 2.0.0 - requires GDAL >= 1.6.0.

Examples
SELECT ST_AsPNG(rast) As rastpng
FROM dummy_rast WHERE rid=2;

-- export the first 3 bands and map band 3 to Red, band 1 to Green, band 2 to blue
SELECT ST_AsPNG(rast, ARRAY[3,1,2]) As rastpng
FROM dummy_rast WHERE rid=2;

See Also
ST_AsGDALRaster, ST_ColorMap, ST_GDALDrivers, the section called “Building Custom Applications with PostGIS Raster”

Raster Processing: Map Algebra

Name
ST_ColorMap — Creates a new raster of up to four 8BUI bands (grayscale, RGB, RGBA) from the source raster and a specified band. Band 1 is assumed if not specified.

Synopsis
	raster ST_ColorMap(rast, 	
	 	nband=1, 	
	 	colormap=grayscale, 	
	 	method=INTERPOLATE);	

raster rast;
integer nband=1;
text colormap=grayscale;
text method=INTERPOLATE;

	raster ST_ColorMap(rast, 	
	 	colormap, 	
	 	method=INTERPOLATE);	

raster rast;
text colormap;
text method=INTERPOLATE;

Description

 Apply a colormap to the band at nband of rast resulting a new raster comprised of up to four 8BUI bands. The number of 8BUI bands in the new raster is determined by the number of color components defined in colormap.

If nband is not specified, then band 1 is assumed.

 colormap can be a keyword of a pre-defined colormap or a set of lines defining the value and the color components.

 Valid pre-defined colormap keyword:

	
 grayscale or greyscale for a one 8BUI band raster of shades of gray.

	
 pseudocolor for a four 8BUI (RGBA) band raster with colors going from blue to green to red.

	
 fire for a four 8BUI (RGBA) band raster with colors going from black to red to pale yellow.

	
 bluered for a four 8BUI (RGBA) band raster with colors going from blue to pale white to red.

 Users can pass a set of entries (one per line) to colormap to specify custom colormaps. Each entry generally consists of five values: the pixel value and corresponding Red, Green, Blue, Alpha components (color components between 0 and 255). Percent values can be used instead of pixel values where 0% and 100% are the minimum and maximum values found in the raster band. Values can be separated with commas (','), tabs, colons (':') and/or spaces. The pixel value can be set to nv, null or nodata for the NODATA value. An example is provided below.

5 0 0 0 255
4 100:50 55 255
1 150,100 150 255
0% 255 255 255 255
nv 0 0 0 0

 The syntax of colormap is similar to that of the color-relief mode of GDAL gdaldem.

 Valid keywords for method:

	
 INTERPOLATE to use linear interpolation to smoothly blend the colors between the given pixel values

	
 EXACT to strictly match only those pixels values found in the colormap. Pixels whose value does not match a colormap entry will be set to 0 0 0 0 (RGBA)

	
 NEAREST to use the colormap entry whose value is closest to the pixel value

Note

 A great reference for colormaps is ColorBrewer.

Warning

 The resulting bands of new raster will have no NODATA value set. Use ST_SetBandNoDataValue to set a NODATA value if one is needed.

Availability: 2.1.0

Examples
This is a junk table to play with

-- setup test raster table --
DROP TABLE IF EXISTS funky_shapes;
CREATE TABLE funky_shapes(rast raster);

INSERT INTO funky_shapes(rast)
WITH ref AS (
 SELECT ST_MakeEmptyRaster(200, 200, 0, 200, 1, -1, 0, 0) AS rast
)
SELECT
 ST_Union(rast)
FROM (
 SELECT
 ST_AsRaster(
 ST_Rotate(
 ST_Buffer(
 ST_GeomFromText('LINESTRING(0 2,50 50,150 150,125 50)'),
 i*2
),
 pi() * i * 0.125, ST_Point(50,50)
),
 ref.rast, '8BUI'::text, i * 5
) AS rast
 FROM ref
 CROSS JOIN generate_series(1, 10, 3) AS i
) AS shapes;

SELECT
 ST_NumBands(rast) As n_orig,
 ST_NumBands(ST_ColorMap(rast,1, 'greyscale')) As ngrey,
 ST_NumBands(ST_ColorMap(rast,1, 'pseudocolor')) As npseudo,
 ST_NumBands(ST_ColorMap(rast,1, 'fire')) As nfire,
 ST_NumBands(ST_ColorMap(rast,1, 'bluered')) As nbluered,
 ST_NumBands(ST_ColorMap(rast,1, '
100% 255 0 0
 80% 160 0 0
 50% 130 0 0
 30% 30 0 0
 20% 60 0 0
 0% 0 0 0
 nv 255 255 255
 ')) As nred
FROM funky_shapes;

 n_orig | ngrey | npseudo | nfire | nbluered | nred
--------+-------+---------+-------+----------+------
 1 | 1 | 4 | 4 | 4 | 3

Examples: Compare different color map looks using ST_AsPNG

SELECT
 ST_AsPNG(rast) As orig_png,
 ST_AsPNG(ST_ColorMap(rast,1,'greyscale')) As grey_png,
 ST_AsPNG(ST_ColorMap(rast,1, 'pseudocolor')) As pseudo_png,
 ST_AsPNG(ST_ColorMap(rast,1, 'nfire')) As fire_png,
 ST_AsPNG(ST_ColorMap(rast,1, 'bluered')) As bluered_png,
 ST_AsPNG(ST_ColorMap(rast,1, '
100% 255 0 0
 80% 160 0 0
 50% 130 0 0
 30% 30 0 0
 20% 60 0 0
 0% 0 0 0
 nv 255 255 255
 ')) As red_png
FROM funky_shapes;

	

[image: Examples: Compare different color map looks using ST_AsPNG]orig_png

 	

[image: Examples: Compare different color map looks using ST_AsPNG]grey_png

 	

[image: Examples: Compare different color map looks using ST_AsPNG]pseudo_png

	

[image: Examples: Compare different color map looks using ST_AsPNG]fire_png

 	

[image: Examples: Compare different color map looks using ST_AsPNG]bluered_png

 	

[image: Examples: Compare different color map looks using ST_AsPNG]red_png

See Also

 ST_AsPNG,
 ST_AsRaster
 ST_MapAlgebra (callback function version),
 ST_Grayscale
 ST_NumBands,
 ST_Reclass,
 ST_SetBandNoDataValue,
 ST_Union

Name
ST_Grayscale — Creates a new one-8BUI band raster from the source raster and specified bands representing Red, Green and Blue

Synopsis
	(1) raster ST_Grayscale(rast, 	
	 	redband=1, 	
	 	greenband=2, 	
	 	blueband=3, 	
	 	extenttype=INTERSECTION);	

raster rast;
integer redband=1;
integer greenband=2;
integer blueband=3;
text extenttype=INTERSECTION;

	(2) raster ST_Grayscale(rastbandargset, 	
	 	extenttype=INTERSECTION);	

rastbandarg[] rastbandargset;
text extenttype=INTERSECTION;

Description

 Create a raster with one 8BUI band given three input bands (from one or more rasters). Any input band whose pixel type is not 8BUI will be reclassified using ST_Reclass.

Note

 This function is not like ST_ColorMap with the grayscale keyword as ST_ColorMap operates on only one band while this function expects three bands for RGB. This function applies the following equation for converting RGB to Grayscale: 0.2989 * RED + 0.5870 * GREEN + 0.1140 * BLUE

Availability: 2.5.0

Examples: Variant 1

SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
SET postgis.enable_outdb_rasters = True;

WITH apple AS (
 SELECT ST_AddBand(
 ST_MakeEmptyRaster(350, 246, 0, 0, 1, -1, 0, 0, 0),
 '/tmp/apple.png'::text,
 NULL::int[]
) AS rast
)
SELECT
 ST_AsPNG(rast) AS original_png,
 ST_AsPNG(ST_Grayscale(rast)) AS grayscale_png
FROM apple;

	

[image: Examples: Variant 1]original_png

 	

[image: Examples: Variant 1]grayscale_png

Examples: Variant 2

SET postgis.gdal_enabled_drivers = 'ENABLE_ALL';
SET postgis.enable_outdb_rasters = True;

WITH apple AS (
 SELECT ST_AddBand(
 ST_MakeEmptyRaster(350, 246, 0, 0, 1, -1, 0, 0, 0),
 '/tmp/apple.png'::text,
 NULL::int[]
) AS rast
)
SELECT
 ST_AsPNG(rast) AS original_png,
 ST_AsPNG(ST_Grayscale(
 ARRAY[
 ROW(rast, 1)::rastbandarg, -- red
 ROW(rast, 2)::rastbandarg, -- green
 ROW(rast, 3)::rastbandarg, -- blue
]::rastbandarg[]
)) AS grayscale_png
FROM apple;

See Also

 ST_AsPNG,
 ST_Reclass,
 ST_ColorMap

Name
ST_MapAlgebra (expression version) —
 Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.

Synopsis
	raster ST_MapAlgebra(rast, 	
	 	nband, 	
	 	pixeltype, 	
	 	expression, 	
	 	nodataval=NULL);	

raster rast;
integer nband;
text pixeltype;
text expression;
double precision nodataval=NULL;

	raster ST_MapAlgebra(rast, 	
	 	pixeltype, 	
	 	expression, 	
	 	nodataval=NULL);	

raster rast;
text pixeltype;
text expression;
double precision nodataval=NULL;

	raster ST_MapAlgebra(rast1, 	
	 	nband1, 	
	 	rast2, 	
	 	nband2, 	
	 	expression, 	
	 	pixeltype=NULL, 	
	 	extenttype=INTERSECTION, 	
	 	nodata1expr=NULL, 	
	 	nodata2expr=NULL, 	
	 	nodatanodataval=NULL);	

raster rast1;
integer nband1;
raster rast2;
integer nband2;
text expression;
text pixeltype=NULL;
text extenttype=INTERSECTION;
text nodata1expr=NULL;
text nodata2expr=NULL;
double precision nodatanodataval=NULL;

	raster ST_MapAlgebra(rast1, 	
	 	rast2, 	
	 	expression, 	
	 	pixeltype=NULL, 	
	 	extenttype=INTERSECTION, 	
	 	nodata1expr=NULL, 	
	 	nodata2expr=NULL, 	
	 	nodatanodataval=NULL);	

raster rast1;
raster rast2;
text expression;
text pixeltype=NULL;
text extenttype=INTERSECTION;
text nodata1expr=NULL;
text nodata2expr=NULL;
double precision nodatanodataval=NULL;

Description

 Expression version - Returns a one-band raster given one or two input rasters, band indexes and one or more user-specified SQL expressions.

Availability: 2.1.0

Description: Variants 1 and 2 (one raster)

 Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation defined by the expression on the input raster (rast). If nband is not provided, band 1 is assumed. The new raster will have the same georeference, width, and height as the original raster but will only have one band.

 If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL, then the new raster band will have the same pixeltype as the input rast band.

	Keywords permitted for expression
	[rast] - Pixel value of the pixel of interest

	[rast.val] - Pixel value of the pixel of interest

	[rast.x] - 1-based pixel column of the pixel of interest

	[rast.y] - 1-based pixel row of the pixel of interest

Description: Variants 3 and 4 (two raster)

 Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation to the two bands defined by the expression on the two input raster bands rast1, (rast2). If no band1, band2 is specified band 1 is assumed. The resulting raster will be aligned (scale, skew and pixel corners) on the grid defined by the first raster. The resulting raster will have the extent defined by the extenttype parameter.

	expression
	
 A PostgreSQL algebraic expression involving the two rasters and PostgreSQL defined functions/operators that will define the pixel value when pixels intersect. e.g. (([rast1] + [rast2])/2.0)::integer

	pixeltype
	
 The resulting pixel type of the output raster. Must be one listed in ST_BandPixelType, left out or set to NULL. If not passed in or set to NULL, will default to the pixeltype of the first raster.

	extenttype
	
 Controls the extent of resulting raster

	
 INTERSECTION - The extent of the new raster is the intersection of the two rasters. This is the default.

	
 UNION - The extent of the new raster is the union of the two rasters.

	
 FIRST - The extent of the new raster is the same as the one of the first raster.

	
 SECOND - The extent of the new raster is the same as the one of the second raster.

	nodata1expr
	
 An algebraic expression involving only rast2 or a constant that defines what to return when pixels of rast1 are nodata values and spatially corresponding rast2 pixels have values.

	nodata2expr
	
 An algebraic expression involving only rast1 or a constant that defines what to return when pixels of rast2 are nodata values and spatially corresponding rast1 pixels have values.

	nodatanodataval
	
 A numeric constant to return when spatially corresponding rast1 and rast2 pixels are both nodata values.

	Keywords permitted in expression, nodata1expr and nodata2expr
	[rast1] - Pixel value of the pixel of interest from rast1

	[rast1.val] - Pixel value of the pixel of interest from rast1

	[rast1.x] - 1-based pixel column of the pixel of interest from rast1

	[rast1.y] - 1-based pixel row of the pixel of interest from rast1

	[rast2] - Pixel value of the pixel of interest from rast2

	[rast2.val] - Pixel value of the pixel of interest from rast2

	[rast2.x] - 1-based pixel column of the pixel of interest from rast2

	[rast2.y] - 1-based pixel row of the pixel of interest from rast2

Examples: Variants 1 and 2

WITH foo AS (
 SELECT ST_AddBand(ST_MakeEmptyRaster(10, 10, 0, 0, 1, 1, 0, 0, 0), '32BF'::text, 1, -1) AS rast
)
SELECT
 ST_MapAlgebra(rast, 1, NULL, 'ceil([rast]*[rast.x]/[rast.y]+[rast.val])')
FROM foo;

Examples: Variant 3 and 4

WITH foo AS (
 SELECT 1 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 0, 1, -1, 0, 0, 0), 1, '16BUI', 1, 0), 2, '8BUI', 10, 0), 3, '32BUI'::text, 100, 0) AS rast UNION ALL
 SELECT 2 AS rid, ST_AddBand(ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(2, 2, 0, 1, 1, -1, 0, 0, 0), 1, '16BUI', 2, 0), 2, '8BUI', 20, 0), 3, '32BUI'::text, 300, 0) AS rast
)
SELECT
 ST_MapAlgebra(
 t1.rast, 2,
 t2.rast, 1,
 '([rast2] + [rast1.val]) / 2'
) AS rast
FROM foo t1
CROSS JOIN foo t2
WHERE t1.rid = 1
 AND t2.rid = 2;

See Also

 rastbandarg,
 ST_Union,
 ST_MapAlgebra (callback function version)

Name
ST_MapAlgebraExpr — 1 raster band version: Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation on the input raster band and of pixeltype provided. Band 1 is assumed if no band is specified.

Synopsis
	raster ST_MapAlgebraExpr(rast, 	
	 	band, 	
	 	pixeltype, 	
	 	expression, 	
	 	nodataval=NULL);	

raster rast;
integer band;
text pixeltype;
text expression;
double precision nodataval=NULL;

	raster ST_MapAlgebraExpr(rast, 	
	 	pixeltype, 	
	 	expression, 	
	 	nodataval=NULL);	

raster rast;
text pixeltype;
text expression;
double precision nodataval=NULL;

Description
Warning

 ST_MapAlgebraExpr is deprecated as of 2.1.0. Use ST_MapAlgebra (expression version) instead.

 Creates a new one band raster formed by applying a valid PostgreSQL algebraic operation defined by the expression on the input raster (rast). If no band is specified band 1 is assumed. The new raster will have the same georeference, width, and height as the original raster but will only have one band.

 If pixeltype is passed in, then the new raster will have a band of that pixeltype. If pixeltype is passed NULL, then the new raster band will have the same pixeltype as the input rast band.

 In the expression you can use the term [rast] to refer to the pixel value of the original band, [rast.x] to refer to the 1-based pixel column index, [rast.y] to refer to the 1-based pixel row index.

Availability: 2.0.0

Examples
Create a new 1 band raster from our original that is a function of modulo 2 of the original raster band.

ALTER TABLE dummy_rast ADD COLUMN map_rast raster;
UPDATE dummy_rast SET map_rast = ST_MapAlgebraExpr(rast,NULL,'mod([rast]::numeric,2)') WHERE rid = 2;

SELECT
 ST_Value(rast,1,i,j) As origval,
 ST_Value(map_rast, 1, i, j) As mapval
FROM dummy_rast
CROSS JOIN generate_series(1, 3) AS i
CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;

 origval | mapval
---------+--------
 253 | 1
 254 | 0
 253 | 1
 253 | 1
 254 | 0
 254 | 0
 250 | 0
 254 | 0
 254 | 0

Create a new 1 band raster of pixel-type 2BUI from our original that is reclassified and set the nodata value to be 0.
ALTER TABLE dummy_rast ADD COLUMN map_rast2 raster;
UPDATE dummy_rast SET
 map_rast2 = ST_MapAlgebraExpr(rast,'2BUI'::text,'CASE WHEN [rast] BETWEEN 100 and 250 THEN 1 WHEN [rast] = 252 THEN 2 WHEN [rast] BETWEEN 253 and 254 THEN 3 ELSE 0 END'::text, '0')
WHERE rid = 2;

SELECT DISTINCT
 ST_Value(rast,1,i,j) As origval,
 ST_Value(map_rast2, 1, i, j) As mapval
FROM dummy_rast
CROSS JOIN generate_series(1, 5) AS i
CROSS JOIN generate_series(1,5) AS j
WHERE rid = 2;

 origval | mapval
---------+--------
 249 | 1
 250 | 1
 251 |
 252 | 2
 253 | 3
 254 | 3

SELECT
 ST_BandPixelType(map_rast2) As b1pixtyp
FROM dummy_rast
WHERE rid = 2;

 b1pixtyp

 2BUI

	

[image: Examples]original (column rast_view)

 	

[image: Examples]rast_view_ma

Create a new 3 band raster same pixel type from our original 3 band raster with first band altered by map algebra and remaining 2 bands unaltered.

SELECT
 ST_AddBand(
 ST_AddBand(
 ST_AddBand(
 ST_MakeEmptyRaster(rast_view),
 ST_MapAlgebraExpr(rast_view,1,NULL,'tan([rast])*[rast]')
),
 ST_Band(rast_view,2)
),
 ST_Band(rast_view, 3)
) As rast_view_ma
FROM wind
WHERE rid=167;

See Also

 ST_MapAlgebraExpr,
 ST_MapAlgebraFct,
 ST_BandPixelType,
 ST_GeoReference,
 ST_Value

Name
ST_Reclass — Creates a new raster composed of band types reclassified from original. The nband is the band to be changed. If nband is not specified assumed to be 1. All other bands are returned unchanged. Use case: convert a 16BUI band to a 8BUI and so forth for simpler rendering as viewable formats.

Synopsis
	raster ST_Reclass(rast, 	
	 	nband, 	
	 	reclassexpr, 	
	 	pixeltype, 	
	 	nodataval=NULL);	

raster rast;
integer nband;
text reclassexpr;
text pixeltype;
double precision nodataval=NULL;

	raster ST_Reclass(rast, 	
	 	VARIADIC reclassargset);	

raster rast;
reclassarg[] VARIADIC reclassargset;

	raster ST_Reclass(rast, 	
	 	reclassexpr, 	
	 	pixeltype);	

raster rast;
text reclassexpr;
text pixeltype;

Description
Creates a new raster formed by applying a valid PostgreSQL algebraic operation defined by the reclassexpr on the input raster (rast). If no band is specified band 1 is assumed. The new raster will have the same georeference, width, and height as the original raster. Bands not designated will come back unchanged. Refer to reclassarg for description of valid reclassification expressions.
The bands of the new raster will have pixel type of pixeltype. If reclassargset is passed in then each reclassarg defines behavior of each band generated.
Availability: 2.0.0

Examples Basic
Create a new raster from the original where band 2 is converted from 8BUI to 4BUI and all values from 101-254 are set to nodata value.

ALTER TABLE dummy_rast ADD COLUMN reclass_rast raster;
UPDATE dummy_rast SET reclass_rast = ST_Reclass(rast,2,'0-87:1-10, 88-100:11-15, 101-254:0-0', '4BUI',0) WHERE rid = 2;

SELECT i as col, j as row, ST_Value(rast,2,i,j) As origval,
 ST_Value(reclass_rast, 2, i, j) As reclassval,
 ST_Value(reclass_rast, 2, i, j, false) As reclassval_include_nodata
FROM dummy_rast CROSS JOIN generate_series(1, 3) AS i CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;

 col | row | origval | reclassval | reclassval_include_nodata
-----+-----+---------+------------+---------------------------
 1 | 1 | 78 | 9 | 9
 2 | 1 | 98 | 14 | 14
 3 | 1 | 122 | | 0
 1 | 2 | 96 | 14 | 14
 2 | 2 | 118 | | 0
 3 | 2 | 180 | | 0
 1 | 3 | 99 | 15 | 15
 2 | 3 | 112 | | 0
 3 | 3 | 169 | | 0

Example: Advanced using multiple reclassargs
Create a new raster from the original where band 1,2,3 is converted to 1BB,4BUI, 4BUI respectively and reclassified. Note this uses the variadic reclassarg argument which can take as input an indefinite number of reclassargs (theoretically as many bands as you have)

UPDATE dummy_rast SET reclass_rast =
 ST_Reclass(rast,
 ROW(2,'0-87]:1-10, (87-100]:11-15, (101-254]:0-0', '4BUI',NULL)::reclassarg,
 ROW(1,'0-253]:1, 254:0', '1BB', NULL)::reclassarg,
 ROW(3,'0-70]:1, (70-86:2, [86-150):3, [150-255:4', '4BUI', NULL)::reclassarg
) WHERE rid = 2;

SELECT i as col, j as row,ST_Value(rast,1,i,j) As ov1, ST_Value(reclass_rast, 1, i, j) As rv1,
 ST_Value(rast,2,i,j) As ov2, ST_Value(reclass_rast, 2, i, j) As rv2,
 ST_Value(rast,3,i,j) As ov3, ST_Value(reclass_rast, 3, i, j) As rv3
FROM dummy_rast CROSS JOIN generate_series(1, 3) AS i CROSS JOIN generate_series(1,3) AS j
WHERE rid = 2;

col | row | ov1 | rv1 | ov2 | rv2 | ov3 | rv3
----+-----+-----+-----+-----+-----+-----+-----
 1 | 1 | 253 | 1 | 78 | 9 | 70 | 1
 2 | 1 | 254 | 0 | 98 | 14 | 86 | 3
 3 | 1 | 253 | 1 | 122 | 0 | 100 | 3
 1 | 2 | 253 | 1 | 96 | 14 | 80 | 2
 2 | 2 | 254 | 0 | 118 | 0 | 108 | 3
 3 | 2 | 254 | 0 | 180 | 0 | 162 | 4
 1 | 3 | 250 | 1 | 99 | 15 | 90 | 3
 2 | 3 | 254 | 0 | 112 | 0 | 108 | 3
 3 | 3 | 254 | 0 | 169 | 0 | 175 | 4

Example: Advanced Map a single band 32BF raster to multiple viewable bands
Create a new 3 band (8BUI,8BUI,8BUI viewable raster) from a raster that has only one 32bf band

ALTER TABLE wind ADD COLUMN rast_view raster;
UPDATE wind
 set rast_view = ST_AddBand(NULL,
 ARRAY[
 ST_Reclass(rast, 1,'0.1-10]:1-10,9-10]:11,(11-33:0'::text, '8BUI'::text,0),
 ST_Reclass(rast,1, '11-33):0-255,[0-32:0,(34-1000:0'::text, '8BUI'::text,0),
 ST_Reclass(rast,1,'0-32]:0,(32-100:100-255'::text, '8BUI'::text,0)
]
);

See Also

 ST_AddBand,
 ST_Band,
 ST_BandPixelType,
 ST_MakeEmptyRaster,
 reclassarg,
 ST_Value

Built-in Map Algebra Callback Functions

Name
ST_Max4ma — Raster processing function that calculates the maximum pixel value in a neighborhood.

Synopsis
	float8 ST_Max4ma(matrix, 	
	 	nodatamode, 	
	 	VARIADIC args);	

float8[][] matrix;
text nodatamode;
text[] VARIADIC args;

	double precision ST_Max4ma(value, 	
	 	pos, 	
	 	VARIADIC userargs);	

double precision[][][] value;
integer[][] pos;
text[] VARIADIC userargs;

Description
Calculate the maximum pixel value in a neighborhood of pixels.

 For Variant 2, a substitution value for NODATA pixels can be specified by passing that value to userargs.

Note
Variant 1 is a specialized callback function for use as a callback parameter to ST_MapAlgebraFctNgb.

Note

 Variant 2 is a specialized callback function for use as a callback parameter to ST_MapAlgebra (callback function version).

Warning

 Use of Variant 1 is discouraged since ST_MapAlgebraFctNgb has been deprecated as of 2.1.0.

Availability: 2.0.0
Enhanced: 2.1.0 Addition of Variant 2

Examples
SELECT
 rid,
 st_value(
 st_mapalgebrafctngb(rast, 1, NULL, 1, 1, 'st_max4ma(float[][],text,text[])'::regprocedure, 'ignore', NULL), 2, 2
)
FROM dummy_rast
WHERE rid = 2;
 rid | st_value
-----+----------
 2 | 254
(1 row)

See Also

 ST_MapAlgebraFctNgb,
 ST_MapAlgebra (callback function version),
 ST_Min4ma,
 ST_Sum4ma,
 ST_Mean4ma,
 ST_Range4ma,
 ST_Distinct4ma,
 ST_StdDev4ma

Name
ST_Aspect — Returns the aspect (in degrees by default) of an elevation raster band. Useful for analyzing terrain.

Synopsis
	raster ST_Aspect(rast, 	
	 	band=1, 	
	 	pixeltype=32BF, 	
	 	units=DEGREES, 	
	 	interpolate_nodata=FALSE);	

raster rast;
integer band=1;
text pixeltype=32BF;
text units=DEGREES;
boolean interpolate_nodata=FALSE;

	raster ST_Aspect(rast, 	
	 	band, 	
	 	customextent, 	
	 	pixeltype=32BF, 	
	 	units=DEGREES, 	
	 	interpolate_nodata=FALSE);	

raster rast;
integer band;
raster customextent;
text pixeltype=32BF;
text units=DEGREES;
boolean interpolate_nodata=FALSE;

Description
Returns the aspect (in degrees by default) of an elevation raster band. Utilizes map algebra and applies the aspect equation to neighboring pixels.

 units indicates the units of the aspect. Possible values are: RADIANS, DEGREES (default).

 When units = RADIANS, values are between 0 and 2 * pi radians measured clockwise from North.

 When units = DEGREES, values are between 0 and 360 degrees measured clockwise from North.

 If slope of pixel is zero, aspect of pixel is -1.

Note

 For more information about Slope, Aspect and Hillshade, please refer to ESRI - How hillshade works and ERDAS Field Guide - Aspect Images.

Availability: 2.0.0
Enhanced: 2.1.0 Uses ST_MapAlgebra() and added optional interpolate_nodata function parameter
Changed: 2.1.0 In prior versions, return values were in radians. Now, return values default to degrees

Examples: Variant 1

WITH foo AS (
 SELECT ST_SetValues(
 ST_AddBand(ST_MakeEmptyRaster(5, 5, 0, 0, 1, -1, 0, 0, 0), 1, '32BF', 0, -9999),
 1, 1, 1, ARRAY[
 [1, 1, 1, 1, 1],
 [1, 2, 2, 2, 1],
 [1, 2, 3, 2, 1],
 [1, 2, 2, 2, 1],
 [1, 1, 1, 1, 1]
]::double precision[][]
) AS rast
)
SELECT
 ST_DumpValues(ST_Aspect(rast, 1, '32BF'))
FROM foo

 st_dumpvalues

--

 (1,"{{315,341.565063476562,0,18.4349479675293,45},{288.434936523438,315,0,45,71.5650482177734},{270,270,-1,90,90},{251.565048217773,225,180,135,108.434951782227},{225,198.43495178
2227,180,161.565048217773,135}}")
(1 row)

Examples: Variant 2
Complete example of tiles of a coverage. This query only works with PostgreSQL 9.1 or higher.

WITH foo AS (
 SELECT ST_Tile(
 ST_SetValues(
 ST_AddBand(
 ST_MakeEmptyRaster(6, 6, 0, 0, 1, -1, 0, 0, 0),
 1, '32BF', 0, -9999
),
 1, 1, 1, ARRAY[
 [1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 2, 1],
 [1, 2, 2, 3, 3, 1],
 [1, 1, 3, 2, 1, 1],
 [1, 2, 2, 1, 2, 1],
 [1, 1, 1, 1, 1, 1]
]::double precision[]
),
 2, 2
) AS rast
)
SELECT
 t1.rast,
 ST_Aspect(ST_Union(t2.rast), 1, t1.rast)
FROM foo t1
CROSS JOIN foo t2
WHERE ST_Intersects(t1.rast, t2.rast)
GROUP BY t1.rast;

See Also

 ST_MapAlgebra (callback function version),
 ST_TRI,
 ST_TPI,
 ST_Roughness,
 ST_HillShade,
 ST_Slope

Name
ST_TPI — Returns a raster with the calculated Topographic Position Index.

Synopsis
	raster ST_TPI(rast, 	
	 	nband, 	
	 	customextent, 	
	 	pixeltype="32BF", 	
	 	 interpolate_nodata=FALSE);	

raster rast;
integer nband;
raster customextent;
text pixeltype="32BF" ;
boolean interpolate_nodata=FALSE ;

Description
Calculates the Topographic Position Index, which is defined as the focal mean with radius of one minus the center cell.
Note
This function only supports a focalmean radius of one.

Availability: 2.1.0

Examples

-- needs examples

See Also

 ST_MapAlgebra (callback function version),
 ST_TRI,
 ST_Roughness,
 ST_Slope,
 ST_HillShade,
 ST_Aspect

Name
ST_Envelope — Returns the polygon representation of the extent of the raster.

Synopsis
	geometry ST_Envelope(rast);	

raster rast;

Description
Returns the polygon representation of the extent of the raster in spatial coordinate units defined by srid. It is a float8 minimum bounding box represented as a polygon.
The polygon is defined by the corner points of the bounding box
 ((MINX, MINY),
 (MINX, MAXY),
 (MAXX, MAXY),
 (MAXX, MINY),
 (MINX, MINY))

Examples

SELECT rid, ST_AsText(ST_Envelope(rast)) As envgeomwkt
FROM dummy_rast;

 rid | envgeomwkt
-----+--
 1 | POLYGON((0 0,20 0,20 60,0 60,0 0))
 2 | POLYGON((3427927 5793243,3427928 5793243,
 3427928 5793244,3427927 5793244, 3427927 5793243))

See Also

 ST_Envelope,
 ST_AsText,
 ST_SRID

Name
ST_MinConvexHull —
 Return the convex hull geometry of the raster excluding NODATA pixels.

Synopsis
	geometry ST_MinConvexHull(rast, 	
	 	nband=NULL);	

raster rast;
integer nband=NULL;

Description

 Return the convex hull geometry of the raster excluding NODATA pixels. If nband is NULL, all bands of the raster are considered.

Availability: 2.1.0

Examples

WITH foo AS (
 SELECT
 ST_SetValues(
 ST_SetValues(
 ST_AddBand(ST_AddBand(ST_MakeEmptyRaster(9, 9, 0, 0, 1, -1, 0, 0, 0), 1, '8BUI', 0, 0), 2, '8BUI', 1, 0),
 1, 1, 1,
 ARRAY[
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 1],
 [0, 0, 0, 1, 1, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0]
]::double precision[][]
),
 2, 1, 1,
 ARRAY[
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [1, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0, 0, 0, 0]
]::double precision[][]
) AS rast
)
SELECT
 ST_AsText(ST_ConvexHull(rast)) AS hull,
 ST_AsText(ST_MinConvexHull(rast)) AS mhull,
 ST_AsText(ST_MinConvexHull(rast, 1)) AS mhull_1,
 ST_AsText(ST_MinConvexHull(rast, 2)) AS mhull_2
FROM foo

 hull | mhull | mhull_1 | mhull_2
----------------------------------+-------------------------------------+-------------------------------------+-------------------------------------
 POLYGON((0 0,9 0,9 -9,0 -9,0 0)) | POLYGON((0 -3,9 -3,9 -9,0 -9,0 -3)) | POLYGON((3 -3,9 -3,9 -6,3 -6,3 -3)) | POLYGON((0 -3,6 -3,6 -9,0 -9,0 -3))

See Also

 ST_Envelope,
 ST_ConvexHull,
 ST_ConvexHull,
 ST_AsText

Raster Operators

Name
&< — Returns TRUE if A's bounding box is to the left of B's.

Synopsis
	boolean &<(A, 	
	 	B);	

 raster

 A
 ;

 raster

 B
 ;

Description
The &< operator returns TRUE if the bounding box of raster A
 overlaps or is to the left of the bounding box of raster B, or more accurately, overlaps or is NOT to the right
 of the bounding box of raster B.
Note
This operand will make use of any indexes that may be available on the rasters.

Examples
SELECT A.rid As a_rid, B.rid As b_rid, A.rast &< B.rast As overleft
 FROM dummy_rast AS A CROSS JOIN dummy_rast AS B;

a_rid | b_rid | overleft
------+-------+----------
 2 | 2 | t
 2 | 3 | f
 2 | 1 | f
 3 | 2 | t
 3 | 3 | t
 3 | 1 | f
 1 | 2 | t
 1 | 3 | t
 1 | 1 | t

Name
&> — Returns TRUE if A's bounding box is to the right of B's.

Synopsis
	boolean &>(A, 	
	 	B);	

 raster

 A
 ;

 raster

 B
 ;

Description
The &> operator returns TRUE if the bounding box of raster A
 overlaps or is to the right of the bounding box of raster B, or more accurately, overlaps or is NOT to the left
 of the bounding box of raster B.
Note
This operand will make use of any indexes that may be available on the
 geometries.

Examples
SELECT A.rid As a_rid, B.rid As b_rid, A.rast &> B.rast As overright
 FROM dummy_rast AS A CROSS JOIN dummy_rast AS B;

 a_rid | b_rid | overright
-------+-------+----------
 2 | 2 | t
 2 | 3 | t
 2 | 1 | t
 3 | 2 | f
 3 | 3 | t
 3 | 1 | f
 1 | 2 | f
 1 | 3 | t
 1 | 1 | t

Raster and Raster Band Spatial Relationships

Name
ST_Contains —
 Return true if no points of raster rastB lie in the exterior of raster rastA and at least one point of the interior of rastB lies in the interior of rastA.

Synopsis
	boolean ST_Contains(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB);	

 raster
 rastA
 ;

 integer
 nbandA
 ;

 raster
 rastB
 ;

 integer
 nbandB
 ;

	boolean ST_Contains(rastA, 	
	 	rastB);	

 raster
 rastA
 ;

 raster
 rastB
 ;

Description

 Raster rastA contains rastB if and only if no points of rastB lie in the exterior of rastA and at least one point of the interior of rastB lies in the interior of rastA. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Note

 This function will make use of any indexes that may be available on the rasters.

Note

 To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Contains(ST_Polygon(raster), geometry) or ST_Contains(geometry, ST_Polygon(raster)).

Note

 ST_Contains() is the inverse of ST_Within(). So, ST_Contains(rastA, rastB) implies ST_Within(rastB, rastA).

Availability: 2.1.0

Examples

-- specified band numbers
SELECT r1.rid, r2.rid, ST_Contains(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 1;

NOTICE: The first raster provided has no bands
 rid | rid | st_contains
-----+-----+-------------
 1 | 1 |
 1 | 2 | f

-- no band numbers specified
SELECT r1.rid, r2.rid, ST_Contains(r1.rast, r2.rast) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 1;
 rid | rid | st_contains
-----+-----+-------------
 1 | 1 | t
 1 | 2 | f

See Also

 ST_Intersects,
 ST_Within

Name
ST_ContainsProperly —
 Return true if rastB intersects the interior of rastA but not the boundary or exterior of rastA.

Synopsis
	boolean ST_ContainsProperly(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB);	

 raster
 rastA
 ;

 integer
 nbandA
 ;

 raster
 rastB
 ;

 integer
 nbandB
 ;

	boolean ST_ContainsProperly(rastA, 	
	 	rastB);	

 raster
 rastA
 ;

 raster
 rastB
 ;

Description

 Raster rastA contains properly rastB if rastB intersects the interior of rastA but not the boundary or exterior of rastA. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

 Raster rastA does not contain properly itself but does contain itself.

Note

 This function will make use of any indexes that may be available on the rasters.

Note

 To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_ContainsProperly(ST_Polygon(raster), geometry) or ST_ContainsProperly(geometry, ST_Polygon(raster)).

Availability: 2.1.0

Examples

SELECT r1.rid, r2.rid, ST_ContainsProperly(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_containsproperly
-----+-----+---------------------
 2 | 1 | f
 2 | 2 | f

See Also

 ST_Intersects,
 ST_Contains

Name
ST_Disjoint —
 Return true if raster rastA does not spatially intersect rastB.

Synopsis
	boolean ST_Disjoint(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB);	

 raster
 rastA
 ;

 integer
 nbandA
 ;

 raster
 rastB
 ;

 integer
 nbandB
 ;

	boolean ST_Disjoint(rastA, 	
	 	rastB);	

 raster
 rastA
 ;

 raster
 rastB
 ;

Description

 Raster rastA and rastB are disjointed if they do not share any space together. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Note

 This function does NOT use any indexes.

Note

 To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Disjoint(ST_Polygon(raster), geometry).

Availability: 2.1.0

Examples

-- rid = 1 has no bands, hence the NOTICE and the NULL value for st_disjoint
SELECT r1.rid, r2.rid, ST_Disjoint(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

NOTICE: The second raster provided has no bands
 rid | rid | st_disjoint
-----+-----+-------------
 2 | 1 |
 2 | 2 | f

-- this time, without specifying band numbers
SELECT r1.rid, r2.rid, ST_Disjoint(r1.rast, r2.rast) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_disjoint
-----+-----+-------------
 2 | 1 | t
 2 | 2 | f

See Also

 ST_Intersects

Name
ST_Within —
 Return true if no points of raster rastA lie in the exterior of raster rastB and at least one point of the interior of rastA lies in the interior of rastB.

Synopsis
	boolean ST_Within(rastA, 	
	 	nbandA, 	
	 	rastB, 	
	 	nbandB);	

 raster
 rastA
 ;

 integer
 nbandA
 ;

 raster
 rastB
 ;

 integer
 nbandB
 ;

	boolean ST_Within(rastA, 	
	 	rastB);	

 raster
 rastA
 ;

 raster
 rastB
 ;

Description

 Raster rastA is within rastB if and only if no points of rastA lie in the exterior of rastB and at least one point of the interior of rastA lies in the interior of rastB. If the band number is not provided (or set to NULL), only the convex hull of the raster is considered in the test. If the band number is provided, only those pixels with value (not NODATA) are considered in the test.

Note

 This operand will make use of any indexes that may be available on the rasters.

Note

 To test the spatial relationship of a raster and a geometry, use ST_Polygon on the raster, e.g. ST_Within(ST_Polygon(raster), geometry) or ST_Within(geometry, ST_Polygon(raster)).

Note

 ST_Within() is the inverse of ST_Contains(). So, ST_Within(rastA, rastB) implies ST_Contains(rastB, rastA).

Availability: 2.1.0

Examples

SELECT r1.rid, r2.rid, ST_Within(r1.rast, 1, r2.rast, 1) FROM dummy_rast r1 CROSS JOIN dummy_rast r2 WHERE r1.rid = 2;

 rid | rid | st_within
-----+-----+-----------
 2 | 1 | f
 2 | 2 | t

See Also

 ST_Intersects,
 ST_Contains,
 ST_DWithin,
 ST_DFullyWithin

Chapter 13. PostGIS Raster Frequently Asked Questions

	13.1.
	Where can I find out more about the PostGIS Raster Project?

		Refer to the PostGIS Raster home page.

	13.2.
	Are there any books or tutorials to get me started with this wonderful invention?

		There is a full length beginner tutorial Intersecting vector buffers with large raster coverage using PostGIS Raster.
 Jorge has a series of blog articles on PostGIS Raster that demonstrate how to load raster data as well as cross compare to same tasks in Oracle GeoRaster. Check out:
 Jorge's PostGIS Raster / Oracle GeoRaster Series.
 There is a whole chapter (more than 35 pages of content) dedicated to PostGIS Raster with free code and data downloads at PostGIS in Action - Raster chapter. Also covered in second edition..
 You can buy PostGIS in Action now from Manning in hard-copy (significant discounts for bulk purchases) or just the E-book format.
 You can also buy from Amazon and various other book distributors. All hard-copy books come with a free coupon to download the E-book version.

Here is a review from a PostGIS Raster user PostGIS raster applied to land classification urban forestry

	13.3.
	How do I install Raster support in my PostGIS database?

		PostGIS Raster is part of the PostGIS codebase and generally available with most PostGIS binary distributions. Starting with PostGIS 3.0, PostGIS raster is now a separate extension and requires: `CREATE EXTENSION postgis_raster;` to enable it in your database. If you are compiling your own PostGIS, you will need to compile with GDAL otherwise postgis_raster extension will not be built.
Refer to Download PostGIS binaries for popular distributions of PostGIS that include raster support.

	13.4.
	How do I load Raster data into PostGIS?

		The latest version of PostGIS comes packaged with a raster2pgsql raster loader executable capable of loading many kinds of rasters and also generating lower resolution overviews without any additional software. Please refer to the section called “Using raster2pgsql to load rasters” for more details.

	13.5.
	What kind of raster file formats can I load into my database?

		Any that your GDAL library supports. GDAL supported formats are documented GDAL File Formats.
Your particular GDAL install may not support all formats. To verify the ones supported by your particular GDAL install, you can use
raster2pgsql -G

	13.6.
	Can I export my PostGIS raster data to other raster formats?

		Yes
PostGIS raster has a function ST_AsGDALRaster that will allow you to use SQL to export to any raster format supported by your GDAL. You can get a list of these using the ST_GDALDrivers SQL function.
You can also use GDAL commandline tools to export PostGIS raster to other formats. GDAL has a PostGIS raster driver, but is only compiled in if you choose to compile with PostgreSQL support.
The driver currently doesn't support irregularly blocked rasters,
		although you can store irregularly blocked rasters in PostGIS raster data type.
If you are compiling from source, you need to include in your configure
		
--with-pg=path/to/pg_config
 to enable the driver.
		 Refer to GDAL Build Hints for tips
		 on building GDAL against in various OS platforms.
		
If your version of GDAL is compiled with the PostGIS Raster driver
		 you should see PostGIS Raster in list when you do
		
gdalinfo --formats
To get a summary about your raster via GDAL use gdalinfo:
		
gdalinfo "PG:host=localhost port=5432 dbname='mygisdb' user='postgres' password='whatever' schema='someschema' table=sometable"

		
To export data to other raster formats,
			use gdal_translate the below will export all data from a table to a PNG file at 10% size.
Depending on your pixel band types, some translations may not work if the export format does not support that Pixel type.
		 For example floating point band types and 32 bit unsigned ints
			will not translate easily to JPG or some others.
Here is an example simple translation
gdal_translate -of PNG -outsize 10% 10% "PG:host=localhost port=5432 dbname='mygisdb' user='postgres' password='whatever' schema='someschema' table=sometable" C:\somefile.png
You can also use SQL where clauses in your export using the where=... in your driver connection string.
			Below are some using a where clause
gdal_translate -of PNG -outsize 10% 10% "PG:host=localhost port=5432 dbname='mygisdb' user='postgres' password='whatever' schema='someschema' table=sometable where='filename=\'abcd.sid\''" " C:\somefile.png
gdal_translate -of PNG -outsize 10% 10% "PG:host=localhost port=5432 dbname='mygisdb' user='postgres' password='whatever' schema='someschema' table=sometable where='ST_Intersects(rast, ST_SetSRID(ST_Point(-71.032,42.3793),4326))' " C:\intersectregion.png
To see more examples and syntax refer to Reading Raster Data of PostGIS Raster section

	13.7.
	Are their binaries of GDAL available already compiled with PostGIS Raster suppport?

		Yes. Check out the page GDAL Binaries page. Any compiled with PostgreSQL
		support should have PostGIS Raster in them. GDAL tools is also generally included as part of QGIS.
If you want to get the latest nightly build for Windows -- then check out
		 the Tamas Szekeres nightly builds built with Visual Studio which contain GDAL trunk, Python Bindings and MapServer executables and PostGIS Raster driver built-in. Just
 click the SDK bat and run your commands from there. http://www.gisinternals.com.
			Also available are VS project files.

	13.8.
	What tools can I use to view PostGIS raster data?

		You can use MapServer compiled with GDAL to view Raster data. QGIS supports viewing of PostGIS Raster if you
 have PostGIS raster driver installed.
In theory any tool that renders data using GDAL can support PostGIS raster data or
 support it with fairly minimal effort. Again for Windows, Tamas' binaries (includes Mapserver) http://www.gisinternals.com are a good choice for windows users if you don't want the hassle of having to setup to compile your own.

	13.9.
	How can I add a PostGIS raster layer to my MapServer map?

		First you need GDAL 1.7 or higher compiled with PostGIS raster support.
 GDAL 3 or above is preferred since many issues have been fixed in 1.8 and more PostGIS raster issues fixed in trunk version.
You can much like you can with any other raster.
 Refer to MapServer Raster processing options
 for list of various processing functions you can use with MapServer raster layers.
What makes PostGIS raster data particularly interesting, is that since
	each tile can have various standard database columns, you can segment it in your data source
Below is an example of how you would define a PostGIS raster layer in MapServer.
Note
The mode=2 is required for tiled rasters and was added in PostGIS 2.0 and GDAL 1.8 drivers. This does not exist in GDAL 1.7 drivers.

-- displaying raster with standard raster options
LAYER
	NAME coolwktraster
	TYPE raster
	STATUS ON
	DATA "PG:host=localhost port=5432 dbname='somedb' user='someuser' password='whatever'
		schema='someschema' table='cooltable' mode='2'"
	PROCESSING "NODATA=0"
	PROCESSING "SCALE=AUTO"
	#... other standard raster processing functions here
	#... classes are optional but useful for 1 band data
	CLASS
		NAME "boring"
		EXPRESSION ([pixel] < 20)
		COLOR 250 250 250
	END
	CLASS
		NAME "mildly interesting"
		EXPRESSION ([pixel] > 20 AND [pixel] < 1000)
		COLOR 255 0 0
	END
	CLASS
		NAME "very interesting"
		EXPRESSION ([pixel] >= 1000)
		COLOR 0 255 0
	END
END

-- displaying raster with standard raster options and a where clause
LAYER
	NAME soil_survey2009
	TYPE raster
	STATUS ON
	DATA "PG:host=localhost port=5432 dbname='somedb' user='someuser' password='whatever'
		schema='someschema' table='cooltable' where='survey_year=2009' mode='2'"
	PROCESSING "NODATA=0"
	#... other standard raster processing functions here
	#... classes are optional but useful for 1 band data
END

	13.10.
	What functions can I currently use with my raster data?

		Refer to the list of Chapter 12, Raster Reference.
 There are more, but this is still a work in progress.
Refer to the PostGIS Raster roadmap page
		for details of what you can expect in the future.

	13.11.
	I am getting error ERROR: function st_intersects(raster, unknown) is not unique or st_union(geometry,text) is not unique. How do I fix?

		The function is not unique error happens if one of your arguments is a textual representation of a geometry instead of a geometry. In these cases, PostgreSQL marks the textual representation as an unknown type, which means it can fall into the st_intersects(raster, geometry) or st_intersects(raster,raster) thus resulting in a non-unique case since both functions can in theory support your request. To prevent this, you need to cast the textual representation of the geometry to a geometry.
For example if your code looks like this:
SELECT rast
 FROM my_raster
 WHERE ST_Intersects(rast, 'SRID=4326;POINT(-10 10)');
Cast the textual geometry representation to a geometry by changing your code to this:
SELECT rast
 FROM my_raster
 WHERE ST_Intersects(rast, 'SRID=4326;POINT(-10 10)'::geometry);

	13.12.
	How is PostGIS Raster different from Oracle GeoRaster (SDO_GEORASTER) and SDO_RASTER types?

		For a more extensive discussion on this topic, check out Jorge Arévalo Oracle GeoRaster and PostGIS Raster: First impressions
The major advantage of one-georeference-by-raster over one-georeference-by-layer is to allow:
* coverages to be not necessarily rectangular (which is often the case of raster coverage covering large extents. See the possible raster arrangements in the documentation)
* rasters to overlaps (which is necessary to implement lossless vector to raster conversion)
These arrangements are possible in Oracle as well, but they imply
 the storage of multiple SDO_GEORASTER objects linked to as many
 SDO_RASTER tables. A complex coverage can lead to hundreds of tables in
 the database. With PostGIS Raster you can store a similar raster arrangement into a unique table.
It's a bit like if PostGIS would force you to store only full rectangular vector coverage without gaps or overlaps (a perfect rectangular topological layer).
	This is very practical in some applications but practice has shown that it is not realistic or desirable for most geographical coverages. Vector structures needs the flexibility to store discontinuous and non-rectangular coverages.
	We think it is a big advantage that raster structure should benefit as well.

	13.13.
	raster2pgsql load of large file fails with String of N bytes is too long for encoding conversion?

		raster2pgsql doesn't make any connections to your database when generating the file to load. If your database has set an explicit client encoding different
	from your database encoding, then when loading large raster files (above 30 MB in size), you may run into a bytes is too long for encoding conversion.
This generally happens if for example you have your database in UTF8, but to support windows apps, you have the client encoding set to WIN1252.
To work around this make sure the client encoding is the same as your database encoding during load. You can do this by explicitly setting the encoding in your load script. Example, if you are on windows:
		
set PGCLIENTENCODING=UTF8
If you are on Unix/Linux
	
export PGCLIENTENCODING=UTF8
Gory details of this issue are detailed in http://trac.osgeo.org/postgis/ticket/2209

	13.14.
	I'm getting error ERROR: RASTER_fromGDALRaster: Could not open bytea with GDAL. Check that the bytea is of a GDAL supported format. when using ST_FromGDALRaster
 or ERROR: rt_raster_to_gdal: Could not load the output GDAL driver when trying to use ST_AsPNG or other raster input functions.

		As of PostGIS 2.1.3 and 2.0.5, a security change was made to by default disable all GDAL drivers and out of db rasters. The release notes are at PostGIS 2.0.6, 2.1.3 security release. In order to reenable specific drivers or all drivers and reenable out of database support, refer to the section called “Short Version”.

Name
Drop_Nation_Tables_Generate_Script — Generates a script that drops all tables in the specified schema that start with county_all, state_all or state code followed by county or state.

Synopsis
	text Drop_Nation_Tables_Generate_Script(param_schema=tiger_data);	

text param_schema=tiger_data;

Description
Generates a script that drops all tables in the specified schema that start with county_all, state_all or state code followed by county or state. This is needed if you are upgrading from tiger_2010 to tiger_2011 data.
Availability: 2.1.0

Examples
SELECT drop_nation_tables_generate_script();
DROP TABLE tiger_data.county_all;
DROP TABLE tiger_data.county_all_lookup;
DROP TABLE tiger_data.state_all;
DROP TABLE tiger_data.ma_county;
DROP TABLE tiger_data.ma_state;

See Also
Loader_Generate_Nation_Script

Name
Drop_State_Tables_Generate_Script — Generates a script that drops all tables in the specified schema that are prefixed with the state abbreviation. Defaults schema to tiger_data if no schema is specified.

Synopsis
	text Drop_State_Tables_Generate_Script(param_state, 	
	 	param_schema=tiger_data);	

text param_state;
text param_schema=tiger_data;

Description
Generates a script that drops all tables in the specified schema that are prefixed with the state abbreviation. Defaults schema to tiger_data if no schema is specified.
 This function is useful for dropping tables of a state just before you reload a state in case something went wrong during your previous load.
Availability: 2.0.0

Examples
SELECT drop_state_tables_generate_script('PA');
DROP TABLE tiger_data.pa_addr;
DROP TABLE tiger_data.pa_county;
DROP TABLE tiger_data.pa_county_lookup;
DROP TABLE tiger_data.pa_cousub;
DROP TABLE tiger_data.pa_edges;
DROP TABLE tiger_data.pa_faces;
DROP TABLE tiger_data.pa_featnames;
DROP TABLE tiger_data.pa_place;
DROP TABLE tiger_data.pa_state;
DROP TABLE tiger_data.pa_zip_lookup_base;
DROP TABLE tiger_data.pa_zip_state;
DROP TABLE tiger_data.pa_zip_state_loc;

See Also
Loader_Generate_Script

Name
Get_Geocode_Setting — Returns value of specific setting stored in tiger.geocode_settings table.

Synopsis
	text Get_Geocode_Setting(setting_name);	

text setting_name;

Description
Returns value of specific setting stored in tiger.geocode_settings table. Settings allow you to toggle debugging of functions. Later plans will be to control rating with settings. Current list of settings are as follows:
 name | setting | unit | category | short_desc
--------------------------------+---------+---------+-----------+--
 debug_geocode_address | false | boolean | debug | outputs debug information in notice log such as queries when geocode_address is called if true
 debug_geocode_intersection | false | boolean | debug | outputs debug information in notice log such as queries when geocode_intersection is called if true
 debug_normalize_address | false | boolean | debug | outputs debug information in notice log such as queries and intermediate expressions when normalize_address is called if true
 debug_reverse_geocode | false | boolean | debug | if true, outputs debug information in notice log such as queries and intermediate expressions when reverse_geocode
 reverse_geocode_numbered_roads | 0 | integer | rating | For state and county highways, 0 - no preference in name,
 1 - prefer the numbered highway name, 2 - prefer local state/county name
 use_pagc_address_parser | false | boolean | normalize | If set to true, will try to use the address_standardizer extension (via pagc_normalize_address)
 instead of tiger normalize_address built one
Changed: 2.2.0 : default settings are now kept in a table called geocode_settings_default. Use customized settingsa are in geocode_settings and only contain those that have been set by user.
Availability: 2.1.0

Example return debugging setting
SELECT get_geocode_setting('debug_geocode_address) As result;
result

false

See Also
Set_Geocode_Setting

Name
Get_Tract — Returns census tract or field from tract table of where the geometry is located. Default to returning short name of tract.

Synopsis
	text get_tract(loc_geom, 	
	 	 output_field=name);	

geometry loc_geom;
text output_field=name;

Description
Given a geometry will return the census tract location of that geometry. NAD 83 long lat is assumed if no spatial ref sys is specified.
Note
This function uses the census tract which is not loaded by default. If you have already loaded your state table, you can load tract
 as well as bg, and tabblock using the Loader_Generate_Census_Script script.
If you have not loaded your state data yet and want these additional tables loaded, do the following
UPDATE tiger.loader_lookuptables SET load = true WHERE load = false AND lookup_name IN('tract', 'bg', 'tabblock');
then they will be included by the Loader_Generate_Script.

Availability: 2.0.0

Examples: Basic
SELECT get_tract(ST_Point(-71.101375, 42.31376)) As tract_name;
tract_name

1203.01

--this one returns the tiger geoid
SELECT get_tract(ST_Point(-71.101375, 42.31376), 'tract_id') As tract_id;
tract_id

25025120301

See Also
Geocode>

Name
Normalize_Address — Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This function
 will work with just the lookup data packaged with the tiger_geocoder (no need for tiger census data).

Synopsis
	norm_addy normalize_address(in_address);	

varchar in_address;

Description
Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street, streetname etc. broken into separate fields. This is the first step in the geocoding process to
 get all addresses into normalized postal form. No other data is required aside from what is packaged with the geocoder.
This function just uses the various direction/state/suffix lookup tables preloaded with the tiger_geocoder and located in the tiger schema, so it doesn't need you to download tiger census data or any other additional data to make use of it.
 You may find the need to add more abbreviations or alternative namings to the various lookup tables in the tiger schema.
It uses various control lookup tables located in tiger schema to normalize the input address.
Fields in the norm_addy type object returned by this function in this order where () indicates a field required by the geocoder, [] indicates an optional field:
(address) [predirAbbrev] (streetName) [streetTypeAbbrev] [postdirAbbrev] [internal] [location] [stateAbbrev] [zip] [parsed] [zip4] [address_alphanumeric]
Enhanced: 2.4.0 norm_addy object includes additional fields zip4 and address_alphanumeric.
	address is an integer: The street number

	predirAbbrev is varchar: Directional prefix of road such as N, S, E, W etc. These are controlled using the direction_lookup table.

	streetName varchar

	streetTypeAbbrev varchar abbreviated version of street type: e.g. St, Ave, Cir. These are controlled using the street_type_lookup table.

	postdirAbbrev varchar abbreviated directional suffice of road N, S, E, W etc. These are controlled using the direction_lookup table.

	internal varchar internal address such as an apartment or suite number.

	location varchar usually a city or governing province.

	stateAbbrev varchar two character US State. e.g MA, NY, MI. These are controlled by the state_lookup table.

	zip varchar 5-digit zipcode. e.g. 02109.

	parsed boolean - denotes if addess was formed from normalize process. The normalize_address function sets this to true before returning the address.

	zip4 last 4 digits of a 9 digit zip code. Availability: PostGIS 2.4.0.

	address_alphanumeric Full street number even if it has alpha characters like 17R. Parsing of this is better using Pagc_Normalize_Address function. Availability: PostGIS 2.4.0.

Examples
Output select fields. Use Pprint_Addy if you want a pretty textual output.
SELECT address As orig, (g.na).streetname, (g.na).streettypeabbrev
 FROM (SELECT address, normalize_address(address) As na
 FROM addresses_to_geocode) As g;

 orig | streetname | streettypeabbrev
---+---------------+------------------
 28 Capen Street, Medford, MA | Capen | St
 124 Mount Auburn St, Cambridge, Massachusetts 02138 | Mount Auburn | St
 950 Main Street, Worcester, MA 01610 | Main | St
 529 Main Street, Boston MA, 02129 | Main | St
 77 Massachusetts Avenue, Cambridge, MA 02139 | Massachusetts | Ave
 25 Wizard of Oz, Walaford, KS 99912323 | Wizard of Oz |

See Also
Geocode, Pprint_Addy

Name
Topology_Load_Tiger — Loads a defined region of tiger data into a PostGIS Topology and transforming the tiger data to spatial reference of the topology
 and snapping to the precision tolerance of the topology.

Synopsis
	text Topology_Load_Tiger(topo_name, 	
	 	region_type, 	
	 	region_id);	

varchar topo_name;
varchar region_type;
varchar region_id;

Description
Loads a defined region of tiger data into a PostGIS Topology. The faces, nodes and edges are transformed to the spatial reference system of the target topology and points are snapped to the tolerance of the target topology. The created faces, nodes, edges maintain the same ids as the original Tiger data faces, nodes, edges
 so that datasets can be in the future be more easily reconciled with tiger data. Returns summary details about the process.
This would be useful for example for redistricting data where you require the newly formed polygons to follow the center lines of streets and for the resulting polygons not to overlap.
Note
This function relies on Tiger data as well as the installation of the PostGIS topology module. For more information, refer to Chapter 10, Topology and the section called “Build configuration”. If you have not loaded data covering the region of interest, then no topology records will be created. This function will also fail if you have not created a topology using the topology functions.

Note
Most topology validation errors are a result of tolerance issues where after transformation the edges points don't quite line up or overlap.
 To remedy the situation you may want to increase or lower the precision if you get topology validation failures.

 Required arguments:
	topo_name The name of an existing PostGIS topology to load data into.

	region_type The type of bounding region. Currently only place and county are supported. Plan is to have several more. This is the table to look into to define the region bounds. e.g tiger.place, tiger.county

	region_id This is what TIGER calls the geoid. It is the unique identifier of the region in the table. For place it is the plcidfp column in tiger.place. For county it is the cntyidfp column in tiger.county

Availability: 2.0.0

Example: Boston, Massachusetts Topology
Create a topology for Boston, Massachusetts in Mass State Plane Feet (2249)
 with tolerance 0.25 feet and then load in Boston city tiger faces, edges, nodes.
SELECT topology.CreateTopology('topo_boston', 2249, 0.25);
createtopology

 15
-- 60,902 ms ~ 1 minute on windows 7 desktop running 9.1 (with 5 states tiger data loaded)
SELECT tiger.topology_load_tiger('topo_boston', 'place', '2507000');
-- topology_loader_tiger --
29722 edges holding in temporary. 11108 faces added. 1875 edges of faces added. 20576 nodes added.
19962 nodes contained in a face. 0 edge start end corrected. 31597 edges added.

-- 41 ms --
SELECT topology.TopologySummary('topo_boston');
 -- topologysummary--
Topology topo_boston (15), SRID 2249, precision 0.25
20576 nodes, 31597 edges, 11109 faces, 0 topogeoms in 0 layers

-- 28,797 ms to validate yeh returned no errors --
SELECT * FROM
 topology.ValidateTopology('topo_boston');

 error | id1 | id2
-------------------+----------+-----------

Example: Suffolk, Massachusetts Topology
Create a topology for Suffolk, Massachusetts in Mass State Plane Meters (26986)
 with tolerance 0.25 meters and then load in Suffolk county tiger faces, edges, nodes.
SELECT topology.CreateTopology('topo_suffolk', 26986, 0.25);
-- this took 56,275 ms ~ 1 minute on Windows 7 32-bit with 5 states of tiger loaded
-- must have been warmed up after loading boston
SELECT tiger.topology_load_tiger('topo_suffolk', 'county', '25025');
-- topology_loader_tiger --
 36003 edges holding in temporary. 13518 faces added. 2172 edges of faces added.
 24761 nodes added. 24075 nodes contained in a face. 0 edge start end corrected. 38175 edges added.
-- 31 ms --
SELECT topology.TopologySummary('topo_suffolk');
 -- topologysummary--
 Topology topo_suffolk (14), SRID 26986, precision 0.25
24761 nodes, 38175 edges, 13519 faces, 0 topogeoms in 0 layers

-- 33,606 ms to validate --
SELECT * FROM
 topology.ValidateTopology('topo_suffolk');

 error | id1 | id2
-------------------+----------+-----------
 coincident nodes | 81045651 | 81064553
 edge crosses node | 81045651 | 85737793
 edge crosses node | 81045651 | 85742215
 edge crosses node | 81045651 | 620628939
 edge crosses node | 81064553 | 85697815
 edge crosses node | 81064553 | 85728168
 edge crosses node | 81064553 | 85733413

See Also
CreateTopology, CreateTopoGeom, TopologySummary, ValidateTopology

PostGIS Geography Support Functions

The functions and operators given below are PostGIS functions/operators that take as input or return as output a geography data type object.
Note
Functions with a (T) are not native geodetic functions, and use a ST_Transform call to and from geometry to do the operation. As a result, they may not behave as expected when going over dateline, poles,
				and for large geometries or geometry pairs that cover more than one UTM zone. Basic transform - (favoring UTM, Lambert Azimuthal (North/South), and falling back on mercator in worst case scenario)

	ST_Area - Returns the area of a polygonal geometry.
	ST_AsBinary - Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsEWKT - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
	ST_AsGML - Return the geometry as a GML version 2 or 3 element.
	ST_AsGeoJSON - Return a geometry as a GeoJSON element.
	ST_AsKML - Return the geometry as a KML element.
	ST_AsSVG - Returns SVG path data for a geometry.
	ST_AsText - Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
	ST_Azimuth - Returns the north-based azimuth of a line between two points.
	ST_Buffer - Computes a geometry covering all points within a given distance from a geometry.
	ST_Centroid - Returns the geometric center of a geometry.
	ST_CoveredBy - Tests if no point in A is outside B
	ST_Covers - Tests if no point in B is outside A
	ST_DWithin - Tests if two geometries are within a given distance
	ST_Distance - Returns the distance between two geometry or geography values.
	ST_GeogFromText - Return a specified geography value from Well-Known Text representation or extended (WKT).
	ST_GeogFromWKB - Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended Well Known Binary (EWKB).
	ST_GeographyFromText - Return a specified geography value from Well-Known Text representation or extended (WKT).
	= - Returns TRUE if the coordinates and coordinate order geometry/geography A are the same as the coordinates and coordinate order of geometry/geography B.
	ST_Intersection - Computes a geometry representing the shared portion of geometries A and B.
	ST_Intersects - Tests if two geometries intersect (they have at least one point in common).
	ST_Length - Returns the 2D length of a linear geometry.
	ST_Perimeter - Returns the length of the boundary of a polygonal geometry or geography.
	ST_Project - Returns a point projected from a start point by a distance and bearing (azimuth).
	ST_Segmentize - Return a modified geometry/geography having no segment longer than the given distance.
	ST_Summary - Returns a text summary of the contents of a geometry.
	<-> - Returns the 2D distance between A and B.
	&& - Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.

PostGIS Functions that support 3D

The functions given below are PostGIS functions that do not throw away the Z-Index.
	AddGeometryColumn - Adds a geometry column to an existing table.
	Box3D - Returns a BOX3D representing the 3D extent of a geometry.
	DropGeometryColumn - Removes a geometry column from a spatial table.
	GeometryType - Returns the type of a geometry as text.
	ST_3DArea - Computes area of 3D surface geometries. Will return 0 for solids.
	ST_3DClosestPoint - Returns the 3D point on g1 that is closest to g2. This is the first point of the 3D shortest line.
	ST_3DConvexHull - Computes the 3D convex hull of a geometry.
	ST_3DDFullyWithin - Tests if two 3D geometries are entirely within a given 3D distance
	ST_3DDWithin - Tests if two 3D geometries are within a given 3D distance
	ST_3DDifference - Perform 3D difference
	ST_3DDistance - Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.
	ST_3DExtent - Aggregate function that returns the 3D bounding box of geometries.
	ST_3DIntersection - Perform 3D intersection
	ST_3DIntersects - Tests if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area).
	ST_3DLength - Returns the 3D length of a linear geometry.
	ST_3DLineInterpolatePoint - Returns a point interpolated along a 3D line at a fractional location.
	ST_3DLongestLine - Returns the 3D longest line between two geometries
	ST_3DMaxDistance - Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in projected units.
	ST_3DPerimeter - Returns the 3D perimeter of a polygonal geometry.
	ST_3DShortestLine - Returns the 3D shortest line between two geometries
	ST_3DUnion - Perform 3D union.
	ST_AddMeasure - Interpolates measures along a linear geometry.
	ST_AddPoint - Add a point to a LineString.
	ST_Affine - Apply a 3D affine transformation to a geometry.
	ST_ApproximateMedialAxis - Compute the approximate medial axis of an areal geometry.
	ST_AsBinary - Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsEWKB - Return the Extended Well-Known Binary (EWKB) representation of the geometry with SRID meta data.
	ST_AsEWKT - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
	ST_AsGML - Return the geometry as a GML version 2 or 3 element.
	ST_AsGeoJSON - Return a geometry as a GeoJSON element.
	ST_AsHEXEWKB - Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR) encoding.
	ST_AsKML - Return the geometry as a KML element.
	ST_AsX3D - Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML
	ST_Boundary - Returns the boundary of a geometry.
	ST_BoundingDiagonal - Returns the diagonal of a geometry's bounding box.
	ST_CPAWithin - Tests if the closest point of approach of two trajectoriesis within the specified distance.
	ST_ClosestPointOfApproach - Returns a measure at the closest point of approach of two trajectories.
	ST_Collect - Creates a GeometryCollection or Multi* geometry from a set of geometries.
	ST_ConstrainedDelaunayTriangles - Return a constrained Delaunay triangulation around the given input geometry.
	ST_ConvexHull - Computes the convex hull of a geometry.
	ST_CoordDim - Return the coordinate dimension of a geometry.
	ST_CurveToLine - Converts a geometry containing curves to a linear geometry.
	ST_DelaunayTriangles - Returns the Delaunay triangulation of the vertices of a geometry.
	ST_Difference - Computes a geometry representing the part of geometry A that does not intersect geometry B.
	ST_DistanceCPA - Returns the distance between the closest point of approach of two trajectories.
	ST_Dump - Returns a set of geometry_dump rows for the components of a geometry.
	ST_DumpPoints - Returns a set of geometry_dump rows for the coordinates in a geometry.
	ST_DumpRings - Returns a set of geometry_dump rows for the exterior and interior rings of a Polygon.
	ST_DumpSegments - Returns a set of geometry_dump rows for the segments in a geometry.
	ST_EndPoint - Returns the last point of a LineString or CircularLineString.
	ST_ExteriorRing - Returns a LineString representing the exterior ring of a Polygon.
	ST_Extrude - Extrude a surface to a related volume
	ST_FlipCoordinates - Returns a version of a geometry with X and Y axis flipped.
	ST_Force2D - Force the geometries into a "2-dimensional mode".
	ST_ForceCurve - Upcast a geometry into its curved type, if applicable.
	ST_ForceLHR - Force LHR orientation
	ST_ForcePolygonCCW - Orients all exterior rings counter-clockwise and all interior rings clockwise.
	ST_ForcePolygonCW - Orients all exterior rings clockwise and all interior rings counter-clockwise.
	ST_ForceRHR - Force the orientation of the vertices in a polygon to follow the Right-Hand-Rule.
	ST_ForceSFS - Force the geometries to use SFS 1.1 geometry types only.
	ST_Force_3D - Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.
	ST_Force_3DZ - Force the geometries into XYZ mode.
	ST_Force_4D - Force the geometries into XYZM mode.
	ST_Force_Collection - Convert the geometry into a GEOMETRYCOLLECTION.
	ST_GeomFromEWKB - Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).
	ST_GeomFromEWKT - Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).
	ST_GeomFromGML - Takes as input GML representation of geometry and outputs a PostGIS geometry object
	ST_GeomFromGeoJSON - Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object
	ST_GeomFromKML - Takes as input KML representation of geometry and outputs a PostGIS geometry object
	ST_GeometricMedian - Returns the geometric median of a MultiPoint.
	ST_GeometryN - Return an element of a geometry collection.
	ST_GeometryType - Returns the SQL-MM type of a geometry as text.
	ST_HasArc - Tests if a geometry contains a circular arc
	ST_InteriorRingN - Returns the Nth interior ring (hole) of a Polygon.
	ST_InterpolatePoint - Returns the interpolated measure of a geometry closest to a point.
	ST_Intersection - Computes a geometry representing the shared portion of geometries A and B.
	ST_IsClosed - Tests if a LineStrings's start and end points are coincident. For a PolyhedralSurface tests if it is closed (volumetric).
	ST_IsCollection - Tests if a geometry is a geometry collection type.
	ST_IsPlanar - Check if a surface is or not planar
	ST_IsPolygonCCW - Tests if Polygons have exterior rings oriented counter-clockwise and interior rings oriented clockwise.
	ST_IsPolygonCW - Tests if Polygons have exterior rings oriented clockwise and interior rings oriented counter-clockwise.
	ST_IsSimple - Tests if a geometry has no points of self-intersection or self-tangency.
	ST_IsSolid - Test if the geometry is a solid. No validity check is performed.
	ST_IsValidTrajectory - Tests if the geometry is a valid trajectory.
	ST_Length_Spheroid - Returns the 2D or 3D length/perimeter of a lon/lat geometry on a spheroid.
	ST_LineFromMultiPoint - Creates a LineString from a MultiPoint geometry.
	ST_LineInterpolatePoint - Returns a point interpolated along a line at a fractional location.
	ST_LineInterpolatePoints - Returns points interpolated along a line at a fractional interval.
	ST_LineSubstring - Returns the part of a line between two fractional locations.
	ST_LineToCurve - Converts a linear geometry to a curved geometry.
	ST_LocateBetweenElevations - Returns the portions of a geometry that lie in an elevation (Z) range.
	ST_M - Returns the M coordinate of a Point.
	ST_MakeLine - Creates a LineString from Point, MultiPoint, or LineString geometries.
	ST_MakePoint - Creates a 2D, 3DZ or 4D Point.
	ST_MakePolygon - Creates a Polygon from a shell and optional list of holes.
	ST_MakeSolid - Cast the geometry into a solid. No check is performed. To obtain a valid solid, the input geometry must be a closed Polyhedral Surface or a closed TIN.
	ST_MakeValid - Attempts to make an invalid geometry valid without losing vertices.
	ST_MemSize - Returns the amount of memory space a geometry takes.
	ST_MemUnion - Aggregate function which unions geometries in a memory-efficent but slower way
	ST_NDims - Returns the coordinate dimension of a geometry.
	ST_NPoints - Returns the number of points (vertices) in a geometry.
	ST_NRings - Returns the number of rings in a polygonal geometry.
	ST_Node - Nodes a collection of lines.
	ST_NumGeometries - Returns the number of elements in a geometry collection.
	ST_NumPatches - Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.
	ST_Orientation - Determine surface orientation
	ST_PatchN - Returns the Nth geometry (face) of a PolyhedralSurface.
	ST_PointFromWKB - Makes a geometry from WKB with the given SRID
	ST_PointN - Returns the Nth point in the first LineString or circular LineString in a geometry.
	ST_PointOnSurface - Computes a point guaranteed to lie in a polygon, or on a geometry.
	ST_Points - Returns a MultiPoint containing the coordinates of a geometry.
	ST_Polygon - Creates a Polygon from a LineString with a specified SRID.
	ST_RemovePoint - Remove a point from a linestring.
	ST_RemoveRepeatedPoints - Returns a version of a geometry with duplicate points removed.
	ST_Reverse - Return the geometry with vertex order reversed.
	ST_Rotate - Rotates a geometry about an origin point.
	ST_RotateX - Rotates a geometry about the X axis.
	ST_RotateY - Rotates a geometry about the Y axis.
	ST_RotateZ - Rotates a geometry about the Z axis.
	ST_Scale - Scales a geometry by given factors.
	ST_Scroll - Change start point of a closed LineString.
	ST_SetPoint - Replace point of a linestring with a given point.
	ST_Shift_Longitude - Shifts the longitude coordinates of a geometry between -180..180 and 0..360.
	ST_SnapToGrid - Snap all points of the input geometry to a regular grid.
	ST_StartPoint - Returns the first point of a LineString.
	ST_StraightSkeleton - Compute a straight skeleton from a geometry
	ST_SwapOrdinates - Returns a version of the given geometry with given ordinate values swapped.
	ST_SymDifference - Computes a geometry representing the portions of geometries A and B that do not intersect.
	ST_Tesselate - Perform surface Tesselation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS
	ST_TransScale - Translates and scales a geometry by given offsets and factors.
	ST_Translate - Translates a geometry by given offsets.
	ST_UnaryUnion - Computes the union of the components of a single geometry.
	ST_Union - Computes a geometry representing the point-set union of the input geometries.
	ST_Volume - Computes the volume of a 3D solid. If applied to surface (even closed) geometries will return 0.
	ST_WrapX - Wrap a geometry around an X value.
	ST_X - Returns the X coordinate of a Point.
	ST_XMax - Returns the X maxima of a 2D or 3D bounding box or a geometry.
	ST_XMin - Returns the X minima of a 2D or 3D bounding box or a geometry.
	ST_Y - Returns the Y coordinate of a Point.
	ST_YMax - Returns the Y maxima of a 2D or 3D bounding box or a geometry.
	ST_YMin - Returns the Y minima of a 2D or 3D bounding box or a geometry.
	ST_Z - Returns the Z coordinate of a Point.
	ST_ZMax - Returns the Z maxima of a 2D or 3D bounding box or a geometry.
	ST_ZMin - Returns the Z minima of a 2D or 3D bounding box or a geometry.
	ST_Zmflag - Returns a code indicating the ZM coordinate dimension of a geometry.
	TG_Equals - Returns true if two topogeometries are composed of the same topology primitives.
	TG_Intersects - Returns true if any pair of primitives from the two topogeometries intersect.
	UpdateGeometrySRID - Updates the SRID of all features in a geometry column, and the table metadata.
	geometry_overlaps_nd - Returns TRUE if A's n-D bounding box intersects B's n-D bounding box.
	overlaps_nd_geometry_gidx - Returns TRUE if a geometry's (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).
	overlaps_nd_gidx_geometry - Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry's (cached) n-D bounding box.
	overlaps_nd_gidx_gidx - Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.
	postgis_sfcgal_full_version - Returns the full version of SFCGAL in use including CGAL and Boost versions
	postgis_sfcgal_version - Returns the version of SFCGAL in use

PostGIS Curved Geometry Support Functions

The functions given below are PostGIS functions that can use CIRCULARSTRING, CURVEPOLYGON, and other curved geometry types
	AddGeometryColumn - Adds a geometry column to an existing table.
	Box2D - Returns a BOX2D representing the 2D extent of a geometry.
	Box3D - Returns a BOX3D representing the 3D extent of a geometry.
	DropGeometryColumn - Removes a geometry column from a spatial table.
	GeometryType - Returns the type of a geometry as text.
	PostGIS_AddBBox - Add bounding box to the geometry.
	PostGIS_DropBBox - Drop the bounding box cache from the geometry.
	PostGIS_HasBBox - Returns TRUE if the bbox of this geometry is cached, FALSE otherwise.
	ST_3DExtent - Aggregate function that returns the 3D bounding box of geometries.
	ST_Affine - Apply a 3D affine transformation to a geometry.
	ST_AsBinary - Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsEWKB - Return the Extended Well-Known Binary (EWKB) representation of the geometry with SRID meta data.
	ST_AsEWKT - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
	ST_AsHEXEWKB - Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR) encoding.
	ST_AsText - Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
	ST_Collect - Creates a GeometryCollection or Multi* geometry from a set of geometries.
	ST_CoordDim - Return the coordinate dimension of a geometry.
	ST_CurveToLine - Converts a geometry containing curves to a linear geometry.
	ST_Distance - Returns the distance between two geometry or geography values.
	ST_Dump - Returns a set of geometry_dump rows for the components of a geometry.
	ST_DumpPoints - Returns a set of geometry_dump rows for the coordinates in a geometry.
	ST_EndPoint - Returns the last point of a LineString or CircularLineString.
	ST_EstimatedExtent - Returns the estimated extent of a spatial table.
	ST_FlipCoordinates - Returns a version of a geometry with X and Y axis flipped.
	ST_Force2D - Force the geometries into a "2-dimensional mode".
	ST_ForceCurve - Upcast a geometry into its curved type, if applicable.
	ST_ForceSFS - Force the geometries to use SFS 1.1 geometry types only.
	ST_Force3D - Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.
	ST_Force3DM - Force the geometries into XYM mode.
	ST_Force3DZ - Force the geometries into XYZ mode.
	ST_Force4D - Force the geometries into XYZM mode.
	ST_ForceCollection - Convert the geometry into a GEOMETRYCOLLECTION.
	ST_GeoHash - Return a GeoHash representation of the geometry.
	ST_GeogFromWKB - Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended Well Known Binary (EWKB).
	ST_GeomFromEWKB - Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).
	ST_GeomFromEWKT - Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).
	ST_GeomFromText - Return a specified ST_Geometry value from Well-Known Text representation (WKT).
	ST_GeomFromWKB - Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional SRID.
	ST_GeometryN - Return an element of a geometry collection.
	= - Returns TRUE if the coordinates and coordinate order geometry/geography A are the same as the coordinates and coordinate order of geometry/geography B.
	&<| - Returns TRUE if A's bounding box overlaps or is below B's.
	ST_HasArc - Tests if a geometry contains a circular arc
	ST_Intersects - Tests if two geometries intersect (they have at least one point in common).
	ST_IsClosed - Tests if a LineStrings's start and end points are coincident. For a PolyhedralSurface tests if it is closed (volumetric).
	ST_IsCollection - Tests if a geometry is a geometry collection type.
	ST_IsEmpty - Tests if a geometry is empty.
	ST_LineToCurve - Converts a linear geometry to a curved geometry.
	ST_MemSize - Returns the amount of memory space a geometry takes.
	ST_NPoints - Returns the number of points (vertices) in a geometry.
	ST_NRings - Returns the number of rings in a polygonal geometry.
	ST_PointFromWKB - Makes a geometry from WKB with the given SRID
	ST_PointN - Returns the Nth point in the first LineString or circular LineString in a geometry.
	ST_Points - Returns a MultiPoint containing the coordinates of a geometry.
	ST_Rotate - Rotates a geometry about an origin point.
	ST_RotateZ - Rotates a geometry about the Z axis.
	ST_SRID - Returns the spatial reference identifier for a geometry.
	ST_Scale - Scales a geometry by given factors.
	ST_SetSRID - Set the SRID on a geometry.
	ST_StartPoint - Returns the first point of a LineString.
	ST_Summary - Returns a text summary of the contents of a geometry.
	ST_SwapOrdinates - Returns a version of the given geometry with given ordinate values swapped.
	ST_TransScale - Translates and scales a geometry by given offsets and factors.
	ST_Transform - Return a new geometry with coordinates transformed to a different spatial reference system.
	ST_Translate - Translates a geometry by given offsets.
	ST_XMax - Returns the X maxima of a 2D or 3D bounding box or a geometry.
	ST_XMin - Returns the X minima of a 2D or 3D bounding box or a geometry.
	ST_YMax - Returns the Y maxima of a 2D or 3D bounding box or a geometry.
	ST_YMin - Returns the Y minima of a 2D or 3D bounding box or a geometry.
	ST_ZMax - Returns the Z maxima of a 2D or 3D bounding box or a geometry.
	ST_ZMin - Returns the Z minima of a 2D or 3D bounding box or a geometry.
	ST_Zmflag - Returns a code indicating the ZM coordinate dimension of a geometry.
	UpdateGeometrySRID - Updates the SRID of all features in a geometry column, and the table metadata.
	~(box2df,box2df) - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).
	~(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry's 2D bonding box.
	~(geometry,box2df) - Returns TRUE if a geometry's 2D bonding box contains a 2D float precision bounding box (GIDX).
	&& - Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.
	&&& - Returns TRUE if A's n-D bounding box intersects B's n-D bounding box.
	@(box2df,box2df) - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision bounding box.
	@(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry's 2D bounding box.
	@(geometry,box2df) - Returns TRUE if a geometry's 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).
	&&(box2df,box2df) - Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.
	&&(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry's (cached) 2D bounding box.
	&&(geometry,box2df) - Returns TRUE if a geometry's (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).
	&&&(geometry,gidx) - Returns TRUE if a geometry's (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).
	&&&(gidx,geometry) - Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry's (cached) n-D bounding box.
	&&&(gidx,gidx) - Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.

PostGIS Polyhedral Surface Support Functions

The functions given below are PostGIS functions that can use POLYHEDRALSURFACE, POLYHEDRALSURFACEM geometries
	Box2D - Returns a BOX2D representing the 2D extent of a geometry.
	Box3D - Returns a BOX3D representing the 3D extent of a geometry.
	GeometryType - Returns the type of a geometry as text.
	ST_3DArea - Computes area of 3D surface geometries. Will return 0 for solids.
	ST_3DClosestPoint - Returns the 3D point on g1 that is closest to g2. This is the first point of the 3D shortest line.
	ST_3DConvexHull - Computes the 3D convex hull of a geometry.
	ST_3DDFullyWithin - Tests if two 3D geometries are entirely within a given 3D distance
	ST_3DDWithin - Tests if two 3D geometries are within a given 3D distance
	ST_3DDifference - Perform 3D difference
	ST_3DDistance - Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.
	ST_3DExtent - Aggregate function that returns the 3D bounding box of geometries.
	ST_3DIntersection - Perform 3D intersection
	ST_3DIntersects - Tests if two geometries spatially intersect in 3D - only for points, linestrings, polygons, polyhedral surface (area).
	ST_3DLongestLine - Returns the 3D longest line between two geometries
	ST_3DMaxDistance - Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in projected units.
	ST_3DShortestLine - Returns the 3D shortest line between two geometries
	ST_3DUnion - Perform 3D union.
	ST_Affine - Apply a 3D affine transformation to a geometry.
	ST_ApproximateMedialAxis - Compute the approximate medial axis of an areal geometry.
	ST_Area - Returns the area of a polygonal geometry.
	ST_AsBinary - Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
	ST_AsEWKB - Return the Extended Well-Known Binary (EWKB) representation of the geometry with SRID meta data.
	ST_AsEWKT - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
	ST_AsGML - Return the geometry as a GML version 2 or 3 element.
	ST_AsX3D - Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML
	ST_CoordDim - Return the coordinate dimension of a geometry.
	ST_Dimension - Returns the topological dimension of a geometry.
	ST_Dump - Returns a set of geometry_dump rows for the components of a geometry.
	ST_DumpPoints - Returns a set of geometry_dump rows for the coordinates in a geometry.
	ST_Expand - Returns a bounding box expanded from another bounding box or a geometry.
	ST_Extent - Aggregate function that returns the bounding box of geometries.
	ST_Extrude - Extrude a surface to a related volume
	ST_FlipCoordinates - Returns a version of a geometry with X and Y axis flipped.
	ST_Force2D - Force the geometries into a "2-dimensional mode".
	ST_ForceLHR - Force LHR orientation
	ST_ForceRHR - Force the orientation of the vertices in a polygon to follow the Right-Hand-Rule.
	ST_ForceSFS - Force the geometries to use SFS 1.1 geometry types only.
	ST_Force3D - Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.
	ST_Force3DZ - Force the geometries into XYZ mode.
	ST_ForceCollection - Convert the geometry into a GEOMETRYCOLLECTION.
	ST_GeomFromEWKB - Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).
	ST_GeomFromEWKT - Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).
	ST_GeomFromGML - Takes as input GML representation of geometry and outputs a PostGIS geometry object
	ST_GeometryN - Return an element of a geometry collection.
	ST_GeometryType - Returns the SQL-MM type of a geometry as text.
	= - Returns TRUE if the coordinates and coordinate order geometry/geography A are the same as the coordinates and coordinate order of geometry/geography B.
	&<| - Returns TRUE if A's bounding box overlaps or is below B's.
	~= - Returns TRUE if A's bounding box is the same as B's.
	ST_IsClosed - Tests if a LineStrings's start and end points are coincident. For a PolyhedralSurface tests if it is closed (volumetric).
	ST_IsPlanar - Check if a surface is or not planar
	ST_IsSolid - Test if the geometry is a solid. No validity check is performed.
	ST_MakeSolid - Cast the geometry into a solid. No check is performed. To obtain a valid solid, the input geometry must be a closed Polyhedral Surface or a closed TIN.
	ST_MemSize - Returns the amount of memory space a geometry takes.
	ST_NPoints - Returns the number of points (vertices) in a geometry.
	ST_NumGeometries - Returns the number of elements in a geometry collection.
	ST_NumPatches - Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.
	ST_PatchN - Returns the Nth geometry (face) of a PolyhedralSurface.
	ST_RemoveRepeatedPoints - Returns a version of a geometry with duplicate points removed.
	ST_Reverse - Return the geometry with vertex order reversed.
	ST_Rotate - Rotates a geometry about an origin point.
	ST_RotateX - Rotates a geometry about the X axis.
	ST_RotateY - Rotates a geometry about the Y axis.
	ST_RotateZ - Rotates a geometry about the Z axis.
	ST_Scale - Scales a geometry by given factors.
	ST_ShiftLongitude - Shifts the longitude coordinates of a geometry between -180..180 and 0..360.
	ST_StraightSkeleton - Compute a straight skeleton from a geometry
	ST_Summary - Returns a text summary of the contents of a geometry.
	ST_SwapOrdinates - Returns a version of the given geometry with given ordinate values swapped.
	ST_Tesselate - Perform surface Tesselation of a polygon or polyhedralsurface and returns as a TIN or collection of TINS
	ST_Transform - Return a new geometry with coordinates transformed to a different spatial reference system.
	ST_Volume - Computes the volume of a 3D solid. If applied to surface (even closed) geometries will return 0.
	~(box2df,box2df) - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).
	~(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry's 2D bonding box.
	~(geometry,box2df) - Returns TRUE if a geometry's 2D bonding box contains a 2D float precision bounding box (GIDX).
	&& - Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.
	&&& - Returns TRUE if A's n-D bounding box intersects B's n-D bounding box.
	@(box2df,box2df) - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision bounding box.
	@(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry's 2D bounding box.
	@(geometry,box2df) - Returns TRUE if a geometry's 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).
	&&(box2df,box2df) - Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.
	&&(box2df,geometry) - Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry's (cached) 2D bounding box.
	&&(geometry,box2df) - Returns TRUE if a geometry's (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).
	&&&(geometry,gidx) - Returns TRUE if a geometry's (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).
	&&&(gidx,geometry) - Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry's (cached) n-D bounding box.
	&&&(gidx,gidx) - Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.
	postgis_sfcgal_full_version - Returns the full version of SFCGAL in use including CGAL and Boost versions
	postgis_sfcgal_version - Returns the version of SFCGAL in use

Chapter 16. Reporting Problems

Reporting Software Bugs

Reporting bugs effectively is a fundamental way to help PostGIS
 development. The most effective bug report is that enabling PostGIS
 developers to reproduce it, so it would ideally contain a script
 triggering it and every information regarding the environment in which it
 was detected. Good enough info can be extracted running SELECT
 postgis_full_version() [for PostGIS] and SELECT
 version() [for postgresql].
If you aren't using the latest release, it's worth taking a look at
 its release
 changelog first, to find out if your bug has already been
 fixed.
Using the PostGIS bug
 tracker will ensure your reports are not discarded, and will keep
 you informed on its handling process. Before reporting a new bug please
 query the database to see if it is a known one, and if it is please add
 any new information you have about it.
You might want to read Simon Tatham's paper about How to Report
 Bugs Effectively before filing a new report.

PostGIS 3.3.0

2022/08/26
This version requires PostgreSQL 11 or higher, GEOS 3.6 or higher, and Proj 5.2+.
 Additional features are enabled if you are running GEOS 3.9+
 ST_MakeValid enhancements with 3.10+, numerouse additional enhancements with GEOS 3.11+.
 Requires SFCGAL 1.4.1+ for ST_AlphaShape and ST_OptimalAlphaShape.
NOTE: GEOS 3.11.0 details at GEOS 3.11.0 release notes
The new configure --enable-lto flag improves speed of math computations. This new feature is disabled by default
 because on some platforms, causes compilation errors (BSD and MingW64 issues have been raised)
New features

5116, Topology export/import scripts (Sandro Santilli)
ST_Letters creates geometries that look like letters (Paul Ramsey)
5037, postgis_sfcgal: ST_3DConvexHull (Loïc Bartoletti)
postgis_sfcgal: sfcgal_full_version - reports BOOST and CGAL version
 (Loïc Bartoletti)
GH 659, MARC21/XML, ST_GeomFromMARC21, ST_AsMARC21 (Jim Jones)
5132, GH 683, sfcgal: ST_3DUnion aggregate function (Sergei Shoulbakov)
5143, SFCGAL ST_AlphaShape and ST_OptimalAlphaShape
 Requires SFCGAL 1.4.1+ (Loïc Bartoletti)
5162, ST_TriangulatePolygon with GEOS 3.11+ (Paul Ramsey, Martin Davis)
5162, ST_SimplifyPolygonHull with GEOS 3.11+ (Paul Ramsey, Martin Davis)
5183, topology.RemoveUnusedPrimitives (Sandro Santilli)

Breaking Changes

Drop support for PostgreSQL 9.6 and 10 (Regina Obe)
Change output for WKT MULTIPOINT. All points now
 wrapped in parens. (Even Rouault)
GH 674, geometry validation and fixing is disabled
 for ST_DumpAsPolygons and ST_Polygon so it works faster
 but might produce invalid polygons. (Aliaksandr Kalenik)

Enhancements

2861, Add index on topology.node(containing_face) speeding up
 splitting and merging of faces (Sandro Santilli)
2083, Speed up ST_RemEdge topology functions adding index on
 relation(element_id) and edge_data(abs_next*) (Sandro Santilli)
5118, Allow dropping topologies with missing topogeometry sequences
 (Sandro Santilli)
5111, faster topology face MBR computation (Sandro Santilli)
postgis_extensions_upgrade() support for upgrades from any PostGIS
 version, including yet to be released ones (Sandro Santilli)
5040, add postgis_sfcgal_full_version (Loïc Bartoletti)
GH 655, GiST: balance the tree splits better in recursive calls (Darafei Praliaskouski)
GH 657, GiST: do not call no-op decompress function (Aliaksandr Kalenik)
4939, 5161, ST_LineMerge now has option to keep the directions of input linestrings,
 useful when processing road graphs. Requires GEOS 3.11. (Sergei Shoulbakov)
ST_ConcaveHull GEOS 3.11+ native implementation (Paul Ramsey, Martin Davis)
ST_ConcaveHull GEOS 3.11+ polygon-respecting native implementation (Paul Ramsey, Martin Davis)
4574, GH 678, 5121 Enable Link-Time Optimizations using --enable-lto (Sergei Shoulbakov)
GH 676, faster ST_Clip (Aliaksandr Kalenik)
5135, Fast GiST index build is enabled by default for PostgreSQL 15+ (Sergei Shoulbakov)
4939, 5161, ST_LineMerge now has option to keep the directions of input linestrings,
 useful when processing road graphs. Requires GEOS 3.11. (Sergei Shoulbakov)
5158, pgtopo_import / pgtopo_export manpages (Sandro Santilli)
5170, add a optional max_rows_per_copy to -Y option to raster2pgsql to
 control number of rows per copy statement.
 Default to 50 when not specified (Regina Obe)
GH 698, support parallel aggregate for ST_Union (Sergei Shoulbakov)
5024, Update spatial_ref_sys as part of ALTER EXTENSION update postgis (Paul Ramsey)

Bug Fixes

These are fixes issues in prior minors not backported
4912, GiST: fix crash on STORAGE EXTERNAL for geography (Aliaksandr Kalenik)
5088, Memory corruption in mvt_agg_transfn (Victor Collod)
5137, resetting interrupt flags before query execution (Sergei Shoulbakov)
5148, ST_Clip is more robust to alignment of raster and clip geometry (Sergei Shoulbakov)
4932, Bug with geography ST_Intersects / ST_Distance (Paul Ramsey)
5089, ST_Reverse also reverses components of CompoundCurve (Paul Ramsey)

PostGIS 3.3.0beta1

2022/07/03
This version requires PostgreSQL 11 or higher, GEOS 3.6 or higher, and Proj 5.2+.
Additional features are enabled if you are running GEOS 3.9+
ST_MakeValid enhancements with 3.10+, numerouse additional enhancements with GEOS 3.11+.
Requires SFCGAL 1.4.1+ for ST_AlphaShape and ST_OptimalAlphaShape.
NOTE: GEOS 3.11.0 was recently released,
 details at GEOS 3.11.0 release notes
The new --enable-lto flag improves math computations. This new feature is disabled by default
because on some platforms, causes compilation errors (BSD and MingW64 issues have been raised)
Use below to enable it.

./configure --enable-lto

Enhancements

5158, pgtopo_import / pgtopo_export manpages (Sandro Santilli)
5170, add a optional max_rows_per_copy to -Y option to raster2pgsql to
 control number of rows per copy statement.
 Default to 50 when not specified (Regina Obe)
4939, 5161, ST_LineMerge now has option to keep the directions of input linestrings,
 useful when processing road graphs. Requires GEOS 3.11. (Sergei Shoulbakov)
ST_ConcaveHull GEOS 3.11+ polygon-respecting native implementation (Paul Ramsey, Martin Davis)
5039, postgis_tiger_geocoder TIGER 2021 (Regina Obe)

New features

>5169, ST_SimplifyPolygonHull (requires GEOS 3.11)
 (Paul Ramsey, Martin Davis)
5162, ST_TriangulatePolygon with GEOS 3.11+ (Paul Ramsey, Martin Davis)

Bug Fix

5173 st_asflatgeobuf detoast crash (Paul Ramsey)
4932, Bug with geography ST_Intersects / ST_Distance (Paul Ramsey)
5114, pgsql2shp segfault with long or many truncated columns

PostGIS 3.2.0 (Olivier Courtin Edition)

2021/12/18
This version requires PostgreSQL 9.6 or higher, GEOS 3.6 or higher, and Proj 4.9+
 Additional features are enabled if you are running GEOS 3.9+
 (and ST_MakeValid enhancements with 3.10+),
 Proj 6.1+, and PostgreSQL 14+.
Due to some query performance degradation
 with the new PG14 fast index build ,
 we have decided to disable the feature by default
 until we get more user testing
 as to the true impact of real-world queries.
 If you are running PG14+, you can reenable it by doing:
ALTER OPERATOR FAMILY gist_geometry_ops_2d USING gist
 ADD FUNCTION 11 (geometry)
 geometry_gist_sortsupport_2d (internal);

To revert the change:
ALTER OPERATOR FAMILY gist_geometry_ops_2d using gist
 DROP FUNCTION 11 (geometry);
and then reindex your gist indexes
Breaking changes

5008, Empty geometries are not reported as being within Infinite
 distance by ST_DWithin (Sandro Santilli)
4824, Removed --without-wagyu build option. Using Wagyu is now mandatory to build with MVT support.
4933, topology.GetFaceByPoint will not work with topologies having invalid edge linking.
4981, ST_StartPoint support any geometry. No longer returns null for non-linestrings.
4149, ST_AsMVTGeom now preserves more of original geometry's details at scale close to target extent.
 If you need previous simplifying behaviour, you can ST_Simplify the geometry in advance.
 (Darafei Praliaskouski)
- Proj 4.9 or higher is required
5000, Turn off Window support in ST_AsMVT aggregate
 as no real use-case for it and it crashes with random input
 (Paul Ramsey)

Enhancements

4997, FlatGeobuf format input/output (Björn Harrtell)
4575, GRANT SELECT on topology metadata tables to PUBLIC (Sandro Santilli)
2592, Do not allow CreateTopology to define topologies with SRID < 0
 (Sandro Santilli)
3232, Prevent moving an isolated node to different face
 (Sandro Santilli)
- Consider collection TopoGeometries while editing topology primitives.
 (Sandro Santilli)
3248, Prevent removing isolated edges if used in a TopoGeometry
 (Sandro Santilli)
3231, Prevent removing isolated nodes if used in a TopoGeometry
 (Sandro Santilli)
3239, Prevent headling topology edges if the connecting node is
 used in the definition of a TopoGeometry (Sandro Santilli)
4950, Speed up checking containing_face for nodes in ValidateTopology
 (Sandro Santilli)
4945, Multi-shell face check in ValidateTopology (Sandro Santilli)
4944, Side-location conflict check in ValidateTopology (Sandro Santilli)
3042, ValidateTopology check for edge linking (Sandro Santilli)
3276, ValidateTopology check for face's mbr (Sandro Santilli)
4936, Bounding box limited ValidateTopology (Sandro Santilli)
4933, Speed up topology building in presence of big faces (Sandro Santilli)
3233, ValidateTopology check for node's containing_face (Sandro Santilli)
4830, ValidateTopology check for edges side face containment
 (Sandro Santilli)
4827, Allow NaN coordinates in WKT input (Paul Ramsey)
- ST_Value() accepts resample parameter to add bilinear option (Paul Ramsey)
3778, #4401, ST_Boundary now works for TIN and does not linearize curves (Aliaksandr Kalenik)
4881, #4884, Store sign of edge_id for lineal TopoGeometry in relation table
 to retain direction (Sandro Santilli)
4628, Add an option to disable ANALYZE when loading shapefiles (Stefan Corneliu Petrea)
4924, Faster ST_RemoveRepeatedPoints on large multipoints, O(NlogN) instead of O(N^2)
 (Aliaksandr Kalenik, Darafei Praliaskouski)
4925, fix ST_DumpPoints to not overlook points (Aliaksandr Kalenik)
- ST_SRID(topogeometry) override, to speedup lookups (Sandro Santilli)
2175, Avoid creating additional nodes when adding same closed
 line to topology (Sandro Santilli)
4974, Upgrade path for address_standardizer_data_us
 (Jan Katins of Aiven, Regina Obe)
4975, PostGIS upgrade change to not use temp tables (Jan Katins of Aiven)
4981, ST_StartPoint support any geometry (Aliaksandr Kalenik)
4799, Include srs in GeoJSON where it exists in spatial_ref_sys.
4986, GIST indexes on Postgres 14 are now created faster using Hilbert-sorting method.
 (Han Wang, Aliaksandr Kalenik, Darafei Praliaskouski, Giuseppe Broccolo)
4949, Use proj_normalize_for_visualization to hand "axis swap" decisions (Paul Ramsey)
- GH647, ST_PixelAsCentroids, ST_PixelAsCentroid reimplemented on top of a C function (Sergei Shoulbakov)
- GH648, ST_AsMVTGeom now uses faster clipping (Aliaksandr Kalenik)
5018, pgsql2shp basic support for WITH CTE clause (Regina Obe)
5019, address_standardizer: Add support for pcre2 (Paul Ramsey)

New features

4923, topology.ValidateTopologyRelation (Sandro Santilli)
4933, topology.GetFaceContainingPoint (Sandro Santilli)
2175, ST_Scroll (Sandro Santilli)
4841, FindTopology to quickly get a topology record (Sandro Santilli)
4869, FindLayer to quickly get a layer record (Sandro Santilli)
4851, TopoGeom_addTopoGeom function (Sandro Santilli)
ST_MakeValid(geometry, options) allows alternative validity building
 algorithms with GEOS 3.10 (Paul Ramsey)
ST_InterpolateRaster() fills in raster cells between sample points
 using one of a number of algorithms (inverse weighted distance, average, etc)
 using algorithms from GDAL
 (Paul Ramsey)
ST_Contour() generates contour lines from raster values
 using algorithms from GDAL (Paul Ramsey)
ST_SetZ()/ST_SetM() fills in z/m coordinates of a geometry using data read
 from a raster (Paul Ramsey)
New postgis.gdal_vsi_options GUC allows out-db rasters on VSI network
 services to be accessed with authentication keys, etc. (Paul Ramsey)
ST_DumpSegments returns a set of segments of input geometry (Aliaksandr Kalenik)
4859, ST_Point, ST_PointZ, ST_PointM, ST_PointZM, constructors
 with SRID parameter (Paul Ramsey)
4808, ST_ClusterKMeans now supports max_radius argument. Use it when you're not sure what is
 the number of clusters but you know what the size of clusters should be. (Darafei Praliaskouski)

Release 3.2.0alpha1

Release date: 2021/09/10
This version requires PostgreSQL 9.6 or higher, GEOS 3.6 or higher, and Proj 4.9 or higher
 Additional features are enabled if you are running GEOS 3.9+ (more with GEOS 3.10+), Proj 6.1+, or PostgreSQL 14+.
Breaking changes

#4824, Removed `--without-wagyu` build option. Using Wagyu is now mandatory to build with MVT support.
#4933, topology.GetFaceByPoint will not work with topologies having invalid edge linking.
#4981, ST_StartPoint support any geometry. No longer returns null for non-linestrings.
#4149, ST_AsMVTGeom now preserves more of original geometry's details at scale close to target extent.
 If you need previous simplifying behaviour, you can ST_Simplify the geometry in advance.
 (Darafei Praliaskouski)
Proj 4.9 or higher is required.

Enhancements

#2592, Do not allow CreateTopology to define topologies with SRID > 0
 (Sandro Santilli)
#3232, Prevent moving an isolated node to different face
 (Sandro Santilli)
Consider collection TopoGeometries while editing topology primitives.
 (Sandro Santilli)
#3248, Prevent removing isolated edges if used in a TopoGeometry
 (Sandro Santilli)
#3231, Prevent removing isolated nodes if used in a TopoGeometry
 (Sandro Santilli)
#3239, Prevent headling topology edges if the connecting node is
 used in the definition of a TopoGeometry (Sandro Santilli)
#4950, Speed up checking containing_face for nodes in ValidateTopology
 (Sandro Santilli)
#4945, Multi-shell face check in ValidateTopology (Sandro Santilli)
#4944, Side-location conflict check in ValidateTopology (Sandro Santilli)
#3042, ValidateTopology check for edge linking (Sandro Santilli)
#3276, ValidateTopology check for face's mbr (Sandro Santilli)
#4936, Bounding box limited ValidateTopology (Sandro Santilli)
#4933, Speed up topology building in presence of big faces (Sandro Santilli)
#3233, ValidateTopology check for node's containing_face (Sandro Santilli)
#4830, ValidateTopology check for edges side face containment
 (Sandro Santilli)
#4827, Allow NaN coordinates in WKT input (Paul Ramsey)
ST_Value() accepts resample parameter to add bilinear option (Paul Ramsey)
#3778, #4401, ST_Boundary now works for TIN and does not linearize curves (Aliaksandr Kalenik)
#4881, #4884, Store sign of edge_id for lineal TopoGeometry in relation table
 to retain direction (Sandro Santilli)
#4628, Add an option to disable ANALYZE when loading shapefiles (Stefan Corneliu Petrea)
#4924, Faster ST_RemoveRepeatedPoints on large multipoints, O(NlogN) instead of O(N^2)
 (Aliaksandr Kalenik, Darafei Praliaskouski)
#4925, fix ST_DumpPoints to not overlook points (Aliaksandr Kalenik)
ST_SRID(topogeometry) override, to speedup lookups (Sandro Santilli)
#2175, Avoid creating additional nodes when adding same closed
 line to topology (Sandro Santilli)
#4974, Upgrade path for address_standardizer_data_us
 (Jan Katins of Aiven, Regina Obe)
#4975, PostGIS upgrade change to not use temp tables (Jan Katins of Aiven)
#4981, ST_StartPoint support any geometry (Aliaksandr Kalenik)
#4799, Include srs in GeoJSON where it exists in spatial_ref_sys.
#4986, GIST indexes on Postgres 14 are now created faster using Hilbert-sorting method.
 (Han Wang, Aliaksandr Kalenik, Darafei Praliaskouski, Giuseppe Broccolo)
#4949, Use proj_normalize_for_visualization to hand "axis swap" decisions (Paul Ramsey)

New features

#4923, topology.ValidateTopologyRelation (Sandro Santilli)
#4933, topology.GetFaceContainingPoint (Sandro Santilli)
#2175, ST_Scroll (Sandro Santilli)
#4841, FindTopology to quickly get a topology record (Sandro Santilli)
#4869, FindLayer to quickly get a layer record (Sandro Santilli)
#4851, TopoGeom_addTopoGeom function (Sandro Santilli)
ST_MakeValid(geometry, options) allows alternative validity building
 algorithms with GEOS 3.10 (Paul Ramsey)
ST_InterpolateRaster() fills in raster cells between sample points
 using one of a number of algorithms (inverse weighted distance, average, etc)
 using algorithms from GDAL
 (Paul Ramsey)
ST_Contour() generates contour lines from raster values
 using algorithms from GDAL (Paul Ramsey)
ST_SetZ()/ST_SetM() fills in z/m coordinates of a geometry using data read
 from a raster (Paul Ramsey)
New postgis.gdal_vsi_options GUC allows out-db rasters on VSI network
 services to be accessed with authentication keys, etc. (Paul Ramsey)
ST_DumpSegments returns a set of segments of input geometry (Aliaksandr Kalenik)
#4859, ST_Point, ST_PointZ, ST_PointM, ST_PointZM, constructors
 with SRID parameter (Paul Ramsey)
#4808, ST_ClusterKMeans now supports max_radius argument. Use it when you're not sure what is
 the number of clusters but you know what the size of clusters should be. (Darafei Praliaskouski)

Release 3.1.0alpha1

Release date: 2020/02/01
This version requires PostgreSQL 9.6+-13 and GEOS >= 3.6+
 Additional features and enhancements enabled if you are running Proj6+, PostgreSQL 12+, and GEOS 3.8.0
Breaking Changes

svn number replaced by git hash in version output
 (Sandro Santilli, Raúl Marín)
4577, Drop support for PostgreSQL 9.5 (Raúl Marín)
4579, Drop postgis_proc_set_search_path.pl (Raúl Marín)
4601, ST_TileEnvelope signature changed.
3057, ST_Force3D, ST_Force3DZ, ST_Force3DM and ST_Force4D signatures changed.

New features

4601, Add ST_TileEnvelope margin argument (Yuri Astrakhan)
2972, Add quiet mode (-q) to pgsql2shp (Kristian Thy)
4617, Add configure switch `--without-phony-revision` (Raúl Marín)
3057, Optional value params for Force3D*, Force4D functions (Kristian Thy)
4624, ST_HexagonGrid and ST_SquareGrid, set returning functions to
 generate tilings of the plane (Paul Ramsey)

Enhancements

4539, Unify libm includes (Raúl Marín)
4569, Allow unknown SRID geometry insertion into typmod SRID column (Paul Ramsey)
4149, ST_Simplify(geom, 0) is now O(N).
 ST_Affine (ST_Translate, ST_TransScale, ST_Rotate) optimized.
 ST_SnapToGrid optimized. (Darafei Praliaskouski)
4574, Link Time Optimizations enabled (Darafei Praliaskouski)
4578, Add parallellism and cost properties to brin functions (Raúl Marín)
4473, Silence yacc warnings (Raúl Marín)
4589, Disable C asserts when building without "--enable-debug" (Raúl Marín)
4543, Introduce ryu to print doubles (Raúl Marín)
4626, Support pkg-config for libxml2 (Bas Couwenberg)
4615, Speed up geojson output (Raúl Marín)

Release 3.0.0

Release date: 2019/10/20
This version requires PostgreSQL 9.5+-12 and GEOS >= 3.6+
 Additional features and enhancements enabled if you are running Proj6+, PostgreSQL 12, and GEOS 3.8.0
New Features

2902, postgis_geos_noop (Sandro Santilli)
4128, ST_AsMVT support for Feature ID (Stepan Kuzmin)
4230, SP-GiST and GiST support for ND box operators overlaps, contains,
 within, equals (Esteban Zimányi and Arthur Lesuisse from Université
 Libre de Bruxelles (ULB), Darafei Praliaskouski)
4171, ST_3DLineInterpolatePoint (Julien Cabieces, Vincent Mora)
4311, Introduce WAGYU to validate MVT polygons. This option requires a C++11
 compiler and will use CXXFLAGS (not CFLAGS). Add `--without-wagyu`
 to disable this option and keep the behaviour from 2.5 (Raúl Marín)
1833, ST_AsGeoJSON(row) generates full GeoJSON Features (Joe Conway)
3687, Casts json(geometry) and jsonb(geometry) for implicit GeoJSON
 generation (Paul Ramsey)
4198, Add ST_ConstrainedDelaunayTriangles SFCGAL function (Darafei
 Praliaskouski)

Breaking Changes

4267, Bump minimum GEOS version to 3.6 (Regina Obe, Darafei Praliaskouski)
3888, Raster support now available as a separate extension
 (Sandro Santilli)
3807, Extension library files no longer include the minor version.
 Use New configure switch --with-library-minor-version
 if you need the old behavior (Regina Obe)
4230, ND box operators (overlaps, contains, within, equals) now don't look on
 dimensions that aren't present in both operands.
 Please REINDEX your ND indexes after upgrade. (Darafei Praliaskouski)
4229, Dropped support for PostgreSQL < 9.5. (Darafei Praliaskouski)
4260, liblwgeom headers are not installed anymore.
 If your project depends on them available, please use
 librttopo instead. (Darafei Praliaskouski)
4258, Remove SFCGAL support for ST_Area, ST_Distance, ST_Intersection,
 ST_Difference, ST_Union, ST_Intersects, ST_3DIntersects, ST_3DDistance
 and postgis.backend switch (Darafei Praliaskouski)
4267, Enable Proj 6 deprecated APIs (Darafei Praliaskouski, Raúl Marín)
4268, Bump minimum SFCGAL version to 1.3.1 (Darafei Praliaskouski)
4331, ST_3DMakeBox now returns error instead of a miniscule box (Regina Obe)
4342, Removed "versioned" variants of ST_AsGeoJSON and ST_AsKML (Paul Ramsey)
4356, ST_Accum removed. Use array_agg instead. (Darafei Praliaskouski)
4414, Include version number in address_standardizer lib (Raúl Marín)
4334, Fix upgrade issues related to renamed function parameters (Raúl Marín)
4442, raster2pgsql now skips NODATA tiles. Use -k option if you still want
 them in database for some reason. (Darafei Praliaskouski)
4433, 32-bit hash fix (requires reindexing hash(geometry) indexes) (Raúl Marín)
3383, Sorting now uses Hilbert curve and Postgres Abbreviated Compare.
 You need to REINDEX your btree indexes if you had them.
 (Darafei Praliaskouski)

Enhancements

4341, Using "support function" API in PgSQL 12+ to replace SQL inlining
 as the mechanism for providing index support under ST_Intersects, et al
4330, postgis_restore OOM when output piped to an intermediate process
 (Hugh Ranalli)
4322, Support for Proj 6+ API, bringing more accurate datum transforms
 and support for WKT projections
4153, ST_Segmentize now splits segments proportionally (Darafei
 Praliaskouski).
4162, ST_DWithin documentation examples for storing geometry and
 radius in table (Darafei Praliaskouski, github user Boscop).
4161 and #4294, ST_AsMVTGeom: Shortcut geometries smaller than the
 resolution (Raúl Marín)
4176, ST_Intersects supports GEOMETRYCOLLECTION (Darafei Praliaskouski)
4181, ST_AsMVTGeom: Avoid type changes due to validation (Raúl Marín)
4183, ST_AsMVTGeom: Drop invalid geometries after simplification (Raúl Marín)
4196, Have postgis_extensions_upgrade() package unpackaged extensions
 (Sandro Santilli)
4215, Use floating point compare in ST_DumpAsPolygons (Darafei Praliaskouski)
4155, Support for GEOMETRYCOLLECTION, POLYGON, TIN, TRIANGLE in
 ST_LocateBetween and ST_LocateBetweenElevations (Darafei Praliaskouski)
2767, Documentation for AddRasterConstraint optional parameters (Sunveer Singh)
4244, Avoid unaligned memory access in BOX2D_out (Raúl Marín)
4139, Make mixed-dimension ND index build tree correctly (Darafei Praliaskouski,
 Arthur Lesuisse, Andrew Gierth, Raúl Marín)
4262, Document MULTISURFACE compatibility of ST_LineToCurve (Steven Ottens)
4276, ST_AsGeoJSON documentation refresh (Darafei Praliaskouski)
4292, ST_AsMVT: parse JSON numeric values with decimals as doubles (Raúl Marín)
4300, ST_AsMVTGeom: Always return the simplest geometry (Raúl Marín)
4301, ST_Subdivide: fix endless loop on coordinates near coincident to bounds
 (Darafei Praliaskouski)
4289, ST_AsMVTGeom: Transform coordinates space before clipping (Raúl Marín)
4272, Improve notice message when unable to compute stats (Raúl Marín)
4313, #4307, PostgreSQL 12 compatibility (Laurenz Albe, Raúl Marín)
4299, #4304, ST_GeneratePoints is now VOLATILE. IMMUTABLE version with
 seed parameter added. (Mike Taves)
4278, ST_3DDistance and ST_3DIntersects now support Solid TIN and Solid
 POLYHEDRALSURFACE (Darafei Praliaskouski)
4348, ST_AsMVTGeom (GEOS): Enforce validation at all times (Raúl Marín)
4295, Allow GEOMETRYCOLLECTION in ST_Overlaps, ST_Contains, ST_ContainsProperly,
 ST_Covers, ST_CoveredBy, ST_Crosses, ST_Touches, ST_Disjoint, ST_Relate,
 ST_Equals (Esteban Zimányi)
4340, ST_Union aggregate now can handle more than 1 GB of geometries
 (Darafei Praliaskouski)
4378, Allow passing TINs as input to GEOS-backed functions (Darafei
 Praliaskouski)
4368, Reorder LWGEOM struct members to minimize extra padding (Raúl Marín)
4141, Use uint64 to handle row counts in the topology extension (Raúl Marín)
4412, Support ingesting rasters with NODATA=NaN (Darafei Praliaskouski)
4413, Raster tile size follows GeoTIFF block size on raster2pgsql -t auto
 (Darafei Praliaskouski)
4422, Modernize Python 2 code to get ready for Python 3 (Christian Clauss)
4352, Use CREATE OR REPLACE AGGREGATE for PG12+ (Raúl Marín)
4394, Allow FULL OUTER JOIN on geometry equality operator (Darafei Praliaskouski)
4441, Make GiST penalty friendly to multi-column indexes and build single-column
 ones faster. (Darafei Praliaskouski)
4403, Support for shp2pgsql ability to reproject with copy mode (-D) (Regina Obe)
4410, More descriptive error messages about SRID mismatch (Darafei Praliaskouski)
4399, TIN and Triangle output support in all output functions (Darafei
 Praliaskouski)
3719, Impose minimum number of segments per arc during linearization
 (Dan Baston / City of Helsinki, Raúl Marín)
4277, ST_GeomFromGeoJSON now marks SRID=4326 by default as per RFC7946,
 ST_AsGeoJSON sets SRID in JSON output if it differs from 4326.
 (Darafei Praliaskouski)
3979, postgis_sfcgal_noop() round trip function (Lucas C. Villa Real)
4328, ST_3DIntersects for 2D TINs. (Darafei Praliaskouski)
4509, Update geocoder for tiger 2019 (Regina Obe)

Release 3.0.0rc1

Release date: 2019/10/08
If compiling with PostgreSQL+JIT, LLVM >= 6 is required
Supported PostgreSQL versions for this release are:
 PostgreSQL 9.5 - PostgreSQL 12
 GEOS >= 3.6. Additional features enabled if you running Proj6+ and/or PostgreSQL 12.
 Performance enhancements if running GEOS 3.8+
Major highlights

4519, Fix getSRIDbySRS crash (Raúl Marín)
4520, Use a clean environment when detecting C++ libraries (Raúl Marín)
Restore ST_Union() aggregate signature so drop agg not required and re-work
 performance/size enhancement to continue to avoid
 using Array type during ST_Union(), hopefully
 avoiding Array size limitations. (Paul Ramsey)

Release 3.0.0alpha2

Release date: 2019/06/02
If compiling with PostgreSQL+JIT, LLVM >= 6 is required
Supported PostgreSQL versions for this release are:
 PostgreSQL 9.5 - PostgreSQL 12
 GEOS >= 3.6
Major highlights

#4404, Fix selectivity issue with support functions (Paul Ramsey)
#4311, Make wagyu the default option to validate polygons.
 This option requires a C++11 compiler and will use CXXFLAGS (not CFLAGS).
 It is only enabled if built with MVT support (protobuf)
 Add `--without-wagyu` to disable this option and keep the behaviour
 from 2.5 (Raúl Marín)
#4198, Add ST_ConstrainedDelaunayTriangles SFCGAL function (Darafei
 Praliaskouski)

Release 2.4.5

Release date: 2018/09/12
This is a bug fix and performance improvement release.
Bug Fixes

#4031, Survive to big MaxError tolerances passed to ST_CurveToLine (Sandro Santilli)
#4058, Fix infinite loop in linearization of a big radius small arc (Sandro Santilli)
#4071, ST_ClusterKMeans crash on NULL/EMPTY fixed (Darafei Praliaskouski)
#4079, ensure St_AsMVTGeom outputs CW oriented polygons (Paul Ramsey)
#4070, use standard interruption error code on GEOS interruptions (Paul Ramsey)
#3980, delay freeing input until processing complete (lucasvr)
#4090, PG 11 support (Paul Ramsey, Raúl Marín)
#4077, Serialization failure for particular empty geometry cases (Paul Ramsey)
#3997, fix bug in lwgeom_median and avoid division by zero (Raúl Marín)
#4093, Inconsistent results from qsort callback (yugr)
#4081, Geography DWithin() issues for certain cases (Paul Ramsey)
#4105, Parallel build of tarball (Bas Couwenberg)
#4163, MVT: Fix resource leak when the first geometry is NULL (Raúl Marín)

Release 2.4.4

Release date: 2018/04/08
This is a bug fix and performance improvement release.
Bug Fixes

#3055, [raster] ST_Clip() on a raster without band crashes the server
 (Regina Obe)
#3942, geojson: Do not include private header for json-c >= 0.13
 (Björn Esser)
#3952, ST_Transform fails in parallel mode (Paul Ramsey)
#3978, Fix KNN when upgrading from 2.1 or older (Sandro Santilli)
#4003, lwpoly_construct_circle: Avoid division by zero (Raúl Marín Rodríguez)
#4004, Avoid memory exhaustion when building a btree index (Edmund Horner)
#4016, proj 5.0.0 support (Raúl Marín Rodríguez)
#4017, lwgeom lexer memory corruption (Peter E)
#4020, Casting from box3d to geometry now returns correctly connected
 PolyhedralSurface (Matthias Bay)
#4025, #4032 Incorrect answers for temporally "almost overlapping" ranges
 (Paul Ramsey, Darafei Praliaskouski)
#4052, schema qualify several functions in geography (Regina Obe)
#4055, ST_ClusterIntersecting drops SRID (Daniel Baston)

Enhancements

#3946, Compile support for PgSQL 11 (Paul Ramsey)
#3992, Use PKG_PROG_PKG_CONFIG macro from pkg.m4 to detect pkg-config
 (Bas Couwenberg)
#4044, Upgrade support for PgSQL 11 (Regina Obe)

Release 2.4.3

Release date: 2018/01/17
This is a bug fix and performance improvement release.
Bug Fixes and Enhancements

#3713, Support encodings that happen to output a '\' character
#3827, Set configure default to not do interrupt testing,
 was causing false negatives for many people. (Regina Obe)
 revised to be standards compliant in #3988 (Greg Troxel)
#3930, Minimum bounding circle issues on 32-bit platforms
#3965, ST_ClusterKMeans used to lose some clusters on initialization
 (Darafei Praliaskouski)
#3956, Brin opclass object does not upgrade properly (Sandro Santilli)
#3982, ST_AsEncodedPolyline supports LINESTRING EMPTY and MULTIPOINT EMPTY
 (Darafei Praliaskouski)
#3975, ST_Transform runs query on spatial_ref_sys without schema
 qualification. Was causing restore issues. (Paul Ramsey)

Release 2.4.2

Release date: 2017/11/15
This is a bug fix and performance improvement release.
Bug Fixes and Enhancements

#3917, Fix zcta5 load
#3667, Fix for bug in geography ST_Segmentize
#3926, Add missing 2.2.6 and 2.3.4 upgrade paths (Muhammad Usama)

Release 2.3.3

Release date: 2017/07/01
This is a bug fix and performance improvement release.
Bug Fixes and Enhancements

#3777, GROUP BY anomaly with empty geometries
#3711, Azimuth error upon adding 2.5D edges to topology
#3726, PDF manual from dblatex renders fancy quotes for programlisting
 (Mike Toews)
#3738, raster: Using -s without -Y in raster2pgsql transforms
 raster data instead of setting srid
#3744, ST_Subdivide loses subparts of inverted geometries
 (Darafei Praliaskouski Komzpa)
#3750, @ and ~ operator not always schema qualified in geometry
 and raster functions. Causes restore issues.
 (Shane StClair of Axiom Data Science)
#3682, Strange fieldlength for boolean in result of pgsql2shp
#3701, Escape double quotes issue in pgsql2shp
#3704, ST_AsX3D crashes on empty geometry
#3730, Change ST_Clip from Error to Notice when ST_Clip can't compute a band

Release 2.3.2

Release date: 2017/01/31
This is a bug fix and performance improvement release.
Bug Fixes and Enhancements

#3418, KNN recheck in 9.5+ fails with index returned tuples in wrong order
#3675, Relationship functions not using an index in some cases
#3680, PostGIS upgrade scripts missing GRANT for views
#3683, Unable to update postgis after postgres pg_upgrade going from < 9.5 to pg > 9.4
#3688, ST_AsLatLonText: round minutes

Release 2.2.1

Release date: 2016/01/06
This is a bug fix and performance improvement release.
New Features

#2232, avoid accumulated error in SVG rounding
#3321, Fix performance regression in topology loading
#3329, Fix robustness regression in TopoGeo_addPoint
#3349, Fix installation path of postgis_topology scripts
#3351, set endnodes isolation on ST_RemoveIsoEdge
					 (and lwt_RemIsoEdge)
#3355, geography ST_Segmentize has geometry bbox
#3359, Fix toTopoGeom loss of low-id primitives from
					 TopoGeometry definition
#3360, _raster_constraint_info_scale invalid input syntax
#3375, crash in repeated point removal for collection(point)
#3378, Fix handling of hierarchical TopoGeometries
					 in presence of multiple topologies
#3380, #3402, Decimate lines on topology load
#3388, #3410, Fix missing end-points in ST_Removepoints
#3389, Buffer overflow in lwgeom_to_geojson
#3390, Compilation under Alpine Linux 3.2
						gives an error when compiling the postgis and postgis_topology extension
#3393, ST_Area NaN for some polygons
#3401, Improve ST_Split robustness on 32bit systems
#3404, ST_ClusterWithin crashes backend
#3407, Fix crash on splitting a face or an edge
					 defining multiple TopoGeometry objects
#3411, Clustering functions not using spatial index
#3412, Improve robustness of snapping step in TopoGeo_addLinestring
#3415, Fix OSX 10.9 build under pkgsrc
Fix memory leak in lwt_ChangeEdgeGeom [liblwgeom]

Release 2.1.6

Release date: 2015-03-20
This is a bug fix and performance improvement release.
Enhancements

#3000, Ensure edge splitting and healing algorithms use indexes
#3048, Speed up geometry simplification (J.Santana @ CartoDB)
#3050, Speed up geometry type reading (J.Santana @ CartoDB)

Bug Fixes

#2941, allow geography columns with SRID other than 4326
#3069, small objects getting inappropriately fluffed up w/ boxes
#3068, Have postgis_typmod_dims return NULL for unconstrained dims
#3061, Allow duplicate points in JSON, GML, GML ST_GeomFrom* functions
#3058, Fix ND-GiST picksplit method to split on the best plane
#3052, Make operators <-> and <#> available for PostgreSQL < 9.1
#3045, Fix dimensionality confusion in &&& operator
#3016, Allow unregistering layers of corrupted topologies
#3015, Avoid exceptions from TopologySummary
#3020, ST_AddBand out-db bug where height using width value
#3031, Allow restore of Geometry(Point) tables dumped with empties in them

Release 2.1.2

Release date: 2014/03/31
This is a bug fix release, addressing issues that have been filed since the 2.1.1 release.
Bug Fixes

#2666, Error out at configure time if no SQL preprocessor can be found
#2534, st_distance returning incorrect results for large geographies
#2539, Check for json-c/json.h presence/usability before json/json.h
#2543, invalid join selectivity error from simple query
#2546, GeoJSON with string coordinates parses incorrectly
#2547, Fix ST_Simplify(TopoGeometry) for hierarchical topogeoms
#2552, Fix NULL raster handling in ST_AsPNG, ST_AsTIFF and
 ST_AsJPEG
#2555, Fix parsing issue of range arguments of ST_Reclass
#2556, geography ST_Intersects results depending on insert order
#2580, Do not allow installing postgis twice in the same database
#2589, Remove use of unnecessary void pointers
#2607, Cannot open more than 1024 out-db files in one process
#2610, Ensure face splitting algorithm uses the edge index
#2615, EstimatedExtent (and hence, underlying stats) gathering wrong bbox
#2619, Empty rings array in GeoJSON polygon causes crash
#2634, regression in sphere distance code
#2638, Geography distance on M geometries sometimes wrong
#2648, #2653, Fix topology functions when "topology" is not in search_path
#2654, Drop deprecated calls from topology
#2655, Let users without topology privileges call postgis_full_version()
#2674, Fix missing operator = and hash_raster_ops opclass on raster
#2675, #2534, #2636, #2634, #2638, Geography distance issues with tree optimization

Enhancements

#2494, avoid memcopy in GiST index (hayamiz)
#2560, soft upgrade: avoid drop/recreate of aggregates that hadn't changed

Release 2.0.3

Release date: 2013/03/01
This is a bug fix release, addressing issues that have been filed since the 2.0.2 release. If you are using PostGIS 2.0+ a soft upgrade is required. For users of PostGIS 1.5 or below, a hard upgrade is required.
Bug Fixes

#2126, Better handling of empty rasters from ST_ConvexHull()
#2134, Make sure to process SRS before passing it off to GDAL functions
Fix various memory leaks in liblwgeom
#2173, Fix robustness issue in splitting a line with own vertex also affecting topology building (#2172)
#2174, Fix usage of wrong function lwpoly_free()
#2176, Fix robustness issue with ST_ChangeEdgeGeom
#2184, Properly copy topologies with Z value
postgis_restore.pl support for mixed case geometry column name in dumps
#2188, Fix function parameter value overflow that caused problems when copying data from a GDAL dataset
#2216, More memory errors in MultiPolygon GeoJSON parsing (with holes)
Fix Memory leak in GeoJSON parser

Enhancements

#2141, More verbose output when constraints fail to be added to a raster column
Speedup ST_ChangeEdgeGeom

Release 2.0.2

Release date: 2012/12/03
This is a bug fix release, addressing issues that have been filed since the 2.0.1 release.
Bug Fixes

#1287, Drop of "gist_geometry_ops" broke a few clients
 package of legacy_gist.sql for these cases
#1391, Errors during upgrade from 1.5
#1828, Poor selectivity estimate on ST_DWithin
#1838, error importing tiger/line data
#1869, ST_AsBinary is not unique added to legacy_minor/legacy.sql scripts
#1885, Missing field from tabblock table in tiger2010 census_loader.sql
#1891, Use LDFLAGS environment when building liblwgeom
#1900, Fix pgsql2shp for big-endian systems
#1932, Fix raster2pgsql for invalid syntax for setting index tablespace
#1936, ST_GeomFromGML on CurvePolygon causes server crash
#1955, ST_ModEdgeHeal and ST_NewEdgeHeal for doubly connected edges
#1957, ST_Distance to a one-point LineString returns NULL
#1976, Geography point-in-ring code overhauled for more reliability
#1978, wrong answer calculating length of closed circular arc (circle)
#1981, Remove unused but set variables as found with gcc 4.6+
#1987, Restore 1.5.x behaviour of ST_Simplify
#1989, Preprocess input geometry to just intersection with raster
 to be clipped
#1991, geocode really slow on PostgreSQL 9.2
#1996, support POINT EMPTY in GeoJSON output
#1998, Fix ST_{Mod,New}EdgeHeal joining edges sharing both endpoints
#2001, ST_CurveToLine has no effect if the geometry doesn't actually contain an arc
#2015, ST_IsEmpty('POLYGON(EMPTY)') returns False
#2019, ST_FlipCoordinates does not update bbox
#2025, Fix side location conflict at TopoGeo_AddLineString
#2026, improve performance of distance calculations
#2033, Fix adding a splitting point into a 2.5d topology
#2051, Fix excess of precision in ST_AsGeoJSON output
#2052, Fix buffer overflow in lwgeom_to_geojson
#2056, Fixed lack of SRID check of raster and geometry in ST_SetValue()
#2057, Fixed linking issue for raster2psql to libpq
#2060, Fix "dimension" check violation by GetTopoGeomElementArray
#2072, Removed outdated checks preventing ST_Intersects(raster) from
 working on out-db bands
#2077, Fixed incorrect answers from ST_Hillshade(raster)
#2092, Namespace issue with ST_GeomFromKML,ST_GeomFromGML for libxml 2.8+
#2099, Fix double free on exception in ST_OffsetCurve
#2100, ST_AsRaster() may not return raster with specified pixel type
#2108, Ensure ST_Line_Interpolate_Point always returns POINT
#2109, Ensure ST_Centroid always returns POINT
#2117, Ensure ST_PointOnSurface always returns POINT
#2129, Fix SRID in ST_Homogenize output with collection input
#2130, Fix memory error in MultiPolygon GeoJson parsing
Update URL of Maven jar

Enhancements

#1581, ST_Clip(raster, ...) no longer imposes NODATA on a band if the
 corresponding band from the source raster did not have NODATA
#1928, Accept array properties in GML input multi-geom input
 (Kashif Rasul and Shoaib Burq / SpacialDB)
#2082, Add indices on start_node and end_node of topology edge tables
#2087, Speedup topology.GetRingEdges using a recursive CTE

Release 1.5.4

Release date: 2012/05/07
This is a bug fix release, addressing issues that have been filed since the 1.5.3 release.
Bug Fixes

#547, ST_Contains memory problems (Sandro Santilli)
#621, Problem finding intersections with geography (Paul Ramsey)
#627, PostGIS/PostgreSQL process die on invalid geometry (Paul Ramsey)
#810, Increase accuracy of area calculation (Paul Ramsey)
#852, improve spatial predicates robustness (Sandro Santilli, Nicklas Avén)
#877, ST_Estimated_Extent returns NULL on empty tables (Sandro Santilli)
#1028, ST_AsSVG kills whole postgres server when fails (Paul Ramsey)
#1056, Fix boxes of arcs and circle stroking code (Paul Ramsey)
#1121, populate_geometry_columns using deprecated functions (Regin Obe, Paul Ramsey)
#1135, improve testsuite predictability (Andreas 'ads' Scherbaum)
#1146, images generator crashes (bronaugh)
#1170, North Pole intersection fails (Paul Ramsey)
#1179, ST_AsText crash with bad value (kjurka)
#1184, honour DESTDIR in documentation Makefile (Bryce L Nordgren)
#1227, server crash on invalid GML
#1252, SRID appearing in WKT (Paul Ramsey)
#1264, st_dwithin(g, g, 0) doesn't work (Paul Ramsey)
#1344, allow exporting tables with invalid geometries (Sandro Santilli)
#1389, wrong proj4text for SRID 31300 and 31370 (Paul Ramsey)
#1406, shp2pgsql crashes when loading into geography (Sandro Santilli)
#1595, fixed SRID redundancy in ST_Line_SubString (Sandro Santilli)
#1596, check SRID in UpdateGeometrySRID (Mike Toews, Sandro Santilli)
#1602, fix ST_Polygonize to retain Z (Sandro Santilli)
#1697, fix crash with EMPTY entries in GiST index (Paul Ramsey)
#1772, fix ST_Line_Locate_Point with collapsed input (Sandro Santilli)
#1799, Protect ST_Segmentize from max_length=0 (Sandro Santilli)
Alter parameter order in 900913 (Paul Ramsey)
Support builds with "gmake" (Greg Troxel)

Release 1.5.3

Release date: 2011/06/25
This is a bug fix release, addressing issues that have been filed since the 1.5.2 release. If you are running PostGIS 1.3+, a soft upgrade is sufficient
	otherwise a hard upgrade is recommended.
Bug Fixes

#1056, produce correct bboxes for arc geometries, fixes index errors
 (Paul Ramsey)
#1007, ST_IsValid crash fix requires GEOS 3.3.0+ or 3.2.3+
				 (Sandro Santilli, reported by Birgit Laggner)
#940, support for PostgreSQL 9.1 beta 1
				 (Regina Obe, Paul Ramsey, patch submitted by stl)
#845, ST_Intersects precision error (Sandro Santilli, Nicklas Avén)
				 Reported by cdestigter
#884, Unstable results with ST_Within, ST_Intersects (Chris Hodgson)
#779, shp2pgsql -S option seems to fail on points (Jeff Adams)
#666, ST_DumpPoints is not null safe (Regina Obe)
#631, Update NZ projections for grid transformation support (jpalmer)
#630, Peculiar Null treatment in arrays in ST_Collect (Chris Hodgson)
				 Reported by David Bitner
#624, Memory leak in ST_GeogFromText (ryang, Paul Ramsey)
#609, Bad source code in manual section 5.2 Java Clients (simoc, Regina Obe)
#604, shp2pgsql usage touchups (Mike Toews, Paul Ramsey)
#573 ST_Union fails on a group of linestrings
				 Not a PostGIS bug, fixed in GEOS 3.3.0
#457 ST_CollectionExtract returns non-requested type
				(Nicklas Avén, Paul Ramsey)
#441 ST_AsGeoJson Bbox on GeometryCollection error (Olivier Courtin)
#411 Ability to backup invalid geometries (Sando Santilli)
				 Reported by Regione Toscana
#409 ST_AsSVG - degraded (Olivier Courtin)
				 Reported by Sdikiy
#373 Documentation syntax error in hard upgrade (Paul Ramsey)
				 Reported by psvensso

Release 1.3.6

Release date: 2009/05/04
If you are running PostGIS 1.1+, a soft upgrade is sufficient
	otherwise a hard upgrade is recommended. This release adds support for PostgreSQL 8.4, exporting
 prj files from the database with shape data, some crash fixes for shp2pgsql, and several small
 bug fixes in the handling of "curve" types, logical error importing dbf only files, improved error handling of AddGeometryColumns.

Release 1.3.5

Release date: 2008/12/15
If you are running PostGIS 1.1+, a soft upgrade is sufficient
	otherwise a hard upgrade is recommended. This release is a bug fix release to address a failure
 in ST_Force_Collection and related functions that critically
 affects using MapServer with LINE layers.

Release 1.3.2

Release date: 2007/12/01
This release fixes bugs in ST_EndPoint() and ST_Envelope, improves
 support for JDBC building and OS/X, and adds better support for GML
 output with ST_AsGML(), including GML3 output.

Release 1.3.1

Release date: 2007/08/13
This release fixes some oversights in the previous release around
 version numbering, documentation, and tagging.

Release 1.1.5

Release date: 2006/10/13
This is an bugfix release, including a critical segfault on win32.
 Upgrade is encouraged.
Upgrading

If you are upgrading from release 1.0.3 or later follow the
 soft upgrade procedure.
If you are upgrading from a release between 1.0.0RC6
 and 1.0.2 (inclusive) and really want a live upgrade read
 the upgrade section of the
 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

Bug fixes

Fixed MingW link error that was causing pgsql2shp to segfault on
 Win32 when compiled for PostgreSQL 8.2
fixed nullpointer Exception in Geometry.equals() method in
 Java
Added EJB3Spatial.odt to fulfill the GPL requirement of
 distributing the "preferred form of modification"
Removed obsolete synchronization from JDBC Jts code.
Updated heavily outdated README files for shp2pgsql/pgsql2shp by
 merging them with the manpages.
Fixed version tag in jdbc code that still said "1.1.3" in the
 "1.1.4" release.

New Features

Added -S option for non-multi geometries to shp2pgsql

Release 1.1.1

Release date: 2006/01/23
This is an important Bugfix release, upgrade is highly
 recommended. Previous version contained a bug in
 postgis_restore.pl preventing hard
 upgrade procedure to complete and a bug in GEOS-2.2+ connector
 preventing GeometryCollection objects to be used in topological
 operations.
Upgrading

If you are upgrading from release 1.0.3 or later follow the
 soft upgrade procedure.
If you are upgrading from a release between 1.0.0RC6
 and 1.0.2 (inclusive) and really want a live upgrade read
 the upgrade section of the
 1.0.3 release notes chapter.
Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

Bug fixes

Fixed a premature exit in postgis_restore.pl
BUGFIX in geometrycollection handling of GEOS-CAPI
 connector
Solaris 2.7 and MingW support improvements
BUGFIX in line_locate_point()
Fixed handling of postgresql paths
BUGFIX in line_substring()
Added support for localized cluster in regress tester

New functionalities

New Z and M interpolation in line_substring()
New Z and M interpolation in line_interpolate_point()
added NumInteriorRing() alias due to OpenGIS ambiguity

Release 1.0.1

Release date: 2005/05/24
Contains a few bug fixes and some improvements.
Upgrading

If you are upgrading from release 1.0.0RC6 or up you
 DO NOT need a dump/reload.
Upgrading from older releases requires a dump/reload. See the
 upgrading chapter for more
 informations.

Library changes

BUGFIX in 3d computation of length_spheroid()
BUGFIX in join selectivity estimator

Other changes/additions

BUGFIX in shp2pgsql escape functions
better support for concurrent postgis in multiple schemas
documentation fixes
jdbc2: compile with "-target 1.2 -source 1.2" by default
NEW -k switch for pgsql2shp
NEW support for custom createdb options in
 postgis_restore.pl
BUGFIX in pgsql2shp attribute names unicity enforcement
BUGFIX in Paris projections definitions
postgis_restore.pl cleanups

Release 1.0.0RC4

Release date: 2005/03/18
Fourth release candidate for 1.0.0. Contains bug fixes and a few
 improvements.
Upgrading

You need a dump/reload to upgrade from precedent releases. See
 the upgrading chapter for more
 informations.

Library changes

BUGFIX (segfaulting) in geom_accum().
BUGFIX in 64bit architectures support.
BUGFIX in box3d computation function with collections.
NEW subselects support in selectivity estimator.
Early return from force_collection.
Consistency check fix in SnapToGrid().
Box2d output changed back to 15 significant digits.

Scripts changes

NEW distance_sphere() function.
Changed get_proj4_from_srid implementation to use PL/PGSQL
 instead of SQL.

Other changes

BUGFIX in loader and dumper handling of MultiLine shapes
BUGFIX in loader, skipping all but first hole of
 polygons.
jdbc2: code cleanups, Makefile improvements
FLEX and YACC variables set *after* pgsql Makefile.global is
 included and only if the pgsql *stripped* version evaluates to the
 empty string
Added already generated parser in release
Build scripts refinements
improved version handling, central Version.config
improvements in postgis_restore.pl

OEBPS/images/st_maximuminscribedcircle02.png

OEBPS/images/st_makevalid01.png

OEBPS/re125.html

Name

ST_WKTToSQL — Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText

Synopsis

		geometry ST_WKTToSQL(WKT);		

text WKT;

Description

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.34

See Also

ST_GeomFromText

OEBPS/images/st_clip01.png

OEBPS/re03.html

Name

geometry — The type representing spatial features with planar coordinate systems.

Description

geometry is a fundamental PostGIS spatial data type used to represent a feature in planar (Euclidean) coordinate systems.

All spatial operations on geometry use the units of the Spatial Reference System the geometry is in.

Casting Behavior

This table lists the automatic and explicit casts allowed for this data type:

		Cast To		Behavior

		box		automatic

		box2d		automatic

		box3d		automatic

		bytea		automatic

		geography		automatic

		text		automatic

See Also

the section called “Spatial Data Model”, the section called “PostGIS SQL-MM Compliant Functions”

OEBPS/images/st_constraineddelaunaytriangles01.png

OEBPS/re187.html

Name

~(box2df,box2df) — Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).

Synopsis

		boolean ~(A, 		

		 		B);		

				 box2df

				 A
				;

				 box2df

				 B
				;

Description

The ~ operator returns TRUE if the 2D bounding box A contains the 2D bounding box B, using float precision. This means that if A is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

Note

This operand is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

[image: Description]
 This method supports Circular Strings and Curves

[image: Description]
 This function supports Polyhedral surfaces.

Examples

SELECT ST_MakeBox2D(ST_Point(0,0), ST_Point(5,5)) ~ ST_MakeBox2D(ST_Point(2,2), ST_Point(3,3)) AS contains;

 contains

 t
(1 row)

See Also

				&&(geometry,box2df),
				&&(box2df,geometry),
				&&(box2df,box2df),
				~(geometry,box2df),
				~(box2df,geometry),
				@(geometry,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

OEBPS/re121.html

Name

ST_MPointFromText — Makes a Geometry from WKT with the given SRID. If SRID is
			not given, it defaults to 0.

Synopsis

		geometry ST_MPointFromText(WKT, 		

		 		srid);		

text WKT;
integer srid;

		geometry ST_MPointFromText(WKT);		

text WKT;

Description

Makes a Geometry from WKT with the given SRID. If SRID is
			not given, it defaults to 0.

OGC SPEC 3.2.6.2 - option SRID is from the conformance
			suite

Returns null if the WKT is not a MULTIPOINT

Note

If you are absolutely sure all your WKT geometries are points, don't use this function.
				It is slower than ST_GeomFromText since it adds an additional validation step.
			

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. 3.2.6.2

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 9.2.4

Examples

SELECT ST_MPointFromText('MULTIPOINT((1 2),(3 4))');
SELECT ST_MPointFromText('MULTIPOINT((-70.9590 42.1180),(-70.9611 42.1223))', 4326);

See Also

ST_GeomFromText

OEBPS/images/st_hexagongrid01.png

OEBPS/images/de9im12.png

OEBPS/re162.html

Name

ST_GeoHash — Return a GeoHash representation of the geometry.

Synopsis

		text ST_GeoHash(geom, 		

		 		maxchars=full_precision_of_point);		

geometry geom;
integer maxchars=full_precision_of_point;

Description

Return a GeoHash representation (http://en.wikipedia.org/wiki/Geohash) of the geometry. A GeoHash encodes a point into a text form that is sortable and searchable based on prefixing. A shorter GeoHash is a less precise representation of a point. It can also be thought of as a box, that contains the actual point.

If no maxchars is specified ST_GeoHash returns a GeoHash based on full precision of the input geometry type. Points return a GeoHash with 20 characters of precision (about enough to hold the full double precision of the input). Other types return a GeoHash with a variable amount of precision, based on the size of the feature. Larger features are represented with less precision, smaller features with more precision. The idea is that the box implied by the GeoHash will always contain the input feature.

If maxchars is specified ST_GeoHash returns a GeoHash with at most that many characters so a possibly lower precision representation of the input geometry. For non-points, the starting point of the calculation is the center of the bounding box of the geometry.

Availability: 1.4.0

Note

ST_GeoHash will not work with geometries that are not in geographic (lon/lat) coordinates.

[image: Description]
 This method supports Circular Strings and Curves

Examples

SELECT ST_GeoHash(ST_SetSRID(ST_Point(-126,48),4326));

	 st_geohash

 c0w3hf1s70w3hf1s70w3

SELECT ST_GeoHash(ST_SetSRID(ST_Point(-126,48),4326),5);

 st_geohash

 c0w3h
		
		

See Also

ST_GeomFromGeoHash

OEBPS/images/st_boundary01.png

OEBPS/images/st_voronoi03.png

OEBPS/images/st_mapalgebramask01.png

OEBPS/images/st_crosses01.png

OEBPS/re183.html

Name

|>> — Returns TRUE if A's bounding box is strictly above B's.

Synopsis

		boolean |>>(A, 		

		 		B);		

				 geometry

				 A
				;

				 geometry

				 B
				;

Description

The |>> operator returns TRUE if the bounding box of geometry A
			is strictly above the bounding box of geometry B.

Note

This operand will make use of any indexes that may be available on the
			 geometries.

Examples

SELECT tbl1.column1, tbl2.column1, tbl1.column2 |>> tbl2.column2 AS above
FROM
 (VALUES
	(1, 'LINESTRING (1 4, 1 7)'::geometry)) AS tbl1,
 (VALUES
	(2, 'LINESTRING (0 0, 4 2)'::geometry),
	(3, 'LINESTRING (6 1, 6 5)'::geometry),
	(4, 'LINESTRING (2 3, 5 6)'::geometry)) AS tbl2;

 column1 | column1 | above
---------+---------+-------
	 1 | 2 | t
	 1 | 3 | f
	 1 | 4 | f
(3 rows)

See Also

<<, >>, <<|

OEBPS/images/st_optimalalphashape01.png

OEBPS/re135.html

Name

ST_GeomFromGML — Takes as input GML representation of geometry and outputs a PostGIS geometry object

Synopsis

		geometry ST_GeomFromGML(geomgml);		

text geomgml;

		geometry ST_GeomFromGML(geomgml, 		

		 		srid);		

text geomgml;
integer srid;

Description

Constructs a PostGIS ST_Geometry object from the OGC GML representation.

ST_GeomFromGML works only for GML Geometry fragments. It throws an error if you try to use it on a whole GML document.

			OGC GML versions supported:
			

		GML 3.2.1 Namespace

		GML 3.1.1 Simple Features profile SF-2 (with GML 3.1.0 and 3.0.0 backward compatibility)

		GML 2.1.2

			OGC GML standards, cf: http://www.opengeospatial.org/standards/gml:
		

Availability: 1.5, requires libxml2 1.6+

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.

Enhanced: 2.0.0 default srid optional parameter added.

[image: Description]
 This function supports 3d and will not drop the z-index.

[image: Description]
 This function supports Polyhedral surfaces.

[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

GML allow mixed dimensions (2D and 3D inside the same MultiGeometry for instance). As PostGIS geometries don't, ST_GeomFromGML convert the whole geometry to 2D if a missing Z dimension is found once.

GML support mixed SRS inside the same MultiGeometry. As PostGIS geometries don't, ST_GeomFromGML, in this case, reproject all subgeometries to the SRS root node. If no srsName attribute available for the GML root node, the function throw an error.

ST_GeomFromGML function is not pedantic about an explicit GML namespace. You could avoid to mention it explicitly for common usages. But you need it if you want to use XLink feature inside GML.

Note

ST_GeomFromGML function not support SQL/MM curves geometries.

Examples - A single geometry with srsName

SELECT ST_GeomFromGML('
		<gml:LineString srsName="EPSG:4269">
			<gml:coordinates>
				-71.16028,42.258729 -71.160837,42.259112 -71.161143,42.25932
			</gml:coordinates>
		</gml:LineString>');
		

Examples - XLink usage

SELECT ST_GeomFromGML('
		<gml:LineString xmlns:gml="http://www.opengis.net/gml"
				xmlns:xlink="http://www.w3.org/1999/xlink"
				srsName="urn:ogc:def:crs:EPSG::4269">
			<gml:pointProperty>
				<gml:Point gml:id="p1"><gml:pos>42.258729 -71.16028</gml:pos></gml:Point>
			</gml:pointProperty>
			<gml:pos>42.259112 -71.160837</gml:pos>
			<gml:pointProperty>
				<gml:Point xlink:type="simple" xlink:href="#p1"/>
			</gml:pointProperty>
		</gml:LineString>'););
		

Examples - Polyhedral Surface

SELECT ST_AsEWKT(ST_GeomFromGML('
<gml:PolyhedralSurface>
<gml:polygonPatches>
 <gml:PolygonPatch>
 <gml:exterior>
 <gml:LinearRing><gml:posList srsDimension="3">0 0 0 0 0 1 0 1 1 0 1 0 0 0 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">0 0 0 0 1 0 1 1 0 1 0 0 0 0 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">0 0 0 1 0 0 1 0 1 0 0 1 0 0 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">1 1 0 1 1 1 1 0 1 1 0 0 1 1 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">0 1 0 0 1 1 1 1 1 1 1 0 0 1 0</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
 <gml:exterior>
	<gml:LinearRing><gml:posList srsDimension="3">0 0 1 1 0 1 1 1 1 0 1 1 0 0 1</gml:posList></gml:LinearRing>
 </gml:exterior>
 </gml:PolygonPatch>
</gml:polygonPatches>
</gml:PolyhedralSurface>'));

-- result --
 POLYHEDRALSURFACE(((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),
 ((0 0 0,0 1 0,1 1 0,1 0 0,0 0 0)),
 ((0 0 0,1 0 0,1 0 1,0 0 1,0 0 0)),
 ((1 1 0,1 1 1,1 0 1,1 0 0,1 1 0)),
 ((0 1 0,0 1 1,1 1 1,1 1 0,0 1 0)),
 ((0 0 1,1 0 1,1 1 1,0 1 1,0 0 1)))
		

See Also

the section called “Build configuration”, ST_AsGML, ST_GMLToSQL

OEBPS/images/st_tesselate02.png

OEBPS/images/st_issimple07.png

OEBPS/images/de9im03.png

OEBPS/re440.html

Name

summarystats — A composite type returned by the ST_SummaryStats and ST_SummaryStatsAgg functions.

Description

 A composite type returned by the ST_SummaryStats and ST_SummaryStatsAgg functions.

		
 count
 integer

		
 Number of pixels counted for the summary statistics.

		
 sum
 double precision

		
 Sum of all counted pixel values.

		
 mean
 double precision

		
 Arithmetic mean of all counted pixel values.

		
 stddev
 double precision

		
 Standard deviation of all counted pixel values.

		
 min
 double precision

		
 Minimum value of counted pixel values.

		
 max
 double precision

		
 Maximum value of counted pixel values.

See Also

 ST_SummaryStats,
 ST_SummaryStatsAgg

OEBPS/re129.html

Name

ST_LineFromWKB — Makes a LINESTRING from WKB with the given SRID

Synopsis

		geometry ST_LineFromWKB(WKB);		

bytea WKB;

		geometry ST_LineFromWKB(WKB, 		

		 		srid);		

bytea WKB;
integer srid;

Description

The ST_LineFromWKB function, takes a well-known binary
		representation of geometry and a Spatial Reference System ID (SRID)
		and creates an instance of the appropriate geometry type - in this case, a
		LINESTRING geometry. This function plays the role of the Geometry
		Factory in SQL.

If an SRID is not specified, it defaults to 0. NULL is
		returned if the input bytea
		does not represent a LINESTRING.

Note

OGC SPEC 3.2.6.2 - option SRID is from the conformance
				suite.

Note

If you know all your geometries are LINESTRINGs, its more
		 efficient to just use ST_GeomFromWKB. This function just
		 calls ST_GeomFromWKB and adds additional validation that
		 it returns a linestring.

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.2.9

Examples

SELECT ST_LineFromWKB(ST_AsBinary(ST_GeomFromText('LINESTRING(1 2, 3 4)'))) AS aline,
		ST_LineFromWKB(ST_AsBinary(ST_GeomFromText('POINT(1 2)'))) IS NULL AS null_return;
aline | null_return
--
010200000002000000000000000000F ... | t
		

See Also

ST_GeomFromWKB, ST_LinestringFromWKB

OEBPS/images/st_issimple06.png

OEBPS/images/de9im04.png

OEBPS/images/st_centroid01.png

OEBPS/images/st_tesselate04.png

OEBPS/images/de9im05.png

OEBPS/images/st_tesselate03.png

OEBPS/images/st_contains01.png

OEBPS/re130.html

Name

ST_LinestringFromWKB — Makes a geometry from WKB with the given SRID.

Synopsis

		geometry ST_LinestringFromWKB(WKB);		

bytea WKB;

		geometry ST_LinestringFromWKB(WKB, 		

		 		srid);		

bytea WKB;
integer srid;

Description

The ST_LinestringFromWKB function, takes a well-known binary
		representation of geometry and a Spatial Reference System ID (SRID)
		and creates an instance of the appropriate geometry type - in this case, a
		LINESTRING geometry. This function plays the role of the Geometry
		Factory in SQL.

If an SRID is not specified, it defaults to 0. NULL is
		returned if the input bytea does not represent a
		LINESTRING geometry. This an alias for ST_LineFromWKB.

Note

OGC SPEC 3.2.6.2 - optional SRID is from the conformance suite.

Note

If you know all your geometries are LINESTRINGs, it's more
		 efficient to just use ST_GeomFromWKB. This function just calls
		 ST_GeomFromWKB and adds additional validation that it returns a
		 LINESTRING.

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.2.9

Examples

SELECT
 ST_LineStringFromWKB(
	ST_AsBinary(ST_GeomFromText('LINESTRING(1 2, 3 4)'))
) AS aline,
 ST_LinestringFromWKB(
	ST_AsBinary(ST_GeomFromText('POINT(1 2)'))
) IS NULL AS null_return;
 aline | null_return
--
010200000002000000000000000000F ... | t

See Also

ST_GeomFromWKB, ST_LineFromWKB

OEBPS/images/st_crosses-math.gif
a.Crosses(b) < (dim(l{a) ~ I{b)) < max(dim(I{a)), dim{I(h)))) » (@ ~b=a) » (@b =h)

OEBPS/re176.html

Name

= — Returns TRUE if the coordinates and coordinate order geometry/geography A
			are the same as the coordinates and coordinate order of geometry/geography B.

Synopsis

		boolean =(A, 		

		 		B);		

				 geometry

				 A
				;

				 geometry

				 B
				;

		boolean =(A, 		

		 		B);		

					 geography

					 A
					;

					 geography

					 B
					;

Description

The = operator returns TRUE if the coordinates and coordinate order geometry/geography A
			are the same as the coordinates and coordinate order of geometry/geography B. PostgreSQL uses the =, <, and > operators defined for geometries to
			perform internal orderings and comparison of geometries (ie. in a GROUP BY or ORDER BY clause).

Note

Only geometry/geography that are exactly equal in all respects,
 with the same coordinates, in the same order, are considered
 equal by this operator. For "spatial equality", that ignores
 things like coordinate order, and can detect features that
 cover the same spatial area with different representations,
 use ST_OrderingEquals
 or ST_Equals

Caution

This operand will NOT make use of any indexes that may be available on the
				geometries. For an index assisted exact equality test, combine = with &&.

Changed: 2.4.0, in prior versions this was bounding box equality not a geometric equality. If you need bounding box equality, use ~= instead.

[image: Description]
 This method supports Circular Strings and Curves

[image: Description]
 This function supports Polyhedral surfaces.

Examples

SELECT 'LINESTRING(0 0, 0 1, 1 0)'::geometry = 'LINESTRING(1 1, 0 0)'::geometry;
 ?column?

 f
(1 row)

SELECT ST_AsText(column1)
FROM (VALUES
	('LINESTRING(0 0, 1 1)'::geometry),
	('LINESTRING(1 1, 0 0)'::geometry)) AS foo;
	 st_astext

 LINESTRING(0 0,1 1)
 LINESTRING(1 1,0 0)
(2 rows)

-- Note: the GROUP BY uses the "=" to compare for geometry equivalency.
SELECT ST_AsText(column1)
FROM (VALUES
	('LINESTRING(0 0, 1 1)'::geometry),
	('LINESTRING(1 1, 0 0)'::geometry)) AS foo
GROUP BY column1;
 st_astext

 LINESTRING(0 0,1 1)
 LINESTRING(1 1,0 0)
(2 rows)

-- In versions prior to 2.0, this used to return true --
 SELECT ST_GeomFromText('POINT(1707296.37 4820536.77)') =
	ST_GeomFromText('POINT(1707296.27 4820536.87)') As pt_intersect;

--pt_intersect --
f

See Also

ST_Equals, ST_OrderingEquals, ~=
			

OEBPS/images/st_asraster02.png

OEBPS/images/st_buffer06.png

OEBPS/re153.html

Name

ST_AsGML — Return the geometry as a GML version 2 or 3 element.

Synopsis

		text ST_AsGML(geom, 		

		 		maxdecimaldigits=15, 		

		 		options=0);		

geometry geom;
integer maxdecimaldigits=15;
integer options=0;

		text ST_AsGML(geog, 		

		 		maxdecimaldigits=15, 		

		 		options=0, 		

		 		nprefix=null, 		

		 		id=null);		

geography geog;
integer maxdecimaldigits=15;
integer options=0;
text nprefix=null;
text id=null;

		text ST_AsGML(version, 		

		 		geom, 		

		 		maxdecimaldigits=15, 		

		 		options=0, 		

		 		nprefix=null, 		

		 		id=null);		

integer version;
geometry geom;
integer maxdecimaldigits=15;
integer options=0;
text nprefix=null;
text id=null;

		text ST_AsGML(version, 		

		 		geog, 		

		 		maxdecimaldigits=15, 		

		 		options=0, 		

		 		nprefix=null, 		

		 		id=null);		

integer version;
geography geog;
integer maxdecimaldigits=15;
integer options=0;
text nprefix=null;
text id=null;

Description

Return the geometry as a Geography Markup Language (GML) element. The version parameter,
			if specified, may be either 2 or 3. If no version parameter is
			specified then the default is assumed to be 2. The maxdecimaldigits argument
			may be used to reduce the maximum number of decimal places
			used in output (defaults to 15).

Warning

Using the maxdecimaldigits parameter
 can cause output geometry to become invalid.
 To avoid this use ST_ReducePrecision
 with a suitable gridsize first.

GML 2 refer to 2.1.2 version, GML 3 to 3.1.1 version

The 'options' argument is a bitfield. It could be used to define CRS output type
					in GML output, and to declare data as lat/lon:
						

		0: GML Short CRS (e.g EPSG:4326), default value

		1: GML Long CRS (e.g urn:ogc:def:crs:EPSG::4326)

		2: For GML 3 only, remove srsDimension attribute from output.

		4: For GML 3 only, use <LineString> rather than <Curve> tag for lines.

		16: Declare that datas are lat/lon (e.g srid=4326). Default is to assume that data are planars.
								 This option is useful for GML 3.1.1 output only, related to axis order. So if you set it, it will swap the coordinates
								 so order is lat lon instead of database lon lat.

		32: Output the box of the geometry (envelope).

						

The 'namespace prefix' argument may be used to specify a custom
namespace prefix or no prefix (if empty). If null or omitted 'gml' prefix is used

Availability: 1.3.2

Availability: 1.5.0 geography support was introduced.

Enhanced: 2.0.0 prefix support was introduced. Option 4 for GML3 was introduced to allow using LineString instead of Curve tag for lines. GML3 Support for Polyhedral surfaces and TINS was introduced. Option 32 was introduced to output the box.

Changed: 2.0.0 use default named args

Enhanced: 2.1.0 id support was introduced, for GML 3.

Note

Only version 3+ of ST_AsGML supports Polyhedral Surfaces and TINS.

[image: Description] This method implements the SQL/MM specification. SQL-MM IEC 13249-3: 17.2

[image: Description]
 This function supports 3d and will not drop the z-index.

[image: Description]
 This function supports Polyhedral surfaces.

[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples: Version 2

SELECT ST_AsGML(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));
		st_asgml

		<gml:Polygon srsName="EPSG:4326"><gml:outerBoundaryIs><gml:LinearRing><gml:coordinates>0,0 0,1 1,1 1,0 0,0</gml:coordinates></gml:LinearRing></gml:outerBoundaryIs></gml:Polygon>
			

Examples: Version 3

-- Flip coordinates and output extended EPSG (16 | 1)--
SELECT ST_AsGML(3, ST_GeomFromText('POINT(5.234234233242 6.34534534534)',4326), 5, 17);
			st_asgml

		<gml:Point srsName="urn:ogc:def:crs:EPSG::4326"><gml:pos>6.34535 5.23423</gml:pos></gml:Point>
			

-- Output the envelope (32) --
SELECT ST_AsGML(3, ST_GeomFromText('LINESTRING(1 2, 3 4, 10 20)',4326), 5, 32);
		st_asgml

	<gml:Envelope srsName="EPSG:4326">
		<gml:lowerCorner>1 2</gml:lowerCorner>
		<gml:upperCorner>10 20</gml:upperCorner>
	</gml:Envelope>
			

-- Output the envelope (32) , reverse (lat lon instead of lon lat) (16), long srs (1)= 32 | 16 | 1 = 49 --
SELECT ST_AsGML(3, ST_GeomFromText('LINESTRING(1 2, 3 4, 10 20)',4326), 5, 49);
	st_asgml

<gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326">
	<gml:lowerCorner>2 1</gml:lowerCorner>
	<gml:upperCorner>20 10</gml:upperCorner>
</gml:Envelope>
			

-- Polyhedral Example --
SELECT ST_AsGML(3, ST_GeomFromEWKT('POLYHEDRALSURFACE(((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),
((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)), ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),
((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),
((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)), ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))'));
	st_asgml

 <gml:PolyhedralSurface>
<gml:polygonPatches>
 <gml:PolygonPatch>
		<gml:exterior>
			 <gml:LinearRing>
				 <gml:posList srsDimension="3">0 0 0 0 0 1 0 1 1 0 1 0 0 0 0</gml:posList>
			 </gml:LinearRing>
		</gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
		<gml:exterior>
			 <gml:LinearRing>
				 <gml:posList srsDimension="3">0 0 0 0 1 0 1 1 0 1 0 0 0 0 0</gml:posList>
			 </gml:LinearRing>
		</gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
		<gml:exterior>
			 <gml:LinearRing>
				 <gml:posList srsDimension="3">0 0 0 1 0 0 1 0 1 0 0 1 0 0 0</gml:posList>
			 </gml:LinearRing>
		</gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
		<gml:exterior>
			 <gml:LinearRing>
				 <gml:posList srsDimension="3">1 1 0 1 1 1 1 0 1 1 0 0 1 1 0</gml:posList>
			 </gml:LinearRing>
		</gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
		<gml:exterior>
			 <gml:LinearRing>
				 <gml:posList srsDimension="3">0 1 0 0 1 1 1 1 1 1 1 0 0 1 0</gml:posList>
			 </gml:LinearRing>
		</gml:exterior>
 </gml:PolygonPatch>
 <gml:PolygonPatch>
		<gml:exterior>
			 <gml:LinearRing>
				 <gml:posList srsDimension="3">0 0 1 1 0 1 1 1 1 0 1 1 0 0 1</gml:posList>
			 </gml:LinearRing>
		</gml:exterior>
 </gml:PolygonPatch>
</gml:polygonPatches>
</gml:PolyhedralSurface>
			

See Also

ST_GeomFromGML

OEBPS/images/st_shortestline02.png

OEBPS/images/st_buffer07.png

OEBPS/images/st_isvalid08.png

OEBPS/images/st_isvalid07.png

OEBPS/images/st_offsetcurve01.png

OEBPS/re192.html

Name

<<->> —
Returns the n-D distance between the centroids of A and B bounding
boxes.
			

Synopsis

		double precision <<->>(A, 		

		 		B);		

				 geometry

				 A
				;

				 geometry

				 B
				;

Description

The <<->> operator returns the n-D (euclidean)
distance between the centroids of the bounding boxes of two geometries.
Useful for doing nearest neighbor
approximate distance ordering.

Note

This operand will make use of n-D GiST indexes that may be available on
the geometries. It is different from other operators that use spatial
indexes in that the spatial index is only used when the operator is in
the ORDER BY clause.

Note

Index only kicks in if one of the geometries is a constant (not in a
subquery/cte). e.g. 'SRID=3005;POINT(1011102 450541)'::geometry instead
of a.geom

Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+

See Also

<<#>>,
<->

OEBPS/images/st_buffer09.png

OEBPS/images/st_contains06.png

OEBPS/re119.html

Name

ST_LineFromText — Makes a Geometry from WKT representation with the given SRID. If SRID is
				not given, it defaults to 0.

Synopsis

		geometry ST_LineFromText(WKT);		

text WKT;

		geometry ST_LineFromText(WKT, 		

		 		srid);		

text WKT;
integer srid;

Description

Makes a Geometry from WKT with the given SRID. If SRID is
				not given, it defaults to 0. If WKT passed in is not a LINESTRING, then null is returned.

Note

OGC SPEC 3.2.6.2 - option SRID is from the conformance
				suite.

Note

If you know all your geometries are LINESTRINGS, its more efficient to just use ST_GeomFromText.
			This just calls ST_GeomFromText and adds additional validation that it returns a linestring.

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 7.2.8

Examples

SELECT ST_LineFromText('LINESTRING(1 2, 3 4)') AS aline, ST_LineFromText('POINT(1 2)') AS null_return;
aline | null_return
--
010200000002000000000000000000F ... | t
		

See Also

ST_GeomFromText

OEBPS/images/st_overlaps01.png

OEBPS/images/st_buffer10.png

OEBPS/re196.html

Name

ST_ContainsProperly — Tests if B intersects the interior of A but not the boundary or exterior.

Synopsis

		boolean ST_ContainsProperly(geomA, 		

		 		geomB);		

geometry
 geomA;
geometry
 geomB;

Description

Returns true if B intersects the interior of A but not the boundary or exterior.

A does not properly contain itself, but does contain itself.

Every point of the other geometry is a point of this geometry's interior. The DE-9IM Intersection Matrix for the two geometries matches
 [T**FF*FF*] used in ST_Relate

 An example use case for this predicate is computing the intersections of a set of geometries with a large polygonal geometry. Since intersection is a fairly slow operation, it can be more efficient to use containsProperly to filter out test geometries which lie
 wholly inside the area. In these cases the intersection is known a priori to be exactly the original test geometry.

Note

This function automatically includes a bounding box comparison
that makes use of any spatial indexes that are available on the geometries.
 To avoid index use, use the function _ST_ContainsProperly.

Note

The advantage of this predicate over ST_Contains and ST_Intersects is that it can be computed
 more efficiently, with no need to compute topology at individual points.

Performed by the GEOS module.

Availability: 1.4.0

Important

Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important

Do not use this function with invalid geometries. You will get unexpected results.

Examples

 --a circle within a circle
 SELECT ST_ContainsProperly(smallc, bigc) As smallcontainspropbig,
 ST_ContainsProperly(bigc,smallc) As bigcontainspropsmall,
 ST_ContainsProperly(bigc, ST_Union(smallc, bigc)) as bigcontainspropunion,
 ST_Equals(bigc, ST_Union(smallc, bigc)) as bigisunion,
 ST_Covers(bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
 ST_ContainsProperly(bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
 FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
 ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;
 --Result
 smallcontainspropbig | bigcontainspropsmall | bigcontainspropunion | bigisunion | bigcoversexterior | bigcontainsexterior
------------------+------------------+------------------+------------+-------------------+---------------------
 f | t | f | t | t | f

 --example demonstrating difference between contains and contains properly
 SELECT ST_GeometryType(geomA) As geomtype, ST_Contains(geomA,geomA) AS acontainsa, ST_ContainsProperly(geomA, geomA) AS acontainspropa,
 ST_Contains(geomA, ST_Boundary(geomA)) As acontainsba, ST_ContainsProperly(geomA, ST_Boundary(geomA)) As acontainspropba
 FROM (VALUES (ST_Buffer(ST_Point(1,1), 5,1)),
 (ST_MakeLine(ST_Point(1,1), ST_Point(-1,-1))),
 (ST_Point(1,1))
) As foo(geomA);

 geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
--------------+------------+----------------+-------------+-----------------
ST_Polygon | t | f | f | f
ST_LineString | t | f | f | f
ST_Point | t | t | f | f

See Also

ST_GeometryType, ST_Boundary, ST_Contains, ST_Covers, ST_CoveredBy, ST_Equals, ST_Relate, ST_Within

OEBPS/re212.html

Name

ST_DFullyWithin — Tests if two geometries are entirely within a given distance

Synopsis

		boolean ST_DFullyWithin(g1, 		

		 		g2, 		

		 		distance);		

geometry
 g1;
geometry
 g2;
double precision
 distance;

Description

Returns true if the geometries are entirely within the specified distance
 of one another. The distance is specified in units defined by the
 spatial reference system of the geometries. For this function to make
 sense, the source geometries must both be of the same coordinate projection,
 having the same SRID.

Note

This function automatically includes a bounding box comparison
that makes use of any spatial indexes that are available on the geometries.

Availability: 1.5.0

Examples

postgis=# SELECT ST_DFullyWithin(geom_a, geom_b, 10) as DFullyWithin10, ST_DWithin(geom_a, geom_b, 10) as DWithin10, ST_DFullyWithin(geom_a, geom_b, 20) as DFullyWithin20 from
 (select ST_GeomFromText('POINT(1 1)') as geom_a,ST_GeomFromText('LINESTRING(1 5, 2 7, 1 9, 14 12)') as geom_b) t1;

 DFullyWithin10 | DWithin10 | DFullyWithin20 |
---------------+----------+---------------+
 f | t | t |

See Also

ST_MaxDistance,
 ST_DWithin, ST_3DDWithin, ST_3DDFullyWithin

OEBPS/images/st_colormap_orig.png

OEBPS/re139.html

Name

ST_GMLToSQL — Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML

Synopsis

		geometry ST_GMLToSQL(geomgml);		

text geomgml;

		geometry ST_GMLToSQL(geomgml, 		

		 		srid);		

text geomgml;
integer srid;

Description

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.50 (except for curves support).

Availability: 1.5, requires libxml2 1.6+

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.

Enhanced: 2.0.0 default srid optional parameter added.

See Also

the section called “Build configuration”, ST_GeomFromGML, ST_AsGML

OEBPS/re436.html

Name

addbandarg — A composite type used as input into the ST_AddBand function defining the attributes and initial value of the new band.

Description

 A composite type used as input into the ST_AddBand function defining the attributes and initial value of the new band.

		
 index
 integer

		
 1-based value indicating the position where the new band will be added amongst the raster's bands. If NULL, the new band will be added at the end of the raster's bands.

		
 pixeltype
 text

		
 Pixel type of the new band. One of defined pixel types as described in ST_BandPixelType.

		
 initialvalue
 double precision

		
 Initial value that all pixels of new band will be set to.

		
 nodataval
 double precision

		
 NODATA value of the new band. If NULL, the new band will not have a NODATA value assigned.

See Also

 ST_AddBand

OEBPS/images/st_buffer11.png

OEBPS/images/st_clusterkmeans02.png

OEBPS/images/st_issimple01.png

OEBPS/images/st_sharedpaths01.png

OEBPS/re166.html

Name

&&(box2df,box2df) — Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.

Synopsis

		boolean &&(A, 		

		 		B);		

				 box2df

				 A
				;

				 box2df

				 B
				;

Description

The && operator returns TRUE if two 2D bounding boxes A and B intersect each other, using float precision. This means that if A (or B) is a (double precision) box2d, it will be internally converted to a float precision 2D bounding box (BOX2DF)

Note

This operator is intended to be used internally by BRIN indexes, more
				than by users.

Availability: 2.3.0 support for Block Range INdexes (BRIN) was introduced. Requires PostgreSQL 9.5+.

[image: Description]
 This method supports Circular Strings and Curves

[image: Description]
 This function supports Polyhedral surfaces.

Examples

SELECT ST_MakeBox2D(ST_Point(0,0), ST_Point(2,2)) && ST_MakeBox2D(ST_Point(1,1), ST_Point(3,3)) AS overlaps;

 overlaps

 t
(1 row)

See Also

				&&(geometry,box2df),
				&&(box2df,geometry),
				~(geometry,box2df),
				~(box2df,geometry),
				~(box2df,box2df),
				@(geometry,box2df),
				@(box2df,geometry),
				@(box2df,box2df)

OEBPS/re193.html

Name

<<#>> —
Returns the n-D distance between A and B bounding boxes.
			

Synopsis

		double precision <<#>>(A, 		

		 		B);		

				 geometry

				 A
				;

				 geometry

				 B
				;

Description

The <<#>> operator returns distance between two floating point bounding boxes, possibly reading them from a spatial index (PostgreSQL 9.1+ required). Useful for doing nearest neighbor approximate distance ordering.

Note

This operand will make use of any indexes that may be available on the
			 geometries. It is different from other operators that use spatial indexes in that the spatial index is only used when the operator
			 is in the ORDER BY clause.

Note

Index only kicks in if one of the geometries is a constant e.g. ORDER BY
(ST_GeomFromText('POINT(1 2)') <<#>> geom) instead of g1.geom
<<#>>.

Availability: 2.2.0 -- KNN only available for PostgreSQL 9.1+

See Also

<<->>,
<#>

OEBPS/images/st_offsetcurve06.png

OEBPS/images/st_colormap_fire.png
n

OEBPS/re114.html

Name

ST_GeomCollFromText — Makes a collection Geometry from collection WKT with the given SRID. If SRID is
			not given, it defaults to 0.

Synopsis

		geometry ST_GeomCollFromText(WKT, 		

		 		srid);		

text WKT;
integer srid;

		geometry ST_GeomCollFromText(WKT);		

text WKT;

Description

Makes a collection Geometry from the Well-Known-Text (WKT) representation with the given SRID. If SRID is
			not given, it defaults to 0.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Returns null if the WKT is not a GEOMETRYCOLLECTION

Note

If you are absolutely sure all your WKT geometries are collections, don't use this function.
				It is slower than ST_GeomFromText since it adds an additional validation step.
			

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2

[image: Description] This method implements the SQL/MM specification.

Examples

SELECT ST_GeomCollFromText('GEOMETRYCOLLECTION(POINT(1 2),LINESTRING(1 2, 3 4))');

See Also

ST_GeomFromText, ST_SRID

OEBPS/images/matrix_sfcgal_enhanced.png

OEBPS/images/st_colormap_grey.png

OEBPS/images/st_overlaps06.png

OEBPS/images/st_colormap_red.png

OEBPS/images/st_mapalgebraexpr02.png

OEBPS/re134.html

Name

ST_GeomFromGeoHash — Return a geometry from a GeoHash string.

Synopsis

		geometry ST_GeomFromGeoHash(geohash, 		

		 		precision=full_precision_of_geohash);		

text geohash;
integer precision=full_precision_of_geohash;

Description

Return a geometry from a GeoHash string. The geometry will be a polygon representing the GeoHash bounds.

If no precision is specified ST_GeomFromGeoHash returns a polygon based on full precision of the input GeoHash string.

If precision is specified ST_GeomFromGeoHash will use that many characters from the GeoHash to create the polygon.

Availability: 2.1.0

Examples

SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0'));
 st_astext
--
 POLYGON((-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646))

SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 4));
 st_astext
--
 POLYGON((-115.3125 36.03515625,-115.3125 36.2109375,-114.9609375 36.2109375,-114.9609375 36.03515625,-115.3125 36.03515625))

SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 10));
 st_astext
--
 POLYGON((-115.17282128334 36.1146408319473,-115.17282128334 36.1146461963654,-115.172810554504 36.1146461963654,-115.172810554504 36.1146408319473,-115.17282128334 36.1146408319473))
		
		

See Also

ST_GeoHash,ST_Box2dFromGeoHash, ST_PointFromGeoHash

OEBPS/images/st_longestline02.png

OEBPS/re206.html

Name

ST_Relate — Tests if two geometries have a topological relationship
 matching an Intersection Matrix pattern,
 or computes their Intersection Matrix

Synopsis

		boolean ST_Relate(geomA, 		

		 		geomB, 		

		 		intersectionMatrixPattern);		

geometry geomA;
geometry geomB;
text intersectionMatrixPattern;

		text ST_Relate(geomA, 		

		 		geomB);		

geometry geomA;
geometry geomB;

		text ST_Relate(geomA, 		

		 		geomB, 		

		 		boundaryNodeRule);		

geometry geomA;
geometry geomB;
integer boundaryNodeRule;

Description

 These functions allow testing and evaluating the spatial (topological) relationship between two geometries,
 as defined by the Dimensionally Extended 9-Intersection Model (DE-9IM).

 The DE-9IM is specified as a 9-element matrix indicating the dimension of the intersections between the
 Interior, Boundary and Exterior of two geometries.
 It is represented by a 9-character text string using the symbols 'F', '0', '1', '2'
 (e.g. 'FF1FF0102').

 A specific kind of spatial relationships is evaluated by comparing the intersection
 matrix to an intersection matrix pattern.
 A pattern can include the additional symbols 'T' and '*'.
 Common spatial relationships are provided by the named functions
 ST_Contains, ST_ContainsProperly,
 ST_Covers, ST_CoveredBy,
 ST_Crosses, ST_Disjoint, ST_Equals,
 ST_Intersects, ST_Overlaps, ST_Touches,
 and ST_Within.
 Using an explicit pattern allows testing multiple conditions of intersects, crosses, etc in one step.
 It also allows testing spatial relationships which do not have a named spatial relationship function.
 For example, the relationship "Interior-Intersects" has the DE-9IM pattern T********,
 which is not evaluated by any named predicate.

 For more information refer to the section called “Determining Spatial Relationships”.

Variant 1: Tests if two geometries are spatially related
 according to the given intersectionMatrixPattern.

Note

Unlike most of the named spatial relationship predicates,
 this does NOT automatically include an index call.
 The reason is that some relationships are true for geometries
 which do NOT intersect (e.g. Disjoint). If you are
 using a relationship pattern that requires intersection, then include the &&
 index call.

Note

It is better to use a named relationship function if available,
 since they automatically use a spatial index where one exists.
 Also, they may implement performance optimizations which are not available
 with full relate evalation.

Variant 2: Returns the DE-9IM matrix string for the
 spatial relationship between the two input geometries.
 The matrix string can be tested for matching a DE-9IM pattern using ST_RelateMatch.

Variant 3: Like variant 2,
 but allows specifying a Boundary Node Rule.
 A boundary node rule allows finer control over whether geometry boundary points are
 considered to lie in the DE-9IM Interior or Boundary.
 The boundaryNodeRule code is:
 1: OGC/MOD2, 2: Endpoint, 3: MultivalentEndpoint, 4: MonovalentEndpoint.

This function is not in the OGC spec, but is implied. see s2.1.13.2

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.25

Performed by the GEOS module

Enhanced: 2.0.0 - added support for specifying boundary node rule.

Important

Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Examples

Using the boolean-valued function to test spatial relationships.

SELECT ST_Relate('POINT(1 2)', ST_Buffer('POINT(1 2)', 2), '0FFFFF212');
st_relate

t

SELECT ST_Relate(POINT(1 2)', ST_Buffer('POINT(1 2)', 2), '*FF*FF212');
st_relate

t

Testing a custom spatial relationship pattern as a query condition,
 with && to enable using a spatial index.

-- Find compounds that properly intersect (not just touch) a poly (Interior Intersects)

SELECT c.* , p.name As poly_name
 FROM polys AS p
 INNER JOIN compounds As c
 ON c.geom && p.geom
 AND ST_Relate(p.geom, c.geom,'T********');

Computing the intersection matrix for spatial relationships.

SELECT ST_Relate('POINT(1 2)',
 ST_Buffer('POINT(1 2)', 2));
st_relate

0FFFFF212

SELECT ST_Relate('LINESTRING(1 2, 3 4)',
 'LINESTRING(5 6, 7 8)');
st_relate

FF1FF0102

See Also

 the section called “Determining Spatial Relationships”, ST_RelateMatch,
 ST_Contains, ST_ContainsProperly,
 ST_Covers, ST_CoveredBy,
 ST_Crosses, ST_Disjoint, ST_Equals,
 ST_Intersects, ST_Overlaps,
 ST_Touches, ST_Within

OEBPS/images/st_minkowskisum04.png

OEBPS/images/st_orientedenvelope01.png

OEBPS/images/st_minkowskisum03.png

OEBPS/images/st_split01.png

OEBPS/re128.html

Name

ST_GeomFromWKB — Creates a geometry instance from a Well-Known Binary geometry
		representation (WKB) and optional SRID.

Synopsis

		geometry ST_GeomFromWKB(geom);		

bytea geom;

		geometry ST_GeomFromWKB(geom, 		

		 		srid);		

bytea geom;
integer srid;

Description

The ST_GeomFromWKB function, takes a well-known
		binary representation of a geometry and a Spatial Reference System ID
		(SRID) and creates an instance of the appropriate
		geometry type. This function plays the role of the Geometry Factory in
		SQL. This is an alternate name for ST_WKBToSQL.

If SRID is not specified, it defaults to 0 (Unknown).

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s3.2.7.2 - the optional SRID is from the conformance suite

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.41

[image: Description]
 This method supports Circular Strings and Curves

Examples

--Although bytea rep contains single \, these need to be escaped when inserting into a table
		-- unless standard_conforming_strings is set to on.
SELECT ST_AsEWKT(
ST_GeomFromWKB(E'\\001\\002\\000\\000\\000\\002\\000\\000\\000\\037\\205\\353Q\\270~\\\\\\300\\323Mb\\020X\\231C@\\020X9\\264\\310~\\\\\\300)\\\\\\217\\302\\365\\230C@',4326)
);
					 st_asewkt
--
 SRID=4326;LINESTRING(-113.98 39.198,-113.981 39.195)
(1 row)

SELECT
 ST_AsText(
	ST_GeomFromWKB(
	 ST_AsEWKB('POINT(2 5)'::geometry)
)
);
 st_astext

 POINT(2 5)
(1 row)

See Also

ST_WKBToSQL, ST_AsBinary, ST_GeomFromEWKB

OEBPS/images/st_3dunion01.png

OEBPS/images/st_extrude01.png

OEBPS/images/st_line_interpolate_points01.png

OEBPS/re163.html

Name

&& — Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.

Synopsis

		boolean &&(A, 		

		 		B);		

				 geometry

				 A
				;

				 geometry

				 B
				;

		boolean &&(A, 		

		 		B);		

				 geography

				 A
				;

				 geography

				 B
				;

Description

The && operator returns TRUE if the 2D bounding box of geometry A intersects the 2D bounding box of geometry B.

Note

This operand will make use of any indexes that may be available on the
 geometries.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Availability: 1.5.0 support for geography was introduced.

[image: Description]
 This method supports Circular Strings and Curves

[image: Description]
 This function supports Polyhedral surfaces.

Examples

SELECT tbl1.column1, tbl2.column1, tbl1.column2 && tbl2.column2 AS overlaps
FROM (VALUES
	(1, 'LINESTRING(0 0, 3 3)'::geometry),
	(2, 'LINESTRING(0 1, 0 5)'::geometry)) AS tbl1,
(VALUES
	(3, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl2;

 column1 | column1 | overlaps
---------+---------+----------
	 1 | 3 | t
	 2 | 3 | f
(2 rows)

See Also

 ST_Intersects,
 ST_Extent,
				|&>,
				&>,
				&<|,
				&<,
				~,
				@

OEBPS/images/st_mapalgebraexpr2_04.png

OEBPS/re596.html

Name

rules table — The rules table contains a set of rules that maps address input sequence tokens to standardized output sequence. A rule is defined as a set of input tokens followed by -1 (terminator) followed by set of output tokens followed by -1 followed by number denoting kind of rule followed by ranking of rule.

Description

A rules table must have at least the following columns, though you are allowed to add more for your own uses.

		id

		Primary key of table

		rule

		text field denoting the rule. Details at PAGC Address Standardizer Rule records.

A rule consists of a set of non-negative integers representing input tokens, terminated by a -1, followed by an equal number of non-negative integers representing postal attributes, terminated by a -1, followed by an integer representing a rule type, followed by an integer representing the rank of the rule. The rules are ranked from 0 (lowest) to 17 (highest).

So for example the rule 2 0 2 22 3 -1 5 5 6 7 3 -1 2 6 maps to sequence of output tokens TYPE NUMBER TYPE DIRECT QUALIF to the output sequence STREET STREET SUFTYP SUFDIR QUALIF. The rule is an ARC_C rule of rank 6.

Numbers for corresponding output tokens are listed in stdaddr.

Input Tokens

Each rule starts with a set of input tokens followed by a terminator -1. Valid input tokens excerpted from PAGC Input Tokens are as follows:

Form-Based Input Tokens

		AMPERS

		(13). The ampersand (&) is frequently used to abbreviate the word "and".

		DASH

		(9). A punctuation character.

		DOUBLE

		(21). A sequence of two letters. Often used as identifiers.

		FRACT

		(25). Fractions are sometimes used in civic numbers or unit numbers.

		MIXED

		(23). An alphanumeric string that contains both letters and digits. Used for identifiers.

		NUMBER

		(0). A string of digits.

		ORD

		(15). Representations such as First or 1st. Often used in street names.

		ORD

		(18). A single letter.

		WORD

		(1). A word is a string of letters of arbitrary length. A single letter can be both a SINGLE and a WORD.

Function-based Input Tokens

		BOXH

		(14). Words used to denote post office boxes. For example Box or PO Box.

		BUILDH

		(19). Words used to denote buildings or building complexes, usually as a prefix. For example: Tower in Tower 7A.

		BUILDT

		(24). Words and abbreviations used to denote buildings or building complexes, usually as a suffix. For example: Shopping Centre.

		DIRECT

		(22). Words used to denote directions, for example North.

		MILE

		(20). Words used to denote milepost addresses.

		ROAD

		(6). Words and abbreviations used to denote highways and roads. For example: the Interstate in Interstate 5

		RR

		(8). Words and abbreviations used to denote rural routes. RR.

		TYPE

		(2). Words and abbreviation used to denote street typess. For example: ST or AVE.

		UNITH

		(16). Words and abbreviation used to denote internal subaddresses. For example, APT or UNIT.

Postal Type Input Tokens

		QUINT

		(28). A 5 digit number. Identifies a Zip Code

		QUAD

		(29). A 4 digit number. Identifies ZIP4.

		PCH

		(27). A 3 character sequence of letter number letter. Identifies an FSA, the first 3 characters of a Canadian postal code.

		PCT

		(26). A 3 character sequence of number letter number. Identifies an LDU, the last 3 characters of a Canadian postal code.

Stopwords

STOPWORDS combine with WORDS. In rules a string of multiple WORDs and STOPWORDs will be represented by a single WORD token.

		STOPWORD

		(7). A word with low lexical significance, that can be omitted in parsing. For example: THE.

Output Tokens

After the first -1 (terminator), follows the output tokens and their order, followed by a terminator -1. Numbers for corresponding output tokens are listed in stdaddr. What are allowed is dependent on kind of rule. Output tokens valid for each rule type are listed in the section called “Rule Types and Rank”.

Rule Types and Rank

The final part of the rule is the rule type which is denoted by one of the following, followed by a rule rank. The rules are ranked from 0 (lowest) to 17 (highest).

MACRO_C

(token number = "0"). The class of rules for parsing MACRO clauses such as PLACE STATE ZIP

MACRO_C output tokens (excerpted from http://www.pagcgeo.org/docs/html/pagc-12.html#--r-typ--.

		CITY

		(token number "10"). Example "Albany"

		STATE

		(token number "11"). Example "NY"

		NATION

		(token number "12"). This attribute is not used in most reference files. Example "USA"

		POSTAL

		(token number "13"). (SADS elements "ZIP CODE" , "PLUS 4"). This attribute is used for both the US Zip and the Canadian Postal Codes.

MICRO_C

(token number = "1"). The class of rules for parsing full MICRO clauses (such as House, street, sufdir, predir, pretyp, suftype, qualif) (ie ARC_C plus CIVIC_C). These rules are not used in the build phase.

MICRO_C output tokens (excerpted from http://www.pagcgeo.org/docs/html/pagc-12.html#--r-typ--.

		HOUSE

		is a text (token number 1): This is the street number on a street. Example 75 in 75 State Street.

		predir

		 is text (token number 2): STREET NAME PRE-DIRECTIONAL such as North, South, East, West etc.

		qual

		is text (token number 3): STREET NAME PRE-MODIFIER Example OLD in 3715 OLD HIGHWAY 99.

		pretype

		 is text (token number 4): STREET PREFIX TYPE

		street

		is text (token number 5): STREET NAME

		suftype

		is text (token number 6): STREET POST TYPE e.g. St, Ave, Cir. A street type following the root street name. Example STREET in 75 State Street.

		sufdir

		is text (token number 7): STREET POST-DIRECTIONAL A directional modifier that follows the street name.. Example WEST in 3715 TENTH AVENUE WEST.

ARC_C

(token number = "2"). The class of rules for parsing MICRO clauses, excluding the HOUSE attribute. As such uses same set of output tokens as MICRO_C minus the HOUSE token.

CIVIC_C

(token number = "3"). The class of rules for parsing the HOUSE attribute.

EXTRA_C

(token number = "4"). The class of rules for parsing EXTRA attributes - attributes excluded from geocoding. These rules are not used in the build phase.

EXTRA_C output tokens (excerpted from http://www.pagcgeo.org/docs/html/pagc-12.html#--r-typ--.

		BLDNG

		(token number 0): Unparsed building identifiers and types.

		BOXH

		(token number 14): The BOX in BOX 3B

		BOXT

		(token number 15): The 3B in BOX 3B

		RR

		(token number 8): The RR in RR 7

		UNITH

		(token number 16): The APT in APT 3B

		UNITT

		(token number 17): The 3B in APT 3B

		UNKNWN

		(token number 9): An otherwise unclassified output.

OEBPS/re147.html

Name

ST_AsEWKB — Return the Extended Well-Known Binary (EWKB) representation of the geometry with SRID meta data.

Synopsis

		bytea ST_AsEWKB(g1);		

geometry g1;

		bytea ST_AsEWKB(g1, 		

		 		NDR_or_XDR);		

geometry g1;
text NDR_or_XDR;

Description

Returns the Extended Well-Known Binary (EWKB) representation of the geometry with SRID metadata.
 The first function variant defaults to encoding using server machine endian.
 The second function variant takes a text argument
			specifying the endian encoding, either little-endian ('NDR') or big-endian ('XDR').

WKB format is useful to read geometry data from the
			database and maintaining full numeric precision.
 This avoids the precision rounding that can happen with text formats such as WKT.

To perform the inverse conversion of EWKB to PostGIS geometry use ST_GeomFromEWKB.

Note

To get the OGC/ISO WKB format use ST_AsBinary.
 Note that OGC/ISO WKB format does not include the SRID.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

[image: Description]
 This function supports 3d and will not drop the z-index.

[image: Description]
 This method supports Circular Strings and Curves

[image: Description]
 This function supports Polyhedral surfaces.

[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

		 st_asewkb

\x0103000020e6100000010000000500
00000000000000f03f000000000000f03f000000000000f03f000000000000f03f00000000000000
0000000000000000000000000000000000

			SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326), 'XDR');
		 st_asewkb

\x0020000003000010e6000000010000000500
003ff00000000000003ff00000000000003ff00000000000003ff000000000000000000000000000
0000000000000000000000000000000000
		

See Also

ST_AsBinary, ST_GeomFromEWKB, ST_SRID

OEBPS/re118.html

Name

ST_GeomFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT).

Synopsis

		geometry ST_GeomFromText(WKT);		

text WKT;

		geometry ST_GeomFromText(WKT, 		

		 		srid);		

text WKT;
integer srid;

Description

Constructs a PostGIS ST_Geometry object from the OGC Well-Known text representation.

Note

There are two variants of ST_GeomFromText function. The first takes no SRID and returns a geometry
					with no defined spatial reference system (SRID=0). The second takes a SRID as the second argument
					and returns a geometry that includes this SRID as part of its metadata.
				

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2 - option SRID is from the conformance suite.

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.40

[image: Description]
 This method supports Circular Strings and Curves

Note

While not OGC-compliant, ST_MakePoint is faster than ST_GeomFromText and ST_PointFromText. It is also easier to use for numeric coordinate values. ST_Point is another option similar in speed to ST_MakePoint and is OGC-compliant, but doesn't support anything but 2D points.

Warning

Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText('GEOMETRYCOLLECTION(EMPTY)') was allowed. This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards. This should now be
			 written as ST_GeomFromText('GEOMETRYCOLLECTION EMPTY')

Examples

SELECT ST_GeomFromText('LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932)');
SELECT ST_GeomFromText('LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932)',4269);

SELECT ST_GeomFromText('MULTILINESTRING((-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932))');

SELECT ST_GeomFromText('POINT(-71.064544 42.28787)');

SELECT ST_GeomFromText('POLYGON((-71.1776585052917 42.3902909739571,-71.1776820268866 42.3903701743239,
-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 42.3902909739571))');

SELECT ST_GeomFromText('MULTIPOLYGON(((-71.1031880899493 42.3152774590236,
-71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307,
-71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248,
-71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797,
-71.103113945163 42.3142739188902,-71.10324876416 42.31402489987,
-71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772,
-71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029,
-71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058,
-71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118,
-71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681,
-71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055,
-71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936,
-71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569,
-71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809,
-71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048,
-71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859,
-71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338,
-71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985,
-71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544,
-71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219,
-71.1031880899493 42.3152774590236)),
((-71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857,
-71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 42.315113108546)))',4326);

SELECT ST_GeomFromText('CIRCULARSTRING(220268 150415,220227 150505,220227 150406)');
	

See Also

ST_GeomFromEWKT, ST_GeomFromWKB, ST_SRID

OEBPS/images/st_linemerge01.png
{9

OEBPS/images/st_mapalgebraexpr2_02.png

OEBPS/images/st_snap01.png

OEBPS/images/st_alphashape01.png

OEBPS/images/st_isvalid09.png

OEBPS/images/st_voronoi02.png

OEBPS/images/matrix_transform.png

OEBPS/images/st_delaunaytriangles01.png

OEBPS/images/st_mapalgebraexpr2_05.png

OEBPS/images/st_3dintersection01.png

OEBPS/images/ccbysa.png
) ®O

OEBPS/images/osgeo_logo.png
& 0sGeo

Project

OEBPS/images/PostGIS_logo.png
Spatial PostgreSQL

OEBPS/images/st_mapalgebrafctngb01.png

OEBPS/re202.html

Name

ST_Intersects — Tests if two geometries
 intersect (they have at least one point in common).

Synopsis

		boolean ST_Intersects(geomA, 		

		 		geomB);		

 geometry
 geomA
 ;

 geometry
 geomB
 ;

		boolean ST_Intersects(geogA, 		

		 		geogB);		

 geography
 geogA
 ;

 geography
 geogB
 ;

Description

Compares two geometries and returns true if they intersect.
 Geometries intersect if they have any point in common.

 For geography, a distance tolerance of 0.00001 meters is used
 (so points that are very close are considered to intersect).

Geometries intersect if their DE-9IM Intersection Matrix matches one of:

		T********

		*T*******

		T**

		****T****

Spatial intersection is implied by all the other spatial relationship tests,
 except ST_Disjoint, which tests that geometries do NOT intersect.

Note

This function automatically includes a bounding box comparison
that makes use of any spatial indexes that are available on the geometries.

Changed: 3.0.0 SFCGAL version removed and native support for 2D TINS added.

Enhanced: 2.5.0 Supports GEOMETRYCOLLECTION.

Enhanced: 2.3.0 Enhancement to PIP short-circuit extended to support MultiPoints with few points. Prior versions only supported point in polygon.

Performed by the GEOS module (for geometry), geography is native

Availability: 1.5 support for geography was introduced.

Note

For geography, this function has a distance tolerance of about 0.00001 meters and uses the sphere rather
 than spheroid calculation.

Note

NOTE: this is the "allowable" version that returns a
 boolean, not an integer.

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3
 - ST_Intersects(g1, g2) --> Not (ST_Disjoint(g1, g2))

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 5.1.27

[image: Description]
 This method supports Circular Strings and Curves

[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Geometry Examples

SELECT ST_Intersects('POINT(0 0)'::geometry, 'LINESTRING (2 0, 0 2)'::geometry);
 st_intersects

 f
(1 row)
SELECT ST_Intersects('POINT(0 0)'::geometry, 'LINESTRING (0 0, 0 2)'::geometry);
 st_intersects

 t
(1 row)

-- Look up in table. Make sure table has a GiST index on geometry column for faster lookup.
SELECT id, name FROM cities WHERE ST_Intersects(geom, 'SRID=4326;POLYGON((28 53,27.707 52.293,27 52,26.293 52.293,26 53,26.293 53.707,27 54,27.707 53.707,28 53))');
 id | name
----+-------
 2 | Minsk
(1 row)

Geography Examples

SELECT ST_Intersects(
 'SRID=4326;LINESTRING(-43.23456 72.4567,-43.23456 72.4568)'::geography,
 'SRID=4326;POINT(-43.23456 72.4567772)'::geography
);

 st_intersects

t

See Also

&&, ST_3DIntersects, ST_Disjoint

OEBPS/images/st_band02.png

OEBPS/images/st_mapalgebrafct2_02.png

OEBPS/images/st_concavehull01.png

OEBPS/re157.html

Name

ST_AsMVTGeom — Transforms a geometry into the coordinate space of a MVT tile.

Synopsis

		geometry ST_AsMVTGeom(geom, 		

		 		bounds, 		

		 		extent=4096, 		

		 		buffer=256, 		

		 		clip_geom=true);		

geometry geom;
box2d bounds;
integer extent=4096;
integer buffer=256;
boolean clip_geom=true;

Description

Transforms a geometry into the coordinate space of a MVT (Mapbox Vector Tile) tile,
 clipping it to the tile bounds if required.
 The geometry must be in the coordinate system of the target map (using ST_Transform if needed).
 Commonly this is Web Mercator (SRID:3857).

The function attempts to preserve geometry validity, and corrects it if needed.
 This may cause the result geometry to collapse to a lower dimension.
		

The rectangular bounds of the tile in the target map coordinate space must be provided,
 so the geometry can be transformed, and clipped if required.
 The bounds can be generated using ST_TileEnvelope.

 This function is used to convert geometry into the tile coordinate space required by ST_AsMVT.

geom is the geometry to transform, in the coordinate system of the target map.

bounds is the rectangular bounds of the tile in map coordinate space, with no buffer.

extent is the tile extent size in tile coordinate space as defined by the MVT specification. Defaults to 4096.

buffer is the buffer size in tile coordinate space for geometry clippig. Defaults to 256.

clip_geom is a boolean to control if geometries are clipped or encoded as-is. Defaults to true.

Availability: 2.4.0

Note

From 3.0, Wagyu can be chosen at configure time to clip and validate MVT polygons. This library is faster and produces more correct results than the GEOS default, but it might drop small polygons.

Examples

SELECT ST_AsText(ST_AsMVTGeom(
	ST_GeomFromText('POLYGON ((0 0, 10 0, 10 5, 0 -5, 0 0))'),
	ST_MakeBox2D(ST_Point(0, 0), ST_Point(4096, 4096)),
	4096, 0, false));
 st_astext
--
 MULTIPOLYGON(((5 4096,10 4091,10 4096,5 4096)),((5 4096,0 4101,0 4096,5 4096)))
		

Canonical example for a Web Mercator tile using a computed tile bounds to query and clip geometry.

SELECT ST_AsMVTGeom(
 ST_Transform(geom, 3857),
 ST_TileEnvelope(12, 513, 412), extent => 4096, buffer => 64) AS geom
 FROM data
 WHERE geom && ST_TileEnvelope(12, 513, 412, margin => (64.0 / 4096))

See Also

 ST_AsMVT,
 ST_TileEnvelope,
 PostGIS_Wagyu_Version

OEBPS/images/st_band03.png

OEBPS/re172.html

Name

&<| — Returns TRUE if A's bounding box overlaps or is below B's.

Synopsis

		boolean &<|(A, 		

		 		B);		

				 geometry

				 A
				;

				 geometry

				 B
				;

Description

The &<| operator returns TRUE if the bounding box of geometry A
			overlaps or is below of the bounding box of geometry B, or more accurately, overlaps or is NOT above the bounding
			box of geometry B.

[image: Description]
 This method supports Circular Strings and Curves

[image: Description]
 This function supports Polyhedral surfaces.

Note

This operand will make use of any indexes that may be available on the
				geometries.

Examples

SELECT tbl1.column1, tbl2.column1, tbl1.column2 &<| tbl2.column2 AS overbelow
FROM
 (VALUES
	(1, 'LINESTRING(6 0, 6 4)'::geometry)) AS tbl1,
 (VALUES
	(2, 'LINESTRING(0 0, 3 3)'::geometry),
	(3, 'LINESTRING(0 1, 0 5)'::geometry),
	(4, 'LINESTRING(1 2, 4 6)'::geometry)) AS tbl2;

 column1 | column1 | overbelow
---------+---------+-----------
	 1 | 2 | f
	 1 | 3 | t
	 1 | 4 | t
(3 rows)

See Also

				&&,
				|&>,
				&>,
				&<

OEBPS/re197.html

Name

ST_CoveredBy — Tests if no point in A is outside B

Synopsis

		boolean ST_CoveredBy(geomA, 		

		 		geomB);		

geometry
 geomA;
geometry
 geomB;

		boolean ST_CoveredBy(geogA, 		

		 		geogB);		

geography
 geogA;
geography
 geogB;

Description

Returns true if no point in Geometry/Geography A lies outside
 Geometry/Geography B.
 Equivalently, tests if every point of geometry A is inside
 (i.e. intersects the interior or boundary of) geometry B.

Note

This function automatically includes a bounding box comparison
that makes use of any spatial indexes that are available on the geometries.
 To avoid index use, use the function _ST_CoveredBy.

Important

Enhanced: 3.0.0 enabled support for GEOMETRYCOLLECTION

Important

Do not use this function with invalid geometries. You will get unexpected results.

Performed by the GEOS module

Availability: 1.2.2

NOTE: this is the "allowable" version that returns a
 boolean, not an integer.

Not an OGC standard, but Oracle has it too.

Examples

 --a circle coveredby a circle
SELECT ST_CoveredBy(smallc,smallc) As smallinsmall,
 ST_CoveredBy(smallc, bigc) As smallcoveredbybig,
 ST_CoveredBy(ST_ExteriorRing(bigc), bigc) As exteriorcoveredbybig,
 ST_Within(ST_ExteriorRing(bigc),bigc) As exeriorwithinbig
FROM (SELECT ST_Buffer(ST_GeomFromText('POINT(1 2)'), 10) As smallc,
 ST_Buffer(ST_GeomFromText('POINT(1 2)'), 20) As bigc) As foo;
 --Result
 smallinsmall | smallcoveredbybig | exteriorcoveredbybig | exeriorwithinbig
--------------+-------------------+----------------------+------------------
 t | t | t | f
(1 row)

See Also

ST_Contains, ST_Covers, ST_ExteriorRing, ST_Within

OEBPS/re167.html

Name

&&& — Returns TRUE if A's n-D bounding box intersects B's n-D bounding box.

Synopsis

		boolean &&&(A, 		

		 		B);		

				 geometry

				 A
				;

				 geometry

				 B
				;

Description

The &&& operator returns TRUE if the n-D bounding box of geometry A intersects the n-D bounding box of geometry B.

Note

This operand will make use of any indexes that may be available on the
				geometries.

Availability: 2.0.0

[image: Description]
 This method supports Circular Strings and Curves

[image: Description]
 This function supports Polyhedral surfaces.

[image: Description]
 This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

[image: Description]
 This function supports 3d and will not drop the z-index.

Examples: 3D LineStrings

SELECT tbl1.column1, tbl2.column1, tbl1.column2 &&& tbl2.column2 AS overlaps_3d,
			 tbl1.column2 && tbl2.column2 AS overlaps_2d
FROM (VALUES
	(1, 'LINESTRING Z(0 0 1, 3 3 2)'::geometry),
	(2, 'LINESTRING Z(1 2 0, 0 5 -1)'::geometry)) AS tbl1,
(VALUES
	(3, 'LINESTRING Z(1 2 1, 4 6 1)'::geometry)) AS tbl2;

 column1 | column1 | overlaps_3d | overlaps_2d
---------+---------+-------------+-------------
 1 | 3 | t | t
 2 | 3 | f | t

Examples: 3M LineStrings

SELECT tbl1.column1, tbl2.column1, tbl1.column2 &&& tbl2.column2 AS overlaps_3zm,
			 tbl1.column2 && tbl2.column2 AS overlaps_2d
FROM (VALUES
	(1, 'LINESTRING M(0 0 1, 3 3 2)'::geometry),
	(2, 'LINESTRING M(1 2 0, 0 5 -1)'::geometry)) AS tbl1,
(VALUES
	(3, 'LINESTRING M(1 2 1, 4 6 1)'::geometry)) AS tbl2;

 column1 | column1 | overlaps_3zm | overlaps_2d
---------+---------+-------------+-------------
 1 | 3 | t | t
 2 | 3 | f | t

See Also

&&

OEBPS/images/de9im02.png

OEBPS/re152.html

Name

ST_AsGeoJSON — Return a geometry as a GeoJSON element.

Synopsis

		text ST_AsGeoJSON(feature, 		

		 		geomcolumnname, 		

		 		maxdecimaldigits=9, 		

		 		pretty_bool=false);		

record feature;
text geomcolumnname;
integer maxdecimaldigits=9;
boolean pretty_bool=false;

		text ST_AsGeoJSON(geom, 		

		 		maxdecimaldigits=9, 		

		 		options=8);		

geometry geom;
integer maxdecimaldigits=9;
integer options=8;

		text ST_AsGeoJSON(geog, 		

		 		maxdecimaldigits=9, 		

		 		options=0);		

geography geog;
integer maxdecimaldigits=9;
integer options=0;

Description

Returns a geometry as a GeoJSON "geometry", or a row as a GeoJSON "feature".
 (See the GeoJSON specifications RFC 7946).
 2D and 3D Geometries are both supported.
 GeoJSON only support SFS 1.1 geometry types (no curve support for example).

The maxdecimaldigits argument may be used to reduce the maximum number of decimal places used in output (defaults to 9). If you are using EPSG:4326 and are outputting the geometry only for display, maxdecimaldigits=6 can be a good choice for many maps.

Warning

Using the maxdecimaldigits parameter
 can cause output geometry to become invalid.
 To avoid this use ST_ReducePrecision
 with a suitable gridsize first.

The options argument can be used to add BBOX or CRS in GeoJSON output:
			

		0: means no option

		1: GeoJSON BBOX

		2: GeoJSON Short CRS (e.g EPSG:4326)

		4: GeoJSON Long CRS (e.g urn:ogc:def:crs:EPSG::4326)

		8: GeoJSON Short CRS if not EPSG:4326 (default)

			

The GeoJSON specification states that polygons are oriented using the Right-Hand Rule,
 and some clients require this orientation.
 This can be ensured by using
				ST_ForcePolygonCCW
			.
 The specification also requires that geometry be in the WGS84 coordinate system
 (SRID = 4326).
 If necessary geometry can be projected into WGS84 using ST_Transform:
 ST_Transform(geom, 4326).

GeoJSON can be tested and viewed online at geojson.io
 and geojsonlint.com.
 It is widely supported by web mapping frameworks:

		OpenLayers GeoJSON Example

		Leaflet GeoJSON Example

		Mapbox GL GeoJSON Example

Availability: 1.3.4

Availability: 1.5.0 geography support was introduced.

Changed: 2.0.0 support default args and named args.

Changed: 3.0.0 support records as input

Changed: 3.0.0 output SRID if not EPSG:4326.

[image: Description]
 This function supports 3d and will not drop the z-index.

Examples

Generate a FeatureCollection:

SELECT json_build_object(
 'type', 'FeatureCollection',
 'features', json_agg(ST_AsGeoJSON(t.*)::json)
)
FROM (VALUES (1, 'one', 'POINT(1 1)'::geometry),
 (2, 'two', 'POINT(2 2)'),
 (3, 'three', 'POINT(3 3)')
) as t(id, name, geom);

{"type" : "FeatureCollection", "features" : [{"type": "Feature", "geometry": {"type":"Point","coordinates":[1,1]}, "properties": {"id": 1, "name": "one"}}, {"type": "Feature", "geometry": {"type":"Point","coordinates":[2,2]}, "properties": {"id": 2, "name": "two"}}, {"type": "Feature", "geometry": {"type":"Point","coordinates":[3,3]}, "properties": {"id": 3, "name": "three"}}]}

Generate a Feature:

SELECT ST_AsGeoJSON(t.*)
FROM (VALUES (1, 'one', 'POINT(1 1)'::geometry)) AS t(id, name, geom);

 st_asgeojson

 {"type": "Feature", "geometry": {"type":"Point","coordinates":[1,1]}, "properties": {"id": 1, "name": "one"}}

An alternate way to generate Features with an id property
is to use JSONB functions and operators:

SELECT jsonb_build_object(
 'type', 'Feature',
 'id', id,
 'geometry', ST_AsGeoJSON(geom)::jsonb,
 'properties', to_jsonb(t.*) - 'id' - 'geom'
) AS json
FROM (VALUES (1, 'one', 'POINT(1 1)'::geometry)) AS t(id, name, geom);

 json

 {"id": 1, "type": "Feature", "geometry": {"type": "Point", "coordinates": [1, 1]}, "properties": {"name": "one"}}

Don't forget to transform your data to WGS84 longitude, latitude to conform with the GeoJSON specification:

SELECT ST_AsGeoJSON(ST_Transform(geom,4326)) from fe_edges limit 1;

					 st_asgeojson

{"type":"MultiLineString","coordinates":[[[-89.734634999999997,31.492072000000000],
[-89.734955999999997,31.492237999999997]]]}

3D geometries are supported:

SELECT ST_AsGeoJSON('LINESTRING(1 2 3, 4 5 6)');

{"type":"LineString","coordinates":[[1,2,3],[4,5,6]]}

See Also

ST_GeomFromGeoJSON,
				ST_ForcePolygonCCW
			, ST_Transform

OEBPS/images/st_convexhull01.png

OEBPS/images/st_pointonsurface02.png

OEBPS/images/st_pointonsurface03.png

OEBPS/images/st_pointonsurface04.png

OEBPS/images/st_isvalid01.png

OEBPS/images/st_envelope01.png

OEBPS/images/st_symdifference02.png

OEBPS/re110.html

Name

ST_BdPolyFromText — Construct a Polygon given an arbitrary collection of closed
			linestrings as a MultiLineString Well-Known text representation.

Synopsis

		geometry ST_BdPolyFromText(WKT, 		

		 		srid);		

text WKT;
integer srid;

Description

Construct a Polygon given an arbitrary collection of closed
			linestrings as a MultiLineString Well-Known text representation.

Note

Throws an error if WKT is not a MULTILINESTRING. Throws an
			error if output is a MULTIPOLYGON; use ST_BdMPolyFromText in that case, or
			see ST_BuildArea() for a
			postgis-specific approach.

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s3.2.6.2

Performed by the GEOS module.

Availability: 1.1.0

See Also

ST_BuildArea, ST_BdMPolyFromText

OEBPS/images/st_simplifypolygonhull02.png

OEBPS/re143.html

Name

ST_FromFlatGeobuf — Reads FlatGeobuf data.

Synopsis

		setof anyelement ST_FromFlatGeobuf(Table reference, 		

		 		FlatGeobuf input data);		

anyelement Table reference;
bytea FlatGeobuf input data;

Description

			Reads FlatGeobuf data (http://flatgeobuf.org).

			NOTE: PostgreSQL bytea cannot exceed 1GB.
		

tabletype reference to a table type.

data input FlatGeobuf data.

Availability: 3.2.0

OEBPS/images/st_buffer01.png

OEBPS/images/st_simplifypolygonhull03.png

OEBPS/re131.html

Name

ST_PointFromWKB — Makes a geometry from WKB with the given SRID

Synopsis

		geometry ST_GeomFromWKB(geom);		

bytea geom;

		geometry ST_GeomFromWKB(geom, 		

		 		srid);		

bytea geom;
integer srid;

Description

The ST_PointFromWKB function, takes a well-known binary
			representation of geometry and a Spatial Reference System ID (SRID)
			and creates an instance of the appropriate geometry type - in this case, a
			POINT geometry. This function plays the role of the Geometry
			Factory in SQL.

If an SRID is not specified, it defaults to 0. NULL is
		returned if the input bytea does not represent a
		POINT geometry.

[image: Description]
 This method implements the OGC Simple Features
 Implementation Specification for SQL 1.1. s3.2.7.2

[image: Description] This method implements the SQL/MM specification. SQL-MM 3: 6.1.9

[image: Description]
 This function supports 3d and will not drop the z-index.

[image: Description]
 This method supports Circular Strings and Curves

Examples

SELECT
 ST_AsText(
	ST_PointFromWKB(
	 ST_AsEWKB('POINT(2 5)'::geometry)
)
);
 st_astext

 POINT(2 5)
(1 row)

SELECT
 ST_AsText(
	ST_PointFromWKB(
	 ST_AsEWKB('LINESTRING(2 5, 2 6)'::geometry)
)
);
 st_astext

(1 row)

See Also

ST_GeomFromWKB, ST_LineFromWKB

OEBPS/images/st_minkowskisum02.png

OEBPS/images/st_makevalid06.png

OEBPS/images/st_clusterdbscan01.png

OEBPS/images/st_isvalid06.png

