Preamble

This document is the original user guide of the described software Quantum GIS. The software and hardware described in this document are in most cases registered trademarks and are therefore subject to the legal requirements. Quantum GIS is subject to the GNU General Public License. Find more information on the Quantum GIS Homepage http://qgis.osgeo.org.

The details, data, results etc. in this document have been written and verified to the best of knowledge and responsibility of the authors and editors. Nevertheless, mistakes concerning the content are possible.

Therefore, all data are not liable to any duties or guarantees. The authors, editors and publishers do not take any responsibility or liability for failures and their consequences. You are always welcome to indicate possible mistakes.

This document has been typeset with \TeX. It is available as \TeX source code via subversion and online as PDF document via http://qgis.osgeo.org/documentation/manuals.html. Translated versions of this document can be downloaded via the documentation area of the QGIS project as well. For more information about contributing to this document and about translating it, please visit: http://www.qgis.org/wiki/

Links in this Document

This document contains internal and external links. Clicking on an internal link moves within the document, while clicking on an external link opens an internet address. In PDF form, internal links are shown in blue, while external links are shown in red and are handled by the system browser. In HTML form, the browser displays and handles both identically.

User, Installation and Coding Guide Authors and Editors:

<table>
<thead>
<tr>
<th>Tara Athan</th>
<th>Radim Blazek</th>
<th>Godofredo Contreras</th>
<th>Claudia A. Engel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otto Dassau</td>
<td>Martin Dobias</td>
<td>Jürgen E. Fischer</td>
<td>Anne Ghiisla</td>
</tr>
<tr>
<td>Stephan Holl</td>
<td>Marco Hugentobler</td>
<td>Magnus Homann</td>
<td>Tim Sutton</td>
</tr>
<tr>
<td>Lars Luthman</td>
<td>Gavin Macaulay</td>
<td>Werner Macho</td>
<td>Carson J.Q. Farmer</td>
</tr>
<tr>
<td>Tyler Mitchell</td>
<td>Brendan Morely</td>
<td>Gary E. Sherman</td>
<td>David Willis</td>
</tr>
</tbody>
</table>

With thanks to Tisham Dhar for preparing the initial msys (MS Windows) environment documentation, to Tom Elwertowski and William Kyngesburye for help in the MAC OSX Installation Section and to Carlos Dávila, Paolo Cavallini and Christian Gunning for revisions. If we have neglected to mention any contributors, please accept our apologies for this oversight.

Copyright © 2004 - 2009 Quantum GIS Development Team
Internet: http://qgis.osgeo.org
Contents

Title

Preamble

Table of Contents

List of Figures

List of Tables

List of QGIS Tips

1 Foreword

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Features</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Conventions</td>
<td>5</td>
</tr>
</tbody>
</table>

2 Introduction To GIS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Why is all this so new?</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1 Raster Data</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2 Vector Data</td>
<td>8</td>
</tr>
</tbody>
</table>

3 Getting Started

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Installation</td>
<td>10</td>
</tr>
<tr>
<td>3.2 Sample Data</td>
<td>10</td>
</tr>
<tr>
<td>3.3 Sample Session</td>
<td>11</td>
</tr>
</tbody>
</table>

4 Features at a Glance

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Starting and Stopping QGIS</td>
<td>14</td>
</tr>
<tr>
<td>4.1.1 Command Line Options</td>
<td>14</td>
</tr>
<tr>
<td>4.2 QGIS GUI</td>
<td>16</td>
</tr>
<tr>
<td>4.2.1 Menu Bar</td>
<td>17</td>
</tr>
<tr>
<td>4.2.2 Toolbars</td>
<td>20</td>
</tr>
<tr>
<td>4.2.3 Map Legend</td>
<td>20</td>
</tr>
<tr>
<td>4.2.4 Map View</td>
<td>22</td>
</tr>
<tr>
<td>4.2.5 Map Overview</td>
<td>22</td>
</tr>
<tr>
<td>4.2.6 Status Bar</td>
<td>23</td>
</tr>
<tr>
<td>4.3 Rendering</td>
<td>23</td>
</tr>
<tr>
<td>4.3.1 Scale Dependent Rendering</td>
<td>23</td>
</tr>
<tr>
<td>4.3.2 Controlling Map Rendering</td>
<td>24</td>
</tr>
<tr>
<td>4.4 Measuring</td>
<td>25</td>
</tr>
<tr>
<td>4.4.1 Measure length and areas</td>
<td>25</td>
</tr>
<tr>
<td>4.5 Projects</td>
<td>25</td>
</tr>
</tbody>
</table>
Contents

12.10 MapServer Export Plugin ... 162
 12.10.1 Creating the Project File 162
 12.10.2 Creating the Map File 163
 12.10.3 Testing the Map File 165
12.11 OGR Converter Plugin ... 166
12.12 Oracle GeoRaster Plugin ... 167
 12.12.1 Managing connections 167
 12.12.2 Selecting a GeoRaster 167
 12.12.3 Displaying GeoRaster 168
12.13 OpenStreetMap Plugin .. 170
 12.13.1 Installation ... 172
 12.13.2 Basic user interface 172
 12.13.3 Loading OSM data ... 174
 12.13.4 Viewing OSM data ... 175
 12.13.5 Editing basic OSM data 175
 12.13.6 Editing relations .. 178
 12.13.7 Downloading OSM data 180
 12.13.8 Uploading OSM data 181
 12.13.9 Saving OSM data .. 181
 12.13.10 Import OSM data ... 183
12.14 Raster Terrain Modelling Plugin 184
12.15 Quick Print Plugin .. 186
12.16 Other core plugins .. 187

13 Using external QGIS Python Plugins 188

14 Help and Support ... 189
 14.1 Mailinglists .. 189
 14.2 IRC .. 190
 14.3 BugTracker .. 190
 14.4 Blog ... 191
 14.5 Wiki .. 191

A Supported Data Formats ... 192
 A.1 OGR Vector Formats ... 192
 A.2 GDAL Raster Formats ... 193

B GRASS Toolbox modules ... 196
 B.1 GRASS Toolbox data import and export modules 196
 B.2 GRASS Toolbox data type conversion modules 199
 B.3 GRASS Toolbox region and projection configuration modules 200
 B.4 GRASS Toolbox raster data modules 201
 B.5 GRASS Toolbox vector data modules 205

List of Figures

1. A Simple QGIS Session ... 12
2. QGIS GUI with Alaska sample data ... 16
3. Measure tools in action ... 26
4. Proxy-settings in QGIS ... 30
5. Add Vector Layer Dialog .. 33
6. Open an OGR Supported Vector Layer Dialog 34
7. QGIS with Shapefile of Alaska loaded .. 35
8. Map in lat/lon crossing the 180° longitude line 41
9. Map crossing the 180° longitude line after applying the ST_Shift_Longitude function .. 42
10. Vector Layer Properties Dialog .. 43
11. Symbolizing-options ... 45
12. Select feature and choose action ... 50
13. Dialog to select an edit widget for an attribute column 51
14. Vector properties dialog with diagram tab 53
15. Diagram from temperature data overlayed on a map 54
16. Edit snapping options on a layer basis .. 56
17. Enter Attribute Values Dialog after digitizing a new vector feature .. 59
18. Redo and Undo digitizing steps .. 63
19. Creating a New Vector Dialog .. 66
20. Attribute Table for Alaska layer .. 67
21. Query Builder ... 69
22. Raster Layers Properties Dialog .. 73
23. Dialog for adding a WMS server, showing its available layers 80
24. Dialog for searching WMS servers after some keywords 82
25. Adding a WFS layer .. 86
26. CRS tab in the QGIS Options Dialog .. 88
27. Projection Dialog .. 90
28. Custom CRS Dialog .. 91
29. GRASS data in the alaska LOCATION (adapted from Neteler & Mitasova 2008 [2]) ... 95
30. Creating a new GRASS LOCATION or a new MAPSET in QGIS 96
31. GRASS Digitizing Toolbar .. 100
32. GRASS Digitizing Category Tab ... 102
33. GRASS Digitizing Settings Tab .. 102
34. GRASS Digitizing Symbolog Tab .. 103
35. GRASS Digitizing Table Tab .. 103
36. GRASS Toolbox and searchable Modules List 105
37. GRASS Toolbox Module Dialogs ... 105
38. GRASS Toolbox r.contour module .. 107
39. GRASS module v.generalize to smooth a vector map 109
40. The GRASS shell, r.shaded.relief module 110
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Displaying shaded relief created with the GRASS module r.shaded.relief</td>
<td>111</td>
</tr>
<tr>
<td>42</td>
<td>GRASS LOCATION browser</td>
<td>113</td>
</tr>
<tr>
<td>43</td>
<td>Print Composer</td>
<td>116</td>
</tr>
<tr>
<td>44</td>
<td>Print Composer map item tab content</td>
<td>118</td>
</tr>
<tr>
<td>45</td>
<td>Customize print composer label and images</td>
<td>119</td>
</tr>
<tr>
<td>46</td>
<td>Customize print composer legend and scalebar</td>
<td>120</td>
</tr>
<tr>
<td>47</td>
<td>Print Composer with map view, legend, scalebar, and text added</td>
<td>121</td>
</tr>
<tr>
<td>48</td>
<td>Plugin Manager</td>
<td>124</td>
</tr>
<tr>
<td>49</td>
<td>Installing external python plugins</td>
<td>125</td>
</tr>
<tr>
<td>50</td>
<td>Coordinate Cature Plugin</td>
<td>129</td>
</tr>
<tr>
<td>51</td>
<td>Copyright Label Plugin</td>
<td>130</td>
</tr>
<tr>
<td>52</td>
<td>North Arrow Plugin</td>
<td>131</td>
</tr>
<tr>
<td>53</td>
<td>Scale Bar Plugin</td>
<td>132</td>
</tr>
<tr>
<td>54</td>
<td>Delimited Text Dialog</td>
<td>134</td>
</tr>
<tr>
<td>55</td>
<td>Dfx2Shape Converter Plugin</td>
<td>135</td>
</tr>
<tr>
<td>56</td>
<td>The eVis display window</td>
<td>137</td>
</tr>
<tr>
<td>57</td>
<td>The eVis Options window</td>
<td>138</td>
</tr>
<tr>
<td>58</td>
<td>The eVis External Applications window</td>
<td>140</td>
</tr>
<tr>
<td>59</td>
<td>The eVis Database connection window</td>
<td>143</td>
</tr>
<tr>
<td>60</td>
<td>The eVis SQL query tab</td>
<td>145</td>
</tr>
<tr>
<td>61</td>
<td>The eVis Perdefined queries tab</td>
<td>146</td>
</tr>
<tr>
<td>62</td>
<td>Georeferencer Plugin Dialog</td>
<td>153</td>
</tr>
<tr>
<td>63</td>
<td>Add points to the raster image</td>
<td>154</td>
</tr>
<tr>
<td>64</td>
<td>The GPS Tools dialog window</td>
<td>157</td>
</tr>
<tr>
<td>65</td>
<td>The download tool</td>
<td>158</td>
</tr>
<tr>
<td>66</td>
<td>Interpolation Plugin</td>
<td>160</td>
</tr>
<tr>
<td>67</td>
<td>Interpolation of elevp data using IDW method</td>
<td>161</td>
</tr>
<tr>
<td>68</td>
<td>Arrange raster and vector layers for QGIS project file</td>
<td>162</td>
</tr>
<tr>
<td>69</td>
<td>Export to MapServer Dialog</td>
<td>163</td>
</tr>
<tr>
<td>70</td>
<td>Test PNG created by shp2img with all MapServer Export layers</td>
<td>165</td>
</tr>
<tr>
<td>71</td>
<td>OGR Layer Converter Plugin</td>
<td>166</td>
</tr>
<tr>
<td>72</td>
<td>Create Oracle connection dialog</td>
<td>168</td>
</tr>
<tr>
<td>73</td>
<td>Select Oracle GeoRaster dialog</td>
<td>169</td>
</tr>
<tr>
<td>74</td>
<td>OpenStreetMap data in the web</td>
<td>171</td>
</tr>
<tr>
<td>75</td>
<td>OSM plugin user interface</td>
<td>173</td>
</tr>
<tr>
<td>76</td>
<td>Load OSM data dialog</td>
<td>174</td>
</tr>
<tr>
<td>77</td>
<td>Changing an OSM feature tag</td>
<td>176</td>
</tr>
<tr>
<td>78</td>
<td>OSM point creation message</td>
<td>177</td>
</tr>
<tr>
<td>79</td>
<td>OSM download dialog</td>
<td>180</td>
</tr>
<tr>
<td>80</td>
<td>OSM upload dialog</td>
<td>182</td>
</tr>
<tr>
<td>81</td>
<td>OSM saving dialog</td>
<td>182</td>
</tr>
<tr>
<td>82</td>
<td>OSM import message dialog</td>
<td>183</td>
</tr>
</tbody>
</table>
List of Figures

83 Import data to OSM dialog .. 183
84 Raster Terrain Modelling Plugin 184
85 Quick Print Dialog .. 186
86 Quick Print result as DIN A4 PDF using the alaska sample dataset ... 186
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PostGIS Connection Parameters</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>Vector layer basic editing toolbar</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>Vector layer advanced editing toolbar</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td>WMS Connection Parameters</td>
<td>79</td>
</tr>
<tr>
<td>5</td>
<td>GRASS Digitizing Tools</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>Print Composer Tools</td>
<td>115</td>
</tr>
<tr>
<td>7</td>
<td>QGIS Core Plugins</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>Example format using absolute path, relative path, and a URL</td>
<td>140</td>
</tr>
<tr>
<td>9</td>
<td>The XML tags read by eVis</td>
<td>147</td>
</tr>
<tr>
<td>10</td>
<td>fTools Analysis tools</td>
<td>149</td>
</tr>
<tr>
<td>11</td>
<td>fTools Research tools</td>
<td>150</td>
</tr>
<tr>
<td>12</td>
<td>fTools Geoprocessing tools</td>
<td>150</td>
</tr>
<tr>
<td>13</td>
<td>fTools Geometry tools</td>
<td>151</td>
</tr>
<tr>
<td>14</td>
<td>fTools Data management tools</td>
<td>151</td>
</tr>
<tr>
<td>15</td>
<td>Other Core Plugins</td>
<td>187</td>
</tr>
<tr>
<td>16</td>
<td>Current moderated external QGIS Plugins</td>
<td>188</td>
</tr>
<tr>
<td>17</td>
<td>GRASS Toolbox: Raster and Image data import modules</td>
<td>196</td>
</tr>
<tr>
<td>18</td>
<td>GRASS Toolbox: Raster and Image data export modules</td>
<td>197</td>
</tr>
<tr>
<td>19</td>
<td>GRASS Toolbox: Vector data import modules</td>
<td>198</td>
</tr>
<tr>
<td>20</td>
<td>GRASS Toolbox: Vector data export modules</td>
<td>198</td>
</tr>
<tr>
<td>21</td>
<td>GRASS Toolbox: Data type conversion modules</td>
<td>199</td>
</tr>
<tr>
<td>22</td>
<td>GRASS Toolbox: Region and projection configuration modules</td>
<td>200</td>
</tr>
<tr>
<td>23</td>
<td>GRASS Toolbox: Develop raster map modules</td>
<td>201</td>
</tr>
<tr>
<td>24</td>
<td>GRASS Toolbox: Raster color management modules</td>
<td>201</td>
</tr>
<tr>
<td>25</td>
<td>GRASS Toolbox: Spatial raster analysis modules</td>
<td>202</td>
</tr>
<tr>
<td>26</td>
<td>GRASS Toolbox: Surface management modules</td>
<td>203</td>
</tr>
<tr>
<td>27</td>
<td>GRASS Toolbox: Change raster category values and labels modules</td>
<td>203</td>
</tr>
<tr>
<td>28</td>
<td>GRASS Toolbox: Hydrologic modelling modules</td>
<td>204</td>
</tr>
<tr>
<td>29</td>
<td>GRASS Toolbox: Reports and statistic analysis modules</td>
<td>204</td>
</tr>
<tr>
<td>30</td>
<td>GRASS Toolbox: Develop vector map modules</td>
<td>205</td>
</tr>
<tr>
<td>31</td>
<td>GRASS Toolbox: Database connection modules</td>
<td>206</td>
</tr>
<tr>
<td>32</td>
<td>GRASS Toolbox: Change vector field modules</td>
<td>206</td>
</tr>
<tr>
<td>33</td>
<td>GRASS Toolbox: Working with vector points modules</td>
<td>206</td>
</tr>
<tr>
<td>34</td>
<td>GRASS Toolbox: Spatial vector and network analysis modules</td>
<td>207</td>
</tr>
<tr>
<td>35</td>
<td>GRASS Toolbox: Vector update by other maps modules</td>
<td>207</td>
</tr>
<tr>
<td>36</td>
<td>GRASS Toolbox: Vector report and statistic modules</td>
<td>207</td>
</tr>
<tr>
<td>37</td>
<td>GRASS Toolbox: Imagery analysis modules</td>
<td>208</td>
</tr>
<tr>
<td>38</td>
<td>GRASS Toolbox: Database modules</td>
<td>209</td>
</tr>
<tr>
<td>39</td>
<td>GRASS Toolbox: 3D Visualization</td>
<td>210</td>
</tr>
<tr>
<td>40</td>
<td>GRASS Toolbox: Reference Manual</td>
<td>210</td>
</tr>
</tbody>
</table>
1 Foreword

Welcome to the wonderful world of Geographical Information Systems (GIS)! Quantum GIS (QGIS) is an Open Source Geographic Information System. The project was born in May of 2002 and was established as a project on SourceForge in June of the same year. We've worked hard to make GIS software (which is traditionally expensive proprietary software) a viable prospect for anyone with basic access to a Personal Computer. QGIS currently runs on most Unix platforms, Windows, and OS X. QGIS is developed using the Qt toolkit (http://www.trolltech.com) and C++. This means that QGIS feels snappy to use and has a pleasing, easy-to-use graphical user interface (GUI).

QGIS aims to be an easy-to-use GIS, providing common functions and features. The initial goal was to provide a GIS data viewer. QGIS has reached the point in its evolution where it is being used by many for their daily GIS data viewing needs. QGIS supports a number of raster and vector data formats, with new format support easily added using the plugin architecture (see Appendix A for a full list of currently supported data formats).

QGIS is released under the GNU General Public License (GPL). Developing QGIS under this license means that you can inspect and modify the source code, and guarantees that you, our happy user, will always have access to a GIS program that is free of cost and can be freely modified. You should have received a full copy of the license with your copy of QGIS, and you also can find it in Appendix C.

Tip 1 Up-to-date Documentation
The latest version of this document can always be found at http://download.osgeo.org/qgis/doc/manual/, or in the documentation area of the QGIS website at http://qgis.osgeo.org/documentation/

1.1 Features

QGIS offers many common GIS functionalities provided by core features and plugins. As a short summary they are presented in six categories to gain a first insight.

View data

You can view and overlay vector and raster data in different formats and projections without conversion to an internal or common format. Supported formats include:

- spatially-enabled PostgreSQL tables using PostGIS, vector formats supported by the installed OGR library, including ESRI shapefiles, MapInfo, SDTS and GML (see Appendix A.1 for the complete list).
- Raster and imagery formats supported by the installed GDAL (Geospatial Data Abstraction Library) library, such as GeoTiff, Erdas Img., ArcInfo Ascii Grid, JPEG, PNG (see Appendix A.2)
for the complete list).

- SpatiaLite databases (see Section 5.3)
- GRASS raster and vector data from GRASS databases (location/mapset),
- Online spatial data served as OGC-compliant Web Map Service (WMS) or Web Feature Service (WFS),

Explore data and compose maps

You can compose maps and interactively explore spatial data with a friendly GUI. The many helpful tools available in the GUI include:

- on the fly projection
- map composer
- overview panel
- spatial bookmarks
- identify/select features
- edit/view/search attributes
- feature labeling
- change vector and raster symbology
- add a graticule layer now via fTools plugin
- decorate your map with a north arrow scale bar and copyright label
- save and restore projects

Create, edit, manage and export data

You can create, edit, manage and export vector maps in several formats. Raster data have to be imported into GRASS to be able to edit and export them into other formats. QGIS offers the following:

- digitizing tools for OGR supported formats and GRASS vector layer
- create and edit shapefiles and GRASS vector layers
- geocode images with the Georeferencer plugin
- GPS tools to import and export GPX format, and convert other GPS formats to GPX or down/upload directly to a GPS unit (on Linux, usb: has been added to list of GPS devices)
- create PostGIS layers from shapefiles with the SPIT plugin
- improved handling of PostGIS tables
- manage vector attribute tables with the new Attribute table (see Section 5.5.7) or Table Manager plugin
1.1 Features

- save screenshots as georeferenced images

Analyse data

You can perform spatial data analysis on PostgreSQL/PostGIS and other OGR supported formats using the fTools python plugin. QGIS currently offers vector analysis, sampling, geoprocessing, geometry and database management tools. You can also use the integrated GRASS tools, which include the complete GRASS functionality of more than 300 modules (See Section 9).

Publish maps on the internet

QGIS can be used to export data to a mapfile and to publish them on the internet using a webserver with UMN MapServer installed. QGIS can also be used as a WMS or WFS client, and as WMS server.

Extend QGIS functionality through plugins

QGIS can be adapted to your special needs with the extensible plugin architecture. QGIS provides libraries that can be used to create plugins. You can even create new applications with C++ or Python!

- Core Plugins

 Add WFS Layer
 Add Delimited Text Layer
 Coordinate Capture
 Decorations (Copyright Label, North Arrow and Scale bar)
 Diagram Overlay
 Dxf2Shp Converter
 Georeferencer
 fTools
 GPS Tools
 GRASS integration
 Interpolation Plugin
 OGR Layer Converter
 Quick Print
 SPIRITS Shapefile to PostgreSQL/PostGIS Import Tool
 Mapserver Export
 Python Console
 Python Plugin Installer

- Python Plugins
QGIS offers a growing number of external python plugins that are provided by the community. These plugins reside in the official PyQGIS repository, and can be easily installed using the Python Plugin Installer (See Section 11).

What's new in version 1.3.0

These are the most relevant additions and improvements:

- Attribute table significant speedup
- Advanced Editing toolbar
- Configuring shortcuts from main window
- Merging features
- eVis plugin
- OSM plugin
- New GRASS shell
- Composer can export to PDF as well
1.2 Conventions

This section describes a collection of uniform styles throughout the manual. The conventions used in this manual are as follows:

GUI Conventions

The GUI convention styles are intended to mimic the appearance of the GUI. In general, the objective is to use the non-hover appearance, so a user can visually scan the GUI to find something that looks like the instruction in the manual.

- Menu Options: Layer > Add a Raster Layer
- or
 Settings > Toolbars > Digitizing
- Tool: Add a Raster Layer
- Button: Save as Default
- Dialog Box Title: Layer Properties
- Tab: General
- Toolbox Item: nviz - Open 3D-View in NVIZ
- Checkbox: Render
- Radio Button: Postgis SRID EPSG ID
- Select a Number: Hue 60
- Select a String: Outline style Solid Line
- Browse for a File: ...
- Select a Color: Outline color
- Slider: Transparency 0%
- Input Text: Display Name lakes.shp

A shadow indicates a clickable GUI component.
Text or Keyboard Conventions

The manual also includes styles related to text, keyboard commands and coding to indicate different entities, such as classes, or methods. They don’t correspond to any actual appearance.

- Hyperlinks: http://qgis.org
- Single Keystroke: press \(\text{P}\)
- Keystroke Combinations: press \(\text{Ctrl+B}\), meaning press and hold the Ctrl key and then press the B key.
- Name of a File: lakes.shp
- Name of a Class: NewLayer
- Method: classFactory
- Server: myhost.de
- User Text: qgis --help

Code is indicated by a fixed-width font:

\[
\text{PROJCS["NAD_1927_Albers",}
\text{GEOGCS["GCS_North_American_1927",}
\]

Platform-specific instructions

GUI sequences and small amounts of text can be formatted inline: Click { File } > Quit to close QGIS. This indicates that on Linux, Unix and Windows platforms, click the File menu option first, then Quit from the dropdown menu, while on Macintosh OSX platforms, click the QGIS menu option first, then Quit from the dropdown menu. Larger amounts of text may be formatted as a list:

- do this;
- do that;
- do something else.

or as paragraphs.

⚠️ X Do this and this and this. Then do this and this.

⚠️ Do that. Then do that and that.

Screenshots that appear throughout the user guide have been created on different platforms; the platform is indicated by the platform-specific icons at the end of the figure caption.
2 Introduction To GIS

A Geographical Information System (GIS)\cite{1} is a collection of software that allows you to create, visualize, query and analyze geospatial data. Geospatial data refers to information about the geographic location of an entity. This often involves the use of a geographic coordinate, like a latitude or longitude value. Spatial data is another commonly used term, as are: geographic data, GIS data, map data, location data, coordinate data and spatial geometry data.

Applications using geospatial data perform a variety of functions. Map production is the most easily understood function of geospatial applications. Mapping programs take geospatial data and render it in a form that is viewable, usually on a computer screen or printed page. Applications can present static maps (a simple image) or dynamic maps that are customised by the person viewing the map through a desktop program or a web page.

Many people mistakenly assume that geospatial applications just produce maps, but geospatial data analysis is another primary function of geospatial applications. Some typical types of analysis include computing:

1. distances between geographic locations
2. the amount of area (e.g., square meters) within a certain geographic region
3. what geographic features overlap other features
4. the amount of overlap between features
5. the number of locations within a certain distance of another
6. and so on...

These may seem simplistic, but can be applied in all sorts of ways across many disciplines. The results of analysis may be shown on a map, but are often tabulated into a report to support management decisions.

The recent phenomena of location-based services promises to introduce all sorts of other features, but many will be based on a combination of maps and analysis. For example, you have a cell phone that tracks your geographic location. If you have the right software, your phone can tell you what kind of restaurants are within walking distance. While this is a novel application of geospatial technology, it is essentially doing geospatial data analysis and listing the results for you.

2.1 Why is all this so new?

Well, it’s not. There are many new hardware devices that are enabling mobile geospatial services. Many open source geospatial applications are also available, but the existence of geospatially fo-

\footnote{This chapter is by Tyler Mitchell (http://www.oreillynet.com/pub/wlg/7053) and used under the Creative Commons License. Tyler is the author of Web Mapping Illustrated, published by O’Reilly, 2005.}
cused hardware and software is nothing new. Global positioning system (GPS) receivers are becoming commonplace, but have been used in various industries for more than a decade. Likewise, desktop mapping and analysis tools have also been a major commercial market, primarily focused on industries such as natural resource management.

What is new is how the latest hardware and software is being applied and who is applying it. Traditional users of mapping and analysis tools were highly trained GIS Analysts or digital mapping technicians trained to use CAD-like tools. Now, the processing capabilities of home PCs and open source software (OSS) packages have enabled an army of hobbyists, professionals, web developers, etc. to interact with geospatial data. The learning curve has come down. The costs have come down. The amount of geospatial technology saturation has increased.

How is geospatial data stored? In a nutshell, there are two types of geospatial data in widespread use today. This is in addition to traditional tabular data that is also widely used by geospatial applications.

2.1.1 Raster Data

One type of geospatial data is called raster data or simply "a raster". The most easily recognised form of raster data is digital satellite imagery or air photos. Elevation shading or digital elevation models are also typically represented as raster data. Any type of map feature can be represented as raster data, but there are limitations.

A raster is a regular grid made up of cells, or in the case of imagery, pixels. They have a fixed number of rows and columns. Each cell has a numeric value and has a certain geographic size (e.g. 30x30 meters in size).

Multiple overlapping rasters are used to represent images using more than one colour value (i.e. one raster for each set of red, green and blue values is combined to create a colour image). Satellite imagery also represents data in multiple "bands". Each band is essentially a separate, spatially overlapping raster, where each band holds values of certain wavelengths of light. As you can imagine, a large raster takes up more file space. A raster with smaller cells can provide more detail, but takes up more file space. The trick is finding the right balance between cell size for storage purposes and cell size for analytical or mapping purposes.

2.1.2 Vector Data

Vector data is also used in geospatial applications. If you stayed awake during trigonometry and coordinate geometry classes, you will already be familiar with some of the qualities of vector data. In its simplest sense, vectors are a way of describing a location by using a set of coordinates. Each coordinate refers to a geographic location using a system of x and y values.

This can be thought of in reference to a Cartesian plane - you know, the diagrams from school...
2.1 Why is all this so new?

that showed an x and y-axis. You might have used them to chart declining retirement savings or increasing compound mortgage interest, but the concepts are essential to geospatial data analysis and mapping.

There are various ways of representing these geographic coordinates depending on your purpose. This is a whole area of study for another day - map projections.

Vector data takes on three forms, each progressively more complex and building on the former.

1. Points - A single coordinate (x, y) represents a discrete geographic location

2. Lines - Multiple coordinates (x_1 y_1, x_2 y_2, x_3 y_4, ... x_n y_n) strung together in a certain order, like drawing a line from Point (x_1 y_1) to Point (x_2 y_2) and so on. These parts between each point are considered line segments. They have a length and the line can be said to have a direction based on the order of the points. Technically, a line is a single pair of coordinates connected together, whereas a line string is multiple lines connected together.

3. Polygons - When lines are strung together by more than two points, with the last point being at the same location as the first, we call this a polygon. A triangle, circle, rectangle, etc. are all polygons. The key feature of polygons is that there is a fixed area within them.
3 Getting Started

This chapter gives a quick overview of installing QGIS, some sample data from the QGIS web page and running a first and simple session visualizing raster and vector layers.

3.1 Installation

Installation of QGIS is very simple. Standard installer packages are available for MS Windows and Mac OS X. For many flavors of GNU/Linux binary packages (rpm and deb) or software repositories to add to your installation manager are provided. Get the latest information on binary packages at the QGIS website at http://qgis.osgeo.org/download/.

Installation from source

If you need to build QGIS from source, please refer to the coding and compiling guide available at http://qgis.osgeo.org/documentation/. The installation instructions are also distributed with the QGIS source code.

3.2 Sample Data

The user guide contains examples based on the QGIS sample dataset.

- The Windows installer has an option to download the QGIS sample dataset. If checked, the data will be downloaded to your My Documents folder and placed in a folder called GIS Database. You may use Windows Explorer to move this folder to any convenient location. If you did not select the checkbox to install the sample dataset during the initial QGIS installation, you can either
 - use GIS data that you already have;
 - download the sample data from the QGIS website http://qgis.osgeo.org/download; or
 - uninstall QGIS and reinstall with the data download option checked, only if the above solutions are unsuccessful.

- For GNU/Linux and Mac OSX there are not yet dataset installation packages available as rpm, deb or dmg. To use the sample dataset download the file qgis_sample_data as ZIP or TAR archive from http://download.osgeo.org/qgis/data/ and unzip or untar the archive on your system. The Alaska dataset includes all GIS data that are used as examples and screenshots in the user guide, and also includes a small GRASS database. The projection for the QGIS sample dataset is Alaska Albers Equal Area with unit feet. The EPSG code is 2964.

```PROJCS["Albers Equal Area",```
3.3 Sample Session

If you intend to use QGIS as graphical frontend for GRASS, you can find a selection of sample locations (e.g. Spearfish or South Dakota) at the official GRASS GIS website http://grass.osgeo.org/download/data.php.

3.3 Sample Session

Now that you have QGIS installed and a sample dataset available, we would like to demonstrate a short and simple QGIS sample session. We will visualize a raster and a vector layer. We will use the landcover raster layer qgis_sample_data/raster/landcover.img and the lakes vector layer qgis_sample_data/gml/lakes.gml.

start QGIS

- 🌋 Start QGIS by typing: `qgis` at a command prompt, or if using precompiled binary, using the Applications menu.
- 🟢 Start QGIS using the Start menu or desktop shortcut, or double click on a QGIS project file.
- ❌ Double click the icon in your Applications folder.
Load raster and vector layers from the sample dataset

1. Click on the Load Raster icon.
2. Browse to the folder `qgis_sample_data/raster/`, select the ERDAS Img file `landcover.img` and click Open.
3. If the file is not listed, check if the Filetype combobox at the bottom of the dialog is set on the right type, in this case "Erdas Imagine Images (*.img, *.IMG)"
4. Now click on the Load Vector icon.
5. ⊙ 'File' should be selected as Source Type in the new Add Vector Layer dialog. Now click Browse to select the vector layer.
6. Browse to the folder `qgis_sample_data/gml/`, select "GML" from the filetype combobox, then select the GML file `lakes.gml` and click Open, then in Add Vector dialog click OK.
7. Zoom in a bit to your favorite area with some lakes.
8. Double click the lakes layer in the map legend to open the Layer Properties dialog.
9. Click on the Symbology tab and select a blue as fill color.
10. Click on the Labels tab and check the Display labels checkbox to enable labeling. Choose NAMES field as Field containing label.

11. To improve readability of labels, you can add a white buffer around them, by clicking “Buffer” in the list on the left, checking Buffer labels? and choosing 3 as buffer size.

12. Click Apply, check if the result looks good and finally click OK.

You can see how easy it is to visualize raster and vector layers in QGIS. Let’s move on to the sections that follow to learn more about the available functionality, features and settings and how to use them.
4 Features at a Glance

After a first and simple sample session in Section 3 we now want to give you a more detailed overview of the features of QGIS. Most features presented in the following chapters will be explained and described in own sections later in the manual.

4.1 Starting and Stopping QGIS

In Section 3.3 you already learned how to start QGIS. We will repeat this here and you will see that QGIS also provides further command line options.

- ✗Assuming that QGIS is installed in the PATH, you can start QGIS by typing: qgis at a command prompt or by double clicking on the QGIS application link (or shortcut) on the desktop or in the application menu.

- ✗Start QGIS using the Start menu or desktop shortcut, or double click on a QGIS project file.

- ✗Double click the icon in your Applications folder. If you need to start QGIS in a shell, run /path-to-installation-executable/Contents/MacOS/Qgis.

To stop QGIS, click the menu options ﬁle { File } QGIS > Quit, or use the shortcut (Ctrl+Q).

4.1.1 Command Line Options

QGIS supports a number of options when started from the command line. To get a list of the options, enter qgis --help on the command line. The usage statement for QGIS is:

```
qgis --help
Quantum GIS - 1.3.0-Mimas 'Mimas' (exported)
Quantum GIS (QGIS) is a viewer for spatial data sets, including
raster and vector data.
Usage: qgis [options] [FILES]
options:
 [--snapshot filename] emit snapshot of loaded datasets to given file
 [--width width] width of snapshot to emit
 [--height height] height of snapshot to emit
 [--lang language] use language for interface text
 [--project projectfile] load the given QGIS project
 [--extent xmin,ymin,xmax,ymax] set initial map extent
 [--nologo] hide splash screen
 [--help] this text
```

QGIS 1.3.0 User Guide 14
4.1 Starting and Stopping QGIS

FILES:

Files specified on the command line can include rasters, vectors, and QGIS project files (.qgs):

1. Rasters - Supported formats include GeoTiff, DEM and others supported by GDAL
2. Vectors - Supported formats include ESRI Shapefiles and others supported by OGR and PostgreSQL layers using the PostGIS extension

Tip 2 Example Using Command Line Arguments

You can start QGIS by specifying one or more data files on the command line. For example, assuming you are in the qgis_sample_data directory, you could start QGIS with a vector layer and a raster file set to load on startup using the following command:

```
qgis ./raster/landcover.img ./gml/lakes.gml
```

Command line option --snapshot

This option allows you to create a snapshot in PNG format from the current view. This comes in handy when you have a lot of projects and want to generate snapshots from your data.

Currently it generates a PNG-file with 800x600 pixels. This can be adapted using the --width and --height command line arguments. A filename can be added after --snapshot.

Command line option --lang

Based on your locale QGIS, selects the correct localization. If you would like to change your language, you can specify a language code. For example: --lang=it starts QGIS in Italian localization. A list of currently supported languages with language code is provided at http://wiki.qgis.org/qgiswiki/TranslatorsCorner

Command line option --project

Starting QGIS with an existing project file is also possible. Just add the command line option --project followed by your project name and QGIS will open with all layers loaded described in the given file.

Command line option --extent

To start with a specific map extent use this option. You need to add the bounding box of your extent in the following order separated by a comma:

```
--extent xmin,ymin,xmax,ymax
```
4 FEATURES AT A GLANCE

Command line option --nologo

This command line argument hides the splash screen when you start QGIS.

4.2 QGIS GUI

When QGIS starts, you are presented with the GUI as shown below (the numbers 1 through 6 in yellow ovals refer to the six major areas of the interface as discussed below):

![Figure 2: QGIS GUI with Alaska sample data](KDE)

Note: Your window decorations (title bar, etc.) may appear different depending on your operating system and window manager.

The QGIS GUI is divided into six areas:
These six components of the QGIS interface are described in more detail in the following sections.

### 4.2.1 Menu Bar

The menu bar provides access to various QGIS features using a standard hierarchical menu. The top-level menus and a summary of some of the menu options are listed below, together with the icons of the corresponding tools as they appear on the toolbar, as well as keyboard shortcuts. Although most menu options have a corresponding tool and vice-versa, the menus are not organized quite like the toolbars. The toolbar containing the tool is listed after each menu option as a checkbox entry. For more information about tools and toolbars, see Section 4.2.2.

<table>
<thead>
<tr>
<th>Menu Option</th>
<th>Shortcut</th>
<th>Reference</th>
<th>Toolbar</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>File</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Project</td>
<td>Ctrl+N</td>
<td>see Section 4.5</td>
<td>File</td>
</tr>
<tr>
<td>Open Project</td>
<td>Ctrl+O</td>
<td>see Section 4.5</td>
<td>File</td>
</tr>
<tr>
<td>Open Recent Projects</td>
<td>Ctrl+S</td>
<td>see Section 4.5</td>
<td>File</td>
</tr>
<tr>
<td>Save Project</td>
<td>Ctrl+Shift+S</td>
<td>see Section 4.5</td>
<td>File</td>
</tr>
<tr>
<td>Save as Image</td>
<td>Ctrl+P</td>
<td>see Section 4.6</td>
<td></td>
</tr>
<tr>
<td>Print Composer</td>
<td>Ctrl+V</td>
<td>see Section 10</td>
<td>File</td>
</tr>
<tr>
<td>Exit</td>
<td>Ctrl+Q</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Edit**			
Undo	Ctrl+Z	see Section 5.5.4	Digitizing
Redo	Ctrl+Shift+Z	see Section 5.5.4	Digitizing
Cut Features	Ctrl+X	see Section 5.5.4	Digitizing
Copy Features	Ctrl+C	see Section 5.5.4	Digitizing
Paste Features	Ctrl+V	see Section 5.5.4	Digitizing

Keyboard shortcuts can now be configured manually (shortcuts presented in this section are the defaults), using the Configure Shortcuts tool under Settings Menu.

---

2Keyboard shortcuts can now be configured manually (shortcuts presented in this section are the defaults), using the Configure Shortcuts tool under Settings Menu.
4 FEATURES AT A GLANCE

- **Capture Point**
- **Capture Line**
- **Capture Polygon**

And Other Edit Menu Items see Section 5.5.4

- **View**
  - **Pan Map**
  - **Zoom In** (Ctrl++)
  - **Zoom Out** (Ctrl+)
  - **Select Features**
  - **Identify Features** (I)
  - **Measure Line** (M)
  - **Measure Area** (J)
  - **Zoom Full** (F)
  - **Zoom To Layer**
  - **Zoom To Selection** (Ctrl+J)
  - **Zoom Last**
  - **Zoom Next**
  - **Zoom Actual Size**
  - **Map Tips**
  - **New Bookmark** (Ctrl+B)
  - **Show Bookmarks** (B)
  - **Refresh** (Ctrl+R)

- **Layer**
  - **New Vector Layer** (N)
  - **Add a Vector Layer** (V)
  - **Add a Raster Layer** (R)
  - **Add a PostGIS Layer** (D)
  - **Add a SpatiaLite Layer** (L)
  - **Add a WMS Layer** (W)
  - **Open Attribute Table**
  - **Toggle editing**
  - **Save As Shapefile**

- **Digitizing**

- **File**
- **Attributes**
- **Map Navigation**
- **Manage Layers**
4.2 QGIS GUI

- **Save Selection As Shapefile**  
- **Remove Layer** [Ctrl+D]  
- **Add to Overview** [O]  
- **Add All To Overview** [+]  
- **Remove All From Overview** [−]  
- **Hide All Layers** [H]  
- **Show All Layers** [S]  
- **Manage Layers**

- **Settings**
  - **Panels**
  - **Toolbars**
  - **Toggle Fullscreen Mode**
  - **Project Properties** [P]  
  - **Custom CRS**
  - **Configure shortcuts**
  - **Options**

- **Plugins** - (Further menu items are added by plugins as they are loaded.)
  - **Manage Plugins**
  - **Python Console**

- **Help**
  - **Help Contents** [F1]  
  - **QGIS Home Page** [Ctrl+H]  
  - **Check QGIS Version**
  - **About**

**Note:**⚠️ The Menu Bar items listed above are the default ones in KDE window manager. In GNOME, Settings menu is missing and its items are to be found there:

- **Project Properties**
- **Options**
- **Custom CRS**
4 FEATURES AT A GLANCE

4.2.2 Toolbars

The toolbars provide access to most of the same functions as the menus, plus additional tools for interacting with the map. Each toolbar item has popup help available. Hold your mouse over the item and a short description of the tool's purpose will be displayed.

Every menubar can be moved around according to your needs. Additionally every menubar can be switched off using your right mouse button context menu holding the mouse over the toolbars.

Tip 3 RESTORING TOOLBARS

If you have accidentally hidden all your toolbars, you can get them back by choosing menu option Settings > Toolbars.

4.2.3 Map Legend

The map legend area is used to set the visibility and z-ordering of layers. Z-ordering means that layers listed nearer the top of the legend are drawn over layers listed lower down in the legend. The checkbox in each legend entry can be used to show or hide the layer.

Layers can be grouped in the legend window by adding a layer group and dragging layers into the group. To do so, move the mouse pointer to the legend window, right click, choose Add group. A new folder appears. Now drag the layers onto to the folder symbol. It is then possible to toggle the visibility of all the layers in the group with one click. To bring layers out of a group, move the mouse pointer to the layer symbol, right click, and choose Make to toplevel item. To give the folder a new name, choose Rename in the right click menu of the group.

The content of the right mouse button context menu depends on whether the loaded legend item you hold your mouse over is a raster or a vector layer. For GRASS vector layers the toggle editing is not available. See section 9.7 for information on editing GRASS vector layers.

- Right mouse button menu for raster layers
  - Zoom to layer extent
  - Zoom to best scale (100%)
  - Show in overview
  - Remove
4.2 QGIS GUI

- Properties
- Rename
- Add Group
- Expand all
- Collapse all
- Show file groups

• Right mouse button menu for vector layers
  - Zoom to layer extent
  - Show in overview
  - Remove
  - Open attribute table
  - Toggle editing (not available for GRASS layers)
  - Save as shapefile
  - Save selection as shapefile
  - Properties
  - Rename
  - Add Group
  - Expand all
  - Collapse all
  - Show file groups

• Right mouse button menu for layer groups
  - Remove
  - Rename
  - Add Group
  - Expand all
  - Collapse all
  - Show file groups

If several vector data sources have the same vector type and the same attributes, their symbolisations may be grouped. This means that if the symbolisation of one data source is changed, the others automatically have the new symbolisation as well. To group symbologies, open the right click menu in the legend window and choose Show file groups. The file groups of the layers appear. It is now possible to drag a file from one file group into another one. If this is done, the symbologies are
grouped. Note that QGIS only permits the drag if the two layers are able to share symbology (same vector geometry type and same attributes).

### 4.2.4 Map View

This is the 'business end' of QGIS - maps are displayed in this area! The map displayed in this window will depend on the vector and raster layers you have chosen to load (see sections that follow for more information on how to load layers). The map view can be panned (shifting the focus of the map display to another region) and zoomed in and out. Various other operations can be performed on the map as described in the toolbar description above. The map view and the legend are tightly bound to each other - the maps in view reflect changes you make in the legend area.

**Tip 4 Zooming the Map with the Mouse Wheel**

You can use the mouse wheel to zoom in and out on the map. Place the mouse cursor inside the map area and roll the wheel forward (away from you) to zoom in and backwards (towards you) to zoom out. The mouse cursor position is the center where the zoom occurs. You can customize the behavior of the mouse wheel zoom using the Map tools tab under the Settings > Options menu.

**Tip 5 Panning the Map with the Arrow Keys and Space Bar**

You can use the arrow keys to pan in the map. Place the mouse cursor inside the map area and click on the right arrow key to pan East, left arrow key to pan West, up arrow key to pan North and down arrow key to pan South. You can also pan the map using the space bar: just move the mouse while holding down space bar.

### 4.2.5 Map Overview

The map overview panel provides a full extent view of layers added to it. It can be selected under the menu Settings > Panels. Within the view is a rectangle showing the current map extent. This allows you to quickly determine which area of the map you are currently viewing. Note that labels are not rendered to the map overview even if the layers in the map overview have been set up for labeling.

You can add a single layer to the overview by right-clicking on it in the legend and select Show in overview. You can also add layers to, or remove all layers from the overview using the Overview tools on the toolbar.

If you click and drag the red rectangle in the overview that shows your current extent, the main map view will update accordingly.
4.2.6 Status Bar

The status bar shows you your current position in map coordinates (e.g. meters or decimal degrees) as the mouse pointer is moved across the map view. To the left of the coordinate display in the status bar is a small button that will toggle between showing coordinate position or the view extents of the map view as you pan and zoom in and out.

A progress bar in the status bar shows progress of rendering as each layer is drawn to the map view. In some cases, such as the gathering of statistics in raster layers, the progress bar will be used to show the status of lengthy operations.

If a new plugin or a plugin update is available, you will see a message in the status bar. On the right side of the status bar is a small checkbox which can be used to temporarily prevent layers being rendered to the map view (see Section 4.3 below). At the far right of the status bar is a projector icon. Clicking on this opens the projection properties for the current project.

Tip 6  CALCULATING THE CORRECT SCALE OF YOUR MAP CANVAS

When you start QGIS, degrees is the default unit, and it tells QGIS that any coordinate in your layer is in degrees. To get correct scale values, you can either change this to meter manually in the [General] tab under [Settings] > [Project Properties] or you can select a project Coordinate Reference System (CRS) clicking on the [projector] icon in the lower right-hand corner of the status bar. In the last case, the units are set to what the project projection specifies, e.g. '+units=m'.

4.3 Rendering

By default, QGIS renders all visible layers whenever the map canvas must be refreshed. The events that trigger a refresh of the map canvas include:

- Adding a layer
- Panning or zooming
- Resizing the QGIS window
- Changing the visibility of a layer or layers

QGIS allows you to control the rendering process in a number of ways.

4.3.1 Scale Dependent Rendering

Scale dependent rendering allows you to specify the minimum and maximum scales at which a layer will be visible. To set scale dependency rendering, open the [Properties] dialog by double-clicking
on the layer in the legend. On the **General** tab, set the minimum and maximum scale values and then click on the **Use scale dependent rendering** checkbox.

You can determine the scale values by first zooming to the level you want to use and noting the scale value in the QGIS status bar.

### 4.3.2 Controlling Map Rendering

Map rendering can be controlled in the following ways:

**a) Suspending Rendering**

To suspend rendering, click the **Render** checkbox in the lower right corner of the statusbar. When the **Render** box is not checked, QGIS does not redraw the canvas in response to any of the events described in Section 4.3. Examples of when you might want to suspend rendering include:

- Add many layers and symbolize them prior to drawing
- Add one or more large layers and set scale dependency before drawing
- Add one or more large layers and zoom to a specific view before drawing
- Any combination of the above

Checking the **Render** box enables rendering and causes and immediate refresh of the map canvas.

**b) Setting Layer Add Option**

You can set an option to always load new layers without drawing them. This means the layer will be added to the map, but its visibility checkbox in the legend will be unchecked by default. To set this option, choose menu option **Settings > Options** and click on the **Rendering** tab. Uncheck the **By default new layers added to the map should be displayed** checkbox. Any layer added to the map will be off (invisible) by default.

**c) Updating the Map Display During Rendering**

You can set an option to update the map display as features are drawn. By default, QGIS does not display any features for a layer until the entire layer has been rendered. To update the display as features are read from the datastore, choose menu option **Settings > Options** click on the **Rendering** tab. Set the feature count to an appropriate value to update the display during rendering. Setting a value of 0 disables update during drawing (this is the default). Setting a value too low
will result in poor performance as the map canvas is continually updated during the reading of the features. A suggested value to start with is 500.

**d) Influence Rendering Quality**

To influence the rendering quality of the map you have 3 options. Choose menu option **Settings > Options** click on the **Rendering** tab and select or deselect following checkboxes.

- Make lines appear less jagged at the expense of some drawing performance
- Fix problems with incorrectly filled polygons

**4.4 Measuring**

Measuring works within projected coordinate systems only (e.g., UTM). If the loaded map is defined with a geographic coordinate system (latitude/longitude), the results from line or area measurements will be incorrect. To fix this you need to set an appropriate map coordinate system (See Section 8).

**4.4.1 Measure length and areas**

QGIS is also able to measure real distances between given points according to a defined ellipsoid. To configure this, choose menu option **Settings > Options** click on the **Map tools** tab and choose the appropriate ellipsoid. There you can also define a rubberband color and your preferred measurement units (meters or feet). The tool then allows you to click points on the map. Each segment-length as well as the total shows up in the measure-window. To stop measuring click your right mouse button.

Areas can also be measured. In the measure window the accumulated area-size appears.

In addition, the measuring tool will snap to the currently selected layer, provided that layer has its snapping tolerance set. (See Section 5.5.1). So if you want to measure exactly along a line feature, or around a polygon feature, first set its snapping tolerance, then select the layer. Now, when using the measuring tools, each mouse click (within the tolerance setting) will snap to that layer.

**4.5 Projects**

The state of your QGIS session is considered a Project. QGIS works on one project at a time. Settings are either considered as being per-project, or as a default for new projects (see Section
4.7) QGIS can save the state of your workspace into a project file using the menu options File > Save Project or File > Save Project As.

Load saved projects into a QGIS session using File > Open Project or File > Open Recent Project. If you wish to clear your session and start fresh, choose File > New Project. Either of these menu options will prompt you to save the existing project if changes have been made since it was opened or last saved.

The kinds of information saved in a project file include:

- Layers added
- Layer properties, including symbolization
- Projection for the map view
- Last viewed extent

The project file is saved in XML format, so it is possible to edit the file outside QGIS if you know what you are doing. The file format was updated several times compared to earlier QGIS versions. Project files from older QGIS versions may not work properly anymore. To be made aware of this, in the General tab under Settings > Options you can select Warn when opening a project file saved with an older version of QGIS.

**Project Properties**

In the properties window for the project (under File > Project Properties or Settings > Project Properties) you set project specific options. These include:

- In the General tab the Project title, units, and the option to save relative paths to layers. In addition the topological editing, and snapping options are set here.
4.6 Output

- The Coordinate Reference System tab enables you to choose the CRS for this project, and to enable on-the-fly reprojection of vector layers when displaying layers from a different CRS.
- With the third Identifiable layers tab you set (or disable) which layers will respond to the identify tool. (See the Map tools paragraph from the 4.7 section to enable identifying of multiple layers.)

4.6 Output

There are several ways to generate output from your QGIS session. We have discussed one already in Section 4.5: saving as a project file. Here is a sampling of other ways to produce output files:

- Menu option Save as Image opens a file dialog where you select the name, path and type of image (PNG or JPG format). From 1.1.0 release, a world file with extension PNGW or JPGW saved in the same folder georeferences the image.
- Menu option Print Composer opens a dialog where you can layout and print the current map canvas (see Section 10).

4.7 GUI Options

Some basic options for QGIS can be selected using the Options dialog. Select the menu option Settings > Options. The tabs where you can optimize your options are:

General Tab

- **Promt to save project changes when required**
- **Warn when opening a project file saved with an older version of QGIS**
- Change Selection and background Color
- Change the icon theme (choose between default, classic, gis and nkids)
- **Capitalise layer names in legend**
- **Display classification attribute names in legend**
- **Hide splash screen at startup**
- **Open identify results in a dock window (QGIS restart required)**
- **Open attribute table in a dock window**
FEATURES AT A GLANCE

- Add PostGIS layers with double click and select in extended mode

Rendering Tab

- By default new layers added to the map should be displayed
- Define number of features to draw before updating the display.
- Make lines appear less jagged at the expense of some drawing performance
- Fix problems with incorrectly filled polygons

Map tools Tab

- The Mode setting determines which layers will be shown by the Identify tool. By switching to Top down instead of Current layer then attributes for all identifiable layers (See the Project properties section under: 4.5 to set which layers are identifiable) will be show with the Identify tool.
- Define Search Radius as a percentage of the map width
- Define Ellipsoid for distance calculations
- Define Rubberband Color for Measure Tools
- Define preferred measurement units (meter or feet)
- Define Mouse wheel action (Zoom, Zoom and recenter, Zoom to mouse cursor, Nothing)
- Define Zoom factor for wheel mouse

Overlay

- Define placement algorithm for labels (choose between central point (standard), chain, popmusic tabu chain, popmusic tabu and popmusic chain)

Digitizing Tab

- Define Rubberband Color and line width for Digitizing
- Define default snap mode (to vertex, to segment, to vertex and segment)
- Define default snapping tolerance in layer units
- Define search radius for vertex edits in layer units
- Show markers only for selected features
- Define vertex marker style (Cross, semi transparent circle or none) and size
- Suppress attributes pop-up windows after each created feature
4.7 GUI Options

CRS Tab

- Prompt for Coordinate Reference System (CRS)
- Project wide default Coordinate Reference System (CRS) will be used
- Global default Coordinate Reference System (CRS) displayed below will be used
- Select global default Coordinate Reference System (CRS)

Locale Tab

- Overwrite system locale and use defined locale instead
- Information about active system locale

Proxy Tab

- Use proxy for web access and define host, port, user, and password.
- Set the Proxy type according to your needs
  - Default Proxy: Proxy is determined based on the application proxy set using
  - Socks5Proxy: Generic proxy for any kind of connection. Supports TCP, UDP, binding to a port (incoming connections) and authentication.
  - HttpProxy: Implemented using the "CONNECT" command, supports only outgoing TCP connections; supports authentication.
  - HttpCachingProxy: Implemented using normal HTTP commands, it is useful only in the context of HTTP requests
  - FtpCachingProxy: Implemented using an FTP proxy, it is useful only in the context of FTP requests

Excluding some URLs can be added to the textbox below the proxy-settings (see fig. 4) by pressing the Add-button. After that double-click into the just created URL-field and enter the URL you would like to exclude from using the proxy. Obviously the button Remove removes the selected entry.

If you need more detailed information about the different proxy-settings, please refer to the manual of the underlaying QT-library-documentation at http://doc.trolltech.com/4.5/qnetworkproxy.html#ProxyType-enum.

Tip 7 USING PROXIES
Using proxies can sometimes be tricky. It is useful to 'trial and error' the above proxy types and check if they succeed in your case.
You can modify the options according to your needs. Some of the changes may require a restart of QGIS before they will be effective.

- ⚠️ settings are saved in a textfile: $HOME/.config/QuantumGIS/qgis.conf
- ✗️ you can find your settings in: $HOME/Library/Preferences/org.qgis.qgis.plist
- 🍥 settings are stored in the registry under:
  \HKEY\CURRENT\USER\Software\QuantumGIS\qgis

### 4.8 Spatial Bookmarks

Spatial Bookmarks allow you to “bookmark” a geographic location and return to it later.

#### 4.8.1 Creating a Bookmark

To create a bookmark:

1. Zoom or pan to the area of interest.
2. Select the menu option **View** → **New Bookmark** or press **Ctrl-B**.
3. Enter a descriptive name for the bookmark (up to 255 characters).

4. Click **OK** to add the bookmark or **Cancel** to exit without adding the bookmark.

Note that you can have multiple bookmarks with the same name.

### 4.8.2 Working with Bookmarks

To use or manage bookmarks, select the menu option **View** > **Show Bookmarks**. The **Geospatial Bookmarks** dialog allows you to zoom to or delete a bookmark. You can not edit the bookmark name or coordinates.

### 4.8.3 Zooming to a Bookmark

From the **Geospatial Bookmarks** dialog, select the desired bookmark by clicking on it, then click **Zoom To**. You can also zoom to a bookmark by double-clicking on it.

### 4.8.4 Deleting a Bookmark

To delete a bookmark from the **Geospatial Bookmarks** dialog, click on it then click **Delete**. Confirm your choice by clicking **Yes** or cancel the delete by clicking **No**.
5 Working with Vector Data

QGIS supports vector data in a number of formats, including those supported by the OGR library data provider plugin, such as ESRI shapefiles, MapInfo MIF (interchange format) and MapInfo TAB (native format). You find a list of OGR supported vector formats in Appendix A.1.

QGIS also supports PostGIS layers in a PostgreSQL database using the Postgis data provider plugin. Support for additional data types (eg. delimited text) is provided by additional data provider plugins.

This section describes how to work with several common formats: ESRI shapefiles, PostGIS layers, and SpatialLite layers. Many of the features available in QGIS work the same, regardless of the vector data source. This is by design and includes the identify, select, labeling and attributes functions.

Working with GRASS vector data is described in Section 9.

5.1 ESRI Shapefiles

The standard vector file format used in QGIS is the ESRI Shapefile. Support is provided by the OGR Simple Feature Library (http://www.gdal.org/ogr/). A shapefile actually consists of several files. The following three are required:

- .shp file containing the feature geometries.
- .dbf file containing the attributes in dBase format.
- .shx index file.

Shapefiles also can include a file with a .prj suffix, which contains the projection information. While it is very useful to have a projection file, it is not mandatory. A shapefile dataset can contain additional files. For further details see the ESRI technical specification at http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf.

5.1.1 Loading a Shapefile

To load a shapefile, start QGIS and click on the toolbar button or simply type V. This will bring up a new window (see Figure 5).

From the available options check File. Click on Browse. That will bring up a standard open file dialog (see Figure 6) which allows you to navigate the file system and load a shapefile or other supported data source. The selection box allows you to preselect some OGR supported file formats.
5.1 ESRI Shapefiles

Figure 5: Add Vector Layer Dialog

You can also select the Encoding type for the shapefile if desired.

Selecting a shapefile from the list and clicking Open loads it into QGIS. Figure 7 shows QGIS after loading the alaska.shp file.

Tip 8 Layer Colors

When you add a layer to the map, it is assigned a random color. When adding more than one layer at a time, different colors are assigned to each layer.

Once loaded, you can zoom around the shapefile using the map navigation tools. To change the symbology of a layer, open the Layer Properties dialog by double clicking on the layer name or by right-clicking on the name in the legend and choosing Properties from the popup menu. See Section 5.4.2 for more information on setting symbology of vector layers.

Tip 9 Load Layer and Project from Mounted External Drives on OS X

On OS X, portable drives that are mounted besides the primary hard drive do not show up under File -> Open Project as expected. We are working on a more OSX-native open/save dialog to fix this. As a workaround you can type '/Volumes' in the File name box and press return. Then you can navigate to external drives and network mounts.

5.1.2 Improving Performance

To improve the performance of drawing a shapefile, you can create a spatial index. A spatial index will improve the speed of both zooming and panning. Spatial indexes used by QGIS have a .qix extension.
Use these steps to create the index:

- Load a shapefile.
- Open the **Layer Properties** dialog by double-clicking on the shapefile name in the legend or by right-clicking and choosing **Properties** from the popup menu.
- In the tab **General** click the **Create Spatial Index** button.

### 5.1.3 Loading a MapInfo Layer

To load a MapInfo layer, click on the **Add a vector layer** toolbar bar button or type (V), change the file type filter to **Files of Type** ([OGR] MapInfo (*.mif *.tab *.MIF *.TAB)) and select the layer you want to load.
5.1.4 Loading an ArcInfo Binary Coverage

To load an ArcInfo binary coverage click on the toolbar button or type \( \text{Add a vector layer} \) to open the \text{Add Vector Layer} dialog. Select \( \text{Directory} \). Change to \text{Arc/Ingo Binary Coverage} Navigate to the directory that contains the coverage files and select it.

Similarly, you can load directory based vector files in the UK National Transfer Format as well as the raw TIGER Format of the US Census Bureau.
5.2 PostGIS Layers

PostGIS layers are stored in a PostgreSQL database. The advantages of PostGIS are the spatial indexing, filtering and query capabilities it provides. Using PostGIS, vector functions such as select and identify work more accurately than with OGR layers in QGIS.

To use PostGIS layers you must:

- Create a stored connection in QGIS to the PostgreSQL database (if one is not already defined).
- Connect to the database.
- Select the layer to add to the map.
- Optionally provide a SQL `where` clause to define which features to load from the layer.
- Load the layer.

5.2.1 Creating a stored Connection

The first time you use a PostGIS data source, you must create a connection to the PostgreSQL database that contains the data. Begin by clicking on the `Add a PostGIS Layer` toolbar button, selecting the `Add a PostGIS Layer...` option from the `Layer` menu or typing `D`. You can also open the `Add Vector Layer` dialog and select `Database`. The `Add PostGIS Table(s)` dialog will be displayed. To access the connection manager, click on the `New` button to display the `Create a New PostGIS Connection` dialog. The parameters required for a connection are shown in table 1.

Optional you can activate following checkboxes:

- [ ] Save Password
- [ ] Only look in the `geometry_columns` table
- [ ] Only look in the `public` schema

Once all parameters and options are set, you can test the connection by clicking on the `Test Connect` button.

5.2.2 Loading a PostGIS Layer

Once you have one or more connections defined, you can load layers from the PostgreSQL
### Table 1: PostGIS Connection Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>Name of the database host. This must be a resolvable host name the same as would be used to open a telnet connection or ping the host. If the database is on the same computer as QGIS, simply enter ‘localhost’ here.</td>
</tr>
<tr>
<td>Database</td>
<td>Name of the database.</td>
</tr>
<tr>
<td>Port</td>
<td>Port number the PostgreSQL database server listens on. The default port is 5432.</td>
</tr>
<tr>
<td>Username</td>
<td>User name used to login to the database.</td>
</tr>
<tr>
<td>Password</td>
<td>Password used with Username to connect to the database.</td>
</tr>
<tr>
<td>SSL mode</td>
<td>How the SSL connection will be negotiated with the server. These are the options:</td>
</tr>
<tr>
<td></td>
<td>• disable: only try an unencrypted SSL connection;</td>
</tr>
<tr>
<td></td>
<td>• allow: try a non-SSL connection, if that fails, try an SSL connection;</td>
</tr>
<tr>
<td></td>
<td>• prefer (the default): try an SSL connection, if that fails, try a non-SSL connection;</td>
</tr>
<tr>
<td></td>
<td>• require: only try an SSL connection.</td>
</tr>
</tbody>
</table>

Note that massive speedups in PostGIS layer rendering can be achieved by disabling SSL in the connection editor.

---

**Tip 10 QGIS User Settings and Security**

Your customized settings for QGIS are stored based on the operating system. The settings are stored in your home directory in `.qt/qgisrc`, the settings are stored in the registry. Depending on your computing environment, storing passwords in your QGIS settings may be a security risk.

---

database. Of course this requires having data in PostgreSQL. See Section 5.2.4 for a discussion on importing data into the database.

To load a layer from PostGIS, perform the following steps:

- If the **Add PostGIS Table(s)** dialog is not already open, click on the **Add a PostGIS Layer** toolbar button.
- Choose the connection from the drop-down list and click **Connect**.
- Find the layer you wish to add in the list of available layers.
• Select it by clicking on it. You can select multiple layers by holding down the shift key while clicking. See Section 5.6 for information on using the PostgreSQL Query Builder to further define the layer.

• Click on the Add button to add the layer to the map.

**Tip 11 PostGIS Layers**

Normally a PostGIS layer is defined by an entry in the geometry_columns table. From version 1.2.0 on, QGIS can load layers that do not have an entry in the geometry_columns table. This includes both tables and views. Defining a spatial view provides a powerful means to visualize your data. Refer to your PostgreSQL manual for information on creating views.

### 5.2.3 Some details about PostgreSQL layers

This section contains some details on how QGIS accesses PostgreSQL layers. Most of the time QGIS should simply provide you with a list of database tables that can be loaded, and load them on request. However, if you have trouble loading a PostgreSQL table into QGIS, the information below may help you understand any QGIS messages and give you direction on changing the PostgreSQL table or view definition to allow QGIS to load it.

QGIS requires that PostgreSQL layers contain a column that can be used as a unique key for the layer. For tables this usually means that the table needs a primary key, or a column with a unique constraint on it. In QGIS, this column needs to be of type int4 (an integer of size 4 bytes). Alternatively the ctid column can be used as primary key. If a table lacks these items, the oid column will be used instead. Performance will be improved if the column is indexed (note that primary keys are automatically indexed in PostgreSQL).

If the PostgreSQL layer is a view, the same requirement exists, but views don’t have primary keys or columns with unique constraints on them. In this case QGIS will try to find a column in the view that is derived from a suitable table column. It does this by parsing the view definition SQL. However there are several aspects of SQL that QGIS ignores - these include the use of table aliases and columns that are generated by SQL functions.

If a suitable column cannot be found, QGIS will not load the layer. If this occurs, the solution is to alter the view so that it does include a suitable column (a type of int4 and either a primary key or with a unique constraint, preferably indexed).

When dealing with views, QGIS parses the view definition and
5.2 PostGIS Layers

5.2.4 Importing Data into PostgreSQL

shp2pgsql

Data can be imported into PostgreSQL using a number of methods. PostGIS includes a utility called `shp2pgsql` that can be used to import shapefiles into a PostGIS enabled database. For example, to import a shapefile named `lakes.shp` into a PostgreSQL database named `gis_data`, use the following command:

```
shp2pgsql -s 2964 lakes.shp lakes_new | psql gis_data
```

This creates a new layer named `lakes_new` in the `gis_data` database. The new layer will have a spatial reference identifier (SRID) of 2964. See Section 8 for more information on spatial reference systems and projections.

**Tip 12** **EXPORTING DATASETS FROM POSTGIS**

Like the import-tool `shp2pgsql` there is also a tool to export PostGIS-datasets as shapefiles: `pgsql2shp`. This is shipped within your PostGIS distribution.

SPIT Plugin

![QGIS comes with a plugin named SPIT (Shapefile to PostGIS Import Tool). SPIT can be used to load multiple shapefiles at one time and includes support for schemas. To use SPIT, open the Plugin Manager from the Plugins menu, check the box next to the **x** SPIT plugin and click **OK**. The SPIT icon will be added to the plugin toolbar.

To import a shapefile, click on the **SPIT** tool in the toolbar to open the **SPIT - Shapefile to PostGIS Import Tool** dialog. Select the PostGIS database you want to connect to and click on [Connect]. Now you can add one or more files to the queue by clicking on the [Add] button. To process the files, click on the [OK] button. The progress of the import as well as any errors/warnings will be displayed as each shapefile is processed.

**Tip 13** **IMPORTING SHAPEFILES CONTAINING POSTGRESQL RESERVED WORDS**

If a shapefile is added to the queue containing fields that are reserved words in the PostgreSQL database a dialog will popup showing the status of each field. You can edit the field names prior to import and change any that are reserved words (or change any other field names as desired). Attempting to import a shapefile with reserved words as field names will likely fail.
ogr2ogr

Besides shp2pgsql and SPIT, there is another tool for feeding geodata in PostGIS: ogr2ogr. This is part of your GDAL installation. To import a shapefile into PostGIS, do the following:

```bash
ogr2ogr -f "PostgreSQL" PG:"dbname=postgis host=myhost.de user=postgres password=topsecret" alaska.shp
```

This will import the shapefile `alaska.shp` into the PostGIS-database `postgis` using the user `postgres` with the password `topsecret` on host `myhost.de`.

Note that OGR must be built with PostgreSQL to support PostGIS. You can see this by typing

```
ogrinfo --formats | grep -i post
```

If you like to use PostgreSQL's `COPY`-command instead of the default `INSERT INTO` method you can export the following environment-variable (at least available on ☞ and ☞):

```
export PG_USE_COPY=YES
```

ogr2ogr does not create spatial indexes like `shp2pgsql` does. You need to create them manually using the normal SQL-command `CREATE INDEX` afterwards as an extra step (as described in the next section 5.2.5).

5.2.5 Improving Performance

Retrieving features from a PostgreSQL database can be time consuming, especially over a network. You can improve the drawing performance of PostgreSQL layers by ensuring that a spatial index exists on each layer in the database. PostGIS supports creation of a GiST (Generalized Search Tree) index to speed up spatial searches of the data.

The syntax for creating a GiST\(^3\) index is:

```sql
CREATE INDEX [indexname] ON [tablename]
USING GIST ([geometryfield] GIST_GEOMETRY_OPS);
```

Note that for large tables, creating the index can take a long time. Once the index is created, you should perform a `VACUUM ANALYZE`. See the PostGIS documentation [6] for more information.

The following is an example of creating a GiST index:

\(^3\)GiST index information is taken from the PostGIS documentation available at [http://postgis.refractions.net](http://postgis.refractions.net)
gsherman@madison:~/current$ psql gis_data
Welcome to psql 8.3.0, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help with psql commands
\g or terminate with semicolon to execute query
\q to quit

gis_data=# CREATE INDEX sidx_alaska_lakes ON alaska_lakes
    USING GIST (the_geom GIST_GEOMETRY_OPS);
CREATE INDEX

gis_data=# VACUUM ANALYZE alaska_lakes;
VACUUM

gis_data=# \q

gsherman@madison:~/current$

5.2.6 Vector layers crossing 180° longitude

Many GIS packages don’t wrap vector maps, with a geographic reference system (lat/lon), crossing the 180° longitude line. As result, if we open such map in QGIS, we will see two far, distinct locations, that should show near each other. In Figure 8 the tiny point on the far left of the map canvas (Chatham Islands), should be within the grid, right of New Zealand main islands.

Figure 8: Map in lat/lon crossing the 180° longitude line

A workaround is to transform the longitude values using PostGIS and the \texttt{ST\_Shift\_Longitude} \footnote{http://postgis.refractions.net/documentation/manual-1.4/ST_Shift_Longitude.html} function. This function reads every point/vertex in every component of every feature in a geometry, and if the longitude coordinate is < 0° adds 360° to it. The result would be a 0° - 360° version of the data to be plotted in a 180° centric map.
5 WORKING WITH VECTOR DATA

Figure 9: Map crossing the 180° longitude line after applying the ST_Shift_Longitude function

Usage

- Import data to PostGIS (5.2.4) using for example the PostGIS Manager plugin or the SPIT plugin
- Use the PostGIS command line interface to issue the following command (this is an example where "TABLE" is the actual name of your PostGIS table)
  
  ```sql
 gis_data=# update TABLE set the_geom=ST_shift_longitude(the_geom);
  ```
- If everything went right you should receive a confirmation about the number of features that were updated, then you'll be able to load the map and see the difference (Figure 9)

5.3 SpatiaLite Layers

The first time you load data from a SpatiaLite database, begin by clicking on the Add SpatiaLite Layer toolbar button or by selecting the Add SpatiaLite Layer... option from the Layer menu or by typing L. This will bring up a window, which will allow you to either connect to a SpatiaLite database already known to QGIS, which you can choose from the dropdown menu or to define a new connection to a new database. To define a new connection, click on New and use the file browser to point to your SpatiaLite database, which is a file with a .sqlite extension.

5.4 The Vector Properties Dialog

The Layer Properties dialog for a vector layer provides information about the layer, symbology settings and labeling options. If your vector layer has been loaded from a PostgreSQL / PostGIS datastore, you can also alter the underlying SQL for the layer - either by hand editing the SQL on
the [General] tab or by invoking the [Query Builder] dialog on the [General] tab. To access the [Layer Properties] dialog, double-click on a layer in the legend or right-click on the layer and select [Properties] from the popup menu.

**Figure 10: Vector Layer Properties Dialog**

![Vector Layer Properties Dialog](image)

### 5.4.1 General Tab

The [General] tab is essentially like that of the raster dialog. It allows you to change the display name, set scale dependent rendering options, create a spatial index of the vector file (only for OGR supported formats and PostGIS) and view or change the projection of the specific vector layer.

The [Query Builder] button allows you to create a subset of the features in the layer - but this button currently only is available when you open the attribute table and select the ... button next to Advanced search.
5 WORKING WITH VECTOR DATA

5.4.2 Symbology Tab

QGIS supports a number of symbology renderers to control how vector features are displayed. Currently the following renderers are available:

**Single symbol** - a single style is applied to every object in the layer.

**Graduated symbol** - objects within the layer are displayed with different symbols classified by the values of a particular field.

**Continuous color** - objects within the layer are displayed with a spread of colours classified by the numerical values within a specified field.

**Unique value** - objects are classified by the unique values within a specified field with each value having a different symbol.

To change the symbology for a layer, simply double click on its legend entry and the vector Layer Properties dialog will be shown.

**Style Options**

Within this dialog you can style your vector layer. Depending on the selected rendering option you have the possibility to also classify your mapfeatures.

At least the following styling options apply for nearly all renderers:

**Outline style** - pen-style for your outline of your feature. you can also set this to 'no pen'.

**Outline color** - color of the outline of your feature

**Outline width** - width of your features

**Fill color** - fill-color of your features.

**Fill style** - Style for filling. Beside the given brushes you can select and click the button for selecting your own fill-style. Currently the fileformats *.jpeg, *.xpm, and *.png are supported.

Once you have styled your layer you also could save your layer-style to a separate file (with *.qml-ending). To do this, use the button. No need to say that loads your saved layer-style-file.

If you wish to always use a particular style whenever the layer is loaded, use the button to make your style the default. Also, if you make changes to the style that you are not happy with, use the button to revert to your default style.
5.4 The Vector Properties Dialog

**Figure 11: Symbolizing-options**

(a) Single symbol  
(b) Graduated symbol  
(c) Continuous color  
(d) Unique value

**Vector transparency**

QGIS 1.3.0 allows to set a transparency for every vector layer. This can be done with the slider Transparency 0% inside the symbology tab (see fig. 10). This is very useful for overlaying several vector layers.

### 5.4.3 Metadata Tab

The Metadata tab contains information about the layer, including specifics about the type and location, number of features, feature type, and the editing capabilities. The Layer Spatial Reference System section, providing projection information, and the Attribute field info section, listing fields and their data types, are displayed on this tab. This is a quick way to get information about the layer.
5.4.4 Labels Tab

The [Labels] tab allows you to enable labeling features and control a number of options related to fonts, placement, style, alignment and buffering.

We will illustrate this by labelling the lakes shapefile of the [qgis_example_dataset]:

1. Load the Shapefile alaska.shp and GML file lakes.gml in QGIS.
2. Zoom in a bit to your favorite area with some lake.
3. Make the lakes layer active.
5. Click on the [Labels] tab.
6. Check the [x] Display labels checkbox to enable labeling.
7. Choose the field to label with. We'll use Field containing label [NAMES ▼].
8. Enter a default for lakes that have no name. The default label will be used each time QGIS encounters a lake with no value in the NAMES field.
9. If have labels extending over several lines, check [x] Multiline labels?. QGIS will check for a true line return in your label field and insert the line breaks accordingly. A true line return is a single character \n, (not two separate characters, like a backlash \ followed by the character n).
10. Click [Apply].

Now we have labels. How do they look? They are probably too big and poorly placed in relation to the marker symbol for the lakes.

Select the [Font] entry and use the [Font] and [Color] buttons to set the font and color. You can also change the angle and the placement of the text-label.

To change the position of the text relative to the feature:

1. Click on the [Font] entry.
2. Change the placement by selecting one of the radio buttons in the Placement group. To fix our labels, choose the [Right] radio button.
3. the [Font size units] allows you to select between [Points] or [Map units].
4. Click [Apply] to see your changes without closing the dialog.

Things are looking better, but the labels are still too close to the marker. To fix this we can use the options on the [Position] entry. Here we can add offsets for the X and Y directions. Adding an X offset of 5 will move our labels off the marker and make them more readable. Of course if your marker symbol or font is larger, more of an offset will be required.
5.4 The Vector Properties Dialog

The last adjustment we’ll make is to buffer the labels. This just means putting a backdrop around them to make them stand out better. To buffer the lakes labels:

1. Click the Buffer tab.
2. Click the Buffer Labels? checkbox to enable buffering.
3. Choose a size for the buffer using the spin box.
4. Choose a color by clicking on Color and choosing your favorite from the color selector. You can also set some transparency for the buffer if you prefer.
5. Click Apply to see if you like the changes.

If you aren’t happy with the results, tweak the settings and then test again by clicking Apply. A buffer of 1 points seems to give a good result. Notice you can also specify the buffer size in map units if that works out better for you.

The remaining entries inside the Label tab allow you control the appearance of the labels using attributes stored in the layer. The entries beginning with Data defined allow you to set all the parameters for the labels using fields in the layer.

Not that the Label tab provides a preview-box where your selected label is shown.

5.4.5 Actions Tab

QGIS provides the ability to perform an action based on the attributes of a feature. This can be used to perform any number of actions, for example, running a program with arguments built from the attributes of a feature or passing parameters to a web reporting tool.

Actions are useful when you frequently want to run an external application or view a web page based on one or more values in your vector layer. An example is performing a search based on an attribute value. This concept is used in the following discussion.

Defining Actions

Attribute actions are defined from the vector Layer Properties dialog. To define an action, open the vector Layer Properties dialog and click on the Actions tab. Provide a descriptive name for the action. The action itself must contain the name of the application that will be executed when the action is invoked. You can add one or more attribute field values as arguments to the application. When the action is invoked any set of characters that start with a % followed by the name of a field will be replaced by the value of that field. The special characters % will be replaced by the value of the field that was selected from the identify results or attribute table (see Using Actions below). Double
quote marks can be used to group text into a single argument to the program, script or command. Double quotes will be ignored if preceded by a backslash.

If you have field names that are substrings of other field names (e.g., col1 and col10) you should indicate so, by surrounding the field name (and the % character) with square brackets (e.g., [%col10]). This will prevent the %col10 field name being mistaken for the %col1 field name with a 0 on the end. The brackets will be removed by QGIS when it substitutes in the value of the field. If you want the substituted field to be surrounded by square brackets, use a second set like this: [[%col10]].

The **Identify Results** dialog box includes a *(Derived)* item that contains information relevant to the layer type. The values in this item can be accessed in a similar way to the other fields by using preceeding the derived field name by *(Derived).* For example, a point layer has an X and Y field and the value of these can be used in the action with %%(Derived).X and %%(Derived).Y. The derived attributes are only available from the **Identify Results** dialog box, not the **Attribute Table** dialog box.

Two example actions are shown below:

1. konqueror http://www.google.com/search?q=%nam
2. konqueror http://www.google.com/search?q=%%

In the first example, the web browser konqueror is invoked and passed a URL to open. The URL performs a Google search on the value of the nam field from our vector layer. Note that the application or script called by the action must be in the path or you must provided the full path. To be sure, we could rewrite the first example as: /opt/kde3/bin/konqueror http://www.google.com/search?q=%nam. This will ensure that the konqueror application will be executed when the action is invoked.

The second example uses the %% notation which does not rely on a particular field for its value. When the action is invoked, the %% will be replaced by the value of the selected field in the identify results or attribute table.

Using Actions

Actions can be invoked from either the **Identify Results** dialog or an **Attribute Table** dialog. (Recall that these dialogs can be opened by clicking ![Identify Features](Open Table).)

To invoke an action, right click on the record and choose the action from the popup menu. Actions are listed in the popup menu by the name you assigned when defining the actions. Click on the action you wish to invoke.

If you are invoking an action that uses the %% notation, right-click on the field value in the **Identify Results** dialog or the **Attribute Table** dialog that you wish to pass to the application or script.

Here is another example that pulls data out of a vector layer and inserts them into a file using bash...
5.4 The Vector Properties Dialog

and the `echo` command (so it will only work ✅ or perhaps ✗). The layer in question has fields for a species name `taxon_name`, latitude `lat` and longitude `long`. I would like to be able to make a spatial selection of a localities and export these field values to a text file for the selected record (shown in yellow in the QGIS map area). Here is the action to achieve this:

```
bash -c "echo "%taxon_name %lat %long" >> /tmp/species_localities.txt"
```

After selecting a few localities and running the action on each one, opening the output file will show something like this:

```
Acacia mearnsii -34.0800000000 150.0800000000
Acacia mearnsii -34.9000000000 150.1200000000
Acacia mearnsii -35.2200000000 149.9300000000
Acacia mearnsii -32.2700000000 150.4100000000
```

As an exercise we create an action that does a Google search on the `lakes` layer. First we need to determine the URL needed to perform a search on a keyword. This is easily done by just going to Google and doing a simple search, then grabbing the URL from the address bar in your browser. From this little effort we see that the format is: `http://google.com/search?q=qgis`, where `qgis` is the search term. Armed with this information, we can proceed:

1. Make sure the `lakes` layer is loaded.
2. Open the `Layer Properties` dialog by double-clicking on the layer in the legend or right-click and choose `Properties` from the popup menu.
3. Click on the `Actions` tab.
4. Enter a name for the action, for example `Google Search`.
5. For the action, we need to provide the name of the external program to run. In this case, we can use Firefox. If the program is not in your path, you need to provide the full path.
6. Following the name of the external application, add the URL used for doing a Google search, up to but not included the search term: `http://google.com/search?q=`,
7. The text in the Action field should now look like this:
   ```
 firefox http://google.com/search?q=
   ```
8. Click on the drop-down box containing the field names for the `lakes` layer. It's located just to the left of the `Insert Field` button.
9. From the drop-down box, select `NAMES ▼` and click `Insert Field`.
10. Your action text now looks like this:
    ```
 firefox http://google.com/search?q=%NAMES
    ```

QGIS 1.3.0 User Guide 49
11. To finalize the action click the **Insert action** button.

This completes the action and it is ready to use. The final text of the action should look like this:

```
firefox http://google.com/search?q=%NAMES
```

We can now use the action. Close the **Layer Properties** dialog and zoom in to an area of interest. Make sure the **lakes** layer is active and identify a lake. In the result box you’ll now see that our action is visible:

*Figure 12: Select feature and choose action*

When we click on the action, it brings up Firefox and navigates to the URL `http://www.google.com/search?q=Tustumena`. It is also possible to add further attribute fields to the action. Therefore you can add a “+” to the end of the action text, select another field and click on **Insert Field**. In this example there is just no other field available that would make sense to search for.

You can define multiple actions for a layer and each will show up in the **Identify Results** dialog. You can also invoke actions from the attribute table by selecting a row and right-clicking, then choosing the action from the popup menu.
You can think of all kinds of uses for actions. For example, if you have a point layer containing locations of images or photos along with a file name, you could create an action to launch a viewer to display the image. You could also use actions to launch web-based reports for an attribute field or combination of fields, specifying them in the same way we did in our Google search example.

5.4.6 Attributes Tab

Within the Attributes tab the attributes of the selected dataset can be manipulated. The buttons New Column and Delete Column can be used, when the dataset is editing mode. At the moment only columns from PostGIS layers can be removed and added. The OGR library supports to add new columns, but not to remove them, if you have a GDAL version >= 1.6 installed.

edit widget

![Figure 13: Dialog to select an edit widget for an attribute column](image)

Within the Attributes tab you also find an edit widget column. This column can be used to define values or a range of values that are allowed to be added to the specific attribute table column. If
you click on the edit widget button, a dialog opens, where you can define different widgets. These widgets are:

- Line edit: an edit field which allows to enter simple text (or restrict to numbers for numeric attributes).
- Classification: Displays a combo box with the values used for classification, if you have chosen 'unique value' as legend type in the symbology tab of the properties dialog.
- Range: Allows to set numeric values from a specific range. The edit widget can be either a slider or a spin box.
- Unique value: The user can select one of the values already used in the attribute table. If editable is activated, a line edit is shown with autocompletion support, otherwise a combo box is used.
- File name: Simplifies the selection by adding a file chooser dialog.
- Value map: a combo box with predefined items. The value is stored in the attribute, the description is shown in the combo box. You can define values manually or load them from a layer or a csv file.
- Enumeration: Opens a combo box with values that can be used within the columns type. This is currently only supported by the postgres provider.
- Immutable: The immutable attribute column is read-only. The user is not able to modify the content.

5.4.7 Diagram Tab

The Diagram tab allows you to add a graphic overlay to a vector layer. To activate this feature, open the Plugin Manager and select the Diagram Overlay plugin. After this, there is a new tab in the vector Layer Properties dialog where the settings for diagrams may be entered (see figure 14).

The current implementation of diagrams provides support for pie- and barcharts and for linear scaling of the diagram size according to a classification attribute. We will demonstrate an example and overlay the alaska boundary layer a barchart diagramm showing some temperature data from a climate vector layer. Both vector layers are part of the QGIS sample dataset (see Section 3.2).

1. First click on the Load Vector icon, browse to the QGIS sample dataset folder and load the two vector shape layers alaska.shp and climate.shp.
2. Double click the climate layer in the map legend to open the Layer Properties dialog.
3. Click on the Diagram Overlay and select Bar chart as Diagram type.
4. In the diagram we want to display the values of the three columns \( T_{-F\_JAN} \), \( T_{-F\_JAN} \) and \( T_{-F\_MEAN} \). First select \( T_{-F\_JAN} \) as Attributes and click [Add attribute], then \( T_{-F\_JUL} \) and finally \( T_{-F\_MEAN} \).

5. For linear scaling of the diagram size we define \( T_{-F\_JUL} \) as classification attribute.

6. Now click on [find maximum value], choose a size value and unit and click [Apply] to display the diagram in the QGIS main window.

7. You can now adapt the chart size, or change the attribute colors double clicking on the color values in the attribute field. Figure 15 gives an impression.

8. Finally click [OK].
5.5 Editing

QGIS supports basic capabilities for editing vector geometries. Before reading any further you should note that at this stage editing support is still preliminary. Before performing any edits, always make a backup of the dataset you are about to edit.

Note - the procedure for editing GRASS layers is different - see Section 9.7 for details.

Tip 14 Concurrent Edits
This version of QGIS does not track if somebody else is editing a feature at the same time as you. The last person to save their edits wins.
5.5 Editing

5.5.1 Setting the Snapping Tolerance and Search Radius

Before we can edit vertices, we must set the snapping tolerance and search radius to a value that allows us an optimal editing of the vector layer geometries.

Snapping tolerance

Snapping tolerance is the distance QGIS uses to search for the closest vertex and/or segment you are trying to connect when you set a new vertex or move an existing vertex. If you aren’t within the snap tolerance, QGIS will leave the vertex where you release the mouse button, instead of snapping it to an existing vertex and/or segment. The snapping tolerance setting affects all tools which work with tolerance.

1. A general, project wide snapping tolerance can be defined choosing Settings > Options. (On Mac: go to QGIS > Preferences, on Linux: Edit > Options.) In the Digitizing tab you can select between to vertex, to segment or to vertex and segment as default snap mode. You can also define a default snapping tolerance and a search radius for vertex edits. The tolerance can be set either in map units or in pixels. The advantage of choosing pixels, is that the snapping tolerance doesn’t have to be changed after zoom operations. In our small digitizing project (working with the Alaska dataset), we define the snapping units in feet. Your results may vary, but something on the order of 300ft should be fine at a scale of 1:10 000 should be a reasonable setting.

2. A layer based snapping tolerance can be defined by choosing Settings (or File) > Project Properties... In the General tab, section Digitize you can click on Snapping options... to enable and adjust snapping mode and tolerance on a layer basis (see Figure 16).

Note that this layer based snapping overrides the global snapping option set in the Digitizing tab. So if you need to edit one layer, and snap its vertices to another layer, then enable snapping only on the snap to layer, then decrease the global snapping tolerance to a smaller value. Furthermore, snapping will never occur to a layer which is not checked in the snapping options dialog, regardless of the global snapping tolerance. So be sure to mark the checkbox for those layers that you need to snap to.
Search radius

Search radius is the distance QGIS uses to search for the closest vertex you are trying to move when you click on the map. If you aren’t within the search radius, QGIS won’t find and select any vertex for editing and it will pop up an annoying warning to that effect. Snap tolerance and search radius are set in map units or pixels, so you may find you need to experiment to get them set right. If you specify too big of a tolerance, QGIS may snap to the wrong vertex, especially if you are dealing with a large number of vertices in close proximity. Set search radius too small and it won’t find anything to move.

The search radius for vertex edits in layer units can be defined in the Digitizing tab under Settings > Options. The same place where you define the general, project wide snapping tolerance.

5.5.2 Zooming and Panning

Before editing a layer, you should zoom in to your area of interest. This avoids waiting while all the vertex markers are rendered across the entire layer.

Apart from using the pan and zoom-in, zoom-out icons on the toolbar with the mouse, navigating can also be done with the mouse wheel, spacebar and the arrow keys.
5.5 Editing

Zooming and panning with the mouse wheel

While digitizing you can press the mouse wheel to pan inside of the main window and you can roll the mouse wheel to zoom in and out on the map. For zooming place the mouse cursor inside the map area and roll it forward (away from you) to zoom in and backwards (towards you) to zoom out. The mouse cursor position will be the center of the zoomed area of interest. You can customize the behavior of the mouse wheel zoom using the Map tools tab under the Settings > Options menu.

Panning with the arrow keys

Panning the Map during digitizing is possible with the arrow keys. Place the mouse cursor inside the map area and click on the right arrow key to pan east, left arrow key to pan west, up arrow key to pan north and down arrow key to pan south.

You can also use the spacebar to temporarily cause mouse movements to pan then map. The PgUp and PgDown keys on your keyboard will cause the map display to zoom in or out without interrupting your digitising session.

5.5.3 Topological editing

Besides layer based snapping options the General tab in menu Settings -> Project Properties... also provides some topological functionalities. In the Digitizing option group you can Enable topological editing and/or activate Avoid intersections of new polygons.

Enable topological editing

The option Enable topological editing is for editing and maintaining common boundaries in polygon mosaics. QGIS "detects" a shared boundary in a polygon mosaic and you only have to move the vertex once and QGIS will take care about updating the other boundary.

Avoid intersections of new polygons

The second topological option called Avoid intersections of new polygons avoids overlaps in polygon mosaics. It is for quicker digitizing of adjacent polygons. If you already have one polygon, it is possible with this option to digitise the second one such that both intersect and qgis then cuts the second polygon to the common boundary. The advantage is that users don't have to digitize all vertices of the common boundary.
5 WORKING WITH VECTOR DATA

5.5.4 Digitizing an existing layer

By default, QGIS loads layers read-only: This is a safeguard to avoid accidentally editing a layer if there is a slip of the mouse. However, you can choose to edit any layer as long as the data provider supports it, and the underlying data source is writable (i.e., its files are not read-only). Layer editing is most versatile when used on PostgreSQL/PostGIS data sources.

In general, editing vector layers is divided into a digitizing and an advanced digitizing toolbar, described in Section 5.5.5. You can select and unselect both under Settings > Toolbars. Using the basic digitizing tools you can perform the following functions:

Table 2: Vector layer basic editing toolbar

<table>
<thead>
<tr>
<th>Icon</th>
<th>Purpose</th>
<th>Icon</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄</td>
<td>Toggle editing</td>
<td>🌋</td>
<td>Adding Features: Capture Point</td>
</tr>
<tr>
<td>🌋</td>
<td>Adding Features: Capture Line</td>
<td>🌋</td>
<td>Adding Features: Capture Polygon</td>
</tr>
<tr>
<td>🔷</td>
<td>Move Features</td>
<td>🔷</td>
<td>Move Vertex</td>
</tr>
<tr>
<td>🔷</td>
<td>Add Vertex</td>
<td>🔷</td>
<td>Delete Vertex</td>
</tr>
<tr>
<td>🔷</td>
<td>Delete Selected</td>
<td>🔷</td>
<td>Cut Features</td>
</tr>
<tr>
<td>🔷</td>
<td>Copy Features</td>
<td>🔷</td>
<td>Paste Features</td>
</tr>
</tbody>
</table>

All editing sessions start by choosing the <Toggle editing> option. This can be found in the context menu after right clicking on the legend entry for that layer.

Alternately, you can use the <Toggle editing> button from the digitizing toolbar to start or stop the editing mode. Once the layer is in edit mode, markers will appear at the vertices, and additional tool buttons on the editing toolbar will become available.

**Tip 15 SAVE REGULARLY**

Remember to toggle <Toggle editing> off regularly. This allows you to save your recent changes, and also confirms that your data source can accept all your changes.

**Adding and Moving Features**

You can use the <Capture point>, <Capture line>, or <Capture polygon> icons on the toolbar to put the QGIS cursor into digitizing mode.
For each feature, you first digitize the geometry, then enter its attributes. To digitize the geometry, left-click on the map area to create the first point of your new feature.

For lines and polygons, keep on left-clicking for each additional point you wish to capture. When you have finished adding points, right-click anywhere on the map area to confirm you have finished entering the geometry of that feature.

The attribute window will appear, allowing you to enter the information for the new feature. Figure 17 shows setting attributes for a fictitious new river in Alaska.

**Figure 17: Enter Attribute Values Dialog after digitizing a new vector feature**

With the **Move Feature** icon on the toolbar you can move existing features.

**Tip 16 ATTRIBUTE VALUE TYPES**

At least for shapefile editing the attribute types are validated during the entry. Because of this, it is not possible to enter a number into the text-column in the dialog **Enter Attribute Values** or vica versa. If you need to do so, you should edit the attributes in a second step within the **Attribute table** dialog.

**Adding, Moving and Deleting Vertices of a Feature**

For both PostgreSQL/PostGIS and shapefile-based layers, the vertices of features can be edited.

Vertices can be directly edited, that is, you don’t have to choose which feature to edit before you can change its geometry. In some cases, several features may share the same vertex and so the following rules apply when the mouse is pressed down near map features:

- **Lines** - The nearest line to the mouse position is used as the target feature. Then (for moving and deleting a vertex) the nearest vertex on that line is the editing target.
5 WORKING WITH VECTOR DATA

- **Polygons** - If the mouse is inside a polygon, then it is the target feature; otherwise the nearest polygon is used. Then (for moving and deleting a vertex) the nearest vertex on that polygon is the editing target.

You will need to set the property **Settings > Options > Digitizing > Search Radius 10** to a number greater than zero. Otherwise QGIS will not be able to tell which feature is being edited.

With the **Add Vertex** icon you can add new vertices to a feature. Please note, it doesn’t make sense to add more vertices to a Point feature!

---

**Tip 17 VERTEX MARKERS**

The current version of QGIS supports two kinds of vertex-markers - a semi-transparent circle or a cross. To change the marker style, choose **Options** from the **Settings** menu and click on the **Digitizing** tab and select the appropriate entry.

In this version of QGIS, vertices can only be added to an existing line segment of a line feature. If you want to extend a line beyond its end, you will need to move the terminating vertex first, then add a new vertex where the terminus used to be.

With the **Move Vertex** icon on the toolbar you can move vertices.

With the **Delete Vertex** icon on the toolbar you can delete vertices. Please note, it doesn’t make sense to delete the vertex of a Point feature! Delete the whole feature instead.

Similarly, a one-vertex line or a two-vertex polygon is also fairly useless and will lead to unpredictable results elsewhere in QGIS, so don’t do that.

**Warning**: A vertex is identified for deletion as soon as you click the mouse near an eligible feature.

---

**Cutting, Copying and Pasting Features**

Selected features can be cut, copied and pasted between layers in the same QGIS project, as long as destination layers are set to **Toggle editing** beforehand.

Features can also be pasted to external applications as text: That is, the features are represented in CSV format with the geometry data appearing in the OGC Well-Known Text (WKT) format.

However in this version of QGIS, text features from outside QGIS cannot be pasted to a layer within QGIS. When would the copy and paste function come in handy? Well, it turns out that you can edit more than one layer at a time and copy/paste features between layers. Why would we want to do this? Say we need to do some work on a new layer but only need one or two lakes, not the 5,000 on QGIS 1.3.0 User Guide
our big_lakes layer. We can create a new layer and use copy/paste to plop the needed lakes into it.

As an example we are copying some lakes to a new layer:

1. Load the layer you want to copy from (source layer)
2. Load or create the layer you want to copy to (target layer)
3. Start editing for target layer
4. Make the source layer active by clicking on it in the legend
5. Use the Select tool to select the feature(s) on the source layer
6. Click on the Copy Features tool
7. Make the destination layer active by clicking on it in the legend
8. Click on the Paste Features tool
9. Stop editing and save the changes

What happens if the source and target layers have different schemas (field names and types are not the same)? QGIS populates what matches and ignores the rest. If you don’t care about the attributes being copied to the target layer, it doesn’t matter how you design the fields and data types. If you want to make sure everything - feature and its attributes - gets copied, make sure the schemas match.

**Tip 18** **Congruency of Pasted Features**
If your source and destination layers use the same projection, then the pasted features will have geometry identical to the source layer. However if the destination layer is a different projection then QGIS cannot guarantee the geometry is identical. This is simply because there are small rounding-off errors involved when converting between projections.

**Deleting Selected Features**

If we want to delete an entire polygon, we can do that by first selecting the polygon using the regular Select Features tool. You can select multiple features for deletion. Once you have the selection set, use the Delete Selected tool to delete the features.

The Cut Features tool on the digitizing toolbar can also be used to delete features. This effectively deletes the feature but also places it on a “spatial clipboard”. So we cut the feature to delete. We could then use the paste tool to put it back, giving us a one-level undo capability.
Cut, copy, and paste work on the currently selected features, meaning we can operate on more than one at a time.

**Tip 19 Feature Deletion Support**
When editing ESRI shapefiles, the deletion of features only works if QGIS is linked to a GDAL version 1.3.2 or greater. The OS X and Windows versions of QGIS available from the download site are built using GDAL 1.3.2 or higher.

**Saving Edited Layers**
When a layer is in editing mode, any changes remain in the memory of QGIS. Therefore they are not committed/saved immediately to the data source or disk. When you turn editing mode off (or quit QGIS for that matter), you are then asked if you want to save your changes or discard them.

If the changes cannot be saved (e.g. disk full, or the attributes have values that are out of range), the QGIS in-memory state is preserved. This allows you to adjust your edits and try again.

**Tip 20 Data Integrity**
It is always a good idea to back up your data source before you start editing. While the authors of QGIS have made every effort to preserve the integrity of your data, we offer no warranty in this regard.

### 5.5.5 Advanced digitizing

#### Table 3: Vector layer advanced editing toolbar

<table>
<thead>
<tr>
<th>Icon</th>
<th>Purpose</th>
<th>Icon</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Undo" /></td>
<td>Undo</td>
<td><img src="image" alt="Redo" /></td>
<td>Redo</td>
</tr>
<tr>
<td><img src="image" alt="Simplify Feature" /></td>
<td>Simplify Feature</td>
<td><img src="image" alt="Add Ring" /></td>
<td>Add Ring</td>
</tr>
<tr>
<td><img src="image" alt="Add Island" /></td>
<td>Add Island</td>
<td><img src="image" alt="Delete Ring" /></td>
<td>Delete Ring</td>
</tr>
<tr>
<td><img src="image" alt="Delete Part" /></td>
<td>Delete Part</td>
<td><img src="image" alt="Reshape Features" /></td>
<td>Reshape Features</td>
</tr>
<tr>
<td><img src="image" alt="Split Features" /></td>
<td>Split Features</td>
<td><img src="image" alt="Merge Selected Features" /></td>
<td>Merge Selected Features</td>
</tr>
<tr>
<td><img src="image" alt="Node Tool" /></td>
<td>Node Tool</td>
<td><img src="image" alt="Undo and Redo" /></td>
<td>Undo and Redo</td>
</tr>
</tbody>
</table>

**Undo and Redo**
The ![Undo](image) and ![Redo](image) tools allow the user to undo or redo the last or a certain step within the vector editing operations. Basic view of Undo/Redo operations is a widget, where all oper-
5.5 Editing

ations are shown (see Figure 18). This widget is not displayed by default. Widget can be displayed by right clicking on toolbar and activating the Undo/Redo check box. Undo/Redo is however active, even if the widget is not displayed.

When Undo is hit, the state of all features and attributes are reverted to the state before the reverted operation happened. Changes which are done elsewhere (for example from some plugin), can show unspecific behavior for some operations which appears in this box. The operations can be reverted or they stay the same.

An action can be triggered by clicking on Undo or Redo buttons or by clicking directly on the item to which you want to return to. Another possibility to trigger an undo operation is to click on the undo/redo buttons in the advanced digitizing tool bar.

Figure 18: Redo and Undo digitizing steps

Simplify Feature

The tool allows to reduce the number of vertices of a feature, as long as the geometry doesn’t change. You need to select one or several features, they will be highlighted by a red rubber band and a slider appears. Moving the slider, the red rubber band is changing its shape to
show how the feature is being simplified. Clicking OK the new, simplified geometry will be stored. If a feature cannot be simplified, a message shows up.

**Add Ring**

You can create ring polygons using the Add Ring icon in the toolbar. This means inside an existing area it is possible to digitize further polygons, that will occur as a 'hole', so only the area in between the boundaries of the outer and inner polygons remain as a ring polygon.

**Add Island**

You can add island polygons to a selected multipolygon. The new island polygon has to be digitized outside the selected multipolygon.

**Delete Ring**

The Delete Ring tool allows to delete ring polygons inside an existing area. This tool only works with polygon layers. It doesn’t change anything when it is used on the outer ring of the polygon. This tool can be used on polygon and multi-polygon features.

**Delete Part**

The Delete Part tool allows to delete parts from multifeatures (e.g. to delete polygons from a multipolygon feature). It won’t delete the last part of the feature, this last part will stay untouched. This tool works with all multi-part geometries point, line and polygon.

**Reshape Features**

You can reshape line and polygon features using the Reshape Features icon on the toolbar. It replaces the line or polygon part from the first to the last intersection with the original line. With polygons this can sometime lead to unintended results. It is mainly useful to replace smaller parts of a polygon, not major overhauls and the reshapeline is not allowed to cross several polygon rings as this would generate an invalide polygon.

**Note:** The reshape tool may alter the starting position of a polygon ring or a closed line. So the point that is represented ‘twice’ will not be the same any more. This may not be a problem for most applications, but it is something to consider.
5.5 Editing

Split Features

You can split features using the Split Features icon on the toolbar.

Merge selected features

The Merge Selected Features tool allows to merge features that have common boundaries and the same attributes.

Node Tool

The Node Tool provides manipulation capabilities of feature vertices similar to CAD programs. It is possible to simply select multiple vertices at once and to move, add or delete them altogether. The node tool also works with ‘on the fly’ projection turned on and supports the topological editing feature. This tool is, unlike other tools in Quantum GIS, persistent, so when some operation is done, selection stays active for this feature and tool.

Basic operations

Start by activating the Node Tool and selecting some features by clicking on it. Red boxes appear at each vertex of this feature. This is basic select of the feature. Functionalities are:

- **Selecting vertex**: Selecting is easy just click on vertex and color of this vertex will change to blue. When selecting more vertices (Shift) key can be used to select more vertices. Or also the (Ctrl) key can be used to invert selection of vertices (if selected then it will be unselected and when not selected vertex will be selected). Also more vertices can be selected at once when clicking somewhere outside feature and opening a rectangle where all vertices inside will be selected. Or just click on an edge and both adjacent vertices should be selected.

- **Adding vertex**: Adding vertex is simple, too. Just double click near some edge and a new vertex will appear on the edge near to the cursor. Note that vertex will appear on edge not on cursor position, there it has to be moved if necessary.

- **Deleting vertex**: After selecting vertices for deletion, click the (Delete) key and vertices will be deleted. Note that according to standard Quantum GIS behavior, it will leave a necessary number of vertices for the feature type you are working on. To delete a complete feature, another tool has to be used.

- **Moving vertex**: Select all vertices you want to move. All selected vertices are moving in the same direction as the cursor. If snapping is enabled, the whole selection can jump to the nearest vertex or line.
The **Release** button stores all changes and a new entry appears in the undo dialog. Remember that all operations support topological editing when turned on. On the fly projections are also supported.

### 5.5.6 Creating a New Layer

To create a new layer for editing, choose **New Vector Layer** from the **Layer** menu. The **New Vector Layer** dialog will be displayed as shown in Figure 19. Choose the type of layer (point, line or polygon).

![Figure 19: Creating a New Vector Dialog](image)

Note that QGIS does not yet support creation of 2.5D features (i.e. features with X,Y,Z coordinates) or measure features. At this time, only shapefiles can be created. In a future version of QGIS, creation of any OGR or PostgreSQL layer type will be supported.

Creation of GRASS-layers is supported within the GRASS-plugin. Please refer to section 9.6 for more information on creating GRASS vector layers.
To complete the creation of the new layer, add the desired attributes by clicking on the [Add] button and specifying a name and type for the attribute. Only Type [real], Type [integer], and Type [string] attributes are supported. Additionally and according to the attribute type you can also define the width and precision of the new attribute column. Once you are happy with the attributes, click [OK] and provide a name for the shapefile. QGIS will automatically add a .shp extension to the name you specify. Once the layer has been created, it will be added to the map and you can edit it in the same way as described in Section 5.5.4 above.

### 5.5.7 Working with the Attribute Table

The attribute table displays features of a selected layer. Each row in the table represents one map feature with its attributes shown in several columns. The features in the table can be searched, selected, moved or even edited.

To open the attribute table for a vector layer, make the layer active by clicking on it in the map legend area. Then use [Layer] from the main menu and choose [Open Attribute Table] from the menu. It is also possible to right-click on the layer and choose [Open Attribute Table] from the dropdown menu. This will open a new window which displays the attributes for every feature in the layer (figure 20).

![Figure 20: Attribute Table for Alaska layer](image)
Selecting features in an attribute table

A selected row in the attribute table represents all attributes of a selected feature in the layer. The attribute table reflects any changes in the layer selection in the main window and vice versa. A changed selection in the attribute table also causes a change in the selected feature set in the main window and different layer feature selection means different rows are to be selected.

Rows can be selected by clicking on the row number on the left side of the row. Selecting a row doesn’t change the current cursor position. Multiple rows can be marked by holding the Ctrl key. A continuous selection can be made by holding the Shift key and clicking on several row headers on the left side of the rows. All rows between the current cursor position and the clicked row are selected.

Each column can be sorted by clicking on its column header. A small arrow indicates the sort order (downward pointing means descending values from the top row down, upward pointing means ascending values from the top row down).

For a simple search by attributes on only one column the Look for field can be used. Select the field (column) from which the search should be performed from the dropdown menu and hit the Search button. For more complex searches use the Advanced search ..., which will launch the Search Query Builder described in Section 5.7.

To show selected records only, use the checkbox Show selected records only. To search selected records only, use the checkbox Search selected records only. The other buttons at the bottom left of the attribute table window provide following functionality:

- ![Remove selection](image)
- ![Move selected to top](image)
- ![Invert selection](image)
- ![Copy selected rows to clipboard](image) also with [Ctrl-C]
- ![Zoom map to selected rows](image) also with [Ctrl-J]
- ![toggle editing mode](image) to edit single values of attribute table.
Tip 21 MANIPULATING ATTRIBUTE DATA
Currently only PostGIS layers are supported for adding or dropping attribute columns within this dialog. In future versions of QGIS, other datasources will be supported, because this feature was recently implemented in GDAL/OGR > 1.6.0

5.6 Query Builder

The Advanced search... button opens the Query Builder and allows you to define a subset of a table using a SQL-like WHERE clause, display the result in the main window and save it as a Shapefile. For example, if you have a towns layer with a population field you could select only larger towns by entering population > 100000 in the SQL box of the query builder. Figure 21 shows an example of the query builder populated with data from a PostGIS layer with attributes stored in PostgreSQL. The Fields, Values and Operators sections help the user to construct the SQL-like WHERE clause easily in the text field SQL where clause window.

Figure 21: Query Builder

The Fields list contains all attributes of the attribute table to be searched. To add an attribute to the SQL where clause field, double click its name in the Fields list. Generally you can use the various
fields, values and operators to construct the query or you can just type it into the SQL box.

The **Values list** lists the values of an attribute. To list all possible values of an attribute, select the attribute in the Fields list and click the **All** button. To list all values of an attribute that are present in the sample table, select the attribute in the Fields list and click the **Sample** button. To add a value to the SQL where clause field, double click its name in the Values list.

The **Operators section** contains all usable operators. To add an operator to the SQL where clause field, click the appropriate button. Relational operators ( =, >, ...), string comparison operator ( LIKE ), logical operators ( AND, OR, ... ) are available.

The **Clear** button clears the text in the SQL where clause text field. The **Test** button shows a message box with the number of features satisfying the current query, which is usable in the process of query construction. The **OK** button closes the window and selects the features satisfying the query. The **Cancel** button closes the window without changing the current selection.

**Tip 22 Changing the Layer Definition**

You can change the layer definition after it is loaded by altering the SQL query used to define the layer. To do this, open the vector **Layer Properties** dialog by double-clicking on the layer in the legend and click on the **Query Builder** button on the **General** tab. See Section 5.4 for more information.

### 5.7 Select by query

With QGIS it is possible also to select features using a similar query builder interface to that used in 5.6. In the above section the purpose of the query builder is to only show features meeting the filter criteria as a 'virtual layer' / subset. The purpose of the select by query function is to highlight all features that meet a particular criteria. Select by query can be used with all vector data providers.

To do a ‘select by query’ on a loaded layer, click on the button **Open Table** to open the attribute table of the layer. Then click the **Advanced...** button at the bottom. This starts the Query Builder that allows to define a subset of a table and display it as described in Section 5.6.
6 Working with Raster Data

This Section describes how to visualize and set raster layer properties. QGIS supports a number of different raster formats. Currently tested formats include:

- Arc/Info Binary Grid
- Arc/Info ASCII Grid
- GRASS Raster
- GeoTIFF
- JPEG
- Spatial Data Transfer Standard Grids (with some limitations)
- USGS ASCII DEM
- Erdas Imagine

Because the raster implementation in QGIS is based on the GDAL library, other raster formats implemented in GDAL are also likely to work - if in doubt try to open a sample and see if it is supported. You find more details about GDAL supported formats in Appendix A.2 or at http://www.gdal.org/formats_list.html. If you want to load GRASS raster data, please refer to Section 9.2.

6.1 What is raster data?

Raster data in GIS are matrices of discrete cells that represent features on, above or below the earth’s surface. Each cell in the raster grid is the same size, and cells are usually rectangular (in QGIS they will always be rectangular). Typical raster datasets include remote sensing data such as aerial photography or satellite imagery and modelled data such as an elevation matrix.

Unlike vector data, raster data typically do not have an associated database record for each cell. They are geocoded by its pixel resolution and the x/y coordinate of a corner pixel of the raster layer. This allows QGIS to position the data correctly in the map canvas.

QGIS makes use of georeference information inside the raster layer (e.g. GeoTIff) or in an appropriate world file to properly display the data.

6.2 Loading raster data in QGIS

Raster layers are loaded either by clicking on the Load Raster icon or by selecting the menu option. More than one layer can be loaded at the same...
time by holding down the [Control] or [Shift] key and clicking on multiple items in the dialog

Open a GDAL Supported Raster Data Source.

Once a raster layer is loaded in the map legend you can click on the layer name with the right mouse button to select and activate layer specific features or to open a dialog to set raster properties for the layer.

**Right mouse button menu for raster layers**

- Zoom to layer extent
- Zoom to best scale (100%)
- Show in overview
- Remove
- Properties
- Rename
- Add Group
- Expand all
- Collapse all
- Show file groups

### 6.3 Raster Properties Dialog

To view and set the properties for a raster layer, double click on the layer name in the map legend or right click on the layer name and choose **Properties** from the context menu: Figure 22 shows the **Raster Layer Properties** dialog. There are several tabs on the dialog:

- Symbology
- Transparency
- Colormap
- General
- Metadata
- Pyramids
- Histogram
6.3 Raster Properties Dialog

6.3.1 Symbology Tab

QGIS can render raster layers in two different ways:

- Single band - one band of the image will be rendered as gray or in pseudocolors.
- Three band color - three bands from the image will be rendered, each band representing the red, green or blue component that will be used to create a color image.

Within both render types you can invert the color output using the Invert color map checkbox.

![Figure 22: Raster Layers Properties Dialog](image-url)
Single Band Rendering

This selection offers you two possibilities to choose. At first you can select which band you like to use for rendering (if the dataset has more than one band).

The second option offers a selection of available colortables for rendering.

The following settings are available through the dropdownbox color map Grayscale ▼, where grayscale is the default setting. Also available are

- Pseudocolor
- Freak Out
- Colormap

When selecting the entry color map Colormap ▼, the tab Colormap becomes available. See more on that at chapter 6.3.3.

QGIS can restrict the data displayed to only show cells whose values are within a given number of standard deviations of the mean for the layer. This is useful when you have one or two cells with abnormally high values in a raster grid that are having a negative impact on the rendering of the raster. This option is only available for pseudocolor images.

Three band color

This selection offers you a wide range of options to modify the appearance of your raster layer. For example you could switch color-bands from the standard RGB-order to something else.

Also scaling of colors are available.

Tip 23 VIEWING A SINGLE BAND OF A MULTIBAND RASTER

If you want to view a single band (for example Red) of a multiband image, you might think you would set the Green and Blue bands to “Not Set”. But this is not the correct way. To display the Red band, set the image type to grayscale, then select Red as the band to use for Gray.

6.3.2 Transparency Tab

QGIS has the ability to display each raster layer at varying transparency levels. Use the transparency slider to indicate to what extent the underlying layers (if any) should be visible though the current raster layer. This is very useful, if you like to overlay more than one raster layer, e.g. a shaded relief-map overlayed by a classified raster map. This will make the look of the map more three dimensional.

Additionally you can enter a raster value, which should be treated as NODATA.
An even more flexible way to customize the transparency can be done in the Custom transparency options section. The transparency of every pixel can be set in this tab.

As an example we want to set the water of our example rasterfile landcover.tif to a transparency of 20%. The following steps are necessary:

1. Load the rasterfile landcover
2. Open the properties dialog by double-clicking on the rasterfile-name in the legend or by right-clicking and choosing Properties from the popup menu.
3. Select the Transparency tab
4. Click the Add values manually button. A new row will appear in the pixel-list.
5. Enter the raster-value (we use 0 here) and adjust the transparency to 20%
6. Press the Apply button and have a look at the map

You can repeat the steps 4 and 5 to adjust more values with custom transparency.

As you can see this is quite easy to set custom transparency, but it can be quite a lot of work. Therefore you can use the button Export to file to save your transparency-list to a file. The button Import from file loads your transparency-settings and applies them to the current rasterlayer.

### 6.3.3 Colormap

The Colormap tab is only available, when you have selected a single-band-rendering within the tab Symbology (see chap. 6.3.1).

Three ways of color interpolation are available:

- Discrete
- Linear
- Exact

The button Add Entry adds a color to the individual color-table. Double-Clicking on the value-column lets you inserting a specific value. Double clicking on the color-column opens the dialog Select color where you can select a color to apply on that value.

Alternatively you can click on the button Load colormap from Band, which tries to load the table from the band (if it has any).
6 WORKING WITH RASTER DATA

The block Generate new color map allows you to create newly categorized colormaps. You only need to select the number of classes you need and press the button Classify. Currently only one Classification mode Equal Interval is supported.

6.3.4 General Tab

The General tab displays basic information about the selected raster, including the layer source and display name in the legend (which can be modified). This tab also shows a thumbnail of the layer, its legend symbol, and the palette.

Additionally scale-dependent visibility can be set in this tab. You need to check the checkbox and set an appropriate scale where your data will be displayed in the map canvas.

Also the spatial reference system is printed here as a PROJ.4-string. This can be modified by hitting the Change button.

6.3.5 Metadata Tab

The Metadata tab displays a wealth of information about the raster layer, including statistics about each band in the current raster layer. Statistics are gathered on a 'need to know' basis, so it may well be that a given layers statistics have not yet been collected.

This tab is mainly for information. You cannot change any values printed inside this tab. To update the statistics you need to change to tab Histogram and press the button Refresh on the bottom right, see ch. 6.3.7.

6.3.6 Pyramids Tab

Large resolution raster layers can slow navigation in QGIS. By creating lower resolution copies of the data (pyramids), performance can be considerably improved as QGIS selects the most suitable resolution to use depending on the level of zoom.

You must have write access in the directory where the original data is stored to build pyramids. Several resampling methods can be used to calculate the pyramids:

- Average
- Nearest Neighbour
When checking the checkbox **Build pyramids internally if possible** QGIS tries to build pyramids internally.

Please note that building pyramids may alter the original data file and once created they cannot be removed. If you wish to preserve a 'non-pyramided' version of your raster, make a backup copy prior to building pyramids.

### 6.3.7 Histogram Tab

The **Histogram** tab allows you to view the distribution of the bands or colors in your raster. You must first generate the raster statistics by clicking the **Refresh** button. You can choose which bands to display by selecting them in the list box at the bottom left of the tab. Two different chart types are allowed:

- Bar chart
- Line graph

You can define the number of chart columns to use and decide whether you want to allow approximation or display out of range values Once you view the histogram, you’ll notice that the band statistics have been populated on the **metadata** tab.

**Tip 24 Gathering Raster Statistics**

To gather statistics for a layer, select pseudocolor rendering and click the **Apply** button. Gathering statistics for a layer can be time consuming. Please be patient while QGIS examines your data!
7 Working with OGC Data

QGIS supports WMS and WFS as data sources. The support is native; WFS is implemented as a plugin.

7.1 What is OGC Data

The Open Geospatial Consortium (OGC), is an international organization with more than 300 commercial, governmental, nonprofit and research organisations worldwide. Its members develop and implement standards for geospatial content and services, GIS data processing and exchange.

Describing a basic data model for geographic features an increasing number of specifications are developed to serve specific needs for interoperable location and geospatial technology, including GIS. Further information can be found under http://www.opengeospatial.org/.

Important OGC specifications are:

- **WMS** - Web Map Service
- **WFS** - Web Feature Service
- **WCS** - Web Coverage Service
- **CAT** - Web Catalog Service
- **SFS** - Simple Features for SQL
- **GML** - Geography Markup Language

OGC services are increasingly being used to exchange geospatial data between different GIS implementations and data stores. QGIS can now deal with three of the above specifications, being SFS (though support of the PostgreSQL / PostGIS data provider, see Section 5.2), WFS and WMS as a client.

7.2 WMS Client

7.2.1 Overview of WMS Support

QGIS currently can act as a WMS client that understands WMS 1.1, 1.1.1 and 1.3 servers. It has particularly been tested against publicly accessible servers such as DEMIS and JPL OnEarth.

WMS servers act upon requests by the client (e.g. QGIS) for a raster map with a given extent, set of layers, symbolisation style, and transparency. The WMS server then consults its local data sources, rasterizes the map, and sends it back to the client in a raster format. For QGIS this would typically be JPEG or PNG.
WMS is generically a REST (Representational State Transfer) service rather than a fully-blown Web Service. As such, you can actually take the URLs generated by QGIS and use them in a web browser to retrieve the same images that QGIS uses internally. This can be useful for troubleshooting, as there are several brands of WMS servers in the market and they all have their own interpretation of the WMS standard.

WMS layers can be added quite simply, as long as you know the URL to access the WMS server, you have a serviceable connection to that server, and the server understands HTTP as the data transport mechanism.

### 7.2.2 Selecting WMS Servers

The first time you use the WMS feature, there are no servers defined. You can begin by clicking the button inside the toolbar, or through the menu.

The dialog for adding layers from the WMS server pops up. Fortunately you can add some servers to play with by clicking the button. This will add at least three WMS servers for you to use, including the NASA (JPL) WMS server. To define a new WMS server in the section, select . Then enter the parameters to connect to your desired WMS server, as listed in table 4:

<table>
<thead>
<tr>
<th>Name</th>
<th>A name for this connection. This name will be used in the Server Connections drop-down box so that you can distinguish it from other WMS Servers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
<td>URL of the server providing the data. This must be a resolvable host name; the same format as you would use to open a telnet connection or ping a host.</td>
</tr>
<tr>
<td>Username</td>
<td>Username to access a secured WMS-server. This parameter is optional.</td>
</tr>
<tr>
<td>Password</td>
<td>Password for a basic authenticated WMS-server. This parameter is optional.</td>
</tr>
</tbody>
</table>

If you need to set up a proxy-server to be able to receive WMS-services from the internet, you can add your proxy-server in the options. Choose menu and click on the tab. There you can add your proxy-settings and enable them by setting the checkbox. Make sure that you select the correct proxy-type from the dropdown menu.

Once the new WMS Server connection has been created, it will be preserved for future QGIS ses-
Tip 25 On WMS Server URLs
Be sure, when entering in the WMS server URL, that you have the base URL. For example, you shouldn’t have fragments such as request=GetCapabilities or version=1.0.0 in your URL.

7.2.3 Loading WMS Layers

Once you have successfully filled in your parameters you can select the Connect button to retrieve the capabilities of the selected server. This includes the Image encoding, Layers, Layer Styles and Projections. Since this is a network operation, the speed of the response depends on the quality of your network connection to the WMS server. While downloading data from the WMS server, the download progress is visualized in the left bottom of the WMS Plugin dialog.

Your screen should now look a bit like Figure 23, which shows the response provided by the NASA JPL OnEarth WMS server.

**Figure 23:** Dialog for adding a WMS server, showing its available layers

Image Encoding

The Image encoding section now lists the formats that are supported by both the client and server. Choose one depending on your image accuracy requirements.
Tip 26 IMAGE ENCODING
You will typically find that a WMS server offers you the choice of JPEG or PNG image encoding. JPEG is a lossy compression format, whereas PNG faithfully reproduces the raw raster data. Use JPEG if you expect the WMS data to be photographic in nature and/or you don’t mind some loss in picture quality. This trade-off typically reduces by 5 times the data transfer requirement compared to PNG. Use PNG if you want precise representations of the original data, and you don’t mind the increased data transfer requirements.

Layers
The [Layers] section lists the layers available from the selected WMS server. You may notice that some layers are expandible, this means that the layer can be displayed in a choice of image styles.

You can select several layers at once, but only one image style per layer. When several layers are selected, they will be combined at the WMS Server and transmitted to QGIS in one go.

Tip 27 WMS LAYER ORDERING
In this version of QGIS, WMS layers rendered by a server are overlaid in the order listed in the Layers section, from top to bottom of the list. If you want to overlay layers in the opposite order, then you can select [Add WMS layer] a second time, choose the same server again, and select the second group of layers that you want to overlay the first group.

Transparency
In this version of QGIS, the transparency setting is hard-coded to be always on, where available.

Tip 28 WMS LAYER TRANSPARENCY
The availability of WMS image transparency depends on the image encoding used: PNG and GIF support transparency, whilst JPEG leaves it unsupported.

Coordinate Reference System
A Coordinate Reference System (CRS) is the OGC terminology for a QGIS Projection.

Each WMS Layer can be presented in multiple CRSs, depending on the capability of the WMS server. You may notice that the x changes in the Coordinate Reference System (x available) header as you select and deselect layers from the [Layers] section.

To choose a CRS, select [Change...] and a screen similar to Figure 27 in Section 8.3 will appear. The main difference with the WMS version of the screen is that only those CRSs supported by the WMS Server will be shown.
Tip 29 WMS PROJECTIONS
For best results, make the WMS layer the first layer you add to your project. This allows the project projection to inherit the CRS you used to render the WMS layer. On-the-fly projection (see Section 8.2) can then be used to fit any subsequent vector layers to the project projection. In this version of QGIS, if you add a WMS layer later, and give it a different CRS to the current project projection, unpredictable results can occur.

7.2.4 Server-Search

Within QGIS 1.1.X you can search for WMS-servers. Figure 24 shows the newly created search-tab with the Add Layer(s) from a Server-dialog.

As you can see it is possible to enter a search-string in the textfield an hit the Search button. After a short while the search result will be populated into the tab below the textfield.

Browse the result list and inspect your searchresults within the table. To visualize the results, select an table entry, press the Add selected row to WMS-list button and change back to the server tab.

QGIS automatically has updated your server list and the selected searchresult is already enabled in the list of saved WMS-servers.

You only need to request the list of layers by clicking the Connect button.
This option is quite handy when you want to search maps by specific keywords. Basically this option is a frontend to the API of http://geopole.org.

7.2.5 Using the Identify Tool

Once you have added a WMS server, and if any layer from a WMS server is queryable, you can then use the Identify tool to select a pixel on the map canvas. A query is made to the WMS server for each selection made.

The results of the query are returned in plain text. The formatting of this text is dependent on the particular WMS server used.

7.2.6 Viewing Properties

Once you have added a WMS server, you can view its properties by right-clicking on it in the legend, and selecting Properties.

Metadata Tab

The Metadata tab displays a wealth of information about the WMS server, generally collected from the Capabilities statement returned from that server.

Many definitions can be gleaned by reading the WMS standards [7], [8], but here are a few handy definitions:

- **Server Properties**
  - **WMS Version** - The WMS version supported by the server.
  - **Image Formats** - The list of MIME-types the server can respond with when drawing the map. QGIS supports whatever formats the underlying Qt libraries were built with, which is typically at least image/png and image/jpeg.
  - **Identity Formats** - The list of MIME-types the server can respond with when you use the Identify tool. Currently QGIS supports the text-plain type.

- **Layer Properties**
  - **Selected** - Whether or not this layer was selected when its server was added to this project.
  - **Visible** - Whether or not this layer is selected as visible in the legend. (Not yet used in this version of QGIS.)
  - **Can Identify** - Whether or not this layer will return any results when the Identify tool is used on it.
- **Can be Transparent** - Whether or not this layer can be rendered with transparency. This version of QGIS will always use transparency if this is Yes and the image encoding supports transparency.

- **Can Zoom In** - Whether or not this layer can be zoomed in by the server. This version of QGIS assumes all WMS layers have this set to Yes. Deficient layers may be rendered strangely.

- **Cascade Count** - WMS servers can act as a proxy to other WMS servers to get the raster data for a layer. This entry shows how many times the request for this layer is forwarded to peer WMS servers for a result.

- **Fixed Width, Fixed Height** - Whether or not this layer has fixed source pixel dimensions. This version of QGIS assumes all WMS layers have this set to nothing. Deficient layers may be rendered strangely.

- **WGS 84 Bounding Box** - The bounding box of the layer, in WGS 84 coordinates. Some WMS servers do not set this correctly (e.g. UTM coordinates are used instead). If this is the case, then the initial view of this layer may be rendered with a very “zoomed-out” appearance by QGIS. The WMS webmaster should be informed of this error, which they may know as the WMS XML elements LatLonBoundingBox, EX_GeographicBoundingBox or the CRS:84BoundingBox.

- **Available in CRS** - The projections that this layer can be rendered in by the WMS server. These are listed in the WMS-native format.

- **Available in style** - The image styles that this layer can be rendered in by the WMS server.

### 7.2.7 WMS Client Limitations

Not all possible WMS Client functionality had been included in this version of QGIS. Some of the more notable exceptions follow:

**Editing WMS Layer Settings**

Once you’ve completed the Add WMS layer procedure, there is no ability to change the settings.

A workaround is to delete the layer completely and start again.

**WMS Servers Requiring Authentication**

Currently public accessible and secured WMS-services are supported. The secured WMS-servers can be accessed by public authentication. You can add the (optional) credentials when you add a WMS-server. See section 7.2.2 for details.
Tip 30 ACCESSING SECURED OGC-LAYERS
If you need to access secured layers with other secured methods than basic authentication, you could use InteProxy as a transparent proxy, which does supports several authentication methods. More information can be found at the InteProxy-manual found on the website http://inteproxy.wald.intevation.org.

7.3 WFS Client

In QGIS, a WFS layer behaves pretty much like any other vector layer. You can identify and select features and view the attribute table. An exception is that editing is not supported at this time. To start the WFS plugin you need to open Plugins > Plugin Manager..., activate the WFS plugin checkbox and click OK.

A new Add WFS Layer icon appears next to the WMS icon. Click on it to open the dialog. In General adding a WFS layer is very similar to the procedure used with WMS. The difference is there are no default servers defined, so we have to add our own.

7.3.1 Loading a WFS Layer

As an example we use the DM Solutions WFS server and display a layer. The URL is:

http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?VERSION=1.0.0&SERVICE=wfs&REQUEST=GetCapabilities

1. Make sure the WFS plugin is loaded; if not, open the Plugin Manager and load it
2. Click on the Add WFS Layer tool on the plugins toolbar
3. Click on New
4. Enter Name DM Solutions as the name
5. Enter the URL (see previous page)
6. Click OK
7. Choose Server Connections DM Solutions from the drop-down box
8. Click Connect
9. Wait for the list of layers to be populated
10. Click on the Canadian Land layer
11. Click Add to add the layer to the map
12. Wait patiently for the features to appear

Note that the WFS-plugin also recognizes the proxy-settings you have set in your preferences.

![Figure 25: Adding a WFS layer](image)

You’ll notice the download progress is visualized in the left bottom of the QGIS main window. Once the layer is loaded, you can identify and select a province or two and view the attribute table.

Remember this plugin works best with UMN MapServer WFS servers. It still could be, that you might experience random behavior and crashes. You can look forward to improvements in a future version of the plugin.

This means that only WFS 1.0.0 is supported. At this point there have not been many test against over WFS versions implemented in other WFS-servers. If you encounter problems with any other WFS-server, please do not hesitate to contacting the development team. Please refer to Section 14 for further information about the mailinglists.

**Tip 31** Finding WFS Servers
You can find additional WFS servers by using Google or your favorite search engine. There are a number of lists with public URLs, some of them maintained and some not.

**Tip 32** Accessing Secure WFS Servers
Within the dialog Create a new WFS-connection accidently described QGIS does not support authenficated WFS-connections yet. Within one of the next releases we expect to also support authenticated WFS-servers. Meanwhile you could use InteProxy (http://inteproxy.wald.intevation.org) for accessing authenticated WFS-servers.
8 Working with Projections

QGIS allows users to define a global and project-wide CRS (Coordinate Reference System) for layers without a pre-defined CRS. It also allows the user to define custom coordinate reference systems and supports on-the-fly (OTF) projection of vector layers. All these features allow the user to display layers with different CRS and have them overlay properly.

8.1 Overview of Projection Support

QGIS has support for approximately 2,700 known CRS. Definitions for each of these CRS are stored in a SQLite database that is installed with QGIS. Normally you do not need to manipulate the database directly. In fact, doing so may cause projection support to fail. Custom CRS are stored in a user database. See Section 8.4 for information on managing your custom coordinate reference systems.

The CRS available in QGIS are based on those defined by EPSG and are largely abstracted from the spatial_references table in PostGIS version 1.x. The EPSG identifiers are present in the database and can be used to specify a CRS in QGIS.

In order to use OTF projection, your data must contain information about its coordinate reference system or you have to define a global, layer or project-wide CRS. For PostGIS layers QGIS uses the spatial reference identifier that was specified when the layer was created. For data supported by OGR, QGIS relies on the presence of a format specific means of specifying the CRS. In the case of shapefiles, this means a file containing the Well Known Text (WKT) specification of the CRS. The projection file has the same base name as the shapefile and a prj extension. For example, a shapefile named alaska.shp would have a corresponding projection file named alaska.prj.

8.2 Specifying a Projection

QGIS no longer sets the map CRS to the coordinate reference system of the first layer loaded. When you start a QGIS session with layers that do not have a CRS, you need to control and define the CRS definition for these layers. This can be done globally or project-wide in the CRS tab under Edit > Options (Gnome, OSX) or Settings > Options (KDE, Windows). See Figure 26.

- Prompt for CRS
- Project wide default CRS will be used
- Global default CRS displayed below will be used
The global default CRS \texttt{proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs} comes predefined in QGIS but can of course be changed, and the new definition will be saved for subsequent QGIS sessions.

![Figure 26: CRS tab in the QGIS Options Dialog](image)

If you want to define the coordinate reference system for a certain layer without CRS information, you can also do that in the [General] tab of the raster (6.3.4) and vector (5.4.1) properties dialog. If your layer already has a CRS defined, it will be displayed as shown in Figure 10.

### 8.3 Define On The Fly (OTF) Projection

QGIS does not have OTF projection enabled by default, and this function is currently only supported for vector layers. To use OTF projection, you must open the [Project Properties] dialog, select a CRS and activate the [Enable on the fly projection] checkbox. There are two ways to open the dialog:

1. Select [Project Properties] from the [Edit] (Gnome, OSX) or [Settings] (KDE, Windows)
8.4 Custom Coordinate Reference System

2. Click on the projector icon in the lower right-hand corner of the statusbar.

If you have already loaded a layer, and want to enable OTF projection, the best practice is to open the Coordinate Reference System tab of the Project Properties dialog, select the CRS of the currently loaded layer, and activate the Enable on the fly projection checkbox. The projector icon will show a green hook and all subsequently loaded vector layers will be OTF projected to the defined CRS.

The Coordinate Reference System tab of the Project Properties dialog contains four important components as shown in Figure 27 and described below.

1. **Enable on the fly projection** - this checkbox is used to enable or disable OTF projection. When off, each layer is drawn using the coordinates as read from the data source. When on, the coordinates in each layer are projected to the coordinate reference system defined for the map canvas.

2. **Coordinate Reference System** - this is a list of all CRS supported by QGIS, including Geographic, Projected and Custom coordinate reference systems. To use a CRS, select it from the list by expanding the appropriate node and selecting the CRS. The active CRS is preselected.

3. **Proj4 text** - this is the CRS string used by the Proj4 projection engine. This text is read-only and provided for informational purposes.

4. **Search** - if you know the EPSG identifier or the name for a Coordinate Reference System, you can use the search feature to find it. Enter the identifier and click on Find.

5. **Recently used CRS** - if you have certain CRS that you frequently use in your everyday GIS work, these will be displayed as 'quick access' buttons at the bottom of the Projection Dialog. Click on one of these buttons to select the associated CRS.

---

**Tip 33 PROJECT PROPERTIES DIALOG**

If you open the Project Properties dialog from the Edit (Gnome, OSX) or Settings (KDE, Windows) menu, you must click on the Coordinate Reference System tab to view the CRS settings. Opening the dialog from the projector icon will automatically bring the Coordinate Reference System tab to the front.

---

8.4 Custom Coordinate Reference System

If QGIS does not provide the coordinate reference system you need, you can define a custom CRS. To define a CRS, select Custom CRS from the Edit (Gnome, OSX) or Settings (KDE, Windows) menu.
Custom CRS are stored in your QGIS user database. In addition to your custom CRS, this database also contains your spatial bookmarks and other custom data.

8.4 Custom Coordinate Reference System

The `proj.4` format for specifying a CRS.

The **Custom Coordinate Reference System Definition** dialog requires only two parameters to define a user CRS:

1. a descriptive name and
2. the cartographic parameters in PROJ.4 format.
To create a new CRS, click the **New** button and enter a descriptive name and the CRS parameters. After that you can save your CRS by clicking the button **Save**.

Note that the Parameters must begin with a `+proj=`-block, to represent the new coordinate reference system.

You can test your CRS parameters to see if they give sane results by clicking on the **Calculate** button inside the Test block and pasting your CRS parameters into the Parameters field. Then enter known WGS 84 latitude and longitude values in North and East fields respectively. Click on **Calculate** and compare the results with the known values in your coordinate reference system.
9 GRASS GIS Integration

The GRASS plugin provides access to GRASS GIS [4] databases and functionalities. This includes visualization of GRASS raster and vector layers, digitizing vector layers, editing vector attributes, creating new vector layers and analysing GRASS 2D and 3D data with more than 300 GRASS modules.

In this Section we’ll introduce the plugin functionalities and give some examples on managing and working with GRASS data. Following main features are provided with the toolbar menu, when you start the GRASS plugin, as described in Section 9.1:

- Open mapset
- New mapset
- Close mapset
- Add GRASS vector layer
- Add GRASS raster layer
- Create new GRASS vector
- Edit GRASS vector layer
- Open GRASS tools
- Display current GRASS region
- Edit current GRASS region

9.1 Starting the GRASS plugin

To use GRASS functionalities and/or visualize GRASS vector and raster layers in QGIS, you must select and load the GRASS plugin with the Plugin Manager. Therefore click the menu Plugins > Manage Plugins, select GRASS and click OK.
9 GRASS GIS INTEGRATION

You can now start loading raster and vector layers from an existing GRASS LOCATION (see Section 9.2). Or you create a new GRASS LOCATION with QGIS (see Section 9.3.1) and import some raster and vector data (see Section 9.4) for further analysis with the GRASS Toolbox (see Section 9.9).

9.2 Loading GRASS raster and vector layers

With the GRASS plugin, you can load vector or raster layers using the appropriate button on the toolbar menu. As an example we use the QGIS alaska dataset (see Section 3.2). It includes a small sample GRASS LOCATION with 3 vector layers and 1 raster elevation map.

1. Create a new folder grassdata, download the QGIS alaska dataset qgis_sample_data.zip from http://download.osgeo.org/qgis/data/ and unzip the file into grassdata.
2. Start QGIS.
3. If not already done in a previous QGIS session, load the GRASS plugin clicking on Plugins > Manage Plugins and selecting GRASS. The GRASS toolbar appears on the toolbar menu.
4. In the GRASS toolbar, click the Open mapset icon to bring up the MAPSET wizard.
5. For Gisdbase browse and select or enter the path to the newly created folder grassdata.
6. You should now be able to select the LOCATION alaska and the MAPSET demo.
7. Click OK. Notice that some previously disabled tools in the GRASS toolbar are now enabled.
8. Click on Add GRASS raster layer, choose the map name gtopo30 and click OK. The elevation layer will be visualized.
9. Click on Add GRASS vector layer, choose the map name alaska and click OK. The alaska boundary vector layer will be overlayed on top of the gtopo30 map. You can now adapt the layer properties as described in chapter 5.4, e.g. change opacity, fill and outline color.
10. Also load the other two vector layers rivers and airports and adapt their properties.

As you see, it is very simple to load GRASS raster and vector layers in QGIS. See following Sections for editing GRASS data and creating a new LOCATION. More sample GRASS LOCATIONs are available at the GRASS website at http://grass.osgeo.org/download/data.php.

Tip 34 GRASS DATA LOADING
If you have problems loading data or QGIS terminates abnormally, check to make sure you have loaded the GRASS plugin properly as described in Section 9.1.
9.3 GRASS LOCATION and MAPSET

GRASS data are stored in a directory referred to as GISDBASE. This directory often called grassdata, must be created before you start working with the GRASS plugin in QGIS. Within this directory, the GRASS GIS data are organized by projects stored in subdirectories called LOCATION. Each LOCATION is defined by its coordinate system, map projection and geographical boundaries. Each LOCATION can have several MAPSETs (subdirectories of the LOCATION) that are used to subdivide the project into different topics, subregions, or as workspaces for individual team members (Neteler & Mitasova 2008 [2]). In order to analyze vector and raster layers with GRASS modules, you must import them into a GRASS LOCATION.  

Figure 29: GRASS data in the alaska LOCATION (adapted from Neteler & Mitasova 2008 [2])

<table>
<thead>
<tr>
<th>GRASS Database</th>
<th>LOCATION</th>
<th>MAPSET</th>
<th>Geometry and attribute data</th>
</tr>
</thead>
<tbody>
<tr>
<td>/home/user/grassdata</td>
<td>/alaska</td>
<td>/demo</td>
<td>/PERMANENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/cats</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/col</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/cell</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/cellhd</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/cell_misc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/hist</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/airports</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/alaska</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/rivers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/airports.dbf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/alaska.dbf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/rivers.dbf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/dbf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.3.1 Creating a new GRASS LOCATION

As an example you find the instructions how the sample GRASS LOCATION alaska, which is projected in Albers Equal Area projection with unit feet was created for the QGIS sample dataset. This sample GRASS LOCATION alaska will be used for all examples and exercises in the following GRASS GIS related chapters. It is useful to download and install the dataset on your computer 3.2).

---

5This is not strictly true - with the GRASS modules r.external and v.external you can create read-only links to external GDAL/OGR-supported data sets without importing them. But because this is not the usual way for beginners to
1. Start QGIS and make sure the GRASS plugin is loaded
2. Visualize the alaska.shp Shapefile (see Section 5.1.1) from the QGIS alaska dataset 3.2.
3. In the GRASS toolbar, click on the Open mapset icon to bring up the MAPSET wizard.
4. Select an existing GRASS database (GISDBASE) folder grassdata or create one for the new LOCATION using a file manager on your computer. Then click Next.
5. We can use this wizard to create a new MAPSET within an existing LOCATION (see Section 9.3.2) or to create a new LOCATION altogether. Click on the radio button ⊙ Create new location (see Figure 30).
6. Enter a name for the LOCATION - we used alaska and click Next.
7. Define the projection by clicking on the radio button ⊙ Projection to enable the projection list.
8. We are using Albers Equal Area Alaska (feet) projection. Since we happen to know that it is represented by the EPSG ID 2964, we enter it in the search box. (Note: If you want to repeat this process for another LOCATION and projection and haven’t memorized the EPSG ID, click on the projector icon in the lower right-hand corner of the status bar (see Section 8.3)).

work with GRASS, this functionality will not be described here.
9. Click \text{Find} to select the projection

10. Click \text{Next}

11. To define the default region, we have to enter the \text{LOCATION} bounds in north, south, east, and west direction. Here we simply click on the button \text{Set current QGIS extent}, to apply the extend of the loaded layer \text{alaska.shp} as the GRASS default region extend.

12. Click \text{Next}

13. We also need to define a \text{MAPSET} within our new \text{LOCATION}. You can name it whatever you like - we used demo.\footnote{When creating a new \text{LOCATION}, GRASS automatically creates a special \text{MAPSET} called \text{PERMANENT} designed to store the core data for the project, its default spatial extend and coordinate system definitions (Neteler & Mitasova 2008 [2]).}

14. Check out the summary to make sure it's correct and click \text{Finish}

15. The new \text{LOCATION alaska} and two \text{MAPSETs demo} and \text{PERMANENT} are created. The currently opened working set is \text{MAPSET demo}, as you defined.

16. Notice that some of the tools in the GRASS toolbar that were disabled are now enabled.

If that seemed like a lot of steps, it's really not all that bad and a very quick way to create a \text{LOCATION}. The \text{LOCATION alaska} is now ready for data import (see Section 9.4). You can also use the already existing vector and raster data in the sample GRASS \text{LOCATION alaska} included in the QGIS alaska dataset\footnote{3.2} and move on to Section 9.5.

9.3.2 Adding a new \text{MAPSET}

A user has only write access to a GRASS \text{MAPSET} he created. This means, besides access to his own \text{MAPSET}, each user can also read maps in other user's \text{MAPSETs}, but he can modify or remove only the maps in his own \text{MAPSET}. All \text{MAPSETs} include a \text{WIND} file that stores the current boundary coordinate values and the currently selected raster resolution (Neteler & Mitasova 2008 [2], see Section 9.8).

1. Start QGIS and make sure the GRASS plugin is loaded

2. In the GRASS toolbar, click on the \text{New mapset} icon to bring up the \text{MAPSET} wizard.

3. Select the GRASS database (GISDBASE) folder grassdata with the \text{LOCATION alaska}, where we want to add a further \text{MAPSET}, called test.

4. Click \text{Next}.

5. We can use this wizard to create a new \text{MAPSET} within an existing \text{LOCATION} or to create a new \text{LOCATION} altogether. Click on the radio button \text{Select location} (see Figure 30) and click \text{Next}.

6. Enter the name \text{test} for the new \text{MAPSET}. Below in the wizard you see a list of existing \text{MAPSETs} and its owners.
7. Click Next, check out the summary to make sure it's all correct and click Finish.

9.4 Importing data into a GRASS LOCATION

This Section gives an example how to import raster and vector data into the alaska GRASS LOCATION provided by the QGIS alaska dataset. Therefore we use a landcover raster map landcover.img and a vector GML File lakes.gml from the QGIS alaska dataset 3.2.

1. Start QGIS and make sure the GRASS plugin is loaded.

2. In the GRASS toolbar, click the Open MAPSET icon to bring up the MAPSET wizard.

3. Select as GRASS database the folder grassdata in the QGIS alaska dataset, as LOCATION alaska, as MAPSET demo and click OK.

4. Now click the Open GRASS tools icon. The GRASS Toolbox (see Section 9.9) dialog appears.

5. To import the raster map landcover.img, click the module r.in.gdal in the Modules Tree tab. This GRASS module allows to import GDAL supported raster files into a GRASS LOCATION. The module dialog for r.in.gdal appears.

6. Browse to the folder raster in the QGIS alaska dataset and select the file landcover.img.

7. As raster output name define landcover_grass and click Run. In the Output tab you see the currently running GRASS command r.in.gdal -o input=/path/to/landcover.img output=landcover_grass.

8. When it says Successfully finished click View output. The landcover_grass raster layer is now imported into GRASS and will be visualized in the QGIS canvas.

9. To import the vector GML file lakes.gml, click the module v.in.ogr in the Modules Tree tab. This GRASS module allows to import OGR supported vector files into a GRASS LOCATION. The module dialog for v.in.ogr appears.

10. Browse to the folder gml in the QGIS alaska dataset and select the file lakes.gml as OGR file.

11. As vector output name define lakes_grass and click Run. You don't have to care about the other options in this example. In the Output tab you see the currently running GRASS command v.in.ogr -o dsn=/path/to/lakes.gml output=lakes_grass.

12. When it says Successfully finished click View output. The lakes_grass vector layer is now imported into GRASS and will be visualized in the QGIS canvas.
9.5 The GRASS vector data model

It is important to understand the GRASS vector data model prior to digitizing. In general, GRASS uses a topological vector model. This means that areas are not represented as closed polygons, but by one or more boundaries. A boundary between two adjacent areas is digitized only once, and it is shared by both areas. Boundaries must be connected without gaps. An area is identified (labeled) by the centroid of the area.

Besides boundaries and centroids, a vector map can also contain points and lines. All these geometry elements can be mixed in one vector and will be represented in different so-called ‘layers’ inside one GRASS vector map. So in GRASS a layer is not a vector or raster map but a level inside a vector layer. This is important to distinguish carefully.  

It is possible to store more ‘layers’ in one vector dataset. For example, fields, forests and lakes can be stored in one vector. Adjacent forest and lake can share the same boundary, but they have separate attribute tables. It is also possible to attach attributes to boundaries. For example, the boundary between lake and forest is a road, so it can have a different attribute table.

The ‘layer’ of the feature is defined by ‘layer’ inside GRASS. ‘Layer’ is the number which defines if there are more than one layer inside the dataset, e.g. if the geometry is forest or lake. For now, it can be only a number, in the future GRASS will also support names as fields in the user interface.

Attributes can be stored inside the GRASS LOCATION as DBase or SQLITE3 or in external database tables, for example PostgreSQL, MySQL, Oracle, etc.

Attributes in database tables are linked to geometry elements using a ‘category’ value. ‘Category’ (key, ID) is an integer attached to geometry primitives, and it is used as the link to one key column in the database table.

Tip 35 LEARNING THE GRASS VECTOR MODEL

The best way to learn the GRASS vector model and its capabilities is to download one of the many GRASS tutorials where the vector model is described more deeply. See http://grass.osgeo.org/gdp/manuals.php for more information, books and tutorials in several languages.

9.6 Creating a new GRASS vector layer

To create a new GRASS vector layer with the GRASS plugin click the toolbar icon. Enter a name in the text box and you can start digitizing point, line or polygon geometries, following the procedure described in Section 9.7.

7Although it is possible to mix geometry elements, it is unusual and even in GRASS only used in special cases such as vector network analysis. Normally you should prefer to store different geometry elements in different layers.
In GRASS it is possible to organize all sort of geometry types (point, line and area) in one layer, because GRASS uses a topological vector model, so you don’t need to select the geometry type when creating a new GRASS vector. This is different from Shapefile creation with QGIS, because Shapefiles use the Simple Feature vector model (see Section 5.5.6).

**Tip 36 Creating an attribute table for a new GRASS vector layer**

If you want to assign attributes to your digitized geometry features, make sure to create an attribute table with columns before you start digitizing (see Figure 35).

### 9.7 Digitizing and editing a GRASS vector layer

The digitizing tools for GRASS vector layers are accessed using the [Edit GRASS vector layer](#) icon on the toolbar. Make sure you have loaded a GRASS vector and it is the selected layer in the legend before clicking on the edit tool. Figure 32 shows the GRASS edit dialog that is displayed when you click on the edit tool. The tools and settings are discussed in the following sections.

**Tip 37 Digitizing polygons in GRASS**

If you want to create a polygon in GRASS, you first digitize the boundary of the polygon, setting the mode to No category. Then you add a centroid (label point) into the closed boundary, setting the mode to Next not used. The reason is, that a topological vector model links attribute information of a polygon always to the centroid and not to the boundary.

#### Toolbar

In Figure 31 you see the GRASS digitizing toolbar icons provided by the GRASS plugin. Table 5 explains the available functionalities.

**Figure 31: GRASS Digitizing Toolbar**

![GRASS Digitizing Toolbar](image)

#### Category Tab

The Category tab allows you to define the way in which the category values will be assigned to a new geometry element.

- **Mode**: what category value shall be applied to new geometry elements.
  - Next not used - apply next not yet used category value to geometry element.
### 9.7 Digitizing and editing a GRASS vector layer

**Table 5: GRASS Digitizing Tools**

<table>
<thead>
<tr>
<th>Icon</th>
<th>Tool</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New Point</td>
<td>Digitize new point</td>
</tr>
<tr>
<td></td>
<td>New Line</td>
<td>Digitize new line (finish by selecting new tool)</td>
</tr>
<tr>
<td></td>
<td>New Boundary</td>
<td>Digitize new boundary (finish by selecting new tool)</td>
</tr>
<tr>
<td></td>
<td>New Centroid</td>
<td>Digitize new centroid (label existing area)</td>
</tr>
<tr>
<td></td>
<td>Move vertex</td>
<td>Move one vertex of existing line or boundary and identify new position</td>
</tr>
<tr>
<td></td>
<td>Add vertex</td>
<td>Add a new vertex to existing line</td>
</tr>
<tr>
<td></td>
<td>Delete vertex</td>
<td>Delete vertex from existing line (confirm selected vertex by another click)</td>
</tr>
<tr>
<td></td>
<td>Move element</td>
<td>Move selected boundary, line, point or centroid and click on new position</td>
</tr>
<tr>
<td></td>
<td>Split line</td>
<td>Split an existing line to 2 parts</td>
</tr>
<tr>
<td></td>
<td>Delete element</td>
<td>Delete existing boundary, line, point or centroid (confirm selected element by another click)</td>
</tr>
<tr>
<td></td>
<td>Edit attributes</td>
<td>Edit attributes of selected element (note that one element can represent more features, see above)</td>
</tr>
<tr>
<td></td>
<td>Close</td>
<td>Close session and save current status (rebuids topology afterwards)</td>
</tr>
</tbody>
</table>

- Manual entry - manually define the category value for the geometry element in the 'Category'-entry field.
- No category - Do not apply a category value to the geometry element. This is e.g. used for area boundaries, because the category values are connected via the centroid.

- **Category** - A number (ID) is attached to each digitized geometry element. It is used to connect each geometry element with its attributes.

- **Field (layer)** - Each geometry element can be connected with several attribute tables using different GRASS geometry layers. Default layer number is 1.

---

**Tip 38 CREATING AN ADDITIONAL GRASS 'LAYER' WITH QGIS**

If you would like to add more layers to your dataset, just add a new number in the 'Field (layer)' entry box and press return. In the Table tab you can create your new table connected to your new layer.
Settings Tab

The **Settings** tab allows you to set the snapping in screen pixels. The threshold defines at what distance new points or line ends are snapped to existing nodes. This helps to prevent gaps or dangles between boundaries. The default is set to 10 pixels.

Symbology Tab

The **Symbology** tab allows you to view and set symbology and color settings for various geometry types and their topological status (e.g. closed / opened boundary).
9.7 Digitizing and editing a GRASS vector layer

**Figure 34: GRASS Digitizing Symbology Tab**

**Table Tab**

The Table tab provides information about the database table for a given 'layer'. Here you can add new columns to an existing attribute table, or create a new database table for a new GRASS vector layer (see Section 9.6).

**Figure 35: GRASS Digitizing Table Tab**

**Tip 39 GRASS Edit Permissions**

You must be the owner of the GRASS MAPSET you want to edit. It is impossible to edit data layers in a MAPSET that is not yours, even if you have write permissions.
9.8 The GRASS region tool

The region definition (setting a spatial working window) in GRASS is important for working with raster layers. Vector analysis is by default not limited to any defined region definitions. But all newly-created rasters will have the spatial extension and resolution of the currently defined GRASS region, regardless of their original extension and resolution. The current GRASS region is stored in the $LOCATION/$MAPSET/WIND file, and it defines north, south, east and west bounds, number of columns and rows, horizontal and vertical spatial resolution.

It is possible to switch on/off the visualization of the GRASS region in the QGIS canvas using the Display current GRASS region button.

With the Edit current GRASS region icon you can open a dialog to change the current region and the symbology of the GRASS region rectangle in the QGIS canvas. Type in the new region bounds and resolution and click OK. It also allows to select a new region interactively with your mouse on the QGIS canvas. Therefore click with the left mouse button in the QGIS canvas, open a rectangle, close it using the left mouse button again and click OK. The GRASS module g.region provide a lot more parameters to define an appropriate region extend and resolution for your raster analysis. You can use these parameters with the GRASS Toolbox, described in Section 9.9.

9.9 The GRASS toolbox

The Open GRASS Tools box provides GRASS module functionalities to work with data inside a selected GRASS LOCATION and MAPSET. To use the GRASS toolbox you need to open a LOCATION and MAPSET where you have write-permission (usually granted, if you created the MAPSET). This is necessary, because new raster or vector layers created during analysis need to be written to the currently selected LOCATION and MAPSET.

9.9.1 Working with GRASS modules

The GRASS Shell inside the GRASS Toolbox provides access to almost all (more than 300) GRASS modules in command line modus. To offer a more user friendly working environment, about 200 of the available GRASS modules and functionalities are also provided by graphical dialogs. These dialogs are grouped in categories, but are searchable as well. You find a complete list of GRASS modules available in QGIS version 1.3.0 in appendix B. It is also possible to customize the GRASS Toolbox content. It is described in Section 9.9.4.

As shown in Figure 36, you can look for the appropriate GRASS module using the thematically
Figure 36: GRASS Toolbox and searchable Modules List

(a) Modules Tree  
(b) Searchable Modules List

grouped Modules Tree or the searchable Modules List tab.

Clicking on a graphical module icon a new tab will be added to the toolbox dialog providing three new sub-tabs Options, Output and Manual. In Figure 37 you see an example for the GRASS module v.buffer.

Figure 37: GRASS Toolbox Module Dialogs

(a) Module Options  
(b) Modules Output  
(c) Module Manual
Options

The Options tab provides a simplified module dialog where you can usually select a raster or vector layer visualized in the QGIS canvas and enter further module specific parameters to run the module. The provided module parameters are often not complete to keep the dialog clear. If you want to use further module parameters and flags, you need to start the GRASS Shell and run the module in the command line.

Output

The Output tab provides information about the output status of the module. When you click the Run button, the module switches to the Output tab and you see information about the analysis process. If all works well, you will finally see a Successfully finished message.

Manual

The Manual tab shows the HTML help page of the GRASS module. You can use it to check further module parameters and flags or to get a deeper knowledge about the purpose of the module. At the end of each module manual page you see further links to the Main Help index, the Thematic index and the Full index. These links provide the same information as if you use the module g.manual

Tip 40 DISPLAY RESULTS IMMEDIATELY

If you want to display your calculation results immediately in your map canvas, you can use the "View Output" button at the bottom of the module tab.

9.9.2 GRASS module examples

The following examples will demonstrate the power of some of the GRASS modules.

Creating contour lines

The first example creates a vector contour map from an elevation raster (DEM). Assuming you have the Alaska LOCATION set up as explained in Section 9.4.

• First open the location by clicking the Open mapset button and choosing the Alaska location.

• Now load the gtopo30 elevation raster by clicking Add GRASS raster layer and selecting the gtopo30 raster from the demo location.

• Now open the Toolbox with the Open GRASS tools button.
9.9 The GRASS toolbox

- In the list of tool categories double click Raster -> Surface Management -> Generate vector contour lines.
- Now a single click on the tool `r.contour` will open the tool dialog as explained above 9.9.1. The `gtopo30` raster should appear as the Name of input raster `gtopo30`.
- Type into the Increment between Contour levels `100` the value 100. (This will create contour lines at intervals of 100 meters.)
- Type into the Name for output vector map `ctour_100` the name `ctour_100`.
- Click Run to start the process. Wait for several moments until the message Successfully finished appears in the output window. Then click View Output and close.

![Figure 38: GRASS Toolbox r.contour module](image)

Since this is a large region, it will take a while to display. After it finishes rendering, you can open the layer properties window to change the line color so that the contours appear clearly over the elevation raster, as in 5.4.
Next zoom in to a small mountainous area in the center of Alaska. Zooming in close you will notice that the contours have sharp corners. GRASS offers the `v.generalize` tool to slightly alter vector maps while keeping their overall shape. The tool uses several different algorithms with different purposes. Some of the algorithms (i.e. Douglas Peuker and Vertex reduction) simplify the line by removing some of the vertices. The resulting vector will load faster. This process will be used when you have a highly detailed vector, but you are creating a very small scale map, so the detail is unnecessary.

**Tip 41** THE SIMPLIFY TOOL

Note that the QGIS fTools plugin has a `Simplify geometries` tool that works just like the GRASS `v.generalize` Douglas-Peuker algorithm.

However, the purpose of this example is different. The contour lines created by r.contour have sharp angles that should be smoothed. Among the `v.generalize` algorithms there is Chaikens which does just that (also Hermite splines). Be aware that these algorithms can **add** additional vertices to the vector, causing it to load even more slowly.

- Open the GRASS toolbox and double click the categories Vector -> Develop map -> Generalization, then click on the `v.generalize` module to open its options window.
- Check that the `ctour_100` vector appears as the Name of input vector `ctour_100`.
- From the list of algorithms choose Chaiken’s. Leave all other options at their default, and scroll down to the last row to enter the Name for output vector map `ctour_100_smooth`, and click Run.
- The process takes several moments. Once Successfully finished appears in the output windows, click View output and then close.
- You may change the color of the vector to display it clearly on the raster background and to contrast with the original contour lines. You will notice that the new contour lines have smoother corners than the original while staying faithful to the original overall shape.

**Tip 42** OTHER USES FOR R.COCONTR

The procedure described above can be used in other equivalent situations. If you have a raster map of precipitation data, for example, then the same method will be used to create a vector map of isohyetal (constant rainfall) lines.

**Creating a Hillshade 3D effect**

Several methods are used to display elevation layers and give a 3D effect to maps. The use of contour lines as shown above is one popular method often chosen to produce topographic maps. Another way to display a 3D effect is by hillshading. The hillshade effect is created from a DEM (elevation) raster by first calculating the slope and aspect of each cell, then simulating the sun’s position in the
sky and giving a reflectance value to each cell. Thus you get sun facing slopes lighted and the slopes facing away from the sun (in shadow) are darkened.

- Begin this example by loading the gtopo30 elevation raster. Start the GRASS toolbox and under the Raster category double click to open Spatial analysis -> Terrain analysis.
- Then click r.shaded.relief to open the module.
- Change the azimuth angle to 315. Enter gtopo30_shade for the Output shaded relief map new hillshade raster, and click run.
- When the process completes, add the hillshade raster to the map. You should see it displayed in grayscale.
- To view both the hill shading and the colors of the gtopo30 together shift the hillshade map below the gtopo30 map in the table of contents, then open the Properties window of gtopo30, switch to the transparency tab and set its transparency level to about 25%.
You should now have the \texttt{gtopo30} elevation with its colormap and transparency setting displayed \textbf{above} the grayscale hillshade map. In order to see the visual effects of the hillshading, turn off the \texttt{gtopo30\_shade} map, then turn it back on.

\textbf{Using the GRASS shell}

The GRASS plugin in QGIS is designed for users who are new to GRASS, and not familiar with all the modules and options. As such, some modules in the toolbox do not show all the options available, and some modules do not appear at all. The GRASS shell (or console) gives the user access to those additional GRASS modules that do not appear in the toolbox tree, and also to some additional options to the modules that are in the toolbox with the simplest default parameters. This example demonstrates the use of an additional option in the \texttt{r.shaded.relief} module that was shown above.

\begin{figure}[h]
\centering
\includegraphics[width=\columnwidth]{grass_shell.png}
\caption{The GRASS shell, \texttt{r.shaded.relief} module}
\end{figure}

The module \texttt{r.shaded.relief} can take a parameter \texttt{zmult} which multiplies the elevation values relative
to the X-Y coordinate units so that the hillshade effect is even more pronounced.

- Load the `gtopo30` elevation raster as above, then start the GRASS toolbox and click on the GRASS shell. In the shell window type the command:
  
  ```
 r.shaded.relief map=gtopo30 shade=gtopo30_shade2 azimuth=315 zmult=3
  ```
  
  and press [Enter].

- After the process finishes shift to the [Browse] tab and double click on the new `gtopo30_shade2` raster to display in QGIS.

- As explained above, shift the shaded relief raster below the `gtopo30` raster in the Table of Contents, then check transparency of the colored `gtopo30` layer. You should see that the 3D effect stands out more strongly compared to the first shaded relief map.

![Figure 41: Displaying shaded relief created with the GRASS module r.shaded.relief](image)

**Figure 41:** Displaying shaded relief created with the GRASS module `r.shaded.relief`.

### Raster statistics in a vector map

The next example shows how a GRASS module can aggregate raster data and add columns of statistics for each polygon in a vector map.

- Again using the Alaska data, refer to 9.4 to import the trees shapefile from the `vmap0_shapefiles` directory into GRASS.
Now an intermediary step is required: centroids must be added to the imported trees map to make it a complete GRASS area vector (including both boundaries and centroids).

From the toolbox choose Vector -> Manage features, and open the module \texttt{v.centroids}.

Enter as the output vector map \texttt{forest_areas} and run the module.

Now load the \texttt{forest_areas} vector and display the types of forests - deciduous, evergreen, mixed - in different colors: In the layer \texttt{Properties} window, \texttt{symbology} tab, choose \texttt{Legend type Unique value ▼} and set the \texttt{Classification field VEGDESC} to VEGDESC. (Refer to the explanation of the symbology tab 5.4.2 in the vector section).

Next reopen the GRASS toolbox and open Vector -> Vector update by other maps.

Click on the \texttt{v.rast.stats} module. Enter Name of raster \texttt{gtopo30}, and Name of vector polygon \texttt{forest_areas}.

Only one additional parameter is needed: Enter column prefix \texttt{elev}, and click \texttt{run}. This is a computationally heavy operation which will run for a long time (probably up to two hours).

Finally open the \texttt{forest_areas} attribute table, and verify that several new columns have been added including elev_min, elev_max, elev_mean etc. for each forest polygon.

\subsection*{9.9.3 Working with the GRASS LOCATION browser}

Another useful feature inside the GRASS Toolbox is the GRASS LOCATION browser. In Figure 42 you can see the current working LOCATION with its MAPSETS.

In the left browser windows you can browse through all MAPSETs inside the current LOCATION. The right browser window shows some meta information for selected raster or vector layers, e.g. resolution, bounding box, data source, connected attribute table for vector data and a command history.

The toolbar inside the \texttt{Browser} tab offers following tools to manage the selected LOCATION:

- Add selected map to canvas
- Copy selected map
- Rename selected map
- Delete selected map
- Set current region to selected map
The **GRASS toolbox**

**Figure 42:** GRASS LOCATION browser

- [Refresh browser window](#)
- [Rename selected map](#)
- [Delete selected map](#)

The **Rename selected map** and **Delete selected map** only work with maps inside your currently selected MAPSET. All other tools also work with raster and vector layers in another MAPSET.

### 9.9.4 Customizing the GRASS Toolbox

Nearly all GRASS modules can be added to the GRASS toolbox. A XML interface is provided to parse the pretty simple XML files which configures the modules appearance and parameters inside the toolbox.

A sample XML file for generating the module `v.buffer` (`v.buffer.qgm`) looks like this:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE qgisgrassmodule SYSTEM "http://mrcc.com/qgisgrassmodule.dtd">
```
<qgisgrassmodule label="Vector buffer" module="v.buffer">
    <option key="input" typeoption="type" layeroption="layer" />
    <option key="buffer"/>
    <option key="output" />
</qgisgrassmodule>

The parser reads this definition and creates a new tab inside the toolbox when you select the module. A more detailed description for adding new modules, changing the modules group, etc. can be found on the QGIS wiki at http://wiki.qgis.org/qgiswiki/Adding_NewTools_to_the_GRASS_Toolbox.
10 Print Composer

The print composer provides growing layout and printing capabilities. It allows you to add elements such as the QGIS map canvas, legend, scalebar, images, and text labels. You can size, group align and position each element and adjust the properties to create your layout. The layout can be printed or exported to image formats, Postscript, PDF or to SVG and you can save the layout as template and load it again in another session. See a list of tools in table 6:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Purpose</th>
<th>Icon</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Load from template" /></td>
<td>Load from template</td>
<td><img src="image" alt="Save as template" /></td>
<td>Save as template</td>
</tr>
<tr>
<td><img src="image" alt="Export to an image format" /></td>
<td>Export to an image format</td>
<td><img src="image" alt="Export as PDF" /></td>
<td>Export as PDF</td>
</tr>
<tr>
<td><img src="image" alt="Export print composition to SVG" /></td>
<td>Export print composition to SVG</td>
<td><img src="image" alt="Print or export as Postscript" /></td>
<td>Print or export as Postscript</td>
</tr>
<tr>
<td><img src="image" alt="Zoom to full extend" /></td>
<td>Zoom to full extend</td>
<td><img src="image" alt="Zoom out" /></td>
<td>Zoom out</td>
</tr>
<tr>
<td><img src="image" alt="Refresh view" /></td>
<td>Refresh view</td>
<td><img src="image" alt="Add new map from QGIS map canvas" /></td>
<td>Add new map from QGIS map canvas</td>
</tr>
<tr>
<td><img src="image" alt="Add Image to print composition" /></td>
<td>Add Image to print composition</td>
<td><img src="image" alt="Add label to print composition" /></td>
<td>Add label to print composition</td>
</tr>
<tr>
<td><img src="image" alt="Add new legend to print composition" /></td>
<td>Add new legend to print composition</td>
<td><img src="image" alt="Add new scalebar to print composition" /></td>
<td>Add new scalebar to print composition</td>
</tr>
<tr>
<td><img src="image" alt="Select/Move item in print composition" /></td>
<td>Select/Move item in print composition</td>
<td><img src="image" alt="Move content within an item" /></td>
<td>Move content within an item</td>
</tr>
<tr>
<td><img src="image" alt="Group items of print composition" /></td>
<td>Group items of print composition</td>
<td><img src="image" alt="Ungroup items of print composition" /></td>
<td>Ungroup items of print composition</td>
</tr>
<tr>
<td><img src="image" alt="Raise selected items" /></td>
<td>Raise selected items</td>
<td><img src="image" alt="Lower selected items" /></td>
<td>Lower selected items</td>
</tr>
<tr>
<td><img src="image" alt="Move selected items to top" /></td>
<td>Move selected items to top</td>
<td><img src="image" alt="Move selected items to bottom" /></td>
<td>Move selected items to bottom</td>
</tr>
<tr>
<td><img src="image" alt="Align selected items left" /></td>
<td>Align selected items left</td>
<td><img src="image" alt="Align selected items right" /></td>
<td>Align selected items right</td>
</tr>
<tr>
<td><img src="image" alt="Align selected items center" /></td>
<td>Align selected items center</td>
<td><img src="image" alt="Align selected items center vertical" /></td>
<td>Align selected items center vertical</td>
</tr>
<tr>
<td><img src="image" alt="Align selected items top" /></td>
<td>Align selected items top</td>
<td><img src="image" alt="Align selected items bottom" /></td>
<td>Align selected items bottom</td>
</tr>
</tbody>
</table>

To access the print composer, click on the ![Print Composer](image) button in the toolbar or choose File > Print Composer.

---

8Export to SVG supported, but it is not working properly with some recent QT4 versions. You should try and check individual on your system.
10 PRINT COMPOSER

10.1 Using Print Composer

Before you start to work with the print composer, you need to load some raster and vector layers in the QGIS map canvas and adapt their properties to suite your own convinience. After everything is rendered and symbolized to your liking you click the Print Composer icon.

Figure 43: Print Composer

Opening the print composer provides you with a blank canvas to which you can add the current QGIS map canvas, legend, scalebar, images and text. Figure 43 shows the initial view of the print composer with an activated Snap to grid modus but before any elements are added. The print composer provides two tabs:

- The General tab allows you to set paper size, orientation, the print quality for the output file in...
dpi and to activate snapping to a grid of a defined resolution. Please note, the Snap to grid feature only works, if you define a grid resolution > 0. Furthermore you can also activate the Print as raster checkbox. This means all elements will be rastered before printing or saving as Postscript or PDF.

- The Item tab displays the properties for the selected map element. Click the Select/Move item icon to select an element (e.g. legend, scalebar or label) on the canvas. Then click the Item tab and customize the settings for the selected element.

You can add multiple elements to the composer. It is also possible to have more than one map view or legend or scalebar in the print composer canvas. Each element has its own properties and in the case of the map, its own extent.

**10.1.1 Adding a current QGIS map canvas to the Print Composer**

To add the QGIS map canvas, click on the Add new map from QGIS map canvas button in the print composer toolbar and drag a rectangle on the composer canvas with the left mouse button to add the map. You will see an empty box with a "Map will be printed here" message. To display the current map, you can choose between three different modes in the map Item tab:

- **Preview Rectangle** is the default setting. It only displays an empty box with a message "Map will be printed here".
- **Preview Cache** renders the map in the current screen resolution. If case you zoom in or out the composer window, the map is not rendered again but the image will be scaled.
- **Preview Render** means, that if you zoom in or out the composer window, the map will be rendered again, but for space reasons, only up to a maximum resolution.

You can resize the map later by clicking on the Select/Move item button, selecting the element, and dragging one of the blue handles in the corner of the map. With the map selected, you can now adapt more properties in the map Item tab. Resize the map item specifying the width and height or the scale. Define the map extent using Y and X min/max values or clicking the set to map canvas extend button. Update the map preview and select, whether to see a preview from cache or an empty rectangle with a "Map will be printed here" message. Define colors and outline width for the element frame, set a background color and opacity for the map canvas. And you can also select or unselect to display an element frame with the frame checkbox (see Figure 44). If you change the view on the QGIS map canvas by zooming or panning or changing vector or raster...
properties, you can update the print composer view selecting the map element in the print composer and clicking the [Update Preview] button in the map [Item] tab (see Figure 44).

To move layers within the map element select the map element, click the [Move item content] icon and move the layers within the map element frame with the left mouse button. After you found the right place for an element, you can lock the element position within the print composer canvas.

Select the map element and click on the right mouse button to [lock] the element position and again to unlock the element.

### 10.1.2 Navigation tools

For map navigation the print composer provides 4 general tools:

- [Zoom in]
- [Zoom out]
- [Zoom to full extend]
- [Refresh the view] if you find the view in an inconsistent state.

---

Figure 44: Print Composer map item tab content

(a) Width, height and extend dialog

(b) Properties dialog
10.1.3 Adding other elements to the Print Composer

Besides adding a current QGIS map canvas to the Print Composer, it is also possible to add, position, move and customize legend, scalebar, images and label elements.

Label and images

To add a label or an image, click the `Add label` or `Add image` icon, place the element with the left mouse button on the print composer canvas and position and customize their appearance in the `Item` tab.

**Figure 45:** Customize print composer label and images

![Image of Print Composer interface showing label and image customization options.](image-url)
Legend and scalebar

To add a map legend or a scalebar, click the [Add new legend](#) or [Add new scalebar](#) icon, place the element with the left mouse button on the print composer canvas and position and customize their appearance in the [Item](#) tab.

![Figure 46: Customize print composer legend and scalebar](#)

(a) legend item tab

(b) scalebar item tab

### 10.1.4 Raise, lower and align elements

Raise or lower functionalities for elements are inside the [Raise selected items](#) pulldown menu. Choose an element on the print composer canvas and select the matching functionality to raise or lower the selected element compared to the other elements (see table 6).

There are several alignment functionalities available within the [Align selected items](#) pulldown menu (see table 6). To use an alignment functionality, you first select some elements and then click on the matching alignment icon. All selected will then be aligned within to their common bounding
box.

10.1.5 Creating Output

Figure 47 shows the print composer with an example print layout including each type of map element described in the sections above.

Figure 47: Print Composer with map view, legend, scalebar, and text added

The print composer allows you to create several output formats and it is possible to define the resolution (print quality) and paper size:

- The ![Print](image) icon allows to print the layout to a connected printer or a Postscript file depending on installed printer drivers.
• The [Export as image] icon exports the composer canvas in several image formats such as PNG, BMP, TIF, JPG, ... 

• The [Export as PDF] saves the defined print composer canvas directly as a PDF.

• The [Export as SVG] icon saves the print composer canvas as a SVG (Scalable Vector Graphic). **Note:** Currently the SVG output is very basic. This is not a QGIS problem, but a problem of the underlaying Qt library. This will hopefully be sorted out in future versions.

### 10.1.6 Saving and loading a print composer layout

With the [Save as template] and [Load from template] icons you can save the current state of a print composer session as a *.qpt template and load the template again in another session.
11 QGIS Plugins

QGIS has been designed with a plugin architecture. This allows new features/functions to be easily added to the application. Many of the features in QGIS are actually implemented as core or external plugins.

- **Core Plugins** are maintained by the QGIS Development Team and are automatically part of every QGIS distribution. They are written in one of two languages: C++ or Python. More information about core plugins are provided in Section 12.

- **External Plugins** are currently all written in Python. They are stored in external repositories and maintained by the individual authors. They can be added to QGIS using the Plugin Installer. More information about external plugins are provided in Section 13.

11.1 Managing Plugins

Managing plugins in general means loading or unloading them using the Plugin Manager. External plugins first need to be installed using the Plugin Installer.

11.1.1 Loading a QGIS Core Plugin

Loading a QGIS Core Plugin is done from the main menu Plugins > Manage Plugins. The Plugin Manager lists all the available plugins and their status (loaded or unloaded), including all core plugins and all external plugins that have been added using the Plugin Installer (see Section 13). Those plugins that are already loaded have a check mark to the left of their name. Figure 48 shows the Plugin Manager dialog.

To enable a particular plugin, click on the checkbox to the left of the plugin name, and click OK. When you exit the application, a list of loaded plugins is retained, and the next time you run QGIS these plugins are automatically loaded.

**Tip 43 CRASHING PLUGINS**

If you find that QGIS crashes on startup, a plugin may be at fault. You can stop all plugins from loading by editing your stored settings file (see 4.7 for location). Locate the plugins settings and change all the plugin values to false to prevent them from loading. For example, to prevent the Delimited text plugin from loading, the entry in $HOME/.config/QuantumGIS/qgis.conf on Linux should look like this: `Add Delimited Text Layer=false`. Do this for each plugin in the [Plugins] section. You can then start QGIS and add the plugins one at a time from the Plugin Manager to determine which plugin is causing the problem.
11.1.2 Loading an external QGIS Plugin

There are two steps required to integrate external plugins into QGIS:

1. Download an external plugin from a repository using the Plugin Installer (Section 11.1.3). The new external plugin will be added to the list of available plugins in the Plugin Manager.
2. Load the plugin using the Plugin Manager.

11.1.3 Using the QGIS Python Plugin Installer

In order to download and install an external Python plugin, click the menu Plugins > Fetch Python Plugins... The Plugin Installer window will appear (figure 49) with the tab Plugins, containing a list of all locally installed Python plugins, as well as plugins available in remote repositories. Each plugin can be either:

- **not installed** - this means the plugin is available in the repository, but is not installed yet. In order to install it, select the plugin from the list and click the Install plugin button.
11.1 Managing Plugins

Figure 49: Installing external python plugins

- **new** - this means that the plugin is newly available in the repository.
- **installed** - this indicates that the plugin is already installed. If it is also available in any repository the Reinstall plugin button will be enabled. If the available version is older than the installed version, the Downgrade plugin button will appear instead.
- **upgradeable** - this means that the plugin is installed, but there is an updated version available. In this case, the Upgrade plugin button will be enabled.
- **invalid** - this means that the plugin is installed, but is unavailable or broken. The reason will be explained in the plugin description field.

Plugins tab

To install a plugin, select it from the list and click the Install plugin button. The plugin is installed in its own directory.

- Linux and other unices:
  
  ```
 ./share/qgis/python/plugins
 /home/$USERNAME/.qgis/python/plugins
  ```
Mac OS X:

./Contents/MacOS/share/qgis/python/plugins
/Users/$USERNAME/.qgis/python/plugins

Windows:

C:\Program Files\QGIS\python\plugins
C:\Documents and Settings\$USERNAME\.qgis\python\plugins

If the installation is successful, a confirmation message will appear telling you to go to Plugins > Manage Plugins... to load the newly installed plugin.

If the installation fails, the reason for the failure will be displayed in a warning dialog. Most often, errors are the result of connection problems and/or missing Python modules. In the former case you will likely need to wait before trying the install again, in the latter case, you should install the missing modules relevant to your operating system prior to using the plugin. For Linux, most required modules should be available via a package manager. For install instructions in Windows visit the module home page. If you are using a proxy, you may need to configure it under Edit > Options (Gnome, OSX) or Settings > Options (KDE, Windows) on the Proxy tab.

The Uninstall plugin button is enabled only if the selected plugin is installed and is not a core plugin. Note that if you have installed an update to a core plugin, you can uninstall this update with the Uninstall plugin and revert to the version shipped with Quantum GIS. This default version however, cannot be uninstalled.

Repositories tab

The second tab, Repositories, contains a list of plugin repositories available for the Plugin Installer. By default, only the QGIS Official Repository is enabled. You can add several user-contributed repositories, including the central QGIS Contributed Repository and other external repositories by clicking the Add 3rd party repositories button. The added repositories contain a large number of useful plugins which are not maintained by the QGIS Development Team. As such, we cannot take any responsibility for them. You can also manage the repository list manually, that is add, remove, and edit the entries. Temporarily disabling a particular repository is possible by clicking the Edit... button.

Options tab

The Options tab is where you can configure the settings of the Plugin Installer. The Check for updates on startup checkbox tells QGIS to automatically look for plugin updates and news. By default, if this feature is enabled all repositories listed and enabled in the Repositories tab are checked for updates each time the program is started. The frequency of update checking
can be adjusted using the dropdown menu, and may be adjusted from once a day right up to once a 
month. If a new plugin or update is available for one of the installed plugins, a notification will appear 
in the Status Bar. If the checkbox is disabled, looking for updates and news is performed only when 
the Plugin Installer is manually launched from the menu.

Some internet connections will cause problems when attempting to automatically check for updates. 
In these cases, a *Looking for new plugins...* indicator will remain visible in the Status Bar during your 
entire QGIS session, and may cause a program crash when exiting. In this case please disable the 
checkbox.

In addition, you may specify the type of plugins that are displayed by the Plugin Installer. Under 
*Allowed plugins*, you can specify whether you would like to:

- Only show plugins from the official repository
- Show all plugins except those marked as experimental,
- or Show all plugins, even those marked as experimental.

**Tip 44 Using experimental plugins**

Experimental plugins are generally unsuitable for production use. These plugins are in the early stages of 
development, and should be considered ‘incomplete’ or ‘proof of concept’ tools. The QGIS development team 
does not recommend installing these plugins unless you intend to use them for testing purposes.

### 11.2 Data Providers

Data Providers are "special" plugins that provides access to a data store. By default, QGIS supports 
PostGIS layers and disk-based data stores supported by the GDAL/OGR library (Appendix A.1). A 
Data Provider plugin extends the ability of QGIS to use other data sources.

Data Provider plugins are registered automatically by QGIS at startup. They are not managed by the 
Plugin Manager but used behind the scenes when a data type is added as a layer in QGIS.
12 Using QGIS Core Plugins

QGIS 1.3.0 contains 22 core plugins that can be loaded using the Plugin Manager (see Table 7).

<table>
<thead>
<tr>
<th>Icon</th>
<th>Plugin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Icon" /></td>
<td>Add Delimited Text Layer</td>
<td>Loads and displays delimited text files containing x,y coordinates</td>
</tr>
<tr>
<td><img src="image2.png" alt="Icon" /></td>
<td>Coordinate Capture</td>
<td>Capture mouse coordinate in different CRS</td>
</tr>
<tr>
<td><img src="image3.png" alt="Icon" /></td>
<td>Copyright Label</td>
<td>Draws a copyright label with information</td>
</tr>
<tr>
<td><img src="image4.png" alt="Icon" /></td>
<td>Diagram Overlay</td>
<td>Place charts (pie or bar) or proportional symbols over vector layers</td>
</tr>
<tr>
<td><img src="image5.png" alt="Icon" /></td>
<td>DXF2Shape Converter</td>
<td>Converts from DXF to SHP file format</td>
</tr>
<tr>
<td><img src="image6.png" alt="Icon" /></td>
<td>eVis</td>
<td>Event Visualization Tool</td>
</tr>
<tr>
<td><img src="image7.png" alt="Icon" /></td>
<td>fTools</td>
<td>A suite of analysis, geometry, geoprocessing, and research tools</td>
</tr>
<tr>
<td><img src="image8.png" alt="Icon" /></td>
<td>GPS Tools</td>
<td>Tools for loading and importing GPS data</td>
</tr>
<tr>
<td><img src="image9.png" alt="Icon" /></td>
<td>GRASS</td>
<td>Activates the mighty GRASS Toolbox</td>
</tr>
<tr>
<td><img src="image10.png" alt="Icon" /></td>
<td>Georeferencer</td>
<td>Adding projection info to Rasterfiles</td>
</tr>
<tr>
<td><img src="image11.png" alt="Icon" /></td>
<td>Interpolation plugin</td>
<td>Interpolation on base of vertices of a vector layer</td>
</tr>
<tr>
<td><img src="image12.png" alt="Icon" /></td>
<td>Raster Terrain Modelling</td>
<td>Compute slope, aspect, ruggedness and total curvature of DEMs</td>
</tr>
<tr>
<td><img src="image13.png" alt="Icon" /></td>
<td>MapServer Export Plugin</td>
<td>Export a saved QGIS project file to a MapServer map file</td>
</tr>
<tr>
<td><img src="image14.png" alt="Icon" /></td>
<td>North Arrow</td>
<td>Displays a north arrow overlayed onto the map</td>
</tr>
<tr>
<td><img src="image15.png" alt="Icon" /></td>
<td>OGR Layer Converter</td>
<td>Translate vector layers between OGR supported formats</td>
</tr>
<tr>
<td><img src="image16.png" alt="Icon" /></td>
<td>OpenStreetMap</td>
<td>Visualize and edit OpenStreetMap data</td>
</tr>
<tr>
<td><img src="image17.png" alt="Icon" /></td>
<td>Oracle Georaster</td>
<td>Access Oracle Spatial GeoRasters</td>
</tr>
<tr>
<td><img src="image18.png" alt="Icon" /></td>
<td>Plugin Installer</td>
<td>Downloads and installs QGIS python plugins</td>
</tr>
<tr>
<td><img src="image19.png" alt="Icon" /></td>
<td>SPIT</td>
<td>Shapefile to PostgreSQL/PostGIS Import Tool</td>
</tr>
<tr>
<td><img src="image20.png" alt="Icon" /></td>
<td>Quick Print</td>
<td>Quickly print a map with minimal effort</td>
</tr>
<tr>
<td><img src="image21.png" alt="Icon" /></td>
<td>Scalebar</td>
<td>Draws a scale bar</td>
</tr>
<tr>
<td><img src="image22.png" alt="Icon" /></td>
<td>WFS</td>
<td>Load and display WFS layer</td>
</tr>
</tbody>
</table>
12.1 Coordinate Capture Plugin

The coordinate capture plugin is easy to use and provides the ability to display coordinates on the map canvas for two selected Coordinate Reference Systems (CRS).

**Figure 50: Coordinate Capture Plugin**

1. Start QGIS, select **Project Properties** from the **Settings** (KDE, Windows) or **File** (Gnome, OSX) menu and click on the **Projection** tab. As an alternative you can also click on the **projector** icon in the lower right-hand corner of the statusbar.

2. Click on the **Enable on the fly projection** checkbox and select a projected coordinate system of your choice (see also Section 8).

3. Load the coordinate capture plugin in the Plugin Manager (see Section 11.1.1) and ensure that the dialog is visible by going to **View > Panels** and ensuring that **Coordinate Capture** is enabled. The coordinate capture dialog appears as shown in Figure 50.

4. Click on the **Click to the select the CRS to use for coordinate display** icon and select a different CRS from the one you selected above.

5. To start capturing coordinates, click on **Start capture**. You can now click anywhere on the map canvas and the plugin will show the coordinates for both of your selected CRS.

6. To enable mouse coordinate tracking click the **mouse tracking** icon.

7. You can also copy selected coordinates to the clipboard.
12.2 Decorations Plugins

The Decorations Plugins includes the Copyright Label Plugin, the North Arrow Plugin and the Scale Bar Plugin. They are used to “decorate” the map by adding cartographic elements.

12.2.1 Copyright Label Plugin

The title of this plugin is a bit misleading - you can add any random text to the map.

![Copyright Label Plugin](image)

1. Make sure the plugin is loaded
2. Click on Plugins > Decorations > Copyright Label or use the Copyright Label button from the Toolbar.
3. Enter the text you want to place on the map. You can use HTML as shown in the example.
4. Choose the placement of the label from the Placement drop-down box.
5. Make sure the Enable Copyright Label checkbox is checked.
6. Click OK

In the example above (default) places a copyright symbol followed by the date in the lower right hand corner of the map canvas.
12.2.2 North Arrow Plugin

The North Arrow plugin places a simple north arrow on the map canvas. At present there is only one style available. You can adjust the angle of the arrow or let QGIS set the direction automatically. If you choose to let QGIS determine the direction, it makes its best guess as to how the arrow should be oriented. For placement of the arrow you have four options, corresponding to the four corners of the map canvas.

![North Arrow Plugin](image)

12.2.3 Scale Bar Plugin

The Scale Bar plugin adds a simple scale bar to the map canvas. You control the style and placement, as well as the labeling of the bar.

QGIS only supports displaying the scale in the same units as your map frame. So if the units of your layers are in meters, you can’t create a scale bar in feet. Likewise if you are using decimal degrees, you can’t create a scale bar to display distance in meters.

To add a scale bar:

1. Click on Plugins > Decorations > Scale Bar or use the Scale Bar button from the Toolbar.
2. Choose the placement from the Placement drop-down list
3. Choose the style from the Scale bar style list

4. Select the color for the bar Color of bar or use the default black color

5. Set the size of the bar and its label Size of bar 30 degrees

6. Make sure the Enable scale bar checkbox is checked

7. Optionally choose to automatically snap to a round number when the canvas is resized

8. Click OK

Figure 53: Scale Bar Plugin

Tip 45 PLUGINS SETTINGS SAVED TO PROJECT
When you save a .qgs project, any changes you have made to NorthArrow, ScaleBar and Copyright plugins will be saved in the project and restored next time you load the project.
12.3 Delimited Text Plugin

The Delimited Text plugin allows you to load a delimited text file as a layer in QGIS.

Requirements

To view a delimited text file as layer, the text file must contain:

1. A delimited header row of field names. This must be the first line in the text file.
2. The header row must contain an X and Y field. These fields can have any name.
3. The x and y coordinates must be specified as a number. The coordinate system is not important.

As an example of a valid text file we import the elevation point data file `elevp.csv` coming with the QGIS sample dataset (See Section 3.2):

```
X;Y;ELEV
-300120;7689960;13
-654360;7562040;52
1640;7512840;3
[...]
```

Some items of note about the text file are:

1. The example text file uses `;` as delimiter. Any character can be used to delimit the fields.
2. The first row is the header row. It contains the fields X, Y and ELEV.
3. No quotes (" ) are used to delimit text fields.
4. The x coordinates are contained in the X field.
5. The y coordinates are contained in the Y field.

Using the Plugin

To use the plugin you must first enable it as described in Section 11.1.

Click the new toolbar icon [Add Delimited Text Layer] to open the Delimited Text dialog as shown in Figure 54.

First select the file (e.g., `qgis_sample_data/csv/elevp.csv`) to import by clicking on the [Browse] button. Once the file is selected, the plugin attempts to parse the file using the last used delimiter, in this case a semi-colon (;). To properly parse the file, it is important to select the correct delimiter. To change the delimiter to tab use \t (this is a regular expression for the tab character). After changing the delimiter, click [Parse].
Once you have parsed the file, choose the X and Y fields from the drop down lists and enter a Layer name (e.g., elevp) as shown in Figure 54. To add the layer to the map, click Add Layer. The delimited text file now behaves as any other map layer in QGIS.
12.4 Dxf2Shp Converter Plugin

The dxf2shape converter plugin can be used to convert vector data from DXF to Shapefile format. It requires the following parameters to be specified before running:

- **Input DXF file**: Enter path to the DXF file to be converted
- **Output Shp file**: Enter desired name of the Shapefile to be created
- **Output file type**: Specify the geometry type of the output Shapefile. Currently supported types are polyline, polygon, and point.
- **Export text labels**: When this checkbox is enabled, an additional Shapefile point layer will be created, and the associated dbf table will contain information about the "TEXT" fields found in the dxf file, and the text strings themselves.

Using the Plugin

1. Start QGIS, load the Dxf2Shape plugin in the Plugin Manager (see Section 11.1.1) and click on the **Dxf2Shape Converter** icon which appears in the QGIS toolbar menu. The Dxf2Shape plugin dialog appears as shown in Figure 55.
2. Enter input DXF file, a name for the output Shapefile and the Shapefile type.
3. Enable the **Export text labels** checkbox if you want to create an extra point layer with labels.
4. Click **Ok**.
12.5 eVis Plugin

The Biodiversity Informatics Facility at the American Museum of Natural History’s (AMNH) Center for Biodiversity and Conservation (CBC) has developed the Event Visualization Tool (eVis), another software tool to add to the suite of conservation monitoring and decision support tools for guiding protected area and landscape planning. This plugin enables users to easily link geocoded (i.e., referenced with latitude and longitude or X and Y coordinates) photographs, and other supporting documents, to vector data in QGIS.

eVis is now automatically installed and enabled in new versions of QGIS, and as with all plugins, it can be disabled and enabled using the Plugin Manager (See Section 11.1).

The eVis plugin is made up of three modules: the Database Connection tool, Event ID tool, and the Event Browser. These work together to allow viewing of geocoded photographs and other documents that are linked to features stored in vector files, databases, or spreadsheets.

12.5.1 Event Browser

The Event Browser module provides the functionality to display geocoded photographs that are linked to vector features displayed in the QGIS map window. Point data, for example, can be from a vector file that can be input using QGIS or it can be from the result of a database query. The vector feature must have attribute information associated with it to describe the location and name of the file containing the photograph and, optionally, the compass direction the camera was pointed when the image was acquired. Your vector layer must be loaded into QGIS before running the Event Browser.

Launch the Event Browser module

To launch the Event browser module either click on the icon or click on Plugins > eVis > eVis Event Browser. This will open the Generic Event Browser window.

The Generic Event Browser window has three tabs displayed at the top of the window. The Display tab is used to view the photograph and its associated attribute data. The Options tab provides a number of settings that can be adjusted to control the behavior of the eVis plugin. Lastly, the Configure External Applications tab is used to maintain a table of file extensions and their associated application to allow eVis to display documents other than images.

---

Understanding the Display window

To see the Display window click on the **Display** tab in the Generic Event Browser window. The Display window is used to view geocoded photographs and their associated attribute data.

**Figure 56**: The eVis display window

- **Display window**: A window where the photograph will appear.
- **Increase zoom button**: Zoom in to see more detail. If the entire image cannot be displayed in the display window, scroll bars will appear on the left and bottom sides of the window to allow you to pan around the image.
- **Reduce zoom button**: Zoom out to see more area.
- **Zoom to full extent button**: Displays the full extent of the photograph.
- **Attribute information window**: All of the attribute information for the point associated with the photograph being viewed is displayed here. If the file type being referenced in the displayed
record is not an image but is of a file type defined in the Configure External Applications tab then when you double-click on the value of the field containing the path to the file the application to open the file will be launched to view or hear the contents of the file. If the file extension is recognized the attribute data will be displayed in green.

- **Navigation buttons**: Use the Previous and Next buttons to load the previous or next feature when more than one feature is selected.
- **Feature indicator**: This heading indicates which feature is being displayed and how many features are available for display.

**Understanding the Options window**

![Figure 57: The eVis Options window](image)

- **File location**: A dropdown list to specify the attribute field that contains the directory path or URL for the photographs or other documents being displayed. If the location is a relative path
then the checkbox to the right of the dropdown menu must be clicked. The base path for a relative path can be entered in the Base Path text box below. Information about the different options for specifying the file location are noted in the section 4.5 below.

- **Compass bearing display field**: A dropdown list to specify the attribute field that contains the compass bearing associated with the photograph being displayed. If compass bearing information is available it is necessary to click the radio button to the left of the dropdown menu title.

- **Compass offset setting**: Compass offsets can be used to compensate for declination (adjust bearings collected using magnetic bearings to true north bearings). Click the Manual radio-button to enter the offset in the text box or click the From Attribute radio-button to select the attribute field containing the offsets. For both of these options east declinations should be entered using positive values and west declinations should use negative values.

- **Directory base path**: The base path onto which the relative path defined in Figure 57 (A) will be appended.

- **Replace path**: If this check-box is checked, only the file name from the A will be appended to the Base Path.

- **Apply rule to all documents**: If checked, the same path rules that are defined for photographs will be used for non-image documents such as movies, text documents, and sound files. If not checked the path rules will only apply to photographs and other documents will ignore the Base Path parameter.

- **Save settings**: If the check-box is checked the values for the associated parameters will be saved for the next session when the window is closed or when the Save button below is pressed.

- **Reset values**: Resets the values on this line to the default setting.

- **Restore faults**: This will reset all of the fields to their default settings. It has the same effect as clicking all of the Reset buttons.

- **Save**: This will save the settings without closing the Options pane.

**Understanding the Configure External Applications window**

- **File reference table**: A table containing file types that can be opened using eVis. Each file type needs a file extension and the path to an application that can open that type of file. This provides the capability of opening a broad range of files such as movies, sound recordings, and text documents instead of only images.

- **Add new file type**: Add a new file type with a unique extension and the path for the application that can open the file.

- **Delete current row**: Delete the file type highlighted in the table and defined by a file extension and a path to an associated application.
Figure 58: The eVis External Applications window

Specifying the location and name of a photograph

The location and name of the photograph can be stored using an absolute or relative path or a URL if the photograph is available on a web server. Examples of the different approaches are listed in Table 12.5.1.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>FILE</th>
<th>BEARING</th>
</tr>
</thead>
<tbody>
<tr>
<td>780596</td>
<td>1784017</td>
<td>C:\Workshop\eVis_Data\groundphotos\DSC_0168.JPG</td>
<td>275</td>
</tr>
<tr>
<td>780596</td>
<td>1784017</td>
<td>/groundphotos/DSC_0169.JPG</td>
<td>80</td>
</tr>
<tr>
<td>780819</td>
<td>1784015</td>
<td><a href="http://biodiversityinformatics.amnh.org/evis_test_-data/DSC_0170.JPG">http://biodiversityinformatics.amnh.org/evis_test_-data/DSC_0170.JPG</a></td>
<td>10</td>
</tr>
</tbody>
</table>

Specifying the location and name of a other supporting documents

Supporting documents such as text documents, videos, and sound clips can also be displayed or played by eVis. To do this it is necessary to add an entry in the file reference table that can be accessed from the Configure External Applications window in the Generic Event Browser that matches the file extension to an application that can be used to open the file. It is also necessary to have the path or URL to the file in the attribute table for the vector layer. One additional rule that can be used for URLs that don’t contain a file extension for the document you want to open is to specify the file extension before the URL. The format is - file extension:URL. The URL is preceded by the file extension and a colon, and is particularly useful for accessing documents from Wikis and other web sites that use a database to manage the web pages (see Table 12.5.1).
Using the Generic Event Browser

When the Event Browser window opens a photograph will appear in the display window if the document referenced in the vector file attribute table is an image and if the file location information in the Options window is properly set. If a photograph is expected and it does not appear it will be necessary to adjust the parameters in the Options window.

If a supporting document (or an image that does not have a file extension recognized by eVis) is referenced in the attribute table the field containing the file path will be highlighted in green in the attribute information window if that file extension is defined in the file reference table located in the Configure External Applications window. To open the document double-click on the green-highlighted line in the attribute information window. If a supporting document is referenced in the attribute information window and the file path is not highlighted in green then it will be necessary to add an entry for the file's filename extension in the Configure External Applications window. If the file path is highlighted in green but does not open when double-clicked it will be necessary to adjust the parameters in the Options window so the file can be located by eVis.

If no compass bearing is provided in the Options window a red asterisk will be displayed on top of the vector feature that is associated with the photograph being displayed. If a compass bearing is provided then an arrow will appear pointing in the direction indicated by the value in the compass bearing display field in the Generic Event Browser window. The arrow will be centered over the point that is associated with the photograph or other document.

To close the Generic Event Browser window click on the Close button from the Display window.

12.5.2 Event ID Tool

The Event ID module allows you to display a photograph by clicking on a feature displayed in the QGIS map window. The vector feature must have attribute information associated with it to describe the location and name of the file containing the photograph and optionally the compass direction the camera was pointed when the image was acquired. This layer must be loaded into QGIS before running the Event ID tool.

Launch the Event ID module

To launch the Event ID module either click on the Event ID icon or click on Plugins > eVis > Event ID Tool. This will cause the cursor to change to an arrow with an “i” on top of it signifying that the ID tool is active.

To view the photographs linked to vector features in the active vector layer displayed in the QGIS map window, move the Event ID cursor over the feature and then click the mouse. After clicking on the feature, the Generic Event Browser window is opened and the photographs on or near the
clicked locality are available for display in the browser. If more than one photograph is available, you can cycle through the different features using the Previous and Next buttons. The other controls are described in the Event Browser section of this guide.

12.5.3 Database connection

The Database Connection module provides tools to connect to and query a database or other ODBC resource, such as a spreadsheet.

eVis can directly connect to four types of databases: Microsoft Access, PostgreSQL, MySQL, SQLITE, and can also read from ODBC connections. When reading from an ODBC database (such as an Excel spreadsheet) it is necessary to configure your ODBC driver for the operating system you are using.

Launch the Database Connection module

To launch the Database Connection module either click on the appropriate icon or click on Plugins > eVis > Database Connection. This will launch the Database Connection window.

The window has three tabs: Predefined Queries, Database Connection, and SQL Query. The Output Console window at the bottom of the window displays the status of actions initiated by the different sections of this module.

Connect to a database

Click on the Database Connection tab to open the database connection interface. Next, click on the Database Type dropdown menu to select the type of database that you want to connect to. If a password or username is required, that information can be entered in the Username and Password textboxes.

Enter the database host in the Database Host textbox. This option is not available if you selected “MSAccess” as the database type. If the database resides on your desktop you should enter “localhost.”

Enter the name of the database in the Database Name textbox. If you selected “ODBC” as the database type, you need to enter the data source name.

When all of the parameters are filled in, click on the Connect button. If the connection is successful, a message will be written in the Output Console window stating that the connection was established. If a connection was not established you will need to check that the correct parameters were entered above.

- **Database Type**: A dropdown list to specify the type of database that will be used.
12.5 eVis Plugin

Figure 59: The eVis Database connection window

- **Database Host**: The name of the database host.
- **Port**: The port number if a “MYSQL” database type is selected.
- **Database Name**: The name of the database.
- **Connect**: A button to connect to the database using the parameters defined above.
- **Output Console**: The console window where messages related to processing are displayed.
- **Username**: Username for use when a database is password protected.
- **Password**: Password for use when a database is password protected.
- **Predefined Queries**: Tab to open the “Predefined Queries” window.
- **Database Connection**: Tab to open the “Database Connection” window.
• **SQL Query**: Tab to open the “SQL Query” window.

• **Help**: Displays the online help.

• **OK**: Close the main “Database Connection” window.

### Running SQL queries

SQL queries are used to extract information from a database or ODBC resource. In eVis the output from these queries is a vector layer added to the QGIS map window. Click on the [SQL Query](#) tab to display the SQL query interface. SQL commands can be entered in this text window. A helpful tutorial on SQL commands is available at [http://www.w3schools.com/sql/](http://www.w3schools.com/sql/). For example, to extract all of the data from a worksheet in an Excel file, “select * from [sheet1$]” where sheet1 is the name of the worksheet.

Click on the Run Query button to execute the command. If the query is successful a Database File Selection window will be displayed. If the query is not successful an error message will appear in the Output Console window.

In the Database File Selection window, enter the name of the layer that will be created from the results of the query in the Name of New Layer textbox.

- **SQL Query Text Window**: A screen to type SQL queries.
- **Run Query**: Button to execute the query entered in the SQL Query Window.
- **Console Window**: The console window where messages related to processing are displayed.
- **Help**: Displays the online help.
- **OK**: If this check-box is checked, only the file name from the A will be appended to the Base Path.
- **Apply rule to all documents**: Closes the main “Database Connection” window.

Use the [X Coordinate](#) and [Y Coordinate](#) dropdown menus to select the field from the database that store the “X” (or longitude) and “Y” (or latitude) coordinates. Clicking on the OK button causes the vector layer created from the SQL query to be displayed in the QGIS map window.

To save this vector file for future use, you can use the QGIS “Save as shapefile” command that is accessed by right clicking on the layer name in the QGIS map legend and then selecting “Save as shapefile.”

### Running predefined queries

With predefined queries you can select previously written queries stored in XML format in a file. This is particularly helpful if you are not familiar with SQL commands. Click on the [Predefined Queries](#) tab to display the predefined query interface.
Figure 60: The eVis SQL query tab

To load a set of predefined queries click on the Open File icon. This opens the Open File window which is used to locate the file containing the SQL queries. When the queries are loaded their titles, as defined in the XML file, will appear in the dropdown menu located just below the Open File icon, the full description of the query is displayed in the text window under the dropdown menu.

Select the query you want to run from the dropdown menu and then click on the SQL Query tab to see that the query has been loaded into the query window. If it is the first time you are running a predefined query or are switching databases, you need to be sure to connect to the database.
Tip 46 Creating a vector layer from a Microsoft Excel Worksheet

When creating a vector layer from a Microsoft Excel Worksheet you might see that unwanted zeros ("0") have been inserted in the attribute table rows beneath valid data. This can be caused by deleting the values for these cells in Excel using the “backspace” key. To correct this problem you need to open the Excel file (you’ll need to close QGIS if there if you are connected to the file to allow you to edit the file) and then use Edit > Delete to remove the blank rows from the file. To avoid this problem you can simply delete several rows in the Excel Worksheet using Edit > Delete before saving the file.

Click on the Run Query button in the SQL Query tab to execute the command. If the query is successful a Database File Selection window will be displayed. If the query is not successful an error message will appear in the Output Console window.

Figure 61: The eVis Perdefined queries tab

- **Open Query File**: Launches the “Open File” file browser to search for the XML file holding the predefined queries.
- **Predefined Queries**: A dropdown list with all of the queries defined by the predefined queries.
XML file.

- **Query description**: A short description of the query. This description is from the predefined queries XML file.
- **Console Window**: The console window where messages related to processing are displayed.
- **Help**: Displays the online help.
- **OK**: Closes the main “Database Connection” window.

**XML format for eVis predefined queries**

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>query</td>
<td>Defines the beginning and end of a query statement.</td>
</tr>
<tr>
<td>shortdescription</td>
<td>A short description of the query that appears in the eVis dropdown menu.</td>
</tr>
<tr>
<td>description</td>
<td>A more detailed description of the query displayed in the Predefined Query text window.</td>
</tr>
<tr>
<td>databasetype</td>
<td>The database type as defined in the Database Type dropdown menu in the Database Connection tab.</td>
</tr>
<tr>
<td>databaseport</td>
<td>The port as defined in the Port textbox in the Database Connection tab.</td>
</tr>
<tr>
<td>databasename</td>
<td>The database name as defined in the Database Name textbox in the Database Connection tab.</td>
</tr>
<tr>
<td>databaseusername</td>
<td>The database username as defined in the Username textbox in the Database Connection tab.</td>
</tr>
<tr>
<td>databasepassword</td>
<td>The database password as defined in the Password textbox in the Database Connection tab.</td>
</tr>
<tr>
<td>sqlstatement</td>
<td>The SQL command.</td>
</tr>
<tr>
<td>autoconnect</td>
<td>A flag (&quot;true&quot; or &quot;false&quot;) to specify if the above tags should be used to automatically connect to database without running the database connection routine in the Database Connection tab.</td>
</tr>
</tbody>
</table>

A complete sample XML file with three queries is displayed below:

```xml
<?xml version="1.0"?>
<doc>
 <query>
 <shortdescription>Import all photograph points</shortdescription>
 <description>This command will import all of the data in the SQLite database to QGIS</description>
 <databasetype>SQLITE</databasetype>
 </query>
</doc>
```
<query>
<shortdescription>Import photograph points "looking across Valley"</shortdescription>
<description>This command will import only points that have photographs "looking across a valley" to QGIS</description>
<databasetype>SQLITE</databasetype>
<databasehost />
<databaseport />
<databasename>C:\Workshop\eVis_Data\PhotoPoints.db</databasename>
<databaseusername />
<databasepassword />
<sqlstatement>SELECT Attributes.*, Points.x, Points.y FROM Attributes LEFT JOIN Points ON Points.rec_id=Attributes.point_ID where COMMENTS='Looking across valley'</sqlstatement>
<autoconnect>false</autoconnect>
</query>

<query>
<shortdescription>Import photograph points that mention "limestone"</shortdescription>
<description>This command will import only points that have photographs that mention "limestone" to QGIS</description>
<databasetype>SQLITE</databasetype>
<databasehost />
<databaseport />
<databasename>C:\Workshop\eVis_Data\PhotoPoints.db</databasename>
<databaseusername />
<databasepassword />
<sqlstatement>SELECT Attributes.*, Points.x, Points.y FROM Attributes LEFT JOIN Points ON Points.rec_id=Attributes.point_ID where COMMENTS like '%limestone%'</sqlstatement>
<autoconnect>false</autoconnect>
</query>
12.6 fTools Plugin

The goal of the fTools python plugin is to provide a one-stop resource for many common vector-based GIS tasks, without the need for additional software, libraries, or complex workarounds. It provides a growing suite of spatial data management and analysis functions that are both fast and functional.

fTools is now automatically installed and enabled in new versions of QGIS, and as with all plugins, it can be disabled and enabled using the Plugin Manager (See Section 11.1). When enabled, the fTools plugin adds a Tools menu to QGIS, providing functions ranging from Analysis and Research Tools to Geometry and Geoprocessing Tools, as well as several useful Data Management Tools.

fTools functions

Tables 10 through 14 list the functions available via the fTools plugin, along with a brief description of each function. For further information on an individual fTools function, please click the fTools Information menu item in the Tools menu.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Tool</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="icon.png" alt="Distance Matrix" /></td>
<td>Distance Matrix</td>
<td>Measure distances between two point layers, and output results as a) Square distance matrix, b) Linear distance matrix, or c) Summary of distances. Can limit distances to the k nearest features.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Sum line length" /></td>
<td>Sum line length</td>
<td>Calculate the total sum of line lengths for each polygon of a polygon vector layer.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Points in polygon" /></td>
<td>Points in polygon</td>
<td>Count the number of points that occur in each polygon of an input polygon vector layer.</td>
</tr>
<tr>
<td><img src="icon.png" alt="List unique values" /></td>
<td>List unique values</td>
<td>List all unique values in an input vector layer field.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Basic statistic" /></td>
<td>Basic statistic</td>
<td>Compute basic statistics (mean, std dev, N, sum, CV) on an input field.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Nearest Neighbor analysis" /></td>
<td>Nearest Neighbor analysis</td>
<td>Compute nearest neighbour statistics to assess the level of clustering in a point vector layer.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Mean coordinate(s)" /></td>
<td>Mean coordinate(s)</td>
<td>Compute either the normal or weighted mean center of an entire vector layer, or multiple features based on a unique ID field.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Line intersections" /></td>
<td>Line intersections</td>
<td>Locate intersections between lines, and output results as a point shapefile. Useful for locating road or stream intersections, ignores line intersections with length &gt; 0.</td>
</tr>
</tbody>
</table>
### Table 11: fTools Research tools

<table>
<thead>
<tr>
<th>Icon</th>
<th>Tool</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="icon.png" alt="Random selection" /></td>
<td>Random selection</td>
<td>Randomly select n number of features, or n percentage of features</td>
</tr>
<tr>
<td><img src="icon.png" alt="Random selection within subsets" /></td>
<td>Random selection within subsets</td>
<td>Randomly select features within subsets based on a unique ID field.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Random points" /></td>
<td>Random points</td>
<td>Generate pseudo-random points over a given input layer.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Regular points" /></td>
<td>Regular points</td>
<td>Generate a regular grid of points over a specified region and export them as a point shapefile.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Vector grid" /></td>
<td>Vector grid</td>
<td>Generate a line or polygon grid based on user specified grid spacing.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Select by location" /></td>
<td>Select by location</td>
<td>Select features based on their location relative to another layer to form a new selection, or add or subtract from the current selection.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Polygon from layer extent" /></td>
<td>Polygon from layer extent</td>
<td>Create a single rectangular polygon layer from the extent of an input raster or vector layer.</td>
</tr>
</tbody>
</table>

### Table 12: fTools Geoprocessing tools

<table>
<thead>
<tr>
<th>Icon</th>
<th>Tool</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="icon.png" alt="Convex hull(s)" /></td>
<td>Convex hull(s)</td>
<td>Create minimum convex hull(s) for an input layer, or based on an ID field.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Buffer(s)" /></td>
<td>Buffer(s)</td>
<td>Create buffer(s) around features based on distance, or distance field.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Intersect" /></td>
<td>Intersect</td>
<td>Overlay layers such that output contains areas where both layers intersect.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Union" /></td>
<td>Union</td>
<td>Overlay layers such that output contains intersecting and non-intersecting areas.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Symetrical difference" /></td>
<td>Symetrical difference</td>
<td>Overlay layers such that output contains those areas of the input and difference layers that do not intersect.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Clip" /></td>
<td>Clip</td>
<td>Overlay layers such that output contains areas that intersect the clip layer.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Difference" /></td>
<td>Difference</td>
<td>Overlay layers such that output contains areas not intersecting the clip layer.</td>
</tr>
<tr>
<td><img src="icon.png" alt="Dissolve" /></td>
<td>Dissolve</td>
<td>Merge features based on input field. All features with indentical input values are combined to form one single feature.</td>
</tr>
</tbody>
</table>
### Table 13: fTools Geometry tools

<table>
<thead>
<tr>
<th>Icon</th>
<th>Tool</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Check geometry" /></td>
<td>Check geometry</td>
<td>Check polygons for intersections, closed-holes, and fix node ordering.</td>
</tr>
<tr>
<td><img src="image" alt="Export/Add geometry columns" /></td>
<td>Export/Add geometry columns</td>
<td>Add vector layer geometry info to point (XCOORD, YCOORD), line (LENGTH), or polygon (AREA, PERIMETER) layer.</td>
</tr>
<tr>
<td><img src="image" alt="Polygon centroids" /></td>
<td>Polygon centroids</td>
<td>Calculate the true centroids for each polygon in an input polygon layer.</td>
</tr>
<tr>
<td><img src="image" alt="Delaunay triangulation" /></td>
<td>Delaunay triangulation</td>
<td>Calculate and output (as polygons) the delaunay triangulation of an input point vector layer.</td>
</tr>
<tr>
<td><img src="image" alt="Simplify geometry" /></td>
<td>Simplify geometry</td>
<td>Generalise lines or polygons with a modified Douglas-Peucker algorithm.</td>
</tr>
<tr>
<td><img src="image" alt="Multipart to singleparts" /></td>
<td>Multipart to singleparts</td>
<td>Convert multipart features to multiple singlepart features. Creates simple polygons and lines.</td>
</tr>
<tr>
<td><img src="image" alt="Singleparts to multipart" /></td>
<td>Singleparts to multipart</td>
<td>Merge multiple features to a single multipart feature based on a unique ID field.</td>
</tr>
<tr>
<td><img src="image" alt="Polygons to lines" /></td>
<td>Polygons to lines</td>
<td>Convert polygons to lines, multipart polygons to multiple singlepart lines.</td>
</tr>
<tr>
<td><img src="image" alt="Extract nodes" /></td>
<td>Extract nodes</td>
<td>Extract nodes from line and polygon layers and output them as points.</td>
</tr>
</tbody>
</table>

### Table 14: fTools Data management tools

<table>
<thead>
<tr>
<th>Icon</th>
<th>Tool</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Export to projection" /></td>
<td>Export to projection</td>
<td>Project features to new CRS and export as new shapefile.</td>
</tr>
<tr>
<td><img src="image" alt="Define projection" /></td>
<td>Define projection</td>
<td>Specify the CRS for shapefiles whose CRS has not been defined.</td>
</tr>
<tr>
<td><img src="image" alt="Join attributes" /></td>
<td>Join attributes</td>
<td>Join additional attributes to vector layer attribute table and output results to a new shapefile. Additional attributes can be from a vector layer or stand-alone dbf table.</td>
</tr>
<tr>
<td><img src="image" alt="Join attributes by location" /></td>
<td>Join attributes by location</td>
<td>Join additional attributes to vector layer based on spatial relationship. Attributes from one vector layer are appended to the attribute table of another layer and exported as a shapefile</td>
</tr>
<tr>
<td><img src="image" alt="Split vector layer" /></td>
<td>Split vector layer</td>
<td>Split input layer into multiple separate layers based on input field.</td>
</tr>
</tbody>
</table>
12.7 Georeferencer Plugin

The Georeferencer Plugin is a tool for generating world files for rasters. It allows you to reference rasters to geographic or projected coordinate systems by creating a world file, or by transforming the raster to a new coordinate system. The basic approach to georeferencing a raster is to locate points on the raster for which you can accurately determine their coordinates. The source of the coordinates can be:

1. The raster itself, sometimes coordinates are literally ‘written’ on the raster. In this case you can enter the coordinates manually.
2. Other georeferenced data, this can be either vector or raster data that contain the same objects/features that you have on the raster that you want to georeference. In this case you can enter the coordinates by clicking on the reference dataset loaded in QGIS map canvas.

The usual procedure for georeferencing an image involves selecting multiple points on the raster, specifying their coordinates, and choosing a relevant transformation type. Based on the input parameters and data, the plugin will compute the world file parameters. The more coordinates you provide, the better the result will be.

The first step is to start QGIS and load the Georeferencer Plugin (see Section 11.1.1) and click on the Georeferencer icon which appears in the QGIS toolbar menu. The Georeferencer Plugin dialog appears as shown in Figure 62.

For this example, we are using a topo sheet of South Dakota from SDGS. It can later be visualized together with the data from the GRASS spearfish60 location. You can download the topo sheet here: http://grass.osgeo.org/sampledata/spearfish_toposheet.tar.gz

Entering ground control points (GCPs)

1. To start georeferencing an unreferenced raster, we must load it using the browse button. The raster will show up in the main working area of the dialog. Once the raster is loaded, we can start to enter reference points.

2. Using the Add Point button, add points to the main working area and enter their coordinates (See Figure 63). For this procedure you have two options:
   a) Click on a point in the raster map and enter the X and Y coordinates manually
   b) Click on a point in the raster map and choose the button from map canvas to add the X and Y coordinates with the help of a georeferenced map already loaded in QGIS.

3. Continue entering points. You should have at least 4 points, and the more coordinates you can provide, the better the result will be. There are additional tools on the plugin dialog to zoom and...
pan the working area in order to locate a relevant set of GCP points.

The points that are added to the map will be stored in a separate text file (filename.points) which is stored together with the raster image. This allows us to reopen the Georeferencer plugin at a later date and add new points or delete existing ones to optimize the result. The points file contains values of the form: mapX, mapY, pixelX, pixelY. You can also Load GCPs and Save GCPs to different directories if you like.

Choosing the transformation

After you have added your GCPs to the raster image, you need to select the transformation type for the georeferencing process. Depending on how many ground control point you have captured, you may want to use different transformation algorithms. Choice of transformation algorithm is also dependent on the type and quality of input data and the amount of geometric distortion that you are willing to introduce to final result.
Currently, several algorithms are available:

1. Linear
2. Helmert
3. Polynomial 1
4. Polynomial 2
5. Polynomial 3
6. Thin plate spline (TPS)

- The Linear algorithm is used to create a world-file, and is different from the other algorithms, as it does not actually transform the raster. This algorithm likely won’t be sufficient if you are dealing with scanned material.
- The Helmert transformation performs simple scaling and rotation transformations.
- The Polynomial algorithms are among the most widely used algorithms for georeferencing, and each one differs by the degree of distortion introduced to match source and destination ground control points. The most widely used polynomial algorithm is the second order polynomial transformation, which allows some curvature. First order polynomial transformation (affine) preserves collinearity and allows scaling, translation and rotation only.
- The Thin plate spline (TPS) algorithm is a more modern georeferencing method, which is able to introduce local deformations in the data. This algorithm is useful when very low quality originals are being georeferenced.

Running the transformation

1. When the GCPs have been collected, and the transformation has been chosen, press either Create to create a new raster or Create and load layer to automatically add the new raster...
to the layer list.

2. A warning message will appear that will inform you that a new raster (in GeoTIFF format) will be created.

3. After hitting OK, you will also be asked to choose a resampling method. There are three methods available:
   a) Nearest neighbour
   b) Linear
   c) Cubic

**Tip 47 CHOOSING THE RESAMPLING METHOD**

The type of resampling you choose will likely depending on your input data and the ultimate objective of the exercise. If you don’t want to change statistics of the image, you might want to choose Nearest neighbour, whereas a Cubic resampling will likely provide a more smoothed result.
12.8 GPS Plugin

12.8.1 What is GPS?

GPS, the Global Positioning System, is a satellite-based system that allows anyone with a GPS receiver to find their exact position anywhere in the world. It is used as an aid in navigation, for example in airplanes, in boats and by hikers. The GPS receiver uses the signals from the satellites to calculate its latitude, longitude and (sometimes) elevation. Most receivers also have the capability to store locations (known as waypoints), sequences of locations that make up a planned route and a tracklog or track of the receiver's movement over time. Waypoints, routes and tracks are the three basic feature types in GPS data. QGIS displays waypoints in point layers while routes and tracks are displayed in linestring layers.

12.8.2 Loading GPS data from a file

There are dozens of different file formats for storing GPS data. The format that QGIS uses is called GPX (GPS eXchange format), which is a standard interchange format that can contain any number of waypoints, routes and tracks in the same file.

To load a GPX file you first need to load the plugin. When this plugin is loaded a button with a small handheld GPS device will show up in the toolbar. An example GPX file is available in the QGIS sample dataset: /qgis_sample_data/gps/national_monuments.gpx. See Section 3.2 for more information about the sample data.

1. Click on the GPS Tools icon and open the Load GPX file tab (see figure ??).
2. Browse to the folder qgis_sample_data/gps/, select the GPX file national_monuments.gpx and click Open.

Use the browse button to select the GPX file, then use the checkboxes to select the feature types you want to load from that GPX file. Each feature type will be loaded in a separate layer when you click OK. The file national_monuments.gpx only includes waypoints.

12.8.3 GPSBabel

Since QGIS uses GPX files you need a way to convert other GPS file formats to GPX. This can be done for many formats using the free program GPSBabel, which is available at http://www.gpsbabel.org. This program can also transfer GPS data between your computer and a
GPS device. QGIS uses GPSBabel to do these things, so it is recommended that you install it. However, if you just want to load GPS data from GPX files you will not need it. Version 1.2.3 of GPSBabel is known to work with QGIS, but you should be able to use later versions without any problems.

### 12.8.4 Importing GPS data

To import GPS data from a file that is not a GPX file, you use the tool in the GPS Tools dialog. Here you select the file that you want to import (and the file type), which feature type you want to import from it, where you want to store the converted GPX file and what the name of the new layer should be. Note that not all GPS data formats will support all three feature types, so for many formats you will only be able to choose between one or two types.

### 12.8.5 Downloading GPS data from a device

QGIS can use GPSBabel to download data from a GPS device directly as new vector layers. For this we use the tab of the GPS Tools dialog (see Figure 65). Here, we select the type of GPS device, the port that it is connected to (or usb if your GPS supports this), the feature type that you want to download, the GPX file where the data should be stored, and the name of the new layer.

The device type you select in the GPS device menu determines how GPSBabel tries to communicate with your GPS device. If none of the available types work with your GPS device you can create a new type (see section 12.8.7).

The port may be a file name or some other name that your operating system uses as a reference to the physical port in your computer that the GPS device is connected to. It may also be simply usb,
for usb enabled GPS units. On Linux this is something like /dev/ttyS0 or /dev/ttyS1 and on Windows it’s COM1 or COM2.

When you click **OK** the data will be downloaded from the device and appear as a layer in QGIS.

### 12.8.6 Uploading GPS data to a device

You can also upload data directly from a vector layer in QGIS to a GPS device using the **Upload to GPS** tab of the GPS Tools dialog. To do this you simply select the layer that you want to upload (which must be a GPX layer), your GPS device type, and the port (or usb) that it is connected to. Just as with the download tool you can specify new device types if your device isn’t in the list.

This tool is very useful in combination with the vector editing capabilities of QGIS. It allows you to load a map, create waypoints and routes, and then upload them and use them on your GPS device.

### 12.8.7 Defining new device types

There are lots of different types of GPS devices. The QGIS developers can’t test all of them, so if you have one that does not work with any of the device types listed in the **Download from GPS** and **Upload to GPS** tools you can define your own device type for it. You do this by using the GPS device editor, which you start by clicking the **Edit devices** button in the download or the upload tabs.

To define a new device you simply click the **New device** button, enter a name, a download command and an upload command for your device, and click the **Update device** button. The name
will be listed in the device menus in the upload and download windows, and can be any string. The
download command is the command that is used to download data from the device to a GPX file. This
will probably be a GPSBabel command, but you can use any other command line program that can
create a GPX file. QGIS will replace the keywords %type, %in, and %out when it runs the command.

%type will be replaced by “-w” if you are downloading waypoints, “-r” if you are downloading routes
and “-t” if you are downloading tracks. These are command line options that tell GPSBabel which
feature type to download.

%in will be replaced by the port name that you choose in the download window and %out will
be replaced by the name you choose for the GPX file that the downloaded data should be
stored in. So if you create a device type with the download command “gpsbabel %type -i
garmin -o gpx %in %out” (this is actually the download command for the predefined device type
[GPS device: Garmin serial ▼] and then use it to download waypoints from port “/dev/ttyS0”
to the file “output.gpx”, QGIS will replace the keywords and run the command “gpsbabel -w -i
garmin -o gpx /dev/ttyS0 output.gpx”.

The upload command is the command that is used to upload data to the device. The same keywords
are used, but %in is now replaced by the name of the GPX file for the layer that is being uploaded,
and %out is replaced by the port name.

You can learn more about GPSBabel and its available command line options at
http://www.gpsbabel.org

Once you have created a new device type it will appear in the device lists for the download and upload
tools.
12.9 Interpolation Plugin

The Interpolation plugin can be used to generate a TIN or IDW interpolation of a point vector layer. It is very simple to handle and provides an intuitive graphical user interface for creating interpolated raster layers (See Figure 66). The plugin requires the following parameters to be specified before running:

- **Input vector layer**: Specify the input point vector layer(s) from a list of loaded point layers. If several layers are specified, then data from all layers is used for interpolation. Note: It is possible to insert lines or polygons as constraints for the triangulation, by specifying either “structure lines” or “break lines” in the Type dropdown menu.

- **Interpolation attribute**: Select attribute column to be used for interpolation or enable the Use Z-Coordinate checkbox to use the layers stored Z values.

- **Interpolation Method**: Select interpolation method. This can be either Triangulated Irregular Network (TIN) or Inverse Distance Weighted (IDW).

- **Number of columns/rows**: Specify the number row and columns for the output raster file.

- **Output file**: Specify a name for the output raster file.

![Figure 66: Interpolation Plugin](image)
Using the plugin

1. Start QGIS and load an point vector layer (e.g., elevp.csv).

2. Load the Interpolation plugin in the Plugin Manager (see Section 11.1.1) and click on the Interpolation icon which appears in the QGIS toolbar menu. The Interpolation plugin dialog appears as shown in Figure 66.

3. Select an input layer (e.g., elevp ...) and column (e.g. ELEV) for interpolation.

4. Select an interpolation method (e.g. Triangular interpolation ...), and specify the number of rows and columns (e.g. 3663 cols and 1964 rows (this is equivalent to a 1000 meter pixel resolution)) as well as the raster output filename (e.g., elevation_tin).

5. Click Ok.

6. For the current example, double click elevation_tin in the layer list to open the Raster Layer Properties dialog and select Pseudocolor ... as Color Map in the Symbology tab. Or you can define a new color table as described in Section 6.3.

In Figure 67 you see the IDW interpolation result with a 366 cols x 196 rows (10 km) resolution for the elevp.csv data visualized using the Pseudocolor color table. The processing only takes a few minutes, and covers the northern part of Alaska.

Figure 67: Interpolation of elevp data using IDW method
12 USING QGIS CORE PLUGINS

12.10 MapServer Export Plugin

You can use QGIS to “compose” your map by adding and arranging layers, symbolizing them, customizing the colors and then creating a map file for MapServer.

12.10.1 Creating the Project File

The MapServer Export Plugin operates on a saved QGIS project file and not on the current contents of the map canvas and legend. This has been a source of confusion for a number of users. As described below, before you start using the MapServer Export Plugin, you need to arrange the raster and vector layers you want to use in MapServer and save this status in a QGIS project file.

![Figure 68: Arrange raster and vector layers for QGIS project file](image)

In this example, we demonstrate the four steps required to create a simple project file which can be used to create the MapServer map file. We use raster and vector files from the QGIS sample dataset 3.2.

1. Add the raster layer landcover.tif clicking on the Add Raster Layer icon.
2. Add the vector Shapefiles `lakes.shp`, `majrivers.shp` and `airports.shp` from the QGIS sample dataset clicking on the `Add Vector Layer` icon.
3. Change the colors and symbolize the data as you like (For example see Figure ??)
4. Save a new project named `mapserverproject.qgs` using `File > Save Project`.

12.10.2 Creating the Map File

The tool `msexport` to export a QGIS project file to a MapServer map file is installed in your QGIS binary directory and can be used independently of QGIS. To use it from within QGIS, you need to enable the MapServer Export Plugin first using the Plugin Manager (see Section 11.1.1).

![Figure 69: Export to MapServer Dialog](image)

**Map file**

Enter the name for the map file to be created. You can use the button at the right to browse for the directory where you want the map file created.

**Qgis project file**
Enter the full path to the QGIS project file (.qgs) you want to export. You can use the button at the right to browse for the QGIS project file.

**Map Name**
A name for the map. This name is prefixed to all images generated by the mapserver.

**Map Width**
Width of the output image in pixels.

**Map Height**
Height of the output image in pixels.

**Map Units**
Units of measure used for output

**Image type**
Format for the output image generated by MapServer

**Web Template**
Full path to the MapServer template file to be used with the map file

**Web Header**
Full path to the MapServer header file to be used with the map file

**Web Footer**
Full path to the MapServer footer file to be used with the map file

Only the **Map file** and **QGIS project file** inputs are required to create a map file, however by omitting the other parameters, you may end up creating a non-functional map file, depending on your intended use. Although QGIS is good at creating a map file from your project file, it may require some tweaking to get the results you want. For this example, we will create a map file using the project file `mapserverproject.qgs` we just created (see Figure 69):

1. Start the MapServer dialog (see Figure 69) by clicking the [MapServer Export] icon in the toolbar menu.
2. Enter the name (e.g., `qgisproject.map`) for your new map file.
3. Browse and find the QGIS project file (e.g., `mapserverproject.qgs`) you previously saved.
4. Enter a name (e.g., `MyMap`) for the map.
5. Enter the width and height (e.g., 600 for the width and 400 for the height) for your output image.
6. For this example, the layers are in meters, so we change the units to meters.
7. Choose “png” for the image type.
8. Click [OK] to generate the new map file `qgisproject.map`. QGIS displays the success of your efforts.

You can view the map file in any text editor or visualizer. If you take a look, you’ll notice that the export tool adds the metadata needed to enable our map file for WMS.
12.10.3 Testing the Map File

We can now test our work using the `shp2img` tool to create an image from the map file. The `shp2img` utility is part of MapServer and FWTools. To create an image from our map:

- Open a terminal window
- If you didn’t save your map file in your home directory, change to the folder where you saved it.
- Run `shp2img -m qgisproject.map -o mapserver_test.png` and display the image

This creates a PNG with all the layers included in the QGIS project file. In addition, the extent of the PNG will be the same as when we saved the project. As you can see in Figure 70, all information except the airport symbols are included.

![Test PNG created by shp2img with all MapServer Export layers](image)

If you plan to use the map file to serve WMS requests, you probably don’t have to tweak anything. If you plan to use it with a mapping template or a custom interface, you may have a bit of manual work to do. To see how easy it is to go from QGIS to serving maps on the web, take a look at Christopher Schmidt’s 5 minute flash video. He used an older version of QGIS (version 0.8), but the demo applies equally well to newer versions. ¹⁰

¹⁰[http://openlayers.org/presentations/mappingyourdata/](http://openlayers.org/presentations/mappingyourdata/)
12 USING QGIS CORE PLUGINS

12.11 OGR Converter Plugin

The OGR Layer Converter plugin adds the ability to convert vector data from one OGR-supported vector format to another. The plugin is very simple to run, and only requires a few parameters to be specified before running:

- **Source Format/Dataset/Layer**: Enter OGR format and path to the vector file to be converted
- **Target Format/Dataset/Layer**: Enter OGR format and path to the vector output file

**Figure 71: OGR Layer Converter Plugin**

Using the Plugin

1. Start QGIS, load the OGR converter plugin in the Plugin Manager (see Section 11.1.1) and click on the **OGR Layer Converter** icon which appears in the QGIS toolbar menu. The OGR Layer Converter plugin dialog appears as shown in Figure 71.

2. Select the OGR-supported format (e.g., ESRI Shapefile … ▼) and the path to the vector input file (e.g., alaska.shp) in the Source area.

3. Select the OGR-supported format (e.g., GML … ▼) and define a path and the vector output filename (e.g., alaska.gml) in the Target area.

4. Click **Ok**.

---

12 Supported formats may vary according to the installed GDAL/OGR package.
12.12 Oracle GeoRaster Plugin

In Oracle databases, raster data can be stored in SDO_GEORASTER objects available with the Oracle Spatial extension. In QGIS, the Oracle GeoRaster Plugin is supported by GDAL, and depends on Oracle’s Database product being installed and working on your machine. While Oracle is proprietary software, they provide their software free for development and testing purposes. Here is one simple example of how to load raster images to GeoRaster:

$ gdal_translate -of georaster input_file.tif geor:scott/tiger@orcl

This will load the raster into the default GDAL_IMPORT table, as a column named RASTER.

12.12.1 Managing connections

Firstly, the Oracle GeoRaster Plugin must be enabled using the Plugin Manager (see Section 11.1.1). The first time you load a GeoRaster in QGIS, you must create a connection to the Oracle database that contains the data. To do this, begin by clicking on the toolbar button, it will open the Select Oracle Spatial GeoRaster dialog window. Click on to open the dialog window, and specify the connection parameters (See Figure 72):

- **Name**: Enter a name for the database connection.
- **Database instance**: Enter the name of the database that you will connect to.
- **Username**: Specify your own username that you will use to access the database.
- **Password**: The password associated with your username that is required to access the database.

Now, back on the main Oracle Spatial GeoRaster dialog window (See Figure 73), use the drop-down list to choose one connection, and use the button to establish a connection. You may also the connection by opening the previous dialog and making changes to the connection information, or use the button to remove the connection from the drop-down list.

12.12.2 Selecting a GeoRaster

Once a connection has been established, the sub-datasets window will show the names of all the tables that contains GeoRaster columns in that database in the format of a GDAL subdataset name.

Click on one of the listed subdatasets and then click on to choose the table name. Now another list of subdatasets will show with the names of GeoRaster columns on that table. This is
usually a short list, since most users will not have more than one or two GeoRaster columns on the
same table.

Click on one of the listed subdatasets and then click on [Select] to choose one of the the ta-
ble/column combination. The dialog will now show all the rows that contains GeoRaster objects.
Note that the subdataset list will now show the Raster Data Table and Raster Id's pairs.

At anytime the Selection entry can be edited in order to go directly to a known GeoRaster or to go
back to the beginning and select another table name.

The Selection data entry can also be used to enter a Where clause at the end
of the identification string, e.g., “geor:scott/tiger@orcl,gdal_import,raster,geoid=". See
http://www.gdal.org/frmt_georaster.html for more information.

12.12.3 Displaying GeoRaster

Finally, by selecting a GeoRaster from the list of Raster Data Table and Raster Id's, the raster image
will be loaded into QGIS.

The Select Oracle Spatial GeoRaster dialog window can be closed now and next time it opens it will
keep the same connection, and will show the same previous list of subdataset making it very easy to
open up another image from the same context.

Note: GeoRasters that contains pyramids will display much faster but the pyramids need to be gen-
erated outside of QGIS using Oracle PL/SQL or gdaladdo.

The following is example using gdaladdo:

gdaladdo georaster:scott/tiger@orcl,georaster\_table,georaster,georid=6 -r
nearest 2 4 6 8 16 32
This is an example using PL/SQL: cd ..

```
$ sqlplus scott/tiger
SQL> DECLARE

gr sdo_georaster;
BEGIN
 SELECT image INTO gr FROM cities WHERE id = 1 FOR UPDATE;
 sdo_geor.generatePyramid(gr, 'rLevel=5, resampling=NN');
 UPDATE cities SET image = gr WHERE id = 1;
 COMMIT;
END;
/
```
12 USING QGIS CORE PLUGINS

12.13 OpenStreetMap Plugin

In recent years the OpenStreetMap project has gained popularity because in many countries no free geo data such as digital roadmaps are available. Target of the OSM project is to create a free editable map of the world from GPS data, aerial photography or simply from local knowledge. To support this idea QGIS provides a plugin that enables its users to work with OSM data.

The plugin provides all basic functionalities for OSM data manipulation, such as data loading, importing, saving, downloading, editing and uploading data back to the OpenStreetMap server. While implementing OSM plugin an inspiration was taken from existing OSM data editors. The purpose was to combine their functionalities to get the best possible result.

The following subsection gives a brief introduction to principles of the OSM project. If you are not interested in information on OSM just skip the next section. Parts of the following paragraphs are copied from the OpenStreetMap web site at http://www.openstreetmap.org.

The OpenStreetMap project

OpenStreetMap is a project to create a free editable map of the world. The maps are created using data from portable GPS devices, aerial photography, other free sources or simply from local knowledge. The project was started because most maps have legal or technical restrictions on their use, holding back people from using them in creative, productive, or unexpected ways. Both rendered images and the vector dataset of OSM are available for download under a Creative Commons Attribution ShareAlike 2.0 licence.

OpenStreetMap was inspired by sites such as Wikipedia - the map display (see Figure 74) features a prominent Edit tab and a full revision history is maintained. Registered users can upload GPS track logs and edit the vector data using the given editing tools.

OSM data primitive is an object class that can be stored via the API in the server. The three supported types of data are: Node, Way and Relation.

- A node is a latitude/longitude pair of coordinates. It is used as building a block for other features and as a feature itself (Points Of Interest), if they are tagged as required.

- A way is a list of at least two nodes that describe a linear feature such as a street, or similar. Nodes can be members of multiple ways.

- A relation is a group of zero or more primitives with associated roles. It is used to specify relationships between objects, and may also model an abstract object.

Several different logical features in a common map (‘Point Of Interest’, ‘Street’, ‘Tram Line’, ‘Bus Stop’ etc.) are defined by these primitives. Map features are well-known in the OSM community and are stored as tags, based of a key and a value. OSM is usually distribusted in XML format. XML payload is used for the communication with the OSM server as well.
The first part of this subsection describes how OSM data primitives are displayed in QGIS vector layers. As written above, OSM data consist of Nodes, Ways and Relations. In QGIS they are displayed in three different layer types: Point layer, Line layer and Polygon layer. It’s not possible to remove any of these layers and work with the other ones.

- A **Point layer** displays all features of type Node that stands alone. That means that only Nodes that are not included in any Way belongs to the Point layer.
- A **Line layer** displays those OSM features of type Way that are not closed. That means, none of these Ways starts and ends with the same Node.
- A **Polygon layer** displays all Ways that are not included in Line layer.

OpenStreetMap has one more data primitive except for the three mentioned above. This is called **Relation**. There is purposely no vector layer to display Relations. A Relation defines relation between any number of data primitives. After Point, Line or Polygon is identified on a map, the plugin shows a
list of all relations, the identified feature is part of.

Challenging was to design the connection between OSM data and the standard QGIS editing tools. These tools are made to edit a single vector layer at a time, no matter of what feature types it displays. This means that if OSM data are loaded to QGIS through the plugin, you could (theoretically) edit Point layer, Line layer or Polygon layer with these standard tools separately.

The problem is, that Line layer consists of two different types of OSM features - Ways and Nodes. Why? Because in OSM format a Way is composed of Nodes. If you start editing a Line layer and change the shape of some line, your action must affect not only the OSM Way but also the OSM Nodes that are part of it.

QGIS standard editing tools cannot tell the OSM provider, which members of which line has changed and how. It can tell only what’s the new geometry of which line, and that’s not enough to propagate changes to the OSM database correctly. The Line layer does also not know the identifiers of the line members. The same problem occurs when you try to edit the Polygon layer.

For this reason, the OSM plugin need its own tools for editing OSM data. While they are used, the OSM layers can be changed correctly. The Plugin editing tools consists of tools for Point, Line, Polygon and Relation creation, deletion and moving.

**Note:** To create a connection between the OSM plugin and standard editing tools, changes in QuantumGIS core code would be necessary.

### 12.13.1 Installation

The OpenStreetMap plugin is a core plugin inside QGIS. If you have python support enabled, the 'OpenStreetMap' plugin can be selected in the Plugin Manager as described in section 11.1.1).

### 12.13.2 Basic user interface

The first time the OSM plugin is started (and after the first data are loaded), several new OSM plugin icons appear in the QGIS toolbar menu together with new graphical components as shown in Figure 75:

**OSM Features widget**

The OSM Feature widget helps to identify OSM features. It shows basic information on feature type and identifier as well as info on who has when changed a feature. The OSM Feature widget also provides all editing tools (in the top part of it). More information on those tools can be found in the sections below. The widget is initially disabled. It activates itself after successful loading some OSM data.
12.13 OpenStreetMap Plugin

Figure 75: OSM plugin user interface

OSM Undo/Redo widget
This Undo/Redo widget is used to undo and redo edit actions. It consists not only of a classical Undo and Redo button, it also shows a list with a brief description of the edit actions that were done. The OSM Undo/Redo widget is initially closed. You can show it using a button on OSM Feature widget.

Toolbar menu icons
- **Load OSM from file** is used to load data from a special OpenStreetMap XML file.
- **Show/Hide OSM Feature Manager** is used to show or hide the OSM Feature widget. The OSM Feature widget is a panel that helps with OSM feature identification and with OSM data editing.
- **Download OSM data** is used to download data from the OpenStreetMap server.
- **Upload OSM data** is used to upload changes (on current data).
Import data from a layer is used to import data from a vector layer. At least one vector layer must be loaded and current OSM data must be selected.

Save OSM to file is used to save OSM data back to an XML file.

More detailed information on all the widgets, buttons and dialogs can be found in appropriate sections of this plugin section according to their functionality (editing, identification, etc.).

### 12.13.3 Loading OSM data

The first action that should be done after starting the OSM Plugin is opening data from an OSM file. OSM data can be imported as shapefile or downloaded directly from the OpenStreetMap server. Here we are focusing on the first mentioned method.

To load data from a file use the Load OSM from file icon. If there is no such button, maybe someone disabled OpenStreetMap toolbar in your QGIS installation. You can enable it again selecting Settings > Toolbars > OpenStreetMap

**Figure 76: Load OSM data dialog**

Purpose of its elements is explained below.

**OpenStreetMap file to load**: Click on the button to select the .osm file you want to load data from.

**Add columns for tags**: This option determines a connection between OSM and QGIS data. Each feature of OSM data has some tags (pairs of key and value), that define the feature properties.
Each feature of a QGIS vector layer also has its attributes (key and value). With this option you can define which properties of OSM objects should be visible when displaying detailed information about QGIS features.

**Replace current data:** Checking this option means that new data should replace current data the user is working with. Layers of current data will be removed and new ones will be loaded. When loading OSM data for the first time, this option is not active, because there is nothing to replace.

**Use custom renderer:** This option determines how many details of the map will be used. There are three pre-defined OSM styles for map displaying. Use [Small scale] if you want to view OSM data at low level, to see all details and to edit something. If not you can use [Medium scale] or [Large scale]. QGIS 1.3.0 doesn’t support changing the renderer style dynamically.

Click [Ok] to load your data. If this is the first time OSM file is loaded, the plugin must first parse the database. This may take few seconds or minutes - it depends on the amount of loaded data.

### 12.13.4 Viewing OSM data

After OSM data are loaded, you can identify map features using the appropriate tool. Use the [Identify feature] button on the top-left of OSM Feature widget. Using this tool you can easily explore all map objects. When the mouse cursor is placed over an object, you can see all information on it directly in the OSM Feature widget. There is also a dynamic rubberband displayed on the map so that the user is able to determine which feature is currently identified.

The [Properties] tab of the widget contains all feature tags. Clicking on the [Relation] tab shows you a list of all relations connected with identified feature.

If you want to hold a feature for a while to be able to read its properties and relations, move the mouse cursor at the same time, try left-clicking while you are over the feature. Identification process will stop until next left-clicking.

Sometimes there are more than one feature at a point where left-clicking was performed. This happens especially when clicking on cross-roads or if you didn’t zoom enough into the map. In this situation only one of such features is identified (and marked with the rubberband) but the plugin remembers all of them. Then (still in the pause mode) you can change identified features cyclical with right-clicking.

### 12.13.5 Editing basic OSM data

In the title of this section 'basic data' means non-relation OSM features - nodes and ways. If you prefer reading information on relation editing, just skip this section and read the next one.
Basic data editing is a key part of OSM Plugin. You can change property, position or shape of any existing basic feature. You can remove features or add new ones. All such changes on nodes and ways are remembered for comfortable usage of Undo/Redo operations and for easy upload of all changes to OpenStreetMap server.

**Changing feature tags**

Changing the property/tag of an OSM feature can be done directly in the table of feature tags. The Tags table of basic features can be found on the OSM Feature widget. Don’t forget to identify feature first.

*Figure 77: Changing an OSM feature tag*

If you want to change a tag value, just double-click in the appropriate row of column ’Value’ and type or select a new value. If you want to remove a tag, click in its row, then use button [Remove selected tags] on the right bottom under the table.

To add new tags just type its key and value into the last row of the table - where ’<next tag value>’ is written. Notice that you cannot change the key of an existing tag pair. For comfortable usage, there are some combo boxes of all existing tag keys and their typical values.

**Point creation,**

For point creation there is a [Create point] button on the OSM Feature widget. To create some points just click on the button and start clicking on the map. If your cursor is over some map feature, the feature is marked/identified immediately. If you click on the map when a line or polygon is marked,
a new point is created directly on such line or polygon - as its new member. If your cursor is over an existing point, new point cannot be created. In such case the OSM plugin will show following message:

![OSM point creation message](image)

The mechanism of helping a user to hit the line or polygon is called snapping and is enabled by default. If you want to create a point very close to some line (but not on it) you must disable snapping by holding the {\texttt{Ctrl}} key first.

**Line creation**

For line creation there is a [Create line](image) button on the OSM Feature widget. To create a line just click the button and start left-clicking on the map. Each of your left-clicks is remembered as a member vertex of the new line. Line creation ends when first right-click is performed. The new line will immediately appear on the map.

**Note**: A Line with less than two members cannot be created. In such case the operation is ignored.

Snapping is performed to all map vertices - points from Point vector layer and all Line and Polygon members. Snapping can be disabled by holding the {\texttt{Ctrl}} key.

**Polygon creation**

For polygon creation there is a [Create polygon](image) button on the OSM Feature widget. To create a polygon just click the button and start left-clicking on the map. Each of your left-clicks is remembered as a member vertex of the new polygon. The Polygon creation ends when first right-click is performed. The new polygon will immediately appear on the map. Polygon with less than three members cannot be created. In such case operation is ignored. Snapping is performed to all map vertexes - points (from Point vector layer) and all Line and Polygon members. Snapping can be disabled by holding the {\texttt{Ctrl}} key.

**Map feature moving**

If you want to move a feature (no matter what type) please use the [Move feature](image) button from the OSM Feature widget menu. Then you can browse the map (features are identified dynamically
when you go over them) and click on the feature you want to move. If a wrong feature is selected after your click, don’t move it from the place. Repeat right-clicking until the correct feature is identified. When selection is done and you move the cursor, you are no more able to change your decision what to move. To confirm the move, click on the left mouse button. To cancel a move, click another mouse button.

If you are moving a feature that is connected to another features, these connections won’t be damaged. Other features will just adapt themselves to a new position of a moved feature.

Snapping is also supported in this operation, this means:

- When moving a standalone (not part of any line/polygon) point, snapping to all map segments and vertices is performed.
- When moving a point that is a member of some lines/polygons, snapping to all map segments and vertices is performed, except for vertices of point parents.
- When moving a line/polygon, snapping to all map vertices is performed. Note that the OSM Plugin tries to snap only to the 3 closest-to-cursor vertices of a moved line/polygon, otherwise the operation would be very slow. Snapping can be disabled by holding the Ctrl key during the operation.

Map feature removing

If you want to remove a feature, you must identify it first. To remove an identified feature, use the button on the OSM Feature widget. When removing a line/polygon, the line/polygon itself is deleted, so are all its member points that doesn’t belong to any other line/polygon.

When removing a point that is member of some lines/polygons, the point is deleted and the geometries of parent lines/polygons are changed. The new parent geometry has less vertices than the old one.

If the parent feature was a polygon with three vertexes, its new geometry has only two vertexes. And because there cannot exist polygon with only two vertices, as described above, the feature type is automatically changed to Line.

If the parent feature was a line with two vertexes, its new geometry has only one vertex. And because there cannot exist a line with only one vertex, the feature type is automatically changed to Point.

12.13.6 Editing relations

Thanks to existency of OSM relations we can join OSM features into groups and give them common properties - in such way we can model any possible map object: borders of a region (as group of ways and points), roads of a bus, etc. Each member of a relation has its specific role. There is a
pretty good support for OSM Relations in our plugin. Let’s see how to examine, create, update or remove them.

**Examining relation**

If you want to see relation properties, first identify one of its members. After that open the Relations tab on the OSM Feature widget. At the top of the tab you can see a list of all relations the identified feature is part of. Please choose the one you want to examine and look at its information below. In the first table called 'Relation tags' you find the properties of the selected relation. In the table called 'Relation members' you see brief information on the relation members. If you click on a member, the plugin will make a rubberband on it in the map.

**Relation creation**

There are 2 ways to create a relation:

1. You can use the **Create relation** button on OSM Feature widget.

2. You can create it from the **Relation** tab of OSM Feature widget using the **Add relation** button.

In both cases a dialog will appear. For the second case, the feature that is currently identified is automatically considered to be the first relation member, so the dialog is prefilled a little. When creating a relation, please select its type first. You can select one of predefined relation types or write your own type. After that fill the relation tags and choose its members.

If you have already selected a relation type, try using the **Generate tags** button. It will generate typical tags to your relation type. Then you are expected to enter values to the keys. Choosing relation members can be done either by writing member identifiers, types and roles or using the **identify** tool and clicking on map.

Finally when type, tags and members are chosen, the dialog can be submitted. In such case the plugin creates a new relation for you.

**Changing relation**

If you want to change an existing relation, identify it first (follow steps written above in Section 'Examining relation'). After that click on the **Edit relation** button. You will find it on the OSM Feature widget. A new dialog appears, nearly the same as for the 'create relation' action. The dialog is pre-filled with information on given relations. You can change relation tags, members or even its...
12 USING QGIS CORE PLUGINS

12.13.7 Downloading OSM data

To download data from OpenStreetMap server click on the Download OSM data button. If there is no such button, the OSM toolbar may be disabled in your QGIS installation. You can enable it again at Settings > Toolbars > OpenStreetMap. After clicking the button a dialog occurs and provides following functionalities:

**Figure 79: OSM download dialog**

- **Extent**: Specifies an area to download data from intervals of latitude and longitude degrees. Because there is some restriction of OpenStreetMap server on how much data can be downloaded, the intervals must not be too wide. More detailed info on extent specification can is shown after clicking the help button on the right.

- **Download to**: Here you are expected to write a path to the file where data will be stored. If you can’t remember the structure of your disk, don’t panic. The browse button will help you.

- **Open data automatically after download**: Determines, if the download process should be followed by loading the data process or not. If you prefer not to load data now, you can do it later by using the Load OSM from file button.

- **Replace current data**: This option is active only if Open data automatically after download is checked. Checking this option means that downloaded data should replace current data we are working with now. Layers of the current data will be removed and new ones will be loaded. When starting QGIS and downloading OSM data for the first time, this option is initially inactive, because there is nothing to replace.
Use custom renderer: This option is active only if the Open data automatically after download checkbox is checked. It determines how many details will be in the map. There are three predefined OSM styles for map displaying. Use Small scale if you want to view OSM data at low level, to see all details and to edit something. If not you can use Medium scale or Large scale. QGIS 1.3.0 does not support changing the renderer style dynamically.

Click the Download button to start the download process.

A progress dialog will continuously inform you about how much of data is already downloaded. When an error occurs during the download process, a dialog tells you why. When action finishes successfully both the progress dialog and download dialog will close themselves.

12.13.8 Uploading OSM data

Note that the upload is always done on current OSM data. Before opening the OSM Upload dialog, please be sure that you really have the right active layer OSM data.

To upload current data to the OSM server click on the Upload OSM data button. If there is no such button, OSM toolbar in your QGIS installation is disabled. You can enable it again in Settings > Toolbars > OpenStreetMap. After clicking the upload button a new dialog will appear.

At the top of the dialog you can check, if you are uploading the correct data. There is a short name of a current database. In the table you find information on how many changes will be uploaded. Statistics are displayed separately for each feature type.

In the 'Comment on your changes' box you can write brief information on meaning of your upload operation. Just write in brief what data changes you’ve done or let the box empty. Fill ‘OSM account’ arrays so that the server could authenticate you. If you don’t have an account on the OSM server, it's the best time to create one at http://www.openstreetmap.org. Finally use Upload to start an upload operation.

12.13.9 Saving OSM data

To save data from a current map extent to an XML file click on the Save OSM to file button. If there is no such button, the OSM toolbar in your QuantumGIS installation is probably disabled. You can enable it again in Settings > Toolbars > OpenStreetMap. After clicking on the button a new dialog appears.

Select features you want to save into XML file and the file itself. Use the Ok button to start the
operation. The process will create an XML file, in which OSM data from your current map extent are represented. The OSM version of the output file is 0.6. Elements of OSM data (<node>, <way>, <relation>) do not contain information on their changesets and uids. These informations are not compulsory yet, see DTD for OSM XML version 0.6. In the output file OSM elements are not ordered.

Notice that not only data from the current extent are saved. Into the output file the whole polygons and lines are saved even if only a small part of them is visible in the current extent. For each saved
line/polygon all its member nodes are saved too.

### 12.13.10 Import OSM data

To import OSM data from an opened non-OSM vector layer follow this instructions: Choose current OSM data by clicking on one of their layers. Click on the button. If there is no such button, someone has probably disable the OpenStreetMap toolbar in your QGIS installation. You can enable it again in Settings > Toolbars > OpenStreetMap.

After clicking on the button following message may show up:

![Figure 82: OSM import message dialog](image)

In such case there is no vector layer currently loaded. The import must be done from a loaded layer - please load a vector layer from which you want to import data. After a layer is opened, your second try should give you a better result (don’t forget to mark the current OSM layer again):

![Figure 83: Import data to OSM dialog](image)

Use the submit dialog to start the process of OSM data importing. Reject it if you are not sure you want to import something.
12.14 Raster Terrain Modelling Plugin

The Raster Terrain Modelling plugin can be used to calculate the slope, aspect, ruggedness, and total curvature for digital elevation models (DEM). It is very simple to handle and provides an intuitive graphical user interface for creating new raster layers (See Figure 84). The plugin requires the following parameters to be specified before running:

- **Analysis**: Can be one of slope, aspect, ruggedness, or total curvature
- **Input layer**: Specify the input raster from a list of loaded raster layers.
- **Output layer**: Specify a name and path for the output raster file.
- **Output format**: Specify a format type for the output raster file (Default is GeoTiff).

Slope: Calculates slope angle for each cell in degrees (based on first order derivative estimation).
Aspect: Exposition (starting with 0 for north direction, in degrees counterclockwise).
Ruggedness factor: A quantitative measurement of terrain heterogeneity.
Total curvature: A curvature measure that combines plan- and profile curvature.

**Figure 84**: Raster Terrain Modelling Plugin

Using the plugin

1. Start QGIS and load a DEM raster layer.
2. Load the Raster Terrain Modelling plugin in the Plugin Manager (see Section 11.1.1) and click on the **Raster Terrain Modelling** icon which appears in the QGIS toolbar menu. The Raster Terrain Modelling plugin dialog appears as shown in Figure 84.

3. Select an analysis method (e.g. **Slope**).

4. Specify an output file path, and an output file type.

5. Click **Ok**.
12 USING QGIS CORE PLUGINS

12.15 Quick Print Plugin

The Quick Print Plugin makes it possible to export the current map canvas to PDF format quickly and easily, with minimal effort. The only parameters that need to be specified are a Map Title, a Map Name, and the Paper Size (See Figure 85). If you require additional control over the map layout, please use the print composer plugin, described in Section 10.

Figure 85: Quick Print Dialog

Figure 86: Quick Print result as DIN A4 PDF using the alaska sample dataset
12.16 Other core plugins

The remaining core plugins are listed in Table 15, along with references to the chapters in this manual which cover their usage.

**Table 15: Other Core Plugins**

<table>
<thead>
<tr>
<th>Icon</th>
<th>Plugin</th>
<th>Manual Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Diagram Overlay Icon" /></td>
<td>Diagram Overlay</td>
<td>Chapter 5.4.7</td>
</tr>
<tr>
<td><img src="image" alt="GRASS Icon" /></td>
<td>GRASS</td>
<td>Chapter 9 and Appendix B</td>
</tr>
<tr>
<td><img src="image" alt="Plugin Installer Icon" /></td>
<td>Plugin Installer</td>
<td>Chapter 11.1.3</td>
</tr>
<tr>
<td><img src="image" alt="SPIT Icon" /></td>
<td>SPIT</td>
<td>Chapter 5.2.4</td>
</tr>
<tr>
<td><img src="image" alt="WFS Icon" /></td>
<td>WFS</td>
<td>Chapter 7.3</td>
</tr>
</tbody>
</table>
13 Using external QGIS Python Plugins

External QGIS plugins are written in Python. They are stored in either the 'Official' or 'User contributed' QGIS Repositories, or in various other external repositories maintained by individual authors. Table 16 shows a list of currently available 'Official' plugins, with a short description. Detailed documentation about the usage, minimum QGIS version, homepage, authors, and other important information are provided with the external plugins themselves and is not included in this manual. 11 12

You will find an up-to-date list of 'Official' plugins in the Official QGIS Repository at http://qgis.osgeo.org/download/plugins.html. This list is also available automatically from the Plugins installer via [Fetch Python Plugins...].

Table 16: Current moderated external QGIS Plugins

<table>
<thead>
<tr>
<th>Icon</th>
<th>External plugin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Zoom To Point" /></td>
<td>Zoom To Point</td>
<td>Zooms to a coordinate specified in the input dialog. You can specify the zoom level as well to control the view extent.</td>
</tr>
<tr>
<td><img src="image" alt="Plugin Installer" /></td>
<td>Plugin Installer</td>
<td>The most recent Python Plugin Installer.</td>
</tr>
</tbody>
</table>

A detailed description of the installation procedure for external python plugins can be found in Section 11.1.2.

**Tip 48 ADD MORE REPOSITORIES**

To add the 'User contributed' repository and/or several external author repositories, open the Plugin Installer ([Plugins] > [Fetch Python Plugins...]), go to the Repositories tab, and click Add 3rd party repositories. If you do not want one or more of the added repositories, they can be disabled via the Edit... button, or completely removed with the Delete button.

---

11 Updates of core plugins may be available in this repository as external overlays.
12 Tools, Mapserver Export, and the Plugin Installer are Python plugins, but they are also part of the QGIS sources, and are automatically loaded and enabled inside the QGIS Plugin Manager (see Section 11.1.2).
14 Help and Support

14.1 Mailinglists

QGIS is under active development and as such it won’t always work like you expect it to. The preferred way to get help is by joining the qgis-users mailing list. Your questions will reach a broader audience and answers will benefit others.

qgis-users

This mailing list is used for discussion of QGIS in general, as well as specific questions regarding its installation and use. You can subscribe to the qgis-users mailing list by visiting the following URL:
http://lists.osgeo.org/mailman/listinfo/qgis-user

fossgis-talk-liste

For the german speaking audience the german FOSSGIS e.V. provides the fossgis-talk-liste mailing list. This mailing list is used for discussion of open source GIS in general including QGIS. You can subscribe to the fossgis-talk-liste mailing list by visiting the following URL:
https://lists.fossgis.de/mailman/listinfo/fossgis-talk-liste

qgis-developer

If you are a developer facing problems of a more technical nature, you may want to join the qgis-developer mailing list here:
http://lists.osgeo.org/mailman/listinfo/qgis-developer

qgis-commit

Each time a commit is made to the QGIS code repository an email is posted to this list. If you want to be up to date with every change to the current code base, you can subscribe to this list at:
http://lists.osgeo.org/mailman/listinfo/qgis-commit

qgis-trac

This list provides email notification related to project management, including bug reports, tasks, and feature requests. You can subscribe to this list at:
http://lists.osgeo.org/mailman/listinfo/qgis-trac

qgis-community-team

This list deals with topics like documentation, context help, user-guide, online experience including web sites, blog, mailing lists, forums, and translation efforts. If you like to work on the user-guide as
well, this list is a good starting point to ask your questions. You can subscribe to this list at:

http://lists.osgeo.org/mailman/listinfo/qgis-community-team

**qgis-release-team**

This list deals with topics like the release process, packaging binaries for various OS and announcing new releases to the world at large. You can subscribe to this list at:

http://lists.osgeo.org/mailman/listinfo/qgis-release-team

**qgis-psc**

This list is used to discuss Steering Committee issues related to overall management and direction of Quantum GIS. You can subscribe to this list at:

http://lists.osgeo.org/mailman/listinfo/qgis-psc

You are welcome to subscribe to any of the lists. Please remember to contribute to the list by answering questions and sharing your experiences. Note that the qgis-commit and qgis-trac are designed for notification only and not meant for user postings.

### 14.2 IRC

We also maintain a presence on IRC - visit us by joining the #qgis channel on irc.freenode.net. Please wait around for a response to your question as many folks on the channel are doing other things and it may take a while for them to notice your question. Commercial support for QGIS is also available. Check the website http://qgis.org/content/view/90/91 for more information.

If you missed a discussion on IRC, not a problem! We log all discussion so you can easily catch up. Just go to http://logs.qgis.org and read the IRC-logs.

### 14.3 BugTracker

While the qgis-users mailing list is useful for general 'how do I do xyz in QGIS' type questions, you may wish to notify us about bugs in QGIS. You can submit bug reports using the QGIS bug tracker at https://trac.osgeo.org/qgis/. When creating a new ticket for a bug, please provide an email address where we can request additional information.

Please bear in mind that your bug may not always enjoy the priority you might hope for (depending on its severity). Some bugs may require significant developer effort to remedy and the manpower is not always available for this.

Feature requests can be submitted as well using the same ticket system as for bugs. Please make sure to select the type enhancement.
If you have found a bug and fixed it yourself you can submit this patch also. Again, the lovely trac ticket system at https://trac.osgeo.org/qgis/ has this type as well. Select patch from the type-menu. Someone of the developers will review it and apply it to QGIS. Please don’t be alarmed if your patch is not applied straight away - developers may be tied up with other commitments.

14.4 Blog

The QGIS-community also runs a weblog (BLOG) at http://blog.qgis.org which has some interesting articles for users and developers as well. You are invited to contribute to the blog after registering yourself!

14.5 Wiki

Lastly, we maintain a WIKI web site at http://www.qgis.org/wiki where you can find a variety of useful information relating to QGIS development, release plans, links to download sites, message translation-hints and so on. Check it out, there are some goodies inside!
A Supported Data Formats

QGIS uses the GDAL/OGR library to read and write vector and raster data formats. Note that not all of the format listed below may work in QGIS for various reasons. For example, some require external commercial libraries or the GDAL installation of your OS was not build to support the format you want to use. Only those formats that have been well tested will appear in the list of file types when loading a vector or raster into QGIS. Other untested formats can be loaded by selecting *.*.

A.1 OGR Vector Formats

At the date of this document, the following formats are supported by the OGR library [5]. A complete is also available at [http://www.gdal.org/ogr/ogr_formats.html](http://www.gdal.org/ogr/ogr_formats.html).

- Arc/Info Binary Coverage
- Comma Separated Value (.csv)
- DODS/OPeNDAP
- ESRI Personal GeoDatabase
- ESRI ArcSDE
- ESRI Shapefile
- FMEObjects Gateway
- GeoJSON
- Geoconcept Export
- GeoRSS
- GML
- GMT
- GPX
- GRASS Vector
- Informix DataBlade
- INTERLIS
- IHO S-57 (ENC)
- Mapinfo File
- Microstation DGN
- OGDV Vectors

---

13 GRASS support is supplied by the QGIS GRASS data provider plugin
A.2 GDAL Raster Formats

At the date of this document, the following formats are supported by the GDAL library [3]. A complete list is also available at http://www.gdal.org/formats_list.html.

- ODBC
- Oracle Spatial
- PostgreSQL\(^\text{14}\)
- SDTS
- SQLite
- UK .NTF
- U.S. Census TIGER/Line
- VRT - Virtual Datasource
- X-Plane/Flightgear aeronautical data

\(^{14}\)QGIS implements its own PostgreSQL functions. OGR should be built without PostgreSQL support
A SUPPORTED DATA FORMATS

- Graphics Interchange Format (.gif)
- GMT compatible netCDF
- GRASS Rasters
- Golden Software Binary Grid
- TIFF / BigTIFF / GeoTIFF (.tif)
- Hierarchical Data Format Release 4 (HDF4)
- Hierarchical Data Format Release 5 (HDF5)
- ILWIS Raster Map (.mpr,.mpl)
- Intergraph Raster
- Erdas Imagine (.img)
- Atlantis MFF2e
- Japanese DEM (.mem)
- JPEG JFIF (.jpg)
- JPEG2000 (.jp2, .j2k)
- NOAA Polar Orbiter Level 1b Data Set (AVHRR)
- Erdas 7.x .LAN and .GIS
- In Memory Raster
- Vexcel MFF
- Vexcel MFF2
- Atlantis MFF
- Multi-resolution Seamless Image Database MrSID
- NITF
- NetCDF
- OGD1 Bridge
- Oracle Spatial Georaster
- OGC Web Coverage Server
- OGC Web Map Server
- PCI .aux Labelled
- PCI Geomatics Database File
- PCRaster
- Portable Network Graphics (.png)

GRASS support is supplied by the QGIS GRASS data provider plugin
• Netpbm (.ppm,.pgm)
• USGS SDTS DEM (*CATD.DDF)
• SAR CEOS
• USGS ASCII DEM (.dem)
• X11 Pixmap (.xpm)
B  GRASS Toolbox modules

The GRASS Shell inside the GRASS Toolbox provides access to almost all (more than 300) GRASS modules in command line mode. To offer a more user friendly working environment, about 200 of the available GRASS modules and functionalities are also provided by graphical dialogs.

B.1 GRASS Toolbox data import and export modules

This Section lists all graphical dialogs in the GRASS Toolbox to import and export data into a currently selected GRASS location and mapset.

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>r.in.arc</td>
<td>Convert an ESRI ARC/INFO ascii raster file (GRID) into a (binary) raster map layer</td>
</tr>
<tr>
<td>r.in.ascii</td>
<td>Convert an ASCII raster text file into a (binary) raster map layer</td>
</tr>
<tr>
<td>r.in.aster</td>
<td>Georeferencing, rectification, and import of Terra-ASTER imagery and relative DEM's using gdalwarp</td>
</tr>
<tr>
<td>r.in.gdal</td>
<td>Import GDAL supported raster file into a GRASS binary raster map layer</td>
</tr>
<tr>
<td>r.in.gdal.loc</td>
<td>Import GDAL supported raster file into a GRASS binary raster map layer and create a fitted location</td>
</tr>
<tr>
<td>r.in.gdal.qgis</td>
<td>Import loaded raster into a GRASS binary raster map layer</td>
</tr>
<tr>
<td>r.in.gdal.qgis.loc</td>
<td>Import loaded raster file into a GRASS binary raster map layer and create a fitted location</td>
</tr>
<tr>
<td>r.in.gridatb</td>
<td>Imports GRIDATB.FOR map file (TOPMODEL) into GRASS raster map</td>
</tr>
<tr>
<td>r.in.mat</td>
<td>Import a binary MAT-File(v4) to a GRASS raster</td>
</tr>
<tr>
<td>r.in.poly</td>
<td>Create raster maps from ascii polygon/line data files in the current directory</td>
</tr>
<tr>
<td>r.in.srtm</td>
<td>Import SRTM HGT files into GRASS</td>
</tr>
<tr>
<td>i.in.spotvgt</td>
<td>Import of SPOT VGT NDVI file into a raster map</td>
</tr>
</tbody>
</table>
Table 18: GRASS Toolbox: Raster and Image data export modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>r.out.gdal.gtiff</td>
<td>Export raster layer to Geo TIFF</td>
</tr>
<tr>
<td>r.out.arc</td>
<td>Converts a raster map layer into an ESRI ARCGRID file</td>
</tr>
<tr>
<td>r.gridatb</td>
<td>Exports GRASS raster map to GRIDATB.FOR map file (TOPMODEL)</td>
</tr>
<tr>
<td>r.out.mat</td>
<td>Exports a GRASS raster to a binary MAT-File</td>
</tr>
<tr>
<td>r.out.bin</td>
<td>Exports a GRASS raster to a binary array</td>
</tr>
<tr>
<td>r.out.png</td>
<td>Export GRASS raster as non-georeferenced PNG image format</td>
</tr>
<tr>
<td>r.out.ppm</td>
<td>Converts a GRASS raster map to a PPM image file at the pixel resolution of the CURRENTLY DEFINED REGION</td>
</tr>
<tr>
<td>r.out.ppm3</td>
<td>Converts 3 GRASS raster layers (R,G,B) to a PPM image file at the pixel resolution of the CURRENTLY DEFINED REGION</td>
</tr>
<tr>
<td>r.out.pov</td>
<td>Converts a raster map layer into a height-field file for POVRAY</td>
</tr>
<tr>
<td>r.out.tif</td>
<td>Exports a GRASS raster map to a 8/24bit TIFF image file at the pixel resolution of the currently defined region</td>
</tr>
<tr>
<td>r.out.vrml</td>
<td>Export a raster map to the Virtual Reality Modeling Language (VRML)</td>
</tr>
</tbody>
</table>
### Table 19: GRASS Toolbox: Vector data import modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.in.dxf</td>
<td>Import DXF vector layer</td>
</tr>
<tr>
<td>v.in.e00</td>
<td>Import ESRI E00 file in a vector map</td>
</tr>
<tr>
<td>v.in.garmin</td>
<td>Import vector from gps using gpstrans</td>
</tr>
<tr>
<td>v.in.gpsbabel</td>
<td>Import vector from gps using gpsbabel</td>
</tr>
<tr>
<td>v.in.mapgen</td>
<td>Import MapGen or MatLab vectors in GRASS</td>
</tr>
<tr>
<td>v.in.ogr</td>
<td>Import OGR/PostGIS vector layers</td>
</tr>
<tr>
<td>v.in.ogr.qgis</td>
<td>Import loaded vector layers into GRASS binary vector map</td>
</tr>
<tr>
<td>v.in.ogr.loc</td>
<td>Import OGR/PostGIS vector layers and create a fitted location</td>
</tr>
<tr>
<td>v.in.ogr.qgis.loc</td>
<td>Import loaded vector layers into GRASS binary vector map and create a fitted location</td>
</tr>
<tr>
<td>v.in.ogr.all</td>
<td>Import all the OGR/PostGIS vector layers in a given data source</td>
</tr>
<tr>
<td>v.in.ogr.all.loc</td>
<td>Import all the OGR/PostGIS vector layers in a given data source and create a fitted location</td>
</tr>
</tbody>
</table>

### Table 20: GRASS Toolbox: Vector data export modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.out.ogr</td>
<td>Export vector layer to various formats (OGR library)</td>
</tr>
<tr>
<td>v.out.ogr.gml</td>
<td>Export vector layer to GML</td>
</tr>
<tr>
<td>v.out.ogr.postgis</td>
<td>Export vector layer to various formats (OGR library)</td>
</tr>
<tr>
<td>v.out.ogr.mapinfo</td>
<td>Mapinfo export of vector layer</td>
</tr>
<tr>
<td>v.out.ascii</td>
<td>Convert a GRASS binary vector map to a GRASS ASCII vector map</td>
</tr>
<tr>
<td>v.out.dxf</td>
<td>Converts a GRASS vector map to DXF</td>
</tr>
</tbody>
</table>
B.2 GRASS Toolbox data type conversion modules

This Section lists all graphical dialogs in the GRASS Toolbox to convert raster to vector or vector to raster data in a currently selected GRASS location and mapset.

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>r.to.vect.point</td>
<td>Convert a raster to vector points</td>
</tr>
<tr>
<td>r.to.vect.line</td>
<td>Convert a raster to vector lines</td>
</tr>
<tr>
<td>r.to.vect.area</td>
<td>Convert a raster to vector areas</td>
</tr>
<tr>
<td>v.to.rast.constant</td>
<td>Convert a vector to raster using constant</td>
</tr>
<tr>
<td>v.to.rast.attr</td>
<td>Convert a vector to raster using attribute values</td>
</tr>
</tbody>
</table>

Table 21: GRASS Toolbox: Data type conversion modules
B.3 GRASS Toolbox region and projection configuration modules

This Section lists all graphical dialogs in the GRASS Toolbox to manage and change the current mapset region and to configure your projection.

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.region.save</td>
<td>Save the current region as a named region</td>
</tr>
<tr>
<td>g.region.zoom</td>
<td>Shrink the current region until it meets non-NULL data from a given raster map</td>
</tr>
<tr>
<td>g.region.multiple.raster</td>
<td>Set the region to match multiple raster maps</td>
</tr>
<tr>
<td>g.region.multiple.vector</td>
<td>Set the region to match multiple vector maps</td>
</tr>
<tr>
<td>g.proj.print</td>
<td>Print projection information of the current location</td>
</tr>
<tr>
<td>g.proj.geo</td>
<td>Print projection information from a georeferenced file (raster, vector or image)</td>
</tr>
<tr>
<td>g.proj.ascii.new</td>
<td>Print projection information from a georeferenced ASCII file containing a WKT projection description</td>
</tr>
<tr>
<td>g.proj.proj</td>
<td>Print projection information from a PROJ.4 projection description file</td>
</tr>
<tr>
<td>g.proj.ascii.new</td>
<td>Print projection information from a georeferenced ASCII file containing a WKT projection description and create a new location based on it</td>
</tr>
<tr>
<td>g.proj.geo.new</td>
<td>Print projection information from a georeferenced file (raster, vector or image) and create a new location based on it</td>
</tr>
<tr>
<td>g.proj.proj.new</td>
<td>Print projection information from a PROJ.4 projection description file and create a new location based on it</td>
</tr>
<tr>
<td>m.cogo</td>
<td>A simple utility for converting bearing and distance measurements to coordinates and vice versa. It assumes a cartesian coordinate system</td>
</tr>
</tbody>
</table>
B.4 GRASS Toolbox raster data modules

This Section lists all graphical dialogs in the GRASS Toolbox to work with and analyse raster data in a currently selected GRASS location and mapset.

### Table 23: GRASS Toolbox: Develop raster map modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>r.compress</td>
<td>Compresses and decompresses raster maps</td>
</tr>
<tr>
<td>r.region.region</td>
<td>Sets the boundary definitions to current or default region</td>
</tr>
<tr>
<td>r.region.raster</td>
<td>Sets the boundary definitions from existent raster map</td>
</tr>
<tr>
<td>r.region.vector</td>
<td>Sets the boundary definitions from existent vector map</td>
</tr>
<tr>
<td>r.region.edge</td>
<td>Sets the boundary definitions by edge (n-s-e-w)</td>
</tr>
<tr>
<td>r.region.alignTo</td>
<td>Sets region to align to a raster map</td>
</tr>
<tr>
<td>r.null.val</td>
<td>Transform cells with value in null cells</td>
</tr>
<tr>
<td>r.null.to</td>
<td>Transform null cells in value cells</td>
</tr>
<tr>
<td>r.quant</td>
<td>This routine produces the quantization file for a floating-point map</td>
</tr>
<tr>
<td>r.resamp.stats</td>
<td>Resamples raster map layers using aggregation</td>
</tr>
<tr>
<td>r.resamp.interp</td>
<td>Resamples raster map layers using interpolation</td>
</tr>
<tr>
<td>r.resample</td>
<td>GRASS raster map layer data resampling capability. Before you must set new resolution</td>
</tr>
<tr>
<td>r.resamp.rst</td>
<td>Reinterpolates and computes topographic analysis using regularized spline with tension and smoothing</td>
</tr>
<tr>
<td>r.support</td>
<td>Allows creation and/or modification of raster map layer support files</td>
</tr>
<tr>
<td>r.support.stats</td>
<td>Update raster map statistics</td>
</tr>
<tr>
<td>r.proj</td>
<td>Re-project a raster map from one location to the current location</td>
</tr>
</tbody>
</table>

### Table 24: GRASS Toolbox: Raster color management modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>r.colors.table</td>
<td>Set raster color table from setted tables</td>
</tr>
<tr>
<td>r.colors.rules</td>
<td>Set raster color table from setted rules</td>
</tr>
<tr>
<td>r.colors.rast</td>
<td>Set raster color table from existing raster</td>
</tr>
<tr>
<td>r.blend</td>
<td>Blend color components for two raster maps by given ratio</td>
</tr>
<tr>
<td>r.composite</td>
<td>Blend red, green, raster layers to obtain one color raster</td>
</tr>
<tr>
<td>r.his</td>
<td>Generates red, green and blue raster map layers combining hue, intensity, and saturation (his) values from user-specified input raster map layers</td>
</tr>
</tbody>
</table>
Table 25: GRASS Toolbox: Spatial raster analysis modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>r.buffer</td>
<td>Raster buffer</td>
</tr>
<tr>
<td>r.mask</td>
<td>Create a MASK for limiting raster operation</td>
</tr>
<tr>
<td>r.mapcalc</td>
<td>Raster map calculator</td>
</tr>
<tr>
<td>r.mapcalculator</td>
<td>Simple map algebra</td>
</tr>
<tr>
<td>r.neighbors</td>
<td>Raster neighbors analyses</td>
</tr>
<tr>
<td>v.neighbors</td>
<td>Count of neighbouring points</td>
</tr>
<tr>
<td>r.cross</td>
<td>Create a cross product of the category value from multiple raster map layers</td>
</tr>
<tr>
<td>r.series</td>
<td>Makes each output cell a function of the values assigned to the corresponding cells in the output raster map layers</td>
</tr>
<tr>
<td>r.patch</td>
<td>Create a new raster map by combining other raster maps</td>
</tr>
<tr>
<td>r.statistics</td>
<td>Category or object oriented statistics</td>
</tr>
<tr>
<td>r.cost</td>
<td>Outputs a raster map layer showing the cumulative cost of moving between different geographic locations on an input raster map layer whose cell category values represent cost</td>
</tr>
<tr>
<td>r.drain</td>
<td>Traces a flow through an elevation model on a raster map layer</td>
</tr>
<tr>
<td>r.shaded.relief</td>
<td>Create shaded map</td>
</tr>
<tr>
<td>r.slope.aspect.slope</td>
<td>Generate slope map from DEM (digital elevation model)</td>
</tr>
<tr>
<td>r.slope.aspect.aspect</td>
<td>Generate aspect map from DEM (digital elevation model)</td>
</tr>
<tr>
<td>r.param.scale</td>
<td>Extracts terrain parameters from a DEM</td>
</tr>
<tr>
<td>r.texture</td>
<td>Generate images with textural features from a raster map (first serie of indices)</td>
</tr>
<tr>
<td>r.texture.bis</td>
<td>Generate images with textural features from a raster map (second serie of indices)</td>
</tr>
<tr>
<td>r.los</td>
<td>Line-of-sight raster analysis</td>
</tr>
<tr>
<td>r.clump</td>
<td>Recategorizes into unique categories contiguous cells</td>
</tr>
<tr>
<td>r.grow</td>
<td>Generates a raster map layer with contiguous areas grown by one cell</td>
</tr>
<tr>
<td>r.thin</td>
<td>Thin no-zero cells that denote line features</td>
</tr>
</tbody>
</table>
### Table 26: GRASS Toolbox: Surface management modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>r.random</td>
<td>Creates a random vector point map contained in a raster</td>
</tr>
<tr>
<td>r.random.cells</td>
<td>Generates random cell values with spatial dependence</td>
</tr>
<tr>
<td>v.kernel</td>
<td>Gaussian kernel density</td>
</tr>
<tr>
<td>r.contour</td>
<td>Produces a contours vector map with specified step from a raster map</td>
</tr>
<tr>
<td>r.contour2</td>
<td>Produces a contours vector map of specified contours from a raster map</td>
</tr>
<tr>
<td>r.surf.fractal</td>
<td>Creates a fractal surface of a given fractal dimension</td>
</tr>
<tr>
<td>r.surf.gauss</td>
<td>GRASS module to produce a raster map layer of gaussian deviates whose mean and standard deviation can be expressed by the user</td>
</tr>
<tr>
<td>r.surf.random</td>
<td>Produces a raster map layer of uniform random deviates whose range can be expressed by the user</td>
</tr>
<tr>
<td>r.bilinear</td>
<td>Bilinear interpolation utility for raster map layers</td>
</tr>
<tr>
<td>v.surf.bispline</td>
<td>Bicubic or bilinear spline interpolation with Tikhonov regularization</td>
</tr>
<tr>
<td>r.surf.idw</td>
<td>Surface interpolation utility for raster map layers</td>
</tr>
<tr>
<td>r.surf.idw2</td>
<td>Surface generation program</td>
</tr>
<tr>
<td>r.surf.contour</td>
<td>Surface generation program from rasterized contours</td>
</tr>
<tr>
<td>v.surf.idw</td>
<td>Interpolate attribute values (IDW)</td>
</tr>
<tr>
<td>v.surf.rst</td>
<td>Interpolate attribute values (RST)</td>
</tr>
<tr>
<td>r.fillnulls</td>
<td>Fills no-data areas in raster maps using v.surf.rst splines interpolation</td>
</tr>
</tbody>
</table>

### Table 27: GRASS Toolbox: Change raster category values and labels modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>r.reclass.area.greater</td>
<td>Reclasses a raster map greater than user specified area size (in hectares)</td>
</tr>
<tr>
<td>r.reclass.area.lesser</td>
<td>Reclasses a raster map less than user specified area size (in hectares)</td>
</tr>
<tr>
<td>r.reclass</td>
<td>Reclass a raster using a reclassification rules file</td>
</tr>
<tr>
<td>r.recode</td>
<td>Recode raster maps</td>
</tr>
<tr>
<td>r.rescale</td>
<td>Rescales the range of category values in a raster map layer</td>
</tr>
</tbody>
</table>
Table 28: GRASS Toolbox: Hydrologic modelling modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>r.carve</td>
<td>Takes vector stream data, transforms it to raster, and subtracts depth from the output DEM</td>
</tr>
<tr>
<td>r.fill.dir</td>
<td>Filters and generates a depressionless elevation map and a flow direction map from a given elevation layer</td>
</tr>
<tr>
<td>r.lake.xy</td>
<td>Fills lake from seed point at given level</td>
</tr>
<tr>
<td>r.lake.seed</td>
<td>Fills lake from seed at given level</td>
</tr>
<tr>
<td>r.topidx</td>
<td>Creates a 3D volume map based on 2D elevation and value raster maps</td>
</tr>
<tr>
<td>r.basins.fill</td>
<td>Generates a raster map layer showing watershed subbasins</td>
</tr>
<tr>
<td>r.water.outlet</td>
<td>Watershed basin creation program</td>
</tr>
</tbody>
</table>

Table 29: GRASS Toolbox: Reports and statistic analysis modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>r.category</td>
<td>Prints category values and labels associated with user-specified raster map layers</td>
</tr>
<tr>
<td>r.sum</td>
<td>Sums up the raster cell values</td>
</tr>
<tr>
<td>r.report</td>
<td>Reports statistics for raster map layers</td>
</tr>
<tr>
<td>r.average</td>
<td>Finds the average of values in a cover map within areas assigned the same category value in a user-specified base map</td>
</tr>
<tr>
<td>r.median</td>
<td>Finds the median of values in a cover map within areas assigned the same category value in a user-specified base map</td>
</tr>
<tr>
<td>r.mode</td>
<td>Finds the mode of values in a cover map within areas assigned the same category value in a user-specified base map</td>
</tr>
<tr>
<td>r.volume</td>
<td>Calculates the volume of data clumps, and produces a GRASS vector points map containing the calculated centroids of these clumps</td>
</tr>
<tr>
<td>r.surf.area</td>
<td>Surface area estimation for rasters</td>
</tr>
<tr>
<td>r.univar</td>
<td>Calculates univariate statistics from the non-null cells of a raster map</td>
</tr>
<tr>
<td>r.covar</td>
<td>Outputs a covariance/correlation matrix for user-specified raster map layer(s)</td>
</tr>
<tr>
<td>r.regression.line</td>
<td>Calculates linear regression from two raster maps: $y = a + b \times x$</td>
</tr>
<tr>
<td>r.coin</td>
<td>Tabulates the mutual occurrence (coincidence) of categories for two raster map layers</td>
</tr>
</tbody>
</table>
B.5 GRASS Toolbox vector data modules

This Section lists all graphical dialogs in the GRASS Toolbox to work with and analyse vector data in a currently selected GRASS location and mapset.

Table 30: GRASS Toolbox: Develop vector map modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.build.all</td>
<td>Rebuild topology of all vectors in the mapset</td>
</tr>
<tr>
<td>v.clean.break</td>
<td>Break lines at each intersection of vector map</td>
</tr>
<tr>
<td>v.clean.snap</td>
<td>Cleaning topology: snap lines to vertex in threshold</td>
</tr>
<tr>
<td>v.clean.rmdangles</td>
<td>Cleaning topology: remove dangles</td>
</tr>
<tr>
<td>v.clean.changles</td>
<td>Cleaning topology: change the type of boundary dangle to line</td>
</tr>
<tr>
<td>v.clean.rmbridge</td>
<td>Remove bridges connecting area and island or 2 islands</td>
</tr>
<tr>
<td>v.clean.chbridge</td>
<td>Change the type of bridges connecting area and island or 2 islands</td>
</tr>
<tr>
<td>v.clean.rmdupl</td>
<td>Remove duplicate lines (pay attention to categories!)</td>
</tr>
<tr>
<td>v.clean.rmdac</td>
<td>Remove duplicate area centroids</td>
</tr>
<tr>
<td>v.clean.bpol</td>
<td>Break polygons. Boundaries are broken on each point shared between 2 and more polygons where angles of segments are different</td>
</tr>
<tr>
<td>v.clean.prune</td>
<td>Remove vertices in threshold from lines and boundaries</td>
</tr>
<tr>
<td>v.clean.rmarea</td>
<td>Remove small areas (removes longest boundary with adjacent area)</td>
</tr>
<tr>
<td>v.clean.rmline</td>
<td>Remove all lines or boundaries of zero length</td>
</tr>
<tr>
<td>v.clean.rmsa</td>
<td>Remove small angles between lines at nodes</td>
</tr>
<tr>
<td>v.type.lb</td>
<td>Convert lines to boundaries</td>
</tr>
<tr>
<td>v.type.bl</td>
<td>Convert boundaries to lines</td>
</tr>
<tr>
<td>v.type.pc</td>
<td>Convert points to centroids</td>
</tr>
<tr>
<td>v.type.cp</td>
<td>Convert centroids to points</td>
</tr>
<tr>
<td>v.centroids</td>
<td>Add missing centroids to closed boundaries</td>
</tr>
<tr>
<td>v.build.polylines</td>
<td>Build polylines from lines</td>
</tr>
<tr>
<td>v.segment</td>
<td>Creates points/segments from input vector lines and positions</td>
</tr>
<tr>
<td>v.to.points</td>
<td>Create points along input lines</td>
</tr>
<tr>
<td>v.parallel</td>
<td>Create parallel line to input lines</td>
</tr>
<tr>
<td>v.dissolve</td>
<td>Dissolves boundaries between adjacent areas</td>
</tr>
<tr>
<td>v.drape</td>
<td>Convert 2D vector to 3D vector by sampling of elevation raster</td>
</tr>
<tr>
<td>v.transform</td>
<td>Performs an affine transformation on a vector map</td>
</tr>
<tr>
<td>v.proj</td>
<td>Allows projection conversion of vector files</td>
</tr>
<tr>
<td>v.support</td>
<td>Updates vector map metadata</td>
</tr>
<tr>
<td>generalize</td>
<td>Vector based generalization</td>
</tr>
</tbody>
</table>
Table 31: GRASS Toolbox: Database connection modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.db.connect</td>
<td>Connect a vector to database</td>
</tr>
<tr>
<td>v.db.sconnect</td>
<td>Disconnect a vector from database</td>
</tr>
<tr>
<td>v.db.what.connect</td>
<td>Set/Show database connection for a vector</td>
</tr>
</tbody>
</table>

Table 32: GRASS Toolbox: Change vector field modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.category.add</td>
<td>Add elements to layer (ALL elements of the selected layer type!)</td>
</tr>
<tr>
<td>v.category.del</td>
<td>Delete category values</td>
</tr>
<tr>
<td>v.category.sum</td>
<td>Add a value to the current category values</td>
</tr>
<tr>
<td>v.reclass.file</td>
<td>Reclass category values using a rules file</td>
</tr>
<tr>
<td>v.reclass.attr</td>
<td>Reclass category values using a column attribute (integer positive)</td>
</tr>
</tbody>
</table>

Table 33: GRASS Toolbox: Working with vector points modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.in.region</td>
<td>Create new vector area map with current region extent</td>
</tr>
<tr>
<td>v.mkgrid.region</td>
<td>Create grid in current region</td>
</tr>
<tr>
<td>v.in.db</td>
<td>Import vector points from a database table containing coordinates</td>
</tr>
<tr>
<td>v.random</td>
<td>Randomly generate a 2D/3D GRASS vector point map</td>
</tr>
<tr>
<td>v.kcv</td>
<td>Randomly partition points into test/train sets</td>
</tr>
<tr>
<td>v.outlier</td>
<td>Remove outliers from vector point data</td>
</tr>
<tr>
<td>v.hull</td>
<td>Create a convex hull</td>
</tr>
<tr>
<td>v.delaunay.line</td>
<td>Delaunay triangulation (lines)</td>
</tr>
<tr>
<td>v.delaunay.area</td>
<td>Delaunay triangulation (areas)</td>
</tr>
<tr>
<td>v.voronoi.line</td>
<td>Voronoi diagram (lines)</td>
</tr>
<tr>
<td>v.voronoi.area</td>
<td>Voronoi diagram (areas)</td>
</tr>
</tbody>
</table>
### B.5 GRASS Toolbox vector data modules

#### Table 34: GRASS Toolbox: Spatial vector and network analysis modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.extract.where</td>
<td>Select features by attributes</td>
</tr>
<tr>
<td>v.extract.list</td>
<td>Extract selected features</td>
</tr>
<tr>
<td>v.select.overlap</td>
<td>Select features overlapped by features in another map</td>
</tr>
<tr>
<td>v.buffer</td>
<td>Vector buffer</td>
</tr>
<tr>
<td>v.distance</td>
<td>Find the nearest element in vector ‘to’ for elements in vector ‘from’</td>
</tr>
<tr>
<td>v.net.nodes</td>
<td>Create nodes on network</td>
</tr>
<tr>
<td>v.net.alloc</td>
<td>Allocate network</td>
</tr>
<tr>
<td>v.net.iso</td>
<td>Cut network by cost isolines</td>
</tr>
<tr>
<td>v.net.salesman</td>
<td>Connect nodes by shortest route (traveling salesman)</td>
</tr>
<tr>
<td>v.net.steiner</td>
<td>Connect selected nodes by shortest tree (Steiner tree)</td>
</tr>
<tr>
<td>v.patch</td>
<td>Create a new vector map by combining other vector maps</td>
</tr>
<tr>
<td>v.overlay.or</td>
<td>Vector union</td>
</tr>
<tr>
<td>v.overlay.and</td>
<td>Vector intersection</td>
</tr>
<tr>
<td>v.overlay.not</td>
<td>Vector subtraction</td>
</tr>
<tr>
<td>v.overlay.xor</td>
<td>Vector non-intersection</td>
</tr>
</tbody>
</table>

#### Table 35: GRASS Toolbox: Vector update by other maps modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.rast.stats</td>
<td>Calculates univariate statistics from a GRASS raster map based on vector objects</td>
</tr>
<tr>
<td>v.what.vect</td>
<td>Uploads map for which to edit attribute table</td>
</tr>
<tr>
<td>v.what.rast</td>
<td>Uploads raster values at positions of vector points to the table</td>
</tr>
<tr>
<td>v.sample</td>
<td>Sample a raster file at site locations</td>
</tr>
</tbody>
</table>

#### Table 36: GRASS Toolbox: Vector report and statistic modules

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.to.db</td>
<td>Put geometry variables in database</td>
</tr>
<tr>
<td>v.report</td>
<td>Reports geometry statistics for vectors</td>
</tr>
<tr>
<td>v.univar</td>
<td>Calculates univariate statistics on selected table column for a GRASS vector map</td>
</tr>
<tr>
<td>v.normal</td>
<td>Tests for normality for points</td>
</tr>
</tbody>
</table>
B.6 GRASS Toolbox imagery data modules

This Section lists all graphical dialogs in the GRASS Toolbox to work with and analyse imagery data in a currently selected GRASS location and mapset.

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.image.mosaik</td>
<td>Mosaic up to 4 images</td>
</tr>
<tr>
<td>i.rgb.his</td>
<td>Red Green Blue (RGB) to Hue Intensity Saturation (HIS) raster map color transformation function</td>
</tr>
<tr>
<td>i.his.rgb</td>
<td>Hue Intensity Saturation (HIS) to Red Green Blue (RGB) raster map color transform function</td>
</tr>
<tr>
<td>i.landsat.rgb</td>
<td>Auto-balancing of colors for LANDSAT images</td>
</tr>
<tr>
<td>i.fusion.brovey</td>
<td>Brovey transform to merge multispectral and high-res pancromatic channels</td>
</tr>
<tr>
<td>i.zc</td>
<td>Zero-crossing edge detection raster function for image processing</td>
</tr>
<tr>
<td>i.mfilter</td>
<td></td>
</tr>
<tr>
<td>i.tasscap4</td>
<td>Tasseled Cap (Kauth Thomas) transformation for LANDSAT-TM 4 data</td>
</tr>
<tr>
<td>i.tasscap5</td>
<td>Tasseled Cap (Kauth Thomas) transformation for LANDSAT-TM 5 data</td>
</tr>
<tr>
<td>i.tasscap7</td>
<td>Tasseled Cap (Kauth Thomas) transformation for LANDSAT-TM 7 data</td>
</tr>
<tr>
<td>i.fft</td>
<td>Fast fourier transform (FFT) for image processing</td>
</tr>
<tr>
<td>i.ifft</td>
<td>Inverse fast fourier transform for image processing</td>
</tr>
<tr>
<td>r.describe</td>
<td>Prints terse list of category values found in a raster map layer</td>
</tr>
<tr>
<td>r.bitpattern</td>
<td>Compares bit patterns with a raster map</td>
</tr>
<tr>
<td>r.kappa</td>
<td>Calculate error matrix and kappa parameter for accuracy assessment of classification result</td>
</tr>
<tr>
<td>i.oif</td>
<td>Calculates optimal index factor table for landsat tm bands</td>
</tr>
</tbody>
</table>
This Section lists all graphical dialogs in the GRASS Toolbox to manage, connect and work with internal and external databases. Working with spatial external databases is enabled via OGR and not covered by these modules.

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>db.connect</td>
<td>Sets general DB connection mapset</td>
</tr>
<tr>
<td>db.connect.schema</td>
<td>Sets general DB connection mapset with a schema</td>
</tr>
<tr>
<td>v.db.reconnect.all</td>
<td>Reconnect vector to a new database</td>
</tr>
<tr>
<td>db.login</td>
<td>Set user/password for driver/database</td>
</tr>
<tr>
<td>db.in.ogr</td>
<td>Imports attribute tables in various formats</td>
</tr>
<tr>
<td>v.db.addtable</td>
<td>Create and add a new table to a vector</td>
</tr>
<tr>
<td>v.db.addcol</td>
<td>Adds one or more columns to the attribute table connected to a given vector map</td>
</tr>
<tr>
<td>v.db.dropcol</td>
<td>Drops a column from the attribute table connected to a given vector map</td>
</tr>
<tr>
<td>v.db.renamecol</td>
<td>Renames a column in a attribute table connected to a given vector map</td>
</tr>
<tr>
<td>v.db.update_const</td>
<td>Allows to assign a new constant value to a column</td>
</tr>
<tr>
<td>v.db.update_query</td>
<td>Allows to assign a new constant value to a column only if the result of a query is TRUE</td>
</tr>
<tr>
<td>v.db.update_op</td>
<td>Allows to assign a new value, result of operation on column(s), to a column in the attribute table connected to a given map</td>
</tr>
<tr>
<td>v.db.update_op_query</td>
<td>Allows to assign a new value to a column, result of operation on column(s), only if the result of a query is TRUE</td>
</tr>
<tr>
<td>db.execute</td>
<td>Execute any SQL statement</td>
</tr>
<tr>
<td>db.select</td>
<td>Prints results of selection from database based on SQL</td>
</tr>
<tr>
<td>v.db.select</td>
<td>Prints vector map attributes</td>
</tr>
<tr>
<td>v.db.select.where</td>
<td>Prints vector map attributes with SQL</td>
</tr>
<tr>
<td>v.db.join</td>
<td>Allows to join a table to a vector map table</td>
</tr>
<tr>
<td>v.db.univar</td>
<td>Calculates univariate statistics on selected table column for a GRASS vector map</td>
</tr>
</tbody>
</table>
B.8 GRASS Toolbox 3D modules

This Section lists all graphical dialogs in the GRASS Toolbox to work with 3D data. GRASS provides more modules, but they are currently only available using the GRASS Shell.

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>nviz</td>
<td>Open 3D-View in nviz</td>
</tr>
</tbody>
</table>

Table 39: GRASS Toolbox: 3D Visualization

B.9 GRASS Toolbox help modules

The GRASS GIS Reference Manual offers a complete overview of the available GRASS modules, not limited to the modules and their often reduced functionalities implemented in the GRASS Toolbox.

<table>
<thead>
<tr>
<th>Module name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>g.manual</td>
<td>Display the HTML manual pages of GRASS</td>
</tr>
</tbody>
</table>

Table 40: GRASS Toolbox: Reference Manual
GNU General Public License

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
C GNU GENERAL PUBLIC LICENSE

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The “Program”, below, refers to any such program or work, and a “work based on the Program” means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

   a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.

   b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.

   c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PRO-
GRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
C.1 Quantum GIS Qt exception for GPL

In addition, as a special exception, the QGIS Development Team gives permission to
link the code of this program with the Qt library, including but not limited to the following
versions (both free and commercial): Qt/Non-commercial Windows, Qt/Windows, Qt/X11,
Qt/Mac, and Qt/Embedded (or with modified versions of Qt that use the same license as
Qt), and distribute linked combinations including the two. You must obey the GNU General
Public License in all respects for all of the code used other than Qt. If you modify this file,
you may extend this exception to your version of the file, but you are not obligated to do
so. If you do not wish to do so, delete this exception statement from your version.
Literature


Web-References


