1 | pgRouting - Routing Functionalities on PostgreSQL |
---|
2 | |
---|
3 | |
---|
4 | INTRODUCTION |
---|
5 | |
---|
6 | This library contains following features: |
---|
7 | |
---|
8 | * Dijkstra algorithm - Shortest path algorithm, which named in honor |
---|
9 | of Prof. Dr. Edsger Wybe Dijkstra who has invented it |
---|
10 | * A-star (A*) algorithm - Shortest path algorithm using heuristical |
---|
11 | function |
---|
12 | * Driving distance - area person can cover in certain time from start |
---|
13 | point using road network |
---|
14 | * TSP - Travelling Salesman Problem solution with default mazimum of |
---|
15 | 40 points |
---|
16 | * Shooting star (Shooting*) algorithm - Shortest path algorithm for |
---|
17 | real road networks with turn restrictions, traffic lights and one |
---|
18 | way streets. |
---|
19 | |
---|
20 | REQUIREMENT |
---|
21 | |
---|
22 | * C and C++ compilers |
---|
23 | * CMake >= 2.3 |
---|
24 | * Postgresql 8.x |
---|
25 | * PostGIS 1.x |
---|
26 | * Proj 4.x |
---|
27 | * GEOS (Geometry Engine - Open Source) library 2.x |
---|
28 | See http://geos.refractions.net/ |
---|
29 | * The Boost Graph Library (BGL). |
---|
30 | Version >= 1.33 or previous having astar.hpp |
---|
31 | See http://www.boost.org/libs/graph/doc/index.html |
---|
32 | * The Genetic Algorithm Utility Library (GAUL). |
---|
33 | See http://gaul.sourceforge.net |
---|
34 | * Computational Geometry Algorithms Library (CGAL) version >= 3.2. |
---|
35 | See http://www.cgal.org/ |
---|
36 | |
---|
37 | INSTALLATION |
---|
38 | |
---|
39 | * Edit Makefile, and set the BOOST_PATH with the location of your |
---|
40 | boost library (if you are on Debian, just type |
---|
41 | "apt-get install libboost-graph-dev" and you don't need to modify anything) |
---|
42 | |
---|
43 | * Enter pgrouting directory |
---|
44 | |
---|
45 | * Type "cmake .", then "make" |
---|
46 | To include extra packages use "cmake -DWITH_TSP=ON -DWITH_DD=ON ." |
---|
47 | |
---|
48 | * If you have BGL installed but the version is less than 1.33.0, |
---|
49 | just download the astar.hpp file from |
---|
50 | http://www.boost.org/boost/graph/astar_search.hpp and copy it to |
---|
51 | BOOST_PATH/graph directory. |
---|
52 | |
---|
53 | * If you have PostGIS installed, you can launch routing_wrapper.sql |
---|
54 | which will create PostGIS import and manipulation functions. |
---|
55 | |
---|
56 | * GAUL library should be compilled with --no-slang option. |
---|
57 | Otherwise make sure you have slang.h installed in /usr/include. |
---|
58 | For more details please refer to corresponding README or INSTALL file. |
---|
59 | |
---|
60 | * Use interactive mode to install CGAL library. To avoid conflicts you should |
---|
61 | exclude BOOST support from the installation (follow on-screen instructions). |
---|
62 | |
---|
63 | * Execute the sql file dijkstra.sql to install the functions in your database |
---|
64 | (you need the plpgsql language enabled on your database. |
---|
65 | Type "createlang plpgsql YOUR_DATABASE" if not) |
---|
66 | |
---|
67 | |
---|
68 | |
---|
69 | USAGE |
---|
70 | |
---|
71 | The core module is a function which computes a shortest path from a |
---|
72 | set of edges and vertices. The function expects data in a specific |
---|
73 | format in input. |
---|
74 | |
---|
75 | Some functions are provided for importing data from geometric tables, |
---|
76 | and for generating results as geometries. |
---|
77 | |
---|
78 | |
---|
79 | The shortest_path functions have the following signature: |
---|
80 | ======================================================== |
---|
81 | |
---|
82 | CREATE OR REPLACE FUNCTION shortest_path(sql text, source_id integer, target_id integer, |
---|
83 | directed boolean, has_reverse_cost boolean) |
---|
84 | RETURNS SETOF path_result |
---|
85 | |
---|
86 | Where path_result is: |
---|
87 | |
---|
88 | CREATE TYPE path_result AS (vertex_id integer, edge_id integer, cost float8); |
---|
89 | |
---|
90 | arguments are: |
---|
91 | |
---|
92 | * sql: a SQL query, which should return a set of rows with the |
---|
93 | following columns: |
---|
94 | |
---|
95 | - id: an int4 identifier of the edge |
---|
96 | - source: an int4 identifier of the source vertex |
---|
97 | - target: an int4 identifier of the target vertex |
---|
98 | - cost: double precision value of the edge traversal cost. (a negative cost |
---|
99 | will prevent the edge from being inserted in the graph). |
---|
100 | - reverse_cost (optional): the cost for the reverse traversal of the |
---|
101 | edge. This is only used when the directed and has_reverse_cost |
---|
102 | parameters are true (see the above remark about negative costs). |
---|
103 | - directed: true if the graph is directed |
---|
104 | - has_reverse_cost: if true, the reverse_cost column of the SQL |
---|
105 | generated set of rows will be used for the cost of the traversal of |
---|
106 | the edge in the opposite direction. |
---|
107 | |
---|
108 | A* and Shooting* functions also need: |
---|
109 | - x1: double precision value of x coordinate for edge's start vertex |
---|
110 | - y1: double precision value of y coordinate for edge's start vertex |
---|
111 | - x2: double precision value of x coordinate for edge's end vertex |
---|
112 | - y2: double precision value of y coordinate for edge's end vertex |
---|
113 | |
---|
114 | Shooting* function also needs: |
---|
115 | - rule: a string with a comma separated list of edge ids which describes |
---|
116 | a rule for turning restriction (if you came along these edges, you can |
---|
117 | pass through the current one only with the cost stated in to_cost column) |
---|
118 | - to_cost: a cost of restricted passage (can be very high in a case of |
---|
119 | turn restriction or comparable with an edge cost in a case of traffic light) |
---|
120 | |
---|
121 | For example, |
---|
122 | |
---|
123 | gid | source | target | cost | x1 | y1 | x2 | y2 | to_cost | rule |
---|
124 | -----+--------+--------+------+----+----+----+----+---------+------ |
---|
125 | 12 | 3 | 10 | 2 | 4 | 3 | 4 | 5 | 1000 | 14 |
---|
126 | |
---|
127 | means that the cost of going from edge 14 to edge 12 is 1000, |
---|
128 | |
---|
129 | and |
---|
130 | |
---|
131 | gid | source | target | cost | x1 | y1 | x2 | y2 | to_cost | rule |
---|
132 | -----+--------+--------+------+----+----+----+----+---------+------ |
---|
133 | 12 | 3 | 10 | 2 | 4 | 3 | 4 | 5 | 1000 | 14, 4 |
---|
134 | |
---|
135 | means that the cost of going from edge 14 to edge 12 through edge 4 is 1000. |
---|
136 | |
---|
137 | |
---|
138 | The function returns a set of rows. There is one row for each crossed |
---|
139 | edge, and an additional one containing the terminal vertex. |
---|
140 | The columns of each row are: |
---|
141 | |
---|
142 | - vertex_id: the identifier of source vertex of each edge. There is one |
---|
143 | more row after the last edge, which contains the vertex identifier of |
---|
144 | the target path. |
---|
145 | - edge_id: the identifier of the edge crossed |
---|
146 | - cost: The cost associated to the current edge. It is 0 for the row |
---|
147 | after the last edge. Thus, the path total cost can be computated using |
---|
148 | a sum of all rows in the cost column. |
---|
149 | |
---|
150 | examples: |
---|
151 | |
---|
152 | SELECT * from shortest_path('SELECT source, id, target, cost FROM edges', |
---|
153 | 3, 7, false, false); |
---|
154 | |
---|
155 | vertex_id | edge_id | cost |
---|
156 | -----------+---------+------ |
---|
157 | 3 | 2 | 0 |
---|
158 | 4 | 21 | 0 |
---|
159 | 6 | 5 | 0 |
---|
160 | 7 | -1 | 0 |
---|
161 | (4 rows) |
---|
162 | |
---|
163 | |
---|
164 | To search a path using the A* algorithm: |
---|
165 | |
---|
166 | SELECT * from shortest_path_astar('SELECT id, source, target, cost, |
---|
167 | x1, y1, x2, y2 FROM edges',3, 7, false, false); |
---|
168 | |
---|
169 | vertex_id | edge_id | cost |
---|
170 | -----------+---------+------------------------ |
---|
171 | 3 | 2 | 0.000763954363701041 |
---|
172 | 4 | 21 | 0.00150254971056274 |
---|
173 | 6 | 5 | 0.000417442425988342 |
---|
174 | 7 | -1 | 0 |
---|
175 | (4 rows) |
---|
176 | |
---|
177 | |
---|
178 | Shooting* algorithm calculates a path from edge to edge (not from vertex to |
---|
179 | vertex). Column vertex_id contains start vertex of an edge from column edge_id. |
---|
180 | |
---|
181 | To search a path using the Shooting* algorithm: |
---|
182 | |
---|
183 | SELECT * from shortest_path_shooting_star('SELECT id, source, target, cost, |
---|
184 | x1, y1, x2, y2, rule, to_cost FROM edges', 17, 9, true, false); |
---|
185 | |
---|
186 | vertex_id | edge_id | cost |
---|
187 | -----------+---------+------ |
---|
188 | 16 | 17 | 1 |
---|
189 | 15 | 16 | 1 |
---|
190 | 2 | 5 | 1 |
---|
191 | 3 | 4 | 1 |
---|
192 | 20 | 12 | 2 |
---|
193 | 10 | 9 | 2 |
---|
194 | (6 rows) |
---|
195 | |
---|
196 | |
---|
197 | The tsp function has the following signature: |
---|
198 | ============================================ |
---|
199 | |
---|
200 | CREATE OR REPLACE FUNCTION tsp(sql text, ids varchar, source_id integer) |
---|
201 | RETURNS SETOF path_result |
---|
202 | |
---|
203 | arguments are: |
---|
204 | |
---|
205 | * sql: a SQL query, which should return a set of rows with the |
---|
206 | following columns: |
---|
207 | |
---|
208 | - source_id: an int4 identifier of the vertex |
---|
209 | - x: x coordinate of the vertex |
---|
210 | - y: y coordinate of the vertex |
---|
211 | |
---|
212 | * ids: text string containig int4 ids of vertices separated by commas |
---|
213 | * source_id: int 4 id of the start point |
---|
214 | |
---|
215 | The function returns a set of rows. There is one row for each crossed |
---|
216 | edge, and an additional one containing the terminal vertex. |
---|
217 | The columns of each row are: |
---|
218 | |
---|
219 | - vertex_id: the identifier of source vertex of each edge. There is one |
---|
220 | more row after the last edge, which contains the vertex identifier of |
---|
221 | the target path. |
---|
222 | - edge_id: unused, always 0 |
---|
223 | - cost: unused, always 0 |
---|
224 | |
---|
225 | examples: |
---|
226 | |
---|
227 | SELECT * from tsp('select distinct source as source_id, x1::double precision as x, |
---|
228 | y1::double precision as y from dourol where source in (83593,66059,10549,18842,13)', |
---|
229 | '83593,66059,10549,18842,13', 10549); |
---|
230 | |
---|
231 | vertex_id | edge_id | cost |
---|
232 | -----------+---------+------ |
---|
233 | 10549 | 0 | 0 |
---|
234 | 83593 | 0 | 0 |
---|
235 | 66059 | 0 | 0 |
---|
236 | 18842 | 0 | 0 |
---|
237 | 13 | 0 | 0 |
---|
238 | (5 rows) |
---|
239 | |
---|
240 | Afterwards vertex_id column can be used for shortest path calculation. |
---|
241 | |
---|
242 | |
---|
243 | The driving_distance function has the following signature: |
---|
244 | ========================================================= |
---|
245 | |
---|
246 | CREATE OR REPLACE FUNCTION driving_distance(sql text, source_id integer, distance float8) |
---|
247 | |
---|
248 | RETURNS SETOF path_result |
---|
249 | |
---|
250 | arguments are: |
---|
251 | |
---|
252 | * sql: a SQL query, which should return a set of rows with the |
---|
253 | following columns: |
---|
254 | |
---|
255 | - id: an int4 identifier of the edge |
---|
256 | - source: an int4 identifier of the source vertex |
---|
257 | - target: an int4 identifier of the target vertex |
---|
258 | - cost: an float8 value, of the edge traversal cost. (a negative cost |
---|
259 | will prevent the edge from being inserted in the graph). |
---|
260 | |
---|
261 | * source_id: int4 id of the start point |
---|
262 | * distance: float8 value of distance in degrees |
---|
263 | |
---|
264 | The function returns a set of rows. There is one row for each crossed |
---|
265 | edge, and an additional one containing the terminal vertex. |
---|
266 | The columns of each row are: |
---|
267 | |
---|
268 | - vertex_id: the identifier of source vertex of each edge. There is one |
---|
269 | more row after the last edge, which contains the vertex identifier of |
---|
270 | the target path. |
---|
271 | - edge_id: the identifier of the edge crossed |
---|
272 | - cost: The cost associated to the current edge. It is 0 for the row |
---|
273 | after the last edge. Thus, the path total cost can be computated using |
---|
274 | a sum of all rows in the cost column. |
---|
275 | |
---|
276 | examples: |
---|
277 | |
---|
278 | SELECT * from driving_distance('select gid as id,source,target, |
---|
279 | length::double precision as cost from dourol',10549,0.01); |
---|
280 | |
---|
281 | vertex_id | edge_id | cost |
---|
282 | -----------+---------+--------------- |
---|
283 | 6190 | 120220 | 0.00967666852 |
---|
284 | 6205 | 118671 | 0.00961557335 |
---|
285 | 6225 | 119384 | 0.00965668162 |
---|
286 | 6320 | 119378 | 0.00959826176 |
---|
287 | . |
---|
288 | . |
---|
289 | . |
---|
290 | 15144 | 122612 | 0.00973386526 |
---|
291 | 15285 | 120471 | 0.00912965866 |
---|
292 | 15349 | 122085 | 0.00944814966 |
---|
293 | 15417 | 120471 | 0.00942316736 |
---|
294 | 15483 | 121629 | 0.00972957546 |
---|
295 | (293 rows) |
---|
296 | |
---|
297 | |
---|
298 | |
---|
299 | |
---|
300 | The power of SQL can be used for more complex cost computation: |
---|
301 | |
---|
302 | SELECT shortest_path('SELECT gid as id, node1_id as source, node2_id |
---|
303 | as target, coalesce(CASE WHEN gid IN |
---|
304 | (1956, 123) THEN 12 ELSE weights1.weight END, 99999) as cost |
---|
305 | FROM lines2 LEFT JOIN weights1 USING (gid)', 12, 78, false, false); |
---|
306 | |
---|
307 | |
---|
308 | |
---|
309 | |
---|
310 | GRAPH IMPORTATION |
---|
311 | |
---|
312 | The shortest_path function expects edges id and vertices id to be |
---|
313 | integer ranging from zero to the maximum number of edges or vertices |
---|
314 | (holes are allowed, but it will be less efficient). |
---|
315 | However, you may want to compute shortest path on a table which has |
---|
316 | vertex identifier stored as strings, like in the following example: |
---|
317 | |
---|
318 | SELECT * FROM graph1; |
---|
319 | |
---|
320 | gid | source_id | target_id | edge_id |
---|
321 | -----+-----------+-----------+--------- |
---|
322 | 0 | A | B | |
---|
323 | 1 | A | C | |
---|
324 | 2 | D | A | |
---|
325 | 3 | B | C | |
---|
326 | (4 rows) |
---|
327 | |
---|
328 | A function called "create_graph_tables" is available which will create |
---|
329 | two tables for edges and vertices. Example: |
---|
330 | |
---|
331 | SELECT create_graph_tables('graph1', 'varchar'); |
---|
332 | |
---|
333 | The first argument is the name of the table containing the graph, and |
---|
334 | the second is the type of the source and target vertex identifiers. |
---|
335 | |
---|
336 | It will create the following tables: |
---|
337 | |
---|
338 | SELECT * FROM graph1_edges; |
---|
339 | |
---|
340 | id | source | target | cost | reverse_cost |
---|
341 | ----+--------+--------+------+-------------- |
---|
342 | 1 | 1 | 2 | | |
---|
343 | 2 | 1 | 3 | | |
---|
344 | 3 | 4 | 1 | | |
---|
345 | 4 | 2 | 3 | | |
---|
346 | (4 rows) |
---|
347 | |
---|
348 | And |
---|
349 | |
---|
350 | SELECT * FROM graph1_vertices; |
---|
351 | |
---|
352 | id | geom_id |
---|
353 | ----+--------- |
---|
354 | 1 | A |
---|
355 | 2 | B |
---|
356 | 3 | C |
---|
357 | 4 | D |
---|
358 | (4 rows) |
---|
359 | |
---|
360 | |
---|
361 | Notice the function will also update the edge_id column of graph1: |
---|
362 | |
---|
363 | gid | source_id | target_id | edge_id |
---|
364 | -----+-----------+-----------+--------- |
---|
365 | 0 | A | B | 1 |
---|
366 | 1 | A | C | 2 |
---|
367 | 2 | D | A | 3 |
---|
368 | 3 | B | C | 4 |
---|
369 | (4 rows) |
---|
370 | |
---|
371 | |
---|
372 | Then, you can use the shortest_path function, as below: |
---|
373 | |
---|
374 | SELECT * FROM shortest_path('SELECT id, source, target, 1::float8 AS |
---|
375 | cost FROM graph1_edges', |
---|
376 | (SELECT id FROM graph1_vertices WHERE geom_id = 'A'), |
---|
377 | (SELECT id FROM graph1_vertices WHERE geom_id = 'C'), |
---|
378 | false, false); |
---|
379 | |
---|
380 | The initial table has to contain the following columns: |
---|
381 | |
---|
382 | - gid anyelement: a unique identifier for each edge in you graph |
---|
383 | - source_id anyelement: an identifier for the starting vertex of the line |
---|
384 | - target_id anyelement: an identifier for the target vertex of the line |
---|
385 | (if the graph is not directed, source or target has the same |
---|
386 | meaning) |
---|
387 | - edge_id integer: this column will be filled by the allocated edge |
---|
388 | identifier. All data there will be overwritten, and you need to create |
---|
389 | this column if it does not exists before. |
---|
390 | |
---|
391 | The function "drop_graph_tables" will simply delete the edges and |
---|
392 | vertices associated tables. Example: |
---|
393 | |
---|
394 | SELECT drop_graph_tables('graph1'); |
---|
395 | |
---|
396 | |
---|
397 | POSTGIS GEOMETRIES IMPORTATION |
---|
398 | |
---|
399 | Some pl/pgsql functions are available for working with geographical |
---|
400 | data from PostGis tables. |
---|
401 | |
---|
402 | The table containing the graph has to contain the columns described in |
---|
403 | the previous section, and an additional geometric column called |
---|
404 | "the_geom" of type MULTILINESTRING. Only the first line in the |
---|
405 | multiline geomety will be handled. This restriction is because the |
---|
406 | shp2pgsql tool provided with postgis creates MULTILINESTRING geometric |
---|
407 | tables for shapefiles containing a set of lines. The importation |
---|
408 | should however handle more that only the first line in the multi line |
---|
409 | geometry (see TODO). |
---|
410 | |
---|
411 | Here's an example of such a table: |
---|
412 | |
---|
413 | SELECT gid, source_id, target_id, astext(the_geom) FROM graph2 LIMIT 4; |
---|
414 | |
---|
415 | gid | source_id | target_id | astext |
---|
416 | -----+-----------+-----------+-------------------------------------------------------------------------------------------- |
---|
417 | 0 | | | MULTILINESTRING((-0.357902298850575 51.2777105057471,-0.364822129560221 51.455488954023)) |
---|
418 | 1 | | | MULTILINESTRING((-0.415775862068966 51.6386587816092,-0.478232130809596 51.5784636541729)) |
---|
419 | 2 | | | MULTILINESTRING((-0.478232130809596 51.5784636541729,-0.382585141804099 51.5791468469515)) |
---|
420 | 3 | | | MULTILINESTRING((-0.364822129560221 51.455488954023,-0.433824600199901 51.5244914246627)) |
---|
421 | (4 rows) |
---|
422 | |
---|
423 | |
---|
424 | If the graph table does not contain identifier values in the source_id |
---|
425 | and target_id columns, a function is able to generate such ids, by |
---|
426 | extracting the starting and ending points of the line, and generating |
---|
427 | an unique id, for all points that are in a given distance. Example: |
---|
428 | |
---|
429 | SELECT assign_vertex_id('graph2', 0.1); |
---|
430 | |
---|
431 | SELECT gid, source_id, target_id, astext(the_geom) FROM graph2 LIMIT 4; |
---|
432 | |
---|
433 | gid | source_id | target_id | astext |
---|
434 | -----+-----------+-----------+-------------------------------------------------------------------------------------------- |
---|
435 | 0 | 1 | 2 | MULTILINESTRING((-0.357902298850575 51.2777105057471,-0.364822129560221 51.455488954023)) |
---|
436 | 1 | 3 | 3 | MULTILINESTRING((-0.415775862068966 51.6386587816092,-0.478232130809596 51.5784636541729)) |
---|
437 | 2 | 3 | 3 | MULTILINESTRING((-0.478232130809596 51.5784636541729,-0.382585141804099 51.5791468469515)) |
---|
438 | 3 | 2 | 2 | MULTILINESTRING((-0.364822129560221 51.455488954023,-0.433824600199901 51.5244914246627)) |
---|
439 | |
---|
440 | |
---|
441 | Now that the source_id and target_id are filled, the function |
---|
442 | create_graph_tables() can be used to create the edges |
---|
443 | and vertices tables (see above for the detailed description of |
---|
444 | create_graph_tables): |
---|
445 | |
---|
446 | SELECT create_graph_tables('graph2', 'int4'); |
---|
447 | |
---|
448 | Here's the content of the edges table: |
---|
449 | |
---|
450 | SELECT * FROM graph2_edges LIMIT 3; |
---|
451 | |
---|
452 | id | source | target | cost | reverse_cost |
---|
453 | ----+--------+--------+------+-------------- |
---|
454 | 1 | 1 | 2 | | |
---|
455 | 2 | 3 | 3 | | |
---|
456 | 4 | 2 | 2 | | |
---|
457 | (3 rows) |
---|
458 | |
---|
459 | We can see that it contains NULL values for the cost column. |
---|
460 | |
---|
461 | The function update_cost_from_distance can update the cost column with |
---|
462 | the distance of the lines contained in the geometry table, attached to |
---|
463 | each edge: |
---|
464 | |
---|
465 | SELECT update_cost_from_distance('graph2'); |
---|
466 | |
---|
467 | The costs are now: |
---|
468 | |
---|
469 | SELECT * FROM graph2_edges LIMIT 3; |
---|
470 | |
---|
471 | id | source | target | cost | reverse_cost |
---|
472 | ----+--------+--------+-------------------+-------------- |
---|
473 | 1 | 1 | 2 | 0.230081516048264 | |
---|
474 | 2 | 3 | 3 | 0.446760794328524 | |
---|
475 | 4 | 2 | 2 | 0.174348470878483 | |
---|
476 | |
---|
477 | |
---|
478 | Now, all is set up correctly for using the shortest_path() on these |
---|
479 | data: |
---|
480 | |
---|
481 | SELECT * FROM shortest_path('SELECT id, source, target, cost FROM graph2_edges', |
---|
482 | 1, 2, false, false); |
---|
483 | |
---|
484 | vertex_id | edge_id | cost |
---|
485 | -----------+---------+------ |
---|
486 | 1 | 1 | 0 |
---|
487 | 2 | -1 | 0 |
---|
488 | |
---|
489 | An additional function shortest_path_as_geometry() can be used to |
---|
490 | retrieve the result as a set of rows containing the geometry |
---|
491 | identifier and the geometry itself: |
---|
492 | |
---|
493 | SELECT gid, astext(the_geom) FROM shortest_path_as_geometry('graph2', 1, 2); |
---|
494 | |
---|
495 | gid | astext |
---|
496 | -----+-------------------------------------------------------------------------------------------- |
---|
497 | 0 | MULTILINESTRING((-0.357902298850575 51.2777105057471,-0.364822129560221 51.455488954023)) |
---|
498 | 22 | MULTILINESTRING((-0.417298850574714 51.3371070574713,-0.408546467391305 51.3885360617191)) |
---|
499 | (2 rows) |
---|
500 | |
---|
501 | |
---|
502 | MAPSERVER INTEGRATION |
---|
503 | |
---|
504 | The function shortest_path_as_geometry() can be used inside mapserver |
---|
505 | to draw shortest path directly, as in the following example: |
---|
506 | |
---|
507 | |
---|
508 | LAYER |
---|
509 | NAME "europe2" |
---|
510 | TYPE LINE |
---|
511 | |
---|
512 | STATUS DEFAULT |
---|
513 | CONNECTIONTYPE postgis |
---|
514 | CONNECTION "user=postgres host=localhost dbname=geo" |
---|
515 | DATA "the_geom from (SELECT the_geom, gid from |
---|
516 | shortest_path_as_geometry('bahnlinien_europa_polyline', 2629, 10171)) as |
---|
517 | foo using unique gid using srid=-1" |
---|
518 | |
---|
519 | TEMPLATE "t" |
---|
520 | CLASS |
---|
521 | NAME "0" |
---|
522 | STYLE |
---|
523 | SYMBOL "circle" |
---|
524 | SIZE 10 |
---|
525 | COLOR 50 50 100 |
---|
526 | END |
---|
527 | END |
---|
528 | END |
---|
529 | |
---|
530 | Notice however, that this function will be called at each map |
---|
531 | display, computing the shortest path every time. |
---|
532 | |
---|
533 | A better approach would be to generate the shortest path in a |
---|
534 | temporary table. |
---|
535 | |
---|
536 | |
---|
537 | LIMITATION / TODO |
---|
538 | |
---|
539 | Usage of the Boost graph library can certainly be optimised. Help from |
---|
540 | Boost/STL experts is welcomed. |
---|
541 | |
---|
542 | Might not work on very large datasets due to memory |
---|
543 | requirements. (Tested with sucess on a 8 million edges table). |
---|
544 | |
---|
545 | LICENCE |
---|
546 | |
---|
547 | Most features are available under GPL. |
---|
548 | Some Boost extesions are available under Boost license (see LICENSE_1_0.txt) |
---|
549 | |
---|
550 | AUTHORS |
---|
551 | |
---|
552 | Anton A. Patrushev <anton@orkney.co.jp> |
---|
553 | Mario H. Basa <mbasa@orkney.co.jp> |
---|
554 | |
---|
555 | Dijkstra part was made by |
---|
556 | Sylvain Pasche <sylvain.pasche@camptocamp.com> |
---|