OSSIM - Open Source Software Image Map  Version 1.9.0 (20180803)
newfft.cpp
Go to the documentation of this file.
1 //$ newfft.cpp
2 
3 // This is originally by Sande and Gentleman in 1967! I have translated from
4 // Fortran into C and a little bit of C++.
5 
6 // It takes about twice as long as fftw
7 // (http://theory.lcs.mit.edu/~fftw/homepage.html)
8 // but is much shorter than fftw and so despite its age
9 // might represent a reasonable
10 // compromise between speed and complexity.
11 // If you really need the speed get fftw.
12 
13 
14 // THIS SUBROUTINE WAS WRITTEN BY G.SANDE OF PRINCETON UNIVERSITY AND
15 // W.M.GENTLMAN OF THE BELL TELEPHONE LAB. IT WAS BROUGHT TO LONDON
16 // BY DR. M.D. GODFREY AT THE IMPERIAL COLLEGE AND WAS ADAPTED FOR
17 // BURROUGHS 6700 BY D. R. BRILLINGER AND J. PEMBERTON
18 // IT REPRESENTS THE STATE OF THE ART OF COMPUTING COMPLETE FINITE
19 // DISCRETE FOURIER TRANSFORMS AS OF NOV.1967.
20 // OTHER PROGRAMS REQUIRED.
21 // ONLY THOSE SUBROUTINES INCLUDED HERE.
22 // USAGE.
23 // CALL AR1DFT(N,X,Y)
24 // WHERE N IS THE NUMBER OF POINTS IN THE SEQUENCE .
25 // X - IS A ONE-DIMENSIONAL ARRAY CONTAINING THE REAL
26 // PART OF THE SEQUENCE.
27 // Y - IS A ONE-DIMENSIONAL ARRAY CONTAINING THE
28 // IMAGINARY PART OF THE SEQUENCE.
29 // THE TRANSFORM IS RETURNED IN X AND Y.
30 // METHOD
31 // FOR A GENERAL DISCUSSION OF THESE TRANSFORMS AND OF
32 // THE FAST METHOD FOR COMPUTING THEM, SEE GENTLEMAN AND SANDE,
33 // @FAST FOURIER TRANSFORMS - FOR FUN AND PROFIT,@ 1966 FALL JOINT
34 // COMPUTER CONFERENCE.
35 // THIS PROGRAM COMPUTES THIS FOR A COMPLEX SEQUENCE Z(T) OF LENGTH
36 // N WHOSE ELEMENTS ARE STORED AT(X(I) , Y(I)) AND RETURNS THE
37 // TRANSFORM COEFFICIENTS AT (X(I), Y(I)).
38 // DESCRIPTION
39 // AR1DFT IS A HIGHLY MODULAR ROUTINE CAPABLE OF COMPUTING IN PLACE
40 // THE COMPLETE FINITE DISCRETE FOURIER TRANSFORM OF A ONE-
41 // DIMENSIONAL SEQUENCE OF RATHER GENERAL LENGTH N.
42 // THE MAIN ROUTINE , AR1DFT ITSELF, FACTORS N. IT THEN CALLS ON
43 // ON GR 1D FT TO COMPUTE THE ACTUAL TRANSFORMS, USING THESE FACTORS.
44 // THIS GR 1D FT DOES, CALLING AT EACH STAGE ON THE APPROPRIATE KERN
45 // EL R2FTK, R4FTK, R8FTK, R16FTK, R3FTK, R5FTK, OR RPFTK TO PERFORM
46 // THE COMPUTATIONS FOR THIS PASS OVER THE SEQUENCE, DEPENDING ON
47 // WHETHER THE CORRESPONDING FACTOR IS 2, 4, 8, 16, 3, 5, OR SOME
48 // MORE GENERAL PRIME P. WHEN GR1DFT IS FINISHED THE TRANSFORM IS
49 // COMPUTED, HOWEVER, THE RESULTS ARE STORED IN "DIGITS REVERSED"
50 // ORDER. AR1DFT THEREFORE, CALLS UPON GR 1S FS TO SORT THEM OUT.
51 // TO RETURN TO THE FACTORIZATION, SINGLETON HAS POINTED OUT THAT
52 // THE TRANSFORMS ARE MORE EFFICIENT IF THE SAMPLE SIZE N, IS OF THE
53 // FORM B*A**2 AND B CONSISTS OF A SINGLE FACTOR. IN SUCH A CASE
54 // IF WE PROCESS THE FACTORS IN THE ORDER ABA THEN
55 // THE REORDERING CAN BE DONE AS FAST IN PLACE, AS WITH SCRATCH
56 // STORAGE. BUT AS B BECOMES MORE COMPLICATED, THE COST OF THE DIGIT
57 // REVERSING DUE TO B PART BECOMES VERY EXPENSIVE IF WE TRY TO DO IT
58 // IN PLACE. IN SUCH A CASE IT MIGHT BE BETTER TO USE EXTRA STORAGE
59 // A ROUTINE TO DO THIS IS, HOWEVER, NOT INCLUDED HERE.
60 // ANOTHER FEATURE INFLUENCING THE FACTORIZATION IS THAT FOR ANY FIXED
61 // FACTOR N WE CAN PREPARE A SPECIAL KERNEL WHICH WILL COMPUTE
62 // THAT STAGE OF THE TRANSFORM MORE EFFICIENTLY THAN WOULD A KERNEL
63 // FOR GENERAL FACTORS, ESPECIALLY IF THE GENERAL KERNEL HAD TO BE
64 // APPLIED SEVERAL TIMES. FOR EXAMPLE, FACTORS OF 4 ARE MORE
65 // EFFICIENT THAN FACTORS OF 2, FACTORS OF 8 MORE EFFICIENT THAN 4,ETC
66 // ON THE OTHER HAND DIMINISHING RETURNS RAPIDLY SET IN, ESPECIALLY
67 // SINCE THE LENGTH OF THE KERNEL FOR A SPECIAL CASE IS ROUGHLY
68 // PROPORTIONAL TO THE FACTOR IT DEALS WITH. HENCE THESE PROBABLY ARE
69 // ALL THE KERNELS WE WISH TO HAVE.
70 // RESTRICTIONS.
71 // AN UNFORTUNATE FEATURE OF THE SORTING PROBLEM IS THAT THE MOST
72 // EFFICIENT WAY TO DO IT IS WITH NESTED DO LOOPS, ONE FOR EACH
73 // FACTOR. THIS PUTS A RESTRICTION ON N AS TO HOW MANY FACTORS IT
74 // CAN HAVE. CURRENTLY THE LIMIT IS 16, BUT THE LIMIT CAN BE READILY
75 // RAISED IF NECESSARY.
76 // A SECOND RESTRICTION OF THE PROGRAM IS THAT LOCAL STORAGE OF THE
77 // THE ORDER P**2 IS REQUIRED BY THE GENERAL KERNEL RPFTK, SO SOME
78 // LIMIT MUST BE SET ON P. CURRENTLY THIS IS 19, BUT IT CAN BE INCRE
79 // INCREASED BY TRIVIAL CHANGES.
80 // OTHER COMMENTS.
81 //(1) THE ROUTINE IS ADAPTED TO CHECK WHETHER A GIVEN N WILL MEET THE
82 // ABOVE FACTORING REQUIREMENTS AN, IF NOT, TO RETURN THE NEXT HIGHER
83 // NUMBER, NX, SAY, WHICH WILL MEET THESE REQUIREMENTS.
84 // THIS CAN BE ACCHIEVED BY A STATEMENT OF THE FORM
85 // CALL FACTR(N,X,Y).
86 // IF A DIFFERENT N, SAY NX, IS RETURNED THEN THE TRANSFORMS COULD BE
87 // OBTAINED BY EXTENDING THE SIZE OF THE X-ARRAY AND Y-ARRAY TO NX,
88 // AND SETTING X(I) = Y(I) = 0., FOR I = N+1, NX.
89 //(2) IF THE SEQUENCE Z IS ONLY A REAL SEQUENCE, THEN THE IMAGINARY PART
90 // Y(I)=0., THIS WILL RETURN THE COSINE TRANSFORM OF THE REAL SEQUENCE
91 // IN X, AND THE SINE TRANSFORM IN Y.
92 
93 
94 #define WANT_STREAM
95 
96 #define WANT_MATH
97 
98 #include <cmath>
99 #include <ossim/matrix/newmatap.h>
100 
101 #ifdef use_namespace
102 namespace NEWMAT {
103 #endif
104 
105 #ifdef DO_REPORT
106 #define REPORT { static ExeCounter ExeCount(__LINE__,20); ++ExeCount; }
107 #else
108 #define REPORT {}
109 #endif
110 
111 inline Real square(Real x) { return x*x; }
112 inline int square(int x) { return x*x; }
113 
114 static void GR_1D_FS (int PTS, int N_SYM, int N_UN_SYM,
115  const SimpleIntArray& SYM, int P_SYM, const SimpleIntArray& UN_SYM,
116  Real* X, Real* Y);
117 static void GR_1D_FT (int N, int N_FACTOR, const SimpleIntArray& FACTOR,
118  Real* X, Real* Y);
119 static void R_P_FTK (int N, int M, int P, Real* X, Real* Y);
120 static void R_2_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1);
121 static void R_3_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1,
122  Real* X2, Real* Y2);
123 static void R_4_FTK (int N, int M,
124  Real* X0, Real* Y0, Real* X1, Real* Y1,
125  Real* X2, Real* Y2, Real* X3, Real* Y3);
126 static void R_5_FTK (int N, int M,
127  Real* X0, Real* Y0, Real* X1, Real* Y1, Real* X2, Real* Y2,
128  Real* X3, Real* Y3, Real* X4, Real* Y4);
129 static void R_8_FTK (int N, int M,
130  Real* X0, Real* Y0, Real* X1, Real* Y1,
131  Real* X2, Real* Y2, Real* X3, Real* Y3,
132  Real* X4, Real* Y4, Real* X5, Real* Y5,
133  Real* X6, Real* Y6, Real* X7, Real* Y7);
134 static void R_16_FTK (int N, int M,
135  Real* X0, Real* Y0, Real* X1, Real* Y1,
136  Real* X2, Real* Y2, Real* X3, Real* Y3,
137  Real* X4, Real* Y4, Real* X5, Real* Y5,
138  Real* X6, Real* Y6, Real* X7, Real* Y7,
139  Real* X8, Real* Y8, Real* X9, Real* Y9,
140  Real* X10, Real* Y10, Real* X11, Real* Y11,
141  Real* X12, Real* Y12, Real* X13, Real* Y13,
142  Real* X14, Real* Y14, Real* X15, Real* Y15);
143 static int BitReverse(int x, int prod, int n, const SimpleIntArray& f);
144 
145 
146 bool FFT_Controller::ar_1d_ft (int PTS, Real* X, Real *Y)
147 {
148 // ARBITRARY RADIX ONE DIMENSIONAL FOURIER TRANSFORM
149 
150  REPORT
151 
152  int F,J,N,NF,P,PMAX,P_SYM,P_TWO,Q,R,TWO_GRP;
153 
154  // NP is maximum number of squared factors allows PTS up to 2**32 at least
155  // NQ is number of not-squared factors - increase if we increase PMAX
156  const int NP = 16, NQ = 10;
157  SimpleIntArray PP(NP), QQ(NQ);
158 
159  TWO_GRP=16; PMAX=19;
160 
161  // PMAX is the maximum factor size
162  // TWO_GRP is the maximum power of 2 handled as a single factor
163  // Doesn't take advantage of combining powers of 2 when calculating
164  // number of factors
165 
166  if (PTS<=1) return true;
167  N=PTS; P_SYM=1; F=2; P=0; Q=0;
168 
169  // P counts the number of squared factors
170  // Q counts the number of the rest
171  // R = 0 for no non-squared factors; 1 otherwise
172 
173  // FACTOR holds all the factors - non-squared ones in the middle
174  // - length is 2*P+Q
175  // SYM also holds all the factors but with the non-squared ones
176  // multiplied together - length is 2*P+R
177  // PP holds the values of the squared factors - length is P
178  // QQ holds the values of the rest - length is Q
179 
180  // P_SYM holds the product of the squared factors
181 
182  // find the factors - load into PP and QQ
183  while (N > 1)
184  {
185  bool fail = true;
186  for (J=F; J<=PMAX; J++)
187  if (N % J == 0) { fail = false; F=J; break; }
188  if (fail || P >= NP || Q >= NQ) return false; // can't factor
189  N /= F;
190  if (N % F != 0) QQ[Q++] = F;
191  else { N /= F; PP[P++] = F; P_SYM *= F; }
192  }
193 
194  R = (Q == 0) ? 0 : 1; // R = 0 if no not-squared factors, 1 otherwise
195 
196  NF = 2*P + Q;
197  SimpleIntArray FACTOR(NF + 1), SYM(2*P + R);
198  FACTOR[NF] = 0; // we need this in the "combine powers of 2"
199 
200  // load into SYM and FACTOR
201  for (J=0; J<P; J++)
202  { SYM[J]=FACTOR[J]=PP[P-1-J]; FACTOR[P+Q+J]=SYM[P+R+J]=PP[J]; }
203 
204  if (Q>0)
205  {
206  REPORT
207  for (J=0; J<Q; J++) FACTOR[P+J]=QQ[J];
208  SYM[P]=PTS/square(P_SYM);
209  }
210 
211  // combine powers of 2
212  P_TWO = 1;
213  for (J=0; J < NF; J++)
214  {
215  if (FACTOR[J]!=2) continue;
216  P_TWO=P_TWO*2; FACTOR[J]=1;
217  if (P_TWO<TWO_GRP && FACTOR[J+1]==2) continue;
218  FACTOR[J]=P_TWO; P_TWO=1;
219  }
220 
221  if (P==0) R=0;
222  if (Q<=1) Q=0;
223 
224  // do the analysis
225  GR_1D_FT(PTS,NF,FACTOR,X,Y); // the transform
226  GR_1D_FS(PTS,2*P+R,Q,SYM,P_SYM,QQ,X,Y); // the reshuffling
227 
228  return true;
229 
230 }
231 
232 static void GR_1D_FS (int PTS, int N_SYM, int N_UN_SYM,
233  const SimpleIntArray& SYM, int P_SYM, const SimpleIntArray& UN_SYM,
234  Real* X, Real* Y)
235 {
236 // GENERAL RADIX ONE DIMENSIONAL FOURIER SORT
237 
238 // PTS = number of points
239 // N_SYM = length of SYM
240 // N_UN_SYM = length of UN_SYM
241 // SYM: squared factors + product of non-squared factors + squared factors
242 // P_SYM = product of squared factors (each included only once)
243 // UN_SYM: not-squared factors
244 
245  REPORT
246 
247  Real T;
248  int JJ,KK,P_UN_SYM;
249 
250  // I have replaced the multiple for-loop used by Sande-Gentleman code
251  // by the following code which does not limit the number of factors
252 
253  if (N_SYM > 0)
254  {
255  REPORT
256  SimpleIntArray U(N_SYM);
257  for(MultiRadixCounter MRC(N_SYM, SYM, U); !MRC.Finish(); ++MRC)
258  {
259  if (MRC.Swap())
260  {
261  int P = MRC.Reverse(); int JJ = MRC.Counter(); Real T;
262  T=X[JJ]; X[JJ]=X[P]; X[P]=T; T=Y[JJ]; Y[JJ]=Y[P]; Y[P]=T;
263  }
264  }
265  }
266 
267  int J,JL,K,L,M,MS;
268 
269  // UN_SYM contains the non-squared factors
270  // I have replaced the Sande-Gentleman code as it runs into
271  // integer overflow problems
272  // My code (and theirs) would be improved by using a bit array
273  // as suggested by Van Loan
274 
275  if (N_UN_SYM==0) { REPORT return; }
276  P_UN_SYM=PTS/square(P_SYM); JL=(P_UN_SYM-3)*P_SYM; MS=P_UN_SYM*P_SYM;
277 
278  for (J = P_SYM; J<=JL; J+=P_SYM)
279  {
280  K=J;
281  do K = P_SYM * BitReverse(K / P_SYM, P_UN_SYM, N_UN_SYM, UN_SYM);
282  while (K<J);
283 
284  if (K!=J)
285  {
286  REPORT
287  for (L=0; L<P_SYM; L++) for (M=L; M<PTS; M+=MS)
288  {
289  JJ=M+J; KK=M+K;
290  T=X[JJ]; X[JJ]=X[KK]; X[KK]=T; T=Y[JJ]; Y[JJ]=Y[KK]; Y[KK]=T;
291  }
292  }
293  }
294 
295  return;
296 }
297 
298 static void GR_1D_FT (int N, int N_FACTOR, const SimpleIntArray& FACTOR,
299  Real* X, Real* Y)
300 {
301 // GENERAL RADIX ONE DIMENSIONAL FOURIER TRANSFORM;
302 
303  REPORT
304 
305  int M = N;
306 
307  for (int i = 0; i < N_FACTOR; i++)
308  {
309  int P = FACTOR[i]; M /= P;
310 
311  switch(P)
312  {
313  case 1: REPORT break;
314  case 2: REPORT R_2_FTK (N,M,X,Y,X+M,Y+M); break;
315  case 3: REPORT R_3_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M); break;
316  case 4: REPORT R_4_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,X+3*M,Y+3*M); break;
317  case 5:
318  REPORT
319  R_5_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,X+3*M,Y+3*M,X+4*M,Y+4*M);
320  break;
321  case 8:
322  REPORT
323  R_8_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,
324  X+3*M,Y+3*M,X+4*M,Y+4*M,X+5*M,Y+5*M,
325  X+6*M,Y+6*M,X+7*M,Y+7*M);
326  break;
327  case 16:
328  REPORT
329  R_16_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,
330  X+3*M,Y+3*M,X+4*M,Y+4*M,X+5*M,Y+5*M,
331  X+6*M,Y+6*M,X+7*M,Y+7*M,X+8*M,Y+8*M,
332  X+9*M,Y+9*M,X+10*M,Y+10*M,X+11*M,Y+11*M,
333  X+12*M,Y+12*M,X+13*M,Y+13*M,X+14*M,Y+14*M,
334  X+15*M,Y+15*M);
335  break;
336  default: REPORT R_P_FTK (N,M,P,X,Y); break;
337  }
338  }
339 
340 }
341 
342 static void R_P_FTK (int N, int M, int P, Real* X, Real* Y)
343 // RADIX PRIME FOURIER TRANSFORM KERNEL;
344 // X and Y are treated as M * P matrices with Fortran storage
345 {
346  REPORT
347  bool NO_FOLD,ZERO;
348  Real ANGLE,IS,IU,RS,RU,T,TWOPI,XT,YT;
349  int J,JJ,K0,K,M_OVER_2,MP,PM,PP,U,V;
350 
351  Real AA [9][9], BB [9][9];
352  Real A [18], B [18], C [18], S [18];
353  Real IA [9], IB [9], RA [9], RB [9];
354 
355  TWOPI=8.0*std::atan(1.0);
356  M_OVER_2=M/2+1; MP=M*P; PP=P/2; PM=P-1;
357 
358  for (U=0; U<PP; U++)
359  {
360  ANGLE=TWOPI*Real(U+1)/Real(P);
361  JJ=P-U-2;
362  A[U]=std::cos(ANGLE); B[U]=std::sin(ANGLE);
363  A[JJ]=A[U]; B[JJ]= -B[U];
364  }
365 
366  for (U=1; U<=PP; U++)
367  {
368  for (V=1; V<=PP; V++)
369  { JJ=U*V-U*V/P*P; AA[V-1][U-1]=A[JJ-1]; BB[V-1][U-1]=B[JJ-1]; }
370  }
371 
372  for (J=0; J<M_OVER_2; J++)
373  {
374  NO_FOLD = (J==0 || 2*J==M);
375  K0=J;
376  ANGLE=TWOPI*Real(J)/Real(MP); ZERO=ANGLE==0.0;
377  C[0]=std::cos(ANGLE); S[0]=std::sin(ANGLE);
378  for (U=1; U<PM; U++)
379  {
380  C[U]=C[U-1]*C[0]-S[U-1]*S[0];
381  S[U]=S[U-1]*C[0]+C[U-1]*S[0];
382  }
383  goto L700;
384  L500:
385  REPORT
386  if (NO_FOLD) { REPORT goto L1500; }
387  REPORT
388  NO_FOLD=true; K0=M-J;
389  for (U=0; U<PM; U++)
390  { T=C[U]*A[U]+S[U]*B[U]; S[U]= -S[U]*A[U]+C[U]*B[U]; C[U]=T; }
391  L700:
392  REPORT
393  for (K=K0; K<N; K+=MP)
394  {
395  XT=X[K]; YT=Y[K];
396  for (U=1; U<=PP; U++)
397  {
398  RA[U-1]=XT; IA[U-1]=YT;
399  RB[U-1]=0.0; IB[U-1]=0.0;
400  }
401  for (U=1; U<=PP; U++)
402  {
403  JJ=P-U;
404  RS=X[K+M*U]+X[K+M*JJ]; IS=Y[K+M*U]+Y[K+M*JJ];
405  RU=X[K+M*U]-X[K+M*JJ]; IU=Y[K+M*U]-Y[K+M*JJ];
406  XT=XT+RS; YT=YT+IS;
407  for (V=0; V<PP; V++)
408  {
409  RA[V]=RA[V]+RS*AA[V][U-1]; IA[V]=IA[V]+IS*AA[V][U-1];
410  RB[V]=RB[V]+RU*BB[V][U-1]; IB[V]=IB[V]+IU*BB[V][U-1];
411  }
412  }
413  X[K]=XT; Y[K]=YT;
414  for (U=1; U<=PP; U++)
415  {
416  if (!ZERO)
417  {
418  REPORT
419  XT=RA[U-1]+IB[U-1]; YT=IA[U-1]-RB[U-1];
420  X[K+M*U]=XT*C[U-1]+YT*S[U-1]; Y[K+M*U]=YT*C[U-1]-XT*S[U-1];
421  JJ=P-U;
422  XT=RA[U-1]-IB[U-1]; YT=IA[U-1]+RB[U-1];
423  X[K+M*JJ]=XT*C[JJ-1]+YT*S[JJ-1];
424  Y[K+M*JJ]=YT*C[JJ-1]-XT*S[JJ-1];
425  }
426  else
427  {
428  REPORT
429  X[K+M*U]=RA[U-1]+IB[U-1]; Y[K+M*U]=IA[U-1]-RB[U-1];
430  JJ=P-U;
431  X[K+M*JJ]=RA[U-1]-IB[U-1]; Y[K+M*JJ]=IA[U-1]+RB[U-1];
432  }
433  }
434  }
435  goto L500;
436 L1500: ;
437  }
438  return;
439 }
440 
441 static void R_2_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1)
442 // RADIX TWO FOURIER TRANSFORM KERNEL;
443 {
444  REPORT
445  bool NO_FOLD,ZERO;
446  int J,K,K0,M2,M_OVER_2;
447  Real ANGLE,C,IS,IU,RS,RU,S,TWOPI;
448 
449  M2=M*2; M_OVER_2=M/2+1;
450  TWOPI=8.0*std::atan(1.0);
451 
452  for (J=0; J<M_OVER_2; J++)
453  {
454  NO_FOLD = (J==0 || 2*J==M);
455  K0=J;
456  ANGLE=TWOPI*Real(J)/Real(M2); ZERO=ANGLE==0.0;
457  C=std::cos(ANGLE); S=std::sin(ANGLE);
458  goto L200;
459  L100:
460  REPORT
461  if (NO_FOLD) { REPORT goto L600; }
462  REPORT
463  NO_FOLD=true; K0=M-J; C= -C;
464  L200:
465  REPORT
466  for (K=K0; K<N; K+=M2)
467  {
468  RS=X0[K]+X1[K]; IS=Y0[K]+Y1[K];
469  RU=X0[K]-X1[K]; IU=Y0[K]-Y1[K];
470  X0[K]=RS; Y0[K]=IS;
471  if (!ZERO) { X1[K]=RU*C+IU*S; Y1[K]=IU*C-RU*S; }
472  else { X1[K]=RU; Y1[K]=IU; }
473  }
474  goto L100;
475  L600: ;
476  }
477 
478  return;
479 }
480 
481 static void R_3_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1,
482  Real* X2, Real* Y2)
483 // RADIX THREE FOURIER TRANSFORM KERNEL
484 {
485  REPORT
486  bool NO_FOLD,ZERO;
487  int J,K,K0,M3,M_OVER_2;
488  Real ANGLE,A,B,C1,C2,S1,S2,T,TWOPI;
489  Real I0,I1,I2,IA,IB,IS,R0,R1,R2,RA,RB,RS;
490 
491  M3=M*3; M_OVER_2=M/2+1; TWOPI=8.0*std::atan(1.0);
492  A=std::cos(TWOPI/3.0); B=std::sin(TWOPI/3.0);
493 
494  for (J=0; J<M_OVER_2; J++)
495  {
496  NO_FOLD = (J==0 || 2*J==M);
497  K0=J;
498  ANGLE=TWOPI*Real(J)/Real(M3); ZERO=ANGLE==0.0;
499  C1=std::cos(ANGLE); S1=std::sin(ANGLE);
500  C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
501  goto L200;
502  L100:
503  REPORT
504  if (NO_FOLD) { REPORT goto L600; }
505  REPORT
506  NO_FOLD=true; K0=M-J;
507  T=C1*A+S1*B; S1=C1*B-S1*A; C1=T;
508  T=C2*A-S2*B; S2= -C2*B-S2*A; C2=T;
509  L200:
510  REPORT
511  for (K=K0; K<N; K+=M3)
512  {
513  R0 = X0[K]; I0 = Y0[K];
514  RS=X1[K]+X2[K]; IS=Y1[K]+Y2[K];
515  X0[K]=R0+RS; Y0[K]=I0+IS;
516  RA=R0+RS*A; IA=I0+IS*A;
517  RB=(X1[K]-X2[K])*B; IB=(Y1[K]-Y2[K])*B;
518  if (!ZERO)
519  {
520  REPORT
521  R1=RA+IB; I1=IA-RB; R2=RA-IB; I2=IA+RB;
522  X1[K]=R1*C1+I1*S1; Y1[K]=I1*C1-R1*S1;
523  X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
524  }
525  else { REPORT X1[K]=RA+IB; Y1[K]=IA-RB; X2[K]=RA-IB; Y2[K]=IA+RB; }
526  }
527  goto L100;
528  L600: ;
529  }
530 
531  return;
532 }
533 
534 static void R_4_FTK (int N, int M,
535  Real* X0, Real* Y0, Real* X1, Real* Y1,
536  Real* X2, Real* Y2, Real* X3, Real* Y3)
537 // RADIX FOUR FOURIER TRANSFORM KERNEL
538 {
539  REPORT
540  bool NO_FOLD,ZERO;
541  int J,K,K0,M4,M_OVER_2;
542  Real ANGLE,C1,C2,C3,S1,S2,S3,T,TWOPI;
543  Real I1,I2,I3,IS0,IS1,IU0,IU1,R1,R2,R3,RS0,RS1,RU0,RU1;
544 
545  M4=M*4; M_OVER_2=M/2+1;
546  TWOPI=8.0*std::atan(1.0);
547 
548  for (J=0; J<M_OVER_2; J++)
549  {
550  NO_FOLD = (J==0 || 2*J==M);
551  K0=J;
552  ANGLE=TWOPI*Real(J)/Real(M4); ZERO=ANGLE==0.0;
553  C1=std::cos(ANGLE); S1=std::sin(ANGLE);
554  C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
555  C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
556  goto L200;
557  L100:
558  REPORT
559  if (NO_FOLD) { REPORT goto L600; }
560  REPORT
561  NO_FOLD=true; K0=M-J;
562  T=C1; C1=S1; S1=T;
563  C2= -C2;
564  T=C3; C3= -S3; S3= -T;
565  L200:
566  REPORT
567  for (K=K0; K<N; K+=M4)
568  {
569  RS0=X0[K]+X2[K]; IS0=Y0[K]+Y2[K];
570  RU0=X0[K]-X2[K]; IU0=Y0[K]-Y2[K];
571  RS1=X1[K]+X3[K]; IS1=Y1[K]+Y3[K];
572  RU1=X1[K]-X3[K]; IU1=Y1[K]-Y3[K];
573  X0[K]=RS0+RS1; Y0[K]=IS0+IS1;
574  if (!ZERO)
575  {
576  REPORT
577  R1=RU0+IU1; I1=IU0-RU1;
578  R2=RS0-RS1; I2=IS0-IS1;
579  R3=RU0-IU1; I3=IU0+RU1;
580  X2[K]=R1*C1+I1*S1; Y2[K]=I1*C1-R1*S1;
581  X1[K]=R2*C2+I2*S2; Y1[K]=I2*C2-R2*S2;
582  X3[K]=R3*C3+I3*S3; Y3[K]=I3*C3-R3*S3;
583  }
584  else
585  {
586  REPORT
587  X2[K]=RU0+IU1; Y2[K]=IU0-RU1;
588  X1[K]=RS0-RS1; Y1[K]=IS0-IS1;
589  X3[K]=RU0-IU1; Y3[K]=IU0+RU1;
590  }
591  }
592  goto L100;
593  L600: ;
594  }
595 
596  return;
597 }
598 
599 static void R_5_FTK (int N, int M,
600  Real* X0, Real* Y0, Real* X1, Real* Y1, Real* X2, Real* Y2,
601  Real* X3, Real* Y3, Real* X4, Real* Y4)
602 // RADIX FIVE FOURIER TRANSFORM KERNEL
603 
604 {
605  REPORT
606  bool NO_FOLD,ZERO;
607  int J,K,K0,M5,M_OVER_2;
608  Real ANGLE,A1,A2,B1,B2,C1,C2,C3,C4,S1,S2,S3,S4,T,TWOPI;
609  Real R0,R1,R2,R3,R4,RA1,RA2,RB1,RB2,RS1,RS2,RU1,RU2;
610  Real I0,I1,I2,I3,I4,IA1,IA2,IB1,IB2,IS1,IS2,IU1,IU2;
611 
612  M5=M*5; M_OVER_2=M/2+1;
613  TWOPI=8.0*std::atan(1.0);
614  A1=std::cos(TWOPI/5.0); B1=std::sin(TWOPI/5.0);
615  A2=std::cos(2.0*TWOPI/5.0); B2=std::sin(2.0*TWOPI/5.0);
616 
617  for (J=0; J<M_OVER_2; J++)
618  {
619  NO_FOLD = (J==0 || 2*J==M);
620  K0=J;
621  ANGLE=TWOPI*Real(J)/Real(M5); ZERO=ANGLE==0.0;
622  C1=std::cos(ANGLE); S1=std::sin(ANGLE);
623  C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
624  C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
625  C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
626  goto L200;
627  L100:
628  REPORT
629  if (NO_FOLD) { REPORT goto L600; }
630  REPORT
631  NO_FOLD=true; K0=M-J;
632  T=C1*A1+S1*B1; S1=C1*B1-S1*A1; C1=T;
633  T=C2*A2+S2*B2; S2=C2*B2-S2*A2; C2=T;
634  T=C3*A2-S3*B2; S3= -C3*B2-S3*A2; C3=T;
635  T=C4*A1-S4*B1; S4= -C4*B1-S4*A1; C4=T;
636  L200:
637  REPORT
638  for (K=K0; K<N; K+=M5)
639  {
640  R0=X0[K]; I0=Y0[K];
641  RS1=X1[K]+X4[K]; IS1=Y1[K]+Y4[K];
642  RU1=X1[K]-X4[K]; IU1=Y1[K]-Y4[K];
643  RS2=X2[K]+X3[K]; IS2=Y2[K]+Y3[K];
644  RU2=X2[K]-X3[K]; IU2=Y2[K]-Y3[K];
645  X0[K]=R0+RS1+RS2; Y0[K]=I0+IS1+IS2;
646  RA1=R0+RS1*A1+RS2*A2; IA1=I0+IS1*A1+IS2*A2;
647  RA2=R0+RS1*A2+RS2*A1; IA2=I0+IS1*A2+IS2*A1;
648  RB1=RU1*B1+RU2*B2; IB1=IU1*B1+IU2*B2;
649  RB2=RU1*B2-RU2*B1; IB2=IU1*B2-IU2*B1;
650  if (!ZERO)
651  {
652  REPORT
653  R1=RA1+IB1; I1=IA1-RB1;
654  R2=RA2+IB2; I2=IA2-RB2;
655  R3=RA2-IB2; I3=IA2+RB2;
656  R4=RA1-IB1; I4=IA1+RB1;
657  X1[K]=R1*C1+I1*S1; Y1[K]=I1*C1-R1*S1;
658  X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
659  X3[K]=R3*C3+I3*S3; Y3[K]=I3*C3-R3*S3;
660  X4[K]=R4*C4+I4*S4; Y4[K]=I4*C4-R4*S4;
661  }
662  else
663  {
664  REPORT
665  X1[K]=RA1+IB1; Y1[K]=IA1-RB1;
666  X2[K]=RA2+IB2; Y2[K]=IA2-RB2;
667  X3[K]=RA2-IB2; Y3[K]=IA2+RB2;
668  X4[K]=RA1-IB1; Y4[K]=IA1+RB1;
669  }
670  }
671  goto L100;
672  L600: ;
673  }
674 
675  return;
676 }
677 
678 static void R_8_FTK (int N, int M,
679  Real* X0, Real* Y0, Real* X1, Real* Y1,
680  Real* X2, Real* Y2, Real* X3, Real* Y3,
681  Real* X4, Real* Y4, Real* X5, Real* Y5,
682  Real* X6, Real* Y6, Real* X7, Real* Y7)
683 // RADIX EIGHT FOURIER TRANSFORM KERNEL
684 {
685  REPORT
686  bool NO_FOLD,ZERO;
687  int J,K,K0,M8,M_OVER_2;
688  Real ANGLE,C1,C2,C3,C4,C5,C6,C7,E,S1,S2,S3,S4,S5,S6,S7,T,TWOPI;
689  Real R1,R2,R3,R4,R5,R6,R7,RS0,RS1,RS2,RS3,RU0,RU1,RU2,RU3;
690  Real I1,I2,I3,I4,I5,I6,I7,IS0,IS1,IS2,IS3,IU0,IU1,IU2,IU3;
691  Real RSS0,RSS1,RSU0,RSU1,RUS0,RUS1,RUU0,RUU1;
692  Real ISS0,ISS1,ISU0,ISU1,IUS0,IUS1,IUU0,IUU1;
693 
694  M8=M*8; M_OVER_2=M/2+1;
695  TWOPI=8.0*std::atan(1.0); E=std::cos(TWOPI/8.0);
696 
697  for (J=0;J<M_OVER_2;J++)
698  {
699  NO_FOLD= (J==0 || 2*J==M);
700  K0=J;
701  ANGLE=TWOPI*Real(J)/Real(M8); ZERO=ANGLE==0.0;
702  C1=std::cos(ANGLE); S1=std::sin(ANGLE);
703  C2=C1*C1-S1*S1; S2=C1*S1+S1*C1;
704  C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
705  C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
706  C5=C4*C1-S4*S1; S5=S4*C1+C4*S1;
707  C6=C4*C2-S4*S2; S6=S4*C2+C4*S2;
708  C7=C4*C3-S4*S3; S7=S4*C3+C4*S3;
709  goto L200;
710  L100:
711  REPORT
712  if (NO_FOLD) { REPORT goto L600; }
713  REPORT
714  NO_FOLD=true; K0=M-J;
715  T=(C1+S1)*E; S1=(C1-S1)*E; C1=T;
716  T=S2; S2=C2; C2=T;
717  T=(-C3+S3)*E; S3=(C3+S3)*E; C3=T;
718  C4= -C4;
719  T= -(C5+S5)*E; S5=(-C5+S5)*E; C5=T;
720  T= -S6; S6= -C6; C6=T;
721  T=(C7-S7)*E; S7= -(C7+S7)*E; C7=T;
722  L200:
723  REPORT
724  for (K=K0; K<N; K+=M8)
725  {
726  RS0=X0[K]+X4[K]; IS0=Y0[K]+Y4[K];
727  RU0=X0[K]-X4[K]; IU0=Y0[K]-Y4[K];
728  RS1=X1[K]+X5[K]; IS1=Y1[K]+Y5[K];
729  RU1=X1[K]-X5[K]; IU1=Y1[K]-Y5[K];
730  RS2=X2[K]+X6[K]; IS2=Y2[K]+Y6[K];
731  RU2=X2[K]-X6[K]; IU2=Y2[K]-Y6[K];
732  RS3=X3[K]+X7[K]; IS3=Y3[K]+Y7[K];
733  RU3=X3[K]-X7[K]; IU3=Y3[K]-Y7[K];
734  RSS0=RS0+RS2; ISS0=IS0+IS2;
735  RSU0=RS0-RS2; ISU0=IS0-IS2;
736  RSS1=RS1+RS3; ISS1=IS1+IS3;
737  RSU1=RS1-RS3; ISU1=IS1-IS3;
738  RUS0=RU0-IU2; IUS0=IU0+RU2;
739  RUU0=RU0+IU2; IUU0=IU0-RU2;
740  RUS1=RU1-IU3; IUS1=IU1+RU3;
741  RUU1=RU1+IU3; IUU1=IU1-RU3;
742  T=(RUS1+IUS1)*E; IUS1=(IUS1-RUS1)*E; RUS1=T;
743  T=(RUU1+IUU1)*E; IUU1=(IUU1-RUU1)*E; RUU1=T;
744  X0[K]=RSS0+RSS1; Y0[K]=ISS0+ISS1;
745  if (!ZERO)
746  {
747  REPORT
748  R1=RUU0+RUU1; I1=IUU0+IUU1;
749  R2=RSU0+ISU1; I2=ISU0-RSU1;
750  R3=RUS0+IUS1; I3=IUS0-RUS1;
751  R4=RSS0-RSS1; I4=ISS0-ISS1;
752  R5=RUU0-RUU1; I5=IUU0-IUU1;
753  R6=RSU0-ISU1; I6=ISU0+RSU1;
754  R7=RUS0-IUS1; I7=IUS0+RUS1;
755  X4[K]=R1*C1+I1*S1; Y4[K]=I1*C1-R1*S1;
756  X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
757  X6[K]=R3*C3+I3*S3; Y6[K]=I3*C3-R3*S3;
758  X1[K]=R4*C4+I4*S4; Y1[K]=I4*C4-R4*S4;
759  X5[K]=R5*C5+I5*S5; Y5[K]=I5*C5-R5*S5;
760  X3[K]=R6*C6+I6*S6; Y3[K]=I6*C6-R6*S6;
761  X7[K]=R7*C7+I7*S7; Y7[K]=I7*C7-R7*S7;
762  }
763  else
764  {
765  REPORT
766  X4[K]=RUU0+RUU1; Y4[K]=IUU0+IUU1;
767  X2[K]=RSU0+ISU1; Y2[K]=ISU0-RSU1;
768  X6[K]=RUS0+IUS1; Y6[K]=IUS0-RUS1;
769  X1[K]=RSS0-RSS1; Y1[K]=ISS0-ISS1;
770  X5[K]=RUU0-RUU1; Y5[K]=IUU0-IUU1;
771  X3[K]=RSU0-ISU1; Y3[K]=ISU0+RSU1;
772  X7[K]=RUS0-IUS1; Y7[K]=IUS0+RUS1;
773  }
774  }
775  goto L100;
776  L600: ;
777  }
778 
779  return;
780 }
781 
782 static void R_16_FTK (int N, int M,
783  Real* X0, Real* Y0, Real* X1, Real* Y1,
784  Real* X2, Real* Y2, Real* X3, Real* Y3,
785  Real* X4, Real* Y4, Real* X5, Real* Y5,
786  Real* X6, Real* Y6, Real* X7, Real* Y7,
787  Real* X8, Real* Y8, Real* X9, Real* Y9,
788  Real* X10, Real* Y10, Real* X11, Real* Y11,
789  Real* X12, Real* Y12, Real* X13, Real* Y13,
790  Real* X14, Real* Y14, Real* X15, Real* Y15)
791 // RADIX SIXTEEN FOURIER TRANSFORM KERNEL
792 {
793  REPORT
794  bool NO_FOLD,ZERO;
795  int J,K,K0,M16,M_OVER_2;
796  Real ANGLE,EI1,ER1,E2,EI3,ER3,EI5,ER5,T,TWOPI;
797  Real RS0,RS1,RS2,RS3,RS4,RS5,RS6,RS7;
798  Real IS0,IS1,IS2,IS3,IS4,IS5,IS6,IS7;
799  Real RU0,RU1,RU2,RU3,RU4,RU5,RU6,RU7;
800  Real IU0,IU1,IU2,IU3,IU4,IU5,IU6,IU7;
801  Real RUS0,RUS1,RUS2,RUS3,RUU0,RUU1,RUU2,RUU3;
802  Real ISS0,ISS1,ISS2,ISS3,ISU0,ISU1,ISU2,ISU3;
803  Real RSS0,RSS1,RSS2,RSS3,RSU0,RSU1,RSU2,RSU3;
804  Real IUS0,IUS1,IUS2,IUS3,IUU0,IUU1,IUU2,IUU3;
805  Real RSSS0,RSSS1,RSSU0,RSSU1,RSUS0,RSUS1,RSUU0,RSUU1;
806  Real ISSS0,ISSS1,ISSU0,ISSU1,ISUS0,ISUS1,ISUU0,ISUU1;
807  Real RUSS0,RUSS1,RUSU0,RUSU1,RUUS0,RUUS1,RUUU0,RUUU1;
808  Real IUSS0,IUSS1,IUSU0,IUSU1,IUUS0,IUUS1,IUUU0,IUUU1;
809  Real R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15;
810  Real I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15;
811  Real C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15;
812  Real S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15;
813 
814  M16=M*16; M_OVER_2=M/2+1;
815  TWOPI=8.0*std::atan(1.0);
816  ER1=std::cos(TWOPI/16.0); EI1=std::sin(TWOPI/16.0);
817  E2=std::cos(TWOPI/8.0);
818  ER3=std::cos(3.0*TWOPI/16.0); EI3=std::sin(3.0*TWOPI/16.0);
819  ER5=std::cos(5.0*TWOPI/16.0); EI5=std::sin(5.0*TWOPI/16.0);
820 
821  for (J=0; J<M_OVER_2; J++)
822  {
823  NO_FOLD = (J==0 || 2*J==M);
824  K0=J;
825  ANGLE=TWOPI*Real(J)/Real(M16);
826  ZERO=ANGLE==0.0;
827  C1=std::cos(ANGLE); S1=std::sin(ANGLE);
828  C2=C1*C1-S1*S1; S2=C1*S1+S1*C1;
829  C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
830  C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
831  C5=C4*C1-S4*S1; S5=S4*C1+C4*S1;
832  C6=C4*C2-S4*S2; S6=S4*C2+C4*S2;
833  C7=C4*C3-S4*S3; S7=S4*C3+C4*S3;
834  C8=C4*C4-S4*S4; S8=C4*S4+S4*C4;
835  C9=C8*C1-S8*S1; S9=S8*C1+C8*S1;
836  C10=C8*C2-S8*S2; S10=S8*C2+C8*S2;
837  C11=C8*C3-S8*S3; S11=S8*C3+C8*S3;
838  C12=C8*C4-S8*S4; S12=S8*C4+C8*S4;
839  C13=C8*C5-S8*S5; S13=S8*C5+C8*S5;
840  C14=C8*C6-S8*S6; S14=S8*C6+C8*S6;
841  C15=C8*C7-S8*S7; S15=S8*C7+C8*S7;
842  goto L200;
843  L100:
844  REPORT
845  if (NO_FOLD) { REPORT goto L600; }
846  REPORT
847  NO_FOLD=true; K0=M-J;
848  T=C1*ER1+S1*EI1; S1= -S1*ER1+C1*EI1; C1=T;
849  T=(C2+S2)*E2; S2=(C2-S2)*E2; C2=T;
850  T=C3*ER3+S3*EI3; S3= -S3*ER3+C3*EI3; C3=T;
851  T=S4; S4=C4; C4=T;
852  T=S5*ER1-C5*EI1; S5=C5*ER1+S5*EI1; C5=T;
853  T=(-C6+S6)*E2; S6=(C6+S6)*E2; C6=T;
854  T=S7*ER3-C7*EI3; S7=C7*ER3+S7*EI3; C7=T;
855  C8= -C8;
856  T= -(C9*ER1+S9*EI1); S9=S9*ER1-C9*EI1; C9=T;
857  T= -(C10+S10)*E2; S10=(-C10+S10)*E2; C10=T;
858  T= -(C11*ER3+S11*EI3); S11=S11*ER3-C11*EI3; C11=T;
859  T= -S12; S12= -C12; C12=T;
860  T= -S13*ER1+C13*EI1; S13= -(C13*ER1+S13*EI1); C13=T;
861  T=(C14-S14)*E2; S14= -(C14+S14)*E2; C14=T;
862  T= -S15*ER3+C15*EI3; S15= -(C15*ER3+S15*EI3); C15=T;
863  L200:
864  REPORT
865  for (K=K0; K<N; K+=M16)
866  {
867  RS0=X0[K]+X8[K]; IS0=Y0[K]+Y8[K];
868  RU0=X0[K]-X8[K]; IU0=Y0[K]-Y8[K];
869  RS1=X1[K]+X9[K]; IS1=Y1[K]+Y9[K];
870  RU1=X1[K]-X9[K]; IU1=Y1[K]-Y9[K];
871  RS2=X2[K]+X10[K]; IS2=Y2[K]+Y10[K];
872  RU2=X2[K]-X10[K]; IU2=Y2[K]-Y10[K];
873  RS3=X3[K]+X11[K]; IS3=Y3[K]+Y11[K];
874  RU3=X3[K]-X11[K]; IU3=Y3[K]-Y11[K];
875  RS4=X4[K]+X12[K]; IS4=Y4[K]+Y12[K];
876  RU4=X4[K]-X12[K]; IU4=Y4[K]-Y12[K];
877  RS5=X5[K]+X13[K]; IS5=Y5[K]+Y13[K];
878  RU5=X5[K]-X13[K]; IU5=Y5[K]-Y13[K];
879  RS6=X6[K]+X14[K]; IS6=Y6[K]+Y14[K];
880  RU6=X6[K]-X14[K]; IU6=Y6[K]-Y14[K];
881  RS7=X7[K]+X15[K]; IS7=Y7[K]+Y15[K];
882  RU7=X7[K]-X15[K]; IU7=Y7[K]-Y15[K];
883  RSS0=RS0+RS4; ISS0=IS0+IS4;
884  RSS1=RS1+RS5; ISS1=IS1+IS5;
885  RSS2=RS2+RS6; ISS2=IS2+IS6;
886  RSS3=RS3+RS7; ISS3=IS3+IS7;
887  RSU0=RS0-RS4; ISU0=IS0-IS4;
888  RSU1=RS1-RS5; ISU1=IS1-IS5;
889  RSU2=RS2-RS6; ISU2=IS2-IS6;
890  RSU3=RS3-RS7; ISU3=IS3-IS7;
891  RUS0=RU0-IU4; IUS0=IU0+RU4;
892  RUS1=RU1-IU5; IUS1=IU1+RU5;
893  RUS2=RU2-IU6; IUS2=IU2+RU6;
894  RUS3=RU3-IU7; IUS3=IU3+RU7;
895  RUU0=RU0+IU4; IUU0=IU0-RU4;
896  RUU1=RU1+IU5; IUU1=IU1-RU5;
897  RUU2=RU2+IU6; IUU2=IU2-RU6;
898  RUU3=RU3+IU7; IUU3=IU3-RU7;
899  T=(RSU1+ISU1)*E2; ISU1=(ISU1-RSU1)*E2; RSU1=T;
900  T=(RSU3+ISU3)*E2; ISU3=(ISU3-RSU3)*E2; RSU3=T;
901  T=RUS1*ER3+IUS1*EI3; IUS1=IUS1*ER3-RUS1*EI3; RUS1=T;
902  T=(RUS2+IUS2)*E2; IUS2=(IUS2-RUS2)*E2; RUS2=T;
903  T=RUS3*ER5+IUS3*EI5; IUS3=IUS3*ER5-RUS3*EI5; RUS3=T;
904  T=RUU1*ER1+IUU1*EI1; IUU1=IUU1*ER1-RUU1*EI1; RUU1=T;
905  T=(RUU2+IUU2)*E2; IUU2=(IUU2-RUU2)*E2; RUU2=T;
906  T=RUU3*ER3+IUU3*EI3; IUU3=IUU3*ER3-RUU3*EI3; RUU3=T;
907  RSSS0=RSS0+RSS2; ISSS0=ISS0+ISS2;
908  RSSS1=RSS1+RSS3; ISSS1=ISS1+ISS3;
909  RSSU0=RSS0-RSS2; ISSU0=ISS0-ISS2;
910  RSSU1=RSS1-RSS3; ISSU1=ISS1-ISS3;
911  RSUS0=RSU0-ISU2; ISUS0=ISU0+RSU2;
912  RSUS1=RSU1-ISU3; ISUS1=ISU1+RSU3;
913  RSUU0=RSU0+ISU2; ISUU0=ISU0-RSU2;
914  RSUU1=RSU1+ISU3; ISUU1=ISU1-RSU3;
915  RUSS0=RUS0-IUS2; IUSS0=IUS0+RUS2;
916  RUSS1=RUS1-IUS3; IUSS1=IUS1+RUS3;
917  RUSU0=RUS0+IUS2; IUSU0=IUS0-RUS2;
918  RUSU1=RUS1+IUS3; IUSU1=IUS1-RUS3;
919  RUUS0=RUU0+RUU2; IUUS0=IUU0+IUU2;
920  RUUS1=RUU1+RUU3; IUUS1=IUU1+IUU3;
921  RUUU0=RUU0-RUU2; IUUU0=IUU0-IUU2;
922  RUUU1=RUU1-RUU3; IUUU1=IUU1-IUU3;
923  X0[K]=RSSS0+RSSS1; Y0[K]=ISSS0+ISSS1;
924  if (!ZERO)
925  {
926  REPORT
927  R1=RUUS0+RUUS1; I1=IUUS0+IUUS1;
928  R2=RSUU0+RSUU1; I2=ISUU0+ISUU1;
929  R3=RUSU0+RUSU1; I3=IUSU0+IUSU1;
930  R4=RSSU0+ISSU1; I4=ISSU0-RSSU1;
931  R5=RUUU0+IUUU1; I5=IUUU0-RUUU1;
932  R6=RSUS0+ISUS1; I6=ISUS0-RSUS1;
933  R7=RUSS0+IUSS1; I7=IUSS0-RUSS1;
934  R8=RSSS0-RSSS1; I8=ISSS0-ISSS1;
935  R9=RUUS0-RUUS1; I9=IUUS0-IUUS1;
936  R10=RSUU0-RSUU1; I10=ISUU0-ISUU1;
937  R11=RUSU0-RUSU1; I11=IUSU0-IUSU1;
938  R12=RSSU0-ISSU1; I12=ISSU0+RSSU1;
939  R13=RUUU0-IUUU1; I13=IUUU0+RUUU1;
940  R14=RSUS0-ISUS1; I14=ISUS0+RSUS1;
941  R15=RUSS0-IUSS1; I15=IUSS0+RUSS1;
942  X8[K]=R1*C1+I1*S1; Y8[K]=I1*C1-R1*S1;
943  X4[K]=R2*C2+I2*S2; Y4[K]=I2*C2-R2*S2;
944  X12[K]=R3*C3+I3*S3; Y12[K]=I3*C3-R3*S3;
945  X2[K]=R4*C4+I4*S4; Y2[K]=I4*C4-R4*S4;
946  X10[K]=R5*C5+I5*S5; Y10[K]=I5*C5-R5*S5;
947  X6[K]=R6*C6+I6*S6; Y6[K]=I6*C6-R6*S6;
948  X14[K]=R7*C7+I7*S7; Y14[K]=I7*C7-R7*S7;
949  X1[K]=R8*C8+I8*S8; Y1[K]=I8*C8-R8*S8;
950  X9[K]=R9*C9+I9*S9; Y9[K]=I9*C9-R9*S9;
951  X5[K]=R10*C10+I10*S10; Y5[K]=I10*C10-R10*S10;
952  X13[K]=R11*C11+I11*S11; Y13[K]=I11*C11-R11*S11;
953  X3[K]=R12*C12+I12*S12; Y3[K]=I12*C12-R12*S12;
954  X11[K]=R13*C13+I13*S13; Y11[K]=I13*C13-R13*S13;
955  X7[K]=R14*C14+I14*S14; Y7[K]=I14*C14-R14*S14;
956  X15[K]=R15*C15+I15*S15; Y15[K]=I15*C15-R15*S15;
957  }
958  else
959  {
960  REPORT
961  X8[K]=RUUS0+RUUS1; Y8[K]=IUUS0+IUUS1;
962  X4[K]=RSUU0+RSUU1; Y4[K]=ISUU0+ISUU1;
963  X12[K]=RUSU0+RUSU1; Y12[K]=IUSU0+IUSU1;
964  X2[K]=RSSU0+ISSU1; Y2[K]=ISSU0-RSSU1;
965  X10[K]=RUUU0+IUUU1; Y10[K]=IUUU0-RUUU1;
966  X6[K]=RSUS0+ISUS1; Y6[K]=ISUS0-RSUS1;
967  X14[K]=RUSS0+IUSS1; Y14[K]=IUSS0-RUSS1;
968  X1[K]=RSSS0-RSSS1; Y1[K]=ISSS0-ISSS1;
969  X9[K]=RUUS0-RUUS1; Y9[K]=IUUS0-IUUS1;
970  X5[K]=RSUU0-RSUU1; Y5[K]=ISUU0-ISUU1;
971  X13[K]=RUSU0-RUSU1; Y13[K]=IUSU0-IUSU1;
972  X3[K]=RSSU0-ISSU1; Y3[K]=ISSU0+RSSU1;
973  X11[K]=RUUU0-IUUU1; Y11[K]=IUUU0+RUUU1;
974  X7[K]=RSUS0-ISUS1; Y7[K]=ISUS0+RSUS1;
975  X15[K]=RUSS0-IUSS1; Y15[K]=IUSS0+RUSS1;
976  }
977  }
978  goto L100;
979  L600: ;
980  }
981 
982  return;
983 }
984 
985 // can the number of points be factorised sufficiently
986 // for the fft to run
987 
989 {
990  REPORT
991  const int NP = 16, NQ = 10, PMAX=19;
992 
993  if (PTS<=1) { REPORT return true; }
994 
995  int N = PTS, F = 2, P = 0, Q = 0;
996 
997  while (N > 1)
998  {
999  bool fail = true;
1000  for (int J = F; J <= PMAX; J++)
1001  if (N % J == 0) { fail = false; F=J; break; }
1002  if (fail || P >= NP || Q >= NQ) { REPORT return false; }
1003  N /= F;
1004  if (N % F != 0) Q++; else { N /= F; P++; }
1005  }
1006 
1007  return true; // can factorise
1008 
1009 }
1010 
1011 bool FFT_Controller::OnlyOldFFT; // static variable
1012 
1013 // **************************** multi radix counter **********************
1014 
1016  SimpleIntArray& vx)
1017  : Radix(rx), Value(vx), n(nx), reverse(0),
1018  product(1), counter(0), finish(false)
1019 {
1020  REPORT for (int k = 0; k < n; k++) { Value[k] = 0; product *= Radix[k]; }
1021 }
1022 
1024 {
1025  REPORT
1026  counter++; int p = product;
1027  for (int k = 0; k < n; k++)
1028  {
1029  Value[k]++; int p1 = p / Radix[k]; reverse += p1;
1030  if (Value[k] == Radix[k]) { REPORT Value[k] = 0; reverse -= p; p = p1; }
1031  else { REPORT return; }
1032  }
1033  finish = true;
1034 }
1035 
1036 
1037 static int BitReverse(int x, int prod, int n, const SimpleIntArray& f)
1038 {
1039  // x = c[0]+f[0]*(c[1]+f[1]*(c[2]+...
1040  // return c[n-1]+f[n-1]*(c[n-2]+f[n-2]*(c[n-3]+...
1041  // prod is the product of the f[i]
1042  // n is the number of f[i] (don't assume f has the correct length)
1043 
1044  REPORT
1045  const int* d = f.Data() + n; int sum = 0; int q = 1;
1046  while (n--)
1047  {
1048  prod /= *(--d);
1049  int c = x / prod; x-= c * prod;
1050  sum += q * c; q *= *d;
1051  }
1052  return sum;
1053 }
1054 
1055 
1056 #ifdef use_namespace
1057 }
1058 #endif
1059 
1060 
ossim_uint32 x
double Real
Definition: include.h:57
const SimpleIntArray & Radix
Definition: newmatap.h:161
Real square(Real x)
Definition: newfft.cpp:111
int * Data()
Definition: newmat.h:1603
const int n
Definition: newmatap.h:165
MultiRadixCounter(int nx, const SimpleIntArray &rx, SimpleIntArray &vx)
Definition: newfft.cpp:1015
#define A(r, c)
bool Finish() const
Definition: newmatap.h:175
SimpleIntArray & Value
Definition: newmatap.h:164
os2<< "> n<< " > nendobj n
#define REPORT
Definition: newfft.cpp:108
static bool ar_1d_ft(int PTS, Real *X, Real *Y)
Definition: newfft.cpp:146
static bool OnlyOldFFT
Definition: newmatap.h:109
static bool CanFactor(int PTS)
Definition: newfft.cpp:988